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Wylie - Half-Tone Computer Drawings 

ABSTRACT 

This paper is a brief description of an algorithm for the 

creation of two-dimensional, half-tone pxrtures of perspective 

projections of three-dimensional objects.  Only the visible sur- 

faces are displayed; all hidden surfaces are erased.  This process 

is independent of the orientation of the object.  The inclusion 

of naif-tone shading was considered important because the illu- 

mination of an object gives a viewer much information about the 

three-dimensionality of the object.  A FORTRAN IV program is 

working on a Univac 1108.  Preliminary results indicate that this 

approach is not only possible, but practical for complex object.. 

Processing time is small and storage requirements are very compact. 
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INTRODUCTION 

In recent years, the sheer increase m demand for the graphic presen- 
tation of three-dimensional objects has almost overwhelmed conventional 
facilities; that is, designers, draftsmen and, especially, engineering 
artists.  For example, it is important for a designer or architect to quickly 
describe a three-dimensional object and view it immediately; not as an 
endless set of engineering drawings, but as if he were viewing the three- 
dimensional object itself.  He should be able to take a distant look at a 
complicated object, and then view, in detail, any subsection of the object. 
In other words, he would like to quickly and cheaply simulate and view the 
thing he is designing. 

The goal of this project is to provide a system which will display imaa-'s 
that a person can "feel", as contrasted with images that he must laboriously 
interpret (e.y. the engineering drawings of an airplane). 

Several subjective factors apparently help the viewer's ability to "feel" 
the overall structure of a three-dimensional object;  1) binocular (or stereo) 
vision,  2) elimination of the hidden surfaces,  3) recognition of distance 
and shape as a function of illumination (or shading), and 4) real-time 
movement. 

For a display algorithm to be practical, the computing tirr,^ should grow 
only linearly with the complexity of the object, and the resoluvion of the 
display.  Other workers* have found that, with their methods for the hidden 
surface problem, the computing time grew ver^ rapidly with complexity.  Thus, 
the display of significant objects was impractica.. 

There were other disadvantages.  Roberts used rectangular solids and 
prisms to construct objects.  This is a severe limitation when dealing with 
curved or Riemanman surfaces.  To get around i .is difficulty, we have used 
triangles to describe objects.  For example, it is easily seen that it is 
impossible to completely cover the surface of a sphere wj.th quadrangles. 
However, it can be done quite conveniently with triangle? (Figure 1). 

* 
Lawrence G. Roberts 
Lincoln Laboratory 
Massachusetts Institute of Technology 
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Figure 1.  Example of one method of approximating a sphere by planac 
triangles. 



Any developable surface can be approxinated arbitrarily accurately with 
ömall, but finite, triangles (Figure 1).  Another reason for using triangles 
is that three points always determine a plane.  In this case many results 
from geometry and linear algebra have attractive forms for computation. 

The object, and its perspective projection on a view plane, are exam- 
ined by a scanning ray extending from a view point (Figure 2). 

OVERVIEW OF THE ALGORITHM 

I.  Background Concepts 

A. Basic geometry of the problem. 

Everything is ultimately referred to an underlying, orthonorn.al 

vector basis  E]  (Figure 3).  The object is viewed from an arbitrary 

vantage point specified by  P  .  The vj.dwing plane is parallel to 

vectors  e|  and e'      .     The angular orientation of the viewer about 

the eJ  axis is determined by e  and  äz  .  Every three-dimensional 

triangle determines a two-dimensional perspective image on the view 

plane.  In Figure 2, triangles II and III are in front of triangle I. 

B. Illumination of the object. 

The present algorithm allows only a point source of illumination at 

the view point (like a single flashbulb photograph).  As a consequence, 

there will be no shadows in the picture.  The apparent brightness of 

a point on a surface depends on the following: 

1.  The basic physical laws governing incident light, e.g. light 

flux varies as the inverse square of the distance from a point 

source, and the amount of light incidence on the surface is a 

function of the angle of incidence (the angle between the Incident 

ray and the normal to the surface). 
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2.  The nature of the reflecting surface, e.g., the reflectivity, 

texture and color may vary . 

We have arbitrarily chosen an Inverse fourth law for computational 

simplicity.  The user, however, may employ any relationship he 

desires, by modifying the appropriate subroutine. 

C.  Hidden surfaces problem. 

By far the major obstacle Is solving the hidden surface problem and 

the means of preventing the computing time from growing faster than 

the number of triangles.  Most of this paper will be devoted to this 

problem. 

In solving the hidden surface problem, one could compare all the 

components of the entire surface for each point in the picture.  This 

leads to a computation which likely grows at least as the product of 

the resolution and the number of surface elements.  Instead, by using 

special sorting algorithms, only those triangles intersected by the 

scanning ray (Figure 2) need be compared. 

II.  Algorithm 

This   is  a  greatly  simplified version  to  avoid  getting bogged  down  in 

programming details. 

A.     We have  already  assumed  that  any object may be  approximated by a set 

of  triangles.     The  input  data  is  a set  of  arbitrarily  ordered  triangles 

specified by  the  three-dimensional  coordinates  of  their vertices 

(Figure  3). 

The following must be specified (Figure 3): 

1. View point,  r, 

2. View basis,  e0 

3. Distance from the view point to the view plane. 
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B.  Per frame calculations. 

The view plane is examined by a systematic scanning raster (Figure 5). 

One complete raster scan of the view plane will be called a frame.* 

1.  Preprocess the triangles. 

The algorithm begins with the calculation of various quantities 

about each triangle that will be needed for later computations. 

They are not, however, essential in order to understand the 

basic method. 

a. Find the normal  N,  to each object triangle. 

This is needed in the apparent brightness calculation 

(Figure 3).  From Figure 3, it is seen that the unit normal 

N, to the three-space triangle may be calculated by normal- 

izing the vector cross product of any two of the triangle's 

sides. 

b. Find the apparent brightness at each of object triangle's 

vertices, assuming a point source of illumination at the 

view point. 

1)  To find these brightnesses, the distances from the view 

(or illumination) point to each of the three vertices of 

the triangle must be determined. 

It is assumed that we have either been given (or have 

transformed) the components of all three-space position 

vectors so they are relative to the view basis. 

* 
One side benefit of the raster scan is the inherent compatibility of the method 

1th television-type display devices. 
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2) The magnitude of a position vector to a v.rtex is: 

It|   = /(v2 *  (V2 + (R3)Z   .. 

Given the unit normal of each triangle and the distance 

to each vertex, the user may calculate the apparent 

illumination of the triangle vertices with any formula 

ht desires. The formula chosen generally will vary prim- 

arily with the nature of the reflective surface, 

c.  Calculate the linear brightness interpolation parameters as 

in Section II, E, 2.     • 

Essentially, we have assumed that the apparent brightness in 

the interior of the view plane image of a triangle is adequate- 

lv approximated by linear interpolation of the brightnesses 

at the three vertices of the triangle.  The formula is easily 

derivable and will not be discussed here, 

d.  Calculate the linear distance ratio parameter.* 

1) The distance ration w along any particular scan ray is 

defined to be: 

(Digtmcg from view point to object), 
w = (Distance from view point to image) 

In Figure 3, w = R/r for the scan ray "I to the uppermost 

vertex.  For a given view point, the equation of the plane 

^^t7^^=7of the method used - calculating the^istance 

ratio parameters as detailed in AFIPS "CC Proc. ii P   .   algorithm presen- 
error was discovered by Gordon Romney f ^rLr to cllrify the AF!PS Proceedings, 
ted in ARPA REPORT 4^ and used here in order to clarity 
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of each triangle is found and its coefficients retained.* 

The plane is then 

12    1 
1 = ax + bx + ex 

where x , x , and x3 are view ba-is coordinates.  From 

the definition of w, we see that 

1 2 3 
x = wy    x = wx    x = wz 

where x and y are the view basis coordinates of points 

on the view £1^ and ■ is the distance from the view 

point to the view plane and is constant throughout a 

frame.  Usin-, these relations wc may rowri.te the oquntlon 

for the triangle plane in terms of view plane coordinates 

x, y, z. 

1 = awx + bwy + cwz 

Solving for - , we get 

— = ax + by -:- cz 

The quantities a, b and xz for each triangle are constants 

throughout subsequent calculations. 

2.  Later in the algorithm, it will be necessary to find i for 
w 

e.ch triangle intersected by a given scan ray.  By comparing 

the -'s for each of the triangles intersected, the triangle 

closest to the view point is easily found.  Since z is 

constant. a scan ray is defined by the view plane coordi- 

nates x and y.  Now x and y may be inserted directly into 

the above equation to find -when mieded. 
w 

I^uT^TTT.^ Ä!"the vle"basls "• •*•*"*«"». *• 
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VIEW   POINT 

Flaur« 6. Scan lin« IntcrMctions of projected trlengUs 
on a sinpllfled view plan«. 
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TRIANGLE NUMBE I. 

II III 

0 0 0 
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1 I 0 
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Figure 8.   For a given y scan, an occupied table indicates 
those triangles the scan line intersects. This 
figure shows a sequence ot occupied tables for the 
entire segment of the view plane illustrated in 
Figure 6. Only a single row of the occupied table 
will exist at any instant for the current y. 



VIEW    PLANE 

VIEW   POINT 
TOP   VIEW   OF A   SLICE 
MADE   BY  THE 
SCANNING   RAY. 
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i^ct all three-dimensional triangles onto the view plane to 

of two-dimensional triangles (Figures 2 and 3). 

r rro    1 image is going to be scanned from top to 

bctl   L  HM af   time, all of tha triangles are sorted with 

6 tu o  J I'J • uilnate from conslderat Lon those triangles not 

i    1 ' " the  -n,at scan line (Figure 6). 

-i,  Sore lie.  thra« vertices of each triangle with rfspvet to 

y.* Tl i.s allows the convenient segregation of all of the 

entrance vertices from the set of exit vertices.  The inter- 

mediate vertices are ignored. 

b. i'ht v-entrancu table (Figur« 7), tells which, it any, triangles 

are enterfed U.fc:, begi . .o be .. .cersected) by the ^can line 

at a given y.  It if bui,'. by sorting the set of y-entrance 

vertices. 

c. J i« y-o.xt table, which J.S Identical in structure to Figure 7, 

"ells which trianglea are exited by the scan line at a given y. 

d. Tills way we will only have to look at those triangles that a 

given scan line ajtujlly crosses.  This avoids examining all 

of the triangles In the entire picture at each scan line 

(Figure 6). 

4.  Start the y-sc an. 

Every time the scan is incremented by Ay, the y-occupiad table 

(Figu-e t)   is  up-d 'ed, if necessary, by looking at the yen try 

and exit tables to see if a triangle has been entered or exited. 

* 
This tort actually switches  the vertex data in core storage. 
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In Figure 6, the scan line moves downward and triangles are 

successively entered and exited. We turn on an occupied flag 

«hen a triangle is entered and turn it off when it is exited. 

lach rr:.an3le has its own location in which to put an occupied ' 

flag CZlgure 8).  Note that in Figure 8 only one row (or y- 

occupled tcble) of the sequence exists at a time.  With a large 

nunber of triangles, the occupied table should be organized as 

some dat? structure allowing an efficient search of the table 

for occupied triangles.  This is the first major reduction in 

computation. 

C  Per scan line computations. 

1.  For the current scan line: 

a- We go to the y-occupied table and get only the triangles that 

this scan line crosses, 

b.  Find the x values of the intersections of the scan line with 

the sides of the view plane images of the triangles pulled 

out of the y-occupied table (Figures 6 and 9). 

2.  Sort each triangle's x-entry and x-exit intercepts into the x- 

ontry and x-exit tables, respectively.  The x tao^r and sorts 

are identical to those L-SPH -tn t-h*   """■ ..  "~\ cnose ised in the y-entry and y-exit sorts shown 

in Figure 7.  They will not be shown in a figure. 

3.  Commence moving the scan ray along the scan line by Ax increments. 

D.  Per point calculatJons. 

1.  For the current x, look at the x-entry and x-exit tables to see 

if there is an intersection at this x. When an intersection 

point is encountered, we want to know if there is a change in 

the visible (or hidden) status of a triangle. 



a-  If there is an intersection 

1)  Update the x-occupied tab]*  TKQ      . . piea cable.  The x-occupied table has 

the same structure and is built- ■.•„ *-K« 
J.S ouiit in the same way as the 

y-occupied table. 

2)  Now go into the hidden parts calculation. 

(Section II, JJ, 2.)* 

0'     If there is no interdPnM™,  J 
no intersection, increment x and test for an 

intersection at the new x  (i   *       «. 
new x (i.e.. Increment x and go to Section II 

. D, 1).        , 

2.  Hidden parts calculation. 

'■    ***„  an trla„8les ln the x.occupled table for the ^^^^ ^ 

b- «alng th. diatance ratio Paran,eter5 co^p^ed prav.ous!,, ln per 

fra„e calcuiationa (Section H, ,. !. d), calculate ^ dls_ 

^rea-apaco trlaaglea anterad ln Ehe „„^ ^  ^^ ^ 

'■     Sort tU  dlataaoaa to find tha snaUast dlatanoa. Tha trlangla 

"Ith the s-nalleat dlatanoa ratio la the one visible. 

• Add to tha visible table. 

•■ «eure 10 shows a completed visible table for the soan line 

shown in Figure 9. 

b.  The contents of the table are triangle names (or numbers) 

showing which triangle is visible at a given x. 

cLrr x "L^r^giTcL^r i7 rer ^^ ** *** 
at an intersection of the s^an Un*      T    tS  VlSlble 0r hidden ^atus is 
Intersecting trl^L.^T^vS'in'to^11 ^   ^^ 9)' 
a separate algorithm prior to execution of^H"'

6
"
6
"
1118

 ^^^S  by 
tlve algorithm. execution of the present half-tone perspec- 
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c  For each Ax increment of the scan ray, the visible table 

is modified by placing the name of the visible triangle, 

if any, in the location corresponding to the present x 

value (Figure 10). 

d.  The visible table is constructed for an entire scan line and 

is then used to find which triangle's intensity interpolation 

parameters are to be used for each x. 

E.  Per point intensity calculations. 

Calculate the intensities for each x in the current scan line. 

1.  We interpolate to find the irtensity over the visible interior 

of a triangle using only the intensity values at the three vertices. 

This allows a considerable reduction in computing time.  For 

simplicity and speed, but not necessity, we chose linear inter- 

polation. The linear interpolation parameters have already been 

calculated and stored during the per frame calculations (Section 

n,B, 1, c). 

2.  The formula for the intensity at a point x on the scan line y is 

I = ax f by + c 

where I is the intensity and a, b, and c are the linear inter- 

polation parameters for the visible triangle. 

F.  Output to display device 

The list of intensities for this scan line is sent to a peripheral 

device for eventual display. The output subroutines are distinct 

and independent of the half-tone algorithm to permit flexibility 

as the display hardware is improved or altered. 
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0.  In programming this algorithm, it should be noted that various 

combinaLions of triangles present cases that require arithmetic of 

great precision; e.g., triangles with common edges or vertices; 

triangles that are coplanar, or nearly so.  These cases are not 

discussed here, but should be carefully examined by the programmer. 

From our experience, we have concluded that the description of the 

object and all computation should be donr: in integer arithmetic. 

Also, there should be a total avoidance of division to eliminate 

truncation error, which would make the logic of special cases 

ambigu -»us. 
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RESULTS 

I.  Program 

A FORTRAN IV program of the algorithm (Figure 11) , called PIXURE, has 

been written* and used to produce half-tone pictures of a cub-a and tetra- 

hedron (Figures 13 through 18),  For both the cube (12 triangles) and the 

tetrahedron (4 triangles) the execution time of PIXURE was roughly 25 

seconds to calcuiace a frame of 512 x 512 points on a Univac 1108. 

PIXURE at present is approximately 3800 Univac 1108 assembly language 

instructions in length and occupies 14K 36-bit words of storage for 

a picture of 100 triangle complexity. 

Preliminary tests indicate that the execution time is most dependent on 

the number of scan lines that intersect the two-space image of the 

object (e.g., there are eleven scan lines, 2 <_ y ^ 12, that intersect 

triangles in (Figure 6).  It also appears that this dependence is 

closely linear.  On the other hand, execution-time dependence on the 

number of triangles, i.e., the number of intersection points per scan 

line, appears to be much better than linear.  The dependence on the num- 

ber of hidden triangles per intersection point has not been rigorously 

determined, but seems to be close to linear. 

♦Dramatically improved versions and extensions of this algorithm have now been 
developed independently by G. Romney and J. Warnock.  The resulting pictures 
are calculated much more rapidly and are of objects of some interest: e.g. 
combinations and intersections of cubes, tetrahedrons, planes and cones and 
a rather detailed house. 
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Figure 12. Display System. 



TT .  Hardware techniques 

Each scan line that PIXURK generates Is sent to a PDP-8 via a specially 

designed interface (Figure 12).  The PDP-8 serves essentially as 

1) a buffer, 2) a raster generating device for an oscilloscope, and 

3) an a-synchrcnous I/O channel communicating with the 1108.  Each scan 

line, in turn, is stored in ths PDP-8 memory and then transmitted through 

a digital to analog (D-A) converter to a Tektronix 453 oscilloscope. 

The scan position is dictated by ten bit x and y registers in the D-A 

converter.  The intensity of the beam at each point in the scan is 

controlled by a six bit z register.  Due to storage and 1108-PDP-8 :rans- 

mission-rate limitations, we have been forced to take time exposure 

photographs of the scope trace.  As soon as a scan line is completed, 

the PDP-8 requests information for the next scan line.  For a 512 x 

512 frame it takes approximately ten seconds to generate a picture. 

III.  Subjective interpretations 

The principal objective of this project is to allow people to see three- 

dimensional objects, as realistically as possible, using two-dimensional 

images (or displays).  We have chosen to erase hidden surfaces and use 

half-tone shading to give the illusion of depth (or distance) and indi- 

cate spatial relationships. Although we are presently limited to a 

single source of illumination at the view point; nonetheless, the 

pictures of our test objects show obvious dimensionality. 

Figures 13, 14, and 15 represent a cube whose resolution differs by a 

factor of ten.  It is evident that Figure 14, representing a picture 

of 512 x 512 points, supplies sufficient information to adequately 

d^ -ribe the cube.  A more c itical test on the resolution of the 
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reeding edge could not have been made, and yet, the edge appears in the 

higher resolution pictures. The unusual perspective, however, was merely 

the result of au arbitrary choice in geometry.  The apparent triangular 

compositica ot th« cube faces has since been corrected and a smooth 

transition across the triangle boundaries achieved (Figure 16). 

The pictures of the tetrahedron (Figures 17 and 18) are superior in 

quality to thoce of the cube for two reasons.  First, a defect in the 

display hardware was partially corrected, resulting in a more even 

display pattern.  Scan lines are still noticeable, but it is felt that 

additional improvement in the hardware will significantly diminish 

this defect.  The second improvement was in the selection of a more 

correct rang« of intensity levels ueed in the brightness calculation. 

Another objective is to display an object so that it will not be ambig- 

uously interpreted.  The tetrahedron in Figure 17 is decidedly convex, 

but Figure 18 could be either convex or concave unless the source of 

illumination is specified. 
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In the cases we have tested, the computing time grows almost linearly 
with the resolution of the picture, the size of the visible portion of the 
object and, apparently, the amount of hidden surface.  This makes the 
algorithm practical, and is a result of special sorting techniques which 
greatly reduce the number of hidden surface comparisons required.  The 
objects we have displayed appear quite three-dimensional and their hidden 
surfaces are effectively eliminated.  The computing time required for a 
picture composed of over 10^ points was approximately 40 seconds on a 
Univac 1108. 

The present system definitely proves the feasibility of the real-time 
display of two-dimensional half-tone images.  It is felt that the technique 
may be easily extended to stereo representation of half-tone images.  Further- 
more, the algorithm is so constructed as to allow computations to be executed 
in parallel (see the dotted section in Figure 11).  As many scan lines as 
hardware permits may be calculated simultaneously.  Also, much of the compu- 
tation may be performed by incremental hardware.  The parallel and incremental 
characteristics of the algorithm lead us to believe that real-time movement 
and display of half-tone images is near realization. 

A typical user wishes to describe an object in a form convenient for 
him.  Also a flexible and extensive data structure must be constructed to 
contain and manipulate an object.  Therefore, the practical application of 
the algorithm dtpends greatly on the  ability of the system to convert an 
object into a suitable mesh of triangles. Our group has initiated work in 
these directions and, at present, "has a triangle generation algorithm oper- 
ational for objects composed of planar surfaces. 
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