
f

AD-761 996

A METHOD FOR EXTENDING FORTRAN V FOR
THE INTERACTIVE GRAPHICAL SOLUTION OF
NUMERICAL PROBLEMS

Alan C, Reed

Utah University

Prepared for:

Advanced Research Projects Agency

December 1968

DISTRIBUTED BY:

KJüi
National Technical information Service
U. S. DEPARTMENT OF COMMERCE
5285 Port Royal Road, Springfield Va 22151

■fan

_

■#

%«s^

M^-i

H MNICAI
' • '. ' I I ■ *

 iwiiiwitri^imiiiitlrt^iiiiwiiiiiiiiiiiwtwiiiiiiiiiiiiiiw

r
Technical Report WO Alan C. Reed

A METHOD FOR EXTENDING FORTRAN V FOR THE INTERACTIVE

GRAPHICAL SOLUTION OF NUMERICAL PROBLEMS

December 1968

COMPUTER SCIENCE

Information Processing Systems

University of Utah

Salt Lake City» Utah

Advanced Research Projects Agency ' Department of Defense • ARPA order 829

Program code number 6D30

/

■
. . ■ 1 .

ABSTRACT

Daring the more recen1" history of Computer Science, a great

deal of effort has been directed toward the development of more rapid

methods of interaction between man and machine than is possible with

current batch processing schemes. One specific subset of this field

of study is the area of Interactive Computer Graphics, where tools

such as display scopes and keyboards, among others, are used to effect

more efficient problem solution. In connection with this, a number of

programming languages are being written'which are geared to and which

take into account the capabilities of graphical systems. However, a

great number of programs now exist in industry which were written in

FORTRAN or COBOL. In particular, many of these FORTRAN programs wei"e

written for the solution of various physical problems using numerical

analytical techniques.

One important characteristic of such programs is that a significant

amount of coding is required to handle breakdowns in the algorithm

which occur during the problem solution. For example, the non-conver-

gence or divergence of an iterative procedure might be handled by attempt-

ing to change some program parameters such that convergence may then be

achieved, liie final solution of .. curve fitting problem may require

several iterations, each with a different fitting function or norm, in

each of these cases, the. additional amount of decision-making code

required to adequately control the algorithm may be very large. To be

more accurate, cht amount may range from simple code, which simply

.

.,..„,,_,„ _„_.-,..,..-.

terminates the program, to that which is necessary to manage and correct

every conceivable breakdown.

The simple code, of course, requires very little in the way of

programming effort, bit generally must be submitted into the batch sev-

eral times in an iterative manner before the final solution is obtained.

The more complex code, on the other hand, is longer in development, but

probably requires f<iuer rurs to complete the problem. An entire realm of

compromise or trade-off exists between the two extremes, and it is there

thU most of the existing numerically oriented programs are found, prob-

ably feu reasons of economies, or available development time, or both.

Interactive computer graphics offers much in the way of bringing

the program user closer to the problem solving algorithm. Techniques

may be employed which provide for the execution of the program to be

mon'.tored and action taken to help the program find the solution, or to

find it more quickly. Logic, for handling breakdowns in the algorithm,

much of which would not normally be coded into the program, may be econom-

ical lv "ti-nloyed, provided means are available to implement these tech-

niques in existing FORTRAN programs, lhis paper is the result of a first

step toward providing those means.

"t
Itt

■
■ ■.«--■■■.■,»- r .

INTRODUCTION

At the University of Utah, a graphics laboratory has been

established to provide the Computer Scientist with tools of research

into graphical techniques.

The equipment in the graphics laboratory includes:

A PDP-8 computer connected on-line to the

University's Univac 1108. The PDP-8 acts

as a controller for the graphics equipment

and serves as the communications link between

this equipment and the 1108.

A model 35 teletype that serves as the

interactive keyboard.

An IDI display scope which may be used to

provide a window into the solution space

of the problem, and may be combined with the

teletype to form an interactive console with

keyboard and display.

. m^jm&ii***' unwr.j.w.i-- ■

Descriptions of other equipment present in the graphics laboratory

are or.ii.ted since knowledge of Its existence is not necessary background

material for this paper.

In order to provide the means by which a FORTRAN program may be

given interactive capabilities, a set of subroutines has been written

which allows a programmer to declare two new types uf FORTRAN variables.

The first type is called ,-in "interaction variable", the value of

which may be changed or simply retrieved by tne program user. The

second type is called a "command variable". A command variable, when

typed, causes transfer of execution to a statement number in the pro-

gram and may also have an associated value.

METHOD OF IMPLEMENTATION

Namelist is a FORTRAN V feature which allows unformatted input

and output of declared variables (1). The basic form of a nameli3t

statement is:

NAMELIST/NAME/VAR1,VAR2,...,VARN

where NAME is a namelist name; and VAR1,...,VARN are simple vari-

ables, subscripted variables, or array names.

In order for a nameiAst to provide input/output, a table of infor-

mation regarding each variable declared in the list is generated by the

compiler and exists in maraory at execution time. It is this information

which is used to obtain addresses and other necessary information for

this implementation. The ex3ct structure of the table is perhaps best

described by a semi-pictorial description which assumes that N variables

were declared.

■

NAMELIST TABLE

Relative
Location Configuration

35 f 18 17

Explanation

-Absolute location corresponding to
relative location N + 2

• The characters $$$ in fieldata code

JD
 Namelist name in fieldata code,

0 left adjusted, with blank fillei

N + 2
35

-N Variable names in fieldata codo.
left adjusted, with blank filler

N + 3

N + 4

3N + 1

3N + 2

35

35

35

35

IK"
0

KJ

o

•N pairs of words, each pair corres-
ponding to a variable name

The information contained in the word pairs shown above depends

unon whether Hie corresponding variable is non-subscripted, singly sub-

scripted, or multiply subscripted.

■

':•

Non-Subscripted

35 30 29 24 23

•All zero

-Variable type

1 + Integer
2 + Floating point
3 + Double precision
4 ♦ Complex
5 * Logical

<■ Absolute address of variable

35
■All zero

35 30 29 24 2 3

'8

Singly Subscripted

' -—-—Q5,
I

■ ■ - -Variable type (as defined above)

— Absolute address of variable

0

35

«g Maximum subscript size

0

■ ■
■ ■

*8

Multiply Subscripted

'Variable type (as defined above)

.Absolute address of variable
I > A

1
35 30 29 24 23 0

,
•Address of Dimensions Table

The Dimensions Table Contains:

1st Word

35 18 17

-Number of dimensions M

(1<M<8)

.Product of maximum of each
subscript

2nd Word

35 18 17

'Maximum of first subscript

.Maximum of second subscript

(Repeat to Mth .subscript)

The transfer of control associated with a command variable has been

implemented by taking advantage of the code generated when a statement

number is specified in a subroutine call list. This is done whenever

the RETURN K feature of FORTRAN is used (1). The FORTRAN statement:

10 CALL SUB ($10,$20)

where the numbers 10 and 20 are statement numbers in the program, would

result in the machine language equivalent of the following Univac 1108

assembly language code:

10L LMJ Xll.SUF

J 10L

J 20L

(W.B.)

. TRANSFER TO SUB

. JUMP TO STATEMENT 10

. JUMP TO STATEMENT 20

. ERROR WALK BACK

It may be seen that a table of jump instructions is produced

that provides branches to various statement numbers in the program.

An apscmbly language subroutine, LOCATE, has been written for the

purpose of providing access to the namelist and jump tables of infor-

mation for a FORTRAN driver program. It is called by a statement of

the form;

CALL LOCATE (LABEL,VEC)

where LABEL is a location containing the name of a variable declared in

a namelist, left adjusted, and with blank filler. VEC is a singly

subscripted array of eleven locations which contains the information

listed below when the variable is found and the subroutine re:urns to the

calling program:

Position in VEC

1

2

4

5

Contents

Absolute address of variable

Variable type (as previously
described)

Product of maximum of each
subscript

Number of subscripts

Maximum of first subscript

Maximum of second subscript

11 M?.:imum of seventh subscript

If the variable is not located, all positions in the array VEC are

set to zero. LOCATE is capable of searching several namelists, (the

present maximum is fifty), and they rsay be declared in either the main

program or a subroutine.

wpBrf*-.-- -*a«-***y<*-.-

The programmer declares a namelist to LOCATE by a call to subrou-

tine SETLST. Transfer locations for command variables are declared by

calling subroutine JUMPS, The use of these two routines will later be

described in more detail. Three other entry points that are of interes».

here are SET, TRANS, and UNSET. Subroutine SET is used just prior to

a call on LOCATE for the purpose of enabling transfer of control if the

variable subsequently located is a command variable. Any such transfer,

however, does not occur until subroutine TRANS is called. If no trans-

fer has been enabled, TRANS simply returns to the calling program.

UNSET may be used to disable a transfer which was enabled by SET. It

is useful whenever a command variable input .s found to be in error after

the variable has been recognized and the transfer established.

The set of routines described above makfis it possible to perform

all line scanning and value conversions in a program written with a

higher level language than is assembly language.

1TY is a FORTRAN subroutine which was written for the purpose of

scanning a ti<>ldatn character string and interpretlvely executing

the statement according to a set of specific rules. For this job,

TTY uses LOCATE, SET, TRANS, and UNSET. It may, from the programmer's

point of view, be thought of as the subroutine to be called whenever

input from the user at the teletype is required or desirable.

I
I

-

~<mm

10

At the moment, the capabilities of TTY are limited in scope, but

wilx be more generalized in the near future. Its primary functions are

to:

Store values typed by the user at the addresses

of user designated interaction variables.

Retrieve and type to the user the current value

of any interaction variable requested.

Effect the transfer of control associated with a

command variable.

■ ■ »"-.!-•.»—--

 -

/I

USAGE INFORMATION

In order for interaction and command variables to be defined, they

must be declared to LOCATE through the entry point SETLST. The name-

list name must be passed to SETLST in order that the namelist table of

information be made available. Unlortunately, a namelist name may only

appear in a READ or WRITE statement. For this reason, a call to sub-

routine SETLST must be followed by a READ or WRITE statement as demon-

strated by the following example:

NAMELIST/MMF/VAR1 ,VAR2 ,.. . ,VARN

CALL SETLST

READ (5,NAME)

SETLST anticipates that a READ statement of the form shown will

immediately follow the subroutine call. The information given in

the READ statement may be thought o! as the argument list for SETLST.

The subroutine returns to tha next statement following READ.

An interaction variable is one which lias been declared in a

NAMELIST where the name of that namelist has been provided to sub-

routine SETLST at execution time.

. i„- **• -,.. ,„j*.,—^

•- -

12

A command variable is an interaction variable which is further

declared in a call to .subroutine JUMPS.

NAMELIST/NAME/VAR1.VAR2,...,VARN

♦

CALL SETLST

READ (5,NAME)

CALL JUMPS (\NAME\$SIMn,$STMT2 $S1MTM)

In the abova example, M _ N. The call to JUMPS declares the first

M variables appearing m nameiist NAME to be command variables. When

VARI is typed, 1 _ I _ M, the program transfers to STMTI in the program.

Finally, whenever the teletype is to be interrogated, a call to

subroutine TTY U made. Usually, the call will be the character

interrupt processing location spe,iued in a call to CHR1NT as demonstrated

by the following hypothetical example (2)5

- ■ ■■

W- W-

13

LOGICAL FLAG

DIMENSION I (10,10)

NAMELIST/NAME/PLOT,STOP,A,GO,I,J,FLAG

CALL SEILST

READ (5,NAME)

CALL JUMPS <'NAME',$10,$20,$30,^0)

CALL CHRINT (1,$5)

2 CALL IDLE

GO TO 2

5 CALL TTY

CALL INTRET

10 CALL PLCTFR (I,J)

CALL INTRET

20 CALL EXIT

30 NEWVAL ■ A**3 + .5

CALL INTRET

40 CALL CQMPUT (NEWAi ,FLAC)

CA1L INTRET

9

9

9

9

(?

9

0

i

a

DEFINE

INTERACTION

VARIABLES

DEFINE COMMAND VARIABLES

GO TO 5 WHEN 1 CHAR IS TYPED

WAIT FOR

INTERRUPT

INTERRUPT OCCURRED, CALL TTY

RETURN TO IDLE LOOP

'PLOT' COMMAND WAS TYPED

RETURN TO IDLE LOOP

'STOP'COMMAND WAS TYPED

NEW VALUE OF 'A' WAS TYPED

RETURN TO IDLE LOOP

'GO' WAS TYPED

RETURN TO IDLE LOOP

The above program would call IDLE repeatedly until a character inter-

rupt caused a transfer out o! IDLE to statement number 5 where TTY would

then be called (2) TTY wuuid wait until a carriage return () was

typed at which time it would scan the input line. What happens next viötfid

depend upon the line that was typed. Some examples will illustrate:

!

■

 _____ _ :-wmF^ . , ...

14

INPUT

PLOT

STOP

A=3.5

A«3

A • •

t<?,l)-37

.1=2

1(1,25)-?

• » t t

l(.),J)"40

• I •

EFFECT

rransiet to statement 10

.Transfer to statement 20

Value 3.5 is stored in A then transfer

to statement 30

•Value 3.0 is stored in A then transfer

to statement 30

.Transfer to statement 30

•Value 37 is stored in i then return

to statement after CALL TTY

.Value 2 is stored in J then return

to statement after CALL TTY

Value ^0 is stored m 1(J,J) where

l^e cutIent va^ue or J is used, 'hen

return to statement after CALL TTY

■Characters '25' underlined with **'

(subscript out ot range) then wait for

mor» input.

Type out current value of A. Do not

transfer. Return to statement after

CALL TTY.

11.. above list includes most of the common forms of input, but is by

no means exhaustive. I'he following rules govern the use of TTY:

•■ ■■

,■■■■ ■■*■ «te^m*****,****"

15

Values must agree in type with variable names as

defined in the program. The only exception is that

a floating point variable may be given the value

3 in lieu of 3. or 3.0.

Floating point input may be either of the F or E

format type.

"""***-,

Complex values aie input as two floating point

values separated by a comma.

Subscripts may be either integer constants or

non-subscripted interactive integer variables.

If a label and an equal sign are typed but not a

value, the pui^cam assumes retrieval is wanted

and types ouc the current value of the variabia.

The ucer may etlett the transfer of control

associated with a command variable either by

typing only the name of the variable, or by

specifying a value for the variable.

- .-. <* *■ ::

. ,._ .,.,.

16

Command variable transfer will not occur when there

is error in the input string or when the value of the

variable is being retrieved.

Whenever an error is detected in the input, the element

found to be in error is underlined with the character

'*', and the subroutine waits for mote input.

-
Ail input must be toliowed by a carriage return.

... . .

jjpgp^psjp.-jor—" — -w ■ ■■»

n

APPLIED EXAMPLE AND CONCLUSIONS

A complete practical test ot this system was initiated several

months ago when an existing FORTRAN program was converted to the Inter-

active mode. The problem solved by the program is the fitting of a set

of data points collected at the Material Test Reactor (MTR) at Arco,

Idaho, The data points represent the cross section, o, of a test sample

as a function of the energy, E, of neutions bombarding the sample. The

theoretical model foi describing tins function is the single-level

Bieit-Wigner formula:

i«l

« n ß I (F.J/K'V + V
a" - E")2 + d1/2)

2

where:

rH + r»

16rig," IE" - E°) R

(KM - E°r + (S./2)'
i i

+ 4nR

i i

g it, a statist icil weight ta^tot

. , ', »»nd E are iesonancö p.uauwterh to be determined In the

fitting protf.-ij

R is the is In..', of the nucleus of the sample

m i* '.?'■ aufflber of resonances

MAMMMWH^K ■-

.-»-... _ ■

18

The formula is corrected for Doppler effects by computing the

function:

o&(E') = K,(E,,E,,)ot(E,,)dE"

The transmission, T, may then be calculated:

TA(E,) = t"*Ä(E,)
■**»***

where N is the thickness of the sample.

T must be corrected for an efifc-;t caused by the finite resolution

of the measuring equipment.

T_(E) ■ KlM')TA(B*)dE' K a

Finally, the corrected cross section is:

0(2) - £ In (1/TR(E))

This cross section is then compared to the data points. The reson-

n . i -O sntfc ^»xaroeurs f , i and £. are changed, and the function again comrmted
l l l

successively until a good tit is obtained.

r^ ~ ..,,,..

It should be mentioned here that other mathematical models,

such as a Fourier series, could be used to fit the data. However,

the Breu-Wtgner formula cetains the useful theoretical concepts

involved in the phenomenon being observed. A Fourier series or

some other method, although providing an analytical description of

the data, would allow the physics to be lost.

19

The FORTRAN program which calculates the tit has been converted

to a subroutine and a F0R1RAN control program written to provide the

interaction and display capabilities.

The basic structure ot the control program is similar to that

of the hypothetical example previously described. Each command

variable defines a particular process to be performed when that variable

is tyned. In addition to the mam control program are program elements

for scaling the data, drawing axes on the 11)1 display screen, and for

per*orming ar. inverse indexing operation. The latter is necessary to

allow tnt program user the convenience ot .specifying parameters in the

units of the original data, rather than in the units of the displayed

image which ate typically tar remo.ed from his knowledge.

Hiere are several command variables for controlling the program.

The first such variable ü DATA, which is used to teil the program how

many data points aie to read from the input file. Another command is

.. ^MMmm mtn

ispp

20

VIEW, which is used to select an energy field of view. VIEW is defined

in the program to be a complex command variable and is therefore input as

a complex constant. The real and imaginary parts of the constant are

associated with the lower and upper limits of view, respectively.

After a view has been selected, the program may be forced to scan

the data to the right or left with the respective commands SCANR and

SCAML. When wither is typed, the picture begins changing in on animated

manner, as though the user were performing a pan operation with a camera

while observing through the view-finder. The scan stops whenever the

end of the data is reached, or if a value ia typed with the command and

that value is reached, or when the command HALT is typed.

Once a view of the data is selected of which a fit is desired,

the user may type FIT to initiate a call upon the fitting program.

At present, the only interaction Possible with the actual fitting

program is through seme intere/.tion variables. It is expected that the

fitting program will b*» replaced by one which uses the multi-level Breit-

Wigner formula in the near future. Therefore, interaction with the present

fitting program has assumed a very low priority.

i

The control program evaluates the fitting function at a specified

number of points across the interval and displays line segments connecting

 * ■*""■ m»l.>!in* - - •

21

the values of the function at those points. Fitting parameters may

then be changed and the fit again computer if necessary.

When a given interval has been fitted satisfactorily, a hard-copy

of the results may be obtained by typing PLOT, The program generates

the copy en a Calcomp plotter.

The command, SWAP, may be typed at any time after all data points

have been read, and it» a signal to the program to subsequently swap

out of the computer whenever it is waiting on the user for input (3).

The STOP command terminates thu program.

A problem was run In the Interactive, mode on a aet of data collected

243
at MTR from an experiment using a sample of Am. Figure 1 shows an

interval of data points and the fit computed with the Initial values of

the resonance parameters. The next step in the process wee to raise the

peaks to conform more to the data. Hie results of these changes are shown

in Figure 2. For a final correction, Figure 3 shows the result of broad-

ening one peak slightIv. The total time for obtaining this solution was

approximately one-half hour.

22

Figure 1 - Data points
and single-level Breit-
Wigner fit using the
initial resonance
parameters.

Figure 2 - The efiect
of raising the peaks
by interactively
modifying the values
of some parameters and
fitting again.

Figure 3 - The final
solution obtained by
broadening one
resonance slightly.

V-k-.a*^."-,,,*«»*.■.*,.-

23

When the program operated in the batch mode, the data was plotted

and values of the resonance parameters determined on the basis of that

plot. The program was then given the data and the estimated parameter

values. It then calculated the fitting function. The process was re-

peated until a good fit was obtained. The time required to obtain the

fit was generally of the order of four or five months.

By contrast, the interactive program allows the values of the

resonance parameters to be determined at run time allowing the fitting

process to be accomplished in one sitting. In addition, the control

program and associated display routines required approximately one

man-week of development time. The i-olnt to be made here is that

interactive graphics may save very significant amounts of time in the

solution of numerical problems, and that with a suitable means of

implementation, the time required to convert an existing batch mode

program to the interactive mode i* often negligible.

I

t *^iW» ■ n.ww|»rt»')i»--***»i~

M

DIRECTION OF FURTHER RESEARCH

The demonstrable usefulness of Interactively working with some

types of FORTRAN programs logically points to the possibility of

designing an entirely new interactive language.

The language should:

Be oriented, in some sense, towards mathematics to

facilitate a variety of numerical problems.

Provide list processing capabilities for ease of

handling a large and complex data base.

Be capable of performing input/output with a laige

variety of digital and analog devices.

Be syntactically consistent and allow a highly

sophisticated input/output syntax to be defined

by the programmer, possibly even at execution time.

Provide well designed debug capabilities for both

the static and dynamic programs.

It is quite possible that a carefully designed language of thi

type would prove invaluable for the computer solution of a great

number of complex problems in science and engineering.

,,, .— -..

w ■ ■-

LITERATURE CITED

1. Sperry Rand Corporation. UNIVAC Division, 1108 Multi-
Processor System Fortran V, Programmer's Reference Manual,
UP 4060. Nev York, c 1966.

2. Copeland, Lee and Carr, C. Stephen, Graphics System.
Salt Lake City, University of Utah, Computer Science
Information Systems, Technical Report 4-1, Nov. 15, 1967.

3. Reed, Alan C, Dallin, D. E. and Bennion, Scott T.,
A Fortran V Interactive Graphical System. Salt Lake City,
University of Utah, Computer Science Information Processing
Systems, Technical Report 4-4, April 3, 1968.

.

--..._. ■ a

■ '■:.

-..,-. . mwMnn

