AD-762 004

A REAL TIME VISIBLE SURFACE ALGORITHM

Gary Scott Watkins

Utah University

Prepared for:

Rome Air Development Center
Advanced Research Projects Agency

June 1970

DISTRIBUTED BY:

National Technical Information Service
U. S. DEPARTMENT OF COMMERCE
5285 Port Royal Road, Springfield Va. 22151

BEST
AVAILABLE COPY

A real-time visible surface algorithm

/Y
. GARY SCO1T WATKINS
UNIVERSITY OF UTA"1
ny: O nr‘J“‘*
I
g |
NATIONAL TECHNICAL !’\ JUN 35 1973 ‘l
INFORMATION SERVICE =i .
. ,: },; \i‘L..JU uis
msmﬁmo« BTATEMERT & [
Apptmed fer public mlemo,
Usdinr.ited
JUNE 1970
UTEC-CSc-70-101
COMPUTER SCIENCE, UNIVERSITY OF UT:)
SALT LAKE CITY, UTAH 84’1\;&

L AR JAT'\‘}' -

s s O S PPy SRS DYLINS, 9
At e T a1 S B g e b L et 3L whod

A REAL TIME VISIBLE SURFACE ALGORITHM

Gary Scott Watkins

June 1970 UTEC-CSc-70-101

This research was supported in part by the University of
Utah Computer Science Division and the Advanced Research Pro-
jects Agency of the Department of Defense, monitored by Rome
Air Development Center, Griffiss Air Force Base, New York
13440, under contract AF30{602)-4277. ARPA Order No. 829,

TABLE OF CONTENTS

ACKNOWLEDGMENTS

LIST OF ILLUSTRATIONS

ABSTRACT

CHAPTER I

A.

B.

CHAPTER II

CHAPYWR III

A.

B.'

C.

D.

E.

F.

G.

J.

CHAPTER 1V

CHAPTER V

CHAPTER VI

CHAPTER VII

‘NTRODUCTION

Path of Edges Algorithms’
Sample Space Algorithms
PRE-FRAME PROCESSING
VISIBLE SEGMENT GENERATOR
Segment Generator
Segment Eliminator

Depth Sorter

Sampling

Sample Space Generator
Depth Comparator

Segment Clipping
Decision Processor
Intersecting Segments
Building the Sample List

FRAME-TO-FRLME COHERENCE

RELATIONSHIP WITH OTHER ALGORITHMS

DEVELOPMENT OF THE VSG ALGORITHM

TEST DATA

Objects

iv

preceding page blank

iii
vi

viii

13
14
14
16
18
22
28
32
34
35
36

40
40

D.
CHAPTER VIII
BIBLIOGRAPHY
APPENDIX I

APPENDIX II

Statistics
Analysis
Output Buffering

CONCLUSION

LISTING OF PROGRAM

STATISTICS OF OBJECTS
AND ALGORI1THMS

41
41
5@
60'
64
66

88

Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure

Figure

Figure
Figure
Figure

Figure

10
11
12
13
14
15
16

17
18
19
20

LIST OF ILLUSTRATIONS

Cube Presenting Optical Illusion
Cube with Hidden Edges not Drawn
Classification of Algorithms
Description of Edge and Polygon Blocks
Segment Block

Segments

Packing of Polygon Segment List
Sampling Points

Sample Edges and Sample Points

VSG Flowchart

Two Segments on a Scan Line
Arithmetic Unit for Depth Comparator
Gating of a Single Quadrant

Clipping of Segments

Boxing of Segments

Elimination of Visible Box by
Visible Segment

Subdivision
Three Potentially Visible Segments
Intersecting Segments

Intersecting Segments Clipped to
and X

chlip rclip

10
11
15
17
19
20
23
24
25
27
29

29
30
31

31

33

Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure

Figure

Figure

Figure
Figure

Figure

Figure
Figure

Figure

21
22
23
24
25
26
27
28
29
30
31
32

33

34
35

36

37
38

39

Registers for Finding Intersection
Object 1l: Penetration
Object 2: E-S

Object 3: Low Area
Object 4: Cubel
Object 5: Cube2
Object 6: Shapel
Object 7: Shape2*
Object 8: Sheet
Object 9: Simplel
Object 10: Simple2

Statistics of the Penetration Object
for the Six Algorithms

Statistics of VSG6 for the Ten
Test Objects -

Office Structure
Church

Rear View of Church with Randomly
Colored Blocks

Apollo Command and Service Module
Tori

Randomly Colored Surface

vii

33
42
43
44
45
46
47
48
49
50
51

52

53
61

61

62
62
63

63

ABSETRACT

With the increasing use of computer graphics, a need is
growing for a processor capable of displaying solid objects.
Environmental simulation and architectural modeling are only
two areas that would benefit from such a display processor.

This dissertation describes an algorithm designed for
such a processor, and a program for simulating the hardware
processor. The hardware processor would be capable of
generating pictures of fairly complicated objects at thirty
frames per second. Statistics describing its simulated
performance have been extracted and are reported within the

dissertation.

viii

CHAPTER I
INTRODUCTION

With the introduction of line-drawing displays, it was
soon realized that displaying too much information detracted
from the meaning and actually confused the Picture. For
instance, a single cube can create an optical illusion as
shown in Figure 1. However, the optical illusion is removed
if lines hidden by surfaces in front of them are not dis-
played (see Figure 2). a different approach could be taken.
Instead of determining the hidden lines, an algorithm could
find, colof, and shade visible surfaces, thus presenting a
more true to life picture. For the past several years,
different algorithms have been developed for solving the
hidden line or visible surface problem. The various algo-

rithms can be classified into several groups.

A, Path of Edges Algorithms
Some solutions to the problem have been found by

various methods of tracing along the edges of objects and
noting which of the edges are wholly or partially visible.
The resulting picture is then the display of the visible
segments of edges. Algorithms based on this method have
been developed by Roberts [1], Loutrel (2], and Appel [3].
This type of approach does not take into account the reso-

lution of the display but solves the hidden line problem to

AN

Figure 1

Cube Presenting Optical Illusion

r”

AT
~

Figure 2

Cube with Hidden Edges not Drawn

S R

the precision inherent in the object description.

B. Sample Space Algorithms

In 1967 a paper was presented by Wylie, Romney, Evans,
and Erdahl (4]. One of the concepts discussed was initiated
by Evans and introduced the concept of a sample space. The
concept states that given an output device with resolution
of Rx by Ry' one need only solve the hidden line problem at
the discrete resolution points. The sample space can be
thought of as taking the originail object description in X,
Y, Z, and mapping the object on to a two dimensional grid of
resolution Rx by Ry' Of course, the 7 information needs to
be preservéd in some form. When this is done, the object
will exist only at discrete points in X and Y. The rea-
soning behind this was when a person views a picture he is
physically limited by the resolution of the eye and the
resolution of the display device. Hence, the hidden line
pProblem need only be solved to the coarser resolution of
the two.

In the algorithm, non-intersecting triangles were used
as the object description. However, convex polygons could
have been used with only small changes in the pProgram. The
algorithm used a scan line approach. That is, one Y raster
line would be completely solved for visible triangles before
the program proceeded to the next scan line. A method of

sorting vertices of the triangles was developed by Wylie

otk

4
and Romney so only triangles concerned with the current scan
line were considered. On each scan line, triangle depths
were compared only wheré edges of the triangles crossed the
current scan line. Therefore, it was not necessary to do
depth computations at all raster points. Later Romney (5]
improved the sorting technique and added a "speedy" check
to the program to take advantage of scan line-to-scan line
coherence. This improved the speed by eliminating depth
sorting as long as triangles entering on the scan line were
ordered the same as the previous scan line.

Warnock [6] took a new approach but still kept the grid
of resolution points. The object description was gener-
alized by allowing polygons (convex or non-convex) which
could intersect one another. instead of the scan line
approach, Warnock took an area of the picture and tried to
"understand" it. If it was simple enough to "understand" he
would display it, otherwise he subdivided the area into
smaller areas. Eventually, a sub-area could be "understood"
and displayed, or a suh-area would reach resolﬁtion where-
upon it would be displayed without further analysis. This
concept of subdividing large problems into smaller (and
easier) problems is a "non-deterministic" algorithm.

After Warnock's algorithm was developed, Bouknight [7]
took the scan line approach and generalized it to include
general polygons which could intersect. Fiqure 3 shows a

classification of the various algorithms.

SUY3TIOBTY JO UOTIBOTITSSEID

£ 92anbtg
sueaqg
iyepaa
Asuuioyg
3ybTUNNOg STTAM

N

.
.IO.. i
b \\\\
HOOUIEM SuUTHIeM KIIHHMH
;/f y

AT STUTHISG ap-00) Tadady a3 0o

s3aaqoy

TS T TWISap-uoy

LUTSTaTDOng

IUTT uwIg h&\k\kb

oovdg sTdureg
e3jeq 309{qo

UOTSTATROQRS EaIV

apedg apdueg
UBBIIG MBTA, UOTAnTOSTY

SHHLIYO9IV INIT NIAAIH

rey Asem

The new algorithm to be described isg of the mapped
sample space class, and it allows general polygons which can
intersect. Key ideas useg in this algorithm are: (1} Scan
line-to-scan line coherence of pictures, ang (2) an arith-
metic unit for Z-depth sorting, Frame-to-frame coherence

v'as not found valuable (in terms of increasing the speed

Scan line at rea]l time Speeds. Thus, the program is g3
Visible Segment Generator (VSG). The output of the Vsg is
given to a shader for displaying. The method of shading is

very similar to that described by Romney [5] ang Warnock [g],

CHAPTER II
PRE-FRAME PROCESSING

Before being accepted by the VSG, the object must be
Processed so that all translations, rotations, and perspec-
tive transformations have been applied. a131 polygons must
be clipped at the boundaries of the viewing sample space.
Since the scanning process proceeds from ¥=1 to ¥=512 (or
to the Y-resolution value), the edges must be ordered in a
list according to the minimum Y value (Y-min) of each edge.
Horizontal edges need not be put in the list since the VSG
will rejeét them. On any scan line the VSG can then imme-
diately find which (if any) edges enter on that particular
scan line. For each polygon, three fields are zeroed
initially and reserved as sorting fields for the Vsg. The
formats for the edge block and pPolygon block are shown in
Figure 4. The shading and color information will never be
used By the VSG for computations. However, the VSG will
pass the information to the shader for displaying if the
object is visible.

A user that describes objects as closed polyhedra can
double the speed of the processor if edge and polygon blocks
are only created for polygons that face the viewer. This
process was used on the test objects described in Chapter

VII.

EDGE BLOCK

POINTER TO NEXT
EDGE BLOCK

POLYGON BLOCK

POINTER TO POLYGON
BLOCK

POINTER TO INITIAL
SEGMENT ON POLYGON

Y - MAX

POINTER TO NEXT
CHANGING POLYGON

Y - MIN

POLYGON ACTIVE BIT

X - BEGIN
(ASSOCIATED WITH Y - MIN)

SHADING AND COLORING
INFORMATION

AX

— e}

Z - BEGIN
(ASSOCIATED WITH Y - MIN)

AZ

i

Figure 4

Description of Edge and Polygon Blocks

S

CHAPTER III
VISIBLE SEGMENT GEMNERATOR

The VSG can be broken into three separate processors:
(1) Segment Generator, (2) Segment Eliminator, and (3) Depth

Sorter.

A. Segment Generator (SG)

The format for a segment block is shown in Figure 5.
A segment is defined as the continuous surface of a polygon
which exists between two adjacent edges on a scan line.
Thus in Figure 6, on scan line 'a' there are two segments,
while on scan line 'b' these two segments of the polygon
have merged into one segment. A segment block contains a
description of the two bounding edges. The two Y-end
values specify the Y scan lines when the edges exit from
the picture. The X and Z values are stored along with
the AZ and AX increments for each edge. Thus, when the
program proceeds to the next scan line, the X and 7 values
are updated by adding the increments as in Equation 1.

Z+Z2+0Z ; X«X+AX (1)

The segment blocks are threaded together by four separate
list structures:

1. The X-sort list contains all segments on the
current scan line sorted with respect to the left edge of

each segment. This list has both forward and backward

POINTER TO PREVIOUS
SEGMENT IN X-SORT LIST

—

POINTER TO NEXT
SEGMENT IN X-SORT LIST

POINTER TO NEXT
SEGMENT IN POLYGON LIST

POINTER TO POLYGON
BLOCK

POINTER TO NEXT
SEGMENT IN ACTIVE LIST

Y - END

X

AX

AZ

POINTER TO NEXT
SAMPLE EDGE

Y - END

X

AX

AZ

POINTER TO NEXT
SAMPLE EDGE

Figure 5
Segment Block

r LEFT EDGE

N

~ RIGHT EDGE

10

Figure 6

Segments

11

12
pointers.

2. Each polygon segments list contains an ordered set
of all segments belonging to a particular polygon on a scean
line. They are linked together, with the initial pointer
(contained in the polygon block) pointing to the left mout
segment of the polygon.

3. The active segment list cdntains only seqgments of
the X-sort list which exist in a specified range of X
values. Section F of this chapter will give more detail
of it.

4. The sample list is another sorted list that will
be explained later.

The SG is checked on each scan line to see if any new
edges enter the current scan line from the edge list. If
there are no entering edges, control is passed to the
segment eliminator. If edges do enter on a scan line,
data from the edges is used to create a segment.

The polygon block associated with the incoming edge is
checked to see if the active bit is set. Active designates
whether or not the polygon is already in the list of
changing polygons (polygons that have edges entering or
exiting on the current scan line). 1If the polygon was not
previously active; it is tagged as active ang put in the
list containing ali changing polygons on this scan line.

Since an edge has only enough data for one half of a

segment, an edge can be inserted into either the right or

13
left side of an empty segment. Because the program does not
know whether an edge bounds the right or left side of a
polygon, the algorithm may insert an edge into the Wrong
half of a segment. However, if this happens, the Segment
Eliminator will do the necessary rearranging. The X value
of the incoming edge is compared against the X values of
segments in the polygon segments list until the appropriate
location in the 1list is found for inserting the edge data.

After finding the correct location in the list, and if
there is not an empty half of a segment block, the SG must
get a block from free storage and insert it in the list at
the correct location. Pointers to the segment block must
also be inserted in the X-sort list in the correct location
whenever data is stored in the left half of the block.

The preéeding Process is repeated for all edges that
enter on the current scan line. Finally when no more edges

enter, control is passed to the Segment Eliminator.

B. Segment Eliminator (SE)

The SE runs through the list of all changing polygons,
and for each of the polygons it disconnects the polygon from
the changing polygon list, and resets the active bit. It
then proceeds through the list of Segments attached to that
polygon to determine if any data needs to be shifted from
one segment block to another, or if any segment blocks can
be returned to free storage. For example, in Figure 6 on

scan line 'a' the polygon has two Segments. Because the two

14
middle edges exit between Scan lines 'a' and 'b,' this
pPolygon will have been inserted into the list of changing
polygons. The SE must then take the right edge data from
the second segment block and insert that data into the right
half of the first sagment block. After this, the second
segment block will be returned to free storage. Figure 7
gives a Step-by-step illustration of what would happen if
displaying the polygon in Figure 6. When all active
polygons have been checked by the SE, control is passed to

the Depth Sorter.

C. Depth Sorter (Ds)

At tﬁis point the X-sort list contains all segment
blocks on this scan line ordered with respect to the left
edge of each scan line. While the SG and SE are concerned
only with polygons that change on the current scan line, the
DS is concerned with all polygons that exist on the scan
line. Therefore, the list handling and memory referencing
in this processor are extremely critical to the overall

speed of the VsG.

D. Sampling

A critical factor in the speed of the algorithm is the
number of points on the scan line where depths of polygons
are sampled. The depth sorter is capable of determining at
most a single visible segment for a restricted span of a

scan line. Because of this, sampling must at least be done

— - SEGMENT SEGMENT
_— = i =
RIGHT 1 RIGHT 2
. | T |
LEFT] LEFT 2
Scan Line '3
POLYGON
EMPTY [RIGHT 2
LEFT 1 L__EMPTY

Scan Line '3!

POLYGON

EMPTY

after Noticing Two Edges
Exit on this Scan Line

\RIGHT 2 |

[——

LEFT 1

Scan Line

POLYGON

EMPTY

'b! Showing Data Transfer

RIGHT 2
— <]

Scan Line 'p!

LEFT 1

after Second Segment Block

Has Been Returned to Free Storage

Figure 7

Packing of Polygon Segment List

15

EMPTY

16
at the points of discontinuity (the visible edges). Scan
line-to-scan line coherence usually allows the DS to find
the visible segment by sampling only at the visible edges
contained in the sample list. For the object in Figure 8,
one notices the sampling points actually following the
visible edges of the picture. Thus the speed of the
algorithm will be more dependent on the visible complexity
of the object than on the total object complexity.

The Depth Sorter can be subdivided into three separate
processors: (1) The Sample Space Generator, (2) The Depth

Comparator, and (3) The Decision Processor.

E. Sample Space Generator (SSG)

The SSG operates from the sample list. Essentially the
list contains the sorted edges (each half of a segment block
is an elge) which were visible on the previous scan line.
The building of the Sample List was done on the previous
scan line by the Decision Processor and will be discussed
‘inder that heading.

The left and right sides of the view screen are always
implied sample edges. The scan process on a single scan
line piroceeds from left to right in X. Therefore, the left
edge of the view screen becomes the initial left sample
point. The X value of the first edge in the sample list
then becomes the right sample point. This sample edge is
then removed from the sample list. The portion on the scan

line which exists between the left and right sample points

Figure 8
Sampling Points

17

18
is called a span.

Suppose in Figure 9 one found on scan line 'w' that
edges B, C, and D were visible, and therefore they were put
in the sample list with B at the first of the list. When
the program proceeds to scan line 'w+l,' the current X value
of edge A is initially set as the left sample point. Edge B
then becomes the right sample point. Once a left and right
sample point is found, control is passed to the Depth
Sorter and Decision Precessor. Finally, when the Decision
Processor finishes its task, control is passed back to ssaG.
Now the right sample point 'b' becomes the left sample
point. Edge C is read from the sample list, point 'g!
becomes the right sample point, and the cy~le begins again.
The cycling process finally stops when the end of the scan
line is reached whereupon control is passed back to the
Segment Generator for the next scan line. A flow chart in

Figure 10 shows the overall control of the system.

F. Depth Comparator (DC)

The DC takes all the segments from the X-sort list that
exist between the left and right sample points and operates
on them in the following manner: (1) The X and 2 values are
incremented to the values associated with the next scan line
and stored back in the segment block. (2) If either of the
edges of the segment exit on this scan line, the associated
Polygon is tagged as active and put in the changing polygon

list. (3) The X value of the left edge is compared with the

AP TS

Figure 9
Sample Edges and Sample Pointg

19

20

[START |

ANY MORE FDGES ENTER.> N0 :
ON THIS SCAN LINE [
I

YES

SEARCH SEGMENT LIST OF |
ASSOCIATED POLYGON AND PUT I
EDGE DATA IN SEGMENT BLOCK |

MARK ASSOCIATED POLYGON
AS CHANGING r-_J
T

5G |

____________________ o e]
(LAND MORE CHANGING POLYGONS) —ﬂ

YES ;

CHECK ALL SEGMENTS ON THIS POLYGON |

AND PACK SEGMENTS WHEN NECESSARY -s5 7]
______________________ '_________q___rJ_:I

l
—(_END OF SCAN LINE)

NO - |
[GET_SAMPLE POINTS) Hh‘“*uhhhh%-
i |

-]
COMPARE DEPTHS OF ALL |
SEGMENTS WHICH ARE IN

SUBDIVIDE SAMPLE SAMPLE SPAN |
SPAN AT LEFT CREATE X-SORT LIST j
MOST EDGE FOR NEXT SCAN LINE :

MARK POLYGONS THAT i
HAVE EDGES EXITING ON !
THE NEXT SCAN LINE

SUBDIVIDE

—(DECISION PROCESSOR »—>NIERSECTION |

DO INTERSECTION| |
OF_TWO SEGMENTS ||

|
[OUTPUT VISIBLE SEGMENTS——
|

!

-
e .4_P§_J

Figure 10
VSG Flowchart

21
last segment stored in the X-sort list being Prepared for
the next scan line. If the new Segment X value ig larger,
it is inserted at the end of the 1ist. If it is not larger,
the backpointers of the X-sort 1list are used until the
correct location in the 1list is found. The surprising data
is that line-to-line coherence of the ten test objects
(Chapter vII) causes 97 to 99 percent of all segments to be
inserted at the end of the list. This means that the X-sort
list can always remain sorted in X with very little time
spent for rearranging segments., (4) Along with the sorting
just discussed, the DC must compare the incoming fegment
against the currently visible segment. If the incoming
segment is in front, it will become the currently visible
Seégment. Every time a new sample span is generated, the
first incoming segment becomes the currently visible
segment.

If the right edge of a segment extends to the right of
the right sample point, the Segment must be saved for future
depth comparisons when the sample span is moved along the
scan line. For this purpose the active segments list was
Created. Segments are Put in the list from the X-sort 1ligt
and remain only as long as the right edge of the segment is
to the right of the left sample point. Therefore, in
addition to Segments read from the X-sort list, the DC also

Compares depths of Seégments read from the active list.

22

G. Segment Clipping
When two segments are being dbmpared, a clipping

algorithm is applied to each of the two segments simul-
taneously. Fiqure 11 illustrates the procedure. The two
lines represent the segment values on the current scan
line. As the 2 values of a segment decrease, the segment
becomes closer to the observer. Two X clipping values must
be obtained. chlip is defined as the right most left edge
in the sample span, and chlip as the left most right edge
in the sample span. If a left edge does not lie in the
sample span, the left sample span value is taken as X

lelip®

In Figure 11, the X value of 'e' becomes X and the X

lclip

value of 'b' becomes X A set of registers is then

rclip®
chosen for the left and right clip points of both lines

and loaded as in Figure 12.

Since Zmax and Zmin are stored (not Zleft and Zright)’

an additional bit must be kept which is the sign of
(Zleft—zright)' This bit is used to distinguish the

relationship of Zleft and 2 to Zm and Zm' . Figure

right in

13 shows a more complete géting of the registers contained

ax

in dotted box #1 of Figure 12. s of Figure 13 is:

S=(XA~X (2)

lclip"'XB-xlclip)/2
or

S=(XA+XB) /2-X (3)

lclip
But (XA+XB)/2 is the midpoint (XM) of the line ab.

S=XM~-X (4)

lclip

3
_
Z
S & =
=
e £

Sample Span Left Sample Span Right

e e -

X

Figure 11
Two Segments on a Scan Line

23

Line ab
Xa-xlclip Znax
————{é/Z +) /2
Xb-xlclip “min

Ton] (fe
a “rclip max
+)/2 —+ /2
(M |

Figure 12

Line cd

24

Xc-xlclip

f7
“max

{
/2
xd'x1c1£;]

-4%/2

I

L.

min
3
xc-xrclip Zhax
—~——{b/2 +/2
Fatcorsp] Ui,
4

Arithmetic Unit for Depth Comparator

25

Xa_chlip
S <0 S !
.) /2
S>0 {
%101
Zmax I
£ ((S > 0)A(SL =))v((S < 0)A(SL +))
b
5 (S 3 0JA(SL +))v((S < 0)A(SL -))
Z_.
min
SL = Sign of (Za - Zb)
Figure 13

Gating of a Single Quadrant

26

If S is greater or equal to zero, the midpoint is on chlip

or to the right of chlip' Then the registers containing X
and Z of the previous point to the right of chlip will be
replaced with the midpoint of line ab which is closer to
chlip' A similar argument applies if S is less than zero.
A more complete description of this clipping process used in
a line drawing system isg described by Sproull [8].

In Figure 14, succeeding clipping cycles are applied to
the two segments of Figure 13. rLet zmaxl be Zm of

ax

quadrant 1 in Figure 12. 3 P P Z

max3’ Zmin3’
< Z

minl’ “max2’ min2’

and Zmin4 are similarly defined. If (2

Zmax4 maxl min3)'

line ab is in front of line cd at X However, as in

lelip:®

Figure 14 after one clip cycle, then (2 < Z

max3 minl)'

Therefore, line cd is in front of line ab at xlclip'
Exactly the same argument applies to chlip’ and after two
clip cycles line cd is found to be in front of line ab.
Since line cd covers line ab everywhere between the sample
points 'e' ang 'f', it then becomes the currently visible
Segment.

Many times when lines intersect, or in the case shown

in Figure 15, a single currently visible segment cannot be

found. 1In this case a box is made just large enough in X

the amount to remember a line. Aalso a bit is set declaring

a visible box instead of a visible segment. If later a

27

lelip Xrclip
First Clip Cycle

Xlelip Xrelip
Second Clip Cycle

Figure 14
Clipping of Segments

28
segment is found to be in front of the box as in Figure 16,
then it becomes the current visible segment and replaces the
visible box. The processor continues until all segments that
exist in the span are checked. Wher this is completed,

control is passed to the Decision Processor.

H. Decision Processor (DF)

The DP decides whether a visible segment can be put in
a display file or if the sample span must be subdivided in
some manner and the Depth Comparator started again. If the
DP finds there is a visible segment from the DC, it outputs
the corresponding segment to the display file. If the DC
discovered a visible box, and any of the visible segments in
the box have an edge existing within the sample span, the
right sample point is set to the X value of that edge
(subdivision), and control is passed back to the DP. For
instance, the DP would cause the control to subdivide at
X=a for segments in Figure 17.

If no edges exist between the left and right sample
peints, two conditions can exist: (1) For more than two
segments existing in the visible box as in Figure 18, the
sample span is divided in half. That is, the right sample
point is movad half way toward the left sample point.

After this subdivision process, control is passed back to
the DC again. (2) If only two segments exist in the box,

the condition is the intersection case of Figure 19. The

29

Encompassing Box

Figure 15
Boxing of Segments

" Single Visible Segment
Figure 15

Elimination of Visible Box by Visible Segnent

Sample Left

TR

ﬂ-ﬂ’ﬁﬂgﬂﬂjrfrﬁfrFfihﬁhﬂh&

—

Sample Right

SUBDIVIDE

Figure 17
Subdivision

30

SPERPR

Figure 18
Three Potentially Visible Segments

Figure 19
Intersecting Segments

31

32
same clipping hardware used for depth comparisons can also

be used for calculating the intersection of these two lines.

I. Intersecting Segments

The intersection calculation is done in.two stages.
First, the registers of Figure 12 are loaded exactly in the
same manner as for the DC. However, instead of terminating
when the Zmax and Zmin tests are satisfied, the adders run
until all registers contain either 0 or -1. When the
registers reach this state, Zmaxl will hold the % value of
line ab at chlip’ Zmax2 the Z value of line ab at chlip’

Zmax3 the Z value of line cd at xlclip’ and Zmax4 the 7%

value of line cd at X Figure 19 has been reduced to

rclip®
the problem represented in Figure 20.

For the second stage, the problem can be solved by
loading the registers in the manner shown in Figure 21.
Because of the intersection, Z1 and Z2 will have opposite
signs. Therefore, after each add cycle the Z sum is stored
into the Z register which has the same sign as the sum. The
X registers will also be stored in the same direction

determined by the Z sum. After [1og2(x)] add

rclip-xlclip
times, X1 and X2 will both contain the X value of the
intersect of the two segments.

A block from free storage is obtained at this point and
the X intersect value and the pointers to the two segments

causing the intersection are stored as data in an implied

edge list. When the program proceeds to the next scan line,

Zmaxl

Zmax3

Xlelip

Intersecting Segments Clipped to X

X1c1ip

\é,z

xrclip

z

Zmax2

- Z

max4

Figure 21

Registers for Finding Intersection

g T nax4
oa R Ermax2
xrclip
Figure 20
lclip anid xrclip
Znaxl ~ Zmax3

33

34
the intersect will again be calculated. The difference
between the intersect on this scan line and the intersect
calculated on the previous scan line can be used as the
increment of the implied edge. This edge can now be treated
as any other visible edge and used for determining sample
points. If, on a scan line, an implied edge is found to be

no longer visible, the block is returned to free storage.

J. Building the Sample List

The DP has one other task. That is, to tag the visible
edges (determined in the DP), and put them in the sample
list. Upon completion of the DP, control is either passed
to the SSGIif subdivision did not occur, or to the DC if

subdivision did occur.

CHAPTER IV
FRAME-TO-FRAME COHERENCE

This algorithm can easily take advantage of frame-to-
frame coherence of pictures. For irstance, in a movie if
an edge is visible in one frame, it will usually be visible
in the next frame. If an edge is found to be visible on
the scan line it enters on, the edge block (see Figure 4)
is tagged as visible. This means one additional bit must
be stored in each edge block. Also two pointers to each
edge block must be stored in the segment blocks. Then when
the next frame is being processed and an edge was found to
be previously visible, the initial X value of the edge is
then used as a sample point. The frame-to-frame coherence
algorithm was used on some of the earlier versions of the
program. However, the scan line-to-scan line coherence was
so efficient that the frame-to~-frame coherence only
decreased the number of memory references by about 0.1
percent. Because of this, it was not implemented in later

programs.

24

CHAPTER V
RELATIONSHIP WITH OTHER ALGORITHMS

On the basis of generality of object descriptions, this
new algorithm is as good as or better than the others men-
tioned in the introduction. Convex or non-convex polygons
of any number of sides can be used. The algorithm allows
polygons to penetrate one another without any pre-processing
checks.

Since planar equations are never used for depth
sorting, the algorithm can not tell if the points of the
polygons lie on a plane. It always assumes a linear
interpolation between the edges on a scan line. However,
when shading a polygon a discontinuity in shading can be
Created. For example, if the vertex between scan lines 'a'
and 'b' of Figure 6 were not on the plane described by the
other three vertices, the linear depth calculations between
edges would show a discontinuity in the shading between the
two scan lines. Furthermore, the line of discontinuity
would always remain horizontal even if the polygon were
rotated. Also, since segments are only checked when edges
enter or exit, edges of a single polygon should never cross
each other. If they do cross, however, a local error will
occur in the picture only where that polygon exists and if

that polygon is visible. Consequently, points of a polygon

37
should lie on a plane. (Points not on a plane can introduce
edges that cross).

Like Warnock's algorithm, this new algorithm is also
non-deterministic, but on a scan line level. For instance,
a sample span on a scan line is assumed to have one covering
polygon. If it does not, the sample span is made smaller
until finally a span is found which is covered by a single
polygon.

Romney used an ordering scheme for taking advantage of
scan line-to-scan line coherence. He did not allow inter-
secting triangles. Therefore, as long as the intersection
of the edges of triangles on the current scan line were in
the same order as on the previous scan line, the same
triangles that were visible previously would be visible on
this scan line. However, as soon as the order changed, the
remainder of the scan line had to be depth sorted. The
coherence ordering made a great difference in the sreed of
his algorithm.

If intersections are allowed, as in the new algorithm,
this ordering of edges no longer holds for determining
visibility. Therefore, the sampling process described in
Chapter III-D was developed. It has the further advantage
that even when the order changes, the previously calculated
sample points for the remainder of the scan line are still

valid.

=~ e

CHAPTER VI
DEVELOPMENT OF THE NEW ALGORITHM

As is usually the case in the development of new
algorithms, the process was evolutionary. Successive algo~
rithms were developed, tested, and improved upon. The
history of this algorithm can be divided into six distinct
steps. These programs are called VSGl, VSG2, etc.

1. The first step used edges on each scan line. The
edges were sorted in X separately, and after sorting they
were read in order. Every time an even number of edges was
found assdciated with a pclygon, a segment block was Ccreated
from free storage. Finally, the segments were depth sorted
for visibility.

2, VSG2 linked the edges together with pointers
after sorting in X. This eliminated the creation of
segment blocks on each scan line.

3. VSG3 took the edge data and created segment
blocks only when edges entered on a scan line. These
segments are described in Chapter III-F. Since there are
one half as many segments as edges, the X-sort on each scan
line is twice as fast as in VSG2. Also, edges no longer
needed to be linked together on every scan line.

4. VSG4 eliminated the X-sort which was done sepa-
rately before the depth sorting. The X-sort and depth sort

were done simultaneously on each scan line.

39

5. The four previous algorithms used planar
equations and a multiplier for calculating depths of the
polygons. A divider was also required for finding the
intersect of two polygons. VSG5 replaced the arithmetic
unit with the midpoint clipping simulation described in
Chapter III-E.

6. Up to this point all algorithws used a bucket
sort as described by Romney [5] for sorting segments in X.
This final algorithm used the assumption that a sorted list
will remain sorted by interchanging only a few segments

when proceeding from one scan line to the next.

S S

CHAPTER VII
TEST DATA

Ten objects were chosen to represen: various com-
Plexities of pictures. Figures 22-31 contain pictures of
the objects. éach object has two Pictures. One shows all
edges in the Picture and the éther shows the objects after

visible surfaces are found and shaded.

A, Objects

Object 1, Penetration: The object is relatively
simple but has many intersecting planes.

Object 2, E-§: Many edges abound in the picture and
a great amount of visible complexity exists.

Object 3, Low Area: Although intersections abound,
the picture only occupies a small area.

Object 4, cubel: Twenty-five cubes exist, but'only
the front cube ig visible.

Object 5, Cube2: Object 4 has been rotated so that
parts of all twenty~-five cubes are visible. An enormous
amount of visible complexity exists.

Object 6, Shapel: This object is made up of many
long and narrow polyéons which are long in the x direction.

Object 7, Shape2: Object 6 has been rotated so the
polygons are long in the Y direction. These two objects

are to show what effect the object orientation can have

41
on the scanning process.
Object 8, Sheet: This is a wavy object made up of
triangles. Everything is at least partly visible.
'Object 9, Simplel: This object is made up of a large
cube encompassing a sphere and intersecting cubes.
Object 10, Simple2: Object 9 has been changed slightly

so the sphere intersects the cube and is partly visible.

B. Statistics

For each of the VSG algorithms mentioned in Chapter VI,
statistics were gathered. These statistics included data
about the object (number of polygons, etc.), computation
required, memory reference counters, and various other
counters. Appendix II contains a list of statistics. At
the beginning of each set of statistics for a particular
algorithm, there is a table describing the various counters.
Figure 32 contains a table of statistics that have been
extracted for the Penetration object (Figure 22). The
statistics of the six various changes in the algorithm are
shown for that object. The table in Figure 33 shows a cross
section of statistics for all the objects with the final

algorithm.

C. Analysis
Before any statistics were gathered, arithmetic
computation was suspected to be the bottle-neck in solving

the hidden line problem. Statistics, however, showed that

42

i i
3 # e

fi"mﬁwﬂ ._.ﬁ_.tx
WY AW
NON B s

H._..n.__.‘...., P
".lmrlkh..ﬁ.ihl N
& ISCURET T

AALAI |
Y/

y

Figure 22
Object 1: Penetration

™
<

Figure 23
Object 2: E-S

<
s

Figure 24
Object 3: Low Area

Figu
Object

re
4: Cubel

45

Figure 26
Object 5: Cube?2

47

_____. .____ J
| /

.._......:_..___ﬂ |

v \\@\\\“\\m 7.
Wi g7

Figure 27
Object 6: Shapel

..-.... s
i

/

Figure 28
Object 7: Shape2

48

=)}
<

Figure 29
Object 8: Sheet

J ‘qfﬁ'a!!‘d
£ un!‘ \

| T)

‘ﬁ "f <

Figure 30
Object 9: Simplel

50

~
[Te]

Figure 31
Object 10: Simple2

52

>>>>!>>

i 137607 | 101892 37919 21730 21224 24291

2 9172 112 38 54 54 56

3 76 44 25 24 23 23

4 7068 6975 6839 9210 - -

5 26 22 22 15 - - {

6 = - - - 35604 32925

l. Number of memory references required

2. Nﬁmber of total memory blocks used

3. Maximum number of blocks used at a time

4. Number of multiplications for depth test required
(If multiplier-divider used)

5. Number of divisions for intersections required
(If multiplier-divider used) ,

6. Number of addition cycles required for depth
comparisons (If multiplier-divider not used)

Figure 32

Statistics of the Penetration Object

for the Six Algorithms

53

$309Lqo 3so1 usyg ayy I0F 99SA

JO =0T3ST3E3S

€€ o2anbrg
e
L g Sz 0081 01 ODoLT £ 0T 0E 0T ET
BLO'T | RZT°T | ®41°T | ®zs'p AEI°T | 970 | w000 | %50 ¥EF°E | w96°7 Z1
¥E' b FL'E £0"2 99°g 4 a4 502 | ega-z EZ°E 652 BE'E 1T
EBSPZ | 9zezt | asTpt Ir658 | 22208 | beigoT PLEOT | TP95Z | perew CEBZE o1
EZ*Z 9% "1 L0 4 IT'¢ 9Lz 8Z'S 90T Z9-z LO"E LT &
SE6YT | BEOH ULEIZ | ZHLEL | PTIEPE | Sksog BO9L TLOPEZ | OFOLYF | TEZEZ 8
(44 BT TE 05 ¥e 9k LT TE op £z L
06 9g 0sZ L 0e 2T Sz 60T 9FZ 95 9
EBEZ 89T SEGS EZOZT | Ogos TZZ8 BEEY EGTH Z50L PEBE 5
i+ ¥ o 0 0 ¥ 0 1€ 0 ¥l ¥
¥999 2LT9 00SET | oessz | rzpzy OT¥PST | BSTL FEI6 BLZST | ZOBSE £
80F BOE 80E T0Z 10z ooE 0D0E Dtz 08k 50T z
8FT BFT E6T oot 0ot 0ET DST 00T ooz 6F T
in w A 45] iy] n.a b
s ¢ |8 |8 | £ |8 |8 |§ |3 |¢8
§ | E =B | R | E : g
B2 b m
g

54

penuTjuo) ¢¢ sanbrg

Ae1dsTp suty Tes: 103 paarnbsx 1s3Inq juswbos Ind3ino wnwrtuTty

SUTT ueds burmoTToF ay3z o3 3STT 31I0S-X

JO PUS 3Yy3 uo 3nd j0u sie syusubos Uaym SuwWT3 JO jusdIag

(sxe3stboax ButddrTo butpeoT x03 9Toko ppe
SUo sepniour) 3se3 yzdep zad seToio PP® JO Isqumu sbeisay

(sa@3stbox Burddrto butpeor 103 3893 yzdep xad sTolko
PP® SUO s3pnioul) psxrtnbaz S3T24o ppe jo xsqunu Tejor

€ SUIT I2A0 g BUTT jJo oT3ey
S3O0Tq 3uswbes o3 ssousisgsx jo Iaqunu Te3zof

sjuswbss bHutzojzs
40J SWT3 SUO 3® posn Joas S)YO0Tq Axousur Jo ID2qUINU WNUTXER)

(3(20Tq/S3Tq 00£) uoTjewWIOFUT
Jjusubss buTtiozs A0 peatnbax syooTq Axousur FO Isqunu Te30]

sjusuwbass 3nd3zno Jo Iaqumpy

SSUTT pPaTTdWT Jo JIsquny

S®UTT ueds ssoxo sobps 3eys SSWT3 JO Isqunu Te30f
309fqo ayy aqraossp o3 PSsSn s)00Tq sbpe Jo zsquny

309fLqo ay3 aqraossp o PSSn SY00T7q uobAiod jo zaquny

“ET

AN

"TT

55
memory bandwidth was the critical factor, with the polygon
segment block being the most accessed array! For the
hardware processor, a special purpose memory would be used
where 300 bits could be accessed at one time. With
semiconductor memories it is becoming economical to do this.

From the first five ditferent changes in the algorithm
in Figufe 32, one can see a steady decrease in the number of
memory references. The final algorithm, however, produced
an increase in memory references due to the X-sort technique
described in Chapter III-F. TIn spite of this apparent
increase in memory references for VSG6, the overall number
of memory references in VSG5 would have been'greater if
accesses to the bucket X-sort memory had been counted. The
design and cost for such a bucket X~sort memory also were
compelling factors in deleting it even though accesses to
the segment memory increased.

When the program proceeds from one scan line to the
next, each segment block needs to be accessed for incre-
menting the X and Z values. At this same time, another
X-sort list is being sorted in preparation for the following
scan line. Segments are read from the beginning of the
X-sort list for the current scan line and are usually
inserted at the end of the X-sort list which is being
prepared for the next scan line. Figure 33 (line 12) shows
the percentage of times that segments cannot be inserted at

the end of the list, and when the previous segment pointers

56
must be used for finding the correct pPosition in the list
for inserting the Segment block. The Percentage varies
between 0 to 4 percent for the ten test objects. Thus, the
overhead of tracing back through a list to keep it sorted is
extremely low. Also, no large, expensive, or pPossibly
time-consuming special sorting hardware needs to be used.

Visual complexity is much more important in determining
the speed of the algorithm than is the total object
description. Object 4 and Objecc 5 are both sets of
twenty-five cubes. However, Object 5 requires over ten
times the number of memory references as Object 4, a
picture visually identical to Object 4, but GContaining only
one cube, was compared with Object 4. Even though Object 4
contained twenty-five Cubes, it onliy had SiX times the
memory references as the single cube object,

One way of measuring the prerformance of the algorithm
is to create a relationship between the object description
and the number of memory references to the segment array.
Two memory references (a read from memory followed by a
write to memory) are always required to increment the X and
Z values of a segment when proceeding from one scan line to
the next scan line. From the total number of times edges
Cross scan lines (line 3 of Figure 33), the minimum number
of memory references needed can he calculated from Equation
5l,

- (S*N) /E (5)

57
where Mmin is the minimum number of memory references that
can be expected. S is the number of memory references
required to increment a segment (2). N is the total number
of times that edges cross scan lines. E is the number of
edges contained in a segment (2). Equation 5 reduces to
Equation 6.

Mo n=N (6)
Equation 7 is the ratio (R) of Mtotal (the total number of
remory references actually used) to Mmin
R’:Mtotal/Mmin (7)
Line 9 of Figure 33 lists the different values of R for the
ten test objects.

The clipping of segments for depth sorting is very
fast. Line 11 of Figure 33 contains the average number of
add cycles required by the clipping registers to satisfy the
depth compariscn test between two polygon segments (see '
Chapter III-G). One of the add cycles is for loading the
clipping registers. Even counting this, the average number
is between two to three add cycles per depth test!

The ten test objects were also used by Stephen
McCallister [9] for gathering statistics on different
versions of Warnock's algorithm. Comparisons are shown for
a particular version which divides an area into four
sub-areas using a vertex closest to the certer of the large

area for the common corner of the four sub~-areas. If an

area is completely covered by a polygon, is void of all

58
polygons, or has only one visible edge in the area it is
simple enough to be displayed without further reduction.

Statistics for Object 2, E-S (Figure 23), were
gathered. A large data structure was used requiring polygon
lists, edge lists, and a vertex and planar equation array.
Each polygon block consisted of several words, but only
accesses to each polygon block (not word) were counted. The
same was also true of the remaining data structure. The

following information was gathered:

Polygon Block Accesseg=---- 336,156
Edge Block Accesses-=------- 427,688
Vertex Array---=—==—=-w=-ee-—- 220,910
Planar Equation Array------- 21,072
Total Access@S-——=—==—cw—uw 1,005,826

The number of accesses to memory was far greater than that
required by the new scan line algorithm (47,030). Also,
Warnock's algorithm requires that the complete object
description be stored in fast memory, and not just those

objects pertaining to the current scan line.

D. Output Buffering

Whenever a cathode ray tube (CRT) is being continually
refreshed, the rate of moving the beam must remain constant
if the displayed intensity is to be a function of the analog
input intensity. That is, the X and Y deflection circuits

must be changed at a constant rate. The output of the VSG

59
does not generate segments at a rate inversely proportional
to the length of the segments. Therefore, a buffer for
temporarily storing segments must be inserted between the.
VSG and the display.

In Figure 26 (Object 5;: Cube2), the Y scan goes from
the bottom to the top of the picture. The VSG can quickly
determine the visibility of the bottom half of the picture
but will require a great amount of time for the top half of
the picture. The display, howevar, must spend the same
amount of time on each half of the picture. Because of
this, almost the entire bottom half of the picture would
need to be buffered. On the other hand in Figure 23 (Object
2: E-S), the VSG runs at a fairly constant rate over the
whole picture, and only a small amount of buffering would be
required.

For the ten test objects, line 13 of Figure 33 shows
the smallest number of segments that must be stored at one
time in order to have a display running at thirty frames per
second with a constant rate for the X and Y deflection of
the CRT beam. The VSG was simulated to reference the
polygon segment array every 200 nanoseconds. For cbjects
which have a uniform distribution over the area, only a
small buffer size was needed. For Cube2, which has a
concentration of visible information in the upper right hand

corner, a much larger buffer size was required.

L

.60,

CHAPTER VIII

CONCLUSION

The processor described can be built with equipment
available today. The segment memory must be in the 200
nanosecond cycle range, and semiconductor memories are
available in this range. Also, only a small memory is
required since 18 to 50 segment blocks at most are needed at
any one time for any of the ten test objects.

The algorithm has been simulated in Fortran IV on a
PDP-10 at the Computer Science Department at the University
of Utah. .Other pictures have been taken tc show how
coloring and shading adds to the realism of objects.
Figures 34-39 show various objects. Total computation time
for generating and displaying the pictures is short. Cubel
(Object 4) required 30 seconds, and the church of Figure 35
containing 345 blocks (six polygons per block), required
only 2.5 minutes. Figure 36 shows the back view of Figure

35 with the blocks randomly colored.

Figure 34
Office Structure

Figure 35
Church

61

Figure 36
Rear View of Church with Randomly Colored Blocks

Figure 37
Apollo Command and Service Module

62

Figure 38
Tori

Figure 39
Randomly Colored Surface

63

&

BIBLIOGRAPHY

Roberts, L. G. "Machine Perception of Three-
Dimensional Solids," Technical Report No. 315,
Lincoln Laboratory, M.I.T., Cambridge, Mass.,
22 May 1963.

Loutrel, P. P. "A Solution to the Hidden-Line
Problem for Computer-Drawn Folyhedra,"
IEEE Transactions on Computers, C-19 [3],
205 March 1970.

Appel, A. "The Notion of Quantitative Invisibility
and the Machine Rendering of Solids,"
ACM Conference Proc. 387 (1967) .

Wylie, cC., Romney, G., Evans, D. C., Erdahl, A.
"Half-tone Perspective Drawings by Computer, "
AFIPS Proc. FJCC 31, 49 November 1967,

Romney, G. "Computer Assisted Assembly and Rendering
of Solids," Computer Science, University of Utah,
Salt Lake City, Utah, August 1969.

Warnock, J. "A Hidden Surface Algorithm for Computer
Generated Halftone Pictures," Technical Report
4-15, Computer Science, University of Utah,
Salt Lake City, Utah, June 1969,

Bouknight, W. J. "an Improved Procedure for Generation
of Half-tone Computer Graphics Presentations,"
Report R-432, Coordinated Science Laboratory,
University of Illinois, Urbana, Illinois,
September 1969,

Sproull, R., Sutherland, 1. E. "A Clipping Divider,"
AFIPS Proc. FJCC 33, 765 (1968).

9. McCallister, S., Sutherland, I. E. "Final Report
on the Area Warnock Hidden Line Algorithm,"
Evans and Sutherland Computer Corporation,

Salt Lake City, Utah, Internal Document,
12 February 1970.

65

_66 .

APPENDIX I
LISTING OF PROGRAM

The hidden line program is called as a subroutine'from
a main program. VSG6 contains counters interspersed through-
out the program for gathering statistics like those in
Appendix II. VSG6 is written in FORTRAN 1IV.
Several subroutines are called by the program:
LDRPT(I,J) < loads the right half of J (sign extended)
into I.
LDLPT (I,J) < loads the left half of J (sign extended)
-into I.
STRPT(I,J) < stores the right half of I into the right
half of J. The left half of J remains undisturbed.
STLPT(I,J) < stores the right half of I into the left
half of J. The right half of J remains
undisturbed.
SHOW < displays the Segments stored in the VISSEG array.
LSTSET(N) < initializes a free list structure with
blocks of N words each.
GETBLK(I) < gets a block from the free list. I is the
index of that block and is set by the subroutine.
RETBLK(I) < returns a block to the free list. I is the

index of the block to be returned.

s N KXo NoNe] Qo
O

OOOOQOOOOOOOOOOOOOQOOOOOOO

SUBROUTINE HIDDENCPIX,STAT) 67
COMMON/FREE/EDGEST,DUM,POLYST
COMMON/FREE1/Q1(4) , FRAMEX , FRAMEY
connou/rnzzz/xcnazz>,vcnﬂaa>,zc1nzz>,cx<7aa>,cv<7aa>,
1CZ(700),CD(702)

IMPLICIT INTEGER (A-7)

REAL X,Y,2,CX,CY,CZ,CD

COMMON/SCOPE/VISSEG(512) ,BUCKY(512)

DIMENSION EDGE(1),SEG(1),POLY(])

EQUIVALENCE (EDGEST,EDGE,SEG,POLY)

DIMENSION ZS(1€),5AM(3,2)

DIMENSION PQ(16),Q(18,26),ADDS(20)

PQL=16

QL=26¢

PQC1)=NUMBER OF TOTAL BLOCKS REQUIRED FOR

HIDDEN LINE WORK,
PQ(2)=MAXIMUM NUMRER OF TOTAL BLOCKS EVER USED AT ONE TIME.
PQ(3)=CURRENT NUMBER OF TOTAL BLOCKS AT A GIVEN TINME,

(USED FOR CALCULATING PQ(2).)
PQC4)=TOTAL NUMBER OF EDGE BLOCKS IN FRAME,
PQ(5)=NUMBER OF EDGE BLOCKS WITH AT LEAST ONE OF THE

CONNECTED POLYGONS DRAWN CLOCKWISE,
PQ(6)=NUMBER OF THOSE EDGE BLOCKS OF PQ(5) WHOSE Y VALUE

OF THE BEGIN PT IS NOT THE SAME AS THE END PT Y VALUE,

PQC7)=TOTAL NUMBER OF POLYGON BLOCKS IN THE FRAME,
PQ(8)=NUMBER OF POLYGON BLOCKS DRAWN CLOCKWISE,
PQ(9)=POINT DENSITY,
PQCIA)=NUMBER OF INVOLVED SCAN LINES,
PQC11)=MEMORY REFERENCES FOR SEGMENT CREATOR,
PQC12)=NANOSECONDS PER MEMORY REFERENCE FOR SEGMENT CREATOR,
PQC13)=MEMORY REFERENCES FOR DEPTH CALCULATOR,
PQ(14)=NANOSECONDS PER MEMORY REFERENCE FOR DEPTH CALCULATOR,
PQ(15)=MEMORY REF, TOTAL PRCIT),PRCL3)
PQC16)=NANOSECONDS FOR PQ(15),

ADDS(I)=NUMBER OF TIMES THE DEPTH TEST WAS SATISFIED IN,

Q@ COUNTERS 68
Q(1,X)=ToTAL PER FRAME

QC2,X)=Max IMuM REQUIRED OF A scaN LINE

Q(3,X)=AVERAGE oF TOTAL SCAN LINES, ALSO SCRATCH FOR Q(2,X)
Q(4,X)=REQUIRED FOR PRE-FRAME PROCESSING

Q(5,X)=MAXIMUN REQUIRED FOR ScaN PREPARATION PROCESSING
Q(6,X)=NANOSECONDS REQUIRED, ALSO SCRATCH FOR R(5,X)

Q(7,X)=MAx IMUM REQUIRED FOR ScaN DEPTH PROCESSING

Q(9,X)=ToTAL FOR SCAN PREPARATION PROCESSING

Q(Xy1)=NUMBER OF SLOPE CALCULATIONS,
Q(X,2)=NUMBER OF INTERCEPT CALCULATIONS,
Q(X,3)=NUMBER OF SAMPLE POINTS STORED FOR NEXT scAN LINE,
Q(X,4):SUBDIVISIONS (NOT FROM INTERSECTING CASE),
Q(X,5)=

Q(X,6)=DEPTH SAMPLES REQUIRED,

X, T)=

Q(X,8)=SAMPLE POINTS DELETED,

Q(X,9)=

X, 18)=0UTPUT SEGMENTS,

Q(Xy,11)=INTERCEPT CALCULATIONS,

Q(X,IZ):INTERCEPT SUBDIVISIONS.

Q(X,IS):OVERHEAD PIPELINE TIME,

Q(X,14)=TIME WAITING FOR CLIPPER,

Q(X,15)=READS FROM PoLY.

Q(X,16)=WRITES Tg PoLY.

Q(X,17)=READS FROM EDGE,

Q(X,12)=WRITES To EDGE,

Q(X,19)=READS FROM SEG

Q(X,28)=WRITES T0 SEG

Q(X,21)=

Q(Xx,22)=

Q(X,23)=READS FROM FREE LIST(GETBLK)
Q(X,24)=WRITES TO FREE LIST(RETBLK)

Q(X,25)=READS FROM BUCKY

Q(X,26)=USED FOR SHADER

12
12

(e XeXe)

5

INITIALIZATION. 69

DO 8 I=1,QL
DO R J=1,10

Q(J,1)=2

DO 9 I=1,PQL

PR(1)=0

DO 12 I=1,20

ADNS(I)=0

DO 18 I=1,FRAMEY

BUCKY(I)=@

CALL LSTSET(14)

DEPTH= , TRUE.

SAM2S=z0

SAM2X = FRAMEX

SEGS2:9

SEGL2=0

POLYCH=

IMPLST=0

GO THROUGH ALL POLYGONS AND NOTE WHICH WAY EACH POLYGON
IS DRAWN (CLOCKWISE OR COUNTER CLOCKWISE) BY CHECKING
CZ OF PLANAR EQUATIONS AND MARK THE POLYGON BLOCK.
POLYPT=POLYST

IF(POLYPT.EQ.A)G0 TO 99

POLY(POLYPT+1)z-]

CALL LDRPT(INDEX,POLY(POLYPT+2))

QC1,15)=QC1,15)+]

PRCTI=PQ(7)+]

QC1,16)=0¢1,16)+]

IF(CZCINDEX) .LE.3)GO TO 95

POLY(POLYPT+1)=@

POLY(POLYPT+3)-2

PQ(B)=PA(R)+]

CALL LDRPT(POLYPT,POLY(POLYPT))

GO T0 9@

INITIALIZATION CONTINUED,
TAKE EACH EDGE AND PUT IN THE BUCKY GIVENW BY ITS
SMALLEST Y VALUE. * THIS IS THE Y-SORT OF EDGES,
S EDGEPT=EDGEST
20 IF(EDGEPT.EQ.@)G0 TO 200
PQRCAY=PQ(4)+]|

e Ke Xz Xe]

C

C ENTER EACH EDGE IN BUCKY IF AT LEAST ONE OF THE

g TWO POLY6GINS IS DRAWN CLOCKWISE,
caLL LDLPT(POLYL,EDGE(EDGEP T+2))
CALL LDRP T(POLYR,ENGE(EDGEP T+23)
QCL,1TY=QC1,17)+]
IF(POLYR.EQ,POLYLYGO TO 110
IF(POLYL.EQ.™)B0 To 183
IF(POLY(POLYL+1).,EQ.8)50 TO 104

103 IF(POLY(POLYR+1),LT.8)G0 TO 112
QC1,15)=QC1,153+]

164 CALL LDLPT(INDEX ,EDGEC(EDGEP T+1))
YBEG:=Y(INDEX)
CALL LDRPT(INDEX,EDGE(EDGEPT+1))
YEND=Y(INDEX)
PQ(5)=PQ(5)+]
IF(YBEG.EQ,YENDYGO TO 118
PR(6E)=PR(&)Y+]
IF(YBEG,LT.YEND)GO TO 125
I=YEND
YEND=YBEG
YBEG=1

185 YBEG=YBE G+1
IF(YBEG.LE.®)G0 TO 115
IF(YEND,GE,FRAMEY)GO TO 115
1=BUCKY(YBEG)
BUCKY(YBEG)=EDGEPT
QC1,18)=QC1,1R)+]
CALL STLPT(I,EDGE(EDGEPT))

110 CALL LDRPT(EDGEPT,EDGECEDGEPT))
GO TO 126

15 TYPE 116
RETURN

16 FORMAT(® ERROR..,0BJECT NOT IN BOUNDS OF FRAME? *)

200
291
204

202
c

QOO0

210

211

c
212

213

SCAN LINE COMPUTATION, 71 I
CONTINUE

Do 201 I=1,qL

QC4,1)=2QC1,1)

1Y=0

IY=1Y+]
DO 202 I=1,qL

QC6,1)=QC1 1)
Q(9,1)2Q(9,1)=Q(1,1)
QC3,1)=Q¢1,1)

INIFIALIZE ALL POINTERS.,
SEGXST-SEGS>

SEGLST=SEGL2

SEGS2=0

SEGL2:-0

SAMIS=SAM2S

SAMIL=SAMaL

SAM2S=0

SAMIX=SAM2X

SAM2X = FRAMEX

IF(1Y.GT.FRAMEY)GO To 23¢
SEGCNT=0

SCAN PREPARATION PROCESSING.

SET EDGES FROM BUCKY WHICH ENTER ON THIS SCAN LINE
AND BUILD THE SEGMENT LIST (SEG).,
IF(BUCKY(1Y),EQ.2)G0 To 230
QC1,25)2Q(1,25)+]
EDGEPT=BUCKY (1Y)
IF(EDGEPT.EQ.@)60 TO 238
Qc1,17)2QC1,17)+)

CALL LDLPT(BEG,EDGECEDGEPT+]))
CALL LDRPTCEND,EDGE(EDGEPT+]))
YEND=Y(CEND)

YBEG=Y (BEG)

DELY=YBE G-7END

IF(DELY.EQ.8)G0 TO 229
IF(DELY.LT.8)G0 To 2]

1=BEG

BEG=END

END=1

DELY=-DELY

IX=X(BEG)*262] 44, 0
QC1,1)2QC1,1)+]
XSLOPE:((X(END)-X(BEG))/(Y(END)-Y(BEG)))*ZSZI44.0
DEL=(IY-Y(BEG))*262] 44.0

IX= IX+ZMUL (XSLOPE , DEL)

CALL LDLPT(IXE,IX]

IF (IXE.LE.0.0R.IXE.GT.FRAMEX) G0 To |15
ISELY!

CALL LDRPT(POLYPT,EDGE (EDGEPT+2))
TWO POLYGONS PER EDGE ARE ALLOWED,
1F(POLYPT.EQ.0)G0 TO 22g
QC1,15)2QCT, 15)+1
IF(POLY(POLYPT+1).EQ.~1)60 T0 227
QUL 16)2QC1,16)+]
IF(POLY(POLYPT+1).LT.8)60 To 2|3
POLY (POLYPT+1)=PoLyCH
POLYCH=POLYPT

CALL STLPT(=1,POLY(POLYPT+])
SEGPT=POLY(POLYP T+3)

PREV=Q

YEND2P=- |

214

217

218

220

IF(SEGPT.EQ.0)GO TN 220
QC1,19)=QC1,19)+]

CALL LDRPT(YEND2,SEG(SEGPT+2))

CALL LDLPT(YEND],SEG(SEGPT+2))
IF(YEND!,GE,B)G0 TO 217
TEl=1X=-SEG(SEGPT+3)~SEG(SEGPT+4)
IF(TE] EQ.2)TE1=XSLOPE=SEG(SEGPT+4)
IF(TE!.LT,A)G0 TO 228
IF(YEND2,GE,8)G0 TO 218
TE2=z1X=SEG(SEGPT+5)=-SEG(SEGPT+6)
IF(TE2 ,FR.¥)TE2=XSLOPE-SEG(SEGPT+6)
IF(TE2.,LT.B)G0 TO 223

G0 TO 218

IF(YEND2,GE.0)GO TO 218
TE2=1X-SEG(SEGPT+5)=SEG(SEGPT+6)
IF(TE2 .EQ.0)TE2=XSLOPE=-SEG(SEGPT+6)
IF(TE2.GE.0)GO0 TO 21¢g

MODE=0

PREV=SEGPT

GO ToO 227

YEND2PzYEND2

PREV=SEGPT

CALL LDRPT(SEGPT,SEG{SEGPT+1))

GO TO 214

MODE=2

IF(YEND2P,GE.B) GO TO 227

FROM=p

GO TO 22§

72

223 FROM=~])
PREV=SEGPT
CALL LDRPT(SEGPT,SEG(SEGPT+]))
GO TO 226

224 SEG(145)=SEG(PREV+5)
SEG(I+6)=SEG(PREV+6)
SEG(I+9)=SEG(PREV+9)
SEG(I+10)=SEG(PREV+1]0)
QC1,20)=QC1,20)+]
CALL STRPT(YEND2,SEG(I+2))
MODE=2 .
GO TO 227

226 CALL GETBLK(I)
QC1,23)=QC1,23)+]
PRC1)Y=PQC1)+]
PRC3)=PR(3)+]
IF(PQ(3),GT.PQC2)5PQRC2)=PQ(3)
CALL STRPT(SEGPT,SEGCI+1))
IF(PREV,NE.@)CALL STRPT(1,SEGC(PREV+]))
IF(PREV,NE.2)Q(1,20)=Q¢C],22)+]
IF(PREV,.EQ.8)POLY(POLYPT+3)=1
SEG(I)==-])
SEG(1+2)=0
SEGCI+11)=0
CALL STLPTC(POLYPT,SEGCI+1))
IF(FROM.NE.®)GO TO 224
PREV=1

227 SEG(PREV+3+MODE) = IX=-XSLOPE
SEG(PREV+4+MODE)=XSLOPE
G(1,20)=QC1,28)+1
IF(MODE.EQ.A)CALL STLPTC(DELY,SEG(PREV+2))
I1F(MODE,NE,A)CALL STRPT(DELY,SER(PREV+2))
SEG(PREV+9+MODE)=((Z(END)-Z(BEG))/(Y(END)-Y(REG)))*262144.@
SEG(PREV+7+MODE)=Z (BER)I*262144,0
SEG(PREV+7+MODE):SEG(PREV+7+MODE)+ZMUL(SEG(PREV+8+MODE),DEL)
SEG(PREV+7+MODE) =SEG(PREV+7+MODE) =SE G(PREV+E+MODE)

22r CALL LDLPT(POLYPT,EDGE(EDGEPT+2))
I1=11+1
IFCI1.EQ,B)G0 TO 212

229 CALL LDLPT(EDGEPT,EDGECEDGEPT))

Go To 21@

230

231

233

SEGMENT PACKER AND SEGMENT ELIMINATOR,
IF (POLYCH.EQ.9) GO TO 242
QC1,15)2QC1,15)4+]
QC1,16)=Q01,16)+]

CALL STLPT(8,POLY(POLYCH+1))
NEXT=POLY(POLYCH+3)

SEGPT:-0

IF (NEXT.EQ.@) GO TO 240
PREV:=SEGPT

SEGPT=NEXT

QC1,19)=0C1,19)+]

CALL LDRPT(NEXT,SEG(SEGPT+]))

IF (SEG(SEGPT+2) ,NE,0) GO TOQ 233
IF(PREV,NE.@)Q(1,20)=Q(1,20)+]
IF(PREV,NE,@)CALL STPPT(NEXT,SEG(PREV+]))
IF(PREV.EQ,B)POLY(POLYCH+3)=NEX |
Q€1,24):Q(1,24)+1

PQ(3)=P2(3)-]

CALL RCTBLK(SEGPT)

SEGPT=PREV

GO TO 23)

NEXTI=NEXT

CALL LDRPT(YEND2,SEGCSERPT+2))
IF (YEND2.GE.®) 50 TO 237

CALL LDLPT(YENDI,SER(SEGPT+2))
IF(YENDILLT.2)G0 TO 2395
SEG(SERPT+3)=SEG(SEGPT+5)
SEG(SEGPT+4)=SEAR(SEGPT+6)
SEG(SEGPT+7)=SEG(SEGPT+9)
SEG(SEGPTM’):SEG(SEGPT+I0)

CALL STLPT(YEND?,SER(SERPT+2))

74

237

23r

239
2395

2396

2397

IFCNEXTI,EQ.2)G0 TO 24)
CALL LDLPT(YENDI,SEG(NEXT142))
QCL,19)=QC1,19)+]

IF (YENDIGE.8) GO To 23g
QC1,20):Q(1,20)+2

CALL STRPT(YENDI,SEG(SEGPT+2))
CALL STLPT(0,SEG(NEXTI+2))
SEG(SEGPT+5)=SEG(NEXT 1+3)
SEG(SEGP T+6)=SER(NEXT1+4)
SEG(SEGP T+9)zSEG(NEXT |47)
SEG(SEGPT+1@)=SEG(NEX T 1+8)
CALL LDLPT(S1,SEGCNEXT]))

CALL LDRPT(S2,SEG(NEXT]))
IF(S1.NE.@)CALL STRPT(S2,SEG(S]))
IF(S1.EQ.0)SEGXST=52
IF(NEXTI.NE,SEGLST)CALL STLPT(SI1,5EG(S2))
IFCNEXT1.EQ,SEGLST)SEALST =S|
€C1,20):Q¢1,2a)+1
SEGCNFXT])=~]

G0 TO 2395

CALL LDRPT(YEND2,SEG(NEXTI+2))
IF (YEND2,GE.2) GO To 239
QC1,208):QC1,28)+2

CALL STRPT(YEND2,SER(SEGPT+2))
SEG(NEXT1+2) =0
SEG(SEGPT+5)=SEG(NEXT 145)
SEG(SEAPT+R)=SER(NEXT | +6)
SEG(SEGPT+9)=SEG(NEXT J+9)
SEG(SEGPT+1@)=SEG(NEXT 1410

GO TN 23495

CALL LDRPT(NEXTI,SEG(NEXTI+1]))
GO TO 237

"IF(SEG(SEGPT),NE.-1) GO To 23)

CALL LDLPT(IXE,SEG(SEGPT+3)+SEG(SEGPT+4))
S1:=PREV

IF(S1.NE.@)CALL LDRPT(S2,SEG(S1))
IF(S1.EQ.P)S2-SEGXST
IF(S1.FQ.SERLST)S2:-0
QC1,19)2Q¢1,19)+]

IF(S2.EQ.8)G0 To 2397

CALL LDLPT(IX,SEG(SZ+5)+SEG(S2+4))
IFCIX.GE,IXEYGO TO 2397

S1:=52

G0 T 2396 .
IF(S2.NE.®)SEG(SFERPT) =52
QC1,20)=Q(€1,20)+1

CALL STLPT(S!,SEG(SERPT))
IF(S1.NE.O)CALL STRPT(SEGPT,SEG(S1))
IF(S1.EQ.0)SEGXST=SEGPT
IF(S2,NE.®)CALL STLPT(SEGPT,SEG(S2))
IF(S2.EQ.,@)SEGLST=SEGPT

GO To 231}

POLYCH=POLY(POLYCH+1)

GO TO 230

PAUSE °"UNCLOSED POLYGON®
SEG(SFGPT+5):SEG(SEGPT+5)
SEG(SEGPT+6):SEG(SEGPT+4)

CALL STRPT(®,SEG(SEGPT+2))

GO TO 2395

75

c
242

276

278

279

c
2R1

282
299

DEPTH SORTER,
CONTI NUE

DO 276 I=1,qL
9(6,1)2Q(1,1~a(6,1)

17 AC5,1),LT.06,13)0(5,15:Q(6,1)
209, 1)=Q(9,)+Q(1,1)
Qc18,1)=Q(18,1)-a(1,1)
Qcg,=qc1,1)

IFCIY.GT.FRAMEY) GO TO 458
SAM(],2)=]|

IF(SEGPT.EQ.M GO TO 279
NEXT=SEG(SEGPT)

CALL RETBLK(SEGPT)
PQ(3)zPQ(3)~
Q(1,24)=Q(1,24)+]

SEGPT=NEXT

Go TO 278

INPLST=IMPLS T#262144

SEGACT=@

SAMPLE SPAN GENERATOR,
SAM(1,1)=SAM(],2)+]
SAM(2,1)=5aM(2,2)
SAM(3,1)=SAM(S,2)

SAM(2,2)z0

IF (SAMIX . GE.SAM(1,1))60 To 2g2
SAMIXsFRAMEX

1F (SANIS.EQ.SAMIL)GO TO 282
CALL LDLP T(SAMIX,SEG(SAMIS))
CALL LDRPT(SAMIS,SEG(SAMIS))
SAM(1,2)=SAMIX

75C1):=0

FROM=2

SEGPT=SEGACT

SEGOUT=@

PREV:®

76

381

303

wWOOO

CHECK SEGMENTS FROM THE CURRENT ACTIVE LIST. 77
IF (SEGPT.EQ.0) GO TO 384
NUMREF:-Q(I,|9)-Q(1,20)-Q(1,I3)
QC1,19)2Q¢1,19)+1

NEXT=SEG(SEGPT+11)

XLEFT=SEG(SEGPT+3)

XRIGHT=SEG(SEGP T+5)

ZLEFT=SEG(SEGPT+7)

ZRIGHT=SEG(SEGPT+9)

CALL LDLPT(IXE ,XLEFT)

CALL LDLPTCIXX ,XRIGHT)
IF(IXX.LE.SAM(I,Z))GO TO 303

PREV=SEGPT

IF(IKE.GE.SAM(I,Z))GO T0 335

GO TO 3t5

CONTINUE

Q(1,20)=Q(1,20)+]
IF(PREV.NE.G)SEG(PREV+I1):NEXT
IF(PREV,EQ.B)SEGACT=NEXT

1F (IXX.LT.SAMC1,1)) GO TO 335
QC1,20)2Q01,20)+]

SEG(SEGPT+1!)=SEGOUT

IF (SEGOUT.EQ.®) SEGLO=SEGPT
SEGOUT=SEGPT

GO TO 315

CHECK NEW SEGMENTS FROM THE X=SORT LIST. ALSO
INCREMENT THE XyYsZ VALUES AND INSERT THE SEGMENT BLOCK
IN THE X=SORT LIST FOR THE NEXT SCAN LINE.
SEGPT=SEGXST

IF(SEGPT.EQ.8)G0 TO 352
NUMREF:-Q(I,]S)-Q(I,20)‘9(],13)
QC1,19)zQ¢1,19)+1

CALL LDLPT(IXE,SEG(SEGPT+3)+SEG(SEGPT+4))
IF(IXE.GE.SAM(I,Z))GO T0 350

FROM=-]

CALL LDRPT(SEGXST,SEG(SEGPT))
IF(SEGPT.EQ.SEGLST)SEGXST=0
QC1,2)2Q(1,2)+]
SEG(5EGPT+3):SEG(SEGPT+3)+SEG(5EGPT+4)
SEG(SEGPT+5):SEG(SEGPT+5)+SEG(SEGPT+6)
SEG(SEGPT+7):SEG(SEGPT+7)+SEG(SEGPT+8)
SEG(SEGPT+9):SEG(SEGPT+9)+5EG(5EGPT+IB)
XLEFT=SEG(SEGPT+3)

XRIGHT=SEG(SEGPT+5)

ZLEFT=SEG(SEGPT+7)

ZRIGHT=SEG(SEGPT+9)

CALL LDLPT(YENDI,SEG(SEGPT+2))

CALL LDRPT(YENDZ,SEG(SEGPT+2))
YENDI=YENDI+]

YEND2=YENDZ+]

CALL STLPT(YENDI,SEG(SEGPT+2))

CALL STRPT(YEND2,SEG(SEGPT+2))

3or

309

3091
3092

3M94

310

311
C

312

3i4

IF (SEG(SEGPT+11).GE.8) GO TO 3@
IF (YEND2,GE.®) GO TO @8

IF CIXE+],NE,SAMC1,1)) GO To 308

CALL LDLPTCIX,SEG(SEGPT+3)+SEG(SEGPT+4))
IF (IX.LE.B,0R.IX,GT.FRAMEX) GO TO 38R
SAM(3,1)=SEGPT+]2

SAM(2,1)=1IX
Fi==1
GO TOo 3091

CALL RETBLK(SEGPT)
PR(3)=PQ(3)~1

QC1,24Y=Q¢1,24)+]

GO TOo 335

MODE=9

SEG(SEGPT)=z-]

IF (YENDI1.GE.®) GO TO 3@

MODE=-1

CALL LDLPT(IX,SEG(SEGPT+5)+SEG(SEGPT+4))
IF (IX.LE.@,0R.IX.GT.FRAMEX) GO TO 115
FM=0

S2=0

S1zSEGL2

IF(S]1.EQ.B)YG0 TO 3294

CALL LDLPT(IXI,SEG(SI+3)+SEG(SI+4))
IF(IX.GE.IX13G0 TO 3094

S2:=5]

CALL LDLPT(S1,SEG(S]))
001,19)=QC1,19)+1]

GO TO 3P92

IF(S2.NE.M)SEG(SEGPT)=S2
QC1,20)=Q(1,20)+!

CALL STLPT(S1,SEG(SEGPT))
IF(S2.NE,@)CALL STLPT(SEGPT,SEG(S2))
IF(SZ.EQ.G)SEGLQ:SEGPT
IF(SI1.,NE.B)CALL STRPT(SFGPT,SER(S]))
IF(5].EQ.0)SEGS2=SEGPT
IF(SS.NE.G)Q(I,2%):Q(l,20)+l
IF(FM)355,3IM,364

MODE=-M0DE
IF (YEND2.GE.8) GO TO 31]
MODE =-MODE

CALL LDLPT(IX,SEG(SEBPT+5)+SEG(SEGPT+6))
IF (IX.LE.@.0R.IX.GT,FRAMEX) GO TO 115

IF (MODE.LT.8) GO To 312

IF EITHER OF THE EDGES OF THE SEGMENT EXIT ON THIS
SCAN LINE (MODE), PUT THE CORRESPONDING POLY GON IN
THE POLYGON CHANGING LIST.

CALL LDLPT(POLYPT,SEG(SEGPT+]))
QCI,15)=QC1,15)+]

IF (POLY(POLYPT+1).LT.8) GO TO 3|2
QC1,16)=QC1,16)+]

POLY(POLYPT+1) <POLYCH

POLYCH=POLYPT

CALL STLPT(~1,POLY(POLYPT+1))

CALL LDLPT(IXX,XRIGHT)

IF (IXEL.GE,IXX) GO TO 335

IF (IXX.GT.SAM(1,2)) GO TO 314
SEG(SEGPT+11)=SEGOUT

IF (SEGOUT.EQ.8) SEGLO=SEGPT

SEGOUT=SEGPT .

G0 TO 315

SEG(SEGPT+11)=SEGACT

SEGACT=SEGPT

78

315

318

WwOO O

CORTI KUE
Q(l,s):0(1,6)+l

IXLEFT=1IxXE

IF(IXE.LT.SAM(I,l))IXLEFT:IXX

CALL LDLPT(YENDI,SEG(SEGPT+2))

IF(YENDL,GE,.) GO T0 3§s8

IF(XxE+1.NE.SAM(!,l))GO T0 516

SAN(S,I):SEGPT+12

CaLL LDLPT(SAM(Z,!),SEG(SEGPT+3)+SEG(SEGPT+4))
caLlL LDRPT(YEHDZ.SEG(SEGPT+2))

IF(YEHD2,G65.2) GO 10 317

IF(IXX.NE.SAM(I,ZP)GH T0 317

SAM(3 . 2)=SEQP T4}

CaLL LDLPT(SAM(Z,z)aSEG(SEGPT+5)+SEG(SEGPT+6))
SIMULATION OF LOADING AND RUNNING THE CLIPPER ARTHIMETIC
UNIT FOR DEPTH CONPARISONS,

ADDITION TIME OKE,

XLTEST:XLEFT.ANDL(.NOT.ZGZE45)
XRTEST:XRIGHT.AHD.(‘NOT.262143)

RUMADD:= |

IF'(FROPI..HE,B)NUMDD:NUMADMI
DELNEW:(KRTEST-XLTEST)/zﬁzl44
1F(.NOT.DEPYH)DELNEV:DELNEH*IOZ4
IF((XLTEST-SAM(I,l)t26&l4é).LT.G)KL]LSTtSAM(I,l)*262144
IF((XRTEST-SAH(1,2)*2621A4>.GE.G)XRTEST:8AM(l,2)*252144
ADJNEL =, FALSE,

IF(ZLEFT.LT,ZRZGHT)ADJNEW:.TRUE.

IF(zZsc1y Q.06 10 334

ARLLE=,FALSE,

ABLGE:=.FALSE,

ABRLE=,FALSE,

ABRGE= ,FALSF,

IF(XI.TEST.LE,ZS(G) JABLLE= ,TRUF,
lF(xLTEST.GE.ZS(G))AGLGE:.TRUE.
IF(XRTEST.LE.ZS(7))A8RLE:.TRUE.
IF(XRTEST,GE.ZS(?))ABRGE:.TRUE.

TFCC¢ »HOT . ABLGE) .AHD.(.NOT,ABRGE)).OR.((.NOT.ABLLE) +AND,
1C.NOT,ABRLE)YYGO T0 325

XLCLIP=XLTEST

IFCABLLEYXLCLIP=75(6)

XRCLIP=XPTEST

IF(ABRGE)X:’?CLIP:ZS(?)

DEL:=DELNEW

IF(DELNEU.LT.ZSDEL)DEL:ZSDEL

79

320

321

322

XAMXL 2XLEFT-XLCLIP 80
XBMXL XRiGHT-XLCLIP
XAMXR=XLEFT-XRCLIP
XBMXR=XRIGHT-XRCL]P
ZAL:ZLEFT
ZBL=ZRIGHT
ZAR=ZLEFT
ZBR=ZRIGHT
IF(ADJNEW)YGO TO 3200
ZBL=7ZLEFY
ZAL=ZRIGHT
ZBR:=ZLEFT
ZARSZRIGHT
KCMXLZZS (27 -XLCLP
XDMXL=ZS (3 Y% CL]p
XCHXR:ZS(??)-—XHCLiP
XDMXR=ZS(3)=XRCLIP
IF(2St1)-2,6E,8)60 To 32
7CLz2S(4)

ZDL=7S(5)

ICR=ZS(4)

ZDR=27S(5)
ADJOLD=7SAD.)

GO TO 323
ADJOLD: . NOT.ADNEW
IF(A[)JNE‘.’)GO T0 o2
2CL=7S(¢4)

7ZDLzZS (a)

ZCPzZS (%)

IDR=75¢%)

GO To 323

ZCL=7S(5)

ZDL=75¢5)

ZCRz7S(4)

ZDR=75(4)

c
323

CLIP STATE #ww& ONE ADD TIME EACH PASS, 81
ABBCKL = ,FALSE,

ABBCKR= ,FALSE,

CDBCKL=,FALSE,

CDBCKR= ,FALSE,

DELZ=,FALSE,

NUKADD=KUHA DD+

XHOLDL=(XAMXL+XBMXL) /2

ZHOLDL=(ZAL+ZBl.) /2

XHOLDR= (XAMXR+XBMXR) /2

ZHOLDR= (ZAR+ZBR) /2

XTERPL= (XCMXL+XDMXL) /2

ZIEMPL=(ZCL+2DL) /2

XTEMPR=(XCMXR+XDMXR) /2

ZTENPR= (ZCR+ZDR) /2

DEL=DEL/2

IF(ZﬁL"ZDL.GE.@)ABBCKL:.TRUE.

IF(ZCL-ZBL.BE.B)CDBCKL:.TRUEu

IF(ZAR-ZDR.GE.G)ABBCKR=.TRUE.

IF(ZCR-ZBR.GEoB)CDBCK“=.TRUE.

IF(DEL.EQ.B)DELZ=, TRUE,
LOG:((.NOT.ABLGE.GR..NOT.ABRLE).AND.((CDBCKL.AND..NOT.ABBCKR
l.AND..NOT.CDBCKR).ORa(.HOT.ABBCKL.AND..NOT.CDBCKL.AND.CDBCKR)
2.0R.(.NOT.ABBCKL.QND..NOT.CDBCKL.ANDo.NOT.ABBCKR)))
LOG:LOG.OR.((.NOT.ABLLE.OR..NOT.ABRGE).AND.((ABBCKL.AND..NOT.
lABBCKR.AND..NOT.CDBCKR).OR.(.NOT.ABBCKL.AND..NOT.CDBCKL.AND.
EABBCKR).OR.(.HOT.ABBCKL.&ND.aNOT.CDBCKL.AND..NOT.CDBCKR)))
LOG:LOG.OR.((.HOT.(hBBCKL.AND.ABBCKR)ohND..NOT.(CDBCKL.AND.
ICDBCKR))aﬂHD.(ABLGEnAHD.ABRLE.AND.ABLLE.AND.ABRGE))
JCLIPzLOG.AND, .HOT.DELZ
LOG:((ABLGE.AND.ABRLE).AND.((ABBCKL.AND.ABBCKR).OR.(ABBCKL.AND.
l.NOT.CDECKR.AHD.DELZ).OR.(ABBCKR.AND..NOT.CDBCKL.AND.DELZ)
2.0R.(.NOT.CDBCKL.ANU..NOT.CDBCKR»AND.DELZ)))
JBBOX:LOGDDR.(DELZ.AHD..HUT.ABBCKL.AND..NOT.CDBCKL
l.AND..NOT.ABBCKR.AND..NOT.CDBCKR.AND.ABLGE.AND.ABRLE)
LOG:(ABLLE.AND.ABRGE)~AND..NOT.(ABLGEaAND.ABRLE.AND.((ABBCKL.
IAND.ABBCKR).OR.(nBBCKL.AHD..NOT.CDBCKR).OR.(ABBCKR

2.AND4 NOT.CDBCKLY))
LOG:LOG.AHD,((CDBCKL.AND.CDBCKR).OR.(CDBCKL.AND.
l.NOT.ABBCKR.AND.DELZ).OR.(CDBCKR.AND..NOT.ABBCKL.AND.DELZ))
JIBOX:LOG.OR.(DELZ.AND..NOT.ABBCKL,AND..NOT.CDBCKL
l.AND..HOT.ABBCKR.AND..NOT.CDBCKR.AND.((ABLLE
2.AND..n0T.ABRLE).OR.(.NOT.ABLGE.AND.ABRGE)))
LOG:(DELZ.AMDu((ABBCKL.ANDa.NOT.CDBCKL.AND..NOT.ABBCKR.AND.
lCDBCKR).OR.(.NOT.ABBCKL.AKD.CDBCKL.AND.ABBCKR

2.AHD, ,NOT.CDBCKR)))
LOG:LOG.OR.((.NOT.ABLGE.OR.oNOT.ABRLE).AND.((ABBCKL
l.AND..NOTDCDBCHL).OR.(ABBCKR.AND..NOT.CDBCKR)))
LOG:LOG.OR.((.HOT.ABLLE.OR..NOT.ABRGE).AND.((CDBCKL
l.AND..MOTuABBCKL).OR.(CDBCKR.AND..NOT.ABBCKR)))
JBOXES:LOG.OR.(DELZ.AND..NOT.ABBCKL.AND..NOT.CDBCKL
l.AND..NOT.ABBCKR.AND..NOT.CDBCKR.AND.((.NOT.ABLLE
2.AND..WOToABRLE).OR.(.HOT.ABLGE.AND..NOT.ABRGE)))

HUkCNT=9

IF(JCLIP) NUMCNT=NUMCNT+]

IF(JIBOA) RUMCHT=NUMCN T+ |

IF(JBOXES) WUMCNT=NUMCH T+

IF(JOBOX) RUNCNT=HUMCNT+]

IFCHUMCHT .NE, 1 YPAUSE

IFCJCLIPY GO TO 325

IF(JI1BOX)GD 10 331

IF(JBOXES)GO TO 329

IF(JOBOX) GO To 33%

325

327

IF(XHOLDL.GE.O.AND.(.NOT.ADJNEU))ZAL:ZHOLDL
IF(XHOLDL.LT.H)XAMXL:XHOLDL
IF(XHOLDL.LT.H.AND.ADJNEU)ZAL:ZHOLDL
IF(XHOLDL.LT.G.AND.(.NOT.ADJNEU))ZBL:ZHOLDL
IF(XHOLDR.GE.B)XBMXR:XHOLDR
IF(XHOLDR.GE.E.AND.ADJNEU)ZBR:ZHOLDR
IF{XHOLDR.GE. .AND.(.NOT.ADJNEU))ZAR=ZHOLDR
IF(XHOLDR.LT.H)XAMXR:XHOLDR
IF(XHOLDR.LT.E.AND.ADJNEU)ZAR:ZHOLDR
IF(XHOLDR.LT.G.AND.(.NOT.ADJNEU))ZBR:ZHOLDR
IF(XTEMPL.GE.B)XDMXL:XTENPL
IF(XTEMPL.GE.B.AND.ADJOLD)ZDL:ZTEMPL

IF(XTEMPL.LT.ﬂ.AND.ADJOLD)ZCL:ZTEMPL
IF(XTENPL.LT.B.AND.(.NOT.ADJOLD))ZDL:ZTEMPL
IF(XTEMPR . GE.8)XDMXR=x TEMPR
IF(XTEMPR.GE.B.AND.ADJOLD)ZDR:ZTEHPR
IF(XTEHPR.GE.@.AND.(.NOT.ADJOLD))ZCR:ZTEMPR
IF(XTEMPR.LT.B)XCMXR=XTEMPR
IF(XTEMPR.LT.ﬂ.AND.ADJOLD)ZCR:ZTEHPR
IF(XTEMPR.LT.B.AND.(.NOT.ADJOLD))ZDR:ZTEMPR
G0 To 323

DEL=ZSDF)

XAMXL =XLCLIP

XBMXL =XRCLIP

ZAL=ZAL-7CL

ZBL=ZAR-ZCR

ZHOL DL= (ZAL+ZBL) /2

XHOLDL = (XAMXL+XBMxL y /2

NUMADD= NUMA DD+

DEL=DEL /2

IF(DEL.EQ.M)G0 T 335
IF(ZAL.XOR.ZHOLDL.GE.E)XAMXL:XHOLDL
IF(ZBL.XOR.ZHOLDL.GE.ﬁ)XBMXL:XHOLDL
IF(ZAL.XOR.ZHOLDL.GE.G)ZAL:ZHOLDL
IF(ZBL.XOR.ZHDLDL.GE.@)ZBL:ZHOLDL

GO To 327

82

329

3295

332

331

335

EXPAND BOX TO INCLUDE OLD BOX AND NEW LINE CLIPPED,
ZS(1)=7SC1)+1

IF(.NOT.DEPTH)GO TO 326
IF(ABRLE.AND.ABRGE.AND.ABLLE.AND.ABLGE)GO TO 3295
IF(ZLEFT-ZS(4).LT.B.AND.ADJNEW)ZS(4):ZLEFT
IF(ZRIGHT-ZS(4).LT.B.AND.(.NOT.ADJNEU))ZS(4):ZRIGHT
IF(ZLEFT-ZS(S).GE.B.AND.(.NOT.ADJNEW))ZS(5):ZLEFT
IF(ZRIGHT-ZS(S).GE.B.AND.ADJNEU)ZS(S):ZRIGHT

GO TO 339

IF(ADJNEW.AND.ADJOLD.AND.CDBCKL)ZS(4):ZAL
IF(ADJNEW.AND.ADJOLD.AND.ABBCKL)ZS(4):ZCL
IF(ADJNEW.AND..NOT.ADJOLD.AND.ZAL.LT.ZCRJZS(4):ZAL
IF(ADJNEW.AND..NOT.ADJOLD.AND.ZAL.GE.ZCR)ZS(4)=ZCR
IF(.NOT.ADJNEU.AND.ADJOLD.AND.ZAR.LT.ZCL)ZS(4):ZAR
IF(.NOT.ADJNEW.AND.ADJOLD.AND.ZAR.GE.ZCL)ZS(4)=ZCL
IF(.NOT.ADJNEW.AND..NOT.ADJOLD.AND.CDBCKRJZS(4):ZAR
IF(.NOT.ADJNEW.AND..NOT.ADJOLD.AND.ABBCKRJZS(4)=ZCR
IF(ADJNEW.AND.ADJOLD.AND.CDBCKR)ZS(5):ZDR
IF(ADJNEH.AND.ADJOLD.AND.ABBCKRJZS(5):ZBR
IF(ADJNEW.AND..NOT.ADJOLD.AND.ZBR.LT.ZDL)ZS(S):ZDL
IF(ADJNEW.AND..NO!.ADJOLD.AND.ZBR.GE.ZDL)ZS(5):ZBR
IF(.NOT.ADJNEU.AND.ADJOLD.AND.ZBL.LT.ZDR)ZS(5):ZDR
IF(.NOT.ADJNEW,AND.ADJOLD.AND.ZBL.GE.ZDR)ZS(5):ZBL
IF(.NOT.ADJNEW.AND..NOT.ADJOLD.AND.CDBCKL)ZS(5):ZDL
IF(.NOT.ADJNEW.AND..NOT.ADJOLD.AND.ABBCKL)ZS(SJ:ZBL
IF(ABLLE)ZS(6)=XLTEST

IF(ABRGE)ZS(7)=XRTEST
IF(IXLEFT-ZS(8),LT.0)ZS(8)=IXLEFT

ZSDEL=p

ZS(12)=SEGPT

IF(ABBCKL)GO To 335

Z5(18)225(9)

Z5(9)=SEGPT

GO TO 335

MAKE A ONE ELEMENT BoX.

ZS(1)=1

ZS(2)=XLEFT

ZS(3)=XRIGHT

IF(ADJNEW)ZS(4)=ZLEFT

IF(.NOT.ADJNEW)ZS(A):ZRIGHT

IF(ADJNEW)ZS(5)=ZRIGHT

IF(,NOT,ADJNEW)ZS(5)=ZLEFT

ZS(6)=XLTEST

ZS(T)=XRTEST

ZS(8)=IXLEFT

ZS(9)=SEGPT

ZSADJ=ADJNEW

ZSDEL=DELNEW

CONTINUE
NUMREF:(NUMADD+])/2-Q(].13)-Q(l.ISJ-Q(I,ZEJ-NUMREF
IF(NUMREF.GT.B)Q(I,l4):Q(l,l4)+NUMREF
IF(NUMADD,GT,20) NUMADD=22

IF(NUMADD,LE,2) NUMADD=)

ADDS(NUMADD)=ADDS (NUMADD)+

IF(.NOT,DEPTH)GO TO 4p2

SEGPT=NEXT

IF(FROML,EQ.A)GO TO 39)

GO TO 324

83

350

351

353

INTEREGATE THE ZS BoOX
CONTINUE

QC1,13)=QC1,13)+]

IF(Z5(1)=2,.T.0)6G0 To 355
IF(SAMC1,1)-SAM(1,2) ., EQ.B)PAUSE *SINGLE®
IF(ZS(1)+EQ.2,AND.(ZS(8) .GE .SAM(1,2)))G0 TO 489
SUBDIVISION NECESSARY.

QC1,4)=Q(] ,4)+]

IF(SEGOUT.EQ.B)GO TO 35]
SEG(SEGLO+11)=SEGACT

SEGACT=SEGOUT

QC1,20):Q(1,20)+]

QC1,19)=Q(1,19)+]
IF(ZS(8)-SAM(1,2),LT.0)G0 TO 353
SUBDIVIDE IN THE MIDDLE,
QC1,12)=Qr1,12)+]
SAMC1,2)=(SAMCT, 1)+SAMC],2)) /2

GO TO 299

SUBDIVIDE AT IXLEFT,

SAM(],2)=Z5(8)

GO TO 299

o T M AT U

84

355

356

358

360

362
364

365

368

372

374

375

3755
376

OUTPUT SEGMENTS,
IF(ZS(1),G6T.2)G0 TO 358
SAM(2,1)=0

Q1,8)=Q¢1,8)+]

XEND:SAM(I,Z)

POLYPT=0

NEX TGO=1

GO TO 368

CALL LDLPT(XEND,2S(6))
IF(XEND.EQ.SAM(I,I))GO T0 360
POLYPT=p

NEXTGO=2

GO TO 363

CALL LDLPT(XEND,ZS¢ 7))

POLYP T=2S(9)

CALL LDLPT(POLYPT,SEG(POLYPT+I))
CaLL LDLPT(XTEMP,ZS(G))
PQ(S):PQ(9)+XEND-XTEMP+I
NEXTGO=3

GO TO 368
IF(XEND.EQ.SAM(I,Z))GO T0 376
GO TO 356

POLYPT=zS5(9)

CALL LDLPT(POLYPT,SEG(POLYPT+I))
PQ(S):PQ(9)+SAM(I,2)-SAM(I,I)+I
NEXTGO=4

GO TO 368

XEND=SAM(1,2)

POLYPT=2S¢(1@)

CALL LDLPT(POLYPT,SEG(POLYPT+I))
NEXTGO=1

IF(FM.EQ.0)GO TO 368
SAM(2,1)=1X

SAM(3,1)=SEGPT+12

OUTPUT A SPECIFIC SEGMENT.
IF(SEGNNT.EQ.8)G0 TO 372
IF(POLYPT,NE,.PRESEG) GO T0 372
SAM(2,1)=0

Q(1,8)=QC1,8)+!

GO TO 374

SEGCNT=SEGCNT+1
QC1,10)=Q¢1,10)+]

PRESEG=POLYPT
VISSEG(SEGCNT)=XEND

CALL STLPT(POLYPT,VISSEG(SEGCNT))
IF(SAM(2,1).EQ.8)G0 TO 3755
STORE A SAMPLE POINT,
QC1,3)=Q¢1,3)+]

IF(SAM2S .NE.®)GO TO 375
SAM2S=SAM(3,1)

SAM2X=SAM(2,1)

SAM2LX=SAaM(2,1)

SAM2L=SAM(3, 1)

GO To 3755
IF(SAM(2,]),LE.SAM2LX) GO T0 3755
SAM2LX=SAl(2,1)

CALL STRPT(SAM(3,I),SEG(SAMZL))
CALL STLPT(SAM(Z,I),SEG(SAMZL))
SAM2L=SAM(3,1)

SAM(2,1)=0

GO TO (376,360,362,365),NEXTGO
IF(SAM(I,Z).EQ.FRAMEX)GO TO 498
GO TO 2g]

400

401

402

4010

4020

4030

4040

INTERSECTING PLANES CASE,

DEP TH= ,FALSE,

FM=o0

ZS(1)=0

Q(l,ll):Q(l,ll)+l

SEGPT=ZS(¢9)

NEXT=-1

XLEFT=SEG(SEGPT+3)
XRIGHT=SEG(SEGPT+5)
ZLEFT=SEG(SEGPT+7)
ZRIGHT=SEG(SEGPT+9)
NUMREF:-Q(I,IS)-Q(I,19)-9(1,20)
Q(I,IS):Q(1919)+I

GO To 317

NEXT=NEX T+1

SEGPT=2S5(10)

IF(NEXT,EQ.0) 60 TO 401

DEP TH= ,TRUE,

XXTEST=xAMXL

CALL LDLP T(XEND ,XXTEST)
QC1,19)=2Q¢1,19)+2
IF(1Y.EQ.FRAMEY)GO TO 364
SEGSAM=2S(18)

CALL STLPT(ZS(9),SEGSAM)

CALL LDLPT(SEGPT,IMPLST)

PREV=0

IF(SEGPT.EQ.2)G0 TO 4030
QC1,19)=Q0¢1,19)+1
NEXT=SEG(SEGPT)
IF(SEGSAM.NE.SEG(SEGPT+I)) GO TO 4325
IF(PREV,EQ.2)CALL STLPT(NEXT,IMPLST)
IF(PREV.NE.ﬁ)SEG(PREV):NEXT
SEG(SEGPT+4)=XXTEST-SEG(SEGPT+3)
SEG(SEGPT+3)=XXTEST

CALL LDLPT(IX.SEG(SEGPT+5)+SEG(SEGPT+4))
IF(IX.LE.G.OR.IX.GT.FRAMEX)GO TO 4040
FiM=1

GO TO 3891

PREV=SEGPT

SEGPT=NEXT

GO TO 4010

IF(IY.EQ.FRAMEY=-1)G0O TO 364
CALL GETBLK(SEGPT)
QC1,23)=Q¢1,23)+1

PRC1)=PQRC1)+1]

PR(3)=PQ(3)+]
IF(PQ(S).GT.PQ(Z))PQ(Z):PQ(S)
SEG(SEGPT+1)=SEGSAM
SEG(SEGPT+2)=1Y=-FRAMEY+|
SEG(SEGPT+11)=-]
SEG(SEGPT+3)=XXTEST

CALL LDRPT(SEG(SEGPT),IMPLST)
CALL STRPT(SEGPT,IMPLST)

GO TO 364

CALL RETBLK(SEGPT)
PR(3)=PR(3)=~]

QC1,24)=QC1,24)+]

GO To 364

e rr e ot

86

nres

e

498 CONTINUE
DO 495 I=],qL
QC18,Iy=a¢18,1)+a(1, 1)
9(3,13=q¢1,15-9(3, 13
IFea(2,1y.LT,0¢3,1))a¢2, 1)=a¢3, 1)
Q(8,1)2q(1,1)-q(8, 1)

499 IF@(7,1).LT.0¢8,1))a¢7,1)=ac8, 1)
IFCIY.GT.FRAMEY) GO To 532
IF(PIX.NE.B)CALL SHoW
1F(SEGCNT.NE.1)PQ(10)=PQ(10)+]

GO TO 204

500 CONTI NUE
DO 581 I=1,qL
Q(3,13=Q(1,1)/FRANEY
Q(6,I)=10.%%9/(30,%(1,1))

501 Q8,1)=Q¢1,1)/Q¢17)

DO 382 1-13%,q1
PQCI1I=PQ(I1)+a(9,1)

502 PQ(13)=PQ(13)+q(10,1)
PQ(12)=10,%%9/(30,%PQ(11))
PRC14)=10,%%9/(30.%PQ(13))
PQ(15)=PQ(11)+PQ(13)

PQC16)=18 ,#%9/(38,%Pq(15))
IF(STAT,EQ.8)RETURN

TYPE 502, (J,ADDS(J),J=1,20)

TYPE 5001, (J,PacJ),J21,P4L)

TYPE 5008, (.1, (Q(1,J),121,18),4=1,qL)
RE TURN

5001 FORMAT(' PQ(*,12,')=",16,/)

5808 FORMAT(' X, 1912,%)=",16,414,1X,19,214,216, /)

5002 FOgMAT(' ADDS ', /,5¢" (*,12,%)2% 16y 7)
EN

£

APPENDIX II
STATISTICS OF OBJECTS AND ALGORITHMS

At the beginning of each set of statistics for a
particular program there is a description of each of the
counters. Following each descriptioh, a set of statistics

- for each of the ten test objects is compiled.

For a copy of the complete liéting'write to:

Computer Science Communications
3160 MEB - .
University of Utah

Salt Lake City,-Utah 84112

