
imiwrfi'iBi'iiitfw ■wiiiMiii iwnrr

AD-762 004

A REAL TIME VISIBLE SURFACE ALGORITHM

Gary Scott Watkins

Utah University

Prepared for:

Rome Air Development Center
Advanced Research Projects Agency

June 1970

DISTRIBUTED BY:

KÜJI
National Technical Information Service
U. S. DEPARTMENT OF COMMERCE
5285 Port Royal Road, Springfield Va. 72151

BEST
AVAILABLE COPY

r:__ .

fl.

A real-time visible surface algorithm

<

J l

GARY SCOIT VVATKINS

UNIVERSITY OF UTiTI

NATIONAL TECHNICAL
INFORMATICN SER\'iCE

D D C
Pjjprr^nn ail
j^ JUN 85 19B ?;

•k
■I..

'1t
— 11

-3
IÜ

Apprflnrad f«r public reieoa»;
I DfedriJtwrtloa ü&Jijrited

JUNE 1970
UTEC-CSc-70-101

COMPU'l'ER SCIENCE, UNIVERSITY OF UT/

SALT LAKE CITY, UTAH 841lj

;-.--^.!,vJi;..^*v^.-Ü ̂ a^^^b^^^a^^^^^^^vy^-^^N

A REAL TIME VISIBLE SURFACE ALGORITHM

by

Gary Scott Watkins

June 1970 UTEC-cSc-70-101

This research was supported in part by the University of
Utah Computer Science Division and the Advanced Research Pro-
jects Agency of the Department of Defense, monitored by Rome
Air Development Center, Griffiss Air Force Base, New York
13440, under contract AF30(602)-4277. ARPA Order No. 829.

II

TABLE OF CONTENTS

ACKNOWLEDGMENTS

LIST OF ILLUSTRATIONS

ABSTRACT

CHAPTER I

A.

B.

CHAPTER II

CHAPTER III

A.

B.

C.

D.

E.

F.

G.

f
I.

J.

CHAPTER IV

CHAPTER V

CHAPTER VI

CHAPTER VII

A.

Ill

vi

viii

1 NTRODUCTION

Path of Edges Algorithms

Sample Space Algorithms

PRE-FRAME PROCESSING

VISIBLE SEGMENT GENERATOR

Segment Generator

Segment Eliminator

Depth Sorter

Sampling

Sample Space Generator

Depth Comparator

Segment Clipping

Decision Processor

Intersecting Segments

Building the Sample List

FRAME-TO-FRAME COHERENCE

RELATIONSHIP WITH OTHER ALGORITHMS 36

DEVELOPMENT OF THE VSG ALGORITHM 38

TEST DATA 40

Objects 40

1

3

7

9

9

13

14

14

16

18

22

28

32

34

35

IV

PretediRg page blank

B. Statistics

C. Analysis

D. Output Buffering

CHAPTER VIII CONCLUSION

BIBLIOGRAPHY

APPENDIX I LISTING OF PROGRAM

APPENDIX II STATISTICS OF OBJECTS

AND ALGORITHMS 88

41

41

58

60

64

66

v

LIST OF ILLUSTRATIONS

Figure 1

Figure 2

Figure 3

Figure 4

Figure 5

Figure 6

Figure 7

Figure 8

Figure 9

Figure 10

Figure 11

Figure 12

Figure 13

Figure 14

Figure 15

Figure 16

Figure 17

Figure 18

Figure 19

Figure 20

Cube Presenting Optical Illusion

Cube with Hidden Edges not Drawn

Classification of Algorithms

Description of Edge and Polygon Blocks 8

2

2

5

Segment Block

Segments

Packing of Polygon Segment List

Sampling Points

Sample Edges and Sample Points

VSG Flowchart

Two Segments on a Scan Line

Arithmetic Unit for Depth Comparator

Gating of a Single Quadrant

Clipping of Segments

Boxing of Segments

Elimination of Visible Box by
Visible Segment

Subdivision

Three Potentially Visible Segments

Intersecting Segments

Intersecting Segments Clipped to

iclip rclip

10

11

15

17

19

20

23

24

25

27

29

29

30

31

31

33

VI

1

Figure 21

Figure 22

Figure 23

Figure 24

Figure 25

Figure 26

Figure 27

Figure 28

Figure 29

Figure 30

Figure 31

Figure 32

Figure 33

Figure 34

Figure 35

Figure 36

Figure 37

Figure 38

Figure 39

Registers for Finding Intersection

Object 1: Penetration

Object 2: E-S

Object 3: Low Area

Object 4: Cubel

Object 5: Cube2

Object 6: Shapel

Object 7: Shape2*-

Objact 8: Sheet

Object 9: Simplel

Object 10: Simple2

Statistics of the Penetration Object

for the Six Algorithms

Statistics of VSG6 for the Ten

Test Objects

Office Structure

Church

Rear View of Church with Randomly

Colored Blocks

Apollo Command and Service Module

Tori

Randomly Colored Surface

33

42

43

44

45

46

47

48

49

50

51

52

53

61

61

62

62

63

63

Vll

J

ABSTRACT

■

With the increasing use of computer graphics, a need is

growing for a processor capable of displaying solid objects.

Environmental simulation and architectural modeling are only

two areas that would benefit from such a display processor.

This dissertation describes an algorithm designed for

such a processor, and a program for simulating the hardware

processor. The hardware processor would be capable of

generating pictures of fairly complicated objects at thirty

frames per second. Statistics describing its simulated

performance have been extracted and are reported within the

dissertation.

Vlll

.

CHAPTER I

INTRODUCTION

With the introduction of line-drawing displays, it was

soon realized that displaying too much information detracted

from the meaning and actually confused the picture. For

instance, a single cube can create an optical illusion as

shown in Figure 1. However, the optical illusion is removed

if lines hidden by surfaces in front of them are not dis-

played (see Figure 2). A different approach could be taken,

instead of determining the hidden lines, an algorithm could

jj find, color, and shade visible surfaces, thus presenting a

more true to life picture. For the past several years,

different algorithms have been developed for solving the

hidden line or visible surface problem. The various algo-

rithms can be classified into several groups.

|

A. Path of Edges Algorithms

Some solutions to the problem have been found by

various methods of tracing along the edges of objects and

noting which of the edges are wholly or partially visible.

The resulting picture is then the display of the visible

segments of edges. Algorithms based on this method have

been developed by Roberts [1], Loutrel [2], and Appel [3].

This type of approach does not take into account the reso-

lution of the display but solves the hidden line problem to

Figure 1

Cube Presenting Optical Illusion

Figure 2

Cube with Hidden Edges not Drawn

the precision inherent in the object description.

B. Sample Space Algorithms

in 1967 a paper was presented by Wylie, Rodney, Evans

and Erdahl m. One of the concepts discussed was initiated

by Evans and introduced the concept of a sample space. The

concept states that given an output device with resolution

of Rx by Ry, one need only solve the hidden line problem at

the discrete resolution points. The sample space can be

thought of as taking the original object description in X,

Y, Z, and mapping the object on to a two dimensional grid of

resolution Rx by Ry. of course, the Z information needs to

be preserved in some form. When this is done, the object

will exist only at discrete points in X and Y. The rea-

soning behind this was when a person views a picture he is

Physically limited by the resolution of the eye and the

resolution of the display device. Hence, the hidden line

problem need only be solved to the coarser resolution of

the two.

In the algorithm, non-intersecting triangles were used

as the object description. However, convex polygons could

have been used with only small changes in the program. The

algorithm used a scan line approach. That is, one Y raster

line would be completely solved for visible triangles before

the program proceeded to the next scan line. A method of

sorting vertices of the triangles was developed by Wylie

4

and Romney so only triangles concerned with the current scan

line were considered. On each scan line, triangle depths

were compared only where edges of the triangles crossed the

current scan line. Therefore, it was not necessary to do

depth computations at all raster points. Later Romney [5]

improved the sorting technique and added a "speedy" check

to the program to take advantage of scan line-to-scan line

coherence. This improved the speed by eliminating depth

sorting as long as triangles entering on the scan line were

ordered the same as the previous scan line.

Warnock [6] took a new approach but still kept the grid

of resolution points. The object description was gener-

alized by allowing polygons (convex or non-convex) which

could intersect one another. Instead of the scan line

approach, Warnock took an area of the picture and tried to

"understand" it. If it v/as simple enough to "understand" he

would display it, otherwise he subdivided the area into

smaller areas. Eventually, a sub-area could be "understood"

and displayed, or a sub-area would reach resolution where-

upon it would be displayed without further analysis. This

concept of subdividing large problems into smaller (and

easier) problems is a "non-deterministic" algorithm.

After Warnock's algorithm was developed, Bouknight [7]

took the scan line approach and generalized it to include

general polygons which could intersect. Figure 3 shows a

classification of the various algorithms.

w

EH
H
K
O

s

s \
w \
Q \
Q a)\
H (0 ü
S ■P id

(Ö a
Q w
4J 0)
Ü H
0) B* •n g

XI 13
O w

■p

Öl
•H
C
M
,•3
0

cq

•H
H

0 M
S Ä W W

n 3
•H

tn

■P
•H
M
O
tn
H
<

O

C
o

•H
■P
(Ö
u

•H
I«
•H
U]
in
ro
H
U

The „ew algcritta to be descrlbea ^ of

12 SPa0e 0laSS' ^ " ""^ ™ ^- "«ch can intersect. Key ideas used i„ thi, »i ■ thls algorxthm ere: (!) Scan

1- -to-scan Une coherence ot pictures, and (2) an arith-

ZT :? ^ "^ SO"i- —-e coHerence • s not found valuabla (in ^^ ^ ^^^ ^

the Program, for inciasion in this n^ alqorithm.

-e pr0gram implementing this ^^ ^ a ^^

of hardware to aenprpf^ „••!.■, generate visible segments nf ««i
scan Uno * Polygons on each
scan Ime at real time speeds. Thus fho
.... f «»• J.nus, the program is a

VxsiMe se^ent Generator (vsa, . Ihe output of the ^ ^

"^ t0 a Shader ^ ai-1— -e „ethca ct shadin, is
very si.iiar to that descrihed by Romney [5J _ ^J

CHAPTER II

PRE-FRAME PROCESSING

Before being accepted by the VSG, the object must be

processed so that all translations, rotations, and perspec-

tive transformations have been applied. All polygons must

be clipped at the boundaries of the viewing sample space.

Since the scanning process proceeds from Y=l to Y=512 (or

to the Y-resolution value), the edges must be ordered in a

list according to the minimum Y value (Y-min) of each edge.

Horizontal edges need not be put in the list since the VSG

will reject them. On any scan line the VSG can then imme-

diately find which (if any) edges enter on that particular

scan line. For each polygon, three fields are zeroed

initially and reserved as sorting fields for the VSG. The

formats for the edge block and polygon block are shown in

Figure 4. The shading and color information will never be

used by the VSG for computations. However, the VSG will

pass the information to the shader for displaying if the

object is visible.

A user that describes objects as closed polyhedra can

double the speed of the processor if edge and polygon blocks

are only created for polygons that face the viewer. This

process was used on the test objects described in Chapter

VII.

EDGE BLOCK
POLYGON BLOCK

POINTER TO NEXT
EDGE BLOCK

POINTER TO POLYGON
BLOCK

MAX

Y - MIN

X - BEGIN
(ASSOCIATED WITH Y - MIN)

AX

Z - BEGIN
(ASSOCIATED WITH Y - MIN)

AZ

POINTER TO INITIAL
SEGMENT ON POLYGON

POINTER TO NEXT
CHANGING POLYGON

POLYGON ACTIVE BIT

SHADING AND COLORING
INFORMATION

Figure 4

Description of Edge and Polygon Blocks

- •

CHAPTER III

VISIBLE SEGMENT GENERATOR

The VSG can be broken into three separate processors:

(1) Segment Generator, (2) Segment Eliminator, and (3) Depth

Sorter.

A. Segment Generator (SG)

The format for a segment block is shown in Figure 5.

A segment is defined as the continuous surface of a polygon

which exists between two adjacent edges on a scan line.

Thus in Figure 6, on scan line 'a' there are two segments,

while on scan line 'b' these two segments of the polygon

have merged into one segment. A segment block contains a

description of the two bounding edges. The two Y-end

values specify the Y scan lines when the edges exit from

the picture. The X and Z values are stored along with

the AZ and AX increments for each edge. Thus, when the

program proceeds to the next scan line, the X and Z values

are updated by adding the increments as in Equation 1.

Z^Z+AZ ; X^-X+AX (!)

The segment blocks are threaded together by four separate

list structures:

1. The X-sort list contains all segments on the

current scan line sorted with respect to the left edge of

each segment. This list has both forward and backward

10

POINTER TO PREVIOUS
SEGMENT IN X-SORT LIST

POINTER TO NEXT
SEGMENT IN X-SORT LIST

POINTER TO NEXT
SEGMENT IN POLYGON LIST

POINTER TO POLYGON
BLOCK

POINTER TO NEXT
SEGMENT IN ACTIVE LIST

Y - END

- LEFT EDGE

/

\

► RIGHT EDGE

1 i

X

AX

Z

AZ

POINTER TO NEXT
SAMPLE EDGE

Y - END

X

AX

Z

AZ
l

POINTER TO NEXT
SAMPLE EDGE / /

Figute 5

Segment Block

Figure 6

Segments

12
pointers.

2. Each polygon segments list contains an ordered set

of all segments belonging to a particular polygon on a scan

line. They are linked together, with the initial pointer

(contained in the polygon block) pointing to the left most

segment of the polygon.

3. The active segment list contains only segments of

the X-sort list which exist in a specified range of X

values. Section P of this chapter will give more detail

of it.

4. The sample list is another sorted list that will

be explained later.

The SG is checked on each scan line to see if any new

edges enter the current scan line from the edge list, if

there are no entering edges, control is passed to the

segment eliminator. If edges do enter on a scan line,

data from the edges is used to create a segment.

The polygon block associated with the incoming edge is

checked to see if the active bit is set. Active designates

whether or not the polygon is already in the list of

changing polygons (polygons that have edges entering or

exiting on the current scan line). If the polygon was not

previously active, it is tagged as active and put in the

list containing all changing polygons on this scan line.

Since an edge has only enough data for one half of a

segment, an edge can be inserted into either the right or

13

left side of an empty segment. Because the program does not

know whether an edge bounds the right or left side of a

polygon, the algorithm may insert an edge into the wrong

half of a segment. However, if this happens, the Segment

Eliminator will do the necessary rearranging. The X value

of the incoming edge is compared against the X values of

segments in the polygon segments list until the appropriate

location in the list is found for inserting the edge data.

After finding the correct location in the list, and if

there is not an empty half of a segment block, the SG must

get a block from free storage and insert it in the list at

the correct location. Pointers to the segment block must

also be inserted in the X-sort list in the correct location

whenever data is stored in the left half of the block.

The preceding process is repeated for all edges that

enter on the current scan line. Finally when no more edges

enter, control is passed to the Segment Eliminator.

B. Segment Eliminator (SE)

The SE runs through the list of all changing polygons,

and for each of the polygons it disconnects the polygon from

the changing polygon list, and resets the active bit. It

then proceeds through the list of segments attached to that s

polygon to determine if any data needs to be shifted from

one segment block to another, or if any segment blocks can

be returned to free storage. For example, in Figure 6 on

scan line 'a' the polygon has two segments. Because the two

14
■niddle edges exit between scan lines 'a' and 'b,■ this

polygon „ill have been inserted into the list of changing

polygons. The SE must then take the right edge data from

the second segment block and insert that data into the right

half of the first segment block. After this, the second

segment block „in be returned to free storage. Figure 7

gives a step-by-step illustration of what would happen if

displaying the polygon in Figure 6. When all active

polygons have been checked by the SE, control is passed to

the Depth Sorter.

C. Depth Sorter (DS)

At this point the X-sort list contains all segment

blocks on this scan line ordered with respect to the left

edge of each scan line. While the SG and SE are concerned

only with polygons that change on the current scan line, the

DS is concerned with all polygons that exist on the scan

line. Therefore, the list handling and memory referencing

in this processor are extremely critical to the overall

speed of the VSG.

D. Sampling

A critical factor in the speed of the algorithm is the

number of points on the scan line where depths of polygons

are sailed. The depth sorter is capable of determining at

most a single visible segment for a restricted span of a

scan line. Because of this, sampling must at least be done

POLYGON

LZD-
SEGMENT

LÜ
RIGHT 1

LEFT

Scan Line 'a1

SEGMENT

RIGHT 2

T LEFT

15

POLYGON '

EMPTY

LEFT 1

Scan Line 'a' after

RIGHT 2

EMPTY

Exit on this Scan Li
Noticing Two Edges

ne

POLYGON

EMPTY M

LEFT 1
ARIGHT 2

EMPTY

Scan Line 'b' Showing Data Transfer

EMPTY

POLYGON

| 1 1 RIGHT 2 =1 ,
LEFT 1

Scan Line 'b- after Second Segment Block

Has Been Returned to Free Storage

Figure 7

Packing of Polygon Segment List

16

at the points of discontinuity (the visible edges). Scan

line-to-scan line coherence usually allows the DS to find

the visible segment by sampling only at the visible edges

contained in the sample list. For the object in Figure 8,

one notices the sampling points actually following the

visible edges of the picture. Thus the speed of the

algorithm will be more dependent on the visible complexity

of the object than on the total object complexity.

The Depth Sorter can be subdivided into three separate

processors: (1) The Sample Space Generator, (2) The Depth

Comparator, and (3) The Decision Processor.

E. Sample Space Generator (SSG)

The SSG operates from the sample list. Essentially the

list contains the sorted edges (each half of a segment block

is an elge) which were visible on the previous scan line.

The building of the Sample List was done on the previous

scan line by the Decision Processor and will be discussed

under that heading.

The left and right sides of the view screen are always

implied sample edges. The scan process on a single scan

line proceeds from left to right in X. Therefore, the left

edge of the view screen becomes the initial left sample

point. The X value of the first edge in the sample list

then becomes the right sample point. This sample edge is

then removed from the sample list. The portion on the scan

line which exists between the left and right sample points

17

Figure 8

Sampling Points

18
is called a span.

Suppose in Figure 9 one found on scan line ■„• that
edges B, c, a„a D were visible; and therefore ^ ^ ^

in the sampie xist with B at the first of the list. When

the program proceeds to soan line ■„.!, • the current x value

of edge A is initially set as the left sample point. Edge B

then beoo.es the right sa.nple point. Onoe a left and right

sample point is found, oontrol is passed to the Depth

Sorter and Decision Processor. Finally, „hen the Decision

Processor finishes its task, control is passed back to SSG

Now the right sample point 'b- becomes the left sample

point. Edge c is read from the sample list, point ■C

becones the right sample poi.t, and the cycle begins again.
The cycling process £inaUy stops ^ ^ ^ ^ the ^^

line is reached whereupcn control is passed back tc the

Segment Generator for the next scan line. A flow chart in

Figure 10 shows the overall control of the system.

F. Depth Comparator (DC)

The DC takes all the segments from the X-sort list that

exist between the left and right sample points and operates

on them in the following manner: (1) The X and Z values are

incremented to the values associated with the next scan line

and stcred back in the segment block. (2, If either of the

edges of the segment exit on this scan line, the associated

Polygon is tagged as active and put in the changing polygon

list. (3, The x value of the left edge is compared with the

19

w + l

Figure 9

Sample Edges and Sample Points

„__

20
START

(

(END OF FRAME")-

- J "~NO

YES
STOP

n
ANY MORE JUDGES ENTER

ON THIS SCAN LOE

YES
SEARCH SEGMENT LISFÖF

ASSOCIATED POLYGON AND PUT
EDGE DATA IN SEGMENT BLOCK

MARK ASSOCIATED POLYGON
 AS CHANGING

< AND MORE CHANGING POLYGONS^ ^

YES
CHECK ALL SEGMENTS ON THIS POLYGON
AND PACK SEGMENTS WHEN NECESSARY

YES
< END OF SCAN LINE~^

NO
GET SAMPLE POINTS)

SUBDIVIDE SAMPLE
SPAN AT LEFT
 MOST EDGE

COMPARE DEPTHS OF ALL
SEGMENTS WHICH ARE IN

SAMPLE SPAN

CREATE X-SORT LIST
FOR NEXT SCAN LINE

MARK POLYGONS THAT
HAVE EDGES EXITING ON
THE NEXT SCAN LINE

SUBDIVIDE
DECISION PROCESSOR >—INTERSECTION

OUTPUT VISIBLE SEGMENTS

DO INTERSECTION
OF TWO SEGMENTS

_L DS

Figure 10

VSG Flowchart

,

last segment stored in the X-^nr-^- i ,• 4. u •
n cne x sort list being prepared for

the next scan line Tf ♦•»,« «
line, if the new segment X value is larger,

it is inserted at the end of the list T^ ^ • list. if lt ls not larger^

the backpointers of the x-sort list are used until the

correct location in the list is found. The surprising data

rs that line-to-line coherence of the ten test objects

(Chapter VII) causes 97 to 99 percent of „n
percent of all segments to be

irst can always remain sorted i„ x with very little time

spent for rearranging segments. (4, Along with the sorting

Dust discussed, the DC must compare the incoming segment

against the currently visible segment, if the incoming

segment is in front, it „ill become the currently ^^^

segment. Every time a new sample span is generated, the

first incoming segment becomes the currently visible

segment.

If the right edge of a segment extends to the right of

the right sample point, the segment must be saved for future

depth comparisons when the sample span is moved along the

scan line. Por this purpose the active segments list „as

-eated. segments are put in the list from the x-sort list

and remain only as long as the right edge of the segment is

to the right of the left sample point. Therefore, in

addition to segments read from the x-sort list, the DC also

compares depths of segments read from the active list

22
G. Segment Clipping

When two segments are being compared, a clipping

algorithm is applied to each of the two segments simul-

taneously. Figure 11 illustrates the procedure. The two

lines represent the segment values on the current scan

line. As the 2 values of a segment decrease, the segment

becomes closer to the observer. Two X clipping values must

be obtained. Xlclip is defined as the right most left edge

in the sample span, and Xrcli,p as the left most right edge

in the sample span. if a left edge does not lie in the

sample span, the left sample span value is taken as X1 r .

in Figure 11, the X value of ^ becomes x^ and tllT

value of -b. becomes Xrclip. A set of registers is then

chosen for the left and right clip points of both lines

and loaded as in Figure 12.

Since Zmax and zmin are stored (not Z. .. and z . U4.),
... left right''

an additional bit must be kept which is the sign of

(Zleft"Zright)' This bit is used to distinguish the

13 shows a more oompleto gating of tho registers contained

in dotted box »1 of Figure 12. s of Figure 13 is:

S=(XÄ-Xlolip+XB-*lc:lip'/
2 (2)

or

S=(XA+XB)/2-X1 .. (^ Iclip (3)
But (XA+XB)/2 is the midpoint (XM) of the line ab.

Iclip (4)

23

Sample Span Left
Sample Span Right

X

Figure 11

Two Segments on a Scan Line

- ———..______

24

Line ab

a Iclip

4
LKrx

/2

El

max

-~^)/2
r ' —

b Iclip L" mm

Line cd

rjxc-xiciipl 2

<£>/2

L Xd-Xlcli7j L

max

i)/2

mm

a rclip r max
-®/2

X.-X . . b rclip

—@/2

]

-I
1
Z .
mm

—

Jx -X . . c rclip

L
-0/2

^Z
max

-1 /2
^I^ciip] T*±*

Figure 12

Arithmetic Unit for Depth Comparator

25

ts « .» X-

Xa~Xlclip
S < 0 (^

 0/2
s > o ~^-

—
Xb~Xlclip

max

/2

z . mm

((S > 0)A(SL -))V((S < 0)A(SL +))

((S > 0)A(SL +))v((S < 0)A(SL -))

SL = Sign of (Z. V

Figure 13

Gating of a Single Quadrant

: : .

26
If S is greater or equal to zern 4-h« -^ • siuaj. co zero, the midpoint is on X

^ t0 ^ right 0f Xlclip- ^en the registers containLTx
and z of the previous point to the right of x win be

replaoed with the miap0int of line ab „„.^ .s ^ ^

hcllp- * similar argument apPlies if s is less than ^^

A more complete desoriotion of t-hf. „, • • ription of thrs olippmg process used in

a line drawing system is described by Sproull [8].

in Figure 14, succeeding clipping oyoles are applied to

the two segments of Figure 13. ^t z^ be 2 of

quadrant 1 in Figure 12. z 7
Z and z . . ^^ max2' min2' Zmax3^ ^inS'
max4 ana Vn4 are similarly defined, if (Z < z

i . , . maxi min''' '
line ab is in front of line cd at X u a at Xlclip- However, as in
Figure 14 after one clip cycle, then (z < Z .
m^ max3 mini'*
Therefore, line cd is in front of line ab at X^ .

Exactly the same argument applies to Xrcl.p, anTafter two

CUP cycles line cd is found to be in front of line ab

Since line cd covers line ab everywhere between the sample

points ^ and .f, it then becones the ^^ v.sibie

segment.

Many times when linos intersect, or in the case shown

in Figure 15, a single currently visible segment cannot be

found, m this case a box is made just large enough in X

and z to encompass the two or more lines in guestion. The

amount of data to remember a box description is the same as

the amount to remember a line. Also a bit is set declaring

a vrsible box instead of a visible segment, jf later a

 , __,

27

Iclip rclip

First Clip Cycle

X Iclip X .. . rclip

Second Clip Cycle

Figure 14

Clipping of Segments

28

segment is found to be in front of the box as in Figure 16,

then it becomes the current visible segment and replaces the

visible box. The processor continues until all segments that

exist in the span are checked. When this is completed,

control is passed to the Decision Processor.

H. Decision Processor (DP)

The DP decides whether a visible segment can be put in

a display file or if the sample span must be subdivided in

some manner and the Depth Comparator started again. If the

DP finds there is a visible segment from the DC, it outputs

the corresponding segment to the display file. If the DC

discovered a visible box, and any of the visible segments in

the box have an edge existing within the sample span, the

right sample point is set to the X value of that edge

(subdivision), and control is passed back to the DP. For

instance, the DP would cause the control to subdivide at

X=a for segments in Figure 17.

If no edges exist between the left and right sample

points, two conditions can exist: (1) For more than two

segments existing in the visible box as in Figure 18, the

sample span is divided in half. That is, the right sample

point is moved half way toward the left sample point.

After this subdivision process, control is passed back to

the DC again. (2) If only two segments exist in the box,

the condition is the intersection case of Figure 19. The

29

Encompassing Box

Figure 15

Boxing of Segments

Single Visible Segment
Figure 15

Elimination of Visible Box by Visible Segment

■

30

Sample Left Sample Right

SUBDIVIDE

Figure 17

Subdivision

Figure 18

Three Potentially Visible Segments

31

Figure 19

Intersecting Segments

32

same clipping hardware used for depth comparisons can also

be used for calculating the intersection of these two lines.

I. Intersecting Segments

The intersection calculation is done in.two stages.

First, the registers of Figure 12 are loaded exactly in the

same manner as for the DC. However, instead of terminating

when the Zmax and Z^ tests are satisfied, the adders run

until all registers contain either 0 or -1. when the

registers reach this state, Zmaxl will hold the Z value of

line ab at Xlclip/ z^^ the Z value of line ab at Xrclip,

Zmax3 the Z valup of line cd at Xlclip, and Zmax4 the Z

value of line cd at Xrclip. Figure 19 has been reduced to

the problem represented in Figure 20.

For the second stage, the problem can be solved by

loading the registers in the manner shown in Figure 21.

Because of the intersection, Z1 and Z2 will have opposite

signs. Therefore, after each add cycle the Z sum is stored

into the Z register which has the same sign as the sum. The

X registers will also be stored in the same direction

determined by the Z sum. After [log0(X ,. -X, .)] add y2x rclip Iclip'J daa

times, X1 and X2 will both contain the X value of the

intersect of the two segments.

A block from free storage is obtained at this point and

the X intersect value and the pointers to the two segments

causing the intersection are stored as data in an implied

edge list. When the program proceeds to the next scan line,

maxi

inax3

Iclip

Figure 20

33

max4

max 2

X
rclip

Intersecting Segments Clipped to X, ,. and X
iclip rclip

Xlclip

i'Tv /1 CO/2

Xrclip X.

'maxi Zmax3 Zl

(+)/2

Zmax2 " Zmax4J Z;

Figure 21

Registers for Finding Intersection

34

the intersect will again be calculated. The difference

between the intersect on this scan line and the intersect

calculated on the previous scan line can be used as the

increment of the implied edge. This edge can now be treated

as any other visible edge and used for determining sample

points. If, on a scan line, an implied edge is found to be

no longer visible, the block is returned to free storage.

J. Building the Sample List

The DP has one other task. That is, to tag the visible

edges (determined in the DP), and put them in the sample

list, upon completion of the DP, control is either passed

to the SSG if subdivision did not occur, or to the DC if

subdivision did occur.

CHAPTER IV

FRAME-TO-FRAME COHERENCE

This algorithm can easily take advantage of frame-to-

frame coherence of pictures. For instance, in a movie if

an edge is visible in one frame, it will usually be visible

in the next frame, if an edge is found to be visible on

the scan line it enters on, the edge block (see Figure 4)

is tagged as visible. This means one additional bit must

be stored in each edge block. Also two pointers to each

edge block must be stored in the segment blocks. Then when

the next frame is being processed and an edge was found to

be previously visible, the initial X value of the edge is

then used as a sample point. The frame-to-frame coherence

algorithm was used on some of the earlier versions of the

program. However, the scan line-to-scan line coherence was

so efficient that the frame-to-frame coherence only

decreased the number of memory references by about 0.1

percent. Because of this, it was not implemented in later

programs.

.. JY

CHAPTER V

RELATIONSHIP WITH OTHER ALGORITHMS

On the basis of generality of object descriptions, this

new algorithm is as good as or better than the others men-

tioned in the introduction. Convex or non-convex polygons

of any number of sides can be used. The algorithm allows

polygons to penetrate one another without any pre-processing

checks.

Since planar equations are never used for depth

sorting, the algorithm can not tell if the points of the

polygons lie on a plane. It always assumes a linear

interpolation between the edges on a scan line. However,

when shading a polygon a discontinuity in shading can be

created. For example, if the vertex between scan lines 'a1

and 'b' of Figure 6 were not on the plane described by the

other three vertices, the linear depth calculations between

edges would show a discontinuity in the shading between the

two scan lines. Furthermore, the line of discontinuity

would always remain horizontal even if the polygon were

rotated. Also, since segments are only checked when edges

enter or exit, edges of a single polygon should never cross

each other. If they do cross, however, a local error will

occur in the picture only where that polygon exists and if

that polygon is visible. Consequently, points of a polygon

37

should lie on a plane. (Points not on a plane can introduce

edges that cross).

Like Warnock's algorithm, this new algorithm is also

non-deterministic, but on a scan line level. For instance,

a sample span on a scan line is assumed to have one covering

polygon. If it does not, the sample span is made smaller

until finally a span is found which is covered by a single

polygon.

Romney used an ordering scheme for taking advantage of

scan line-to-scan line coherence. He did not allow inter-

secting triangles. Therefore, as long as the intersection

of the edges of triangles on the current scan line were in

the same order as on the previous scan line, the same

triangles that were visible previously would be visible on

this scan line. However, as soon as the order changed, the

remainder of the scan line had to be depth sorted. The

coherence ordering made a great difference in the spaed of

his algorithm.

If intersections are allowed, as in the new algorithm,

this ordering of edges no longer holds for determining

visibility. Therefore, the sampling process described in

Chapter III-D was developed. It has the further advantage

that even when the order changes, the previously calculated

sample points for the remainder of the scan line are still

valid.

CHAPTER VI

DEVELOPMENT OF THE NEW ALGORITHM

As is usually the case in the development of new

algorithms, the process was evolutionary. Successive algo-

rithms were developed, tested, and improved upon. The

history of this algorithm can be divided into six distinct

steps. These programs are called VSG1, VSG2, etc.

1. The first step used edges on each scan line. The

edges were sorted in X separately, and after sorting they

were read in order. Every time an even number of edges was

found associated with a polygon, a segment block was created

from free storage. Finally, the segments were depth sorted

for visibility.

2. VSG2 linked the edges together with pointers

after sorting in X. This eliminated the creation of

segment blocks on each scan line.

3. VSG3 took the edge data and created segment

blocks only when edges entered on a scan line. These

segments are described in Chapter III-F. Since there are

one half as many segments as edges, the X-sort on each scan

line is twice as fast as in VSG2. Also, edges no longer

needed to be linked together on every scan line.

4. VSG4 eliminated the X-sort which was done sepa-

rately before the depth sorting. The x-sort and depth sort

were done simultaneously on each scan line.

39

5. The four previous algorithms used planar

equations and a multiplier for calculating depths of the

polygons. A divider was also required for finding the

intersect of two polygons. VSG5 replaced the arithmetic

unit with the midpoint clipping simulation described in

Chapter III-E.

6. Up to this point all algorithms used a bucket

sort as described by Romney [5] for sorting segments in X.

This final algorithm used the assumption that a sorted list

will remain sorted by interchanging only a few segments

when proceeding from one scan line to the next.

iSo

CHAPTER VII

TEST DATA

Ten objects „ere chosen to represent various com-

plexities of pictures. FlgUres 22-31 contain pictures of

the ohjects. Each object has two pictures. One shows aU

edges in the picture ana the other shows the „bjects after

visible surfaces are found and shaded.

A. Objects

Object 1, Penetration: The object is relatively

simple but has many intersecting planes.

Object 2, E-S: «any edges abound in the picture and

a great amount of visible complexity exists.

Object 3, Low Area: although intersections abound,

the picture only occupies a small area.

Object 4, cubel: Twenty-five cubes exist, but only

the front cube is visible.

Object 5, cube2= object 4 has been rotated so that

Parts of all twenty-five cubes are visible. An enormous

amount of visible complexity exists.

Object 6, Shapel: This object is made up of many

long and narrow polygons which are long in the X direction

Object 7, Shapea: object 6 has been rotated so the

Polygons are long in the V direction. These two objects

are to show „hat effect the object orientation can have

41

on the scanning process.

Object 8, Sheet: This is a wavy object made up of

triangles. Everything is at least partly visible.

Object 9, Simplel: This object is made up of a large

cube encompassing a sphere and intersecting cubes.

Object 10, Simple2: Object 9 has been changed slightly

so the sphere intersects the cube and is partly visible.

B. Statistics

For each of the VSG algorithms mentioned in Chapter VI,

statistics were gathered. These statistics included data

about the object (number of polygons, etc.), computation

required, memory reference counters, and various other

counters. Appendix II contains a list of statistics. At

the beginning of each set of statistics for a particular

algorithm, there is a table describing the various counters.

Figure 32 contains a table of statistics that have been

extracted for the Penetration object (Figure 22). The

statistics of the six various changes in the algorithm are

shown for that object. The table in Figure 33 shows a cross

section of statistics for all the objects with the final

algorithm.

C. Analysis

Before any statistics were gathered, arithmetic

computation was suspected to be the bottle-neck in solving

the hidden line problem. Statistics, however, showed that

42

Figure 22
Object 1: Penetration

 ,

43

Figure 23
Object 2: ES

44

Figure 24
Object 3: Low Area

—

45

Figure 25
Object 4: Cubel

/

46

Figure 26
Object 5: Cube2

47

Figure 27
Object 6: Shapel

48

Figure 28
Object 7: Shape2

 ,

49

Figure 29
Object 8: Sheet

50

Figure 30
Object 9: Simplel

51

Figure 31
Object 10: Simple2

52

r-i

CO
>

o
CO
>

n
O
>

CO
>

in

V
S

G
6

1 137607 101892 37919 21730 21224 24291
2 9172 112 38 54 54 56
3 76 44 25 24 23 23
4 7068 6975 6839 9210 — .^

5 26 22 22 15 - _

6 — -, - - 35604 32925

1. Number of memory references required

2. Number of total memory blocks used

3. Maximum number of blocks used at a time

4

5,

6.

Number of multiplications for depth test required
(If multiplier-divider used)

Number of divisions for intersections required
(If multiplier-divider used)

Number of addition cycles required for depth
comparisons (If multiplier-divider not used)

Figure 32

Statistics of the Penetration Object

for the Six Algorithms

CO
o

0)
u

•H

53

to
-p
o
0)
•n

§
-P
to
(U

En

Ö
i" EH

(Ü
XJ
4J

U
O
m

in
o
w
o

•H
■P
w

•H
■P
rj

■P
CO

Ol n

m

ß
•H

•H

a, e
•H

H-l
O

n
QJ

3
S

in vo

to

U
o

-p
c
0)
s
Cn
QJ
w

0
■P

W
0)
u
c
QJ

QJ
m
0)
M

m
o

QJ

3

rd
+J
O

EH

oo

rn

QJ
C

•H

QJ
>
0

00

QJ
Ö

•H

4-1
O

0
•H
4J

CTl

tQ -H ^

CV]

tO
rH
Ck
tfl

•H
-a
QJ
e

•H
+J

H
ft)
QJ
M

M
O
m

QJ
M

•H
a
Cr1

QJ
M

N
Q)

•4-1
4-1

XI

-P
c
QJ I
Cn
QJ
en

4-J
d

4J

O

e
■H
c

•H

ro

54

-a
QJ

C
■H
-P
C
o
u

m
ro

QJ
U

•rH

55

memory bandwidth was the critical factor, with the polygon

segment block being the most accessed array! For the

hardware processor, a special purpose memory would be used

where 300 bits could be accessed at one time. With

semiconductor memories it is becoming economical to do this.

From the first five different changes in the algorithm

in Figure 32, one can see a steady decrease in the number of

memory references. The final algorithm, however, produced

an increase in memory references due to the X-sort technique

described in Chapter III-F. In spite of this apparent

increase in memory references for VSG6, the overall number

of memory references in VSG5 would have been greater if

accesses to the bucket X-sort memory had been counted. The

design and cost for such a bucket X-sort memory also were

compelling factors in deleting it even though accesses to

the segment memory increased,

When the program proceeds from one scan line to the

next, each segment block needs to be accessed for incre-

menting the X and Z values. At this same time, another

X-sort list is being sorted in preparation for the following

scan line. Segments are read from the beginning of the

X-sort list for the current scan line and are usually

inserted at the end of the X-sort list which is being

prepared for the next scan line. Figure 33 (line 12) shows

the percentage of times that segments cannot be inserted at

the end of the list, and when the previous segment pointers

 ,

-st be use. for flndillg the correct ^.^ ^ ^ ^

for insartinc, the se^ent block. The percentage varies

between 0 to 4 percent tor the ten test objects. Thas, the

overhead of tracing baok through a list to Keep it sorted is

extre^iy low. Älso, no largei expensiver or ^.^

time-consuming speciai sorting hardware needs to be used.

Visual complexity is much more important in determining

the speed of the algorithm than is the total object

aescription. object 4 and object 5 ore both sets of

twenty-five cubes. However o>-,;,^f- c uwever, Object 5 requires over ten

times the number of memory references a. object 4 A

Picture visually identical to Object 4, but containing „„4y

one cube, „as compared with Object 4. Even though object 4

contained twenty-five cubes, it only had six times the

memory references as the single cube object.

One way of measuring the performance of the algorithm

- to create a relatrcnshlp between the object description

and the number of memory references to the eegment array.

Two »emery references (a read from memory followed by a

«ite to me.nory, are always required to Increment the X and

Z values of a segment „hen proceeding from one scan line tc

the next scan line. From the total number of ^^ ^

oross scan lines (line 3 of Figure 33), the mini,™ number

of memory references needed can be calculated fro. Equation
5.

mm vo "//^ (5)

57

where Mmin is the minimum number of memory references that

can be expected. S is the number of memory references

required to increment a segment (2). N is the total number

of times that edges cross scan lines. E is the number of

edges contained in a segment (2). Equation 5 reduces to

Equation 6.

mm (6)

Equation 7 is the ratio (R) of M^^ (the total number of

memory references actually used) to M
mm

total' mm v /;

Line 9 of Figure 33 lists the different values of R for the

ten test objects.

The clipping of segments for depth sorting is very

fast. Line 11 of Figure 33 contains the average number of

add cycles required by the clipping registers to satisfy the

depth comparison test between two polygon segments (see

Chapter III-G). One of the add cycles is for loading the

clipping registers. Even counting this, the average number

is between two to three add cycles per depth test!

The ten test objects were also used by Stephen

McCallister [9] for gathering statistics on different

versions of Warnock's algorithm. Comparisons are shown for

a particular version which divides an area into four

sub-areas using a vertex closest to the center of the large

area for the common corner of the four sub-areas. If an

area is completely covered by a polygon, is void of all

58

polygons, or has only one visible edge in the area, it is

simple enough to be displayed without further reduction.

Statistics for Object 2, E-S (Figure 23), were

gathered. A large data structure was used requiring polygon

lists, edge lists, and a vertex and planar equation array.

Each polygon block consisted of several words, but only

accesses to each polygon block (not word) were counted. The

same was also true of the remaining data structure. The

following information was gathered:

Polygon Block Accesses 336,156

Edge Block Accesses 427,688

Vertex Array 220 ,910

Planar Equation Array 21,072

Total Accesses 1,005,826

The number of accesses to memory was far greater than that

required by the new scan line algorithm (47,030) . Also,

Warnock's algorithm requires that the complete object

description be stored in fast memory, and not just those

objects pertaining to the current scan line,

D. Output Buffering

Whenever a cathode ray tube (CRT) is being continually

refreshed, the rate of moving the beam must remain constant

if the displayed intensity is to be a function of the analog

input intensity. That is, the X and Y deflection circuits

must be changed at a constant rate. The output of the VSG

.

59

does not generate segments at a rate inversely proportional

to the length of the segments. Therefore, a buffer for

temporarily storing segments must be inserted between the '

VSG and the display.

In Figure 26 (Object 5: Cube2), the Y scan goes from

the bottom to the top of the picture. The VSG can quickly

determine the visibility of the bottom half of the picture

but will require a great amount of time for the top half of

the picture. The display, however, must spend the same

amount of time on each half of the picture. Because of

this, almost the entire bottom half of the picture would

need to be buffered. On the other hand in Figure 23 (Object

2: E-S), the VSG runs at a fairly constant rate over the

whole picture, and only a small amount of buffering would be

required.

For the ten test objects, line 13 of Figure 33 shows

the smallest number of segments that must be stored at one

time in order to have a display running at thirty frames per

second with a constant rate for the X and Y deflection of

the CRT beam. The VSG was simulated to reference the

polygon segment array every 200 nanoseconds. For objects

which have a uniform distribution over the area, only a

small buffer size was needed. For Cube2, which has a

concentration of visible information in the upper right hand

corner, a much larger buffer size was required.

. 0>o.

CHAPTER VIII

CONCLUSION

The processor described can be built with equipment

available today. The segment memory must be in the 200

nanosecond cycle range, and semiconductor memories are

available in this range. Also, only a small memory is

required since 18 to 50 segment blocks at most are needed at

any one time for any of the ten test objects.

The algorithm has been simulated in Fortran IV on a

PDP-10 at the Computer Science Department at the University

of Utah. Other pictures have been taken to show how

coloring and shading adds to the realism of objects.

Figures 34-39 show various objects. Total computation time

for generating and displaying the pictures is short. Cubel

(Object 4) required 30 seconds, and the church of Figure 35

containing 345 blocks (six polygons per block), required

only 2.5 minutes. Figure 36 shows the back view of Figure

35 with the blocks randomly colored.

61 62

.. . Figure 36
Figure 34 • Rear View of Church with Randomly Colored Blocks Office Structure · ·

'II it1 .. ~

•
Figure37

Figure 35 · Apollo Command and Service Module Church

63

Figure 38
Tori

Figure 39
Randomly Colored Surface

\

BIBLIOGRAPHY

1. Roberts, L. G. "Machine Perception of Three-

Dimensional Solids," Technical Report No. 315,

Lincoln Laboratory, M.I.T., Cambridge, Mass
22 May 1963.

2. Loutrel, P. P. "A Solution to the Hidden-Line

Problem for Computer-Drawn tolyhedra,"

IEEE Transactions on Computers, c-19 [3],
205 March 1970.

3. Appel, A. "The Notion of Quantitative Invisibility

and the Machine Rendering of Solids,"

ACM Conference Proc. 387 (1967).

4- Wylie, C, Romney, G. , Evans, D. C. , Erdahl, A.

"Half-tone Perspective Drawings by Computer,"
AFIPS Proc. FJCC 31, 49 November 1967.

5. Romney, G. "Computer Assisted Assembly and Rendering

of Solids," Computer Science, University of Utah,
Salt Lake City, Utah, August 1969.

6. Warnock, J. "A Hidden Surface Algorithm for Computer

Generated Halftone Pictures," Technical Report

4-15, Computer Science, University of Utah,
Salt Lake City, Utah, June 1969.

7. Bouknight, W. j. "An Improved Procedure for Generation

of Half-tone Computer Graphics Presentations,"

Report R-432, Coordinated Science Laboratory,

University of Illinois, Urbana, Illinois,
September 1969.

8, Sproull, R., Sutherland, I. E. "A Clipping Divider,"

AFIPS Proc. FJCC 33, 765 (1968).

65

9. McCallister, S., Sutherland, I. E. "Final Report

on the Area Warnock Hidden Line Algorithm,"

Evans and Sutherland Computer Corporation,

Salt Lake City, Utah, Internal Document,
12 February 1970.

A(,

APPENDIX I

LISTING OF PROGRAM

The hidden line program is called as a subroutine from

a main program. VSG6 contains counters interspersed through-

out the program for gathering statistics like those in

Appendix II. VSG6 is written in FORTRAN IV.

Several subroutines are called by the program:

LDRPT(I,J) < loads the right half of J (sign extended)

into I.

LDLPT(I,J) < loads the left half of J (sign extended)

into I.

STRPT(I,j) < stores the right half of I into the right

half of J. The left half of J remains undisturbed.

STLPT(I,J) < stores the right half of I into the left

half of J. The right half of J remains

undisturbed.

SHOW < displays the segments stored in the VISSEG array.

LSTSET(N) < initializes a free list structure with

blocks of N words each.

GETBLK(I) < gets a block from the free list. I is the

index of that block and is set by the subroutine.

RETBLK(I) < returns a block to the free list. I is the

index of the block to be returned.

c

SUBROUTINE KIDDEN(PIX,STAT)
COMMON/FREE/EDGEST,DUM,POLYST 67

SSH^IS/9»<4> -PRÄMEX»FRAMEY
??z??Ä0"cD(700!000)*Y(,000),ZnR00)'CX<700)'CY(700>'
IMPLICIT'INTEGER (A-Z)
REAL X.Y,Z,CXfCY»CZ.CD
COMnON/SCOPE/VISSEG(512)fBUCKY(512)
DIMENSION EDGE(l).SEG(t) POLYO)
EQUIVALENCE (EDQEST,EDGE,SEG.POLY)
DIMENSION ZS(10),SAM(3,2) t3•rULY,

""ENSION PQ(16),Q(10,ä6),ADDS(20)
•QL"1o
QL=26

C '^''SrDDE^LI^E^K1 BL0CKS REQÜIRED F0R

C PQ(2)=MAXIMUM NUMBER OF TOTAL BLOCKS EVER USED AT ONE TIME.

C PQ(3)M,C^E:2LNUMBER 0F T0TAL BLOCKS AT A GIVEN TIME.
r *„,> (USED F0R CALCULATING PQ(2).) "*"
C PQ(4)=T0TAL NUMBER OF EDGE BLOCKS IN FRAME

PQ(5)rNUMBER OF EDGE BLOCKS WITH AT LEAST ONE OF THE
CONNECTED POLYGONS DRAWN CLOCKWISE.

C PQ(6) = NUMBER OF THÖSE"EDQE"BLÖCKrOF"pQ(5) WHOSE Y VALUE
r n

0F 1HZ BE:GIN pT IS NOT THE SAME AS THE END PT v uft nr
C PQ(7) = T0TAL NUMBER OF POLYGON BLOCKS IN THE FRSE" '

PQ(8)=NUMBER OF POLYGON BLOCKS DRAWN CLOCKWISE.

C
C
C
C PQ(9)=P0INT DENSITY.
c

C PQ(10)=NUMBER OF INVOLVED SCAN LINES.

C PQ(Il)=MEMORY REFERENCES FOR SEGMENT CREATOR.

C
c PQ(I2)=NAN0SEC0NDS PER MEMORY REFERENCE FOR SEGMENT CREATOR.

C PQC13)=MEM0RY REFERENCES FOR DEPTH CALCULATOR.

Cc PQ(!4)=NANOSECONDS PER MEMORY REFERENCE FOR DEPTH CALCULATOR.

C PQ(l5)rMEMORY REF. TOTAL PQ(1I),PQ(15)

PQCI6)rNAN0SEC0NDS FOR PQ(I3).

ADDS(I)=NUMBER OF TIMES THE DEPTH TEST WAS SATISFIED IN.

J Q COUNTERS
C SfH^™™1 PER ^AME 68

«C2tX)=MAXIMUM REQUIRED OF A «iriiii i TH=.

C SSH!SNUMBER 0F SLOPE CALCULATIONS

! iPisssi-M«.
C Q(X;7J:DEPTH SAMPLE:S REQUIRED.

C §((!f;9)
)!SAMPLE P0INTS DIETED.

C §!v,'.,?^::?UTPlJT SEGMENTS.
^ ^X'In = INTERCEPT CALCULATION«?
C Q5X,I2)=1NTERCEPT SUBDIVISIONI*

c o J* ^=HME: WAITING POR CL PPER r Q5X,I5)=READS FROM POLY
C S<XtlS)=WRITES TO POLY
S LCM7i=RE:ADS FR0M EDGE.
C 0/5» !?^RITES T0 EDGE.
r Q<Xtl9)=READS FROM SEG

c 2<X,I?)>:WRITES T0 SEG
C Q(X 22)"
C QCX,25)=READS FROM FREE LIST(GETBLK)
C 9CX,24) = WRITES TO FREE LISTfRFTPi tf
C Q(X,25)rREADS FROM BUCKY LK)

C Q(X.26)=USED FOR SHADER

C INITIALIZATION.
C 69

DO 8 1=1,QL
DO p J=l,10

8 Q(J,I)=0
DO 9 I=I,PQL

9 PQ(n = 0
DO 12 1=1,20

12 ADnS(I)=fl
DO 10 l=l,FRAnEY

13 BUCKY(I)=0
CALL LSTSETCM)
DEPTH:.TRUE.
SAM2S=0
SAM2X = FRAMEX
SEGS2:0
SEGL2=0
POLYCH:0
IMPLST=0

C GO THROUGH ALL POLYGONS AND NOTE WHICH WAY EACH POLYGON
C IS DRAWN (CLOCKWISE OR COUNTER CLOCKWISE) BY CHECKING

pZ % PLANAR EQUATIONS AND MARK THE POLYGON BLOCK.

90 IF(POLYPT.EQ.0)Gn TO 99
POLY(POLYPT+l)r-I
CALL LDRPT(INDEX,POLY(POLYPT+2))
9<1,15>=Q(1,!5)+1
PQ(7)=PQ(7)+I
Q(I,K):Q(I,16)+I
IF(CZ(INDEX).LE.0)GO TO P5
POLY(POLYPT+1):0
POLY(POLYPT+3):5?
PQ(R):PQ(P)+|

95 CALL LDRPT(POLYPT,POLY(PnLvPT))
GO TO 9P

C INITIALIZATION CONTINUED. 70
C TAKE EACH EDGE AND PUT IN THE BUCKY GIVEN BY ITS

% E5GEPLT=FTDYGESTLUE• '"^ IS THE Y-S0RT 0F ^^'
100 IF(EDGEPT.EQ.0)GO TO 200

PQ(4)=PQC4)+I
C

p XMH EACH E:DGE IM BUCKY IF AT LEAST ONE OF THE
C TWO POLYGONS IS DRAWN CLOCKWISE.
c

CALL LDLPT(P0LYL,EDGE(EDGEPT+2))
CALL LDRPT(P0LYR,EDGE(EDGEPT+2;)
Q(1,17)=Q(1,17)+1
IFCPOLYR.EQ.POLYDGO TO 110
IF(POLYL.EQ.PI)GO TO 103
IF(POLY(POLYL+1).EQ.0)3O TO 104

103 IF(POLY(POLYR+n.LT.0)GO TO 113
Q(1,15):Q(1,15)+1

104 CALL LDLPT(INDEX,EDGE(EDGEPT+1))
YBEG:Y(INDEX)
CALL LDRPT(INDEX,EDGE(EDGEPT+m
YEND=Y<INDEX)
PQ(5):PQ(5)+1
IF(YBEG.EQ,YEND)GO TO 110
PQ(6):PQ(6)+1
IF(YBEG.LT.YEND)GO TO 105
I=YEND
YENDrYBEG
YBEG:I

105 YBEG=YBEG+1
IF(YEEG.LE.0)GO TO 115
IF(YEND.GE,FRAriEY)GO TO 115
I=BUCKY(YBEG)
BUCKY(YBEG)=EDGEPT
Q(1,1S):Q(1,1F)+1
CALL STLPTCI,EDGE<EDGEPT))

110 CALL LDRPT(EDGEPT,EDGE(EDGEPT))
GO TO 100

15 TYPE 116
RETURN

16 FORMATC ERROR.. .OBJECT NOT IN BOUNDS OF FRAME!')

laa t0
ntt

llHE COMPUTATION. 200 CONTINUE 71
DO 201 Irl.QL

201 Q<4fI)rQ(l,l)
IY=0

204 IYrlY+I
DO 202 1=1.QL
Q(«,I)=Q(Itl)

202 Q(3,I)=Q(i;i) ',l,

iri!itL1ZE: ALL POINTERS.
SEexST=SEGS2
SEGLST=SEGL2
SEGS2s0
SEGL2r0
SAMlSrSAM2S
SAMIL=SAM2L
SAM2Sr0
SAM1X=SAM2X
SAM2X:FRAMEX
IF(IY.GT.FRAMEY)GO TO 230
SEQCNT=0

r SCAN PREPARATION PROCESSING.

A5DT BEUD?LES
D TTS?STWLH1S

CHT ?S
NE1; 0N THIS SCAN "**

IF(BUCKY(IY).EQ.0?lo TO 230 G)•
QCI,25)=Q(|,25)+|
EDGEPT=BUCKY(IY)

210 IF-(EDGEPT.EQ.0)GO TO 230
Q(ltI7)=Q(|,|7)+i
PA}-.1- .^PTCBEG.EDGEtEDGEPT+D)

5EiiD=t?^JSEND,EDGE:(E:DGEPT+,))

YBEG=Y(BEG)
DELYrYBEQ-YEND
IF(DELY.EQ.0)GO TO 229
IECDELY.LT.0)6O TO 211
I=BE6
BEG=END
ENDrl
DELYs-DELY

211 IX=X(BEG)*262I44.0

IFaxE.LE.0.OR.lXE.GT.FRAMEX)GO TO 115

r OAÜ LDRPT(P0LYPT,EDGE(EDGEPT+2))
212 f??Pm0tJ50^ ^R EDSE ARE FLOWED. ZIZ IF(POLYPT.EQ.0)GO TO 22?

Qn,I5):Q(l,15) + I

POLYCHrPOLYPT
91 T OALL STLPT(-|,P0LY(P0LYPT+n)
213 SEGPT=P0LY(P0LYPT+3)

PREV=0
YEND2Pr-l

214 IF(SEGPT.EQ.0)6O TO 220 72
Q(ltl9)=Q(l,I9)+l
CALL LDRPT(YEND2,SEG(SEGPT+2))
CALL LDLPT(YENDItSEG(SEGPT+2))
IF(YENDI,GE,0)GO TO 217
TEl=IX-SEG<SEGPT+3)-SEG<SEGPT+4)
IF(TEl.EQ.a)TEl=XSLOPE-SEG(SEGPT+4)
IF(TEI.LT,0)GO TO 220
IF(YEND2.GE,0)GO TO 21g
TE2=IX-SEG(SEGPT+5)-SEG(SEGPT+6)
IF(TE2.EQ,0)TE2=XSLOPE-SEG(SEGPT+ß)
IF(TE2.LT.0)GO TO 223
GO TO 21P

217 1F(YEND2.GE.0)GO TO 218
TE2rIX-SEfi(SEGPT+5)-SEG(SEGPT+6)
IF(TE2.EQ.0)TE2rXSLOPE-SEG(SEGPT+6)
IF(TE2.GE.0)GO TO 21P
MODEr0
PREVrSEGPT
GO TO 227

218 YEND2PrYEND2
PREVrSEGPT
CALL LDRPT(SEGPT,SEG{SEGPT+1))
GO TO ZlA

220 M0DE=2
IF(YEND2P.GE.0)GO TO 227
FROM=0
GO TO 22S

J>23 FROM=-I 7->
PREVrSEGPT
CALL LDRPT(SEGPTfSEG(SEGPT+I))
GO TO ?.2fi

224 SEG(I+5)=SEG(PREV+5)
SEG(I+6)=SEG(PREV+6)
SEG(I+9)iSEG<PREV+9)
SEG(1+|0):SEG(PREV+I0)
Q(l(20)=Q(|t20)+|
CALL STRPT(YEND2.SEG(l+2))
M0DEr2
GO TO 227

226 CALL GETBLK(I)
Q(lt23>rQ(l,23)+l
PQ<1)=PQ(1)+1
PQ(3)=PQ(3)+1
IF(PQ(3),GT.PQ(2)>PQ(2)iPQ(3)
CALL STRPT(SEGPT,SEG(I+|))
IF(PREV.NE.0)CALL STRPTd,SEG(PREV+1))
IF(PREV.NE.0)Q(!f20):Q(|t20)+l
IF(PREV.EQ.0)POLY(POLYPT+3)iI
SEG(1)=-|
SER(I+2):0
SEGd + IDrP
CALL STLPT(POLYPTtSEG(I+l))
1F(FFOM.ME.0)GO TO 224
PREVrl

227 SEG(PREV+3+«ODE)=lX-XSLOPE
SEG(PPEV+4+M0DE)=XSL0PE
e(l,20)=Q(l,20)+l
1F(MODE.EQ.0)CALL STLPT{DELYtSEG(PREV+2))
IF(MODE.NE.f))CALL STRPT(DELY,PER(PREV+2))
SEG(PREV+P+MOnE):((Z(END)-Z(BEG))/(Y(END)-Y(BEG)))*2S2144.0
SEG{PREV+7+MODE)=Z(BEG)*2K2l44.0
SEG(PREV+7+M0DE)=SEG(PREV+7+M0DE)+ZMUL(SEG(PREV+F+M0DE).DEL)
SEG(PREV+7+MODE)=SER(PREV+7+MODE)-SEG(PREV+P+MODE)

22? CALL LDLPT(P0LYPT,EDGE(EDGEPT+2))
11:11+1
IF(II.EQ.0)GO TO 212

22<» CALL LDLPT(EDGEPT,EDGE(EDREPT))
GO TO 210

Qn,|5)rQ(|,lj)+i
QCI,I6)=Q(1,16)+I

CALL STLPT(0,POLY(POLYCH+1))
NEXTrP0LY(P0LYCH+3)
SEGPTrB

231 IF (NEXT.EQ.PI) GO TO 240
PREVrSEGPT
SEGPTrNEXT
Q(I,I9):Q(I,|«))+I

CALL LDRPT{NEXT,SEG(SEGPT+1))
,Ip,i^G(SERPT+2)'NE'0> RO TO 233
IF PRFV.NE.0)QCl,20)rQ(|,20)+|
»r,(o^V,NE'(,)CALL STRPT(NEXT,SEG(PREV+1))

änc:;5!f:i?f;i5?irpoLYcH+5)=5E^
PQ(3)rP3(3)-l
CALL RLTBLK(SEGPT)
SEGPTrPREV
GO TO 231

233 NEXTIrNEXT
CALL LDRPT(YEND2,SEG(SERPT+2))
IF (YEND2.f5E.0) GO TO 237

IF<YENl)I.LT.P)GO TO 2395
SEG(SEnPT+3):SEG(SEnPT+5)
SER(SEGPT*4)rSEn(SEGPT+6)
SEG(SEGPT+7):SEG(SEGPT+9)
SEG{SFGPT+O)rSEG(SEr)PT+i0)
CALL ?TLPT(YEND2,SEGCREnPT+2))

2l7

?.3P

239

23,5

2396

?.307

?.~~

2~ I

lf'<NEXTI,EQ,ii!)GO TO ?.~1
CALL LDLPTCYENDI,SEGCNEXTI+2ll
Q(1,19l:Q(I, 19l+l
IF" CYENDI•,GE,0l GO TO 2l!!
QC I ,20l:Q(I ,20>+2
CALL STRPTCYENDI ,5EGC5EGPT+2))
CALL 5TLPT<0,5EG< NEXTI+2l l
5EG<5EGPT+5 l•5EG< NEXT l+l l
5EGC5Er.P T+6) :SEGC NEXT I+~)
SEGC5F.r.PT+,) :SEG(NEXT 1+7 l
SEGC~EGPT+I~ l :SEGC N~X T 1+~ J
CALL LDLPTCSI ,5Er.CNEXTI))
CALL LDRPTC52,5EGC NEXT I))
IF"C51,NE,AJCALL 5TRPTCS2,SEGCSI))
IF"C5 I .~0 ,A JSEGX5T:S2
I F"C NEXT I, NE,SEGLSTlCALL STLP T<5 I ,SEGC52))
IF" CIIEX Tl ,EQ .SEG:.s TlSEC.LST :5 I
GCI,20J:QCI,20>+1
SEGCNF:l<Til:·l
r;n TO 23~5

CALL LDRPTCYEND?.,SEGC NF.XTI+2))
IF" CYEND2,GE,e> GO TO 239
Q(I ,?.D):QC I ,?.Al+2
CALL STRPTCYF.ND2,SEC.CSEGPT+2l)
SEGCNEXTI+2>•~
SEGCSEGPT+5 l:So".C NEXT 1+5 l
5~GC~~ r,p TH) :SEr,c NEXT 1+6)
~EGCHGPT+9J:SEGC NEXT I+OJ
SEG<SEGP T+l A) :SFC,(~.~XT I+ 10)
GO Tn 2305
CALL LD9PTCNEXTI,SEGCNEXTI+I))
GO TO 237
IF<SEGCSEC.PTJ,NE,·IJGO Tn ?.31
CALL L OLP T<IXE ,SEG<SEGP T+3J+SEGCSEOPT+~ J l
51 :PREV
IF"CSI,NE,0JCALL LD~PTCS?.,SEGCSI))
I F"CS I, EQ, ~ JS2:5EGX5 T
IF"<SI,F.Q,SEr.LSTJ52:0
QC I, 19l:Q(I ,19l+l
IF"<52,EQ,AJGO To 2397
CALL LDLPT< IX ,SEGCS2+3 J+SEr.CS?+4))
IF"CIX,GE,IXE>GO TO ?.397
Sl :52
GO Tn 230~
I F"CS?., NE ,A lS EGCSfr.PT> :52
QCI,20J:GCI,20J+I
CALL STLPTCSI ,SEGCSEr.PT))
IF"<51,NE,0JCALL 5TRPTCSEGPT ,SEGCSI))
lfCS I,F.Q ,0 >SEGXST:SEGPT
IF"CS2,NE,0JCALL STLPTCSEGPT ,SEGCS2))
I F"CS2 ,EQ ,0 JSEGLS T:S EGPT
GO TO 23 I
POL YCH:POL YCPOLYCH+I J
GO TO 230
PAUSE 'UNCLOSED POLYGON'
SEGCSFGP T+5):SEGCSEGPT+3)
SEGCSEGP T+6) :SEGCSEGPT+4 l
CALL STRP TC0,SEGCSEGP T+2) J
r.n TO 23o5

75 c
2~2

276

278

279

c
2~1

2P2
299

DE~TH SORTER,
CONTINUE
DO 276 I: I ,QL
OC6,Il:Q(I ,Il•QC!;,IJ
11'<QC5, I l ,LT ,Q(6,1) lQC5,1 l:Q(6, I l
Q(9,l):Q(9,1)+Q(1,1)
Q(U,IJ:Q(IA,Il•Q(I ,ll
QCS,Il:QCI,Il
IF"!IY,GT,F"RAMEYlGO TO 498
SAJIICI 02): I
SAMC2,2>:A
CAlt LllLPTCSEGPT,II'JPL5T>
IF"CSEGPT .EQ,0) GO TO 279
NEXT:SEGCSEGPT l
CALL RETBLK<SEGPTl
PQC3):PQC3)·1
QCI,24l:GCI,2~>+1
SEGPT:NEXT
GO TO 278
I IIPLST: li'IPLST•2621 44
SEGACT:~

SA i'IPLE SPAN GENERATOR,
SA 1'1<1, I> :SAM <I ,2 l+ I
SAMC2,1l:SAMC2,2)
SAM<~, I):SAM<3,2>
SAMC2,2>:0
IF"<SAMJX,GE,SAJIICI,I»GO TO 2~2
SAI'IIX:F"RAMEX
IF"<SAMJS,EQ,SAMILJGO TO 2~2
CALL LDLPTCSAMIX,SEGCSAJIIIS»
CALL LDRP TCSAM IS ,sEr,<SAJIIIS))
SAMCI ,2):SAMIX
ZSC I):0
F"ROM:0
SEGPT:SEGACT
SEGOUT:0
PREV:0

ll
I
!

76

1 ...

Li ?pE?o™M!NTS FR0M THE CURRENT ACTIVE LIST. 77 301 IF (SEGPT.EQ.0) GO TO 304 //

NUMREF=-Q(1,19)-QC1,20)-Q(1,13)
Qn,l9):Q(lf19) + l
NEXT=SEG(SEGPT+1I)
XLEFT:SEG(SEGPT+3)
XRIGHT=SEG(SEGPT+5)
ZLEFTrSEG(SEGPT+7)
ZRIGHT:SEG(SEGPT+9)
CALL LDLPT(IXE,XLEFT)
CALL LDLPTdXX.XRIGHT)
IF(IXX.LE.SAM(1,2))G0 TO 303
PREVzSEGPT
IF(IXE.GE.SAM(1,2))G0 TO 335
60 TO 315

303 CONTINUE
Q(l,20)rQ(I,20)+I
lF(PREV.NE.0)SEG(PREV+n) = NEXT
IF(PREV.EQ.0)SEQACT:NEXT
IF <IXX.LT.SAM(1,|)) GO TO 335
Q<l,20)=Q(l,20HI
SE6(SEGPT+lI)rSEG0UT
IF (SEGOUT.EQ.0) SEGLOrSEGPT
SEGOUTrSEGPT
GO TO 315

C CHECK NEW SEGMENTS FROM THE X-SORT LIST. ALSO
r run^HLVll X»Y'Z VALUES AND INSERT THE SEGMENT BLOCK
304 IEV^ÄT

LIST F0R THE NEXT SCAN LINE.
IF(SEGPT.EQ.0)GO TO 350
NUMREFr-QtI,I9>-Q(1,20)-Q(|,13)
QC1,I9)=Q(1,I9)+1
CALL LDLPTCIXE,SEG(SEGPT+5)+SEG(SEGPT+4))
IF(IXE.GE.SAM(1,2))G0 TO 350
FR0M=-1
CALL LDRPT(SEGXST,SEG(SEGPT))
IF(SEGPT.EQ.SEGLST)SEGXST=0
Q(1,2)=Q(1,2)+1
SEG(SEGPT+3)=SEQ(SEGPT+3)+SEG(SEGPT+4)
fc^(Ir^I+E)=SEGCSEGPT+5)+SEG<SEGPT+6)
SEG(SEGPT+7)rSEG(SEGPT+7)+SEG(SEGPT+8>
SEG(SEGPT+9)rSEG(SEGPT+9)+SEG(SEGPT+l0)
XLEFT=SEG(SEGPT+3)
XRIGHT=SEG(SEGPT-!-5)
ZLEFTrSEG(SEGPT+7)
ZRIGHT=SEG(SEGPT+9)
CALL LDLPT(YENDlfSEG(SEGPT+2))
CALL LDRPT(YEND2,SEG(SEGPT+2))
YENDlrYENDI+1
YEND2=YEND2+1
CALL STLPT(YENDltSEG(SEGPT+2))
CALL STRPT(YEND2,SEG(SEGPT+2))

IF (SEGCSEGPT+11).GE.0) GO TO 3K9 -,o
IF (YEND2.GE.0) GO TO 308 78

IF (IXE+1.NE.SAM(1,I)) GO TO 30B

?rLrTvD,L^TiIX»SEG(SEGPT+3,+sEG(SEGPT+4))
CAF

M JX:LE:-0'OR-IX-GT-FRAME^ GO TO 30P SAM(3,l)rSEGPT+12
SAM(2,l)rlX
FM:-l
GO TO 3091

30P CALL RETBLK(SEGPT)
PQ(3)rPQ(3)-|
QC1,24)=Q<1,24)+l
GO TO 335

309 MODE:0
SEG(SEGPT)r-I
IF (YEND1.GE.0) GO TO 310
MODEr-)

CALL LDLPTClX,SEG(SEGPT+3)+SEG(SEGPT+4))
IF aX.LE.0.OR.lX.GT.FRAMEX) GO TO 115 r n : 0

3091 S2=0
SI:SEGL2

3092 IF{S1.EQ.0)GO TO 30^)4
CALL LDLPT(lXl,SEG(Sl+3)+SEG(Sl+4))
IFCIX.GE.IXI)GO TO 3094
S2 = SI
CALL LDLPT(SlfSEG(Sl))
0C1,19):Q(1>I9)+1
GO TO 30^2

3094 IF(S2.NE.0)SEG(SEGPT)rS2
Q(l ,20)rQ(l,20)+l
CALL STLPT(S1,SEG(SEGPT))
IF(S2.NE.0)CALL STLPT(SEGPT.SEG(S?>)
IF(S2,EQ.0)SESL2:SEGPT -'^-^^
Jr5f!^E*0>CALL STRpT(SFGPT(SEG(S!))
1F{S1,EQ.0)SEGS2=SEGPT
IF(S2.NE.0)Q(l,2(1):Q(l.20)+|
IF(FM)355.310,3<)4

310 MODE:-MODE
IF (YEND2.GE.0) GO TO 311
MODEr-MODE

CALL LDLPT(lX,SEG(SEGPT+5)+SEG(SEGPT+6))
%,, 11 ,(iX*LE:'C,*0R'IX-GT'|rRMEX) GO TO 115
311 IF (MODE.LT.0) GO TO 31?
C IF EITHER OF THE EDGES OF THE SEGMENT FyTT n« TUTO

CALL LDLPT(POLYPT,SEG(SEGPT+l))
Q(l,15)rQ(I,15)+l
IF (POLY(POLYPT+1).LT.0) GO TO 312
Q(1,1S)=Q(1,16)+1
POLY(POLYPT+l);POLYCH
POLYCHrPOLYPT
CALL STLPT(-l,POLY(POLYPT+l))

312 CALL LDLPTCIXX.XRIGHT)
IF (IXE.GE.IXX) GO TO 335
IF (IXX.GT.SAM(1,2)) GO TO 314
SEG(SEGPT+ll)rSEGOUT
IF (SEGOUT.EQ.0) SEüLOrSEGPT
SEGOUT=SEGPT
GO TO 315

314 SEGCSEGPT+lDrSEGACT
SEGACTrSEGPT

5I5 CONTINUE
Q(l,6)t:Q(| s)+i 79
iXLEFTrlXE

IF(YENDl.QE.0)GO TO 316

IF(YEND2.GE.0)GO TO 3J7

SAM(3f2)rSEaPT4-15

c ADDITION TIME 0NE<

jRTTrl?rvi-^uT:AMD'(-NÜT-^2i«)
JSSSr? r'AND"(*N0T-262,^)

^1
(™0|,,"NE,ü)MUMADD = NUMADD+i

F ;;.O?rc5PJl'^ELNE:,'=DELN"*l024

ADJNL-g~.pALcE. '^^ t-62|/14>'GF-(?»tRrtST=SAM(l,2)*262144

T
I^?':F-FT'LT-^IfiHT)ADJMEtf:.TRIJE.
IF(ZS(n.EQ.0)GO TO 331
ABLLEr.rALSE.
ABLQEr.FALSE.
ABRLE=.FALSE.
ADRGE:,, FALSE.

JP<XLTEST.LE.ZS(6))ABLLE=.TRUE
IF(XLTEST.QE.ZS(6))A8L0E-.TRUE
^XRTEST.LE.ZS(7) JiRLEt JRSI;
F XRTEST.GE.ZS(7)>ABRGE=:TRü|

K.(5oTS;ii?^A?oD-l29
NOT'ABR6E))-OR-((-NOT-AB^>.AND.

XLCLIPrXLTEST
rF(ABLLE)XLCLIPsZS(6)
XRCLIPrXPTEST
IF(ABRG£)XRCLIPsZS(7)
DELrDELNEW
IFCDELNEW.LT.ZSDEDOELsZSDEI

320

321

52S

XAMXLsXLEFT-XLCLIP
XBMXL-XRIGHT-XLCLIP
XAMXR:XLEFT-XRCI IP
XBMXRrXRIGHT-XRCLIP
ZALrZLEFT
ZBLrZRIGHT
ZARrZLEFT
ZBRtZHlGKT
IFCADJNEW)^ TO 320
ZBUZLEFT
ZALrZRlGHT
ZBRsZLEFT
ZARsZRIQNT
XCMXLrZS(i>).
XDMXLrZSm.

80

-XLCLIP
-XI.CLIP

XC«XRrZS{2>-XRCLiP
XDMXR:ZS(3)-XRCUP
IF(ZS(l)-2.r;E.0)GO
ZCLrZS(4)
ZDL:ZS(5)
ZCR:ZS(4)
ZDR:ZS(5)
ADjOLDrZSAn.J
C50 TO 523
ADJOLDr.NOT.ADjNFW
IF(ADJNEW)GO TO J?'P
ZCLrZS(4)
7.nizZS(A)
ZCP:ZSC5)
ZDRsZS{5)
GO TO 323
ZCL:r?(5)
ZnL:ZS<6)
ZCR:ZS(i!)
ZDPsZS{4)

TO 521

325 ÄL™ALS: 0HE AÖD TIME: EACH PASS- 81
ABBCKRr.FALSE,
CDBCKLs.FALSE.
CDBCKRr„FALSE.
DELZr.FALSE,
MUKADDzNUHADD+l
XH0LDL=(XAMXL+XBMXL)/2
ZH0LDL=(ZAL+ZBL)/2
*}jOLl)R=tXAMXR+XBMXR)/2
ZHöLDR=CZAR+ZBR)/2
XTERPL=(XCl«KL+XDMXL)/2
ZTEHPL=(ZCL+ZDL)/2
XTEMPRr(XCHXR*XDHXR)/2
ZTEKPRs(ZCR+ZDR)/2
DELrDEL/2
lF<ZAL-ZDL.aE.ß)ABBCKL=,TRU£.
IF(ZCI.-ZBL,GE.0)CDBCKL=.TRUE.
ir(ZAR-ZDR.QE.0)AB8CKR=.TRUE.
IF(ZCR-ZBR.QEo0)CDBCKW=.TRtJE,
lF(DEL,EQ.0)DELZ=.TffüE.

5-»-S-»".coBcKL..»».:Nof"KJ:;!S:Ä?";Sr,UA"''-I'ELZ>
J»S(lX:LOO.OFl.(DELZ.«NO..Nv,I,AI)BCKL.««D MT l-nnrui

?;2N?;^,B^T;A5RLE:) *0R'('^T^BLQE.AflD^BRGE)))

LOa:LOQ.OR.((.feor.ABLQE.OR..NOT.ABRLE),AND UARHru'i
;5^;SO^CD8CKL)-OR-(ABBCKR-^D--NOT cDBcmn KL

LOOrLOQ.OR.((.NOT.ABLLE.OR..NOT.ABRGE),AMD ((CDBCKl
ÄDr^^^B^^-0R'(CDBCKR-A"D--N" ABBDCKR;?fKL

JBOXES:L00.0R.(DEL^.AND..NOT.AßßCKL.AHD,.NOT CDBCKI
I.AND..NOT.A9BCKR.AND..N0T.CDBCKR.AND ((NOT ABLLE

lF(jCLlPmJMCNTrNUHCNT+J
IF(JIBOX)WUMCNTrNUMCNT+l
lF(JBOX£S)IJlJHCNTrNI)HCNT+l
IF(J0BOX)^UMCNTrMUMCNT+l
IF((IURCMT.NE,|)PAUSE
Ilr(JCLIP)GO TO 525
IF(JIB0X)G0 TO 331
1F(JB0XES)G0 TO 529
lF(JflB0X)G0 TO 335

>F«"SLSL:Ge
E

E:S;.A!nD-;°J„»E">"'-^KOLD1.

ifSSt:Lil-j;s-;i>^,',"'-«HOLi>i.

iF<xSo,LDD":L
LrT-0

0-;!;°-;"^w.,",!=j"'"-°''

■F<X^« : l:?:::?-?^0^!™-"^«
IE(XTEjp?',J-M,'D-ADJ0l-D>?l:R=rTEIPS

„ c M"! ?23
R-LI-I,-'",0-<-,'"-A»JOLD;>S=ZTEBPR

5&s DELrZSDEL
XAMXLrXLCLIP
XBMXLrxRCLIP '
?AL:ZAL-ZCL
ZBLrZAR-ZCR

327 ZHOlDLr^AUZBD/g

NUMADDrNUMADI>H
DE:L=DEL/2

IF(ZBL.XOR.2HS.1E'0 7
ZB,L:ru^,L

GO TO 327 '-•■'u'^c-«ii|JZBLrZHOLDL

82

._-__.

329 zs(n=zs?nlf !NCLUDE 0LD B0X AND NEW LINE CLIPPED. 83
IF(.NOT.DEPTH)GO TO 326

iFm?F?,7??:;B
1

R?E«A
A

N^A!!:LE-AND-ABLGE)G0 T0 3295 ;=.,,„,FT"ZSC4>'LT'0'AND»ADJNEW)ZS(4)=ZLE»irT
fmf^T:ifif)^T-0-AND-(-NOT'ADJNEW))ZS<4)=ZRIGHT

TC TD^.T:ZSC5)*GE:*0'AND*<«NOT.ADJNEW)>ZS(5)rZLEFT
^(^IG;T-ZS(5).GE.0.AND.ADJNEW)ZS(5)=ZRIQHT

3295 JL(^JNE:W*AND-ADJ0LD.AND.CDBCKL)ZS{4)-7AL
E AWNEW.AND.ADJOLD.AND.ABBCK[)ZS(3)=icr

IF JSmfX^Mn,,M^*AHJ0LD-AND-ZA1-LT'ZCR>ZS(4)=ZAL
JL ^TEi';^ND,*N0T'ADJ0LD'AND.ZAL.GE,ZCR)ZS{4)=ZCR
IF(.NOT.ADJNEW.AND.ADJOLD.AND.ZAR!LT.ZCL)ZS(4)-7AR

^ \^^A^NEW-AND-ADJ0LD-AND'ZA^GE.1CI:;ZIE4)-:ZSL
fc/* «SI*APJNEW'AND"N0T'ADJ0LD.AND.CDBCKR)ZS(4)-ZAR
Jr ;^^ADJNEW-AND--NOT-ADJOLD.AND ABBCKR)ZS(4 -ZCR
IF ADJNEW.AND.ADJOLD.AND.CDBCKR)ZS(5)=ZDR
;^»^NEW*AND'ADJ0LD»AND.ABBCKR)ZS(5)rZBR
IFCADJNEW.AND..NOT.ADJOLD.AND.ZBR.LT ZDL)7Sf5>-7m
IF«DJNEW.AND..NOT.ADJOLD SSBIZIR ffi "t i I ißR
IF .N0T.ADJNEW.AND.ADJ0LD.AND.ZBL.LT.7DR)ZS(5 ^ZDR
IF .NOT.ADJNEW.AND.ADJOLD.AND ZBUGE ZDR)ZS 5)-im

F ,K^ä
A^^W-AND--N0T-ADJ0LD-AND.C5BCKL)ZS(5;=ZDL

IF(ABRGE)ZS(7)rXRTEST
^nr!<4FT"ZS(8)'LT«0)ZS(8> = IXLEFT
ZSDEL=0
ZS(10)=SEGPT
IFCABBCKDGO TO 335
ZS(10)=ZS(9)
ZS(9)=SEGPT
GO TO 335

C MAKE A ONE ELEMENT BOX,
33! ZS(nrl

ZS(2)=XLEFT
ZS(3)=XRIGHT
IF(ADJNEW)ZS(4>=ZLEFT
IF(.NOT.ADJNEW)ZS(4)=ZRIGHT
IF<ADJNEW)ZS<5)=ZRIGHT
IF(.NOT.ADJNEW)ZS(5)rZLEFT
ZS(6)=XLTEST
ZS(7)=XRTEST
ZS(8)=IXLEFT
ZS(9)=SEGPT
ZSADjrADJNEW
ZSDELsDELNEW

335 CONTINUE
NUMREF=(NUMADD+l)/2-Q<It13)-Q(l,l9)-Q(i mt-ttimnev
IF(NUMREF.GT.0)Q(1.14)=Q(1,U INUMREF ' UMREF

IF{NUMADD.GT.20)NUMADD=20
IF(NUMADD.LE.0)NUMADD=1
ADDS(NUMADD)=ADDS(NUMÄDD)+1
IF(.NOT.DEPTH)GO TO 402
SEGPT=NEXT
IF(FROM.EQ.0)GO TO 301
GO TO 304

C INTEREGATE THE ZS BOX
350 CONTINUE 84

Q(l,13)=Q(lti3)+|
IF(ZS(1)-2,LT.0)GO TO 355

lFf75?[|'1Jo'oA^i,2)-EQ-P>PAUSE 'SINGLE'
luTD?{!^i^2

NECAEN
S

DSA
<Z

R?
(.g>-GE-SAM(,'2),,G0 T0 ™

IF"CSEGOUT.EQ.0)GO TO 351
SEG(SEGLO+ll)rSEQACT
SEGACTrSEGOUT
Q(I,20)=Q(l,20)+i

,., eCM9) = Q(l,!9) + l
r l1^"(8)"SAM(,'2)'LT'0>ßO TO 353
C SUBDIVIDE IN THE MIDDLE.

Q<l,12):Qfl,l2)+l
SAM(I,2)rCSAM(ltl)+SAM(I,2))/2

C SUBDIVIDE AT IXLEFT.
353 SAM(1,2)=ZS(8)

GO TO 299

5 OUTPUT SEGMENTS.
"5 IF(ZS(1).GT.0)QO TO 358 85

SAM(2fl)=0

356 XEMDrSAM(l,2)
POLYPT=0
NEXTQOrl

_.o GO TO 3S8
"8 CALL LDLPT(XEND,ZS(6))

POLYPT-0E8*SAM(,*,)>GO T0 360

NEXTG0=2
GO TO 363

360 CALL LDLPT(XEND,ZS(7))
POLYPTrZSO) '
PAM ,LS.L"(P2LYPT»SEQ(POLYPT+l))
CALL LDLPT(XTEMP,ZS(6))
PQ(9)=PQ(9)+XEND-XTEMP+1
NEXTG0=3

,_ GO TO 368
IF(XEND.EQ.SAM(l,2))öO TO 376

.^^ GO TO 356
3S4 P0LYPT=ZS(9)

DnlrLLi?LPT(POLYPT»SEQ<pOLYPT+n)
KTG0=3(9)+SA"(,'2>-SÄM(1»n^
60 TO 368

365 XEND=SAM(1,2)
POLYPT=ZS(10)
ScitnnD^T(P0LYPT»SEQ<P0LYPT+|))
NtATGOsl
IF(FM.EQ,0)GO TO 368
SAM(2,1)=IX
SAM(3tl)=SEGPT+12

.« OUTPUT A SPECIFIC SEGMENT.
368 IF(SEGr:NT.EQ.0)GO TO 372

LF^,'T?T*NE*PRESEG)G0 TO 372 SAM(2t I) = 0
Q(l,8)=Q(l,B)+l
GO TO 374

372 SEGCNTrSEGCNT+1
Q(1,10)=Q(|,10)+1

PRESEGrPOLYPT
374 VISSEG(SEGCNT)rXEND

IF<SAM(2tl).EQ.0)GO TO 3755
C STORE A SAMPLE POINT.

Q(1,3)=Q(1,3)+I
IF(SAM2S.NE.0)GO TO 375
SAM2S=SAM(3,1)
SAM2X=SAM(2,1)
SAM2LX=SAM(2y!)
SAM2L=SAM(3,I)
GO TO 3755

375 lP^AM(2,i).LE.SAM2LX)G0 TO 3755
SAM2LXrSAn(2,l)
JAM iJPPI<SAMC3fl)tSEG(SAM2L))

iJ^s^n ;?(2>,)'SEGCSAM2L)>
3755 SAM(2,l)r0

376 TG?rIA
OM5r^350'362»365>»NEXTGO

rn ?J ,'2),EQ,FRAMEX)G0 To 498 GO TO 281

....

\

La INTERSECTING PLANES CASE.
400 DEPTHr,FALSE. 86

Fri=0
ZS(1>=0
Q<M1)=Q(IJ1)+1
SEGPT=ZS(9)
NEXT=-1

401 XLEFT=SEG(SEf3PT+3)
XRIGHT=SEG(SEGPT+5)
ZLEFT=SEG(SEGPT+7)
ZRIGHT=SEG(SEGPT+9>
NlIMREF=.Q(l,i3).Q(J 19)_Q(1 20

Q(1.1S)=Q(1,19)+1
GO TO 317

402 NEXT=NEXT+1
SEGPT=ZS(10)
IF(NEXT.EQ.0)GO TO 401
DEPTHr.TRUE.
XXTESTrXAMXL
CALL LDLPT(XEND#XXTEST)
Q(l,19)rQ(l,i9)+2
1F(IY.EQ.FRAMEY)G0 TO 364
SEGSAM:ZS(10)
CALL STLPT<ZS(9),SEGSAM)
CALL LDLPT(SEGPT,IMPLST)
PREVr0

4010 IF(SEGPT.EQ.0)GO TO 4030
Q<l,19)rQ(l,l9)+i
NEXT=SEG(SEGPT)
IF<SEGSAM.NE.SEG(SEGPT+|)) GO TO 4020
IF PREV.EQ.0)CALL STLPT(NEXT.IMPLST)
IF(PREV.NE.0>SEG(PREV)=NEXT
SEG(SEGPT+4)=XXTEST-SEG(SEGPT+3)
SEG(SEGPT+3)=XXTEST
f^!-yL,DrPI(^tfEG(SEGPT+3)+SE:G(SEGPT+4))
IF(IX.LE.0.OR.1X.GT.FRAMEX)GO TO 4040
FMrl
GO TO 3091

4020 PREVsSEGPT
SEGPTrNEXT
GO TO 4010

4030 IF(IY.EQ.FRAMEY-l)GO TO 364
CALL GETBLK(SEGPT)
Q(l,23)rQ(l,23)+!
PQ(I)=PQ(1)+1
PQ(3)=PQ(3)+1
IF(PQ(3>.GT.PQ(2))PQ(2)=PQ(3)
SEG(SEGPT+I)=SEGSAM
SEG(SEGPT+2)=IY-FRAMEY+1
SEG(SEGPT+m = -l
SEG(SEGPT+3)=XXTEST
P*.L.L LDRPT(SEG(SEGPT),IMPLST)
CALL STRPTCSEGPT.IMPLST)
GO TO 364

4040 CALL RETBLKCSEGPT)
PQ(3)rPQ(3)-l
Q(lt24)=Q(l,24)+l
GO TO 364

498 CONTINUE
DO 499 1=1.QL 87
Q<I0,I)=Q<10tI)+Q(l T)

IF<Q(2.I).LT.Q(3fi'))(

499 IF(fl(7.n-iT o?« ?tx.

IF<PIX.NE.0)CALL SHOW
GS™G?S4

T'NE,,)PQ(,0)=PQ(,0)+'
500 CONTINUE

DO 50] 1=1,QL
Q(3,I)rQ(iti)/FRAME:Y

*a,
Q(6»1>=10.**9/(30,*Q(l,i))

DO 502 IrlJ,QL

502 PQ(13)=PQ(13)+Q(i0;n

PQ(14) = 10.**9/(50.))rpQ(,3))
PQ(15)=PQ(11)+PQ(13)

,IK,^;

PQ(16)=10.**9/(30,*PQ(15))

1F(STAT.EQ.0)RETURN
llll 5002,(J,ADDS(J)fJ=i,20)

RETURN ,('J,(Q(!'J)'I = ,»,0)'J = ,»£'L)
5001 FORMATC PQC.Ig.M-' TR /•>

END »'»■'v v. ,i<i, J. ,16),/)

,'■., : ■ ■■ .-..,,..■

.

//:

APPENDIX II

STATISTICS OF OBJECTS AND ALGORITHMS

At the beginning of each set of statistics for a

particular program there is a description of each of the

counters. Following each description, a set of statistics

for each of the ten test objects is compiled.

For a copy of the complete listing write to:

Computer Science Communications
3160 MEB
University of Utah ■
Salt Lake City, Utah 84112

