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ABSTRACT 

During the recent history of computer science,   a new class of 

programming languages has evolved.    These languages are known as 

simulation languages.    They were developed because of the great need 

to use simulation as a technique for problem solving and research. 

Computer simulation has come into increasingly widespread use to 

study the behavior of systems of which the state of the system changes 

over time.    Thtre have been two main types of simulation languages 

developed to study these systems,   continuous simulation languages to 

study continuous change models,   and discrete simulation languages 

for the analysis of discrete change models.    The models used for 

analysis with a continuous simulation language are usually repre- 

sented mathematically by differential or difference equations that 

describe rates of change of the variables over time.    1CSL (inter- 

active Continuous Simulation Language) falls into this category as a 

programming language.    1CSL not only has the capability for approx- 

imating the solutions of continuous change models,   but also provides 

for interaction between man and machine during the course of the 

simulation.    This interaction is in the area of computer graphics. 



INTRODUCTION 

ICSL is a ■ORTRAN  V program for the digital simulation of 

continuous system models.    A continuous simulation language such 

as ICSL touches into the realm of the analog computer programmer. 

Physical systems usually modeled and studied on an analog computer 

now are frequently simulated on a digital computer using one of the 

available simulation languages,   or done first on the analog system 

and then checked on a digital system. 

The usual method involved in doing a pi ysical system analysis 

starts with the use of a block diagram of the system in terms of its 

separate functional components,   or with a mathematical model in 

terms of differential equations.     ICSL has a defined input language 

with which to describe the model and functional components of the 

system.    Many problei--.- faced by the analog computer programmer 

are nonexistent when the programmer turns to digital simulation as 

a means of analysis.     These are problems involving time scaling, 

amplitude scaling,   and of course the tedious job of wiring and potenti- 

ometer setting.    Also for very large systems the analog computer 

programmer may need many more high gain amplifiers than he has at 

his facility,   and without a digital system may be forced to abandon 

his project. 

One basic criticism of the use of digital simulation by the us 

of the analog computer programmer is that using digital simulation 

techniques seem to "far remove" the programmer from the physical 

system he is studying,   and he doesn't develop his normal intuitive 

feelings for the system.    This criticism seems to come most from 

se 



those who have been exposed to a continuous simulation language for 

the first time.    There may be some merit to this criticism as comp- 

lex problems can be described in ICSL with very little effort.    The 

same problem if done conveutionally M an analog system would 

entail m«ch more involvement by th - analog computer programmer 

and of course he would probably know the system he was studying 

much more thoroughly when completed. 

This paper describe« in detail the information required for 

programming in ICSL      fbe language was implemented almost 

entirely in the FORTRAN language to give it an air of mnrhlne 

Independence [l ].    It utilizes the existing facilities at the Unlver.lty 

•f Utah graphics laboratoxy.    The equipment in the graphics labora- 

tory includes the following. 

Access to the University of Utah's Univac 

1108 computor. 

A PDP-8 computer on-line to the Univac 

1108 which contrults the graphics equip- 

ment and serves an an information link 

between the two. 

A model 35 teletype. 

An IDI displav scope. 

Thsse basic tools give the programmer the capability of inter- 

action during an active user run.    ICSL carries with U provisions for 

man machine interaction during the execution of a simu^iion program. 
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This capability is due to the work done in the area of interactive 

computer graphics at the University of Utah [2]. 



GENERAL DESCRIPTION OF ICSL 

The ICSL system like other continuous simulation systems has 

a repertory of acceptable program statements with which to describe 

the input model and run conditions.    These statements can be sepa- 

rated into two groups.    First,   those statements which describe the 

input,   output,   and execution control of the program,   and second,   those 

which describe the structure or configuration of the model to be simu- 

lated.    These general classes of program statements are called 

EXECUTION CONTROL STATEMENTS and BLOCK EXPRESSIONS, 

respectively.    The BLOCK EXPRESSIONS,   or statements which 

describe the model,   closely resemble FORTRAN arithmetic assign- 

ment statements  [l ].    FORTRAN was chosen because of its renown 

as a programming language.    ICSL also carries another FORTRAN 

feature,   that of ehe arithmetic statement function [l ].    Functions are 

used widely in a simulation language and the statement function 

greatly facilitates function generation. 

ICSL has a bui.e in set of functions from which the components 

of a continuous system may be built.    It also contains a large set of 

system erroi messages which when printed are excellent debugging 

aids for the ust r. 

In IOSL,   input and output is very easily accomplished.    The 

programmer is free from format and data labeling responsibilities. 

The different types of output include a printer listing,   printer plot,   a 

plot by a digital plotter,   and a visual graphical display.    The routines 

for digital plotting are written for the CalComp Model 570 plotter [5]. 



The ICSL system also takes aduntage of the existing facilitiei at the 

University of Utah graphics laboratory for man machine interaction 

during the course of the program execution [2]. 

Constants,  parameters,  and inftial conditions for variable! 

used in the simulation model can be described very easily.    Also two 

types of functions can be described.    The first type of function called 

TABLE FUNCTIONS are input in tabular form.    These can be con- 

stant functions or parameter functions.    Constant function» are 

functions which remain constant during the entire course of the 

simulation problem execution.    Parameter functions have more than 

one set of tabular data and different sets are used for different 

phases of the problem execution.    The second type of function is the 

forementioned ARITHMETIC STATEMENT FUNCTION feature from 

FORTRAN [1 ]. 

The programmer can also specify such things as integration 

step size, automatic statement sequencing, an other optional iteme 

which are all explained in detail in this paper, 

A BLOCK EXPRESSION in the ICSL language is a FORTRAN 

arithmetic assignment statement used to describe the structure of 

the model being simulated [1 ],    These expressions can reference 

any of the SYSTEM FUNCTIONS,  TABLE FUNCTIONS,  or STATE- 

MENT FUNCTIONS in the program.    Since ICSL was implemented 

chiefly in FORTRAN,  new function routines can be added to the sys- 

tem very easily,   or old ones removed. 



The basic elements from which to construct valid ICSL 

program statements include variable names,   constants,  functions, 

operators,   and special reserved words. 

The mode of inputting an ICSL program is via punched cards. 

Valid ICSL program statements are punched in columns 7-72. 

Columns 2-5 and 73-80 are ignored b\   the system and may contain 

any punched information the programmer wishes to appear on his 

printed output.    Column 6 is reserved for continuation notation.    Any 

ICSL statement may be continued on as many as five cards.    Any non- 

blank character punched in column 6 of a card denotes that the card is 

a continuation of the preceding   statement. The basic format for 

punched cards is shown in figure   1,   below.    .    More than one state- 

ment may be punched on a card.    If this is done,   statements must be 

separated by a semicolon (12-6-8) punch).    A "C " in column 1 indi- 

cates a comment card and the card is ignored during the compilation 

phase of the system and merely printed out. 

Figure 1 

continuation 
column 

programmer's-, 
comments   ^-^—N 

COLUMN—/f 2: 

comment 
notation 

(C) 

ICSL statements 
.A. 

programmer's 
comments 



If only one statement appears on a card,  then the uM of a semicolon 

to terminate the statement is not necessary,   but may be us«d if 

desi-ed.    The basic structure of a program is shown in Figure 2. 

Figure 2 

Any number of execution 
control statements  

BEGIN 

input/output 
and 

execution 
control 

Any number of block 
expressions — 

model 
description 

END 

The block expressions of the program are delineated by a BEGIN 

END pair.    The special statement BEGIN is used to separate the block 

expressions of the program from the execution control statements. 

The END statement is used to terminate the program.    The statements 

of the program can otherwise be in any order with the exception that 

a function declaration must precede the description of all table 

functions (see page 17). 



THE ICSL LANGUAGE 

VARIABLE NAMES 

A variable name contains one to six alphanumeric characters. 

The first character must be alphabetic.    S.nce all computations are 

done in the floating point (real) mode,   all variables used by the pro- 

grammer are considered to represent floating pdnt (real values). 

Examples of variable names are: 

X X1DOT 121 QL2 

CONSTANTS 

Constants may be written either in integer form or floating 

point form.    Either form may be followed by an exponent denoted by 

the letter E followed by a signed or unsigned integer.    The letter   E 

denotes that the preceding constant is multiplied by the integer power 

of 10 which follows it.    Examples of constants are: 

-5.327 25 523E-6 .025E12 

BLOCK EXPRESSIONS 

A block expression as mentioned before strongly resembles a 

FORTRAN arithmetic assignment statement [1 ].    The general form 

of a block expression is: 

V ■ EXPR 

where  V  is a valid variable name and EXPR denotes an arithmetic 



expresaion.    The expression m*f contain functions, conatahts, and 

Other variable names.    Also the operators +.  -,  *,  /, and ♦♦ denote 

the same meaning as in FORTRAN (addition,  subtraction, multipli- 

cation,  division,  and exponentiation,   respectively).    Any expression 

can be enclosed in parentheses to any depth,  and function arguments 

are also enclosed in parentheses and separated by commas. 

All functions with more than one argument cannot contair. 

expressions as arguments,   but they can contain variable names or 

constants.    A function cannot contain another function as an argu- 

ment. 

Functions with a single argument cr.n contain any expression 

aa an argument as long as it does not contain another function. 

As mentioned previously, any block expression can be con- 

tinued on additional cards up to a limit of five. Examples of block 

expressions: 

:X«2*(A**2 + B*(C + D)) 

ZSQ ■ SQRT(X**2  + W) 

X ■ INT(XDOT, INIT) 

AB1 -   3.0E-6 * (B+C) + 5.2-2 *D/E 

Y = FCNSW(VARl,25(.035.43E-8) 

ICSL SYSTEM FUNCTIONS AVAILABLE 

In a digital simulation language a large number of functions 

are needed to facilitate operational elements similar to those of an 
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analog computer.    These include such items as integrators, function 

generator,  pulse generators,  etc.    These items are called ICSL 

«'/stem functions.    The language also ha. the standard FORTRAN 

library functions which can be used as aids in function generation. 

The system and library functions avaüable are given in tables which 

follow. 

The user may also write his own FORTRAN function subpro- 

grams for use by his ICSL proCramS.    Two dummy functions, 

USER1 and USER2 are contained in the ICSL system program.    If 

the user inputs a FORTRAN function subprogram with either of the 

above names,  the corresponding dummy routine will be replaced by 

the user's routine,   and the newly mput routine can be referenced by 

any block expression in the ICSL program. 

The routine USER1  expects five arp.ments.   the first of which 

is determined by the ICSL system.    The remaining four arguments 

are supplied by the user when referencmg the function from a block 

expression.    The reason the extra argument is added by the ICSL 

system,   is that the use,  may wsh to write his own function sub- 

program to implement an operaHonal element.    If this element was 

referenced by more than one block exprcss^n in the program,   and 

the element had to s   ve prev^usly defmed values in order to deter- 

mine a correct output,   then the user needs to have some method of 

determining which block express^ |. referencmg the funcüon sub- 

program each time it is called.    A typical FORTRAN function sub- 

program declaration might be 

FUNCTION USER1{I, X, Y, Z, W) 
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The value assigned to I    will be 1 for the first block expression that 

references this function.   I for the second,   and etc.    The values of 

X,   Y.   Z,   and W will be supplied by the argument list of the function 

name USER1 in the ICSL program block expressions.    An example 

might be: 

Y = USER1(X11X2,X3,X4) 

The variables XI.   X2.   X3.   and X4 of the above expression corre- 

spond to the variables X.   R.   Z.   and W of the previous function 

subprogram declaration. 

The routine USER2 expects only a single argument.    This 

one argument is supplied by the user from a block expression. 

Examples are: 

Y = DtSR2(X**a + W) 

W2 = USER2(A) 
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KÄME 

INTEGRATOR 

DERIVATIVE 

IMPLICIT 
FUNCTION 

DEAC TIME 

(DELAY) 

ZERO-ORDER 
HOLD 

SYSTEM FUNCTIONS 

GENERAL FORM 

Y ■ INT(X, IC) 

Y m DERCX.IC) 

Y - IMP{X) 

y  ■ DELAY (X.P) 

Y - 2HOLD(Xl, X2) 

FUNCTION 

Y « Jo X dt + IC 
equivalent LanUc« 
transform    l/m     , 

equivalent Laplace 
tranaform a 
Y « f(Y) 

|Y.f(Y)|<10-5 

Y = X(t - P)    t > P 

Y = 0 t<P 
equivalent Laplace 
transform 

X2 XI >0 

MODE-CONT ROLLED 
INTEGRATION 

Y » MODtNT(Xl .X2.XUC) 

Y ■ last ouput if 
Xl<  0 

Y(0) « 0 
equivalent Laplace 
tranaferm . .       _* 

YTpx3dt+IC XI>0 

Y » IC XI <0   X2> 0 

Y s laat ouput 

X1<0   X2<0 

(continued) 



1) 

SYSTSM PUMCTIONS    ic 

TUMC 

lit ORDER LAQ 

(REAL POL«) 

LEAD-LAG 

and ORDER LAG 

(COMPLEX POLE) 

GENERAL FORM 

Y • REALPL (X, A, IC) 

Y p LEDLAG (X, A. B) 

PUWCTION 
mmmßmmmi'        i      ui 

AT+Y «X 

V (0) • IC 

equivalent Laplace 
transformation 

p«+l 

BY+Y.A*+X 

equivalent LapUpce 
transformation 

AS^l 
BS-f-l 

CMPXPL(A,B,I,J,X) 

Y(0) • I 

Y(0) - J 

♦ 2ABY ♦ B   X*X 

equivalent Laplace 
transform 

1 

S* ♦ 2ABS * B2 

FUNCTION SWITCH    Y FCNSW(Xl,^,X^X4J Y • X 

Y.X3 

Y-X. 

Xj  <0 

xl >p 
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FUNCTION GENERATORS 

GENERAL FORM 

Y = FNAME(X) 

Y • STEP(A, B,P, X) 

Y = RAMP(IC,P,THETA,X) 

(Theta in degrees 0-90) 

Y ■ RAND(P) 

P any odd constant 

FUNCTION 

FNAME IS THE NAME OF 

A TABLE FUNCTION 

WHICH IS IN THE PRO- 

GRAM.  Y IS ASSIGNED 

THE VALUE THE FUNC- 

TION ASSUMES Al   THE 

POINT   X. 

Y = A if X < P 

Y = B if X > P 

Y = IC   if   X < P 

Y ■ (X-P)tane + IC   X > P 

RANDOM NUMBER 

GENERATOR 

(from 0 to 1.0) 
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LIBRARY FUNCTIONS 

GENERAL FORM 

Y = EXP(X) 

Y = ALOG(X) 

Y = ALOGIO(X) 

Y 

Y 

Y 

Y 

Y 

Y 

Y 

Y 

= ASIN(X) 

= ACOS(X) 

= ATAN(X) 

= SIN(X) 

= COS(X) 

■ ABS(X) 

■ SORT(X) 

= CBRT(X) 

FUNCTION 

y   = e 

Y    " ln(x) 

y = lo810(x) 

y a arcsiu(x) 

y = arccos(x) 

y = arctan(x) 

y ■ sin(x) 

y ■ cos(x) 

y "   |x| 

1/2 y   = x 

y   = x 
1/3 
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INPUT 

Parameters,   initial conditions,  and constanU can be d««crib«d 

very easily in ICSL.   A parameter is a variable name which U 

assigned more than one constant value«   The use •£ parameter« Indi- 

cates that additional program executions are desired; «ne fej» each 

additional parameter value assigned.   The general statement form for 

inputing these items is to assign constant values to a variable name, 

""or example, 

Y ■ 3.5 

would define the value of 3.5 to be assigned as an ini ial condition or 

constant value of Y. If   Y   is   recomputed by one of t\ i block 

expressions of the program it is not a constant; otherwis-,  it is just 

assigned an initial condition.    When inputing parameter«» the different 

parameter values are separated by commas.    For example, 

D12 = 4.6,7.2,8,9.7, 10 

The above statement would assign five parameter values to the vari- 

able D12.    The maximum number of parameters given for any vari- 

able determine how many times the program will be executed.    For 

the first execution the first parameter value is used,  for the second 

the second is used,   and etc.    If for example the program is execut- 

ing the nth time,  then the nth parameter value of all program 

parameters is used.    If a par*    ü    • program parameter contains   k 

parameter values,  anl   k <        then the kth one is used. 
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TABLE FUNCTION INPUT 

Table functions are functions of a single variable the user 

wishes to reference from his program.    Table functions are described 

similar to the way of constants and parameters.    However,  all table 

functions must be declared in a function declaration before they 

appear in the program.    The general form of the function declaration 

is: 

FUNCTION      F1,F2,F3, Fn 

where   Fl, F2, F3 Fn   are the alphanumeric names of the 

l^ble functions to be input in the program. 

Table functions are input by assigning a list of constant values 

to a function name.    The general form for inputing ^able functions is: 

ME = VI, V2, V3 Vn 

where NAME is the alphanumeric name of the function and 

VI. V2, V3 Vn   are constant values assigned to the function. 

The first value and every alternate or odd position value thereafter 

is assumed to be the values of the independent variable and these 

values must be in ascending order.    The other,   or even,  position 

values are the functional values corresponding to each particular 

value of the independent variable to the left.    For example: 

FUNCTION     FUN, F21 

FUN =1,1,2,4,3.9,4,16,5,25,6,36 

F21    =2.0.0.0,4.8.8.6.6,8.2,9.0,7.2 

would define the two table functions FUN and F21. 
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Parameter functions or functions containing more than one set 

of values can be input very easily also.    Each set of parameter func 

tion values must be separated by a colon{:).    Example: 

FUNCTION      P 

P = 2-5.3,3.5,4, 4.5,5:3.6.2.0. 4.6.7.0 

The above function   P   is a table function with 2 sets of values.   Sin.e 

it has more than one tabular set of values it is a parameter function 

and for the first program execuUon the 'irst declared set of values is 

used.    For any additional executions the second set of data is used. 

A table function may contain a maximum of eigh. functional lists. 

Any table function can be referenced by any block expression. 
For example: 

Y = F1(X) 

The above expression would assign to the variable  Y  the functional 

value the function  Fl   assumed at the point X.    If the value of X is 

less than the minimum value of the independent variable of Fl.  then 

Y would be assigned the value the function assumed at the min.mum 

value of the mdependent variable.    If the value of x  is greater than 

the maximum value of the mdependent var.able,   then  Y  would be 

assigned the value the function assumed at that maximum.    Linear 

interpolation i. used to evaluate all table functions.    A more 

descriptive example of table funcHon input would be as follows. 

Assume the following function was one of the inputs to be a functional 

component of the block diagram of a model to be simulated (Figure 3. 
page 19). 
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Figure 3 

y « f(x) 

(y 

This function could be described as follows in ehe execution 

control section of an ICSL program. 

FUNCTION      F 

F = -10,-5,-5,0,5,0. 10,5 

If the above function was referenced by the block expression. 

Y  = F(X) 

and the variable  X  had a value in the range   -5 <   X   <   5,    the corre- 

sponding value assigned to  Y  would be 0.0.    If the variable  X  had a . 

value in the range   -10 <  X  <   -5   theii the corresponding value 

assigned to Y  would be the value obtained using linear interpolation 

between the coordinates (-10, -5) and (-5, 0) to evaluate the function 

at the point X. 
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This table function can be made into a parameter function by 

the addition of another set of values.    Suppose that a physical system 

was -o be studied involving the function of Figure 3.  but was to be 

analyzed for two cases.    For the first case the function of Figure 3 

was to be used,   and for the second the function of Figure 4 was to be 

used. 

Figure 4 

-I 

y ■ f(t) 

y 

I 

1 
TF 

-2 

Both functions can be assigned by a single statement in ICSL 

follows: 

as 

FUNCTION       F 

F = -10,-S.-S.O.S.O.IO.BJ-IO.-2,-5:,0.5,0.10.2 

The block expression 

Y  = F(-10) 

would yield the value of -5 during the first program execution and -2 

during the second and any additional executions. 
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STATEMENT FUNCTIONS 

Statement functions are written as they are in FORTRAN Q]. 

The general form of a statement function is: 

NAME(A1, A2, . . . A5) = EXPR 

where NAI«fE is the statement function name being defined and 

Al, A2, . . . A5 represent the dummy arguments of the function which 

are enclosed in parentheses.    Every statement function defined must 

have at least one but a maximum of five dummy arguments.    The 

dummy arguments, must be valid variable names.    EXPR is any valid 

arithmetic expression involving the dummy arguments.    Statement 

functions can be referenced from any block expression.    For 

example if the following statement function is defined: 

ZEDL(A, B,C; = A*(B-C) + B**2 

then one way the above function can be referenced from a block 

expression is as follows: 

Y ■ ZEDL(2.0  X, W) 

If the values of X  and  W  were 3.0 and 2.0,   respectively,   then the 

value computed and assigned to the variable  Y  wou d be 11.0. 

Two functional components of a block diagram,  one which 

acted as an adder,  and one which acted as a subtractor might be 

described by the following.statement functions. 

■; .ADD(A,B).= A+B . . . 
SUB(X1,X2) = XI-X2 
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The following reference of the above functions by the block 

expression 

Y = ADD(nY«) + SUB(Y1,Y2) 

would yfeld the value of 10.0 if the values of Yl   and  Y2  were 5.0 and 

6.0,   respectively,  at the time this expression was computed. 

OUTPUT 

Output can be obtained in several modes.    For a printer list- 

ing a LIST statement is required.    Its general form is: 

LIST V1,V2,V3, Vn 

where VI. V2, V3 Vn are variable names used in the program. 

The variables are listed every   dt   units of time where   dt   is the 

independent variable step size. 

A printer plot may be obtained by use of the PPLOT state- 

ment.    Its general form is: 

PPLOT        Vp.VZ.VS Vn 

where VI. V2 , V3 Vn are the variable names used in the pro- 

gram.    The plot increment is also   dt   where   dt   is the independent 

variable step size. 

A calcomp plot may be obtained by the use of the CPLOT 

statement.   Its general form isr 

CPLOT      V1(V2,V3 Vn 



23 

where VI, V2, V3, Vn arc variable names used in the program. 

The plot increment is the same as specified previously. 

Output can also be displayed on the ID! scope by the use of a 

DISPLAY statement.    Its general form is: 

DISPLAY V1,V2,V3 Vn 

w here VI, V2, V3 Vn are the variable names whose values 

are to be displayed. The plot increment for each display is also dt 

where dt ii the independent variable step size. All plot or display 

specifying statemt'its will generate a single plot of each variable in 

the list for each program execution. 

If the programmer is rcnning more than one simulation on a 

particular model and he wishes to have a combined display or plot 

of how a single variable varies with time for more than one pro- 

gram execution,  he may do so with the use of a MERGE statement. 

Its general form is: 

TcPLOTS    | 
MERGE n < DISPLAYS > OF V 

IPPLOTS    j 

where   n   specifies the number of program execution.« to be run 

before making a combined calcomp plot,  printer plot,   or display of 

how the variable V \ \ries over time.    Example: 

MERGE       3       PPLOTS      OF      XI DOT 

The above statement would cause the values assumed by the variable 

X1DOT to be saved and then plotted on the printtr when the third 

program execution had been completed. 
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AUTOMATIC STATEMENT SEQUENCING 

Th2 block expressions of the program will be automatically 

sequenced by a sorting algorithm if the user includes a SORT state- 

ment in the program.    Its general form is: 

SORT 

If the sort statement is not present in the program, the block expres- 

sions will be sequenced in the order they appear in the program.    The 

statement sequencing algorithm considers that a block expression is 

ready to be sequenced next,   if all uf its inputs are available or have 

been previously defined.    If the statement sequencing routine fail« to 

sort the statements,  the appropriate error message   "SORT FAILURE" 

is printed on the user's program listing. 

SPECIFYING CONTROL OVER THE INDEPENDENT VARIABLE 

The independent variable can be given a name,  an initial 

starting value,  a final value,  and a step increment value by the use 

of the STEP statement.    Its general form is: 

STEP name = C1,C2,C3 

where name is the name of the independent variable used for the 

program and C1,C2,C3 are constants representing the initial start- 

ing value,   the final value,   and the step size to be used,   respectively. 

If a STEP statement does not appear in a program  T   is assumed as 

the name of the independent variable and 0.0, 5.0, 0.1 are assumed 

forCl.  C2,   and C3,   respectively.    For example: 
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STEP TIME ■ 0,10,. 2 

The above statement would specify the following.    First,  that the vari- 

able name TIME waf the name used in the program for the independent 

variable.    Second,  that the independent variable TIME would start at 

0.0,  and proceed in steps of 0.2 to the final value of 10.0   The independ- 

ent variable step size determines the integration step size c»f all 

integrators in the program.    Also the step size determines the plot 

and list increment of all output (page 22). 

THE OPTION STATEMENT 

The OPTION statement is used to input additional information 

describing the execution control of the program.    Its general form is: 

OPTION       01,02 On 

where Ol, 02 On can be any combination of the following 

options. 

THE C  OPTION 

The C   option is used to indicate that the user desires all plots speci- 

fied in the program to be logarithmic plots and its form is   C/Value 

where value is a constant representing the quiescent value to be used 

on the plot.    If the  C   option is specified with no value,   a value of 

zero is assumed. 

THE T  OPTION 

The  T  option is used to control the time allotted for a program to 

execute.    Its form is  T/Value where value is a constant representing 
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the maximum time in seconds to be used for the execution of the 

program.    If the user specifies a maximum execution time with the 

T  option,  and the program exceeds this time,  the execution of the 

program will be terminated. 

FINDING MAXIMUM AND MINIMUM VALUES OF A VARIABLE 

The maximum or minimum values a variable assumes during 

the course of the execution of a program can be found with a FIND 

MAX or FIND MIN statement.    The general forms of these state- 

ments are: 

FIND MAX Vl.VZ.VJ Vn 

FIND MIN Wl.Wi.WS, Wn 

Where V1,V2,V3 V-.i and W1.W2.W3 Wn are vari- 

ables used in the program.    The maximum value of every variable 

appearing in a FIND MAX statement will be found and printed on the 

listed output of the program.    The minimum value of every variable 

appearing in a FIND MIN statement will be found and also printed. 

SPECIFYING THE INTEGRATION METHOD 

The method of integration used for all integrators in the ICSL 

language may be arbitrarily chosen by the programmer with the use 

of the USE TYPE statement.    Its general form is: 

USE TYPE    n    INTEGRATION 

where   n   is an integer constant and has the following meaning. 
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" INTEGRATION METHOD 

1 RECTANGULAR 

2 TRAPEZOIDAL [4] 

3 SIMPSONS [4] 

4 MILNE 5th ORDER PREDICTOR-OORRECrCR [3] 

5 RUNGE-KUTTA (4th ORDER)   [4] 

If no method is specified by the programmer,  then the MILNE 

5th ORDER PREDICTOR-CORRECTOR method is used.    This method 

appears to be one of the best general numerical methods for the 

solution of ordinary differential equations. 

MATHEMATICS FOR INTEGRATION METHODS 

METHOD 1,   RECTANGULAR INTEGRATION 

Yt+A. = Y, + ^ • V 

METHOD 2,   TRAPEZOIDAL INTEGRATION 
.At 

Y    „    = Y + 2 • (V   +  Y' 
t+At       t     *    y t t+A 

METHOD 3,  SIMPSONS INTEGRATION 

Yt^r V At ' W»' + V6Yt.+^ +l/6Yt'+At) 

(continued) 
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METHOD 4,   MILNE 5th ORDER PREDICTOR-CORRECTOR 

PREDICTOR   Y        «Y +l^ß)(ZY'-  Y'        + 2Y'        \ 

CORRECTOR Y^« (Y   + 7Y
t. At)/Ö + At(65Y;+^ 243Yt' 

METHOD 5,   RUNGE-KUTTA (4th ORDER) 

Yt+AtSYt + (kl  ^K2 + 2K3 + K4)l/6 

Kj   - At'f(t.Yt) 

K2 = Affa-f^.Y^X) 

K4 = At-£(t+At,Yt +K3) 

All system integration routines are written so that centralized 

integration is performed.    New routines can be added to the system 

very easily. 

SWAPPING 

Swapping may be arbitrarily specified by the use of the SWAP 

statement.    Its general form is: 

SWAP  WHEN V   =    C 

where  V  is a variable name in the program and   C   is a constant. 
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This statement has the following effect.    When the variable V assume. 

a value greater than or equal to the value of the constant C during the 

execution of an ICSL program, then the program is transferred from 

memory to a reserved region on a FH-432 drum,  and if a display has 

been specified will be shown on the IDI display scope.    The user can 

then examine the display,  and has the option of continuing the simula- 

tion program where execution was terminated,   re-executing the last 

program execution,  or terminating the program altogether.    Also 

new values for any variable in the program may be input.    These 

options are specified by the user via the model 33 teletype after 

swapping has occurred.    This capability allows users to stop simula- 

tion programs at any point during fe. program execution,  change any 

variables in the program,  and then either continue or re-do the last 

program execution. 

The commands on the -nodel 33 teletype to specify these 

options are as follows: 

RETURN 

CONTIN 

F'INISH 

The RETURN command brings the user's program back into 

memory and the last program execution is re-executed. 

The CONTIN command also brings the user's program back 

into memory and the program begins where it left off at the time the 

swapping occurred. 

The FINISH statement terminates the program. 
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The way new values are assigned to variable names is by put- 

ting a colon (:) after the command RETURN,  or CONTIN. and then 

assigning a constant to -ach variable name to be overlayed.    Example: 

CONTIN:    A = 3.5,8 = 7.2,0 = 8.6 

The above statement would first cause the values 3.5,   7.2,  and 8 6 to 

replace the present values of A,  B,  and C in the program and then 

the program would continue executing where it left off when swapping 

occurred.    If RETURN had been specified,   the program would be re- 

executed for the last simulation.    The return character on the tele- 

type is used to terminate a comnund,  and also is the signal that 

brings the user program back into memory after swapping has 

occurred.    This must be the last character typed on any command 

given from the model 3o teletype. 

SPECIFYING TITLES FOR OUTPUT 

A title can be specified for any printed,  plotted,  or displayed 

output.    The general form of specifvinp « Hfl« ♦« apecirying a title to appear with output 
i& as follows: 

(LIST      *] 
CPLOT   I 
PPLOT    [ TITLE = '(any alphanumeric string)' 
DISPLAY 

As shown above,   the user can specify any alphanumer.c string 

enclosed in quote marks (4-8 punch),   to be the title printed on a list- 

ing, printer plot,  or calcomp plot,  or the title displayed on the output 

of the IDI scope. 
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RESERVED WORDS 

The ICSL language has the following reserved words which 

are not to be used as variable names in a program. 

LIST MERGE 
PPLOT SORT 
CPLOT STEP 
SWAP OPTION 
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EXAMPLE ICSL PROGRAM 

MASS SPRING DAMPER SYSTEM 

The approach to use in modeling a physical system using ICSL 

is to obtain a solution using integrators instead of differentiators.    If 

the equations describmg the model are known,  the highest derivative 

of any variable should be expressed as a function of the lower deriva- 

tives and any forcing functions.    Then the block diagram can be con- 

structed using integrators as the operat ^nal elements. 

The classical example of a continuous system is a mass 

spring damper system.    The differential equation describing this sys- 

tem is: 

W   v, 
— X+   CX + KX = f(t) 

where 1 is the mass of an object suspended by a spring with constant 

K. and C represents the amount of damping by a shock-absorber type 

damper. 

To study this system using ICSL one may choose the following 
method. 

First rewrite the equations of the system in terms of the high- 

est ordered derivatives of any variable.    Doing this yields: 

-X = - C X- KX + f(t) 

Next construct the block diagram of the system (see Figure 5.  page 

33). 
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Figure 5 

Next the initial conditions for all integrators,  or operational 

elements that require initial conditions must be determined.    Assume 

that the system is at rest at time t=0 and the forcing function 

f(t) = Sin(t) is applied at time t = 0,  and w,  g,  and K are 32.0,   3.0,  and 

9.0,   respectively.    We may wish to study the behavior of the system 

for several values of C,   say 8.0.  6.0,  and 4.0.    One ICSL program to 

do this system simulation would be as follows, 

line no. 

1 W = 32.0 ;G = 32.0 ;C = 8,6,4 

2 K  = 9.0; SORT 

3 STEP TIME = 0.0,20.0,0.2 

4 LIST   TIME,   X2DOT,XDOT,X 

5 FIND MAX X ;    FIND MIN X 

(continued) 
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6 OPTION   T/30 

7 LIST TITLE =   'MASS SPRING DAMPER SYSTEM' 

8 BEGIN 

9 11 - -C*XDOT 

10 12 = -K*X 

11 SUM = II  + 12 + SIN(TIME) 

li X2DOT = SUM/(W/G) 

13 XDOT = INT(X2DOT,0,0) 

14 X = INT(XDOT,0) 

15 END 

DISCUSSION OF THE EXAMPLE PROGRAM 

Line 1:       Line 1 contains thrae statements.    The first two assign the 

constant value of 32.0 to the variables   W and  G.    The third 

statement of line I assigns three parameter values to the 

variable  C.    Since  C   is the only parameter of this program 

the model will be simulated three times; each time with a 

different value of C. 

Line 2:       Line 2 contains two statements; the first of which assigns 

a constant value of 9.0 to the variable  K.    The second 

statement is the SORT statement to cause the block expres- 

sions in the program to be automatically sequenced. 

Line 3:       Line 3 contains the STEP statement.    This statement 

declares that TIME is the name of the independent variable. 

Also specified is that the independent variable will start at 
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0.0 end progress to the final value of 20.0 in steps of 0.2. 

Line 4:       Line 4 declares the names of variables of the program 

which are to be printed every 0.2 increments of the inde- 

pendent variable TIME. 

Line 5:       Line 5 contains two program statements; a FIND MAX 

statement,   and a FIND MIN statement.    Both statements 

have the variable  X  appearing in them.    This will cause 

the maximum and minimum values the variable    X 

assumes during each simulation to be printed out. 

Line 6: Line 6 specifies the T option. If the program takes 

longer than 30 seconds to execute, execution will be 

terminated. 

Line 7:       Line 7 declares an alphanumeric title to be printed with 

the listed output. 

Line 8: Line 8 con<airs the BEGIN statement and marks the end of 

the execution control section ol the program and the begin- 

ning of the block expressions of the program. 

Line 9-146 These are the block expressions of the program.    The out- 

put of each block in the block diagram is written as a 

function of the inputs,   to describe the model. 

Line 15:     The END statement signifies the end of the ICSL program. 

Since no integration type was specified in the program,   the 

Milne 5th order predictor-corrector method w^ll be used by the sys- 

tem.    A more compact way of writing the block expressions of this 

program is as follows. 
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BEGIN 

X2DOT = (SIN(TIME)-C*XDOT-K*:0/(W/G) 

XDOT * INT{X2DOT.0.0) 

X ■ INT(XDOT, 0) 

END 

In the partial program above,  the intermediate variables II.  12.  and 

SUM were eliminated. 
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DESCRIPTION OF THE ICSL PROCESSOR 

As mentioned at the beginning of this paper,   the ICSL processor 

is almost entirely written in FORTRAN V.    The processor in itself is 

complete with the exception of the present graphics software it utilizes 

for swapping and graphical display on the IDI scope,   and for the special- 

ized routines used for the CalComp model 570 plotter.    In addition to 

these machine dependent features,   the ICSL assembler generates 

executable code for the Univac 1108 Computer. 

A continuous simulation language must approximate the solutions 

of ordinary differential equations,   utilizing numerical methods.    These 

methods usually entail a variety of iterative techniques,   which when 

used effectively gively give satisfactory results to the user.    Since 

most numerical methods require a large amount of iteration,   it is 

generally desirable to generate efficient machine level code for those 

portions of the user program to be used repetitively.    This greatly 

reduces the execution time needed for the solution approximation.    It 

was for this reason,   that 1108 code is generated for all block expres- 

sions of the user's program by the [CSL processor. 

A generalized flowchart of how a user program is processed 

is shown in Figure 6,   page 38. 
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As depicted in the flowchart   of Figure 6,   a user program is 

read in the same manner of reading data from a FORTRAN program. 

The user's program cards are read sequentially and as statements are 

recognized,   a check is made to determine if a BEGIN or END state- 

ment is present.    If a BEGIN statement is  recognized,   then the        • 

variable 1SW la MSifMd the value 1.    This vanable is used as a 

switch in the logical control of the program to call one of the two state- 

ment processing routines PHASE1  and STACK.     When a begin statement 

is recognized,   it is assumed that all program statentnLs to follow will be 

block expressions,   and the subroutine STACK is called to process any 

additional statements.    Since there are two major categories of state- 

ment types in ICSL,   it seems natural to portion the statement process- 

ing in this manner.     Following the recognition of an END statement,   if 

no errors in the user's program were detected during processing,   the 

block expressions are sorted and  11 OH code is generated and executed. 

A brief description of the main program routines follows. 

THE SUBROUTINE PHASE] 

This subroutine processes all control statements of the user's 

program.    It recognized the reserved words LIST,   PPLOT,   STEP 

SORT,   etc. .   and stores information specify,ng the proper routines to 

be called during the execution of a user's program.    Variable B   d 

function names are  recognized and stored for reference from the block 

expressions of the user's program.    Also all mput from the user is 

stored sequentially for later use. 
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THE SUBROUTINE STACK 

The subroutine STACK processes the block expressions of the 

user's program.    The expressions are analyzed for programming 

errors such as illegal variable names,   undefined function calls, 

incorrectly nested expressions,   and etc.    If no errors have occurred 

in the processing of any statements of the user's program,   then the 

block expression wül be rearranged into reverse or postfix polish 

notation.    For example a typical olock expression might be 

Y = A*(B+C) 

This expression when rearranged In the postfix notation would be 

YABC+* = 

This form is the final block expression form used by the ICSL 

assembler for the generation of 1108 code. 

STATEMENT SORTING 

The block expressions of a us«r<a program are sorted by the 

subroutine SORTM.     In using various numerical techniques for the 

approximation of solutions of differential equations,   the equation must 

first be of the form 

y' = f(y.t) 

where   |   represents the independent variable of the function y.    The 

sorting algorithm used isolates and defines  f(y( t)   hopefully from the 

user's block expressions.    The purpose of the statement sort is two 
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fold.    First,  for the purpose mentioned before and second to sequence 

all other block expressions in a proper computational order.    For 

example,   the two block expressions 

X = Y*THETA 

Y  = COS(TIME) 

are not in the correct order if the variable   X    is computed before the 

variable   Y,    Since   X   is a function of   Y  besides being a function of 

THETA,   the variable   Y  must be computed first to insure that   X   will 

be assigned the proper value for a certain value of the independent 

variable TIME. 

THE ASSEMBLER 

The subroutine ASSEM generates the 1108 machine code which 

is executed in the event no errors occur during assembly.    The sub- 

routine takes the sorted block expressions in postfix polish notation 

and generates the appropriate machine code for the computations of 

the expression.    The expression 

Y = X^(A + B) 

would be represented in postfix notation as 

YXAB+*« 

The order of computation of the expression is defined by examining 

the expression from left to right until an operator is found.    This 

operator then operates on the two preceding operands (in this case the 

variables   A  and  B   are operated upon by the addition operator   ♦  ), 



43 

Upon completion of the operation the resultant operand is placed in the 

expression and the operator and two operands just combined are 

removed.    This process is continued until the = (store) operation has 

been completed.    The 1108 code which would be generated by the sub- 

routine ASSEM for the   last    expression follows.    The example code 

given will be given using the 1108 assembly language mnemonic names 

for ease of reading. 

Code Meaning 

LA       AC,        B Load arithmetic register A0 with B 

FA       AC,        A Execute a floating addition of A to the 
contents of register A0. 

FM       A0„        X Executve a floating multiply of X  to 
the contents of register A0. 

SA        AO,        Y Store the contents of register A0 in Y. 

The actual computational part of the user's program (the 

block expressions) then are used to generate 1108 machine code. 

This code is executed repetitively during the simulation process. 
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