
AD-761 968

AN INTERACTIVE CONTINUOUS SIMULATION
LANGUAGE

Russell Louis Hagen

Utah University

Prepared for:

Advanced Research Projects Agency

October 1968

DISTRIBUTED BY:

urn
National Technical Information Sonrico
U. S. DEPARTMENT OF COMMERCE
5285 Port Royal Road, Springfield Va. 22151

Technical Report A-13 Russell Louis Hagen

00
to
Oi

o

AN INTERACTIVE CONTINUOUS

SIMULATION LANGUAGE

Octobet 1968

COMPUTER SCIENCE

Information Processing Systems

University of Utah

Salt Lake City, Utah

Rvproduced b/

NATIONAL TECHNICAL
INFORMATION SERVICE

U S Depotlmenl of Commerti
SprinB'ieW VA221S)

D D C
y—^ I— - -■ — —■

I -

OUN 26 1913

maa u isil
B

Advanced Research Projects Agency Department of Defense • ARPA order 829

Program code number 6D30

MStmäüTIÖW OTATEMEHT A

App»<rnxi lor public roiec«©;
Dt^ltibutfoB UcUunllwd

:

ABSTRACT

During the recent history of computer science, a new class of

programming languages has evolved. These languages are known as

simulation languages. They were developed because of the great need

to use simulation as a technique for problem solving and research.

Computer simulation has come into increasingly widespread use to

study the behavior of systems of which the state of the system changes

over time. Thtre have been two main types of simulation languages

developed to study these systems, continuous simulation languages to

study continuous change models, and discrete simulation languages

for the analysis of discrete change models. The models used for

analysis with a continuous simulation language are usually repre-

sented mathematically by differential or difference equations that

describe rates of change of the variables over time. 1CSL (inter-

active Continuous Simulation Language) falls into this category as a

programming language. 1CSL not only has the capability for approx-

imating the solutions of continuous change models, but also provides

for interaction between man and machine during the course of the

simulation. This interaction is in the area of computer graphics.

INTRODUCTION

ICSL is a ■ORTRAN V program for the digital simulation of

continuous system models. A continuous simulation language such

as ICSL touches into the realm of the analog computer programmer.

Physical systems usually modeled and studied on an analog computer

now are frequently simulated on a digital computer using one of the

available simulation languages, or done first on the analog system

and then checked on a digital system.

The usual method involved in doing a pi ysical system analysis

starts with the use of a block diagram of the system in terms of its

separate functional components, or with a mathematical model in

terms of differential equations. ICSL has a defined input language

with which to describe the model and functional components of the

system. Many problei--.- faced by the analog computer programmer

are nonexistent when the programmer turns to digital simulation as

a means of analysis. These are problems involving time scaling,

amplitude scaling, and of course the tedious job of wiring and potenti-

ometer setting. Also for very large systems the analog computer

programmer may need many more high gain amplifiers than he has at

his facility, and without a digital system may be forced to abandon

his project.

One basic criticism of the use of digital simulation by the us

of the analog computer programmer is that using digital simulation

techniques seem to "far remove" the programmer from the physical

system he is studying, and he doesn't develop his normal intuitive

feelings for the system. This criticism seems to come most from

se

those who have been exposed to a continuous simulation language for

the first time. There may be some merit to this criticism as comp-

lex problems can be described in ICSL with very little effort. The

same problem if done conveutionally M an analog system would

entail m«ch more involvement by th - analog computer programmer

and of course he would probably know the system he was studying

much more thoroughly when completed.

This paper describe« in detail the information required for

programming in ICSL fbe language was implemented almost

entirely in the FORTRAN language to give it an air of mnrhlne

Independence [l]. It utilizes the existing facilities at the Unlver.lty

•f Utah graphics laboratoxy. The equipment in the graphics labora-

tory includes the following.

Access to the University of Utah's Univac

1108 computor.

A PDP-8 computer on-line to the Univac

1108 which contrults the graphics equip-

ment and serves an an information link

between the two.

A model 35 teletype.

An IDI displav scope.

Thsse basic tools give the programmer the capability of inter-

action during an active user run. ICSL carries with U provisions for

man machine interaction during the execution of a simu^iion program.

3

This capability is due to the work done in the area of interactive

computer graphics at the University of Utah [2].

GENERAL DESCRIPTION OF ICSL

The ICSL system like other continuous simulation systems has

a repertory of acceptable program statements with which to describe

the input model and run conditions. These statements can be sepa-

rated into two groups. First, those statements which describe the

input, output, and execution control of the program, and second, those

which describe the structure or configuration of the model to be simu-

lated. These general classes of program statements are called

EXECUTION CONTROL STATEMENTS and BLOCK EXPRESSIONS,

respectively. The BLOCK EXPRESSIONS, or statements which

describe the model, closely resemble FORTRAN arithmetic assign-

ment statements [l]. FORTRAN was chosen because of its renown

as a programming language. ICSL also carries another FORTRAN

feature, that of ehe arithmetic statement function [l]. Functions are

used widely in a simulation language and the statement function

greatly facilitates function generation.

ICSL has a bui.e in set of functions from which the components

of a continuous system may be built. It also contains a large set of

system erroi messages which when printed are excellent debugging

aids for the ust r.

In IOSL, input and output is very easily accomplished. The

programmer is free from format and data labeling responsibilities.

The different types of output include a printer listing, printer plot, a

plot by a digital plotter, and a visual graphical display. The routines

for digital plotting are written for the CalComp Model 570 plotter [5].

The ICSL system also takes aduntage of the existing facilitiei at the

University of Utah graphics laboratory for man machine interaction

during the course of the program execution [2].

Constants, parameters, and inftial conditions for variable!

used in the simulation model can be described very easily. Also two

types of functions can be described. The first type of function called

TABLE FUNCTIONS are input in tabular form. These can be con-

stant functions or parameter functions. Constant function» are

functions which remain constant during the entire course of the

simulation problem execution. Parameter functions have more than

one set of tabular data and different sets are used for different

phases of the problem execution. The second type of function is the

forementioned ARITHMETIC STATEMENT FUNCTION feature from

FORTRAN [1].

The programmer can also specify such things as integration

step size, automatic statement sequencing, an other optional iteme

which are all explained in detail in this paper,

A BLOCK EXPRESSION in the ICSL language is a FORTRAN

arithmetic assignment statement used to describe the structure of

the model being simulated [1], These expressions can reference

any of the SYSTEM FUNCTIONS, TABLE FUNCTIONS, or STATE-

MENT FUNCTIONS in the program. Since ICSL was implemented

chiefly in FORTRAN, new function routines can be added to the sys-

tem very easily, or old ones removed.

The basic elements from which to construct valid ICSL

program statements include variable names, constants, functions,

operators, and special reserved words.

The mode of inputting an ICSL program is via punched cards.

Valid ICSL program statements are punched in columns 7-72.

Columns 2-5 and 73-80 are ignored b\ the system and may contain

any punched information the programmer wishes to appear on his

printed output. Column 6 is reserved for continuation notation. Any

ICSL statement may be continued on as many as five cards. Any non-

blank character punched in column 6 of a card denotes that the card is

a continuation of the preceding statement. The basic format for

punched cards is shown in figure 1, below. . More than one state-

ment may be punched on a card. If this is done, statements must be

separated by a semicolon (12-6-8) punch). A "C " in column 1 indi-

cates a comment card and the card is ignored during the compilation

phase of the system and merely printed out.

Figure 1

continuation
column

programmer's-,
comments ^-^—N

COLUMN—/f 2:

comment
notation

(C)

ICSL statements
.A.

programmer's
comments

If only one statement appears on a card, then the uM of a semicolon

to terminate the statement is not necessary, but may be us«d if

desi-ed. The basic structure of a program is shown in Figure 2.

Figure 2

Any number of execution
control statements

BEGIN

input/output
and

execution
control

Any number of block
expressions —

model
description

END

The block expressions of the program are delineated by a BEGIN

END pair. The special statement BEGIN is used to separate the block

expressions of the program from the execution control statements.

The END statement is used to terminate the program. The statements

of the program can otherwise be in any order with the exception that

a function declaration must precede the description of all table

functions (see page 17).

THE ICSL LANGUAGE

VARIABLE NAMES

A variable name contains one to six alphanumeric characters.

The first character must be alphabetic. S.nce all computations are

done in the floating point (real) mode, all variables used by the pro-

grammer are considered to represent floating pdnt (real values).

Examples of variable names are:

X X1DOT 121 QL2

CONSTANTS

Constants may be written either in integer form or floating

point form. Either form may be followed by an exponent denoted by

the letter E followed by a signed or unsigned integer. The letter E

denotes that the preceding constant is multiplied by the integer power

of 10 which follows it. Examples of constants are:

-5.327 25 523E-6 .025E12

BLOCK EXPRESSIONS

A block expression as mentioned before strongly resembles a

FORTRAN arithmetic assignment statement [1]. The general form

of a block expression is:

V ■ EXPR

where V is a valid variable name and EXPR denotes an arithmetic

expresaion. The expression m*f contain functions, conatahts, and

Other variable names. Also the operators +. -, *, /, and ♦♦ denote

the same meaning as in FORTRAN (addition, subtraction, multipli-

cation, division, and exponentiation, respectively). Any expression

can be enclosed in parentheses to any depth, and function arguments

are also enclosed in parentheses and separated by commas.

All functions with more than one argument cannot contair.

expressions as arguments, but they can contain variable names or

constants. A function cannot contain another function as an argu-

ment.

Functions with a single argument cr.n contain any expression

aa an argument as long as it does not contain another function.

As mentioned previously, any block expression can be con-

tinued on additional cards up to a limit of five. Examples of block

expressions:

:X«2*(A**2 + B*(C + D))

ZSQ ■ SQRT(X**2 + W)

X ■ INT(XDOT, INIT)

AB1 - 3.0E-6 * (B+C) + 5.2-2 *D/E

Y = FCNSW(VARl,25(.035.43E-8)

ICSL SYSTEM FUNCTIONS AVAILABLE

In a digital simulation language a large number of functions

are needed to facilitate operational elements similar to those of an

10

analog computer. These include such items as integrators, function

generator, pulse generators, etc. These items are called ICSL

«'/stem functions. The language also ha. the standard FORTRAN

library functions which can be used as aids in function generation.

The system and library functions avaüable are given in tables which

follow.

The user may also write his own FORTRAN function subpro-

grams for use by his ICSL proCramS. Two dummy functions,

USER1 and USER2 are contained in the ICSL system program. If

the user inputs a FORTRAN function subprogram with either of the

above names, the corresponding dummy routine will be replaced by

the user's routine, and the newly mput routine can be referenced by

any block expression in the ICSL program.

The routine USER1 expects five arp.ments. the first of which

is determined by the ICSL system. The remaining four arguments

are supplied by the user when referencmg the function from a block

expression. The reason the extra argument is added by the ICSL

system, is that the use, may wsh to write his own function sub-

program to implement an operaHonal element. If this element was

referenced by more than one block exprcss^n in the program, and

the element had to s ve prev^usly defmed values in order to deter-

mine a correct output, then the user needs to have some method of

determining which block express^ |. referencmg the funcüon sub-

program each time it is called. A typical FORTRAN function sub-

program declaration might be

FUNCTION USER1{I, X, Y, Z, W)

11

The value assigned to I will be 1 for the first block expression that

references this function. I for the second, and etc. The values of

X, Y. Z, and W will be supplied by the argument list of the function

name USER1 in the ICSL program block expressions. An example

might be:

Y = USER1(X11X2,X3,X4)

The variables XI. X2. X3. and X4 of the above expression corre-

spond to the variables X. R. Z. and W of the previous function

subprogram declaration.

The routine USER2 expects only a single argument. This

one argument is supplied by the user from a block expression.

Examples are:

Y = DtSR2(X**a + W)

W2 = USER2(A)

12

KÄME

INTEGRATOR

DERIVATIVE

IMPLICIT
FUNCTION

DEAC TIME

(DELAY)

ZERO-ORDER
HOLD

SYSTEM FUNCTIONS

GENERAL FORM

Y ■ INT(X, IC)

Y m DERCX.IC)

Y - IMP{X)

y ■ DELAY (X.P)

Y - 2HOLD(Xl, X2)

FUNCTION

Y « Jo X dt + IC
equivalent LanUc«
transform l/m ,

equivalent Laplace
tranaform a
Y « f(Y)

|Y.f(Y)|<10-5

Y = X(t - P) t > P

Y = 0 t<P
equivalent Laplace
transform

X2 XI >0

MODE-CONT ROLLED
INTEGRATION

Y » MODtNT(Xl .X2.XUC)

Y ■ last ouput if
Xl< 0

Y(0) « 0
equivalent Laplace
tranaferm . . _*

YTpx3dt+IC XI>0

Y » IC XI <0 X2> 0

Y s laat ouput

X1<0 X2<0

(continued)

1)

SYSTSM PUMCTIONS ic

TUMC

lit ORDER LAQ

(REAL POL«)

LEAD-LAG

and ORDER LAG

(COMPLEX POLE)

GENERAL FORM

Y • REALPL (X, A, IC)

Y p LEDLAG (X, A. B)

PUWCTION
mmmßmmmi' i ui

AT+Y «X

V (0) • IC

equivalent Laplace
transformation

p«+l

BY+Y.A*+X

equivalent LapUpce
transformation

AS^l
BS-f-l

CMPXPL(A,B,I,J,X)

Y(0) • I

Y(0) - J

♦ 2ABY ♦ B X*X

equivalent Laplace
transform

1

S* ♦ 2ABS * B2

FUNCTION SWITCH Y FCNSW(Xl,^,X^X4J Y • X

Y.X3

Y-X.

Xj <0

xl >p

14

FUNCTION GENERATORS

GENERAL FORM

Y = FNAME(X)

Y • STEP(A, B,P, X)

Y = RAMP(IC,P,THETA,X)

(Theta in degrees 0-90)

Y ■ RAND(P)

P any odd constant

FUNCTION

FNAME IS THE NAME OF

A TABLE FUNCTION

WHICH IS IN THE PRO-

GRAM. Y IS ASSIGNED

THE VALUE THE FUNC-

TION ASSUMES Al THE

POINT X.

Y = A if X < P

Y = B if X > P

Y = IC if X < P

Y ■ (X-P)tane + IC X > P

RANDOM NUMBER

GENERATOR

(from 0 to 1.0)

15

LIBRARY FUNCTIONS

GENERAL FORM

Y = EXP(X)

Y = ALOG(X)

Y = ALOGIO(X)

Y

Y

Y

Y

Y

Y

Y

Y

= ASIN(X)

= ACOS(X)

= ATAN(X)

= SIN(X)

= COS(X)

■ ABS(X)

■ SORT(X)

= CBRT(X)

FUNCTION

y = e

Y " ln(x)

y = lo810(x)

y a arcsiu(x)

y = arccos(x)

y = arctan(x)

y ■ sin(x)

y ■ cos(x)

y " |x|

1/2 y = x

y = x
1/3

M

INPUT

Parameters, initial conditions, and constanU can be d««crib«d

very easily in ICSL. A parameter is a variable name which U

assigned more than one constant value« The use •£ parameter« Indi-

cates that additional program executions are desired; «ne fej» each

additional parameter value assigned. The general statement form for

inputing these items is to assign constant values to a variable name,

""or example,

Y ■ 3.5

would define the value of 3.5 to be assigned as an ini ial condition or

constant value of Y. If Y is recomputed by one of t\ i block

expressions of the program it is not a constant; otherwis-, it is just

assigned an initial condition. When inputing parameter«» the different

parameter values are separated by commas. For example,

D12 = 4.6,7.2,8,9.7, 10

The above statement would assign five parameter values to the vari-

able D12. The maximum number of parameters given for any vari-

able determine how many times the program will be executed. For

the first execution the first parameter value is used, for the second

the second is used, and etc. If for example the program is execut-

ing the nth time, then the nth parameter value of all program

parameters is used. If a par* ü • program parameter contains k

parameter values, anl k < then the kth one is used.

17

TABLE FUNCTION INPUT

Table functions are functions of a single variable the user

wishes to reference from his program. Table functions are described

similar to the way of constants and parameters. However, all table

functions must be declared in a function declaration before they

appear in the program. The general form of the function declaration

is:

FUNCTION F1,F2,F3, Fn

where Fl, F2, F3 Fn are the alphanumeric names of the

l^ble functions to be input in the program.

Table functions are input by assigning a list of constant values

to a function name. The general form for inputing ^able functions is:

ME = VI, V2, V3 Vn

where NAME is the alphanumeric name of the function and

VI. V2, V3 Vn are constant values assigned to the function.

The first value and every alternate or odd position value thereafter

is assumed to be the values of the independent variable and these

values must be in ascending order. The other, or even, position

values are the functional values corresponding to each particular

value of the independent variable to the left. For example:

FUNCTION FUN, F21

FUN =1,1,2,4,3.9,4,16,5,25,6,36

F21 =2.0.0.0,4.8.8.6.6,8.2,9.0,7.2

would define the two table functions FUN and F21.

18

Parameter functions or functions containing more than one set

of values can be input very easily also. Each set of parameter func

tion values must be separated by a colon{:). Example:

FUNCTION P

P = 2-5.3,3.5,4, 4.5,5:3.6.2.0. 4.6.7.0

The above function P is a table function with 2 sets of values. Sin.e

it has more than one tabular set of values it is a parameter function

and for the first program execuUon the 'irst declared set of values is

used. For any additional executions the second set of data is used.

A table function may contain a maximum of eigh. functional lists.

Any table function can be referenced by any block expression.
For example:

Y = F1(X)

The above expression would assign to the variable Y the functional

value the function Fl assumed at the point X. If the value of X is

less than the minimum value of the independent variable of Fl. then

Y would be assigned the value the function assumed at the min.mum

value of the mdependent variable. If the value of x is greater than

the maximum value of the mdependent var.able, then Y would be

assigned the value the function assumed at that maximum. Linear

interpolation i. used to evaluate all table functions. A more

descriptive example of table funcHon input would be as follows.

Assume the following function was one of the inputs to be a functional

component of the block diagram of a model to be simulated (Figure 3.
page 19).

19

Figure 3

y « f(x)

(y

This function could be described as follows in ehe execution

control section of an ICSL program.

FUNCTION F

F = -10,-5,-5,0,5,0. 10,5

If the above function was referenced by the block expression.

Y = F(X)

and the variable X had a value in the range -5 < X < 5, the corre-

sponding value assigned to Y would be 0.0. If the variable X had a .

value in the range -10 < X < -5 theii the corresponding value

assigned to Y would be the value obtained using linear interpolation

between the coordinates (-10, -5) and (-5, 0) to evaluate the function

at the point X.

20

This table function can be made into a parameter function by

the addition of another set of values. Suppose that a physical system

was -o be studied involving the function of Figure 3. but was to be

analyzed for two cases. For the first case the function of Figure 3

was to be used, and for the second the function of Figure 4 was to be

used.

Figure 4

-I

y ■ f(t)

y

I

1
TF

-2

Both functions can be assigned by a single statement in ICSL

follows:

as

FUNCTION F

F = -10,-S.-S.O.S.O.IO.BJ-IO.-2,-5:,0.5,0.10.2

The block expression

Y = F(-10)

would yield the value of -5 during the first program execution and -2

during the second and any additional executions.

21

STATEMENT FUNCTIONS

Statement functions are written as they are in FORTRAN Q].

The general form of a statement function is:

NAME(A1, A2, . . . A5) = EXPR

where NAI«fE is the statement function name being defined and

Al, A2, . . . A5 represent the dummy arguments of the function which

are enclosed in parentheses. Every statement function defined must

have at least one but a maximum of five dummy arguments. The

dummy arguments, must be valid variable names. EXPR is any valid

arithmetic expression involving the dummy arguments. Statement

functions can be referenced from any block expression. For

example if the following statement function is defined:

ZEDL(A, B,C; = A*(B-C) + B**2

then one way the above function can be referenced from a block

expression is as follows:

Y ■ ZEDL(2.0 X, W)

If the values of X and W were 3.0 and 2.0, respectively, then the

value computed and assigned to the variable Y wou d be 11.0.

Two functional components of a block diagram, one which

acted as an adder, and one which acted as a subtractor might be

described by the following.statement functions.

■; .ADD(A,B).= A+B . . .
SUB(X1,X2) = XI-X2

22

The following reference of the above functions by the block

expression

Y = ADD(nY«) + SUB(Y1,Y2)

would yfeld the value of 10.0 if the values of Yl and Y2 were 5.0 and

6.0, respectively, at the time this expression was computed.

OUTPUT

Output can be obtained in several modes. For a printer list-

ing a LIST statement is required. Its general form is:

LIST V1,V2,V3, Vn

where VI. V2, V3 Vn are variable names used in the program.

The variables are listed every dt units of time where dt is the

independent variable step size.

A printer plot may be obtained by use of the PPLOT state-

ment. Its general form is:

PPLOT Vp.VZ.VS Vn

where VI. V2 , V3 Vn are the variable names used in the pro-

gram. The plot increment is also dt where dt is the independent

variable step size.

A calcomp plot may be obtained by the use of the CPLOT

statement. Its general form isr

CPLOT V1(V2,V3 Vn

23

where VI, V2, V3, Vn arc variable names used in the program.

The plot increment is the same as specified previously.

Output can also be displayed on the ID! scope by the use of a

DISPLAY statement. Its general form is:

DISPLAY V1,V2,V3 Vn

w here VI, V2, V3 Vn are the variable names whose values

are to be displayed. The plot increment for each display is also dt

where dt ii the independent variable step size. All plot or display

specifying statemt'its will generate a single plot of each variable in

the list for each program execution.

If the programmer is rcnning more than one simulation on a

particular model and he wishes to have a combined display or plot

of how a single variable varies with time for more than one pro-

gram execution, he may do so with the use of a MERGE statement.

Its general form is:

TcPLOTS |
MERGE n < DISPLAYS > OF V

IPPLOTS j

where n specifies the number of program execution.« to be run

before making a combined calcomp plot, printer plot, or display of

how the variable V \ \ries over time. Example:

MERGE 3 PPLOTS OF XI DOT

The above statement would cause the values assumed by the variable

X1DOT to be saved and then plotted on the printtr when the third

program execution had been completed.

24

AUTOMATIC STATEMENT SEQUENCING

Th2 block expressions of the program will be automatically

sequenced by a sorting algorithm if the user includes a SORT state-

ment in the program. Its general form is:

SORT

If the sort statement is not present in the program, the block expres-

sions will be sequenced in the order they appear in the program. The

statement sequencing algorithm considers that a block expression is

ready to be sequenced next, if all uf its inputs are available or have

been previously defined. If the statement sequencing routine fail« to

sort the statements, the appropriate error message "SORT FAILURE"

is printed on the user's program listing.

SPECIFYING CONTROL OVER THE INDEPENDENT VARIABLE

The independent variable can be given a name, an initial

starting value, a final value, and a step increment value by the use

of the STEP statement. Its general form is:

STEP name = C1,C2,C3

where name is the name of the independent variable used for the

program and C1,C2,C3 are constants representing the initial start-

ing value, the final value, and the step size to be used, respectively.

If a STEP statement does not appear in a program T is assumed as

the name of the independent variable and 0.0, 5.0, 0.1 are assumed

forCl. C2, and C3, respectively. For example:

25

STEP TIME ■ 0,10,. 2

The above statement would specify the following. First, that the vari-

able name TIME waf the name used in the program for the independent

variable. Second, that the independent variable TIME would start at

0.0, and proceed in steps of 0.2 to the final value of 10.0 The independ-

ent variable step size determines the integration step size c»f all

integrators in the program. Also the step size determines the plot

and list increment of all output (page 22).

THE OPTION STATEMENT

The OPTION statement is used to input additional information

describing the execution control of the program. Its general form is:

OPTION 01,02 On

where Ol, 02 On can be any combination of the following

options.

THE C OPTION

The C option is used to indicate that the user desires all plots speci-

fied in the program to be logarithmic plots and its form is C/Value

where value is a constant representing the quiescent value to be used

on the plot. If the C option is specified with no value, a value of

zero is assumed.

THE T OPTION

The T option is used to control the time allotted for a program to

execute. Its form is T/Value where value is a constant representing

26

the maximum time in seconds to be used for the execution of the

program. If the user specifies a maximum execution time with the

T option, and the program exceeds this time, the execution of the

program will be terminated.

FINDING MAXIMUM AND MINIMUM VALUES OF A VARIABLE

The maximum or minimum values a variable assumes during

the course of the execution of a program can be found with a FIND

MAX or FIND MIN statement. The general forms of these state-

ments are:

FIND MAX Vl.VZ.VJ Vn

FIND MIN Wl.Wi.WS, Wn

Where V1,V2,V3 V-.i and W1.W2.W3 Wn are vari-

ables used in the program. The maximum value of every variable

appearing in a FIND MAX statement will be found and printed on the

listed output of the program. The minimum value of every variable

appearing in a FIND MIN statement will be found and also printed.

SPECIFYING THE INTEGRATION METHOD

The method of integration used for all integrators in the ICSL

language may be arbitrarily chosen by the programmer with the use

of the USE TYPE statement. Its general form is:

USE TYPE n INTEGRATION

where n is an integer constant and has the following meaning.

27

" INTEGRATION METHOD

1 RECTANGULAR

2 TRAPEZOIDAL [4]

3 SIMPSONS [4]

4 MILNE 5th ORDER PREDICTOR-OORRECrCR [3]

5 RUNGE-KUTTA (4th ORDER) [4]

If no method is specified by the programmer, then the MILNE

5th ORDER PREDICTOR-CORRECTOR method is used. This method

appears to be one of the best general numerical methods for the

solution of ordinary differential equations.

MATHEMATICS FOR INTEGRATION METHODS

METHOD 1, RECTANGULAR INTEGRATION

Yt+A. = Y, + ^ • V

METHOD 2, TRAPEZOIDAL INTEGRATION
.At

Y „ = Y + 2 • (V + Y'
t+At t * y t t+A

METHOD 3, SIMPSONS INTEGRATION

Yt^r V At ' W»' + V6Yt.+^ +l/6Yt'+At)

(continued)

\

ZI

METHOD 4, MILNE 5th ORDER PREDICTOR-CORRECTOR

PREDICTOR Y «Y +l^ß)(ZY'- Y' + 2Y' \

CORRECTOR Y^« (Y + 7Y
t. At)/Ö + At(65Y;+^ 243Yt'

METHOD 5, RUNGE-KUTTA (4th ORDER)

Yt+AtSYt + (kl ^K2 + 2K3 + K4)l/6

Kj - At'f(t.Yt)

K2 = Affa-f^.Y^X)

K4 = At-£(t+At,Yt +K3)

All system integration routines are written so that centralized

integration is performed. New routines can be added to the system

very easily.

SWAPPING

Swapping may be arbitrarily specified by the use of the SWAP

statement. Its general form is:

SWAP WHEN V = C

where V is a variable name in the program and C is a constant.

29

This statement has the following effect. When the variable V assume.

a value greater than or equal to the value of the constant C during the

execution of an ICSL program, then the program is transferred from

memory to a reserved region on a FH-432 drum, and if a display has

been specified will be shown on the IDI display scope. The user can

then examine the display, and has the option of continuing the simula-

tion program where execution was terminated, re-executing the last

program execution, or terminating the program altogether. Also

new values for any variable in the program may be input. These

options are specified by the user via the model 33 teletype after

swapping has occurred. This capability allows users to stop simula-

tion programs at any point during fe. program execution, change any

variables in the program, and then either continue or re-do the last

program execution.

The commands on the -nodel 33 teletype to specify these

options are as follows:

RETURN

CONTIN

F'INISH

The RETURN command brings the user's program back into

memory and the last program execution is re-executed.

The CONTIN command also brings the user's program back

into memory and the program begins where it left off at the time the

swapping occurred.

The FINISH statement terminates the program.

30

The way new values are assigned to variable names is by put-

ting a colon (:) after the command RETURN, or CONTIN. and then

assigning a constant to -ach variable name to be overlayed. Example:

CONTIN: A = 3.5,8 = 7.2,0 = 8.6

The above statement would first cause the values 3.5, 7.2, and 8 6 to

replace the present values of A, B, and C in the program and then

the program would continue executing where it left off when swapping

occurred. If RETURN had been specified, the program would be re-

executed for the last simulation. The return character on the tele-

type is used to terminate a comnund, and also is the signal that

brings the user program back into memory after swapping has

occurred. This must be the last character typed on any command

given from the model 3o teletype.

SPECIFYING TITLES FOR OUTPUT

A title can be specified for any printed, plotted, or displayed

output. The general form of specifvinp « Hfl« ♦« apecirying a title to appear with output
i& as follows:

(LIST *]
CPLOT I
PPLOT [TITLE = '(any alphanumeric string)'
DISPLAY

As shown above, the user can specify any alphanumer.c string

enclosed in quote marks (4-8 punch), to be the title printed on a list-

ing, printer plot, or calcomp plot, or the title displayed on the output

of the IDI scope.

31

RESERVED WORDS

The ICSL language has the following reserved words which

are not to be used as variable names in a program.

LIST MERGE
PPLOT SORT
CPLOT STEP
SWAP OPTION

i^t

EXAMPLE ICSL PROGRAM

MASS SPRING DAMPER SYSTEM

The approach to use in modeling a physical system using ICSL

is to obtain a solution using integrators instead of differentiators. If

the equations describmg the model are known, the highest derivative

of any variable should be expressed as a function of the lower deriva-

tives and any forcing functions. Then the block diagram can be con-

structed using integrators as the operat ^nal elements.

The classical example of a continuous system is a mass

spring damper system. The differential equation describing this sys-

tem is:

W v,
— X+ CX + KX = f(t)

where 1 is the mass of an object suspended by a spring with constant

K. and C represents the amount of damping by a shock-absorber type

damper.

To study this system using ICSL one may choose the following
method.

First rewrite the equations of the system in terms of the high-

est ordered derivatives of any variable. Doing this yields:

-X = - C X- KX + f(t)

Next construct the block diagram of the system (see Figure 5. page

33).

13

Figure 5

Next the initial conditions for all integrators, or operational

elements that require initial conditions must be determined. Assume

that the system is at rest at time t=0 and the forcing function

f(t) = Sin(t) is applied at time t = 0, and w, g, and K are 32.0, 3.0, and

9.0, respectively. We may wish to study the behavior of the system

for several values of C, say 8.0. 6.0, and 4.0. One ICSL program to

do this system simulation would be as follows,

line no.

1 W = 32.0 ;G = 32.0 ;C = 8,6,4

2 K = 9.0; SORT

3 STEP TIME = 0.0,20.0,0.2

4 LIST TIME, X2DOT,XDOT,X

5 FIND MAX X ; FIND MIN X

(continued)

34

6 OPTION T/30

7 LIST TITLE = 'MASS SPRING DAMPER SYSTEM'

8 BEGIN

9 11 - -C*XDOT

10 12 = -K*X

11 SUM = II + 12 + SIN(TIME)

li X2DOT = SUM/(W/G)

13 XDOT = INT(X2DOT,0,0)

14 X = INT(XDOT,0)

15 END

DISCUSSION OF THE EXAMPLE PROGRAM

Line 1: Line 1 contains thrae statements. The first two assign the

constant value of 32.0 to the variables W and G. The third

statement of line I assigns three parameter values to the

variable C. Since C is the only parameter of this program

the model will be simulated three times; each time with a

different value of C.

Line 2: Line 2 contains two statements; the first of which assigns

a constant value of 9.0 to the variable K. The second

statement is the SORT statement to cause the block expres-

sions in the program to be automatically sequenced.

Line 3: Line 3 contains the STEP statement. This statement

declares that TIME is the name of the independent variable.

Also specified is that the independent variable will start at

35

0.0 end progress to the final value of 20.0 in steps of 0.2.

Line 4: Line 4 declares the names of variables of the program

which are to be printed every 0.2 increments of the inde-

pendent variable TIME.

Line 5: Line 5 contains two program statements; a FIND MAX

statement, and a FIND MIN statement. Both statements

have the variable X appearing in them. This will cause

the maximum and minimum values the variable X

assumes during each simulation to be printed out.

Line 6: Line 6 specifies the T option. If the program takes

longer than 30 seconds to execute, execution will be

terminated.

Line 7: Line 7 declares an alphanumeric title to be printed with

the listed output.

Line 8: Line 8 con<airs the BEGIN statement and marks the end of

the execution control section ol the program and the begin-

ning of the block expressions of the program.

Line 9-146 These are the block expressions of the program. The out-

put of each block in the block diagram is written as a

function of the inputs, to describe the model.

Line 15: The END statement signifies the end of the ICSL program.

Since no integration type was specified in the program, the

Milne 5th order predictor-corrector method w^ll be used by the sys-

tem. A more compact way of writing the block expressions of this

program is as follows.

36

BEGIN

X2DOT = (SIN(TIME)-C*XDOT-K*:0/(W/G)

XDOT * INT{X2DOT.0.0)

X ■ INT(XDOT, 0)

END

In the partial program above, the intermediate variables II. 12. and

SUM were eliminated.

Il

DESCRIPTION OF THE ICSL PROCESSOR

As mentioned at the beginning of this paper, the ICSL processor

is almost entirely written in FORTRAN V. The processor in itself is

complete with the exception of the present graphics software it utilizes

for swapping and graphical display on the IDI scope, and for the special-

ized routines used for the CalComp model 570 plotter. In addition to

these machine dependent features, the ICSL assembler generates

executable code for the Univac 1108 Computer.

A continuous simulation language must approximate the solutions

of ordinary differential equations, utilizing numerical methods. These

methods usually entail a variety of iterative techniques, which when

used effectively gively give satisfactory results to the user. Since

most numerical methods require a large amount of iteration, it is

generally desirable to generate efficient machine level code for those

portions of the user program to be used repetitively. This greatly

reduces the execution time needed for the solution approximation. It

was for this reason, that 1108 code is generated for all block expres-

sions of the user's program by the [CSL processor.

A generalized flowchart of how a user program is processed

is shown in Figure 6, page 38.

38

fr

Figure 6

(^ Start)

Initialize

1SW = 0

^jRead and print a
program i^ard

nd state-
ment?

£:
No

1SW = 0 ? Yea

Call STACK routine
to process stateiTU'nt

(block expression)

 1

1
Call PHASE routine
to process statement
(control statement)

T

Figure 6 (coruinued)

39

d^- Yes

es

r STOP \

Yes

Call sort
routine

Yes

(STOP J

—Ts

last card
•ead depleted?

 i__
Was

a sort
.spec ificd ?

•T*-

/

\

—rrrr—
an error
occur on
sorting ?

Execute
user

program

/STOP 3

No r^ Ml

Have \
any errors \ .—^
occurred? / \

No

No

No

No

Assemble ICSL
program
(generate 1108 code)

—nra—
n error occui
on assembly ?y

Yes

(STOP J

40

As depicted in the flowchart of Figure 6, a user program is

read in the same manner of reading data from a FORTRAN program.

The user's program cards are read sequentially and as statements are

recognized, a check is made to determine if a BEGIN or END state-

ment is present. If a BEGIN statement is recognized, then the •

variable 1SW la MSifMd the value 1. This vanable is used as a

switch in the logical control of the program to call one of the two state-

ment processing routines PHASE1 and STACK. When a begin statement

is recognized, it is assumed that all program statentnLs to follow will be

block expressions, and the subroutine STACK is called to process any

additional statements. Since there are two major categories of state-

ment types in ICSL, it seems natural to portion the statement process-

ing in this manner. Following the recognition of an END statement, if

no errors in the user's program were detected during processing, the

block expressions are sorted and 11 OH code is generated and executed.

A brief description of the main program routines follows.

THE SUBROUTINE PHASE]

This subroutine processes all control statements of the user's

program. It recognized the reserved words LIST, PPLOT, STEP

SORT, etc. . and stores information specify,ng the proper routines to

be called during the execution of a user's program. Variable B d

function names are recognized and stored for reference from the block

expressions of the user's program. Also all mput from the user is

stored sequentially for later use.

41

THE SUBROUTINE STACK

The subroutine STACK processes the block expressions of the

user's program. The expressions are analyzed for programming

errors such as illegal variable names, undefined function calls,

incorrectly nested expressions, and etc. If no errors have occurred

in the processing of any statements of the user's program, then the

block expression wül be rearranged into reverse or postfix polish

notation. For example a typical olock expression might be

Y = A*(B+C)

This expression when rearranged In the postfix notation would be

YABC+* =

This form is the final block expression form used by the ICSL

assembler for the generation of 1108 code.

STATEMENT SORTING

The block expressions of a us«r<a program are sorted by the

subroutine SORTM. In using various numerical techniques for the

approximation of solutions of differential equations, the equation must

first be of the form

y' = f(y.t)

where | represents the independent variable of the function y. The

sorting algorithm used isolates and defines f(y(t) hopefully from the

user's block expressions. The purpose of the statement sort is two

42

fold. First, for the purpose mentioned before and second to sequence

all other block expressions in a proper computational order. For

example, the two block expressions

X = Y*THETA

Y = COS(TIME)

are not in the correct order if the variable X is computed before the

variable Y, Since X is a function of Y besides being a function of

THETA, the variable Y must be computed first to insure that X will

be assigned the proper value for a certain value of the independent

variable TIME.

THE ASSEMBLER

The subroutine ASSEM generates the 1108 machine code which

is executed in the event no errors occur during assembly. The sub-

routine takes the sorted block expressions in postfix polish notation

and generates the appropriate machine code for the computations of

the expression. The expression

Y = X^(A + B)

would be represented in postfix notation as

YXAB+*«

The order of computation of the expression is defined by examining

the expression from left to right until an operator is found. This

operator then operates on the two preceding operands (in this case the

variables A and B are operated upon by the addition operator ♦),

43

Upon completion of the operation the resultant operand is placed in the

expression and the operator and two operands just combined are

removed. This process is continued until the = (store) operation has

been completed. The 1108 code which would be generated by the sub-

routine ASSEM for the last expression follows. The example code

given will be given using the 1108 assembly language mnemonic names

for ease of reading.

Code Meaning

LA AC, B Load arithmetic register A0 with B

FA AC, A Execute a floating addition of A to the
contents of register A0.

FM A0„ X Executve a floating multiply of X to
the contents of register A0.

SA AO, Y Store the contents of register A0 in Y.

The actual computational part of the user's program (the

block expressions) then are used to generate 1108 machine code.

This code is executed repetitively during the simulation process.

44

REFERENCES

1. Sperry Rand Corporation. UNIVAC Division, 1108 Multi-
processor System FORTRAN V, ProgrammeT^s"-

Reference Manual, UP 4060, New York, c 1966.

2. Copeland, Lee and Carr, C. Stephen, Graphics System,
Computer Science Information Systems, University
of Utah, Salt Lake City, Technical Report 4-1,
Nov. 15, 1967.

3. Milne, W. E. and Reynolds, R. R. , Fifth-Order Methods
for the Numerical Solution of Ordinary Differential
Equations, 9, Journal of ACM, Jan., 1962.

4. Ralston, Anthony. A First Course in Numerical Analysis,
McGraw-Hill Book Co. , New York, c l^bTT

5. Using the Digital Plotter, University of Utah Computer
Center, July 1966.

45

VITA

Russell Louis Hagen

 He moved at an early age to Ogden. Utah wher^ he

attended high school.

After finishing high school, he enrolled at Weber College in

Ogden where he graduated following a two year program in Electrical

Engineering.

After graduation he was employed by Hercules Powder Co.

at Bacchus. Utah where he worked up to the t^me of his entrance

into the United States Army.

His military obligation was satisfied at Fort Hayes in

Columbus. Ohio where he also attended classes at the Ohio State

University.

Following an honorable dischargd from the Army, he returned

to Utah, this time to Salt Lake City where he enrolled at the Univer-

sity of Utah. He graduated in June of 1Q67 with the degree of

Bachelor of Science in Computer Science. Upon graduation ho began

his graduate study.

