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ABSTRACT 

■ 

With the increasing use of computer graphics, a need is 

growing for a processor capable of displaying solid objects. 

Environmental simulation and architectural modeling are only 

two areas that would benefit from such a display processor. 

This dissertation describes an algorithm designed for 

such a processor, and a program for simulating the hardware 

processor.  The hardware processor would be capable of 

generating pictures of fairly complicated objects at thirty 

frames per second.  Statistics describing its simulated 

performance have been extracted and are reported within the 

dissertation. 
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CHAPTER I 

INTRODUCTION 

With the introduction of line-drawing displays, it was 

soon realized that displaying too much information detracted 

from the meaning and actually confused the picture.  For 

instance, a single cube can create an optical illusion as 

shown in Figure 1.  However, the optical illusion is removed 

if lines hidden by surfaces in front of them are not dis- 

played (see Figure 2).  A different approach could be taken, 

instead of determining the hidden lines, an algorithm could 

jj  find, color, and shade visible surfaces, thus presenting a 

more true to life picture.  For the past several years, 

different algorithms have been developed for solving the 

hidden line or visible surface problem.  The various algo- 

rithms can be classified into several groups. 

| 

A.   Path of Edges Algorithms 

Some solutions to the problem have been found by 

various methods of tracing along the edges of objects and 

noting which of the edges are wholly or partially visible. 

The resulting picture is then the display of the visible 

segments of edges.  Algorithms based on this method have 

been developed by Roberts [1], Loutrel [2], and Appel [3]. 

This type of approach does not take into account the reso- 

lution of the display but solves the hidden line problem to 



Figure 1 

Cube Presenting Optical Illusion 

Figure 2 

Cube with Hidden Edges not Drawn 



the precision inherent in the object description. 

B.   Sample Space Algorithms 

in 1967 a paper was presented by Wylie, Rodney, Evans 

and Erdahl m.  One of the concepts discussed was initiated 

by Evans and introduced the concept of a sample space.  The 

concept states that given an output device with resolution 

of Rx by Ry, one need only solve the hidden line problem at 

the discrete resolution points.  The sample space can be 

thought of as taking the original object description in X, 

Y, Z, and mapping the object on to a two dimensional grid of 

resolution Rx by Ry.  of course, the Z information needs to 

be preserved in some form.  When this is done, the object 

will exist only at discrete points in X and Y.  The rea- 

soning behind this was when a person views a picture he is 

Physically limited by the resolution of the eye and the 

resolution of the display device.  Hence, the hidden line 

problem need only be solved to the coarser resolution of 

the two. 

In the algorithm, non-intersecting triangles were used 

as the object description.  However, convex polygons could 

have been used with only small changes in the program.  The 

algorithm used a scan line approach.  That is, one Y raster 

line would be completely solved for visible triangles before 

the program proceeded to the next scan line.  A method of 

sorting vertices of the triangles was developed by Wylie 
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and Romney so only triangles concerned with the current scan 

line were considered.  On each scan line, triangle depths 

were compared only where edges of the triangles crossed the 

current scan line.  Therefore, it was not necessary to do 

depth computations at all raster points.  Later Romney [5] 

improved the sorting technique and added a "speedy" check 

to the program to take advantage of scan line-to-scan line 

coherence.  This improved the speed by eliminating depth 

sorting as long as triangles entering on the scan line were 

ordered the same as the previous scan line. 

Warnock [6] took a new approach but still kept the grid 

of resolution points.  The object description was gener- 

alized by allowing polygons (convex or non-convex) which 

could intersect one another.  Instead of the scan line 

approach, Warnock took an area of the picture and tried to 

"understand" it.  If it v/as simple enough to "understand" he 

would display it, otherwise he subdivided the area into 

smaller areas.  Eventually, a sub-area could be "understood" 

and displayed, or a sub-area would reach resolution where- 

upon it would be displayed without further analysis.  This 

concept of subdividing large problems into smaller (and 

easier) problems is a "non-deterministic" algorithm. 

After Warnock's algorithm was developed, Bouknight [7] 

took the scan line approach and generalized it to include 

general polygons which could intersect.  Figure 3 shows a 

classification of the various algorithms. 
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The „ew algcritta to be descrlbea ^ of 

12      SPa0e 0laSS' ^ " ""^ ™ ^- "«ch can intersect.  Key ideas used i„ thi, »i   ■ thls algorxthm ere:  (!) Scan 

1- -to-scan Une coherence ot pictures, and (2) an arith- 

ZT  :? ^ "^ SO"i-  —-e coHerence • s not found valuabla (in ^^ ^ ^^^ ^ 

the Program, for inciasion in this n^  alqorithm. 

-e pr0gram implementing this ^^ ^ a ^^ 

of hardware to aenprpf^ „••!.■, generate visible segments nf ««i 
scan Uno * Polygons on each 
scan Ime at real time speeds.  Thus  fho 
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VxsiMe se^ent Generator (vsa, .  Ihe output of the ^ ^ 

"^ t0 a Shader ^ ai-1—  -e „ethca ct shadin, is 
very si.iiar to that descrihed by Romney [5J _ ^J 



CHAPTER II 

PRE-FRAME PROCESSING 

Before being accepted by the VSG, the object must be 

processed so that all translations, rotations, and perspec- 

tive transformations have been applied.  All polygons must 

be clipped at the boundaries of the viewing sample space. 

Since the scanning process proceeds from Y=l to Y=512 (or 

to the Y-resolution value), the edges must be ordered in a 

list according to the minimum Y value (Y-min) of each edge. 

Horizontal edges need not be put in the list since the VSG 

will reject them.  On any scan line the VSG can then imme- 

diately find which (if any) edges enter on that particular 

scan line.  For each polygon, three fields are zeroed 

initially and reserved as sorting fields for the VSG.  The 

formats for the edge block and polygon block are shown in 

Figure 4.  The shading and color information will never be 

used by the VSG for computations.  However, the VSG will 

pass the information to the shader for displaying if the 

object is visible. 

A user that describes objects as closed polyhedra can 

double the speed of the processor if edge and polygon blocks 

are only created for polygons that face the viewer.  This 

process was used on the test objects described in Chapter 

VII. 
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Description of Edge and Polygon Blocks 
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CHAPTER III 

VISIBLE SEGMENT GENERATOR 

The VSG can be broken into three separate processors: 

(1) Segment Generator, (2) Segment Eliminator, and (3) Depth 

Sorter. 

A.   Segment Generator (SG) 

The format for a segment block is shown in Figure 5. 

A segment is defined as the continuous surface of a polygon 

which exists between two adjacent edges on a scan line. 

Thus in Figure 6, on scan line 'a' there are two segments, 

while on scan line 'b' these two segments of the polygon 

have merged into one segment.  A segment block contains a 

description of the two bounding edges.  The two Y-end 

values specify the Y scan lines when the edges exit from 

the picture.  The X and Z values are stored along with 

the AZ and AX increments for each edge.  Thus, when the 

program proceeds to the next scan line, the X and Z values 

are updated by adding the increments as in Equation 1. 

Z^Z+AZ  ;  X^-X+AX (!) 

The segment blocks are threaded together by four separate 

list structures: 

1.   The X-sort list contains all segments on the 

current scan line sorted with respect to the left edge of 

each segment.  This list has both forward and backward 
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Figure 6 

Segments 



12 
pointers. 

2.  Each polygon segments list contains an ordered set 

of all segments belonging to a particular polygon on a scan 

line.  They are linked together, with the initial pointer 

(contained in the polygon block) pointing to the left most 

segment of the polygon. 

3.  The active segment list contains only segments of 

the X-sort list which exist in a specified range of X 

values.  Section P of this chapter will give more detail 

of it. 

4.  The sample list is another sorted list that will 

be explained later. 

The SG is checked on each scan line to see if any new 

edges enter the current scan line from the edge list,  if 

there are no entering edges, control is passed to the 

segment eliminator.  If edges do enter on a scan line, 

data from the edges is used to create a segment. 

The polygon block associated with the incoming edge is 

checked to see if the active bit is set.  Active designates 

whether or not the polygon is already in the list of 

changing polygons (polygons that have edges entering or 

exiting on the current scan line).  If the polygon was not 

previously active, it is tagged as active and put in the 

list containing all changing polygons on this scan line. 

Since an edge has only enough data for one half of a 

segment, an edge can be inserted into either the right or 
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left side of an empty segment.  Because the program does not 

know whether an edge bounds the right or left side of a 

polygon, the algorithm may insert an edge into the wrong 

half of a segment.  However, if this happens, the Segment 

Eliminator will do the necessary rearranging.  The X value 

of the incoming edge is compared against the X values of 

segments in the polygon segments list until the appropriate 

location in the list is found for inserting the edge data. 

After finding the correct location in the list, and if 

there is not an empty half of a segment block, the SG must 

get a block from free storage and insert it in the list at 

the correct location.  Pointers to the segment block must 

also be inserted in the X-sort list in the correct location 

whenever data is stored in the left half of the block. 

The preceding process is repeated for all edges that 

enter on the current scan line.  Finally when no more edges 

enter, control is passed to the Segment Eliminator. 

B.  Segment Eliminator (SE) 

The SE runs through the list of all changing polygons, 

and for each of the polygons it disconnects the polygon from 

the changing polygon list, and resets the active bit.  It 

then proceeds through the list of segments attached to that  s 

polygon to determine if any data needs to be shifted from 

one segment block to another, or if any segment blocks can 

be returned to free storage.  For example, in Figure 6 on 

scan line 'a' the polygon has two segments.  Because the two 
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■niddle edges exit between scan lines 'a' and 'b,■ this 

polygon „ill have been inserted into the list of changing 

polygons. The SE must then take the right edge data from 

the second segment block and insert that data into the right 

half of the first segment block. After this, the second 

segment block „in be returned to free storage.  Figure 7 

gives a step-by-step illustration of what would happen if 

displaying the polygon in Figure 6. When all active 

polygons have been checked by the SE, control is passed to 

the Depth Sorter. 

C.  Depth Sorter (DS) 

At this point the X-sort list contains all segment 

blocks on this scan line ordered with respect to the left 

edge of each scan line.  While the SG and SE are concerned 

only with polygons that change on the current scan line, the 

DS is concerned with all polygons that exist on the scan 

line.  Therefore, the list handling and memory referencing 

in this processor are extremely critical to the overall 

speed of the VSG. 

D.  Sampling 

A critical factor in the speed of the algorithm is the 

number of points on the scan line where depths of polygons 

are sailed. The depth sorter is capable of determining at 

most a single visible segment for a restricted span of a 

scan line. Because of this, sampling must at least be done 
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at the points of discontinuity (the visible edges).  Scan 

line-to-scan line coherence usually allows the DS to find 

the visible segment by sampling only at the visible edges 

contained in the sample list.  For the object in Figure 8, 

one notices the sampling points actually following the 

visible edges of the picture.  Thus the speed of the 

algorithm will be more dependent on the visible complexity 

of the object than on the total object complexity. 

The Depth Sorter can be subdivided into three separate 

processors: (1) The Sample Space Generator, (2) The Depth 

Comparator, and (3) The Decision Processor. 

E.  Sample Space Generator (SSG) 

The SSG operates from the sample list.  Essentially the 

list contains the sorted edges (each half of a segment block 

is an elge) which were visible on the previous scan line. 

The building of the Sample List was done on the previous 

scan line by the Decision Processor and will be discussed 

under that heading. 

The left and right sides of the view screen are always 

implied sample edges.  The scan process on a single scan 

line proceeds from left to right in X.  Therefore, the left 

edge of the view screen becomes the initial left sample 

point.  The X value of the first edge in the sample list 

then becomes the right sample point. This sample edge is 

then removed from the sample list. The portion on the scan 

line which exists between the left and right sample points 
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Figure 8 

Sampling Points 
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is called a span. 

Suppose in Figure 9 one found on scan line ■„• that 
edges B, c, a„a D were visible; and therefore ^ ^ ^ 

in the sampie xist with B at the first of the list. When 

the program proceeds to soan line ■„.!, • the current x value 

of edge A is initially set as the left sample point. Edge B 

then beoo.es the right sa.nple point. Onoe a left and right 

sample point is found, oontrol is passed to the Depth 

Sorter and Decision Processor.  Finally, „hen the Decision 

Processor finishes its task, control is passed back to SSG 

Now the right sample point 'b- becomes the left sample 

point.  Edge c is read from the sample list, point ■C 

becones the right sample poi.t, and the cycle begins again. 
The cycling process £inaUy stops ^ ^ ^ ^ the ^^ 

line is reached whereupcn control is passed back tc the 

Segment Generator for the next scan line. A flow chart in 

Figure 10 shows the overall control of the system. 

F.  Depth Comparator (DC) 

The DC takes all the segments from the X-sort list that 

exist between the left and right sample points and operates 

on them in the following manner:  (1) The X and Z values are 

incremented to the values associated with the next scan line 

and stcred back in the segment block.  (2, If either of the 

edges of the segment exit on this scan line, the associated 

Polygon is tagged as active and put in the changing polygon 

list.  (3, The x value of the left edge is compared with the 
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Figure 9 

Sample Edges and Sample Points 
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last segment stored in the X-^nr-^- i ,• 4. u • 
n cne x sort list being prepared for 

the next scan line  Tf ♦•»,« « 
line,  if the new segment X value is larger, 

it is inserted at the end of the list  T^ ^ • list.  if lt ls not larger^ 

the backpointers of the x-sort list are used until the 

correct location in the list is found.  The surprising data 

rs that line-to-line coherence of the ten test objects 

(Chapter VII) causes 97 to 99 percent of „n 
percent of all segments to be 

irst can always remain sorted i„ x with very little time 

spent for rearranging segments.  (4, Along with the sorting 

Dust discussed, the DC must compare the incoming segment 

against the currently visible segment,  if the incoming 

segment is in front, it „ill become the currently ^^^ 

segment. Every time a new sample span is generated, the 

first incoming segment becomes the currently visible 

segment. 

If the right edge of a segment extends to the right of 

the right sample point, the segment must be saved for future 

depth comparisons when the sample span is moved along the 

scan line.  Por this purpose the active segments list „as 

-eated.  segments are put in the list from the x-sort list 

and remain only as long as the right edge of the segment is 

to the right of the left sample point. Therefore, in 

addition to segments read from the x-sort list, the DC also 

compares depths of segments read from the active list 
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G.   Segment Clipping 

When two segments are being compared, a clipping 

algorithm is applied to each of the two segments simul- 

taneously.  Figure 11 illustrates the procedure.  The two 

lines represent the segment values on the current scan 

line.  As the 2 values of a segment decrease, the segment 

becomes closer to the observer.  Two X clipping values must 

be obtained.  Xlclip is defined as the right most left edge 

in the sample span, and Xrcli,p as the left most right edge 

in the sample span.  if a left edge does not lie in the 

sample span, the left sample span value is taken as X1 r . 

in Figure 11, the X value of ^ becomes x^ and tllT 

value of -b. becomes Xrclip. A set of registers is then 

chosen for the left and right clip points of both lines 

and loaded as in Figure 12. 

Since Zmax and zmin are stored (not Z. .. and z . U4.), 
... left     right'' 

an additional bit must be kept which is the sign of 

(Zleft"Zright)'  This bit is used to distinguish the 

13 shows a more oompleto gating of tho registers contained 

in dotted box »1 of Figure 12.  s of Figure 13 is: 

S=(XÄ-Xlolip+XB-*lc:lip'/
2 (2) 

or 

S=(XA+XB)/2-X1 .. (^ Iclip (3) 
But (XA+XB)/2 is the midpoint (XM) of the line ab. 

Iclip (4) 
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Figure 11 

Two Segments on a Scan Line 
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If S is greater or equal to zern 4-h«  -^  • siuaj. co zero, the midpoint is on X 

^ t0 ^ right 0f Xlclip- ^en the registers containLTx 
and z of the previous point to the right of x win be 

replaoed with the miap0int of line ab „„.^ .s ^ ^ 

hcllp-    * similar argument apPlies if s is less than ^^ 

A more complete desoriotion of t-hf. „, •  • ription of thrs olippmg process used in 

a line drawing system is described by Sproull [8]. 

in Figure 14, succeeding clipping oyoles are applied to 

the two segments of Figure 13. ^t z^ be 2   of 

quadrant 1 in Figure 12.  z     7 
Z    and z . .   ^^    max2'    min2' Zmax3^ ^inS' 
max4 ana Vn4 are similarly defined,  if (Z    < z 

i .    ,  . maxi    min''' ' 
line ab is in front of line cd at X       u a  at Xlclip-  However, as in 
Figure 14 after one clip cycle, then (z    < Z   . 
m^ max3   mini'* 
Therefore, line cd is in front of line ab at X^ . 

Exactly the same argument applies to Xrcl.p, anTafter two 

CUP cycles line cd is found to be in front of line ab 

Since line cd covers line ab everywhere between the sample 

points ^ and .f, it then becones the ^^ v.sibie 

segment. 

Many times when linos intersect, or in the case shown 

in Figure 15, a single currently visible segment cannot be 

found,  m this case a box is made just  large enough in X 

and z to encompass the two or more lines in guestion. The 

amount of data to remember a box description is the same as 

the amount to remember a line. Also a bit is set declaring 

a vrsible box instead of a visible segment,  jf later a 
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Iclip rclip 

First Clip Cycle 

X Iclip X .. . rclip 

Second Clip Cycle 

Figure 14 

Clipping of Segments 
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segment is found to be in front of the box as in Figure 16, 

then it becomes the current visible segment and replaces the 

visible box.  The processor continues until all segments that 

exist in the span are checked.  When this is completed, 

control is passed to the Decision Processor. 

H.   Decision Processor (DP) 

The DP decides whether a visible segment can be put in 

a display file or if the sample span must be subdivided in 

some manner and the Depth Comparator started again.  If the 

DP finds there is a visible segment from the DC, it outputs 

the corresponding segment to the display file.  If the DC 

discovered a visible box, and any of the visible segments in 

the box have an edge existing within the sample span, the 

right sample point is set to the X value of that edge 

(subdivision), and control is passed back to the DP.  For 

instance, the DP would cause the control to subdivide at 

X=a for segments in Figure 17. 

If no edges exist between the left and right sample 

points, two conditions can exist:  (1) For more than two 

segments existing in the visible box as in Figure 18, the 

sample span is divided in half.  That is, the right sample 

point is moved half way toward the left sample point. 

After this subdivision process, control is passed back to 

the DC again.  (2) If only two segments exist in the box, 

the condition is the intersection case of Figure 19.  The 
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Encompassing Box 

Figure 15 

Boxing of Segments 

Single Visible Segment 
Figure 15 

Elimination of Visible Box by Visible Segment 
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Sample Left Sample Right 

SUBDIVIDE 

Figure 17 

Subdivision 



Figure 18 

Three Potentially Visible Segments 
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Figure 19 

Intersecting Segments 
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same clipping hardware used for depth comparisons can also 

be used for calculating the intersection of these two lines. 

I.   Intersecting Segments 

The intersection calculation is done in.two stages. 

First, the registers of Figure 12 are loaded exactly in the 

same manner as for the DC.  However, instead of terminating 

when the Zmax and Z^ tests are satisfied, the adders run 

until all registers contain either 0 or -1.  when the 

registers reach this state, Zmaxl will hold the Z value of 

line ab at Xlclip/ z^^ the Z value of line ab at Xrclip, 

Zmax3 the Z valup of line cd at Xlclip, and Zmax4 the Z 

value of line cd at Xrclip.  Figure 19 has been reduced to 

the problem represented in Figure 20. 

For the second stage, the problem can be solved by 

loading the registers in the manner shown in Figure 21. 

Because of the intersection, Z1  and Z2 will have opposite 

signs.  Therefore, after each add cycle the Z sum is stored 

into the Z register which has the same sign as the sum.  The 

X registers will also be stored in the same direction 

determined by the Z sum.  After [log0(X ,. -X,  . )] add y2x rclip Iclip'J daa 

times, X1  and X2 will both contain the X value of the 

intersect of the two segments. 

A block from free storage is obtained at this point and 

the X intersect value and the pointers to the two segments 

causing the intersection are stored as data in an implied 

edge list. When the program proceeds to the next scan line, 
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max4 

max 2 

X 
rclip 

Intersecting Segments Clipped to X, ,.  and X 
iclip     rclip 

Xlclip 

i'Tv /1 CO/2 

Xrclip X. 

'maxi  Zmax3  Zl 

(+)/2 

Zmax2 " Zmax4J Z; 

Figure 21 

Registers for Finding Intersection 
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the intersect will again be calculated.  The difference 

between the intersect on this scan line and the intersect 

calculated on the previous scan line can be used as the 

increment of the implied edge.  This edge can now be treated 

as any other visible edge and used for determining sample 

points.  If, on a scan line, an implied edge is found to be 

no longer visible, the block is returned to free storage. 

J.   Building the Sample List 

The DP has one other task.  That is, to tag the visible 

edges (determined in the DP), and put them in the sample 

list,  upon completion of the DP, control is either passed 

to the SSG if subdivision did not occur, or to the DC if 

subdivision did occur. 



CHAPTER IV 

FRAME-TO-FRAME COHERENCE 

This algorithm can easily take advantage of frame-to- 

frame coherence of pictures.  For instance, in a movie if 

an edge is visible in one frame, it will usually be visible 

in the next frame,  if an edge is found to be visible on 

the scan line it enters on, the edge block (see Figure 4) 

is tagged as visible.  This means one additional bit must 

be stored in each edge block.  Also two pointers to each 

edge block must be stored in the segment blocks.  Then when 

the next frame is being processed and an edge was found to 

be previously visible, the initial X value of the edge is 

then used as a sample point.  The frame-to-frame coherence 

algorithm was used on some of the earlier versions of the 

program.  However, the scan line-to-scan line coherence was 

so efficient that the frame-to-frame coherence only 

decreased the number of memory references by about 0.1 

percent.  Because of this, it was not implemented in later 

programs. 
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CHAPTER V 

RELATIONSHIP WITH OTHER ALGORITHMS 

On the basis of generality of object descriptions, this 

new algorithm is as good as or better than the others men- 

tioned in the introduction.  Convex or non-convex polygons 

of any number of sides can be used.  The algorithm allows 

polygons to penetrate one another without any pre-processing 

checks. 

Since planar equations are never used for depth 

sorting, the algorithm can not tell if the points of the 

polygons lie on a plane.  It always assumes a linear 

interpolation between the edges on a scan line.  However, 

when shading a polygon a discontinuity in shading can be 

created.  For example, if the vertex between scan lines 'a1 

and 'b' of Figure 6 were not on the plane described by the 

other three vertices, the linear depth calculations between 

edges would show a discontinuity in the shading between the 

two scan lines.  Furthermore, the line of discontinuity 

would always remain horizontal even if the polygon were 

rotated.  Also, since segments are only checked when edges 

enter or exit, edges of a single polygon should never cross 

each other.  If they do cross, however, a local error will 

occur in the picture only where that polygon exists and if 

that polygon is visible.  Consequently, points of a polygon 
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should lie on a plane. (Points not on a plane can introduce 

edges that cross). 

Like Warnock's algorithm, this new algorithm is also 

non-deterministic, but on a scan line level.  For instance, 

a sample span on a scan line is assumed to have one covering 

polygon.  If it does not, the sample span is made smaller 

until finally a span is found which is covered by a single 

polygon. 

Romney used an ordering scheme for taking advantage of 

scan line-to-scan line coherence.  He did not allow inter- 

secting triangles.  Therefore, as long as the intersection 

of the edges of triangles on the current scan line were in 

the same order as on the previous scan line, the same 

triangles that were visible previously would be visible on 

this scan line.  However, as soon as the order changed, the 

remainder of the scan line had to be depth sorted.  The 

coherence ordering made a great difference in the spaed of 

his algorithm. 

If intersections are allowed, as in the new algorithm, 

this ordering of edges no longer holds for determining 

visibility.  Therefore, the sampling process described in 

Chapter III-D was developed.  It has the further advantage 

that even when the order changes, the previously calculated 

sample points for the remainder of the scan line are still 

valid. 



CHAPTER VI 

DEVELOPMENT OF THE NEW ALGORITHM 

As is usually the case in the development of new 

algorithms, the process was evolutionary.  Successive algo- 

rithms were developed, tested, and improved upon.  The 

history of this algorithm can be divided into six distinct 

steps.  These programs are called VSG1, VSG2, etc. 

1. The first step used edges on each scan line.  The 

edges were sorted in X separately, and after sorting they 

were read in order.  Every time an even number of edges was 

found associated with a polygon, a segment block was created 

from free storage.  Finally, the segments were depth sorted 

for visibility. 

2. VSG2 linked the edges together with pointers 

after sorting in X.  This eliminated the creation of 

segment blocks on each scan line. 

3. VSG3 took the edge data and created segment 

blocks only when edges entered on a scan line.  These 

segments are described in Chapter III-F.  Since there are 

one half as many segments as edges, the X-sort on each scan 

line is twice as fast as in VSG2. Also, edges no longer 

needed to be linked together on every scan line. 

4. VSG4 eliminated the X-sort which was done sepa- 

rately before the depth sorting. The x-sort and depth sort 

were done simultaneously on each scan line. 
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5.   The four previous algorithms used planar 

equations and a multiplier for calculating depths of the 

polygons.  A divider was also required for finding the 

intersect of two polygons.  VSG5 replaced the arithmetic 

unit with the midpoint clipping simulation described in 

Chapter III-E. 

6.  Up to this point all algorithms used a bucket 

sort as described by Romney [5] for sorting segments in X. 

This final algorithm used the assumption that a sorted list 

will remain sorted by interchanging only a few segments 

when proceeding from one scan line to the next. 
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CHAPTER VII 

TEST DATA 

Ten objects „ere chosen to represent various com- 

plexities of pictures.  FlgUres 22-31 contain pictures of 

the ohjects. Each object has two pictures.  One shows aU 

edges in the picture ana the other shows the „bjects after 

visible surfaces are found and shaded. 

A.   Objects 

Object 1, Penetration: The object is relatively 

simple but has many intersecting planes. 

Object 2, E-S: «any edges abound in the picture and 

a great amount of visible complexity exists. 

Object 3, Low Area: although intersections abound, 

the picture only occupies a small area. 

Object 4, cubel: Twenty-five cubes exist, but only 

the front cube is visible. 

Object 5, cube2= object 4 has been rotated so that 

Parts of all twenty-five cubes are visible. An enormous 

amount of visible complexity exists. 

Object 6, Shapel:  This object is made up of many 

long and narrow polygons which are long in the X direction 

Object 7, Shapea: object 6 has been rotated so the 

Polygons are long in the V direction. These two objects 

are to show „hat effect the object orientation can have 
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on the scanning process. 

Object 8, Sheet:  This is a wavy object made up of 

triangles.  Everything is at least partly visible. 

Object 9, Simplel:  This object is made up of a large 

cube encompassing a sphere and intersecting cubes. 

Object 10, Simple2:  Object 9 has been changed slightly 

so the sphere intersects the cube and is partly visible. 

B.   Statistics 

For each of the VSG algorithms mentioned in Chapter VI, 

statistics were gathered.  These statistics included data 

about the object (number of polygons, etc.), computation 

required, memory reference counters, and various other 

counters. Appendix II contains a list of statistics. At 

the beginning of each set of statistics for a particular 

algorithm, there is a table describing the various counters. 

Figure 32 contains a table of statistics that have been 

extracted for the Penetration object (Figure 22).  The 

statistics of the six various changes in the algorithm are 

shown for that object.  The table in Figure 33 shows a cross 

section of statistics for all the objects with the final 

algorithm. 

C.   Analysis 

Before any statistics were gathered, arithmetic 

computation was suspected to be the bottle-neck in solving 

the hidden line problem.  Statistics, however, showed that 
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Figure 22 
Object 1: Penetration 
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Figure 23 
Object 2: ES 
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Figure 24 
Object 3: Low Area 
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Figure 25 
Object 4: Cubel 
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Figure 26 
Object 5: Cube2 
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Figure 27 
Object 6: Shapel 
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Figure 28 
Object 7: Shape2 
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Figure 29 
Object 8: Sheet 
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Figure 30 
Object 9: Simplel 
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Figure 31 
Object 10: Simple2 
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1 137607 101892 37919 21730 21224 24291 
2 9172 112 38 54 54 56 
3 76 44 25 24 23 23 
4 7068 6975 6839 9210 — .^ 

5 26 22 22 15 - _ 

6 — -, - - 35604 32925 

1. Number of memory references required 

2. Number of total memory blocks used 

3. Maximum number of blocks used at a time 

4 

5, 

6. 

Number of multiplications for depth test required 
(If multiplier-divider used) 

Number of divisions for intersections required 
(If multiplier-divider used) 

Number of addition cycles required for depth 
comparisons  (If multiplier-divider not used) 

Figure 32 

Statistics of the Penetration Object 

for the Six Algorithms 
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memory bandwidth was the critical factor, with the polygon 

segment block being the most accessed array!  For the 

hardware processor, a special purpose memory would be used 

where 300 bits could be accessed at one time.  With 

semiconductor memories it is becoming economical to do this. 

From the first five different changes in the algorithm 

in Figure 32, one can see a steady decrease in the number of 

memory references.  The final algorithm, however, produced 

an increase in memory references due to the X-sort technique 

described in Chapter III-F.  In spite of this apparent 

increase in memory references for VSG6, the overall number 

of memory references in VSG5 would have been greater if 

accesses to the bucket X-sort memory had been counted.  The 

design and cost for such a bucket X-sort memory also were 

compelling factors in deleting it even though accesses to 

the segment memory increased, 

When the program proceeds from one scan line to the 

next, each segment block needs to be accessed for incre- 

menting the X and Z values.  At this same time, another 

X-sort list is being sorted in preparation for the following 

scan line.  Segments are read from the beginning of the 

X-sort list for the current scan line and are usually 

inserted at the end of the X-sort list which is being 

prepared for the next scan line.  Figure 33 (line 12) shows 

the percentage of times that segments cannot be inserted at 

the end of the list, and when the previous segment pointers 



 ,  

-st be use. for flndillg the correct ^.^  ^  ^ ^ 

for insartinc, the se^ent block.  The percentage varies 

between 0 to 4 percent tor the ten test objects.  Thas, the 

overhead of tracing baok through a list to Keep it sorted is 

extre^iy low.  Älso, no largei expensiver or ^.^ 

time-consuming speciai sorting hardware needs to be used. 

Visual complexity is much more important in determining 

the speed of the algorithm than is the total object 

aescription.  object 4 and object 5 ore both sets of 

twenty-five cubes.  However o>-,;,^f- c uwever, Object 5 requires over ten 

times the number of memory references a. object 4  A 

Picture visually identical to Object 4, but containing „„4y 

one cube, „as compared with Object 4.  Even though object 4 

contained twenty-five cubes, it only had six times the 

memory references as the single cube object. 

One way of measuring the performance of the algorithm 

- to create a relatrcnshlp between the object description 

and the number of memory references to the eegment array. 

Two »emery references (a read from memory followed by a 

«ite to me.nory, are always required to Increment the X and 

Z values of a segment „hen proceeding from one scan line tc 

the next scan line.  From the total number of ^^ ^ 

oross scan lines (line 3 of Figure 33), the mini,™ number 

of memory references needed can be calculated fro. Equation 
5. 

mm vo "//^ (5) 
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where Mmin is the minimum number of memory references that 

can be expected.  S is the number of memory references 

required to increment a segment (2).  N is the total number 

of times that edges cross scan lines.  E is the number of 

edges contained in a segment (2).  Equation 5 reduces to 

Equation 6. 

mm (6) 

Equation 7 is the ratio (R) of M^^ (the total number of 

memory references actually used) to M 
mm 

total' mm v /; 

Line 9 of Figure 33 lists the different values of R for the 

ten test objects. 

The clipping of segments for depth sorting is very 

fast.  Line 11 of Figure 33 contains the average number of 

add cycles required by the clipping registers to satisfy the 

depth comparison test between two polygon segments (see 

Chapter III-G).  One of the add cycles is for loading the 

clipping registers.  Even counting this, the average number 

is between two to three add cycles per depth test! 

The ten test objects were also used by Stephen 

McCallister [9] for gathering statistics on different 

versions of Warnock's algorithm.  Comparisons are shown for 

a particular version which divides an area into four 

sub-areas using a vertex closest to the center of the large 

area for the common corner of the four sub-areas.  If an 

area is completely covered by a polygon, is void of all 
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polygons, or has only one visible edge in the area, it is 

simple enough to be displayed without further reduction. 

Statistics for Object 2, E-S (Figure 23), were 

gathered.  A large data structure was used requiring polygon 

lists, edge lists, and a vertex and planar equation array. 

Each polygon block consisted of several words, but only 

accesses to each polygon block (not word) were counted.  The 

same was also true of the remaining data structure.  The 

following information was gathered: 

Polygon Block Accesses 336,156 

Edge Block Accesses 427,688 

Vertex Array 220 ,910 

Planar Equation Array 21,072 

Total Accesses 1,005,826 

The number of accesses to memory was far greater than that 

required by the new scan line algorithm (47,030) .  Also, 

Warnock's algorithm requires that the complete object 

description be stored in fast memory, and not just those 

objects pertaining to the current scan line, 

D.   Output Buffering 

Whenever a cathode ray tube (CRT) is being continually 

refreshed, the rate of moving the beam must remain constant 

if the displayed intensity is to be a function of the analog 

input intensity.  That is, the X and Y deflection circuits 

must be changed at a constant rate.  The output of the VSG 

. 
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does not generate segments at a rate inversely proportional 

to the length of the segments.  Therefore, a buffer for 

temporarily storing segments must be inserted between the ' 

VSG and the display. 

In Figure 26 (Object 5: Cube2), the Y scan goes from 

the bottom to the top of the picture.  The VSG can quickly 

determine the visibility of the bottom half of the picture 

but will require a great amount of time for the top half of 

the picture.  The display, however, must spend the same 

amount of time on each half of the picture.  Because of 

this, almost the entire bottom half of the picture would 

need to be buffered.  On the other hand in Figure 23 (Object 

2: E-S), the VSG runs at a fairly constant rate over the 

whole picture, and only a small amount of buffering would be 

required. 

For the ten test objects, line 13 of Figure 33 shows 

the smallest number of segments that must be stored at one 

time in order to have a display running at thirty frames per 

second with a constant rate for the X and Y deflection of 

the CRT beam.  The VSG was simulated to reference the 

polygon segment array every 200 nanoseconds.  For objects 

which have a uniform distribution over the area, only a 

small buffer size was needed.  For Cube2, which has a 

concentration of visible information in the upper right hand 

corner, a much larger buffer size was required. 
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CHAPTER VIII 

CONCLUSION 

The processor described can be built with equipment 

available today.  The segment memory must be in the 200 

nanosecond cycle range, and semiconductor memories are 

available in this range.  Also, only a small memory is 

required since 18 to 50 segment blocks at most are needed at 

any one time for any of the ten test objects. 

The algorithm has been simulated in Fortran IV on a 

PDP-10 at the Computer Science Department at the University 

of Utah.  Other pictures have been taken to show how 

coloring and shading adds to the realism of objects. 

Figures 34-39 show various objects.  Total computation time 

for generating and displaying the pictures is short.  Cubel 

(Object 4) required 30 seconds, and the church of Figure 35 

containing 345 blocks (six polygons per block), required 

only 2.5 minutes.  Figure 36 shows the back view of Figure 

35 with the blocks randomly colored. 
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.. . Figure 36 
Figure 34 • Rear View of Church with Randomly Colored Blocks Office Structure · · 

'II it1 .. ~ 

• 
Figure37 

Figure 35 · Apollo Command and Service Module Church 
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Figure 38 
Tori 

Figure 39 
Randomly Colored Surface 
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APPENDIX I 

LISTING OF PROGRAM 

The hidden line program is called as a subroutine from 

a main program.  VSG6 contains counters interspersed through- 

out the program for gathering statistics like those in 

Appendix II.  VSG6 is written in FORTRAN IV. 

Several subroutines are called by the program: 

LDRPT(I,J) < loads the right half of J (sign extended) 

into I. 

LDLPT(I,J) < loads the left half of J (sign extended) 

into I. 

STRPT(I,j) < stores the right half of I into the right 

half of J.  The left half of J remains undisturbed. 

STLPT(I,J) < stores the right half of I into the left 

half of J.  The right half of J remains 

undisturbed. 

SHOW < displays the segments stored in the VISSEG array. 

LSTSET(N) < initializes a free list structure with 

blocks of N words each. 

GETBLK(I) < gets a block from the free list.  I is the 

index of that block and is set by the subroutine. 

RETBLK(I) < returns a block to the free list.  I is the 

index of the block to be returned. 
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SUBROUTINE KIDDEN(PIX,STAT) 
COMMON/FREE/EDGEST,DUM,POLYST 67 

SSH^IS/9»<4> -PRÄMEX»FRAMEY 
??z??Ä0"cD(700!000)*Y(,000),ZnR00)'CX<700)'CY(700>' 
IMPLICIT'INTEGER  (A-Z) 
REAL X.Y,Z,CXfCY»CZ.CD 
COMnON/SCOPE/VISSEG(512)fBUCKY(512) 
DIMENSION  EDGE(l).SEG(t)   POLYO) 
EQUIVALENCE   (EDQEST,EDGE,SEG.POLY) 
DIMENSION ZS(10),SAM(3,2)   t3•rULY, 

""ENSION PQ(16),Q(10,ä6),ADDS(20) 
•QL"1o 
QL=26 

C '^''SrDDE^LI^E^K1 BL0CKS REQÜIRED  F0R 

C PQ(2)=MAXIMUM   NUMBER   OF  TOTAL  BLOCKS   EVER  USED AT   ONE  TIME. 

C PQ(3)M,C^E:2LNUMBER   0F  T0TAL  BLOCKS  AT  A   GIVEN  TIME. 
r *„,>   (USED  F0R  CALCULATING PQ(2).) "*" 
C PQ(4)=T0TAL   NUMBER   OF  EDGE  BLOCKS   IN  FRAME 

PQ(5)rNUMBER   OF EDGE  BLOCKS   WITH  AT  LEAST   ONE   OF  THE 
CONNECTED POLYGONS   DRAWN  CLOCKWISE. 

C PQ(6) = NUMBER   OF  THÖSE"EDQE"BLÖCKrOF"pQ(5)   WHOSE  Y   VALUE 
r n 

0F 1HZ BE:GIN  pT   IS   NOT THE SAME AS   THE  END PT v   uft nr 
C PQ(7) = T0TAL   NUMBER   OF  POLYGON  BLOCKS   IN  THE   FRSE" ' 

PQ(8)=NUMBER   OF  POLYGON  BLOCKS   DRAWN  CLOCKWISE. 

C 
C 
C 
C       PQ(9)=P0INT DENSITY. 
c 

C       PQ(10)=NUMBER OF INVOLVED SCAN LINES. 

C       PQ(Il)=MEMORY REFERENCES FOR SEGMENT CREATOR. 

C 
c PQ(I2)=NAN0SEC0NDS  PER   MEMORY  REFERENCE   FOR SEGMENT CREATOR. 

C PQC13)=MEM0RY  REFERENCES   FOR   DEPTH  CALCULATOR. 

Cc PQ(!4)=NANOSECONDS  PER   MEMORY  REFERENCE   FOR   DEPTH  CALCULATOR. 

C PQ(l5)rMEMORY   REF.   TOTAL  PQ(1I),PQ(15) 

PQCI6)rNAN0SEC0NDS   FOR  PQ(I3). 

ADDS(I)=NUMBER   OF   TIMES   THE  DEPTH   TEST   WAS  SATISFIED  IN. 



  

J Q COUNTERS 
C SfH^™™1 PER  ^AME 68 

«C2tX)=MAXIMUM REQUIRED  OF A  «iriiii i TH=. 

C SSH!SNUMBER  0F SLOPE CALCULATIONS 

!  iPisssi-M«.  
C Q(X;7J:DEPTH  SAMPLE:S  REQUIRED. 

C §((!f;9)
)!SAMPLE P0INTS  DIETED. 

C §!v,'.,?^::?UTPlJT SEGMENTS. 
^ ^X'In = INTERCEPT CALCULATION«? 
C Q5X,I2)=1NTERCEPT SUBDIVISIONI* 

c o J* ^=HME: WAITING POR CL PPER r Q5X,I5)=READS   FROM POLY 
C S<XtlS)=WRITES   TO POLY 
S LCM7i=RE:ADS   FR0M  EDGE. 
C 0/5»  !?^RITES   T0  EDGE. 
r Q<Xtl9)=READS   FROM  SEG 

c 2<X,I?)>:WRITES T0 SEG 
C Q(X 22)" 
C QCX,25)=READS   FROM  FREE  LIST(GETBLK) 
C 9CX,24) = WRITES   TO  FREE  LISTfRFTPi tf 
C Q(X,25)rREADS   FROM  BUCKY LK) 

C Q(X.26)=USED  FOR SHADER 



C INITIALIZATION. 
C 69 

DO 8  1=1,QL 
DO p  J=l,10 

8 Q(J,I)=0 
DO 9   I=I,PQL 

9 PQ(n = 0 
DO   12   1=1,20 

12 ADnS(I)=fl 
DO   10   l=l,FRAnEY 

13 BUCKY(I)=0 
CALL  LSTSETCM) 
DEPTH:.TRUE. 
SAM2S=0 
SAM2X = FRAMEX 
SEGS2:0 
SEGL2=0 
POLYCH:0 
IMPLST=0 

C GO  THROUGH  ALL  POLYGONS  AND   NOTE   WHICH   WAY   EACH   POLYGON 
C IS   DRAWN   (CLOCKWISE   OR  COUNTER  CLOCKWISE)   BY  CHECKING 

pZ   %  PLANAR   EQUATIONS   AND   MARK   THE  POLYGON  BLOCK. 

90 IF(POLYPT.EQ.0)Gn   TO   99 
POLY(POLYPT+l)r-I 
CALL  LDRPT(INDEX,POLY(POLYPT+2)) 
9<1,15>=Q(1,!5)+1 
PQ(7)=PQ(7)+I 
Q(I,K):Q(I,16)+I 
IF(CZ(INDEX).LE.0)GO   TO   P5 
POLY(POLYPT+1):0 
POLY(POLYPT+3):5? 
PQ(R):PQ(P)+| 

95 CALL   LDRPT(POLYPT,POLY(PnLvPT)) 
GO   TO  9P 



  

C INITIALIZATION CONTINUED. 70 
C TAKE  EACH   EDGE AND PUT  IN  THE  BUCKY  GIVEN  BY   ITS 

% E5GEPLT=FTDYGESTLUE•     '"^   IS   THE   Y-S0RT   0F   ^^' 
100 IF(EDGEPT.EQ.0)GO   TO  200 

PQ(4)=PQC4)+I 
C 

p XMH  EACH   E:DGE  IM  BUCKY   IF AT LEAST  ONE   OF  THE 
C TWO  POLYGONS   IS   DRAWN  CLOCKWISE. 
c 

CALL  LDLPT(P0LYL,EDGE(EDGEPT+2)) 
CALL  LDRPT(P0LYR,EDGE(EDGEPT+2;) 
Q(1,17)=Q(1,17)+1 
IFCPOLYR.EQ.POLYDGO  TO   110 
IF(POLYL.EQ.PI)GO   TO   103 
IF(POLY(POLYL+1).EQ.0)3O   TO   104 

103 IF(POLY(POLYR+n.LT.0)GO  TO   113 
Q(1,15):Q(1,15)+1 

104 CALL  LDLPT(INDEX,EDGE(EDGEPT+1)) 
YBEG:Y(INDEX) 
CALL   LDRPT(INDEX,EDGE(EDGEPT+m 
YEND=Y<INDEX) 
PQ(5):PQ(5)+1 
IF(YBEG.EQ,YEND)GO   TO   110 
PQ(6):PQ(6)+1 
IF(YBEG.LT.YEND)GO  TO   105 
I=YEND 
YENDrYBEG 
YBEG:I 

105 YBEG=YBEG+1 
IF(YEEG.LE.0)GO   TO   115 
IF(YEND.GE,FRAriEY)GO   TO   115 
I=BUCKY(YBEG) 
BUCKY(YBEG)=EDGEPT 
Q(1,1S):Q(1,1F)+1 
CALL STLPTCI,EDGE<EDGEPT)) 

110 CALL   LDRPT(EDGEPT,EDGE(EDGEPT)) 
GO  TO   100 

15 TYPE   116 
RETURN 

16 FORMATC   ERROR.. .OBJECT   NOT   IN   BOUNDS   OF   FRAME!') 



laa t0
ntt

llHE COMPUTATION. 200 CONTINUE 71 
DO 201   Irl.QL 

201 Q<4fI)rQ(l,l) 
IY=0 

204 IYrlY+I 
DO 202  1=1.QL 
Q(«,I)=Q(Itl) 

202 Q(3,I)=Q(i;i)       ',l, 

iri!itL1ZE: ALL POINTERS. 
SEexST=SEGS2 
SEGLST=SEGL2 
SEGS2s0 
SEGL2r0 
SAMlSrSAM2S 
SAMIL=SAM2L 
SAM2Sr0 
SAM1X=SAM2X 
SAM2X:FRAMEX 
IF(IY.GT.FRAMEY)GO  TO 230 
SEQCNT=0 

r SCAN PREPARATION PROCESSING. 

A5DT BEUD?LES
D TTS?STWLH1S

CHT ?S
NE1; 0N THIS SCAN "** 

IF(BUCKY(IY).EQ.0?lo TO 230       G)• 
QCI,25)=Q(|,25)+| 
EDGEPT=BUCKY(IY) 

210 IF-(EDGEPT.EQ.0)GO  TO 230 
Q(ltI7)=Q(|,|7)+i 
PA}-.1-  .^PTCBEG.EDGEtEDGEPT+D) 

5EiiD=t?^JSEND,EDGE:(E:DGEPT+,)) 

YBEG=Y(BEG) 
DELYrYBEQ-YEND 
IF(DELY.EQ.0)GO  TO 229 
IECDELY.LT.0)6O  TO 211 
I=BE6 
BEG=END 
ENDrl 
DELYs-DELY 

211 IX=X(BEG)*262I44.0 

IFaxE.LE.0.OR.lXE.GT.FRAMEX)GO   TO   115 

r OAÜ  LDRPT(P0LYPT,EDGE(EDGEPT+2)) 
212 f??Pm0tJ50^ ^R EDSE ARE FLOWED. ZIZ             IF(POLYPT.EQ.0)GO   TO  22? 

Qn,I5):Q(l,15) + I 

POLYCHrPOLYPT 
91 T OALL STLPT(-|,P0LY(P0LYPT+n) 
213 SEGPT=P0LY(P0LYPT+3) 

PREV=0 
YEND2Pr-l 



214 IF(SEGPT.EQ.0)6O  TO 220 72 
Q(ltl9)=Q(l,I9)+l 
CALL  LDRPT(YEND2,SEG(SEGPT+2)) 
CALL  LDLPT(YENDItSEG(SEGPT+2)) 
IF(YENDI,GE,0)GO  TO 217 
TEl=IX-SEG<SEGPT+3)-SEG<SEGPT+4) 
IF(TEl.EQ.a)TEl=XSLOPE-SEG(SEGPT+4) 
IF(TEI.LT,0)GO  TO 220 
IF(YEND2.GE,0)GO TO 21g 
TE2=IX-SEG(SEGPT+5)-SEG(SEGPT+6) 
IF(TE2.EQ,0)TE2=XSLOPE-SEG(SEGPT+ß) 
IF(TE2.LT.0)GO  TO  223 
GO  TO 21P 

217 1F(YEND2.GE.0)GO  TO 218 
TE2rIX-SEfi(SEGPT+5)-SEG(SEGPT+6) 
IF(TE2.EQ.0)TE2rXSLOPE-SEG(SEGPT+6) 
IF(TE2.GE.0)GO  TO 21P 
MODEr0 
PREVrSEGPT 
GO  TO 227 

218 YEND2PrYEND2 
PREVrSEGPT 
CALL  LDRPT(SEGPT,SEG{SEGPT+1)) 
GO  TO ZlA 

220 M0DE=2 
IF(YEND2P.GE.0)GO   TO 227 
FROM=0 
GO  TO 22S 



J>23 FROM=-I 7-> 
PREVrSEGPT 
CALL  LDRPT(SEGPTfSEG(SEGPT+I)) 
GO  TO ?.2fi 

224 SEG(I+5)=SEG(PREV+5) 
SEG(I+6)=SEG(PREV+6) 
SEG(I+9)iSEG<PREV+9) 
SEG(1+|0):SEG(PREV+I0) 
Q(l(20)=Q(|t20)+| 
CALL STRPT(YEND2.SEG(l+2)) 
M0DEr2 
GO  TO 227 

226 CALL  GETBLK(I) 
Q(lt23>rQ(l,23)+l 
PQ<1)=PQ(1)+1 
PQ(3)=PQ(3)+1 
IF(PQ(3),GT.PQ(2)>PQ(2)iPQ(3) 
CALL STRPT(SEGPT,SEG(I+|)) 
IF(PREV.NE.0)CALL STRPTd,SEG(PREV+1)) 
IF(PREV.NE.0)Q(!f20):Q(|t20)+l 
IF(PREV.EQ.0)POLY(POLYPT+3)iI 
SEG(1)=-| 
SER(I+2):0 
SEGd + IDrP 
CALL STLPT(POLYPTtSEG(I+l)) 
1F(FFOM.ME.0)GO   TO  224 
PREVrl 

227 SEG(PREV+3+«ODE)=lX-XSLOPE 
SEG(PPEV+4+M0DE)=XSL0PE 
e(l,20)=Q(l,20)+l 
1F(MODE.EQ.0)CALL  STLPT{DELYtSEG(PREV+2)) 
IF(MODE.NE.f))CALL STRPT(DELY,PER(PREV+2)) 
SEG(PREV+P+MOnE):((Z(END)-Z(BEG))/(Y(END)-Y(BEG)))*2S2144.0 
SEG{PREV+7+MODE)=Z(BEG)*2K2l44.0 
SEG(PREV+7+M0DE)=SEG(PREV+7+M0DE)+ZMUL(SEG(PREV+F+M0DE).DEL) 
SEG(PREV+7+MODE)=SER(PREV+7+MODE)-SEG(PREV+P+MODE) 

22? CALL   LDLPT(P0LYPT,EDGE(EDGEPT+2)) 
11:11+1 
IF(II.EQ.0)GO   TO  212 

22<» CALL   LDLPT(EDGEPT,EDGE(EDREPT)) 
GO   TO  210 



Qn,|5)rQ(|,lj)+i 
QCI,I6)=Q(1,16)+I 

CALL STLPT(0,POLY(POLYCH+1)) 
NEXTrP0LY(P0LYCH+3) 
SEGPTrB 

231 IF   (NEXT.EQ.PI)   GO   TO  240 
PREVrSEGPT 
SEGPTrNEXT 
Q(I,I9):Q(I,|«))+I 

CALL  LDRPT{NEXT,SEG(SEGPT+1)) 
,Ip,i^G(SERPT+2)'NE'0>   RO   TO  233 
IF  PRFV.NE.0)QCl,20)rQ(|,20)+| 
»r,(o^V,NE'(,)CALL  STRPT(NEXT,SEG(PREV+1)) 

änc:;5!f:i?f;i5?irpoLYcH+5)=5E^ 
PQ(3)rP3(3)-l 
CALL  RLTBLK(SEGPT) 
SEGPTrPREV 
GO   TO  231 

233 NEXTIrNEXT 
CALL  LDRPT(YEND2,SEG(SERPT+2)) 
IF   (YEND2.f5E.0)   GO   TO  237 

IF<YENl)I.LT.P)GO   TO   2395 
SEG(SEnPT+3):SEG(SEnPT+5) 
SER(SEGPT*4)rSEn(SEGPT+6) 
SEG(SEGPT+7):SEG(SEGPT+9) 
SEG{SFGPT+O)rSEG(SEr)PT+i0) 
CALL  ?TLPT(YEND2,SEGCREnPT+2)) 





2l7 

?.3P 

239 

23,5 

2396 

?.307 

?.~~ 

2~ I 

lf'<NEXTI,EQ,ii!)GO TO ?.~1 
CALL LDLPTCYENDI,SEGCNEXTI+2ll 
Q( 1,19l:Q( I, 19l+l 
IF" CYENDI•,GE,0l GO TO 2l!! 
QC I ,20l:Q( I ,20>+2 
CALL STRPTCYENDI ,5EGC5EGPT+2)) 
CALL 5TLPT<0,5EG< NEXTI+2l l 
5EG<5EGPT+5 l•5EG< NEXT l+l l 
5EGC5Er.P T+6) :SEGC NEXT I+~) 
SEGC5F.r.PT+,) :SEG( NEXT 1+7 l 
SEGC~EGPT+I~ l :SEGC N~X T 1+~ J 
CALL LDLPTCSI ,5Er.CNEXTI)) 
CALL LDRPTC52,5EGC NEXT I)) 
IF"C51,NE,AJCALL 5TRPTCS2,SEGCSI)) 
IF"C5 I .~0 ,A JSEGX5T:S2 
I F"C NEXT I, NE,SEGLSTlCALL STLP T<5 I ,SEGC52)) 
IF" CIIEX Tl ,EQ .SEG:.s TlSEC.LST :5 I 
GCI,20J:QCI,20>+1 
SEGCNF:l<Til:·l 
r;n TO 23~5 

CALL LDRPTCYEND?.,SEGC NF.XTI+2)) 
IF" CYEND2,GE,e> GO TO 239 
Q( I ,?.D):QC I ,?.Al+2 
CALL STRPTCYF.ND2,SEC.CSEGPT+2l) 
SEGCNEXTI+2>•~ 
SEGCSEGPT+5 l:So".C NEXT 1+5 l 
5~GC~~ r,p TH) :SEr,c NEXT 1+6) 
~EGCHGPT+9J:SEGC NEXT I+OJ 
SEG<SEGP T+l A) :SFC,( ~.~XT I+ 10) 
GO Tn 2305 
CALL LD9PTCNEXTI,SEGCNEXTI+I)) 
GO TO 237 
IF<SEGCSEC.PTJ,NE,·IJGO Tn ?.31 
CALL L OLP T<IXE ,SEG<SEGP T+3J+SEGCSEOPT+~ J l 
51 :PREV 
IF"CSI,NE,0JCALL LD~PTCS?.,SEGCSI)) 
I F"CS I, EQ, ~ JS2:5EGX5 T 
IF"<SI,F.Q,SEr.LSTJ52:0 
QC I, 19l:Q( I ,19l+l 
IF"<52,EQ,AJGO To 2397 
CALL LDLPT< IX ,SEGCS2+3 J+SEr.CS?+4)) 
IF"CIX,GE,IXE>GO TO ?.397 
Sl :52 
GO Tn 230~ 
I F"CS?., NE ,A lS EGCSfr.PT> :52 
QCI,20J:GCI,20J+I 
CALL STLPTCSI ,SEGCSEr.PT)) 
IF"<51,NE,0JCALL 5TRPTCSEGPT ,SEGCSI)) 
lfCS I,F.Q ,0 >SEGXST:SEGPT 
IF"CS2,NE,0JCALL STLPTCSEGPT ,SEGCS2)) 
I F"CS2 ,EQ ,0 JSEGLS T:S EGPT 
GO TO 23 I 
POL YCH:POL YCPOLYCH+I J 
GO TO 230 
PAUSE 'UNCLOSED POLYGON' 
SEGCSFGP T+5 ):SEGCSEGPT+3) 
SEGCSEGP T+6) :SEGCSEGPT+4 l 
CALL STRP TC0,SEGCSEGP T+2) J 
r.n TO 23o5 

75 c 
2~2 

276 

278 

279 

c 
2~1 

2P2 
299 

DE~TH SORTER, 
CONTINUE 
DO 276 I: I ,QL 
OC6,Il:Q( I ,Il•QC!;,IJ 
11'<QC5, I l ,LT ,Q(6,1) lQC5,1 l:Q( 6, I l 
Q(9,l):Q(9,1)+Q( 1,1) 
Q( U,IJ:Q( IA,Il•Q( I ,ll 
QCS,Il:QCI,Il 
IF"!IY,GT,F"RAMEYlGO TO 498 
SAJIICI 02): I 
SAMC2,2>:A 
CAlt LllLPTCSEGPT,II'JPL5T> 
IF"CSEGPT .EQ,0) GO TO 279 
NEXT:SEGCSEGPT l 
CALL RETBLK<SEGPTl 
PQC3):PQC3)·1 
QCI,24l:GCI,2~>+1 
SEGPT:NEXT 
GO TO 278 
I IIPLST: li'IPLST•2621 44 
SEGACT:~ 

SA i'IPLE SPAN GENERATOR, 
SA 1'1<1, I> :SAM <I ,2 l+ I 
SAMC2,1l:SAMC2,2) 
SAM<~, I ):SAM<3,2> 
SAMC2,2>:0 
IF"<SAMJX,GE,SAJIICI,I»GO TO 2~2 
SAI'IIX:F"RAMEX 
IF"<SAMJS,EQ,SAMILJGO TO 2~2 
CALL LDLPTCSAMIX,SEGCSAJIIIS» 
CALL LDRP TCSAM IS ,sEr,<SAJIIIS)) 
SAMCI ,2):SAMIX 
ZSC I ):0 
F"ROM:0 
SEGPT:SEGACT 
SEGOUT:0 
PREV:0 

ll 
I 
! 

76 

1 ... 



Li ?pE?o™M!NTS   FR0M THE CURRENT ACTIVE LIST. 77 301 IF   (SEGPT.EQ.0)   GO   TO  304 // 

NUMREF=-Q(1,19)-QC1,20)-Q(1,13) 
Qn,l9):Q(lf19) + l 
NEXT=SEG(SEGPT+1I) 
XLEFT:SEG(SEGPT+3) 
XRIGHT=SEG(SEGPT+5) 
ZLEFTrSEG(SEGPT+7) 
ZRIGHT:SEG(SEGPT+9) 
CALL  LDLPT(IXE,XLEFT) 
CALL  LDLPTdXX.XRIGHT) 
IF(IXX.LE.SAM(1,2))G0 TO 303 
PREVzSEGPT 
IF(IXE.GE.SAM(1,2))G0 TO 335 
60 TO 315 

303     CONTINUE 
Q(l,20)rQ(I,20)+I 
lF(PREV.NE.0)SEG(PREV+n) = NEXT 
IF(PREV.EQ.0)SEQACT:NEXT 
IF  <IXX.LT.SAM(1,|))   GO  TO 335 
Q<l,20)=Q(l,20HI 
SE6(SEGPT+lI)rSEG0UT 
IF   (SEGOUT.EQ.0)   SEGLOrSEGPT 
SEGOUTrSEGPT 
GO  TO  315 

C CHECK   NEW SEGMENTS   FROM  THE  X-SORT LIST.  ALSO 
r run^HLVll X»Y'Z   VALUES  AND  INSERT  THE SEGMENT BLOCK 
304 IEV^ÄT 

LIST  F0R THE   NEXT SCAN LINE. 
IF(SEGPT.EQ.0)GO   TO  350 
NUMREFr-QtI,I9>-Q(1,20)-Q(|,13) 
QC1,I9)=Q(1,I9)+1 
CALL  LDLPTCIXE,SEG(SEGPT+5)+SEG(SEGPT+4)) 
IF(IXE.GE.SAM(1,2))G0  TO 350 
FR0M=-1 
CALL  LDRPT(SEGXST,SEG(SEGPT)) 
IF(SEGPT.EQ.SEGLST)SEGXST=0 
Q(1,2)=Q(1,2)+1 
SEG(SEGPT+3)=SEQ(SEGPT+3)+SEG(SEGPT+4) 
fc^(Ir^I+E)=SEGCSEGPT+5)+SEG<SEGPT+6) 
SEG(SEGPT+7)rSEG(SEGPT+7)+SEG(SEGPT+8> 
SEG(SEGPT+9)rSEG(SEGPT+9)+SEG(SEGPT+l0) 
XLEFT=SEG(SEGPT+3) 
XRIGHT=SEG(SEGPT-!-5) 
ZLEFTrSEG(SEGPT+7) 
ZRIGHT=SEG(SEGPT+9) 
CALL  LDLPT(YENDlfSEG(SEGPT+2)) 
CALL  LDRPT(YEND2,SEG(SEGPT+2)) 
YENDlrYENDI+1 
YEND2=YEND2+1 
CALL  STLPT(YENDltSEG(SEGPT+2)) 
CALL  STRPT(YEND2,SEG(SEGPT+2)) 



IF   (SEGCSEGPT+11).GE.0)   GO  TO  3K9 -,o 
IF   (YEND2.GE.0)   GO   TO  308 78 

IF   (IXE+1.NE.SAM(1,I))   GO  TO   30B 

?rLrTvD,L^TiIX»SEG(SEGPT+3,+sEG(SEGPT+4)) 
CAF

M   JX:LE:-0'OR-IX-GT-FRAME^   GO   TO   30P SAM(3,l)rSEGPT+12 
SAM(2,l)rlX 
FM:-l 
GO   TO   3091 

30P CALL  RETBLK(SEGPT) 
PQ(3)rPQ(3)-| 
QC1,24)=Q<1,24)+l 
GO TO 335 

309    MODE:0 
SEG(SEGPT)r-I 
IF (YEND1.GE.0) GO TO 310 
MODEr-) 

CALL   LDLPTClX,SEG(SEGPT+3)+SEG(SEGPT+4)) 
IF   aX.LE.0.OR.lX.GT.FRAMEX)   GO   TO   115 r n : 0 

3091 S2=0 
SI:SEGL2 

3092 IF{S1.EQ.0)GO   TO   30^)4 
CALL   LDLPT(lXl,SEG(Sl+3)+SEG(Sl+4)) 
IFCIX.GE.IXI)GO   TO   3094 
S2 = SI 
CALL  LDLPT(SlfSEG(Sl)) 
0C1,19):Q(1>I9)+1 
GO   TO  30^2 

3094 IF(S2.NE.0)SEG(SEGPT)rS2 
Q(l ,20)rQ(l,20)+l 
CALL   STLPT(S1,SEG(SEGPT)) 
IF(S2.NE.0)CALL  STLPT(SEGPT.SEG(S?>) 
IF(S2,EQ.0)SESL2:SEGPT -'^-^^ 
Jr5f!^E*0>CALL  STRpT(SFGPT(SEG(S!)) 
1F{S1,EQ.0)SEGS2=SEGPT 
IF(S2.NE.0)Q(l,2(1):Q(l.20)+| 
IF(FM)355.310,3<)4 

310 MODE:-MODE 
IF (YEND2.GE.0) GO TO 311 
MODEr-MODE 

CALL   LDLPT(lX,SEG(SEGPT+5)+SEG(SEGPT+6)) 
%,, 11   ,(iX*LE:'C,*0R'IX-GT'|rRMEX)   GO   TO   115 
311 IF   (MODE.LT.0)   GO   TO  31? 
C IF  EITHER   OF   THE   EDGES   OF   THE  SEGMENT   FyTT   n«   TUTO 

CALL   LDLPT(POLYPT,SEG(SEGPT+l)) 
Q(l,15)rQ(I,15)+l 
IF   (POLY(POLYPT+1).LT.0)   GO   TO  312 
Q(1,1S)=Q(1,16)+1 
POLY(POLYPT+l);POLYCH 
POLYCHrPOLYPT 
CALL  STLPT(-l,POLY(POLYPT+l)) 

312 CALL   LDLPTCIXX.XRIGHT) 
IF   (IXE.GE.IXX)   GO   TO   335 
IF   (IXX.GT.SAM(1,2))   GO   TO  314 
SEG(SEGPT+ll)rSEGOUT 
IF   (SEGOUT.EQ.0)   SEüLOrSEGPT 
SEGOUT=SEGPT 
GO   TO   315 

314 SEGCSEGPT+lDrSEGACT 
SEGACTrSEGPT 



5I5    CONTINUE 
Q(l,6)t:Q(| s)+i 79 
iXLEFTrlXE 

IF(YENDl.QE.0)GO TO 316 

IF(YEND2.GE.0)GO   TO  3J7 

SAM(3f2)rSEaPT4-15 

c ADDITION  TIME   0NE< 

jRTTrl?rvi-^uT:AMD'(-NÜT-^2i«) 
JSSSr? r'AND"(*N0T-262,^) 

^1
(™0|,,"NE,ü)MUMADD = NUMADD+i 

F  ;;.O?rc5PJl'^ELNE:,'=DELN"*l024 

ADJNL-g~.pALcE.    '^^   t-62|/14>'GF-(?»tRrtST=SAM(l,2)*262144 

T
I^?':F-FT'LT-^IfiHT)ADJMEtf:.TRIJE. 
IF(ZS(n.EQ.0)GO   TO  331 
ABLLEr.rALSE. 
ABLQEr.FALSE. 
ABRLE=.FALSE. 
ADRGE:,, FALSE. 

JP<XLTEST.LE.ZS(6))ABLLE=.TRUE 
IF(XLTEST.QE.ZS(6))A8L0E-.TRUE 
^XRTEST.LE.ZS(7)  JiRLEt   JRSI; 
F XRTEST.GE.ZS(7)>ABRGE=:TRü| 

K.(5oTS;ii?^A?oD-l29
NOT'ABR6E))-OR-((-NOT-AB^>.AND. 

XLCLIPrXLTEST 
rF(ABLLE)XLCLIPsZS(6) 
XRCLIPrXPTEST 
IF(ABRG£)XRCLIPsZS(7) 
DELrDELNEW 
IFCDELNEW.LT.ZSDEDOELsZSDEI 



320 

321 

52S 

XAMXLsXLEFT-XLCLIP 
XBMXL-XRIGHT-XLCLIP 
XAMXR:XLEFT-XRCI IP 
XBMXRrXRIGHT-XRCLIP 
ZALrZLEFT 
ZBLrZRIGHT 
ZARrZLEFT 
ZBRtZHlGKT 
IFCADJNEW)^ TO 320 
ZBUZLEFT 
ZALrZRlGHT 
ZBRsZLEFT 
ZARsZRIQNT 
XCMXLrZS(i>). 
XDMXLrZSm. 

80 

-XLCLIP 
-XI.CLIP 

XC«XRrZS{2>-XRCLiP 
XDMXR:ZS(3)-XRCUP 
IF(ZS(l)-2.r;E.0)GO 
ZCLrZS(4) 
ZDL:ZS(5) 
ZCR:ZS(4) 
ZDR:ZS(5) 
ADjOLDrZSAn.J 
C50   TO  523 
ADJOLDr.NOT.ADjNFW 
IF(ADJNEW)GO   TO   J?'P 
ZCLrZS(4) 
7.nizZS(A) 
ZCP:ZSC5) 
ZDRsZS{5) 
GO   TO  323 
ZCL:r?(5) 
ZnL:ZS<6) 
ZCR:ZS(i!) 
ZDPsZS{4) 

TO   521 



325 ÄL™ALS: 0HE AÖD TIME: EACH PASS- 81 
ABBCKRr.FALSE, 
CDBCKLs.FALSE. 
CDBCKRr„FALSE. 
DELZr.FALSE, 
MUKADDzNUHADD+l 
XH0LDL=(XAMXL+XBMXL)/2 
ZH0LDL=(ZAL+ZBL)/2 
*}jOLl)R=tXAMXR+XBMXR)/2 
ZHöLDR=CZAR+ZBR)/2 
XTERPL=(XCl«KL+XDMXL)/2 
ZTEHPL=(ZCL+ZDL)/2 
XTEMPRr(XCHXR*XDHXR)/2 
ZTEKPRs(ZCR+ZDR)/2 
DELrDEL/2 
lF<ZAL-ZDL.aE.ß)ABBCKL=,TRU£. 
IF(ZCI.-ZBL,GE.0)CDBCKL=.TRUE. 
ir(ZAR-ZDR.QE.0)AB8CKR=.TRUE. 
IF(ZCR-ZBR.QEo0)CDBCKW=.TRtJE, 
lF(DEL,EQ.0)DELZ=.TffüE. 

5-»-S-»".coBcKL..»».:Nof"KJ:;!S:Ä?";Sr,UA"''-I'ELZ> 
J»S(lX:LOO.OFl.(DELZ.«NO..Nv,I,AI)BCKL.««D    MT l-nnrui 

?;2N?;^,B^T;A5RLE:) *0R'('^T^BLQE.AflD^BRGE))) 

LOa:LOQ.OR.((.feor.ABLQE.OR..NOT.ABRLE),AND   UARHru'i 
;5^;SO^CD8CKL)-OR-(ABBCKR-^D--NOT cDBcmn KL 

LOOrLOQ.OR.((.NOT.ABLLE.OR..NOT.ABRGE),AMD   ((CDBCKl 
ÄDr^^^B^^-0R'(CDBCKR-A"D--N"  ABBDCKR;?fKL 

JBOXES:L00.0R.(DEL^.AND..NOT.AßßCKL.AHD,.NOT  CDBCKI 
I.AND..NOT.A9BCKR.AND..N0T.CDBCKR.AND   ((   NOT  ABLLE 

lF(jCLlPmJMCNTrNUHCNT+J 
IF(JIBOX)WUMCNTrNUMCNT+l 
lF(JBOX£S)IJlJHCNTrNI)HCNT+l 
IF(J0BOX)^UMCNTrMUMCNT+l 
IF((IURCMT.NE,|)PAUSE 
Ilr(JCLIP)GO  TO 525 
IF(JIB0X)G0   TO  331 
1F(JB0XES)G0  TO 529 
lF(JflB0X)G0   TO  335 



>F«"SLSL:Ge
E

E:S;.A!nD-;°J„»E">"'-^KOLD1. 

ifSSt:Lil-j;s-;i>^,',"'-«HOLi>i. 

iF<xSo,LDD":L
LrT-0

0-;!;°-;"^w.,",!=j"'"-°'' 

■F<X^« : l:?:::?-?^0^!™-"^« 
IE(XTEjp?',J-M,'D-ADJ0l-D>?l:R=rTEIPS 

„ c        M"! ?23
R-LI-I,-'",0-<-,'"-A»JOLD;>S=ZTEBPR 

5&s DELrZSDEL 
XAMXLrXLCLIP 
XBMXLrxRCLIP   ' 
?AL:ZAL-ZCL 
ZBLrZAR-ZCR 

327 ZHOlDLr^AUZBD/g 

NUMADDrNUMADI>H 
DE:L=DEL/2 

IF(ZBL.XOR.2HS.1E'0   7
ZB,L:ru^,L 

GO   TO  327 '-•■'u'^c-«ii|JZBLrZHOLDL 

82 



._-__. 

329       zs(n=zs?nlf !NCLUDE 0LD B0X AND NEW LINE CLIPPED. 83 
IF(.NOT.DEPTH)GO  TO 326 

iFm?F?,7??:;B
1

R?E«A
A

N^A!!:LE-AND-ABLGE)G0 T0 3295 ;=.,,„,FT"ZSC4>'LT'0'AND»ADJNEW)ZS(4)=ZLE»irT 
fmf^T:ifif)^T-0-AND-(-NOT'ADJNEW))ZS<4)=ZRIGHT 

TC TD^.T:ZSC5)*GE:*0'AND*<«NOT.ADJNEW)>ZS(5)rZLEFT 
^(^IG;T-ZS(5).GE.0.AND.ADJNEW)ZS(5)=ZRIQHT 

3295 JL(^JNE:W*AND-ADJ0LD.AND.CDBCKL)ZS{4)-7AL 
E AWNEW.AND.ADJOLD.AND.ABBCK[)ZS(3)=icr 

IF JSmfX^Mn,,M^*AHJ0LD-AND-ZA1-LT'ZCR>ZS(4)=ZAL 
JL ^TEi';^ND,*N0T'ADJ0LD'AND.ZAL.GE,ZCR)ZS{4)=ZCR 
IF(.NOT.ADJNEW.AND.ADJOLD.AND.ZAR!LT.ZCL)ZS(4)-7AR 

^ \^^A^NEW-AND-ADJ0LD-AND'ZA^GE.1CI:;ZIE4)-:ZSL 
fc/* «SI*APJNEW'AND"N0T'ADJ0LD.AND.CDBCKR)ZS(4)-ZAR 
Jr ;^^ADJNEW-AND--NOT-ADJOLD.AND ABBCKR)ZS(4   -ZCR 
IF ADJNEW.AND.ADJOLD.AND.CDBCKR)ZS(5)=ZDR 
;^»^NEW*AND'ADJ0LD»AND.ABBCKR)ZS(5)rZBR 
IFCADJNEW.AND..NOT.ADJOLD.AND.ZBR.LT ZDL)7Sf5>-7m 
IF«DJNEW.AND..NOT.ADJOLD SSBIZIR  ffi "t i  I  ißR 
IF   .N0T.ADJNEW.AND.ADJ0LD.AND.ZBL.LT.7DR)ZS(5   ^ZDR 
IF   .NOT.ADJNEW.AND.ADJOLD.AND ZBUGE  ZDR)ZS   5)-im 

F ,K^ä
A^^W-AND--N0T-ADJ0LD-AND.C5BCKL)ZS(5;=ZDL 

IF(ABRGE)ZS(7)rXRTEST 
^nr!<4FT"ZS(8)'LT«0)ZS(8> = IXLEFT 
ZSDEL=0 
ZS(10)=SEGPT 
IFCABBCKDGO   TO 335 
ZS(10)=ZS(9) 
ZS(9)=SEGPT 
GO  TO 335 

C MAKE A     ONE  ELEMENT BOX, 
33! ZS(nrl 

ZS(2)=XLEFT 
ZS(3)=XRIGHT 
IF(ADJNEW)ZS(4>=ZLEFT 
IF(.NOT.ADJNEW)ZS(4)=ZRIGHT 
IF<ADJNEW)ZS<5)=ZRIGHT 
IF(.NOT.ADJNEW)ZS(5)rZLEFT 
ZS(6)=XLTEST 
ZS(7)=XRTEST 
ZS(8)=IXLEFT 
ZS(9)=SEGPT 
ZSADjrADJNEW 
ZSDELsDELNEW 

335 CONTINUE 
NUMREF=(NUMADD+l)/2-Q<It13)-Q(l,l9)-Q(i   mt-ttimnev 
IF(NUMREF.GT.0)Q(1.14)=Q(1,U INUMREF     ' UMREF 

IF{NUMADD.GT.20)NUMADD=20 
IF(NUMADD.LE.0)NUMADD=1 
ADDS(NUMADD)=ADDS(NUMÄDD)+1 
IF(.NOT.DEPTH)GO  TO  402 
SEGPT=NEXT 
IF(FROM.EQ.0)GO   TO  301 
GO  TO 304 



C INTEREGATE THE ZS BOX 
350 CONTINUE 84 

Q(l,13)=Q(lti3)+| 
IF(ZS(1)-2,LT.0)GO TO 355 

lFf75?[|'1Jo'oA^i,2)-EQ-P>PAUSE   'SINGLE' 
luTD?{!^i^2

NECAEN
S

DSA
<Z

R?
(.g>-GE-SAM(,'2),,G0 T0  ™ 

IF"CSEGOUT.EQ.0)GO  TO 351 
SEG(SEGLO+ll)rSEQACT 
SEGACTrSEGOUT 
Q(I,20)=Q(l,20)+i 

,., eCM9) = Q(l,!9) + l 
r l1^"(8)"SAM(,'2)'LT'0>ßO TO 353 
C SUBDIVIDE   IN  THE  MIDDLE. 

Q<l,12):Qfl,l2)+l 
SAM(I,2)rCSAM(ltl)+SAM(I,2))/2 

C SUBDIVIDE  AT  IXLEFT. 
353 SAM(1,2)=ZS(8) 

GO  TO 299 



  

5 OUTPUT SEGMENTS. 
"5 IF(ZS(1).GT.0)QO  TO 358 85 

SAM(2fl)=0 

356 XEMDrSAM(l,2) 
POLYPT=0 
NEXTQOrl 

_.o GO  TO  3S8 
"8 CALL LDLPT(XEND,ZS(6)) 

POLYPT-0E8*SAM(,*,)>GO  T0 360 

NEXTG0=2 
GO  TO  363 

360 CALL  LDLPT(XEND,ZS(7)) 
POLYPTrZSO)        ' 
PAM    ,LS.L"(P2LYPT»SEQ(POLYPT+l)) 
CALL LDLPT(XTEMP,ZS(6)) 
PQ(9)=PQ(9)+XEND-XTEMP+1 
NEXTG0=3 

,_ GO  TO  368 
IF(XEND.EQ.SAM(l,2))öO  TO  376 

.^^ GO  TO 356 
3S4 P0LYPT=ZS(9) 

DnlrLLi?LPT(POLYPT»SEQ<pOLYPT+n) 
KTG0=3(9)+SA"(,'2>-SÄM(1»n^ 
60  TO  368 

365 XEND=SAM(1,2) 
POLYPT=ZS(10) 
ScitnnD^T(P0LYPT»SEQ<P0LYPT+| )) 
NtATGOsl 
IF(FM.EQ,0)GO  TO  368 
SAM(2,1)=IX 
SAM(3tl)=SEGPT+12 

.« OUTPUT A  SPECIFIC SEGMENT. 
368 IF(SEGr:NT.EQ.0)GO  TO  372 

LF^,'T?T*NE*PRESEG)G0  TO 372 SAM(2t I ) = 0 
Q(l,8)=Q(l,B)+l 
GO  TO 374 

372 SEGCNTrSEGCNT+1 
Q(1,10)=Q(|,10)+1 

PRESEGrPOLYPT 
374 VISSEG(SEGCNT)rXEND 

IF<SAM(2tl).EQ.0)GO  TO 3755 
C STORE  A  SAMPLE POINT. 

Q(1,3)=Q(1,3)+I 
IF(SAM2S.NE.0)GO  TO 375 
SAM2S=SAM(3,1) 
SAM2X=SAM(2,1) 
SAM2LX=SAM(2y!) 
SAM2L=SAM(3,I) 
GO  TO 3755 

375 lP^AM(2,i).LE.SAM2LX)G0  TO  3755 
SAM2LXrSAn(2,l) 
JAM   iJPPI<SAMC3fl)tSEG(SAM2L)) 

iJ^s^n ;?(2>,)'SEGCSAM2L)> 
3755 SAM(2,l)r0 

376 TG?rIA
OM5r^350'362»365>»NEXTGO 

rn ?J     ,'2),EQ,FRAMEX)G0 To  498 GO  TO  281 



.... 

\ 

La INTERSECTING PLANES  CASE. 
400 DEPTHr,FALSE. 86 

Fri=0 
ZS(1>=0 
Q<M1)=Q(IJ1)+1 
SEGPT=ZS(9) 
NEXT=-1 

401 XLEFT=SEG(SEf3PT+3) 
XRIGHT=SEG(SEGPT+5) 
ZLEFT=SEG(SEGPT+7) 
ZRIGHT=SEG(SEGPT+9> 
NlIMREF=.Q(l,i3).Q(J    19)_Q(1   20 

Q(1.1S)=Q(1,19)+1 
GO  TO  317 

402 NEXT=NEXT+1 
SEGPT=ZS(10) 
IF(NEXT.EQ.0)GO  TO  401 
DEPTHr.TRUE. 
XXTESTrXAMXL 
CALL  LDLPT(XEND#XXTEST) 
Q(l,19)rQ(l,i9)+2 
1F(IY.EQ.FRAMEY)G0  TO  364 
SEGSAM:ZS(10) 
CALL STLPT<ZS(9),SEGSAM) 
CALL LDLPT(SEGPT,IMPLST) 
PREVr0 

4010 IF(SEGPT.EQ.0)GO  TO  4030 
Q<l,19)rQ(l,l9)+i 
NEXT=SEG(SEGPT) 
IF<SEGSAM.NE.SEG(SEGPT+|))   GO  TO  4020 
IF PREV.EQ.0)CALL STLPT(NEXT.IMPLST) 
IF(PREV.NE.0>SEG(PREV)=NEXT 
SEG(SEGPT+4)=XXTEST-SEG(SEGPT+3) 
SEG(SEGPT+3)=XXTEST 
f^!-yL,DrPI(^tfEG(SEGPT+3)+SE:G(SEGPT+4)) 
IF(IX.LE.0.OR.1X.GT.FRAMEX)GO  TO  4040 
FMrl 
GO TO 3091 

4020 PREVsSEGPT 
SEGPTrNEXT 
GO TO 4010 

4030 IF(IY.EQ.FRAMEY-l)GO   TO  364 
CALL   GETBLK(SEGPT) 
Q(l,23)rQ(l,23)+! 
PQ(I)=PQ(1)+1 
PQ(3)=PQ(3)+1 
IF(PQ(3>.GT.PQ(2))PQ(2)=PQ(3) 
SEG(SEGPT+I)=SEGSAM 
SEG(SEGPT+2)=IY-FRAMEY+1 
SEG(SEGPT+m = -l 
SEG(SEGPT+3)=XXTEST 
P*.L.L  LDRPT(SEG(SEGPT),IMPLST) 
CALL STRPTCSEGPT.IMPLST) 
GO  TO  364 

4040 CALL  RETBLKCSEGPT) 
PQ(3)rPQ(3)-l 
Q(lt24)=Q(l,24)+l 
GO  TO 364 



498 CONTINUE 
DO 499 1=1.QL 87 
Q<I0,I)=Q<10tI)+Q(l    T) 

IF<Q(2.I).LT.Q(3fi'))( 

499 IF(fl(7.n-iT o?«   ?tx. 

IF<PIX.NE.0)CALL SHOW 
GS™G?S4

T'NE,,)PQ(,0)=PQ(,0)+' 
500 CONTINUE 

DO 50]   1=1,QL 
Q(3,I)rQ(iti)/FRAME:Y 

*a, 
Q(6»1>=10.**9/(30,*Q(l,i)) 

DO  502  IrlJ,QL 

502 PQ(13)=PQ(13)+Q(i0;n 

PQ(14) = 10.**9/(50.))rpQ(,3)) 
PQ(15)=PQ(11)+PQ(13)

,IK,^; 

PQ(16)=10.**9/(30,*PQ(15)) 

1F(STAT.EQ.0)RETURN 
llll 5002,(J,ADDS(J)fJ=i,20) 

RETURN       ,('J,(Q(!'J)'I = ,»,0)'J = ,»£'L) 
5001 FORMATC  PQC.Ig.M-'   TR   /•> 

END »'»■'v     v.   ,i<i,   J.   ,16),/) 
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APPENDIX II 

STATISTICS OF OBJECTS AND ALGORITHMS 

At the beginning of each set of statistics for a 

particular program there is a description of each of the 

counters.  Following each description, a set of statistics 

for each of the ten test objects is compiled. 

For a copy of the complete listing write to: 

Computer Science Communications 
3160 MEB 
University of Utah   ■ 
Salt Lake City, Utah  84112 


