
AD-761  995 

A   HIDDEN   LINE   ALGORITHM  FOR   HALFTONE 
PICTURE  REPRESENTATION 

John  E.   W?i-nock 

Utah  University 

Frepa red for: 

Advanced Research  Projects Agency 

20  May  1968 

DISTRIBUTED BY: 

KTui 
National Technical Information Senrice 
U. S. DEPARTMENT OF COMMERCE 
5285 Port Royal Road. Springfield Va. 22151 



BEST 
AVAILABLE COPY 



'^^Rry 

Techiiical Report 4-5 

F UTAH 
John E.  Wan.ock 

^Cf 

A HIDDEN LINE ALGORITHM FOR IIALFTO"^ PICTURE REPRESENTATION 

May 20, 1968 

COMPUTER SCIENCE 

Information Processing System 

University of Utah 

Salt Lake City, Utah 

Reproduced by 

NATIONAL TECHNICAL 
INFORMATION SERVICE 

U S DeporlmBn! of C iMTimrcm 
Springfield  -A 221)1 

Appf'Kl f ?! public i-.' toe; 

-D D C 

JUN 26 1973 1 
B 

Advanced Research Projects Agency • Department of Defense • ARPA order 829 

Program code number ^030 

V f/ 



( 

The purpose of this paper is to consider the problem of producing 

two dimensional picture representations of objects described in 3 space, 

In discussing the main problem of the removal of hidden surfaces in a 

picture representation, the motivating philosophy of a particular 

approach is closely examined, and a description of a possible implemen- 

tation of this approach is described.  The advsntages of the scheme are 

also outlined in the paper. 

C. 

i«. 



( 

A HIDDEtJ LINE ALGORITHM FOR HALFTONE PICTURE REPRESENTATION 

by John Warnock, Research Mathematician 
Computer Science, University of Utah 

In exploring applications in computer graphics, one finds quickly that 

the representation of three dimensional objects in picture form is both a 

desirable and necessary capability.  Applications dealing with any form of 

spatial design or with visual environment simulation need the ability to rep- 

resent objects and their relationships to each other in three dimensional 

space.  This capability is enhanced if the variety and complexity of picture« 

ir great and if the pictures c^n be presented with a wide range of intensitie*, 

or in color if possible,  other features that are desirable are the abilities 

to have more than one light\ource and, if possible, to consider oocondary 

illumination on the objects viewed. 

If these capabilities are present then the designer or user of a graphics 

system has open to him a large latitude of visual representational capability 

in a wide range of application areas.  Because this is so, the algorithm, to 

solve the problems associated with three dimensional representation have had a 

great deal of effort focused upon them.  However, the advances have been slow 

and difficult. 

The main obstacle to accomplishing these tasks is the enormity of the 

computation required to decide which parts of the objects viewed are seen snd 

which are hidden from view. This paper describes an approach to this problem 

that is desirable because it is simple, because the computation time 13 not 

severe, and because the additional problem of shading rnd multiple light sources 

seems soluble. 



2 - 

( 

( 

•iv, motivate the description of the algorithm, let me describe what 1 

believe is a procedure (founded or not) that the human eye and brain uses 

when examining a picture of a set of objects.  Suppose the picture examined 

is a desk with a coffee '.up and pencil on it.  The eye quickly determines 

that large areas on the top of *■V^, desk are open and therefore simple from an 

information content point of view.  The eye will not dwell on open areas such 

as the top of the desk but instead will search out the complexity in the pic- 

ture and will dwell on that complexity until the positional information about 

the objects is understood.  From there the <jye will search out other complex 

areas and process those.  In doing this the ^ye seems to be dwelling only on a 

portion of UM picture j-ong enough to assimilate the detail and i-.jfcirmation 

content of that portion. 

If a portion of the picture has no salient features, the time spent by 

the eye and brain is small.  If a portica of the picture is very complex, then 

the eye may examine iubportions of that picture in order to understand the 

simpler suhjireas.  In short, if the picture is simple, the processing that the 

eye and brain go through to understand the picture is minor.  If there are comt 

plex features in the picture, then further processing is req- 'rod but only on 

those complex features. 

What I am going to describe is an algorithm that copies the intent cf t'.im 

above description.  In trying to emulate the above process, the algorithm will 

look at smaller and smaller portions of a picture until the portions are com- 

pletely understood in terms of the decisron processes used in the algorithm. 

The division of the picture into portions is carried out systematically by 

the algorithm so that the resultant "understood" picture is a collection of 

/ ^       simple portions of the picture that may be combined to form the entire picture 

(see Fig. 1 as an example of this subdivision). 



- 3 

The operation that divides the picture proceeds by dividing the total view 

plane into four subsquarep.  The lower left square is then examined to see if 

it is simple enough to process.  If not, it is divided into 4 subsquares and 

the question is aske-I again.  The process continues until the subsquare consid- 

ered is either simply enough to handle or the resolution limit of the picture 

is attained.  The algorithm basically asks th,- question:  "Is the portion of 

the picture I am looking at simple enough to compute?"  If the answer is "y^-s. ,w 

output is produced.  li th« answer is "no," a subdivision of the Lquöre occurs 

and the fotltion U repeated.  This physical division of the vi-^w plane into 

successively nnvxller pieces can really be thought of as taking a difficult prob- 

lem (a couvu .x picture), and dividing it into easier subproblems (surpler pic- 

tures) until either the subproblem is solved by default or until it is solved 

by some decision procedure.' The decision process to determine when a square 

may be output can range in complexity and power.  It can be simple to the 

extent that if anything not blank is in the subsquare, a subdivision must be 

made.  (This is the situation in our first implementation.)  If this is the 

case, then the resultant output is a set of resolution size squares that lie 

along the visible boundaries of the objects being viewed. On the other hand, 

the decision process may be complex and handle squares with visible line segments. 

In this case, the number of output squares can be reduced but the computation 

per square goes up. 

In looking at pictures from the subdivision point of view it turns out 

that the problem of hidden lines goes away.  This is so because as the portion 

of the view plane examined gets snaller and smaller, the objects being viewed 

in that port-ion become will ordeied in terms of their distance from the observer. 

In other iwrdd« tl . ejects in a given picture may or may not be ordered in 

terms of tteiC distance from the eye, and yet at any single point through the 



( - 4 - 

< 

FIG 1 

o 



- 5 - 

view pi,.nQ the objects ..re well ordered.  The successive subdivision process 

allows the local order at some portion of the view plane of the objects to be 

detected for largest possible areas. 

It probably should be noted that at each successive refinement of the 

portions of the view plane information is gathered so that if further refine- 

ment occurc the information collected in the parent squares can be used to the 

advantage of the algorithm in subsequent refinements.  For instance, if an 

object is found to be outside a givtn portion of the picture, then it will be 

outside in refinements of that portion and therefore need not be referenced. 

This means that as refinement proceeds on a square, the number of objects 

which are referenced generally becomes smaller and smaller.  It can also be 

noted t'nat since this is the case it is possible to produce highly complex 

pictures vith vast numbers of objects with the advantageous use of secondary 

storage since generally it is true that after a few refinements of a given 

picture the list length of the objects relevant to the portion being examined 

should fit into memory.  Consequently the number of secondary storage accesses 

Should not be too severe. 

It should also be noted that this entire process can really be thought 

of as a large number of logically independent activities since disjoint squares 

have disjoint computational paths.  The common ele.nent to these independent 

Activities is a common data base, and even the data referenced, as computation 

proceeds, tends to split apart if the squares separate from one another.  This 

implies that if parallel processing becomes readily available in the future 

tl»en the algorithm can use this capability to a great advantage. 

All of the above considerations make .his approach of analyzing objects 

^       in pictures very attractive.  In the preceeding paragraphs I have attempted 

to outline the motivation and reasoning on which the hidden surface algorithm 



, f*«^ 3,2/1** SC©** 

c 

denends.  This has been useful since manv cf the oarticular imolementation 

techniaues used are auite indeoendent of the ohilosonhv and motivation of the 

alqorithm.  Because of this, much detail about the nature of the inout and 

about the soecific strateaies used in the algorithm have been left out of the 

above discussion.  What I will now attemot to ^o is to solidi^v the structure 

ot cur imolementation of the alqorithm and give oarticular nroaramming tech- 

niques that are used. 

The Input Data 

For the ourooses of this imnlementati >n (even though it aooears general- 

ization is oossible) the inout data is any set of olanar oolvqons described 

as sets of seouences of noints determining closed oaths in 3-sDace.  The 

orderinq of these ooints acts as a criterion for determininq the interior 

and exterior of the oolvqons,  ^or instance, in fuqure 2 the eiqht ordered 

outside ooints determine the exterior of the oolvqon whereas the 4 interior 

oppositelv ordered ooints determine a window in the oolygon. 

This scheme allovs the user to describe a wide varietv of shanes and 

objects.  Curved surfaces can be constructed by using small olanar oatches to 

aooroximate these surfaces. Other objects are constructed bv cutting a num- 

ber of oolygonal faces together. 

Although the oolvgons may be oositioned anvwhere in 3-sDace the view 

olane for this imolementation '.s assumed to be the x-v olane such that 0<x, 

y<512 and the view point at the ooint (256,256,-»).  This means that objects 

to be viewed must be aporooriatelv oositioned and transformed into the first 

prooerties ana aooear with orooer oersnective and lighting. Once  the data 

has been describee» and transformed in this manner, the algorithm is ready 

to acceot it. 



- 7 - 

Data t-i.oprocessing 

In the body of the program there are a series of calculations pertinent 

to a given polygon that are needed over and over.  Because of this, some 

memory is used to store these values in the interest of speed.  The most 

important of these values are the coefficients of the plane of the individual 

polygons, where the plane is given by z=Ax+By+C  (polygons perpendicular to 

the view plane are eliminated). With these coefficients it is possible to 

determine a number of things.  First the distance from a point on the view 

plane to the plane of a given polygon can be computed with 3 adds and 2 

multiplies.  Second, it is possible to determine when 3 planes pass through 

a common lino with these coefficients. Last, the angle of incidonca 

between the light source when it is at the eye and the plane of a polygon can 

be determined from the coefficients. All these facts justify the additional 

storage required to retain these numbers. 

Other types of information that are computed in the preprocessing stage 

are min{x}, max{.<}, minly}, max{y}, min{z}, max{z}, for the collection of 

points that comprise a polygon. These numbers make it easier to determine 

the relationship between a given subdivision square and a polygon. 

Internal Data-Structure 

The points of the polygons in this implementation of the algorithm are 

stored as one point per 36 bit word or 12 bits per coordinate. The order of 

the points is assumed by their order in memory and the existence of a closed 

subpath of a polygon is detected by repeating the first point of the path at 

the end. For example, the polygon in figure 2 would be stored: 

pt 1, pt 2, pt 3, pt 4, pt 5, pt 6, pt 7, pt 8, pt 1, pt 9, pt 10, 

pt 11, pt 12, pt 9. 



- 8 - 

pt 1' 

pt 3 

?t 4 

FIG.  2 

c 



- 9 - 

Two other arrays are stored in memory that are pertinent to the polygons. 

One a   ray  concalns the preprocessed data associated with the polygons. The 

other Is an array of pointers that gives the polygon table a list structure. 

To do this one of the pointers Indicates where a given polygon begins in the 

polygon table. Another pointer Indicates the pointer to the next polygon In 

the list structure.  The drawing In figure 3 Indicates this memory layout. 

The Picture Subdlvlder and Analyzer 

With the above data structure the algorithm can proceed to analyze the 

picture. To do thla the subdivider portion of tha program divides the picture 

Into four squixes and examines the relationship of the lower left square with 

each of the polygons. In this Implementation only three relationships between 

sauares and polygons are considered. Either the square contains some edge or 

vertex of the polygon, the square Is wholly outside the polygon, or the square 

Is wholly Inside the polygon.  For purposes of discussion we will refer to 

these relationships as "Involved", "out", and "enclosing" respectively. 

As the relationships of the square to the polygons are determined, the 

list of polygons is arranged so that all "enclosing" polygons are first, 

"Involved" polygons next and "out" polygons last. Thla is done so that all 

subsequent refinements of the lower-left square may use this ordering informa- 

tion easily. At this point the depths from the view plane to the planes of 

"Involved" and "enclosing" polygons are calculated at the four corners of the 

square. These depths provide sufficient information to detect if an "enclosing" 

polygon covers all other polygons pertinent to that square. If one does or if 

the lists of "enclosing" and "Involved" polygons are empty then the refinement 

process terminates tsti  «.r.e next square examined is the lower right square. 

In any other caae, some edge may possibly be seen and so the lower left square 



- 10 - 

is subdivided and the lower left square of that subdivision is processed.  As 

the polygons are examined with respect to this square, then the previous 

"enclosing" list can get longer and the "out" list can get longer.  Therefore 

more useful information is gathered about the smaller square and its relation 

to the polygons. At this point the depth computations are repeated and the 

decision question asked again.  This process of subdividing, collecting infor- 

mation, and going through the decision process is repeated until the resolution 

size of the pict-ure is attained, (in this implementation this is 9 subdivisions) 

or until the decision procedure decides that there are no visible edges present 

in the square. When no visible lines occur in a square, then the algorithm 

proceeds directly to  the next square of the same size at that level■  or if 

there» are none, to the next larger square at the next level.  If the resolution 

limit of the picture is reached, then the coordinates of the lower left corner 

of the square are stored  Along with these coordinates is sent information 

about what the square can "see."  If the upper left corner is not contained in 

any polygon, then nothing is sent with the coordinates, otherwise the pointer 

to the polygon nearest to the observer that contains the upper left corner is 

stored. 

The Shader 

The output of the above described proc ^ -s a set of small squares that 

lie along the visible boundaries of the objects in the picture.  Each square 

has a pointer to the polygon that is visible just to the left of the square. 

These squares are sorted in descending order by the x-coordinates of the 

lower left corner of the square within the y-coordinate. The squares in this 

order can be used to produce a raster scan output that can be sent to a scope. 

The scan is built right to left within top to bottom.  The scan sends zero 

intensity to the scope until the coordinates of the raster equal the 



- 11 - 

coordinates of the first square  encountered in the list.  From here, shading 

is determined by the polygon to which the square points until the raster 

matches the next square, or until the end of the current line is reached.  On 

each new line the intensity is reset to zero.  The search continues changing 

intensities as squares are encountered in the list until the end of the picture 

is reached, and the entire picture has been produced. 

This paper has included just one of the many implementations that are 

possible with the motivating philosophy behind the algorithm.  The implementa- 

tion given is by no means the best fi -m a timing point of view, but it is 

fairly simply to carry out and has given us promising results and statistics 

to use for implementations that are yet to be done. 

It is our real hope that the approach is flexible and general enough to 

provide adequate picture representation capabilities to satisfy a large seg- 

ment, of future graphics applications. 



- 12 - 

FICi. % 


