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I. INTRODUCTION

The solutions of many experinental and engineering prcblems depend upon a

knowledge of bubble distributions in a fluid medium. For instance, gas bubbles

near the surface of the ocean are important in a variety of subjects that

include underwater sound propagation (Shulkin 1968 & 1969), meteorology

(Blanchard & Vkodcock 1957), sea surface chemistry (Sutcliffe, et al 1963),

cavitation (Fbx and Herzfeld 1954), and air-sea gas exchange (Kanwisher

1963). Several efforts have been made to measure bubble densities in

the ocean (Blanchard & Woodcock 1957; Glotov, et al 1962; McCartney and Bary

1965), the most recent made by Dedwin (1970). To infer near surface bubble

populations fram in-situ measurements of acoustic attenuation, Medwin exploited

the fact that a gas bubble's scattering and absorption cross sections for sound

at the bubble resonant frequency can typically be 1000 times its geometrical

cross section. For this reason large bubble densities near the sea surface can

significantly affect underwater sound transmission.

Many ccfflex factors affect bubble distributions in a fluid such as the

ocean, and some of these phenomena have been carefully investigated. For

example, IeBlond (1969) examined gas diffusion from an ascending bubble, and

Levich (1962, Ch. 8) is an excellent reference on single bubble d.nam .cs. The

purpose of this paper is to develop and to demonstrate new analytical tools

for investigating relationships between observed bubble distributions and the

phenomena which create, transport, and eliminate bubbles.

In sections two and three the formalism of transport theory is adapted to

the general problem of describing bubble populations in a mving fluid. The

bubble distribution, as a function of position, time, velocity, and radius,

satisfies a Boltzmann-type transport equation that is derived. Using a

Lagrangian viewpoint, the formal solution is expressed as a line integral of

the volume source function along characteristic curves. In section four general
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expressions are obtained for bubble acceleration and radius change rate and

sane known models of gas diffusion ard bubble drag are introduced. Finally,

in the context of gas bubble transport in the upper ocean, a simple model is

chosen to illustrate the utility of transport theory. Calculated results

clarify relationships between observed bubble distributions, proposed bubble

source mechanisms, and known models of single bubble dynamics.
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11. THE BUBBLE TRANSPORT EQUATION

Consider the problem of describing the bubble distribution - as a function

of position, r, velocity, v, size, R,, and tine,t - in a moving fluid that may

contain bubble sources and sinks. In general, a "bubble" might be considered

any simple, closed region containing a'fluid scmehow different fran that of

the transporting medium. Since examples chosen in this paper refer primarily

to spherical gas bubbles, k will represent the bubble radius. However, if the

bubbles are not spherical, then k might represent the radius of a spherical

volume equal to the actual bubble volume, or one might wish to generalize the

description to include more than one parameter for size.

Suppose that the time evolution of the position, the velocity,

and the radius of each bubble depends only upon the properties

of the medium and the bubble characteristics and is statistically independent

of the state of any other bubble. Then define the bubble distribution function,

(,v,,t)d3rd3vd, as the mean number of bubbles at time t in the volume d3r

about r, with velocity in d3v about V and the radius in dt about 2.* Farther-

more, if bubbles int tract with one another, suppose that no more than two

interact at any one time and that the collision time is short capared to the

time for p to change appreciably. Then t satisfies a Boltzmann-type .ransport

equation whose solution describes the ensemble average behavior of the bubble

population in terms of single bubble behavior.

At this point it is convenient to define the seven-dimensional volume ele-

ment d7T d3rd 3vdX and to adopt a Lagrangian viewpoint. In the tie interval

(t, t+dt) the bubbles that were in d7 T about (r,v,.) have moved to a new volume

*E.g., in the Cartesian representation, position conponents lie in the intervals
(x,x+dx), (y,y+dy), and (z,z+dz); velocity components lie in the intervals
(Vx,vx+dvx), (vy,vy+dvy), and (vz,vz4dvz); and the radius is in the interval
(Z., .+dZ .7
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d7 T about (' , v' ,V'), where the primed quantities refer to the time t+dt and

the unprimed quantities refer to the time t. This transport occurs by a change

in position due to a velocity, v B a /dt, by a change in velocity due to an

acceleration, a = dv/dt, and by a change in radius due to a rate of change,

v d /dt:

Sr + vdt+O(dt2)

-' Odt+0(dt2) (1)

= £ + vdt + O(dt 2 )

(Taylor's series about time t.) For gas bubbles in the ocean and elsewhere,

the acceleration results from several influences that include gravity, buoyancy,

and entrainment of bubbles by the fluid, hile the rate of change of bubble

radii is caused by hydrodynamic compression, surface tension and gas diffusion.

Expressions for a and v are obtained in section four where single bubble

dynamics is discussed.

Conservation of bubbles demands that the number of bubbles in the volume

element at time t+dt; (P$',V,t+dt)d7T', equals the number that start in the

volume element at time t, t(r,v,k,t)dT, plus (minus) any bubbles that are

introduced (lost) by distributed sources (sinks), S(r,vk,t)d7rdt:

(, +,',t+dt)d'lT' - f(r,v,k,t)dTT = S(rv,z,t)d7Tdt + O(dt 2 ), (2)

where S(r,v,zt)d 7T is the rate at which bubbles are introduced into d7T about

(r,v, z) by distributed sources. To develop equation (2) it is sufficient to

note that terms of 0 (dt 2 ) will disappear in the limit dt -- o. Therefore we

expand r' v z',v ,z',tdt) iij a Taylor series about w _ *(r,v-.,t) and keep
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terns through 0 (dt):

= p + (.p/Dt)dt + ('. rp)dt + (a.v )dt + v(a8/D£)dt + 0(dt2) (3)

where r(.) E( (.)/ax,a(')/ay,a(-)/z) and 'V ( ' ) -(a(i/avI a(-)/3v Ia 1 /avZ)y

are Cartesian representations of the "del" operators in position space and

velocity space, respectively.

To proceed, dYT' must be expressed in terus of d7T.

d7T' = y(tjdt,t)d7T (4a)

where

(t+dt, It) 4.rv,) 4 = det ((q!/ qi ) )  (4b)

i,j =

is the Jacobian with

ql x, q2 - y ' q3 n z, q4 q V, 6 q and q7  (5)

ql' x', q2' = y', etc.

The expression derived for y in the appendix can be expanded in a Taylor series

about t, or equation. (1) can be used to ccarute the determinant in (4b) directly.

In either case the result is

y(t+dt,t) = 1 + (V a)dt + (av/aZ)dt + 0(dt 2) (6)
V

Substituting (3), (4) and (6) into (2), collecting terms of O(dt), dividing by

d7 tdt, and taking the limit dt -* o, yields the bubble transport equation:
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+ v/ + r* + a. + va'/ak = S--t (7)

where t  = V v .a + aVI 9 (8)

an -ter ",Y ,-CO<VVV < W. and o < Z <
and where -oo x,y,z < - <v,vy,vz <~ad<<o

A simpler (bat less rigorous) derivation of equation (7) is obtained by

recognizing that W, 0,, and vp are the fluxes of bubbles in position space,

velocity space, and radius space, respectively. Then

F E - {V r .(v) + V .(vip) + a(v,)/9.}r v

is the net flux of bubbles into d7- by virtue of "streaming" in seven-dimensional

spao, (r ,Z). Since the time rate of change of ' in d7T" is due to bubble

streaming into d7t, as well as to other sources, S, we have '/Dt = F + S. Using

the identity V, (a') = a'Vv + .-. and the fact that r and v are independent

variables (V' = o) yields equation (7).

The term Et in the bubble transport equation is generally nonzero due to the

functional dependence of acceleration, a(r,v,,t), and radius change rate,

v(i, ,9,,), on the bubble velocity and radius, respectively. This is unusual since

in transport equations normally encountered, the tenm corresponding to F t is

generally zero (Chapman & Cowling 1964, p.46 and p.322). Math-atically, Et  0

causes the volume element

d7T' = [l+Etdt+O(dt2)]d7
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to change appreciably in the time interval dt. Physically, the tem -Et on

the right hand side of (7) acts as a pseudo source, or sink, depending upon

the functional form of a and v.

For example, suppose a is proportional to (-4). Then '.V < o, and the
V

bubbles are decelerated into a smaller volume, d 3v' = (1 dt . Thi=(+7v adt)d~v. This

increases the density so -( va)p acts like a "source" in (7). Similarly,

suppose v is proportional to vz z so that av/aY is proportional to vz . For

vz > o the bubble radii are increasing and becming more spread out over a

larger interval, dz' = (l+(av/8Z)dt)dZ. This decreases the density, so -(av/az)p

acts like a "sink" in (7).

The second term on the right hand side of (7.), S(r,v,kt), represents

distributed bubble sources and sinks. In addition to external sources and

sinks, this term can include the effects of phenomena such as bubble scattering

off small scale turbulent eddies, bubble-bubble interactions, etc. For

instance, when the scale of turbulent eddies is the order of bubble radius, they

will be referred to as "small scale," and bubbles entrained by the fluid may

scatter off of them. To handle this phenomenon one could define a turbulent

scattering cross section, Zs , such that

Es '~if~k:t)v l v.~k,t)d3Vld ld 7

3 +

represents the probable rate at which bubbles in d r about r at time t are

scattered by turbulent eddies from d3v1 about vi and dZ1 about zi into d3v

about v and dZ about P, where v1 = I%1 is the speed. Then

-r + -

S(r,v,k,t) = s (rvl1z1,t) Vl(r,vl,1,t)d3V1d 1

(9)

-v (r,,z~t) E s(r,vvl,1,t1d3vldo
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represents the net rate at which bubbles are introduced into d 7 T. Specification

of Es requires detailed knowledge of the turbulent field as well as a model for

bubble-eddy interaction.

Substitution of equation (9) into (7) results in an integro-differential

bubble transport equation. If bubble-bubble interactions are included, the

bubble transport equation is nonlinear as well (Chapman and Cowling 1964, p.63).

Below the surface in the upper ocean tha average separation between bubbles is

about 1000 times the bubble radii (Medwin 1970), but very near or at the surface

wave action can cause higher bubble densities. In addition, the energy contained

small scale turbulence appears to increase with wave action but to decrease with

depth (Shonting 1968). To avoid at this time obvious analytical ccmplications,

the bubble density will be assumed low enough so that bubble-bubble interactions

are negligible. It will also be assumed that the energy cnntained in small scale

tmubulence is negligibly small, so the bubbles are partially entrained by the

fluid without abrupt changes in velocity or radius. These assumptions should be

valid except very near the surface in heavy seas.

Suppose the source, S(r,v,,t),k is irependent of p or, at most, is

propcrtional to i,

S = S1 + Zp (10)

This mathematical simplification yields a linear, first order, partial differ-

ential bubble transport equation whose formal solution is outlined in the next

section. It is worthwhile to note that the simplifying assumption (10) is not

a severe limitation for many problems involving gas bubble transport in the

upper ocean. All external bubble sources such as surface waves, rain and snow

nucleation, organic decay, and photosynthesis can be included, as well as simple

models of bubble scattering, absorption, and creation that have the form (10).
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III. SOLUTION BY M'ETHOD OF CHARACTERISTICS

The first order partial differential equation (7) is equivalent to the

following set of eight siiultaneous, first order, ordinary differential

equations with initial conditions:

er/dt = v, -w < x,y,z < ,(t = = (x 0 y, z) (la-c)

: ,-w = < v v < , v(t O) = v = (vxo,v ,V 0 ) (ld-f)
x y o 0 y

dZ/dt = v, o < Z < -, £(t ) = k (llg)

d/dt = S- t p, o :<c , <(to) = o (12)

The equivalence between these "characteristic equations" and the bubble trans-

port equation is most lucidly deronstrated with a geometric argumnt given by

Garabedian (1964, p.18). The parametrically-represented curve C in nine-

dimensional space,

(t B [t,x(t),y(tIN,z(t),Vx(t),Vy(t),Vz(t),P,(t), (t)], - < t <

obtained by integrating the characteristic equations (11) and (12), is called

a "characteristic curve." Canponents of the initial point, (t o ) , are called

"characteristics." The family of characteristic curves,

{R(t) :-- < t < -, (t)}

parameterizedby the set of accessible characteristics, forms a hypersurface

n nine-dinesional space, f(t;r' o,Vo ,to 0 ), that satisfies the bubble transport

equation.

The family of characteristic curves is essentially parameterized by the set

(ro,v 0, z) of accessible initial conditiors since to and o(rovo, o), the

initial distribution, are generally fixed for a given problem. Since a, ,

13



and S are generally functions of rrv,k, and t, the solutions to (11) and (12)

are not only functions of the parameter t, but they also depend upon all the

initial conditions (roVo,1o):

k-= r(t;r, v,'kot o -- W( (13)
-- v(t;ro,V,2o0 t o) - (t) (13)

= k(t;roV0 1 ot) (t) (13c'

and p = (t;r ,vo0 ,£o,t o ) (t) (13d)

where the short notation on 1he right is used for brevity.

The characteristic equations (11) are simply the bubble dynamics equations.

The bubbLe dynamics model used to construct a and v (see §4), as well as the

characteristics (roVo,.o), detennine a "trajectory" (r(t),v(t) ,.. (t)) which is

the projection of a characteristic curve from nine-dimensional space onto

seven-dimensional space. Bubble trajectories in (x,y,z) space are likewise

projections of characteristic curves.

A. Lagrangian and Eulerian Representations

The parametric, representation (13), obtained by integrating the character-

istic equations simultaneously, describes the continuum fr.4 n a Lagrangian frame

of reference. In this description, bubbles are labeled by group according to

their characteristics (r ,V'. Zo). This moving frame follows a specific group,

initially in d7TO = d3r d 3vod£O about (r ,VozO ) at to, along a characteristic
0 0 000' 000)

curve tO dr(t) bv(t),2(t)) at t At any time t, (t)d 7 t(t) is the

number of bubbles, belonging to the group labeled (ro,Vo,2o), that are found

7in dT'(t) about (r (t) , vtM, P()M
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On the other hand, the distribution $(r,v,,t), expressed with r,v,, and

t as independent variables, more conveniently describes the continuum from an

Eulerian vir-wpoint. The Eulerian frame is fixed, and attention is focused on

the particular volume d7i about the point (r,v,k). The instantaneous bubble

density y(r,v,£,t)d7T is considered without regard to the characteristics of

bubbles in the volume.

B. Formal Solution

If the source, S(r,v,9,t), has the form (10), then (7) is emalogous to the

Boltzmann transport equation written for neutral particles (e.g., photons or

neutrons) or charged particles (e.g., electrons) in a purely absorbing medium

with distributed sources (Case and Zweifel 1967, p.31 and p.247). For example,

neutrons will stream along their characteristic curves in (x,y,z) space, which

ara straight lines, until they are. absorbed or until they escape the ruedium.

Similarly, the bubbles described by (7) stream along their characteristic

curves in (r,v,k) space until they disappear (k - o) or until they escape the

medium. However, the characteristic curves defined by (ii) are generally not

straight lines in (r,vZ) space or any of its subspaces, such as (x,y,z).

With S given by (10), the formal solution to (7) is obtained by integrating

(12):

cit;+ ,-* 42 rt0  pr 0 v , 0 t e(troVo, 0.t roV' 0 O0' 0o ex LT1 (t't o) -T2 (tt O) ]

and T2 (t, to) Zt(r(t'),v(t'),9(t'),t')dt'

to
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All integrals in this expression, and all similar integrals appearing elsewhere

in this paper, are understood to be line integrals along the characteristic

curve that passes through (r01-01It) and (rvz).

To obtain the number of bubbles in d T about (r,v,k) at time t, (14) is

multiplied by this volume element. However, a consistent representation for

the right hand side of the equation requires use of the Jacobian,

y(t~t') B 3(r(t) v(t) ,£(t))/ (-r(t') ,V(tl) ,£(t')),

which transforms the volume element from one point to another on the same

characteristic curve:

dTT = y(t,t')d7T'.

Using the expression derived in thp appendix,

y (t't ) o eP [T2 (t't')] (15)

the solution can be rewritten in the ccnvw-iient form

rv,,t)d = exp2[TI (t,t O)](,, 0 ,)d7To[ 1I(16)

+ exp[Tl (t,t') ] S1 (' ,V' ,', rt')d 7t 'dt,
to

where the abbreviations r = (t;r 0 ,z It ) = (t';i $ ,to) etc., have

been used. Fran this expression it is apparent that the number of bubbles in

d7t about (r v,k) at time t is a sum along the characteristic curve that passes

through (r,v,) at t. It is the nunber originally in d7 T0 about (r 0,Vo,0z0 ) at

t plus (minus) those added (subtracted) by sources (sinks) along the character-0

istic curve between (r0 ,V0 , 0 ) and (r,vk). If E1 o in (10) then the result

is amplified (attenuated) by the factors exp [TI ] because of the creation

(absorption) rate E. ip along the path. For t = t 0 + dt, (16) expanded in a Taylor

series to 0(dt) yields equation (2), as it must.
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Equations (7) and (16) are equivalent statents about the physical model

outlined at the beginning of section two. They fonmlly represent relation-

chips that exist between the bubble distribution, single bubble dynamics, and

the bubble sources. As such, these equations can be used for calculations to

investigate relationships among the three in real situations. For example,

if any two are specified, properties of the third can be inferred, either

directly or indirectly.

Prior to using (16) for calculations, a bubble dynamics model (a & v) must

be specified so that equations (11) can be integrated to obtain the character-

istic curves. A fair amount of information is available concerning single

bubble dynamics, and in the next section some of the inportant points are

summarized.

The distributed sources and fluid properties, as well as the appropriate

bubble dynamics model, are dependent on the particular situation being analyzed.

In section five the problem of gas bubble transport in the upper ocean is used

as the basis for scmne general remarks concerning bubble sources and fluid

velocity fields. Then equations (7) and .0) are written for a simple ocean

model, and some calculations are performed to demonstrate how (NC) can be used

to evaluate Lhe bubble distribution when the source function and bubble

dynamics have been specific.

It is significant to note that both (14) and (16) represent the distribution

frm a Lagrangian view point, ip(t;r 0 ,VoZ 0 t 0 ). Transformation to the more con-

venient Eulerian expression, l(r,v,Z,t), requires the inverse of equations (13),

namely r (t ;r,v,2.,t) , V (to;r,v,,t), and 2o(t ;rvv,,t). In general,
00 00 0

equations (11) will have to be integrated numerically to establish a mapping

between (roVo 0 ,to) and (r,v,Z,t), but often approximations can be made that

will yield analytical expressions.
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If S is a more ccmplicated function of than (10), the formal solution (16)

represents an integral equation for ). When analytical methods aimed at solving

(7) or (16) fail, the Neumann series solution to the integral equation can be

used to generate numerical results, if the series converges fast enough.
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IV. SINGLE BUBBLE DYNAMICS

In this section general expressions are derived for a and v, and some known

models of gas diffusion and drag are sumnarized for gas bubbles in liuids.

For the purpose of discussion in sections four and five, consider an inertial

cartesian r-ordinate system with the z-axis vertical upward and the origin at

the surface of the liquid. Let v be the bubble velocity and V(r,t),be the

transporting fluid's velocity relative to this frame of reference.

A. Acceleration

If a bubble of volurw C, containing fluid of density p, were completely

entrained (v = ) by a fluid of density p0 , it would experience the same

force, p0 d/dt, as would transporting fluid enclosed in the same volume. For

P 5 PO' partial entrainment occurs, and the bubble maintains a relative

velocity, U. E v-, with respect to the transporting fluid. Hence, the bubble

expeiences a drag force, %' which is discussed shortly in the context of

gas bubbles in liquids.

As the bubble roves rel-.tive to the transporting fluid it "drags" with it

an amount of fluid having a volume equal to sane fraction, a, of the bubble

volume. By Newton's third law, this adhering mass provides a supplemental

reaction term, -0 a P0 di/dt), that acts to increase the bubble's effective

inertial mass. In addition, there is a net buoyant force, ag(po-p)k, where

k is a unit vector vertically upward and g is the acceleration of gravity.

Carbining all of these forces in Newton's second law yields the follcwing

expression for acceleration:

a = Dap O Pp0 )) + (i+a) (d /dt)/(a+p/p )

+ (1-p/po )gk/($+p/p ) (17)
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in which d /dt = 3 /at + (V.Vr )V (18)

B. Drag on Gas Bubbles in a Liquid

Because of its theoretical and practical iiportance, the motion of gas

bubbles in liquids (e.g., air bubbles in water) has been actively st. "-ed

(Levich 1962, 180). The regimes of bubble notion are classified according to

Reynold's number, Re = upoZ/n, where n is the liquid's viscosity. Cbservations

of different-size bubbles rising in various liquids indicate that small

(Re < 1) and nedium-size (1 < R < 700) bubbles maintain a spherical shape,

whereas large (Re > 700) bubbles deform to flattened ellipsoids and very large

ebubbles (R e > 4500) are unstable and tend to break up.

For swall bubbles (2 ; 100l E 10-4n in water) the drag is viscous in nature

and is given by

SF -Kn t u, (19)v

with K = 4 7r for a perfectly clean bubble having a mobile two fluid interface

at its surface. However, most liquids such as water contain "surface-active"

materials that coat the bubble and dcstroy the mobilit-y of this interface. In

this case the relative velocity of the transporting fluid goes to zero at the

bubble's surface, and the bubble behaves like a solid sphere where drag is

given by (19) with K = 6 (Levich 1962, iH 70 and 81).

The flow past medium-size bubbles (100p ; Z < 2000p in water) is separated,

with the separation region occupying an area s I on the downstream portion of

the bubble's surface. Up to the separation point resistance that acts on the

L 'ble is viscous in rature with a contribution to the total drag given by (19)
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with K = 127. Past the separation point and into the bubble's wake the flow

is characterized by turbulent motion with a contribution to the tot, L drag

given by

=-0. 5K p 51 u W~)

vhere K is a drag coefficient with 0.65 > Kf > 0.55 for 200 < R < 1000
ff e

(Levich 1962, § 80 and 82).

In the absence of surface active materials, s1 is very small

(sI q Z2/Re for R > 1), so flow past the bubble is essentially unseparated

and the drag is given by (19) with K = 12n. On the other hand, when an area

s or the bubble is covered by a monolayer of surface-active material, the

relative fluid velocity in this region is zero, and flow separation occurs

there. In this case viscous drag (19) i. accompanied by the form drag (20)

with s I = s, and the latter dcainates the former when

S0/(47Tk 2) > 28(n/p 0 )2 /(g3)

(Ievich 1962, c 82). For example, when k = 500p, only 2% of the bubble's

surface need by covered by a monolayer of this material before the drag force

beccmes quadratic according to (20).

C. Radius Change Rate

For gas bubbles noving in a liquid such as water, radius changes are caused

primarily by changes in pressure, due to changcs in depth or surface tension,

or by gas diffusion across the bubble surface. Spherical bubbles (Re < 700)

that contain n noles of ideal gas at temperature T and pressure P are described

by

41Z 3/3 = nREU/P, (21)
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where R is the gas constant. For isothermal processes, (21) is readily

differentiated to yield

di _ (dn/dt _ dP/dt) (22)
dt 3 n p

Gas diffusion is included in the dn/dt term, while cmpression

and surface tension are included in dP/dt. Assuming quasi-equilibrium, gas

pressure is the sum of atrnospheric pressure, P, surface tension pressure, 2/k,

and fluid weight, -pogz, where -z > o is the depth and is the surface tension:

PP 0 -pogz + 2g/k, (23)

and

dP/dt = -pogVz - (2z/2,2)dt/dt. (24)

D. Gas Diffusion

As results of the next section will indicate, gas diffusion is one of the

more important factors affecting the bubble distribution. It is a complex

penc enon depending upon many influences that include the type of cgas in

the bubble, the gas diffusivity, D, in the transporting liquid, the gas con-

centration, C, in liquid contacting the bubble's surface, the gas concentration,

C., in liquid far away frcm the bubble, the presence of surface-active materials

in the liquid and on the surface of the bubble, the flow 'ield around the bubble

and the bubble radius. To simplify the discussion here it will be assuned that

gas inside the bubble is composed of one type of "average" molecule having a

single diffusivity, D.

If the Peclet nunber is large, P. E (uyiD) > > 1, the gas concentration

gradient is confined to a thin boundary layer on the surface of the bubble, and

diffrsion between C and C occurs across a small distance d u 2/Pel/2. Hence

(Levich 1962, j 14 and 72)
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dn/dt = -GZ 2 (C-C), (25)

where the coefficient G is generally a function of Z, u, and D. For specific

applications in which individual cmyonfents of gas must be nonitored, equation

(25) will have to be generalized.

Typically (n/p)/D ', 103, so there is a wide range of bubble radii for which

the Pclet number is large (P > 1) but the Peynold's number is small (R < 1).e e

For that case (small bubbles),

G a (7e/6 ) 1/2 (26)

in the absence of surface-active material (Levich 1962, § 72 and 91). In the

presence of surface-active material, the flow field aroun& a small bubble is

like that around a solid sphere, and G becoms (Levich 1962, 14)

G = 8 (D2u/2) 1/ 3  . (27)

A representative value for u is the terminal speed, UT, of small bubbles rising

in a quiescent fluid. Equating the drag (19) to the buoyant force, 47tk3gpo/3,

which assures p/pI' < c 1, results in the expression

uT = (47/3K) (gpoZ2/n) , (28)

where K = 47 in the absence of surface-active materials, and K = 67 in their

presence.
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At moderate Reynold's numbers (medium-size bubbles) the flow is separated,

but the region of separation, sl, is generally small. If gas diffusion acros3

s 1 can be neglected, (25) represents the gas diffusion with G equal to (26)

multiplied by r3 (Levich 1962, § 91).

If liquid in contact with the bubble surx ice is assumed to always be

saturated with gas at the pressure P (in atmospheres) prevailing inside the

bubble, then C = EP, where K is the absorption coefficient (kg, -3.a n 1 ) for

the liquid-gas system. Defining the partial pressure f - C/K (in atn) of gas

in the transporting fluid, (25) can be rewritten

dn/dt = -GKk2 (P-f). (29)

Under laboratory conditions, Wyman, et al (1952), measured the rate of

solution and the change in composition of air bubbles in stirred sea water, as

a function of depth. These experimental results follow very closely

dn/dt = -476X 2 (P-f) (30)

with 6 4.4 x 10- 5 moles m-2sec-latn- 1 . Using equations (26) and (27) with pub-

lished values of D and K for oxygen and nitrogen in water, estimates of GK are

found ccnparable to 41T6, but generally larger. The presence of surface-active

materials that retaz~d gas diffusion and reduce the efl-,ctive absorption

coefficient across the bubble's surface may have contributed to the discrepancy

(Fox & Herzfeld 1954).
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V. APPLICATION TO THE UPPER OCEAN

The purpose of this section is to briefly discuss application of bubble

transport theory to the description of gas bubble popilations in the upper

ocean. Because it involves a variety of interrelated phenoena pertaining to

different disciplines, this is a difficult subject to analyze. Also, there

is only limited informtion available upon which to base mathetical -models

of bubble sources, fluid velocity fields, gas diffusion rates, etc. However,

it is the author's opinion that bubble transport theory is a useful tool for

interpreting data and relating phenarena that affect the distribution.

Tb begin, it is appropriate to stumrize same observations concerning

bubble sources, S, and fluid velocity fields, , in the upper ocean and to

nke a few remarks concerning analysis. Then, to demonstrate an application

of bubble transport theory, some sample calculations are performed and

interpreted.

A. Bubble Sources and Fluid Velocity Fields

Physically one might consider bubble sources to be segregated into three

categories according to depth: Those on the ocean floor, those concentrated

at the surface, and those distributed throughout the medium, principally near

the surface. Mathematically these classifications are convenient for analysis

since sources in the first two categories can be incorporated into (7) and (16)

either as boundary conditions or as plane sources.

The first category includes sediment-initiated bubbles which often contain

organic gas. For example, McCartney and Bary (1965) measured relatively large

bubbles with radii between 450p and 800p caming off the bottam of Saanich Inlet,

British Columbia, and speculated that these bubbles conta_. ed methane.
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In the second category are bubbles generated at or very near the surface

by wind and wave action, precipitation, and captured aerosols. The subsurface

measurments of Blanchard and Woodcock (1957), Glotov, et al (1962), and

Medwin (1970) imply that most of the bubbles associated with breaking waves

have radii less than 200P. On the other hand, experiments conducted by MLnahan

and Zietlow (1969), in which a small volume of seawater was poured into a tank

of the- same, indicate that the cloud of bubbles formed by the descending plume

of mixed air and water contains an appreciable number of 200p to 1000) bubbles

as well. In addition to wave-generated bubles, rain and snow nucleate bubbles

at the surface which have radii predaninantly less than 50u (Blanchard and

Woodcock 1957). To explain the excessive sound attenuation and scatter

observed in near-surface water at high frequencies (f > 60kHz), Medwin (1970)

speculated that continental aerosols may be the primary source of small bubbles

(k < 50p) near the surface.

In tne third category are bubbles initiated within the volume of the upper

ocean. Internal wave action, radiation, and biological activity, such as photo-

synthesis and marine life gas emissions, have been postulated to be responsible

for many of the smallest bubbles (Z < 60p). Also, sae of the volume sources

may be associated with pressure fluctuations caused by wind-driven surface

waves. Pressure changes and turbulence may nuclate small bubbles at distri-

buted cavitation sites, while the vertical fluid velocity and turbulence

created by breaking waves introduces larger bubbles below the surface.

When a wave breaks and air is rapidly mixed with water, the bubbles fcrmed

are entrained by a strong vertical velocity field; these bubbles have been

observed as far as three wave heights below the surface (Kanwisher 1963). As

the strong downward currents decay, the bubbles tend to ri. a under buoyancy

with motion modified by the rsmaining fluid velocity field (ref. equation (17)).
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The largest bubbles rise most quickly and reach the surface before going into

solution while the smallest bubbles succumb to gas diffusion (IeBlond 1969).

As'& result, the most prevalent bubble within a few meters of the surface should

have a radius between the tvo extremes, an assertion supported by the data of

Yedwin (1970) and Glotov, et A (1962) who measure distribution maxima at 9 0V

and 60p, espectively.

Shonting (1968) has measured the autospectra of particle motions in the

upper ocean and shown that the daninant peaks are associated with the fre-

quencies of the surface waves. The spectral energy decays exponentially with

depth in a way that attenuates high frequencies the most rapidly.

B. Exanple

Consider a one-dimensional, steady state ocean Ln which all velocities are

vertical and in which all functions depend spatially on depti only. In this

case the bubble transport equation reduces to

v it +a +v = - Zt -S, (31); a + tt

whereO (z,v,z) is the distribution function, S(z,v,Z) is the distributed source,

vz = v is the vertical velocity, az = a(z,v,9.) is the vertical acceleration,

v(z,v,2) is the radius change rate, and Et = aa/av + 3v/ak.

The characteristic equations for (31) can be written with z < o chosen as

the independent parameter. This choice is equivalent to dividing equations

(11) and (12) by (llc):

dv/dz = a(z,v,Z)/v, -< < v < - & v(z ) = vo; (32a)

dt/dz = v(z,v,z)/v, o < Z < - & (z0 ) = ko; (32b)

d@/dz + ('Zt/v)o = S(z,vZ)/v, o < 0 < & (z O) = z(Vo,9o ) (33)
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Simultaneous integration of equations (32) yiel the family of characteristic

curves

{z, v(z;z /v Z), k(z;z ,vIQ; z < 01 (34)

and bubble trajectories in (x,y,z) space are vertical straight lines.

A forml solution analogous to (14) is readily dctained by integrating (33)

along characteristic curves (34). The form analogous to (16),

v(zv,£)dvdX = v0 (z0 v0,o,)dvod O + fS(z',v',£')dz'dv'dz', (35)

z
is derived uising the Jacobian,

a (V , Y) v ' , _ , , ,

y(z,z') - = -- exp E j (z)dz"/v"]. (36)

Expression (36) follows fran the differential equation

dy/dz = - (a/v2))y (37)

obtained when characteristic equatic.-z (32) are corbined in a manner similar to

the general schene detailed in the appendix. Of course, all integrals

appearing in this section are taken along characteristic curves (34), where

abbreviated notation v' -= v(z';zoV0 ,9 o) t 2' = z(z";zo1v0 , 0), etc. has been

used in (35) and (36).

Physically equation (35) states that the flux of bubbles, v4, at the point

(z,v,Z) ,equals the flux of bubbles, v0 o, at the point (zo,v 0 to), plus (minus)

the bubbles added (removed) by distributed sources (sinks) along characteristic

curve (34). Further physical insight can be gained by reflecting on a situation

where there are no distributed sources, S = o, so that p(z;z0,V 0 )dvdk =

(v0 /v)¢(zoVo,9o)dvo d . If there is no fluid velocity, bubbles rise under

buoyancy at tbrminal velocity and may shrink and slow down or expand and speed
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up (IeBlond 1969). Tbose belonging to the Lagrangian group (z0 V0 ,o0) whose

velocity and radii increase with z have a density that decreases as z increases

because the bubbles at z + dz are running away from those at z. Cn the other

hand, those whose velocity and radii decrease as z increases have a density

increasing with z since the bubbles at z are piling up on those at z + dz.

1. Characteristic Curves

A first step toward using (35) to calculate the bubble distribution is the

specification of a(z,v,k) and v(z,v,z) and the coarputation of characteristic

curves (34). A useful expression for the radius chanqe rate is obtained by

substituting (21), (23), (24), and (29) into (22) and solving for dz/dt. Then

(32b) beccoes

dk/dz = v/v = {(Z/3)-(GK/4r) (R) [D(l-f)--z + (r/Z)I/v}/[D-z + (2/3) (F/i)] (38)

where (-z) is the depth, f is the partial pressure (in atmospheres) of gas in

the water,

D =Popg 2 10 meters

is the depth of sea water equivalent to one atmosphere, and

r - 2 /p o g 2- l.47xi0- 5 meters 2

is a surface tension coefficient in water. Note that the r/k tens are

negligible unless the bubbles are very wall (k 30p).
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Acceleration is given by (17) with the drag force given by (19) or (20).

If the fluid velocity is negligible ( 2 o), the bubbles rise very nearly at

their terminal velocity, vT. This is seen in Figure 1 which was obtained by

simultaneously integrating equations (32) numerically* for bubbles of various

initial radii, 2o' starting fra rest at zo = -20 meters. Small bubbles

(z < i00vl), and mediuT-size bubbles (100p < z < 2000p) with viscous drag dai-

nant, rise at terminal velocity vTi given apprcximately by equating (19) to

the buoyant force:

VT= (g/(K'z))2. 2  (39)

where K' = 1 and K' = 2, respectively, and where

a- (9/2) (/p) - 4.37x10- 6 mters2/sec

in water. When medium-size bubbles have a sufficient fraction of their surface.,

e= /(47,2),

covered by a nmolayer of surface active material, turbulent drag daninates

viscous drag because flcw separation occurs at the boundary of sO. They rise

at terminal velocity VT2 given approximately by equating (20) to the buoyant

force:

vT2 = (g/) 1/2Z1/2 (40)

where f E (3/2)Kf e - 0.9c.

*All numerical integrations alluded to in this section were carried out using
gaussian quadrature or optimal fourth rank Runge-Kutta (Ceschino and Kuntzmann
1966, p. 67).
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Datta, et al, (1950) has averaged the results of several different observers

to produce an empirical curve for the terminal velocity of air bubbles in water

as a function of their radii. Values produced by (40) agree with this

empirical data for 300p < £ < 1000p if the surface fraction, £, is reduced mono-

tonically as the radius, P, increases. This leads one to speculate that as the

radius and terminal velocity increase, rapid liquid motion at the surface either

washes away surface active molecules or carries them to the rear where they form

a canpact, saturated monolayer (Levich 1962, p.447).

In general the terminal velocity of a rising bubble is not given simply by

(39) or (40) during its entire lifetime. Many bubbles shrink or expand as they

rise (LeBlond 1969) and thereby transition from the regime of predominantly

turbulent drag to the regime of predaninantly viscous drag, or vice-versa. The

treatment of separated flaw in Ievich (1962, § 82) suggests that the sum of (19)

and (20) should be a useful model for the drag on medium-size bubbles in the

transition region. Using this model in (17), (32a) can be written

dv/dz - -[((/a)/.] [(v-v) (v+v+)/v], (41)

where

v T2 [±l + (I+4Q2 ) 1/ 2 ]/(2Q) (42)

with

Q s vTl/vT2 = (/Z)3/2

and

Nzarical integration of (38) aid (41) demonstrates that the bubbles released

from rest rise with terminal velocity vT = v_ (figure 1). This approach appears

to have some merit since (42) for v_ yields values close to the empirical curve
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by Datta, et al (1950) and since the model shows the proper lidting behavior:

For k < Z, viscous drag dominates turbulent drag in (41) and

V- = VTI - VTI{Q 2 + O(Q&)}

for Z > X, turbulent drag dcminates in (41) and

V = VT2 + VT2{O.Q- 1 + O(Q-2)}.

Canputation of characteristic curves (34) in a quiescent fluid ( 0 = o) is

simplified because the bubble velocity is always very nearly the terminal

velocity, VzVT(z;zo,ko), and is essentially independent of vO . Either (39),

(40), (42), or empirical values for vT can be used in (30) to obtain Y(Z;Zoo)

if (39) or (40) is used and surface tension is neglected, closed analytical

expressions result: For v = vT, r = o, and f constant,

9 = T(z; zO, O)= { ( 2) 3 + (g/4' ) [ (z2-Zo2)-2D (1-f) (z-zO )  1 }3,

(43a)

with an inverse transformation

-t = £Tl(Zo;z,z); (43b)

for v = vT2, r = o and f constant,

(D +Dz [1- .

T2 (Z;Z0') = ( ) o +Z-/

1D-z0  j
-3D(2-f) il -- ] (44a)D-z
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with amn inverse transformation

Zo = kT2 (Z 0 z,9). (44b)

Otherwise, (38) must be integrated numerically.

Tb evaluate accuracy of approximate analytical results (43) and (44), 9.TI

and ZT2 are plotted vs depth in figures 2,3, and 4 and compared to T (z;z , 2o),

obtained by numerically integrating (38) with v = v_ given by (42). For the

sake of example, f = 1 and RrGK/4-, = 106 meters/sec (yman, et al 1952) are

used in all three models, and k Tl(Z), T2(z) and k T(z) are represented for

various initial radii, ko, at z° = -20 meters. Note that ZT1 is a good

approximation to RT for 30u < P < 100i (viscous regime) and that k T2 closely

approximates ZT for Z > 400P (turbulent regime). Neither (43) nor (44) is

valid for Y. Z 30P because they neglect surface tension, and neithier is accurate

in the transition region 100 < 9 < 400p.

An example of the phenomenon analyzed by LeBlond is evident in Figures

2-4. As a bubble rises under buoyancy it tendls to expand as the hydrostatic

pressure deczeases, but it also tends to contract as gas diffuses across the

bubble's surface. If a bubble's radius is less than scae critical radius, ",

it rises too slowly, shrinks monotonically, and disappears before reaching the

surface because gas diffusion dominates hydrostatic expansion. If its radius

is greater than another critical radius, ka, it will expand monotonically as

it rises because hydrostatic expansion dominates gas diffusion. For an initial

radius between Z a and Zb, the bubble's behavior is not necessarily monotonic;

it may or may not reach the surface.

Bubbles with radii less than z will rise a finite distance before

disappearing, and ccputed values of Za and z depend upon the gas diffusion

model used as well as paxameters like z0 . Examination of 2T in Figures 2-4
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indicates that ka "' 400P and b N 250p, while a 1001 bubble rises about 1.1

meters. Unfortunately there is usually insufficient information available

for an accurate specification of the gas diffusion phencmenon. For example,

in (29) the gas diffusion rate depends not only upon the partial pressure f(z),

but also upon the parameters G and K which are determined by the type of gas

and the presence of surface active materials. This data is oftsn

unavailable for the ocean. Since characteristic curves and bubble distributions

(ref. Figures 5-1"Zare sensitive to the gas diffusion rate, specification of

the unknown parameters is important, and it may require a sequence of educated

guesses refined fran ccnmparisons of ccnputed and observed distributions.

If the fluid velocity is not negligible and the problem is multi-

dimensional, the ccnrutation of characteristic curves is more difficult. In

general, equations for xvy,Vxvy, and vz must be integrated simultaneously

with (38). However, if d/dt given by (18) is small ccapared to the other terms

in (17), a useful approximation (that eliminates the th-ree characteristic

equations for velocity) might be

V Z V + V~

where vT is the terminal velocity of the rising bubble.

2. Bubble Distribution

Since bubbles rise in a quiescent fluid at very nearly their terminal

velocity,
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should be a good approximation where vT is given either empirically or by (39),

(40) or (42). kI this equation

V(,() - lz,v, )dv (46)

is the 'radius density," the number of bubbles per unit volme per unit rad.s.

Equation (35) can be integrated over v to yield
i(47)

(Z,k) = (/To/VT ) (Zoz 0 (Vo/RZ) + (1/VT) s(z',)(3z'/Dk)dz' (47)

0

with

SWX)(z't',Z'dv',(48)
-w

where dko = (a9.o/aZjd and dz' = (W/'/,k)dk have been used. The bubble density,

l 
( z ) - l c ( z , ) d , ( 4 9 )

Jo

which is the total number of bubbles per unit volume at depth z, regardless of

radius, is given by (47) integrated over all radii,

oz~(Z) = foo (vT,/VT) (zo, Z0)dko + / o" l (1/vT)s(z'..92) (a3'/D)dz'd,0

0 (50)

It must be remnibered that vT and vTo, as well as Y and 9', are functions of to

and that integrations in z are taken along the characteristic curves

{z',vT(z';Zok o ) ,kT(z"Zoko ) :zo 0 <' %<z-, (51)

where k T is obtained by integrating (38) with v = vT.
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For most applications the radius density provides adequate information.

To calculate this function for a given z and 9, one needs H9'/3, ', and

s(z',R') at points on the characteristic curve that passes through (z,k) so

the integral in (47) can be evaluated. Using notation from the appendix,

a9.'/at = 1/y 77 (z,z'), (52)

where Y77 satisfies the differential equation obtained by setting v = vT in

(38) and taking the partial derivative witht respect to ':

dY77 /dz = F77 y'77 (53)

with the boundary condition

Y7 7 (ZZ) = 1

where

F7Z;z0 o) = {(2r/z 2 ) [Z-( 3 61U/vT) (D(l-f)-z+r/)] [3(D-z) + 2r/Z]- I +

[1 + (36r,/vT) [r/P 2+(D(l-f)-z+r/P) (avT/a)/vTi ] }[3(D-z) + 2r/P] -1 (54)

in which (GK/4T) = constant = 5 (ITymn, et al, 1952) has been used. When the

approxination vT = v_ (42) is used,

avI/az = (3 vTl/Z) [i + 4Q2 ] - '/2 - v_/A. (55)

rfl e solution to (53) is

Y7 7 (z,z') = exp[,(z,z')] (56)

with z

5(z,z') F77(Z ;z0izodz
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and it is obvious that

Y7 7 (z,z') = Y7 7 (ZrZo)/ 77 (z' ,zo )  (57)

Using (56) and (57), (47) can be written

(z, k) = [exp[-9 (z,z )]/V ' Zo, o) +

z (58)
+ z s (z',V')exp[Y(z',zo)]dz' )

0

Once the source s (z,£) has been specified, (56) can be used to evaluate the

radius density at points along any characteristic curve (51) obtained by

integrating (33). In the following discussion of sample calculations,

J(z,k) will refer to the radius density when the approximation vT = v_ (42)

is used.

If either approximation (43) or (44) is appropriate, then either

3 '/ak = [(D-z)/(D-z')] [k2/Z,2] (43c)

or

22/a2, = [(D-z)/(D-zI).]I/2[2./Z'] /2, (44c)

is used in (47) to obtain the approximte radius density 1 (z,t) or @2(z,£),

respectively, at points along the characteristic curve (51) with £T = z' TI"

zT = zT2' respectively. If gas diffusion can also be neglected (GK = o) then

both approximations reduce to

z = 9T3 (Z;Zo'o) = [ (D-z)/(D-z)]1/3t (59)

which can be used in (47) and (51) to obtain the approximate radius density

3 (z,3).
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3. Numerical Results

For the sake of example, consider the situation investigated by nCartney

and Bary (1965) who acoustically measured rather large gas bubbles ascending

fran the bottom o. Saanich Inlet, B. C., and inferred the bottam source repre-

sented in Figure 5 from the ascent velocities. If we model that ocean as 1-D

and quiescent, then equation (47) can be used to iLfer the radius density

throughout the volume. Since volume sources producoe mainly smaller bubbles

that their measurements do not include, only the plane source _ (z , k 0)

(Figure 5) at z° = -197 meters is considered in this sample calculation, and

(47) reduces to

(z,9) = (V-o/vT) (zo,9o) ( oVa/). (60)

Using f = 1, approximations ",i,2, and 13 to the radius were computed

at various depths between z = -197m and z = 0. (z,k) (solid line) and

3 (z,9) (dashed line) are plotted in Figures 6-10 at the depths z =-172m,-1 4 7m,

-122m, -97m, -47m, and Om. Although actual calculations do not yield

precisely rectangular distributions for z d z, and 3 and drawn

as perfect histograms because the error introduced is negligible.

While 13 neglects gas diffusion and surface tension, I includes these

effects. For the gas diffusion mdel used, all bubble radii for which

6(Z, ) is nonzero lie below the critical radius 'b , so these bubbles will

shrink monotonically as they rise and will disappear before reaching the surface.

The distribution I is seen to shift toward smaller radii as depth decreases,

until even the largest bubbles have disappeared by the time z ' -90m, so only

3 is shown in Figure 10. Since = o in the model used to calculate 3' these

bubbles necessarily expand as they rise, and, the distribution shifts monotonically

to larger radii.
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The bubble density is simply the area under the histogram. As z increases

from -197m the density of ¢ (z, Z) initially increases since flux is conserved

and the bubbles are slowing down and piling up. However, nearer the surface,

most smaller bubbles have succumbed to gas diffusion and the density starts to

decrase toward zero. For 13 (z,9.) the density is seen to decrease as z

increases since the bubbles are accelerating and becoming spread out.

The distributions P2 and P3 are not shown because neither follows ¢ closely.

2 is the best approximation, but these bubbles do not quite shrink fast enough.

Same of the bubbles in Pi contract monotonically while others contract and then

expand. For the model used most of the bubbles originate at the bottom with

radii in the transition region, 9. <, where neither approximations (43)

nor (44) are valid.

Interestingly enough, the experimental results of McCartney and Bary (1965)

indicate the bubbles fran the bottcm of Saanicn Inlet expand as they rise

according to the distribution 03, which ignores gas diffusion. Thus, it appears

that diffusion is sczehow inhibited across the surfaces of these bubbles which

are composed of "gas released from the highly organic, anaerobic sediment of the

bottan," possibly methane. Either the water was saturated with respect to the

gas (es) in the bubbles, or these bubbles were coated with an active material that

severely impeded gas diffusion. Mile it is significant to note that 0 is cal-

culated using GK/4w = 6 (eqn. (30)), which is based upon experiments with

relatively clean air bubbles (Wymar, et al 1952), and that f = 1 at all depths

is not physically realistic, certain qualitative conclusions, based on a can-

parison of € and 3 to the observed distribution, are still valid. For example,

gas diffusion appears to be negligible in this situation; and gas diffusion

would profoundly affect the bubble distribution. The latter observation tmphaizts

the fact that results are strongly dependent on the bubble dynamics and ocean

models used.
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As the basis for a second sample calculation, consider the supposition

that the observed bubble distribution indicates the fnctional dependence of

the volume source. Tb test this idea, consider a hypothetical volume source

suggested by the measurements of Shulkin (1968) and Medwin (1970):

s (z, ) = eZ/hL (k) (61)

where

(/-')3" 5 for 2. > k'
L(Z) = - (62)

0,for 0 < £ < 9.'

with h = 10 meters and Z'= 201. Physically, a source decaying exponentially

with depth might arise from photosynthesis, light sensitive bacteria, wave

action, etc. Medwin (1.970) has observed an exponential behavior for small

bubbles (2 600), and both Medwin (1970) and Shulkin have observed that the

near surface bubble density appears to fall off like some power of the bubble

radius. The radius spectrum L() - 3 "5 is chosen aoc! -in example.

Assuming that the source is zero below z = -30 meters, and that f = 1,

the radius density was cmputed using vT = v in (38) and (58). Figures 11 & 12 pre-

sents log-log plots of f(z,k) (solid line) and s(z,k) (dashed line) vs radius

for four depths, z = -29m, -20m, -10m, and Om. A comparison of t and s indi-

cates that the distribution follows approximately the functional form of the

source for Z > loo0:

(z,Y) - eZ/hI " 3 .5  (63)

h'= 6.5m. The distribution at z = -29 meters does not fit this pattern

because it is too near the region assu.. to be devoid of bubbles.

For P. < 100P the functional form of I is more complicated and does not

necessarily follow (63). Except at the surface, the curves are all concave

down which indicates a deficiency of small bubbles. Gas diffusion and surface
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tension cause small bubbles to disappear -uch nrre rapidly than large bubbles.

While the small bubbles observed at a given depth originate primarily from

loc.'.± sources, many of the larger bubbles observed originate at sources distri-

buted well below that depth. Hw;ever, for the model used, gas diffusion

decreases rapidly with depth, so there is less discrimination against the small

bubbles in the near surface region. From Figures 11 and 12,

1(0,£)' k -3.75 (64)

These results indicate that if gas diffusion is significant, the small

bubble sourcez will probably fall off to a higher power in 2 than the observed

distribution, but the larger bubble sources may have roughly the same

,-dependence as the observed distribution. Furthermore, the depth dependence

of the bubble solirces is likely to be functionally similar to that of the

bubble population. Of course these qualitative relationships between bubble

population and bubble source are not likely to be applicable unless the model

is valid. For example, any of the following can have a profound influence on

the bubble distribution and its relationship to the source: A significant

fluid velocity, o, a partial pressure, f(z), that varies with depth, or

surface active materials that impede gas diffusion (e.g., lo. r K in

equation (24)).

The distributions l and 2 were also computed for this example but are

not displayed. As expected, l approximates I fairly well for 30p < £ < loop,

and 12 is a good approximation to I for Z > 350u.
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VI. CONCLUSIONS

The main purpose of this paper has been to develop the gen.eral frarework of

bubble transport theory and then to demonstrate its application. The bubble

transport equation and its solution relate the enserble average behavior of

a bubble population to dynamics of a single bubble and to prope-ties of the

transporting fluid. Among the most important aspects of gas bubble dynamics

in liquids are bubble gas diffusion and drag, which depend upon many different

physical parameters. For the upper ocean, information concerning these para-

meters, as well as information about bubble sources and fluid velocity fieldz,

is usually incoplete. In this case, bubble transLrt theory cannot be

used to predict bubble distributions; its primary utility is as an analytical

tool for investigating relationships anong the various ccaplex factors that

affect the distribution and for refining models of the upper ocean. Future

work will be concerned with analysis of more complex ocean models.
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APPENDIX

It is shown here that the Jacobian,

y (tWt) -a(r,,) (A-1)

a ('r,"v , ')

used to transform the volme elmnent d7r between two points on a characteristic

curve,

d3rd3vdZ = y(t,t')d 3r'd3v'dV', (A-2)

satisfies the differential equation

dy/dt = Ety. (A-3)

Using the boundary condition y(trt') 1, this equation can be integrated to

obtain t

y(t,t') = exp t (t";,Vo )de (A-4)
Jti

where the indicated integration is along the characteristic curve passing through

(r,v, )and (r,v,k).

Referring to the notation (5), define the elements of a 7 x 7 matrix

y = qi/qj', ij = l,2,...,7 (A-5)

then the Jacobian is the determinant of th is matrix,

y = det((Yi)) = (-1) , (A-6)
J 1

(or j)
'C .th

where Ci. is the "minor" of the element yij (Cij is y with the i raw and

thj column deleted).
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If the following elements are defined,

-V x R2 Vy, R3  Vz R4 - a

(A-7)

R 5  a y, R 6 - a , and -
(

then the characteristic equations (11) can be written

dqi/dt = Ri(ql,q 2 ,...,q7 ,t) i = 1,2,...,7 (A-8)

Taking the partial derivatives of these equations with respect to the qj' and

using the chain rule, the set of differential equations for the Yij is obtained:

d y i j D R i 7i j - 2 , . !( A 9

These equations are used to expand the derivative of (A-6) taken with respect

to the parameter t:

dy (-i) °-+j d c.. -j i+j 3-0
dt = dt C]ij._ aqkI Ykj (-0

i j i,j k

Using (A-6), this expression can be rearranged to yield the following:

dy i+j D i DRi
(-l) Ci~j Tq-iYj+ aiYj

i,j ki

(A-11)

-Y 7 (-1) C.
i (-1) kj ij

i i,k3Ai
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The tenm Cij is zero since kWi. This can most

easily be seen by expanding each determinant C.. by minors of the elenents

Tkm' J

Since

qi  v . a =-k z (A-12)
i

the result (A-2) is obtained.
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LIST OF FIGURE CAPTIONS

Figure 1:

The velocity, v, of bubbles starting at rest and rising frcn an initial

depth z° = -20 meters. The initial radius is ZO , (in microns), the terminal

velocity is vT, and (z-z o ) is the height above the release point.

Figures 2, 3, and 4:

Bubble radius in microns as a function of depth in meters for various

initial radii, XC0 (at z0 = -20 meters),calculated using three different expres-

sions for the terminal velocity, vT. The solid line is £T' obtained by inte-

grating (38) wi-Pth v = v (equation 42), the broken line is zT!(equation 43a), and

the dashed line is £T2 (equation 44a). The gas diffusion model used (Vly.man, et al

1952) assumes a uniform partial pressure of one atmosphere, f = 1, and

RTGK/47 = 10- 6 meters/second.

Figure 5

The distribution, (z0 ,z 0 ), in relative units, of bubbles rising off the

bottan of Saanich Inlet, B. C. (MCartney and Bary 1965) where z = -197 meters

and the bubble radius, £o' is in microns.

Figures 6,7,8, and 9:

The distributions -' (z, Z) (solid line) and 3(z,z) (dashed line) in relative

units at the depths -172m, -147m, -122m, and -97m where bubble radius,

., is in microns. 3 neglects gas diffusici while assumes a uniform

partial pressure of one atmosphere, f = 1, and RTGK/4r = 10-6  meters/

sec (Wyman, et al 1952).

Figure 10:

The distribution, 3(z,k), in relative units, vs radius, Z, in microns, for

z =-47m and z = o.
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Figures 1i and 12:

The distribution, (z,k) (solid lines), in relative units, vs radius, k,
in microns, for various iepths, in meters, fran a distrih ited source, s(z,z)

(dashed lines; equations 61 and 62). The same gas diffusion model used tx

calculate P in Figure 5 is used in this example.
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