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I. INTRODUCTION

The solutions of many experimental and engineering problems depend upon a
knowledge of bubble distributions in a fluid medium. For instance, gas bubbles
near the surface of the ocean are important in a variety of subjects that
include underwater sound propagation (Shulkin 1968 & 1969), meteorology
(Blanchard & Woodcock,K1957), sea surface chemistry (Sutcliffe, et al 1963),
cavitation (Fox and Herzfeld 1954), and air-sea gas exchange {(Kanwisher
1963). Several efforts have been made to measure hubble densities in
the ocean (Blanchard & Woodcock 1957; Glotov, et al 1962; McCartney and Bary
1965), the most recent made by Medwin (1970). To infer near surface bubble
populations fram in~situ measurements of acoustic attenuation, Medwin exploited
the fact that a gas bubble's scattering and absorption cross sections for sound
at the bubble resonant frequency can typically be 1000 times its geometrical
cross section. For this reason large bubble densities near the sea surface can
significantly affect underwater sound transmission.

Many complex factors affect bubble distributions in a fluid such as the
ocean, and same of these phencmena have been carefully investigated. For
example, LeBlond (1969) examined gas diffusion fram an ascending bubble, and
Ievich (1962, Ch. 8) is an excellent reference on single bubble &ynamics. The
purpose of this paper is to develop and to demonstrate new analytical tools
for investigating relationships between cbserved bukble distributions and the
rhenomena which create, transport, and eliminate bubbles.

In sections two and three the formalism of transport theory is adapted to
the general problem of describing bubble populations in a moving fluid. The
bubivle distribution, as a function of position, time, velocity, and radius,
satisfies a Boltzmann-type transport equation that is derived. Using a
Lagrangian viewpoint, the formal solution is expressed as a line integral of

the volume source function along characteristic curves. In section four general




expressions are cbtained for bubble acceleration and radius change rate and
same known models of gas diffusion and bubble drag are introduced. Finally,
y in the context of gas bubble transport in the upper ocean, a simple model is

chosen to illustrate the utility of transport theory. Calculated results

clarify relationships between observed bubble distributions, proposed bubble

source mechanisms, anG kaown models of single bubble dynamics.




IXl. THE BUBBLE TRANSPORT EQUATION

Consider the problem of describing the bubble distribution —as a function
of position, ¥, velocity, V, size, &, and time,t — in a moving fluid that may
contain bubble sources and sinks. In general, a "oubble" might be considered
any simple, closed region containing a'fluid samehow different fram that of
the transporting medium. Since examples chosen in this paper refer primarily
to spherical gas bubbles, % will represent the bubble radius. However, if the
bubbles are not spherical, then % might represent the radius of a spherical
volume equal to the actual bubble volume, or one might wish to generalize the
description to include more than one parameter for size.

Suppose that the time evolution of the position, the velocity,
and the radius of each bubble depends only upcn the properties
of the medium and the bubble characteristics and is statistically independent
of the state of any other bubble. Then define the bubble distribution function,
v(¥,¥,2,t)a%nd3de, as the mean mumber of bubbles at time t in the volume d3r
about T, with velocity in d%v about v and the radius in df about £.* Further-
more, if bubbles int :ract with one another, suppose that no more than two
interact at any one time and that the collision time is short compared to the
time for y to change appreciably. Then y satisfies a Boltzmann~type ‘ransport
equation whose solution describes the ensemble average behavior of the bubble
population in temms of single bubble behavior.

At this point it is convenient to define the seven-dimensional volume ele-
ment d7t z @%rd3vde and to adopt a Iagrangian viewpoint. In the time interval

(t,t+dt) the bubbles that were in d7t about (;,3,9.) have moved to a new volume

*E.q., in the Cartesian representation, position components lie in the intervels
(x,x+dx), (y,yHdy), and (z,2+dz); velocity components lie in the intervals

(Ve Vyetvy) . (Vy,VHdvy) , and (v, Vv,1dvy) 5 and the radius is in the interval
(2,24d2).




T——

d’t about (z',v',4'), where the primed quantities refer to the time t+dt and
the unprimed quantities refer to the time t. This transport occurs by a change
in position due to a velocity, vz dxt/dt, by a change in velocity due to an
acceleration, a =z d";/dt, and by a change in radius due to a rate of change,

v = dg/dt:

T + vat + 0(at2?)

rt =
' = T + adt + 0(at?) (1
o' = g + vdt + 0(dt?)

(Taylor's series about time t.) For gas bubbles in the ocean and elsewhere,
the acceleration results from several influences that include gravity, buoyancy,
and entrainment of bubbles by the fluid, while the rate of change of bubble
radii is caused by hydrodynamic campression, surface tension and gas diffusion.
Expressions for 2 and v are dbtained in section four where single bubble
dynamics is discussed.

Conservation of bubbles demands that the number of bubbles in the volume
element at time t+dt, w(i",?',z',t+dt)d71', equals the number that start in the
volume element at time t, ¢(r,v,2,t)d’r, plus (minus) any bubbles that are

introduced (lost) by distributed sources (sinks), S(¥.V,%,t)d7tdt:

W(',9, 00, end’t - p(&Y,8,0)d87 = 8(T,v,2,0)d7wdt + 0(dt?), (2)

where S(Z,¥,2t)d7t is the rate at which bubbles are introduced into a7t about
(x,v,2) by distributed sources. To develop equation (2) it is sufficient to
note that terms of O(dt?) will disappear in the limit dt - o. Therefore we

expand §' = w(if',if*',z',tﬁt) ir; a Taylor series about v = w(i:’,?r’;f.,t) and keep

8




terms through O(dt):

v' =y + (Bu/et)dt + ($-€r¢)dt + (3.3v¢)dt + v(3p/a2)dt + 0(de2)  (3)

where Wr(-) = (3(-)/ox,9(")/8y,2(-)/32) and '\i,(-) £ (a(°)/avx,afa)/avy,a(-)/avz)

are Cartesian representations of the "del" operators in position space and

velocity space, respectively.

To preceed, d7t' must be expressed in terms of d7t:

d’t' = y(t+dt,t)d7x (4a)
whexre

2 (2,9, 2")

v (tHdt, t) 2 (%7, 1) = det (( qJ!/ q;)) (4b)

i1}

1,5 =1,2,...,7

is the Jacobian with

qlsx,qzzy,q3Ez,q45vx,q55vy,q65vz,andq752; (5)

ql' s x', qz' =y', ete.

The expression derived for y in the appendix can be expanded in a Taylor series

about t, or equation, (1) can be used to conpute the determinant in (4b) directly.

In either case the result is
y(t+dt,t) = 1 + (%’V.E)dt + (av/e2)dt + 0(dt?) (6)

Substituting (3), (4) and (6) into (2), oollecting temms of O(dt), dividing by

d7:dt, and taking the limit dt + o, yields the bubble transport equation:

———




ay/ot + \7-'v'r¢ + ga'v*vq, + voy/an = S5-Iy (7
where zt S $V-3 + 3v/9% (8)
and where -0 < X,¥,2 < @, —» < Vx’vy'vz <w, and 0 < ¢ < e,

A simpler (lut less rigorous) derivation of equation (7) is cbtained by
recognizing that i;tp ' ay , and v} are the fluxes of bubbles in position space,

velocity space, and radius space, respectively. Then

Fz- {'v?r.(x‘fq;) + $V. @) + 3{vy) /a2

is the net flux of bubbles into d’t by virtue of "streaming" in seven-dimensional
spac:, (%,v,2). Since the time rate of change of ¢ in d7t is due to bubble
streaming into d71, as well as to other sources, S, we have 3y/ot = F + S. Using
the identity ¥ - (&) = 3. v + ¢¥ -2 and the fact that ¥ and ¥ are independent

variahles ('Vrr'f; = 0) yields equation (7).

The term I £V in the bubble transport equation is generally nanzero due to the
functional dependence of acceleration, 3(?,3,2&) , and radius change rate,
v(Z,V,2,t), on the bubble velocity and radius, respectively. This is unusual since

in transport equations normally encountered, the temm corresponding to T &Y is
generally zero (Chapman & Cowling 1964, p.46 and p.322). Mathematically, I, #o0

causes the volume element

a’' = [l+2tdt+0(dt2)]d7't

10




to change appreciably in the time interval dt. Physically, the term ~ L4 on
the right hand side of (7) acts as a pseudo source, or sink, depending upon
the functional form of a and v.

For example, suppose a is proportional to (V). Then '\7:7-3 < 0, and the
bubbles are decelerated into a smaller volume, d3v' = (l+—\;7'v~gdt)d3v. This
increases the density so —(3v-§)w acts like a "source" in (7). Similarly,
suppose v 1is proportional to v,% S0 that 9v/3% is proportional to v,. For
v, >0 the bubble radii are increasing and becoming more spread ocut over a
larger interval, d&' = (1+(3v/92)dt)de. This decreases the density, so -(3v/32)y
acts like a “sink" in (7).

The second term on the 1.;ight hand side of (7), S(r,V,%,t), represents
distributed bubble csources and sinks. In addition to external sources and
sinks, this term can include the effects of phenomena such as bubble scattering
off small scale turbulent eddies, bubble-bubble interactions, etc. For
instance, when the scale of turbulent eddies is the oider of bubble radius, they
will be referred to as "small scale," and bubbles entrained by the fluid may

scatter off of them. To handle this phenamenon one could define a turbulent
scattering cross section, Ly such that

a’y

> >
Zs (r,i?l-»v, 2l+2 ,t)vlw (?,31 ' 9,1 L) d3vld9,l

3
represents the probable rate at which bubbles in d r about T at time t are

scattered by turbulent eddies from d3v, about ;;l and dg, about £, into ddv

1
aboat v and ¢ about £, where v; = IVl! is the speed. Then
- > r > > . > > 3
s(r,v,2,t) = j ):s(r,vl—*v,9,1—>£,t)vlw(r,vl,zl,t)d v]_dxal

(9)

~vy(T,V,8,t) ] zs(?.—’,?};x?l,z+zl:t)d3vldzl

11




represents the net rate at which bubbles are introduced into d7t. Specification
of Eg requires detailed knowledye of the turbulent field as well as a model for
bubble-eddy interaction.

Substitution of equation (9) into (7) results in an integro—differential
bubble transport equation. If bubble~bubble interactions are included, the
bubble transpurt equation is nonlinear.as well (Chapman and Cowling 1964, p.63).
Below the surface in the upper ocean the average separation between bubbles is
abcut 2000 times the bubble radii (Medwin 1970), but very near or at the surface
wave action can cause higher bubble densities. In addition, the enexrgy contained
small scale turbulence appears to increase with wave action but to decrease with
depth (Shonting 1968). To avoid at this time obvious analytical complications,
the bubble density will be assumed low enough so that bubble-bubble interactions
are negligible. It will also be assumed that the energy contained in small scale
turbulence is negligibly small, so the bubbles are partially entrained by the
fluid without abrupt changes in velocity or radius. These assumptions should be
valid except very near the surface in heavy seas.

Suppose the source, S(%,v,2,t), is independent of ¢y or, at most, is

propcrtional to g,

= sl + zlw (10)

This mathematical simplification yields a linear, first arder, partial differ-
ential bubble transport equation whose formal solution is outlined in the next
section. It is worthwhile to note that the simplifying assumption (10) is not
a severe limitation for many prcdblems involving gas bupble transport in the
upper ocean. All external bubble sources such as surface waves, rain and snow
nucleation, organic decay, and photosynthesis can be included, as well as simple

models of bubble scattering, absorption, and creation that have the form (10).

12




III. SOLUTION BY METHOD OF CHARACTERISTICS

The first order partial differential equation (7) is equivalent to the
following set of eight simultaneous, first order, ordinary differential

equations with initial conditions:

d;/dt = 3-, - < X,¥,Z < o, ;(to) = ;o = (xo,yo,zo) {lla-c)
> >

dv/dt = a, = < vx,vy,vz < o, \7(1:0) = ?’o = (vxo'vyo'vzo) (11d-f)
dr/dt = v, 0 < 2 < z(to) = 2,0 (11g)
dy/dt = §-2,9; 0 < ¥ < =, vlE) = ¥ (12)

The equivalence between these "characteristic equations” and the bubble trans-
port equation is most lucidly demcnstrated with a geometric argument given by
Garabedian (1964, p.18). The parametrically-represented curve C in nine-

dimensional space,
R(E) = [£x(8),y(8),2 ()9, (8) v, (0),v, (£) ,2(8) ()], == < & < =,

obtained by integrating the characteristic equations (11) and (12), is called
a "characteristic curve." Camponents of the initial point, ﬁ(to) , are called

"characteristics." The family of characteristic curves,
(R(t)i== < £ < =, R(E)eF),

parameterizedby the set & of accessible characteristics, forms a hypersutrface
. . L3 L) ‘* + 3 .
in nine-dimensional space, y(t;r o’vo'z o to) , that satisfies the bubble transport
equation.
The family of characteristic curves is essentially parameterized by the set
. .. . A R
(ro,30,2 o) of accessible initial conditions since t, and wo(ro,vo,zo) ; the
. ' . >
initial distribution, are generally fixed for a given problem. Since a, v,

13




and S are generally functions of f,?f*,z, and t, the solutions to (11) and (12)
are not only functions of the parameter t, but they also depend upon all the

P P -
initial conditions (ro,vo,zo).

t= Z(E5T,V 0t = E(t) (13~)
V= \7(t;?o,x7o,zo,to) = v{t) (13b)
g = z(t;?oﬁo,zo,to) = 2(t) (13c}
and y = q;(t;ir.*o,??o,,o,o,to) = p(t) (13d)

where the short notation on the right is used for brevity.

The characteristic equations (11) are simply the bubble dynamics equations.
The buki.le dynamics model used to construct aand v (see §4), as well as the
characteristics (5?0,30,20), detemmine a "trajectory" (Z(t),v(t),(t)) which is
the projection of a characteristic curve from nine-dimensional space onto
seven-dimmensional space. Bubble trajectories in (x,y,2) space are likewise

projections of characteristic curves.

Lagrangian and Eulerian Representations

The paramelric representation (13), obtained by integrating the character-
istic equations simultaneously, cescribes the continuum fram a ILagrangian frame
of reference. In this description, bubbles are labeled by group according to
their characteristics (3:*0,30,9,0) . This moving frame follows a specific group,
initially in d7ro = d3r0d3vodzo about (;o’;;o’zo) at t_, along a characteristic
curve to d7t () about (T(t),V(t),(£)) at t. At any time t, p(t)d7c(t) is the
number of bubbles, belonging to the group labeled ('r’o,x*zo,zo), that are found

in a7t (t) about (Z(t),V(t),L(t)).

14
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I1I. SOLUTION BY METHOD OF CHARACTERISTICS

The first order partial differential equation (7) is equivalent to the
following set of eight simultaneous, first order, ordinary differential

equations with initial conditions:
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>, > -> -

dv/dt = a, ~» < vx,vy,vz < «, v(to) =V, = (on’vyo’vzo) (11a-£f)
da/dt = v, 0 < & < =, a(t) = g (11q)
dy/dt = $-I ¥, 0 <Y < =, plt) =y (12)

The equivalence between these "characteristic egrations" and the bubble trans-
port equation is most lucidly demonstrated with a geometric argument given by
Garabedian (1964, p..8). 'The parametrically-represented curve C in nine-

dimensional space,
R(t) = [£,x () .y (£),2(t) v, (£) v, (£),v,(8) ,2(8) 9 ()], == < € < =

obtained by integrating the characteristic equations (11) and (12), is called
a "characteristic curve." Camponents of the initial point, ﬁ(to) , are called
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initial distribution, are generally fixed for a given problem. Since a, v,
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and S are generally functions of ;,3,2, and t, the solutions to (11) and (12)

are not only functions of the parameter t, but they also depend upon all the

s ‘s > o
initial conditions (ro,vo,zo) :

=+
¥

= r({tir_,v ,z,o,to) = r(t) (13a)

V= 3(t;’fo,\7o,ao,to) z V(t) (13b)

2 = z(t;?o,x'?o,so,to) z () (13c)
and y = v{&T_,v L ,t) = plt) 113d)

O O O 0

where the short notation on the right is used for brevity.

The charactericstic equations (11) are simply the bubble dynamics eguations.
The bubble dynamics model used to construct a and v (see $4), as well as the
characteristics (f_,V_,% ), detemine a "trajectory” (T(t) ,V(t),2(t)) which is
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A, Lagrangian and Eulerian Representations

The parametric representation (13), cbtained by integrating the character-
istic equations simultanecusly, describes the continuum fram a Lagrangian frame
of reference. In this description, bubbles are labeled by group according to
their characteristics (;o’;;o'y”o) . ‘This moving frame follows a specific group,
imtially in d7ro = Q3¢ od:"vodzO about (?0,30,20) at t_, along a charac seristic
curve to d7t(t) about (Z(t),V(t),2(t)) at t. At any time t, p(t)d’t(t) is the
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On the other hand, the distribution y(Z,¥,2,t), expressed with Z,v,2, and
t as independent variables, more conveniently describes the continuum from an
Eulerian vicwpoint. The BEulerian frame is fixed, and attention is focused on
the particular volume d’1 about the point (¥,v,2). The instantaneous bubble
density w(T,v,2,t)d7t is considered without regard to the characteristics of
bubbles in the volume.

B. Formal Solution

If the source, S(?ﬁ,z,t), has the form (10), then (7) is analogous to the
Boltzmann transport equation written for neutral particles (e.g., photons or
neutrans) or charged particles (e.g., electrons) in a purely absorbing medium
with distributed sources (Case and Zweifel 1967, p.31 and p.247)., For example,
neutrons will stream along their characteristic curves in (x,y,z) space, which
ar: straight lines, until they are absorbed or until they escape the medium.
Similarly, the bubbles described by (7) stream along their characteristic
curves in (%,\7, %) space until they disappear (2 » o) or until they escape the
medium. However, the characteristic curves defined by (11) are generally not
straight lines in (?,3,2) space or any of its gubspaces, such as (x,y,z).

With S given by (10), the formal solution to (7) is cbtained by integrating

(12):
> > - > ' g )
w(t;ro,vo,zo,to) = zp(ro,vo,zo,to)expl’l‘l(t,to) Tz(t,to)]
t
+fsl('f(t'),ir’(t')z(t'),t';exp['rl(t,t')-Tz(t,t')]dt' (14)
t, ft
vhere T b)) =5 (), Ve, L)at!
and Tt t) =

t -
fzt(i-’(t'),v(t'),z(t'),t')dt'.
¢

(]
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All integrals in this expression, and all similar integrals appearing elsewhere
in this paper, are understood to be line integrals along the characteristic
curve that passes through (§0,30,20) and (x,v,2).

To cbtain the mmber of bubbles in d’t about (¥,v,2) at time t, (14) is
maltiplied by this volume element. However, a consistent representation for

the right hand side of the equation requires use of the Jacobian,

vtk = 3(FE),V(E),2(8) /3 F "), T, L&),

which transforms the volume element from one point to another on the sane
characteristic curve:

d’t = y(t,t")d’t".
Using the expression derived in the appendix,
y(t,t') = akp[Tz (t,e")1, (15)

the solution can be rewritten in the convonient farm

> - &> -
V(v et d7t = explly (6t ) IVE V2t )AT Ty
¢ (16)
+ /eXp[Tl(t,t')]Sl(?',;;',2';t')d7r'dt', .
t
. . => > - -> - > -
where the abbreviations r = r(t;i*o,vo,zo,to) , Xt = r(t';ro,vo,zo,to), etc., have

been used. From this expression it is apparent that the number of bubbles in

a7t about (¥,v,%) at time t is a sum along the characteristic curve that passes
through (£,,4) at t. It is the mmber originally in d’t_ about (20,30,20) at
tO plus (minus) those added (subtracted) by sources (sinks) along the character-
istic curve between (—fo,ir*o,s?,o) and (f,$,2) . If El # o in (10) then the result
is amplified (attenuated) by the factors exp[Tl] because of the creation
(absorption) rate IV along the path. For t = t,+ dt, (16) expanded in a Taylor

series to 0(dt) yields equation (2), as it must.
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Equations (7) and (16) are equivalent statements about the physical model
outlined at the beyinning of section two. They formelly represent relation-
ships that exist between the bubble distribution, single bubble dynamics, and
the bubble scurces. as such, these equations can be used for calculations to
investigate relationships among the three in real situations. For example,
if any two are specified, properties of the third can be inferred, either
directly or indirectly.

Erior to using (16) for calculations, a bubble dynamics model (& & v) must
be specified sothat equations (11) can be integrated to obtain the character-
istic curves. A fair amount of information is available concerning single
bubble dynamics, and in the next section some of the inportant points are
summarized.

The distributed sources and fluid properties, as well as the appropriate
bubble dynamics model, are dependent on the particular situation being analyzed.
In section five the problem of gas bubble transport in the upper ocean is used
as the basis for some general remarks concerning bubble sources and fluid
velocity fields. ‘hen equations (7) and (4J) are written for a simple ocean
model, and some calculations are performed to demonstrxate how (1€) can be used
to evaluate ihe bubble distribution when the source function and bubble
dynamics have been specific.

It is significant to note that both {14) and (16) represent the distribution
from 4 Lagrangian view point, p{t;r 0,30,20,1:0) . Transformation to the more con~
venient Eulerian expressiaon, q;(—ry,i;,z,t) , requires the inverse of equations (13),
namely i:*o(to;f,':/’,f.,t), \70(t0;§:*,3,2,t), and zo(to;'r*,'\;,ﬁ,t) . In general,
equations (11) will have to be integrated numerically to establish a mapping

between ('fo,i;o,zo,to) and (%,V,%,t), but often approximations can be made that

will yield analytical expressions.




If S is a more camplicated function of ¢ than (10), the formal solution (16)
i represents an integral equation for y. When analytical methods aimed at solving
) (7) or (16) fail, the Neumann series solution to the integral equation can be

used to generate numerical results, if the series converges fast enough.
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IV. SINGLE BUBBLE DYNAMICS

k In this section general expressions are derived for 2 and v, and some known
| models of gas diffusion and drag are summarized for gas bubbles in liquids.
For the purpose of discussion in sections four and five, consider an inertial

cartesian ¢ “ordinate system with the z-axis vertical upward and the origin at

the surface of the liquid. TIet V be the bubble velecity and V(?,t) be the
transporting fluid's velocity relative to this frame of reference.

A, Acceleration

If a bubble of volume ¢, containing fluid of density p, were campletely
entrained (v = V) by a fluid of density p of it would experience the same
force, pocﬁ/dt, as would transporting fluid enclosed in the same volume. For
p # P partial entrainment occurs, and the bubble maintains a relative
velocity, U = V-V, with respect to the transporting fluid. Hence, the buhble
experiences a drag force, ﬁD' which is discussed shortly in the context of
gas bubbles in liquids.

As the bubble moves rel.tive to the transporting fluid it "drags" with it
an amount of fluid having a volume equal to same fraction, B, of the bubble
volume, By Newton's third law, this adhering mass provides a supplemental
reaction term, -(8 o o o dﬁ/dt) , that acts to increase the bubble's effective
inertial mass. In addition, there is a net buoyant force, og(po-p).‘z, where
}2 is a unit vector vertically upward and g is the acceleration of gravity.
Combining all of these forces in Newton's second law yields the follcwing

expression for acceleration:

3 = F/lon, (Bto/o ) + (1+B) (@V/at)/ (B+o/o )

+ (L-p/o,) gk/ (B+0/0,) (7)
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in which av/dt = aV/at + (3-?7})?7 (18)

B. Drag on Gas Bubbles in a Liquid

Because of its theoretical and practical importance, the motion of gas
bubbles in liquids (e.g., air bubbles in water) has been actively st _ed
(Levich 1962, ¢80). The regimes of bubble motion are classified according to
Reynold's number, R, = upoz/n , where n ig the liquid's viscosity. Observations
of different-size bubbles rising in various liquids indicate that small
(Re < 1) and medium-size (1 < Re < 700) bubbles maintain a spherical shape,
whereas large (Re > 700) bubbles deform to flattened ellipsoids and very large
kukbles (Re > 4500) are unstable and tend to break up,

For small bubbles (2 < 100p = 10~%m in water) the drag is viscous in nature

and is given by

’§V=~Kn£3, (19)

with ¢ = 47 for a perfectly clean bubble having a mobile two fluid interface
at its surface. However, nost liquids such as water contain "surface-active"
materials that coat the bubble and destroy the mokility of this interface. 1In
this case the relative velocity of the transporting fluid goes to zero at the
bubble's surface, and the bubble behaves 1like a solid sphere where drag is
given by (19) with x = 67 (Levich 1962, §§ 70 and 81).

The flow past medium-size bubbles (100u < < 2000y in water) is separated,
with the separation region occupying an arca s, on the downstream portion of
the bubble's surface. Up to the separawion point resistance that acte on the

L "ble is viscous in rature with a contribution to the total drag given by (19)
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with k = 12n. Past the separation point and into the bubble's wake the flow
is characterized by turbulent motion with a contxibution to the tot. i drag

given by

f‘T = —0.5Kfposlu3, {2d)

where Ke is a drag coefficient with 0.65 > K

. > 0.55 for 200 < R < 1000
e

(Levich 1962, ¢4 80 and 82).

In the absence of surface active materials, s) is very small
(s; v 9,2/Re for R, > > 1), so flow past the bubble is essentially unseparated
and the drag is given by (19) with x = 127, On the other hand, when an area
S, On the bubble is covered by a monolayer of surface-active material, the
relative fluid velocity in this region is zero, and Flow separation occurs
there. In this case viscous drag (19) ic¢ accampanied by the form drag (20)

with s1 = S and the latter dominates the fomrer when
s/ (4m1?) > 28(n/o ) 2/ (gs?)

(Levich 1962, ¢ 82). For example, when % = 500u, only 2% of the bubble's
surface need by covered by a monolayer of this material before the drag force

becomes quadratic according to (20).

Radius Change Rate

For gas bubbles moving in a liquid such as water, radius changes are caused
primarily by changes in pressure, due to changes in depth or surface tension,
or by gas diffusion across the bubble surface. Spherical bubbles (Re < 700)
that contair n moles of ideal gas at temperature T and pressure P are described

by

47r23/3 = nRI/P, (21)
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where R is the gas constant. For isothermal processes, (21) is readily

differentiated to yield

v =

ds _ & (an/dk _ do/at)
. :

It n B (22)

Gas diffusion is included in the dn/dt texrm, while carpression
and surface tension are included in @P/dt. Assuming quasi-equilibrium, gas
pressure is the sum ¢f atmospheric pressure, Po’ surface tension pressure, 2g/%,

and fludd weight, =P o3%s where -z > o is the depth and ¢ is the surface tension:

P= PO 0,92 + 2z/%, (23)
and

ap/dt = -p gv, - (2¢/22)de/dt. (24)

Gas Diffusion

As results of the next section will indicate, gas diffusion is ocne of the
more important factors affecting the bubble distribution. It is a complex
phencmenon depending upon many influences that include the type of gas in
the bubble, the gas diffusivity, D, in the transporting liquid, the gas con-
centration, C, in liquid contacting the bubble's surface, the gas concentration,
C,, ir liquid far away from the bubble, the presence of surface-active materlals
in the liquid and on the surface of the bubble, the flow “ield around the bubble
and the bubble radius. To simplify the discussion here it will be assumed that
gas inside the bubble is composed of one type of "average" molecule having a
single diffusivity, D. '

If the Péclet muber is large, P, = (ux/D) > > 1, the gas concentration
gradient is confined to a thin boundary layer on the surface of the bubble, and
diffirsion between C and C_ occurs across a small distance d ~ Q/Pel/ 2, Hence
(Levich 1962, §§ 14 and 72)

22




A

dn/dt = -GL#(CC ), (25)

where the coefficient G is gensrally a function of ¢, u, and D. For specific
applications in which individual components of gas must ke monitored, equation
(25) will have to be generalized.

Typically (n/p)/D ~ 103, so there is a wide range of bubble radii for which
the Péclet number is large (Pe >+ 1) but the Reynold's nuber is small (Re <1).
For that case (small bubbles),

G = 3[(n/6) (/2)]1/2 (26)

in the absence of suxface-active material (Levich 1862, §§ 72 and 91). 1In the
presence of surface-active material, the flow field arocuna a small bubble is

like that around a sclid sphere, and G becames (Levich 1962, § 14)
G = 8{D2u/22) /3 (27)

A representative value for u is the terminal speed, U/ of small bubbles rising
in a quiescent fluid. Equating the drag (19) to the buoyant force, 47r23gp0/3,

which assumes p/p, < ¢ 1, results in the expression

up = (47/3x) (g0 22/n) (28)

where k = 47 in the absance of surface-active materials, and x = 6érn in their

presence.
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At moderate Reynold's numbers (medium-size bubbles) the flow is separated,
but the region of separation, Sy is generally small. If gas diffusion across
S, can be neglected, (25) represents the gas diffusion with G equal to (26)
multiplied by v3 {Levich 1962, § 91).

If liquid in contact with the bubble sur!.ice is assumed to always be
saturated with gas at the pressure P (in atmospheres) prevailing inside the
bubble, then C = KP, where K is the absorption coefficient (kgem™3-atm™!) for
the liquid-gas system. Defining the partial pressure £ = C_/K (in atm) of gas

in the transporting fluid, (25) can be rewritten
dn/dt = -GK&2(p-£f). (29)

Under laboratory conditicns, Wyman, et al (1952), measured the rate of
solution and the change in camposition of air bubbles in stirred sea water, as

a funct.un of depth. These experimental results follow very closely
dn/dt = -4n622 (P-£) (30)

with 62 4.4 x 1075 noles m72sec”latm™!. Using equations (26) and (27) with pub-
lished values of D and K for oxygen and nitrogen in water, estimates of GK are
found camparable to 4n8, but generally larger. The presence of surface-active
materials that retzad gas diffusion and reduce the efixctive absorption
coefficient across the bubble's surface may have contributed to the discrepancy

(Fox & Herzfeld 1954).
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V, APPLICATION TO THE UPPER OCEAN

The purpose of this section is to briefly discuss application of bubble
transport theory to the description of gas bubble populations in the upper
ocean. Because it involves a variety of interrelated phencmena pertaining to
different disciplines, this is a difficult subject to analyze. Also, there
is only limited information available upon which to base mathemstical models
of bubble sources, fluid velocity fields, gas diffusion rates, etc. However,
it is the author's opinion that bubble transport theory is a useful tool for
interpreting data and relating phenamena that affect the distribution.

To begin, it is appropriate to summarize same abservations cancerning
bubble sources, S, and fluid velocity fields, ¥, in the upper oc;aan and to
nake a few remarks concerning analysis. Then, to demonstrate an application
of bubble transport theory, some sample calculaticns are performed and

interpreted.

L
Bubble Sources and Fluid Velocity Fields

Physically one might consider bubble sources to be segregated into three
categories according to depth: Those on the ocean floor, those concentrated
at the surface, and those distributed throughout the medium, vrincipally near
the surface. Mathematically these classifications are convenient for analysis
since sources in the first two categories can be incorporated into (7) and (16)
either as boundary conditions or as plane sources.

The first category includes sediment-initiated bubbles which often contain
organic gas. For example, McCartney and Bary (1965) measured relatively large
bubbles with radii between 450u and 800u coming off the bottam of Saanich Inlet,

British Columbia, and speculated that these bubbles conta...ed methane.
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In the second category are bubbles generated at or very near the surface
by wind and wave action, precipitation, and captured aerosols. The subsurface
measurements of Blanchard and Woodcock {1957), Glotov, et al (1962), and
Medwin (1970) imply that most of the hubbles associated wi:th breaking waves
have radii less than 200u. On the other hand, experiments conducted by Monahan
and Zietlow (1969), in which a small volume of seawater was poured into a tank
of thn same, indicate that the cloud of bubbles formed by the descending plume
of mixed air and water contains an appreciable number of 200p to 1000p bubbles
as well. In addition to wave-generated bubbles, rain and snow nucleate bubbles
at the surface which have radii predaminantly less than 50p (Blanchard and
Woodcock 1957). To explain the excessive sound attenuation and scatter
cbserved in near-surface water at high frequencies (f > 60kHz), Medwin (1970)
speculated that continental aerosols may be the primary source of small bubbles
(£ < 50/u) near the surface.

In the third category are bubbles initiated within the volume of the upper
ocean. Internal wave action, radiation, and biological activity, such as photo-
synthesis and marine life gas emissions, have been postulated to be responsible
for many of the smallest bubbles (2 < 60p). Also, same of the volume sources
may be associated with pressure fluctuations caused by wind-driven surface
waves. Pressure changes and turkbulence may nucle@ate small bubbles at distri-
buted cavitation sites, while the vertical fluid velocity and turbulence
created by breaking waves introduces larger bubbles below the surface.

When a wave breaks and air is rapidly mixed with water, the bubbles fcrmed
are entrained by a strong vertical velocity field; these bubbles have been
observed as far as three wave heights below the surface (Kanwisher 1963). As
the strong downward currents decay, the bubbles tend to risz under buoyancy

with motion modified by the remaining fluid velocity field (ref. equation (17)).
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The largest bubbles rise most quickly and reach the surface before going into

Al

solution while the smallest bubbles succumb to gas diffusion (IeBlond 1969).

As'a result, the most prevalent bubble within a few meters of the surface should

have a radius between the two extremes, an assertion supported by the data of
Medwin (1970) and Glotov, et al (1962) who measure distribution maxima at 90p
and 60y, respectively.

Shonting (1968) has measured the autospectra of particle motions in the
upper ocean and shown that the daminant peaks are associated with the fre-
quencies of the surface waves. The spectral energy decays exponentially with

depth in a way that attenuates high frequencies the most rapidly.

B. Example
Consider a one-dimensional, steady state ocean in which all velocities are

vertical and in which all functions depend spatially on depth only. In this

case the bubble transport eguation reduces to

39 39 3 _ .
V82+a3V+V82 ztdms, (31)

whered (z,v,2) is the distribution function, S(z,v,%) is the distributed source,
v, =V is the vertical velocity, a, = alz,v,2) is the vertical acceleration,
v(z,v,%) is the radius change rate, and Zt = 3a/9v + 3v/aL.

The characteristic equations for (31) can be written with z < o chosen as
the independent parameter. This choice is equivalent to dividing equations
(11) and (12) by (1l1c):

dv/dz

]

alz, v, )V, = <v<o & v(zo) = Vi (32a)

de/dz (32b)

vz, v, 2) /v, 0 <R <& Rlz) =40

d¢/dz + (£, /)¢ = 8(z,v,0) /v, 0 2 ¢ <= &dlz) = o, (v,2) (33)




Simultaneous integration of equations (32) yield's the family of characteristic

curves

{z, v(z;zo,vo,zo), z(z;zo,vo,zo); z <o} (34)

and bubble trajectories in (x,y,z) space are vertical straight lines.
A formal solution analogous to (14) is readily obtained by integrating (33)
along characteristic curves (34). The form analogous to (16),

z
v (z,v,2)3vdL = vo¢(z°,vo,20)dvodzo +/S(z',v' LN)dz'dv'de', (35)

%

is derived using the Jacobian,

z
v(z,2') = %: :-;-exp [fz Et(z",v",z")dz"/v"]. (36)

’

Expression (36) follows from the differential equation

dy/dz = (5, - (a/v2))y (37)

obtained when characteristic equaticrs (32) are combined in a manner similar to
the general scheme detailed in the appendix. Of course, all integrals
appearing in this section are taken along characteristic curves (34), where

abbreviated notation v!

v(z';zo,vo,zo) " = z(z";zo,vo,zo), etc. has been
used in (35) and (36).

Physically equation (35) states that the flux of bubbles, v¢, at the point
(z,v,2) ,equals the flux of bubbles, Vo¢o’ at the point (zo,vo,zo) ; plus (minus)
the bubbles added (removed) by distributed sources (sinks) along characteristic
curve (34). Further physical insight can be gained by reflecting on a situation
where there are no distributed sources, S = o, so that ¢(z;zo,vozo)dvd2 =
(vo/v)¢(zo,vo,z O)dvodzo. If there is no fluid velocity, bubbles rise under

buoyancy at terminal velocity and may shrink and slow down or expand and speed
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up (LeBlond 1969). Those belonging to the Lagrangian group (zo,vo,zo) whose

velocity and radii increase with z have a density that decreases as z increases

e ( — —-—.--

because the bubbles at z + dz are running away from those at z. On the other
hand, those whose velocity and radii decrease as z increases have a density

increasing with z since the bubbles at z are piling up on those at z + dz.

l. Characteristic Curves

A first step toward using (35) to calculate the bubble distribution is the
specification of a(z,v,%) and v(z,v,2) and the camputation of characteristic
1 curves (34). A useful expression for the radius change rate is cbtained by
substituting (21), (23), (24), and (29) into (2z) and solving for d2/dt. Then
(32b) becames

de/dz = v/v = {(2/3)~(GK/4n) (RD) [D(A-£)-z + (F/R)1/vY/[D-2z + (2/3) (r/2)] (38)

where (-z) is the depth, £ is the partial pressure (in atmospheres) of gas in
the water,

D= Po/pog = 10 meters

is the depth of sea water equivalent to one atmosphere, and
r=2t/09 % 1.47x1075 meters?

is a surface tension coefficient in water. Note that the T/2 temms are

negligible unless the bubbles are very small (2 % 30p).
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Acceleration is given by {17) with the drag force given by (19) or (20).
) If the fluid velocity is negligible (\7 = 0), the bubbles rise very nearly at
their terminal velocity, Vipe This is seen in Figure 1 which was obtained by

simultanecusly integrating equations (32) numerically* for bubbles of various

initial radii, 20, starting from rest at zZ, = -20 meters. Small bubbles
(2 < 100u), and medium~size bubbles (100p < £ < 2000yp) with viscous drag dami-
nant, rise at terminal velocity Vi given approximately by equating (19) to

the bhuoyant force:

Vg = (9/(k'e)) 92 (39)

where «' = 1 and ' = 2, respectively, and where

o« 2 (9/2) (n/p ) = 4.37%x1076 meters?/sec
in water. When medium-size bubbles have a sufficient fraction of their surface,
g E SO/(41722) ,

covered by a monolayer of surface active material, turbulent drag daminates
viscous drag because flow separation occurs at the boundary of s ~ They rise

at terminal velocity Vo given approximately by equating (20) to the buoyant

force:
vy = (a/g)1/221/2 (40)
where £ = (3/2)Kf e = 0.9¢.

¥AIT numerical integrations alluded to in this section were carried out using
gaussian quadrature or optimal fourth rank Runge-Xutta (Ceschino and Kuntzmann
1966, p. 67).

30

M

T




T

Datta, et al, (1950) has averaged the results of several different cbservers
to produce an empirical curve for the terminal velocity of air bubbles in water
as a function of their radii. Values produced by (40) agree with this
empirical data for 300p <2< 1000p if the surface fraction, ¢, is reduced mono-
tonically as the radius; £, increases. This leads one to speculate that as the
radius and terminal velocity increase, rapid liquid motion at the surface either
washes away surface active mplecules or carries them to the rear where they form
a canpact, satuxated monolayer (Ievich 1962, p.447).

In general the terminal velocity of a rising bubble is not given simply by
{39) or (40) during its entire lifetime. Many bubbles shrink or expand as they
rise (LeBlond 1969) and thereby transitior fram the regime of predaminantly
turbulent drag to the regime of predaminantly viscous drag, or vice-versa. The
treatment of separated flow in Levich (1962, § 82) suggests that the sum of (19)
and (20) should be a useful model for the drag on medium-size bubbles in the

transition region. Using this model in (17), (32a) can be written

dv/dz = ~[(&/8) /8] [(v-v_) (v+v ) /¥], (41)
where
V, = Vg, [l + (1+402)1/2]/(29) (42)
with
Q = Vi gy = (2/0) %2
and

1

= [(«'a)2/(gg)]}/3

>
{]

Namerical integration of (38) and (41) demonstrates that the bubbles released
from rest rise with terminal velocity Vip = V_ (figure 1). This approach appears

to have some merit since (42) for v_ yields values close to the empirical curve
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by Datta, et al (1950) and since the model shows the proper limiting behavior:

| Buatabes

For ¢ < !Z, viscous drag dominates turbulent drag in (41) and

- - ra2 4
V_ =V~ Vi {Q + 0(0*)}

for ¢ > ;L, turbulent drag daminates in (41) and

—

V_ =V, ¥ VTZ{O.SQ"J' + 0(Q™2) }.

Canmputation of characteristic curves (34) in a quiescent fluid V= o) is
simplified because the bubble velocity is always very nearly the terminal
velocity, v:vT(z;zo,zo) , and is essentially independent of Ve Either (39),
(40), (42), or empirical values for Vi Can be used in (38) to obtain z(z;zo,zo) .
If (39) or (40) is used and surface tension is neglected, closed analytical
expressions result: For v = Vi ¢ I = o, and £ constant,

D-z )
- . — (9}, 3,3 (K/MATMRC
% = le(z,zo,zo)—- {(D_z )9, +

o> T gkt (222,02 (1-6) (z-2 ) 13173,

{43a)
with an inverse transformation
SLO = le(zo;z,z); (43b)
for v = o I = o and £ constant,
D~z \i1/2 3/2 ; D~z 32
- . _ __9 \GK/4‘H)RI' - __2 .
L=l = () o0+ S8 00 0- (5™ )
D=z \is2 2/
(o)
-ap(2-) 1-{z=9) " 113 (442)
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with an inverse transformation

g 2, = 2,1.,2(20;2,2) . (44b)
Ctherwise, (38) must be integrated numerically.

To evaluate accuracy of approximate analytical results (43) and (44), £T1
and Ly BXE plotted vs depth in figures 2,3, and 4 and compared to ZT(z;zo, ﬁo) ,

obtained by nurerically integrating (38) with v = v_ given by (42). For the
sake of example, £ = 1 and RIGK/4n = 10° meters/sec (Wyman, et al 1952) are
used in all three models, and le(z), Lo (z) and zT(z) are represented for
various initial radii, 20, at 2, = =20 meters. Note that le is a good
approximation to 2’1‘ for 30u < ) < 100y (viscous regime) and that 2T2 closely
approximates L for 2 > 400p (turbulent regime). Neither (43) nor (44) is
valid for % < 30u because they neglect surface tension, and neither is accurate
in the transition region 100y < [) < 400y.

An example of the phenamenon analyzed by LeBlond is evident in Figures
2~4, As a bubble rises under buoyancy it tends to expand as the hydrostatic
pressure decreases, but it also tends to contract as gas diffuses across the
bubble's surface. If a bubble's radius is less than same critical radius, JLb,
it rises too slowly, shrinks monotonically, and disappears before reaching the
surface because gas diffusion dominates hydrostatic expansion. If its radius
is greater than another critical radius, Za’ it will expand monotonically as
it rises because hydrostatic expansion dominates gas diffusion. For an initial
radius between s and Bt the bubble's behavior is not necessarily monotonic;
it may or may not reach the surface.

Bubbles with radii less than % will rise a finite distance before
disappearing, and cavputed values of 2a and % depend upon the gas diffusion

model used as well as parameters like Z, Examination of L in Figures 2-4
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indicates that 5, ™ 4001 and &, ™ 250u, while a 100p bubble rises abcut 1.1
meters. Unfortunately there is usually insufficient information available

for an accurate specification of the gas diffusion phenamenon. For example,

in (29) the gas diffusion rate depends not only upon the partial pressure £(z),
but also upon the parameters G and X which are determined by the type of gas
and the presence of surface active materials. This data is oftzn

unavailable for the ocean. Since characteristic curves and bubble distributions
(ref. Figures 5-12are sensitive to the gas diffusion rate, specification of
the unknown parameters is important, and it may require a sequence of educated
guesses refined from camparisons of caomputed and observed distributions.

If the fluid velocity ¥ is not negligible and the problem is multi-
dimensiconal, the camputation of characteristic curves is more difficult. In
general, equations for x,y,vx,vy, and v, must be integrated simultaneously
with (38). However, if dV/dt given by (18) is swall compared to the other terms
in (17), a useful approximation (that eliminates the thiee characteristic
equations for velocity) might be

i; o 3 + vT/l\c,
where v,, is the terminal velocity of the rising bubble.

T

2. Bubble Distribution

Since bubbles rise in a quiescent fluid at very nearly their temminal

velocity,
¢(ZIV12) = G(V"‘VT) é(ZIl) (45)
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should be a good approximation where v, is given either empirically or by (39),

T
(40) or (42). 1In this eguation

$(z,2) E/ ¢ (z,v,0)av (46)

is the 'radius density," the number of bubbles per unit volume per unit rad..s.

Equation (35) can be integrated over v to yield

N\

Z
$(z,2) = (V,Ib/vT) é(zo,zo)(azo/az) + (1/VT) siz', 2" (38'/a2)dz" (47)
%o
with »
s(z',2') = S(z',v',2")av', (48)

where dzo = (820/89,)d9, and dg' = (92'/32)A% have been used. The bubble density,

§(z) = [ §(z,2)d%, (49)
Jo

which is the total number of bubbles per unit volume at depth z, regardless of

radius, is given by (47) integrated over all radii,

0

o Nz
— ]
§(z) = (vm/vT)é(zo,zo)dzo + //(I/VT)S(Z',Z )(az'/azo)dz'dzo
(v} J O V4
° (50)
It must be remembered that Vip and V! @S well as £ and ¢', are functions of f’o

and that integrations in z are taken along the characteristic curves
{z' vplz'iz 0 ) rtp(2'i2 .8 ) 22 < 2'< 2}, (51)

where o is obtained by integrating (38) with v = Vipe
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For most applications the radius density provides adequate information.
To calculate this function for a given z and %, one needs 932'/9%, %', and
, s(z',%2') at points on the characteristic curve that passes through (z,%) so

the integral in (47) can be evaluated. Using notation from the appendix,

081 /38 = 1/ qgn(2,2'), (52)
where Yo7 satisfies the differential equation obtained by setting v = Vi in
(38) and taking the partial derivative with respect to 2':

Av97/82 = Fpqg Yoy (53)

with the boundary condition
Y77(2,2) =1
where

F.I.](z;zo,zo) = {(2r/22) [9,—(36RI‘/VT) {D(1-£)-z+T/£) 1 [3(D~2) + 2r/2]"! +

[1+ (3<sm'/vT) (r/22+(D(1-£) -2+ /1) (avT/az)/vTi]}D (D-z) + 2r/2]1”% (54)

in which (GK/4m) = constant = § (Wyman, et al, 1952) has been used. When the

approximation v,

p = V_ (42) is used,

/38 = (3vgy/0) [ + 4Q217V/2 - v /g, (55)

The solution to (53) is

Yo7 (2,2") = expl¥(z,2")] (56)

with z
Flz,2") = [F77(z";zo,zo)dz",

v 2!
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and it is abvious that
Y99 (z,2') = Y9 (zfzo)/v-,-,(Z',zo)- (57)
Using (56) and (57), (47) can be written

@(zlz) = [@@[‘](ZIZO)]/VT] {V,roé(zolzo) +

z (58)
+ | ste',aemplF(z’ 2 ))az"]

Z
o

Once the source s{z,2) has been specified, (56) can be used to evaluate the
radius density at points along any characteristic curve (51) obtained by
integrating (33). In the following discussion of sample calculations,
§(z,2) will refer to the radius density when the approxima’ion v,, = v_ (42)

T
is used.

If either approximation (43) or (44) is appropriate, then either

an'/ee = [(D~2)/(D~2')][22/2'2] (43c)

or

a8'/ag = [(D-z)/(D-2") 1V 2[s/2"1 V2, (44c)

is used in (47) to obtain the approximate radius density @1(2,2) or §2(z,2),
respectively, at points along the characteristic curve (51) with S = Ryyr OF
bp = dpoys respectively. If gas diffusion can also be neglected (GK = o) then

both approximations reduce to

b= gy l2iz 2] = [(D—zo)/(D~z)]1/3£O (59)

which can be used in (47) and (51) to obtain the approximate radius density

§3 (z,2).
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3. Numerical Results

For the sake of example, consider the situation investigated by McCartney
and Bary (1965) who acoustically measured rather large gas bubbles ascending
from the bottam ol Saanich Inlet, B. C., and inferred the bottam source repre-
sented in Figure 5 from the ascent velccities. If we model that ocean as 1-D
and quiescent, then equation (47) can be used to irfer the radius density
throughout the volume. Since volume sources produre mainly smaller bubbles
that their measurements do not include, only the plane source §(zo,zo)
(Figure S) at z_ = -197 meters is considered in this sample calculation, and
{47) reduces to

3(z,9) = (Vg /v §izy L) (3%/90). (60)

Using £ = 1, approximations §,§1,§2, and 85 to the radius were camputed
at various depths between z = -197m and z = 0. §(z,2) (solid line) and
§,(2,%) (dashed line) are plotted in Figures 6-10 at the depths z =—172m, -147m,
-122m, -97m, -47m, and Om. Although actual calculations do not yield
precisely rectangular distributions for z # Z $ and @3 and drawn
as perfect histograms because the error introduced is negligible.
While §3 neglects gas diffusion and surface tension, § includes these
effects. For the gas diffusion model used, all bubble radii for which
§(zo,20) is nonzero lie below the critical radius %, SO these bubbles will
shrink monotonically as they rise and will disappear before reaching the surface.
The distribution § is seen to shift toward smaller radii as depth decreases,
until even the largest bubbles have disappeared by the time z ~ -90m, so only
§3 is shown in Figure 10. Since %, =0 in the model used to calculate §3, these
bubbles necessarily expand as they rise, and the distribution shifts monotonically

to larger radii.
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The bubble density is simply the area under the histogram. As z increases
fram ~197m the density of ¢(z,%) initially increases since flux is conserved
and the bubbles are slowing down and piling up. However, nearer the surface,
most smaller bubbles have succunbed to gas diffusion and the density starts to
decrzase toward zero. For 153(z,2) the density is seen t¢ decrease as 2z
increases since the bubbles are accelerating and becaming spread out.

The distributions ¢y and ¢3 are not shown because neither follows ¢ closely.
%y is the best approximation, but these bubbles do nct quite shrink fast enough.
Sare of the bukbles in ¢, contract monotonically while others contract and then
expand., For the model used most of the bubbles originate at the bottom with
radii in the transition region, za < £o < Qb’ where neither approximations (43)
nor (44) are valid.

Interestingly enough, the experimental results of McCartney and Bary (1965)
indicate the bukbles fram the bottom of Saanich Inlet expand as they rise
according to the distribution ¢35/ which ignores gas diffusion. Thus, it appears
that diffusion is somehow inhibited across the surfaces of these bubbles which
are camposed of "gas released from the highly organic, anaercbic sediment of the
bottaom," possibly methane. Either the water was saturated with respect to the
gas(es) in the bubbles,or these bubbles were coated with an active material that
severely impeded gas diffusion. While it is significant to note that ¢ is cal-
culated using GK/4n = § (egn. (30)), which is based u.pon experiments with
relatively clean air bubbles (Wyman, et al 1952), and that £ = 1 at all depths
is not physically realistic, certain qualitative conclusions, based on a com-
parison of ¢ and <X>3 to the observed distribution, are still valid. For example,
cas diffusion appears to be negligible in this situation; and gas diffusion
would profoundly affect the bubble distribution. The latter observation emphusizes
the fact that results are strongly dependent on the bubble dynamics and ocean
models used.
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As the basis for a second sample calculation, consider the supposition
) that the observed bubble distribution indicates the functicnal dependence of
the volume source. To test this idea, consider a hypothetical volume source

suggested by the measurements of Shulkin (1968) and Medwin (1970):

s(z,2) = ez/hL(z) (61)

(8/8373*%for 1 > ¢
L) = (62)

0,for 0 < 2 < &
with h = 10 meters and &' = 20u. Physically, a source decaying exponentially
with depth might arise from photosynthesis, light sensitive bacteria, wave
action, etc. Medwin (1970) has observed an exponential behavior for small
bubbles (% ‘ 60u) , and both Medwin (1970) and Shulkin have observed that the
near surface bubble density appears to fall off like some power of the bubble

radius. The radius spectrum L(JL)ML—?"S

is chosen as n exampie.
Assuming that the source is zero below z = -30 meters, and that f = 1,
the radius density was camputed using Vp =V in (38) and (58). Figures 11 & 12 pre-
sents log-log plots of §(z,2) (solid line) and s(z,2) (dashed line) vs radius
for four depths, z = -29m, ~20m, -10m, and Om. A comparison of § and s indi-
cates that the distribution follows approximately the functional form of the

source for 2 > 100u:

5(z,8) ~ eZ/M'y3.5 (63)

~

h' = 6.5m. The distribution at z = -29 meters does not fit this pattern
because it is too near the region assu. to be devoid of bubbles.

For # < 100y the functional form of § is more complicated and dces not
necessarily follow (63). Except at the surface, the curves are all concave

down which indicates a deficiency of small bubbles. Gas diffusion and surface
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tensicn cause small bubbles to disappear much ncre rapidly than large bubbles.
While the small bubbles observed at a given depth originate primarily fram
locry sources, many of the larger bubbles cbserwved originate at sources distri-
buted well below that depth. However, for the model used, gas diffusion
decreases rapidly with depth, so there is less discrimination against the small

bubbles in the near surface region. From Figures 11 and 12,

50,00 2 373 (64)

These results indicate that if gas diffusion is significant, the small
bubble scurcec will probably fall off to a higher power in 2 than the observed
distribution, but the larger bubble sources may have roughly the same
»—dependence as the cbserved distribution. Furthermore, the depth dependence
of the bubble sources is likely to be functionally similar to that of the
bubble population. Of course these qualitative relaticnships between bubble
population and bubble source are not likely to be applicable unless the model
is valid. For example, any of the following can have a profound influence on
the bubble distribution and its relationship to the source: A significant
fluid velocity, v # o, a partial pressure, £(z), that varies with depth, or
surface agtive materials that impede gas diffusion (e.g., lower K in
equation (24)).

The distributions & and §, were also camputed for this example but are
not displayed. As expected, §; approximates § fairly well for 30u < 2 < 100u,

and §., is a good approximation to § for 2 > 350u.

2
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VI. CONCLUSIONS

The main purpose of this paper has been to dsvelcp the general framework of
bubble transport theory and then to demonstrate its application. The bubble
transport equation and its solution relate the ensemble average behavior of
a bubble population to dynamics of a single bubble and to properties of the
transporting fluid. Among the most important aspects of gas bubble dvnamics
in liquids are bubble gas diffusion and drag, which depend upon many different
physical parameters. For the upper ocean, information concerning these para-
meters, as well as information about bubble sources and fluild velocity fields,
is usually incamplete. In this case, bubble transzort theory cannot be
used to predict bubble distributions; its primary utility is as an analytical
tool for investigating relationships among the various complex factors that
affect the distribution and for refining models of the upper ocean. Future

work will be concerned with analysis of more complex ocean models.
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APPENDIX
It is shown here that the Jacabian,

3 (F,V,2)

y(t,t") = >
alxivia"h)

' (a-1)

used to transform the volume element d7t between two points on a characteristic

curve,

A3rd3vds = y(t,t')d3xr'dadv'as’, (A-2)
satisfies the differential equation
dy/dt = LY. (a~3)

Using the bamdary condition y(tjt') = 1, this equation can be integrated to

obtain t

/'
vt = e[| 5 (eE Y e | (a=4)
tl

where the indicated integration is along the characteristic curve passing through
(Z!vi2') and (F,V,8).

Referring to the notation (5), define the elements of a 7 x 7 matrix

- R R —
Yig = aqi/aqj c1,3=1,2,004,7 (A-5)

then the Jacobian is the determinant of this matrix,

- D A £ -
y = det(ly;) = Zi_, 1Mo (a-6)
(or 3)
where Cij is the "minor" of the element Yij "Cij is y with the ith row and

jth colum deleted) .
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If the following elements are defined,

Ry BT B v Ry IV, R R,

(a-7)
RS = ay,RGE a s andR7 =
then the characteristic equations (11) can be written
dq /dt R (ql,qu ,q7[t) i = 112’ [ -'7 (A—S)

Taking the partial derivatives of these equations with respect to the qj' and

using the chain rule, the set of differential equations for the Yis is cbtained:

dy. R 2R, -
lJ : = _Ri ijl i,3,=1,2,....7 (A-9)
dt 3qj 3qk
k

These equations are used to expand the derivative of (A-6) taken with respect

to the parameter t:
Z Z i+ d{ Z i+j Z aRi
(-1) dt (-1) ClJ '—aa}z i3 (A=10)
k

Using (A-6), this expression can be rearranged to yield the following:

dy i+ aRi ’()Ri
=§ (-1) Civ Vr—vysa t) = Y.
dc ' ij { 3q; Yij q; 'kj
i,j

kAL
(a-11)
oR. i 3R, j
= X - —* -
=Y aqi + Z (-1) aqk (~1) ij Cij
i iK1 j
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The term z :("'3‘-)] i Cij is zero since k#i. This can most
i

easily be seen by expanding each determinant C.. by minors of the elements

1]
Yim? MEj.
Since
)
3
l—‘" o+ _a..\.l= —
'ﬁ—-— v a+32— Zt (a-12)
i

the result (a-2) is obtained.
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LIST OF FIGURE CAPTIONS

Figure 1:

The velocity, v, of hubbles starting at rest and rising from an initial
depth z = -20 meters. The initial radius is 2 (in micrens}, the terminal

velocity is v, and (z—zo) is the height above the release point.

Figures 2,3, and 4:

Bubble radius in microns as a function of depth in meters for various
initial radii, % (at z, = -20 meters) ,calculated using three different expres-
sions for the terminal velocity, Vipe The solid line is Lepr obtained by inte-
grating (38) with v = v_ (equation 42), the broken line is z,m(equa'cion U3a), and
the dashed line is S (equation Ulia). The gas diffusion model used (Wyman, et al
1952) assumes a uniform partial pressure of one atmosphere, f = 1, and
RTGK/Un = 1076 meters/second.
Figure 5 :

The distribution, d>(zo, 110) . in relative units, of bubbles rising off the

bottom of Saanich Inlet, B. C. (McCartney and Bary 1965) where z, = ~197 meters
and the bubble radius, £ of is in microns.

Figures 6,7,8, and 9:

The distributions ¢(z,2) (solid line) and q>3 (z,2) (dashed line) in relative
units at the depths -172m, -147m, -122m, and -97m where bubble radius,
L, is in microns. §3 neglects gas diffusicn while ¢ assumes a uniform
partial pressure of one atmosphere, f = 1, and RTGK/4w = 10"6 meters/
sec (Wyman, et al 1952).

Figure 10:

The distribution, <l>3 (z,2), in relative units, vs radius, £, in microns, for
2 =-47 and z = oO.
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Figures 11 and 12:

The distribution, ¢(z,2) (solid lines), in relative units, vs radius, %,
in microns,; for various Jepths, in meters, from a distrilk ited source, siz,f)
(dashed lines; equations 61 and 62). The same gas diffusion model used to
é calculate ¢ in Figure 5 is used in this example.
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