AD-761 996

RTRAN V FOK
SOLUTION OF

Alan C. Reed

Utah University

Prepared for:

Advanced Research Projects Agency

December 1968

DISTRIBUTED BY:

Nationai Technical Information Service
U. S. DEPARTMERT OF COMMERCE
5285 Port Royal Road, Springfield Va 22151

Technical Report 4-19 Alan C. Reed

A METHOD FOR EXTENDING FORTRAN V FOR THE INTERACTIVE

GRAPHICAL SOLUTION OF NUMERICAL PROBLEMS

December 1968

COMPUTER SCILENCE
Information Processing Systems
University of Utah

Salt Lake City, Utah

Advanced Resea:ch Prrje:ts Agency ° Department of Defense °* ARPA order 829

Program code number 6D30

ABSTRACT

During the more recen*® history of Computer Science, a great

deal of effort has been dirccted toward the development of more rapid
methods of interaction between man and machine than is possible with
current batch processing schemes. One specific subset of this field
of study is the area of Interactive Computer Graphics, where tools
such as display scopes and keyloards, among others, are used to effect
more efficient problem solution. In connection with this, a number of
programming languages are being written‘which are geared to and which
take into account the capabilities of graphical systems. However, a
great number of programs now exist in industry which were written in
FORTRAN or COBOL. 1In particular, many of these FORTRAN programs weve
written for the solution of various physical problems using numerical

analytical techniques,

One important characteristic of such programs is that a significant
amount of coding is required to haindle breakdowns in the algorithm
which occur during the problem svlution. For example, the non-conver-
gence or divergence of an iterative procedure might Ye handled by attempt-
ing tu change some program parameters such that convergence may then te
achieved. ‘the final solution of i curve fitting problem may require
several iteraviors, ecach with o diftereat fitting function or norm. in
each of these cages, the additfonal amount of decision-making code

required to adequately control the algorithm may be very large. To be

more accurate, the amount may range from simple code, which simply

terminates the program, to that which is necessary to manage and correct

every conrcelvable breakdown.

The simple code, of course, requires very little in the way of
programming effort, bat generally must be submitted into the batch sev-
eral times in an iterative manner before the final solution is obtaiued.
The more complex code, on the othar hand, is longer in development, but
probably requires fewer runs to complete the problem. An entire realm of
compromise or trade-off exlists between the two extremes, and it is there
that most of the existing numerically oriented programs are found, prob-

ably foi :teasons of economics, cr available developuent time, or both.

Interactive computer graphics offers much in the way of bringing
the program user closcer to the problem solving algorithm. Techniques
may be employed which provide tor the execution of the program to be
mon’tored and action taken to help the progrsm find the solution, or to
find it more quickly. Logic for handling breakdowns in the algorithm,
much of which would not normally be coded into the program, may be econom-
icallv emnloyed, pruvided means are available to implement these tech-

niques in existing FORTRAN programs. This paper is the result of a first

step toward providing those means.

INTRODUCTION

At the University of Utah, a graphics laboratory has been
established to provide the Computer Scientist with tools of research

into graphical techniques.

The equipment in the graphics laboratory includes:

A PDP-8 computer connected on-line to the
University's Univac 1108. The PDP-8 acts
as a controller for the graphics equipment
and serves as the communications link between

this equipment and the 1108.

A model 35 teletype that serves as the

interactive keyboard.

An IDI display scope which may be used to
provide a window into the solution space
of the problem, and may be combined with the

teletype to form an interactive console with

keyboard aud display.

P

Descriptions of other equipment present in the graphics laboratory
are omicted since knowledge of its existence is not necessary background

material for this paper.

In order to provide the means by which a FORTRAN program may be
given interactive capabilities, a set of subroutines has been written
which allows a programmer to declare two new types of FORTRAN variables.
The first type is called an "interaction variable", the value of
which may be changed or simply retrieved hy the program user, The

¥

secord type is called a "command varijable". A command variable, when

typed, causes transfer of execution te a statement number in the pro-

gram and may also have an associated value.

METHOD OF IMPLEMENTATION

Namelist is a FORTRAN V feature which allows unformatted input
and output of declared variables (1). The basic form of a namelist

statement 1is:

NAMELIST/NAME/VAR1,VAR2,...,VARN

where NAME is a namelist name; and VARL,...,VARN are simple vari-

ables, subscripted variables, or array names.

In order for a nameilst to provide input/output, a table of infor-
mation regarding each variible declared in the list is generated by the
compiler and exists in memory at execution time. It is this information
which is used to obtain addresses aad other necessary informatioa for
this implementation. The exact structure of the table is perhaps best

described by a semi-pictorial description which assumes that N variables

were declared.

NAMELIST TABLE

Relative
Location Configuration Explanation
1 _J€—Absolute locatien corresponding to
35 18 17 0 relative location N + 2
The characters $$$ in fieldata code
2 L J€—Namelist name in fieldata code,
35 0 left adjusted, with blank fille:
3 PR e
35 S 0
0 —N Variable names in fieldata codn.
g left adjusted, with blank filler
N+2 { fe—
35 0

N+3 3[5 J(ﬂ

N+4 i J-
)

N pairs of words, each pair corres-
ponding to a variable nawme

35 . 0
IN+1 {
35 0

N+ 2 |
35 {

The information contained in the word pairs shown above depends
unon whether the corresponding variable is non-subscripted, singly sub-

scrinted, or multiply subscripted.

Non-Subscripted

All zero

Variable type

Integer

Floating point
Double precision
Complex

Logical

(C R A
L20R 2N 28R 20N 4

&-——~Abgolute address of variable

3029 24 23 0

All zero

Singly Subscripted

058

Variable type (as defined above)

&= Absolute adiress of variable

30 22 24 23 0

‘}e—-—Mnximum subscript size
0

Multiply Subscripted

048

Variable type (as defined above)

I(._.__Absolutc address of variable

35 3029 24 23 c

e—-Address of Dimensions Table

The Dimensions Table Contains:

Number of dimensions M

(1<M<8)
lgt Word Product of maximmm of each
35 1817 5 subscript
i Maximum of first subscript
2nd Word &——Maximum of second subscript

35 18 17 c

(Repea to Mth subscript)

7
The transfer of control associated with a command variable has been
implemented by taking advantage of the code generated when a statement
number is specified in a subroutine call 1ist. This is dome whenever

the RETURN K feature of FORTRAN is used (1). The FORTRAN statement:

10 CALL SUB ($10,520)

L

where the numbers 10 and 20 are statement numbers in the program, would
resuly in the machine language equivalent of the following Univac 1108

assembly language code:

101 LMy X11,SUr . TRANSFER TO SUB
J 10L . JUMP TO STATEMENT 10
J 20L . JUMP TO STATEMENT 20
(W.B,) « ERROR WALK BACK

It may be seen that a table of jump instructions is produced

that provides branches to various statement aumbers in the program,

An aesembly language subroutine, LGCATE, has been written for the
purpose of providing access to the namelist and Jump tables of infor-

mation for a FORTRAN driver program. It is called by a statement of

the {form:

CALL LOCATE (LABEL,VEC)

where LABEL is a location containing the name of a variable declared in

a namelist, left adjusted, and with blank filler. VEC is a singly
subscripted array of eleven locations which contains the information

: listed below when the variable is found and the subroutine re:urns to the

calling program:

Position in VEC Contents
1 Absolute address of variable
2 Variable type (as previously
described)
3 Product of maximum of each
subscript
4 Number of subscripts
5 Maximum of firat subscript
6 Maximum of secend subscript
11 Ma:imum of seventh subscript

If the variable is not located, all positions in the array VEC are
set to zero. LOCATE is capable of searching several namelists, (the

present maximum is fifty), and they may be declared in either the main

program or a subroutine.

9

The programmer declares a namelist to LOCATE by a call to subrou-
tine SETLST. Transfer locations for command variables are declared by
calling subroutine JUMPS. The use of these two routines will later be
described in more detail. Three other entry points that are of interes!.
here are SET, TRANS, and UNSET. Subroutine SET is uced just prior to
a call on LOCATE for the purpose of enabling transfer of control if the
variable subsequently located is a command variable. Any such transfer,
however, does not occur until subroutine TRANS is called. If no trans-
fer has been enabled, TRANS simply returns to the calling program.
UNSET may be used to disable a transfer which was enabled by SET. It
is useful whenever a command variable input .s found to be in error after

the variable has been reccgnized and the transfer established.

The set of routines described above makes it possible to perform
all line scanning and value conversions in a program written with a

higher level language than is assembly language.

1TY i{s a FORTRAN subroutine which was written for the purpcse of
scanning a fieldata character string and ‘interpretively executing
the statement according to a set of specific rules. For this job,
TTY uses LOCATF, SET, TRANS, and UNSET. It may, from the programmer's
point of view, be thought of as the subroutine to be called whenever

input from the user at the teletype is required or desirable.

10

At the moment, the capabilities of TTY are limited in scope, but
wili be more generalized in the near future. Its primary functions are

to:

Store values typed by the user at the addresses

of user designated interaction variables,

Retrieve and type to the user the current value

of any interaction variable requested.

Effect the transfer of control associated with a

command variable.

/"

USAGE INFORMATION

In order for interaction and command variables to be defined, they
must be declared 8 1OCATE through the entry point SETLST. The name-
list name must be passed to SETLST in order that the namelist table of
information be made available. Uniortunately, a namelist name may only
appear in a READ or WRITE statement., For thie reason, a call to sub-
routine SETLST must be followed by a READ or WRITF statement as demon-

4

strated by the following example:

NAMELIST/NAME/VARL ,VAR2,...,VARN

CALL SETLST

READ (5,NAME)

SETLST anticipates that a READ statement of the form shown will
immediately follow the subroutine call. The information given in
the RFAD statement may be thought of as the argument list for SETLST.

The subroutine returns to the next statement following READ.

An interaction variable 1s one which has been declared in a

NAMELIST where the name of that namelist has beea provided to sub-

routine SETLST at execution time.

A command variable is an interaction variable which is further

declared in a call to subroutine JUMPS.

NAMELLST/NAME/VARL1,VAR2,,.,,VARN

CALL SETLST

READ (5,NAMY)

.

CALL JUMPS ('NAME',$STMIL,$STMT2,...,SSTMTM)

In the above example, M 2 N. The call to JIMPS declares the first
M variables appearing 1in namelist NAME to be command variables. When

VARI is typed, 1 - I Z M, the program transfers to STMTI in the program,

Firally, whenever the teletype 1s to be interrogated, a call to
subroutine TTY 15 made. Usually, the call will be the character

interrupt processing location speciried in a call to CHRINT as demonstrated

by the following hypothetical example (2):

L

10

20

30

40

LOGICAL FLAG
DIMENSION T (10,10)
NAMELIST/NAME/PLOT,STOP,A,GO,1,J, FLAG
CALL SETLST

READ (5,NAME)

CALL JUMPS ('NAME',$10,$20,$30,.,40)
CALL CHRINT (1,$5)

CALL IDLE

GO TO 2

CALL TTY

CALL INTRET

CALL PLCTFR (1,J)

CALL INTRET

CALL EXIT

NEWVAL = A**3 + .5

CALL INTRET

CALL COMPUT (NEWVAIL,FLAC)

CALL INTRET

13

DEFINE
INTERACTION
VARTABLES
DEFINE COMMAND VARIABLES
GO TO 5 WHEN 1 CHAR 1S TYPED
WALIT FOR
INTERRUPT
INTERRUPT OCCURRED, CALL TTY
RETURN TO IDLE LOOP
'"PLOT' COMMAND WAS TYPED
RETURN TO IDLE LOOP
"STOP'COMMAND WAS TYPED
NEW VALUE OF 'A' WAS TYPED
RETURN TO IDLE LOOP
'GO' WAS TYPED

RETURN TC IDLE LOOP

The above program would call IDLE repeatedly until a character inter-

rupt caused a transfer out ot (ULE to statement number 5 where TTY would

then be called (2)

typed at which time 1t would scan the input line.

depend upon the line that was typed.

TTY would wait until a carriage return (

) was

What happens next wculd

Some examples will illustrate:

INPUT
PLOT g o' o o
STOP e e

A=3.5 of c ool ©

L(),1)=37 5 CRECERG

1(J,Jd)=40 .

1(1,25)=" 0

A= s v e«

» v e s e

LI . .

« o s ek

v LI - ¢«

14

EFFECT

franster to statement 10

.Transfer to statement 20

-Value 3.5 is stored in A then transfer
to statement 30

.Value 3.0 is stored in A then transfer
to statement 30

.Transter to statement 30

-Value 37 1s stored in 1l then return
to statemen. after CALL TTY

.Value 2 is stored in J then return
to statement after CALL TTY

Value 40 1s stored in 1(Jj,J) where
the current value ot J is used, then
teturn to statement after CALL TTY

.Charactere '25' underlined with '*'
(subscript out ot range) then wait for
more 1nput,

.Type out current value of A, Do not
t.ansfer. Return to statement after

CalLl TTY.

Tho above list includes most of the common forms of input, but is by

no means exhaustive.

Ihe tollowing rules govern the use of TTY:

15

Values must agree in type with variable names as
defined in the program. The only exception is that
a floating point variable may be given the value

3 in lieu of 3. or 3.0.

Floating point input may be either of the ¥ or E

format type.

Complex values are input as two floating point

values separated by a comma.

Subscripts may be either integer constants or

non-subscripted interactive integer variables.

If & label and an equal sign are typed but not a
value, the program assumes retrieval is wanted

and types out the current value of the variabls.

The ucer may ettect the transter of control
associated with a command variable either by
typing only the name of the variable, or by

specttying a value for the variable.

16

Command variable transfer will not occur when there
is ervor in the input string or when the value of the

variable is being tretrieved.

Whenever an error is detected in the input, the element
found to be in error is underlined with the character

"*#', and the subroutine waits for more input,

All input must be followed by a carriage return.

I

APPLIED EXAMPLE AND CONCLUSIONS

A complete practical test of this system was initiated several
months ago when an existing FORTRAN program was converted to the inter-
active mode. The problem solved by the program is the fitting of a set
of data pcints collected at the Material Test Reactor (MTR) at Arco,
ldaho. The data points represent the cross section, o, of & test sample
as a function of the energy, E, oif neutions bombarding the sample. The
theoretical model for describing this function is the single-level

Breit-Wigner formula:

H
m & ey el (g2 mgeyE 4 5By
" I 1 i l 1
ct(E Uit i 0.2 2
1=} (E" - E)° 4+ (1,/2)
1 i
mwgh‘: (E" - E(;) R >
+ = 5 + 4nR
(" - E)" ¢ (1,/2)
i i
whero:
Il GOy
b L 1

£ ois a4 statistical welght factor

-)

Y ,1, and h; are 1esonance parameters to be determined in the
fitting process

R ix the radius ¢t the nucleus of the sample

m is e aumber of resonances

18

The formula 1s corrected for Doppler effects by computing the

function:

OA(E') - K'(E! ’E")Gt(E")dE"

The transmission, T,, may then be calculated:

i

'y o ol E LY
TA(E) = " NGA(E J

where N is the thickness of the sample.

TA must be corrected for an eficct caused by the finite resolution

of the measuring equipment.
TR(E)= K(E,E')TA(E')dH'
Finally, the corrected cross section is:
a1 = & 1n (/T (E))
N R
This cross section is then compared to the data points. The reson-

0 3 [3]
ance paramelers |, .; and EL are changed, and the function again computed

successively until a geod fit 1s obtained.

rarm . AR Ry g

19

1t should be menticned here that other mathematical models,

such as a Fcurier serles, could be used to fit the data. However,
the Breit-Wigner formula retains the useful theoretical concepts
involved in the phencmencn being observed. A Fourier series or
some other method, although providing an analytical description of

the data, would allow the physics to be lost.

The FORTRAN program which calculates the fit has been converted
to a subroutine and a FORIRAN control program written to provide the

1nteraction and display capabilities.

The basic structure ot the control program is similar to that
of the hypothettical example previously described. Each command
variable detines a particular process to be performed when that variable
is tyned. ln addizion to the main control program are program elements
for scaling the data, draving axes on the IDL display screen, and for
perrorming an tnverse indexing operatton. The latter 1s necessary to
allow tne program user the convenience ot specifying parameters in the
units of the original data, rather than i1n the units of the displayed
wmage which are typreally tar removed trom hiis koowledge.

There are several command variables for controlling the program.

The tirst such variable 15 DATA, which is used to tell the program how

many data points ar¢ to read from the input tile. Another command is

20

I VIEW, which is used to select an energy field of view. VIEW is defined
in the program to be a complex command variable and is therefore input as
a complex constant. The real and imaginary parts of the constant are

agsociated with the lower and upper limitg of viaw, respectively.

After a view has been selected, the program may be forced to scan

f the data to the right or left with the respective commands SCANR and
SCANL, When wither is typed, the picture begins changing in an animated
manner, as though the user were perfocrming a pan operation with a camera
while observing through the view-finder. The scaa stops whenever the

end of the data is reached, or if a value ia typed with the command and

that value is reached, or when the command HALT is typed.

Once & view of the data is selected of which a fit is desired,

the user may type FIT to initiate a call upon the fitting program.

At present, the only interact:!on nossitle with the actual fitting
program is through some interea.tion variables. It is expected that the
fitting program will be veplaced by >ne which uses the multi-level Breit-
Wigner formula in the neay future. Therefore, interaction with the present

fitting program has assumed a very low prierity.

The contrnl program evaluates the fitting function at a specified

number of points across the interval and displays line segments connecting

21

the values of the function at those points. Fitting parameters may

then be changed and the fit again computer if necessary.

When a given interval has been fitted satisfactorily, a hard-copy
of the results may be obtained by typing PLOT, The program generates

the copy cn a Calcomp plotter,

The command, SWAP, may be typed at any time after all data points
have been read, and i{: a signal to the program to subsequently swap

out of the computer whenever it is waiting on the user for input (3).

The STOP command terminates the program,

A problem was run in the interactive mode on a set of data collected
at MIR from an experiment using a sample of 263Am. Figura 1 shows an
interval of data points and the fit computed with the initisl values of
the resonance parameters. The next step in the process was to raise the
peaks to conform more to the data. The results of thesa changes are shown
in Figure 2. For a final correction, Figure 3 shows tha result of broad-

ening one peak slightly. The total time for obtaining this solution was

approximately one-half hour.

22

Figure 1 - Data points
and single-level Breit-
Wigner fit using the
initial resonance
parameters,

Figure 2 - The efiect
of raising the peaks
by interactively
modifying the values
of some parameters and
fitting again.

Figure 3 - The final
solution obtained by
broadening one
resonance slightly.

23

When the program operated in the batch mode, the data was plotted

and values of the resonance parameters determined on the basis of that

plot. The program was then given the data and the estimated parameter
values. It then calculated the fitting function. The process was re-
peated until a good fit was obtained. The time required to obtain the

fit was generally of the order of four or five months.

By contrast, the interactive program allows tha values of the
resonance parameters to be determined at run time allowing the fitting
process to be accomplished in one sitting. In addition, the control
program and associated display routines required approximately one
man-week of development time, The point to be made here is that
interactive graphics may save very significant amounts of time in the
solution of numerical problems, and that with a suitable means of
implementation, the time required to convert an existing batch mode

program to the interactive mode is often negligible.

s TS - %

DIRECTION OfF FURTHER RESEARCH

The demonstrabie usefulness of interactively working with some

types of FORTRAN programs logically points to the possibility of

designing an entirely new interactive language.

The language should:

Be oriented, in some sense, towards mathematics to

facilitate a variety of numerical problems,

Provide list processing capabilities for ease of

handling a large and complex data base.

Be capable of peiforming input/output with a large

variety of digital and analog devices,

Be syntactically counsistent and allow a highly
sophisticated input/output syntax to be defined

hy the programmer, possibly cven at execution time.

Provide well designed debug capabilities for both

tnhe static and dynamic progranms.

It is quite possible that a carerully designed language of thi:

type would prove invaluable for the computer solution of a great

number of complex problems in science and engineering.

1.

LITERATURE CITED

Sperry Rand Corporation. UNIVAC Division, 1108 Multi-

Processor System Fortran V, Programmer's Reference Manual,
UP 4060. New York, c 1966.

Copeland, Lee and Carr, C. Stephen, Graphics Systen.
Salt Lake City, University of Utah, Computer Science
Information Systems, Technical Report 4-1, Nov. 15, 1967.

Reed, Alan C., Dallin, P. E. and Bennion, Scott T.,

A Fortran V Interactive Graphical System. Salt Lake City,
University of Utah, Computer Science Information Processing
Systems, Technical Report 4-4, April 3, 1968.

