AD-761 965

HALF~-TONE PERSPECTIVE DRAWINGS BY
COMPUTER

Chris Wylie, et al

Utah University

Prepared for:
Advanced Rescarch Projects Agency

12 February 1968

DISTRIBUTED BY:

National Technical Information Service
U. S. DEPARTMENT OF COMMERCE
5285 Port Royal Road, Springfield Va. 22151




Technical Report 4-2 Chris Wylie
Gordon Romney
David C. Evans

Alan Erdahl

e .
e,
——

HALF-TONE PERSPECTIVE DRAWINGS BY COMPUTER .

i

"

November 14, 1967
Revised February 12, 1968

in accordance with
ARPA Technical Report 4-3.

AD 761965

COMPUTER SCIENCE
Information Processing Systems
University of Utah
Salt Lake City, Utah

Reproduced by

NATIONAL TECHNICAL

INFORMATION SERVICE ST -
'J'S Department of Commerce qﬁ, “Ju U Lb {
Springfield VA 22151 - . B . LA"-A.;

Advanced Research Projects Agency ° Department of Defense * ARPA order 829

Program code number 6D30

DISTRIBUTICH % i v or v

o S o (AN A
Approvead for

Tt public reicage;
. r ¥
MtixmivxuWuuumd \
gt .
— !



Wylie - Half-Tone Computer Drawings

ABSTRACT

This paper is a brief description of an algorithm for the
Creation of two-dimensional, half-tone pi-tures of perspective
projections of three-dimensional objects. Only the visible sur-
faces are displayed; all hidden surfaces are erased. This process
is independent of the orientation of the object. The inclusion
of half-tone shading was considered important because the illu-
mination of an object gives a viewer much information abcut the
three-dimensionality of the object. A FORTRAN IV program is
working on a Univac 1108. Preliminary results indicate that this
approach is not only passible, but practical for complex objects.

Processing time is small and storage requirements are very compact.
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INTRODUCTION

In recent years, the sheer increase in demand for the graphic presen-
tation of three-dimensional objects has almost overwhelmed conventional
facilities; that 1s, designers, draftsmen and, especially, engineering
artists. For example, it 1s important for a designer or architect to quickly
describe a three-dimensional object and view it immediately; not as an
endless set of engineering drawings, but as 1f he were viewing the three-
dimensional object itself. He should be alle to take a distant look at a
complicated object, and then view, in detail, any subsection of the object.
In other words, he would like to quickly and cheaply simulate and view the
thing he is designing.

The goal of this project 'is to provide a system which will display imaa~s
that a person can "feel", as contrasted with images that he must laboriously
interpret (e.g. the engineering drawings of an airplane).

Several subjective factors apparently help the viewer's ability to "feel"
the overall structure of a three-dimensional object: 1) binocular (or stereo)
vision, 2) elimination of the hidden surfaces, 3) recognition of distance
and shape as a function of illumination (or shading), and 4) real-time
movement.

For a display algorithm to be practical, the computing tim-~ should grow
only linearly with the complexity of the object and the resclucion of the
display. Other workers* have found that, with their methcds for the hidden
surface problem, the computing time grew very capidly with coumplexity. Thus,
the display of significant objects was impractica..

There were other disadvantages. Roberts nsed rectangular solids and
prisms to construct objects. This i1s a severe limitation when dealing with
curved or Riemannian surfaces. To get around '-.is difficulty, we have used
triangles to describe objects. For example, 1t is easily seen that it is
impossible to completely cover the surface of a sphere with guadrangles.
However, it can be done quite conveniently with triangles (Figure 1).

!

Lawrence G. Roberts
Lincoln Laboratory
Massachusetts Institute of Technology
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Any developable surface can be approximated arbitrarily accurately with
small, but finite, triangles (Figure 1l). Another reason for using triangles
is that three points always determine a plane. In this case many results
from geometry and linear algebra have attractive forms for computation.

The object, and 1ts perspective projection on a view plane, are exam-
ined by a scanning ray extending from a view point (Figure 2).

OVERVIEW OF THE ALGORITHM

I. Background Concepts

A. Basic geometry of the problem.
Everything 1s ultimately referred to an underlying, orthonormal
vector basis é] (Figure 3). The object 1s viewed from an arbitrary
vantage point specified by P . The viewlng plane 1is parallel to

-r

—
vectors e and e’

The angular orientation of the viewer about

)

the e’ axi1s 1s determined by e and :¢ . Every three-dimensional
triangle determines a two-dimensional perspective image on the view
plane. In Figure 2, triangles II and III are in front of triangle L.
B. Illumination of the object.
The present algorithm allows only a point source of i1llumination at
the view point (like a single flashbulb photograph). As a conseguence,
there will be no shadows in the picture. The apparent brightness of
a point on a surface depends on the following:
1. The basic physical laws governing incident light, e.g. light
flux varies as the 1nverse square of the distance from a point
source, and the amount of light incidence on the surface is a

function of the angle of incidence (the angle between the incident

ray and the ncrmal to the surface).
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2. The nature of the reflecting surface, e.g., the reflectivity,
texture and color may vary .
We have arbitrarily chosen an inverse fourth law for computational
simplicity. The user, however, may employ any relationship he
desires, by modifying the appropriate subroutine.

C. Hidden surfaces problem.

By far the major obstacle is solving the hidden surface problem and
the means of preventing the computing time from growing faster than
the number of triangles. Most of this paper will be devoted to this
problem.
In solving the hidden surface problem, one could compare all the
components of the entire surface for each point in the picture. This
leads to a computation which likely grows at least as the product of
the resolution and the number of surface elements. Instead, by using
special sorting algorithms, only those triangles intersected by the
scanning ray (Figure 2) need be compared.

II. Algorithm

This is a greatly simplified version to avoid getting bogged down in

programming details.

A. We have already assumed that any object may be approximated by a set
of triangles. The input data is a set of arbitrarily ordered triangles
specified by the three-dimensional coordinates of their vertices
(Figure 3).

The following must be specified (Figure 3):
1. View point, —5.

, o
2., View basis, e, .

3. Distance from the view point to the view plane.
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B. Per frame calculations.

The view plane is examined by a systematic scanning raster (Figure 5).

One complete raster scan of the view plane will be called a frame.¥

1. Preprocess the triangles.

The algorithm begins with the calculation of various quantities
about each triangle that will be needed for later computations.
They are not, however, eséential in order to understand the
basic method.

a. Find the normal‘_g, to each object triangle.

This is needed in the apparent brightness calculation
(Figure 3). Froq Figure 3, it is seen that the unit normal
N, to the three-space triangle may be calculated by normal-
izing the vector cross product of any two of the triangle's
t sides.

b. Find the apparent brightness at each of object triangle's
vertices, assuming a point source of illumination at the
view point.

1) To find these brightnesses, the distances from the view
(or illumination) point to each of the three vertices of
the triangle must be determined.

It is assumed that we have either been given (or have
transformed) the components of all three-space position

vectcrs so they are relative to the view basis.
LY

*
One side benefit of the raster scan is the inherent compatibility of the method
with television-type display devices.
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. 2) The magnitude of a position vector to a vertex is:

L \f(Rl)2 + (Rz)2 + (R3)2

+

. Given the unit normal of each triangle and the distance
to each vertex, the user may calculate the apparent
{1lumination of the triangle vertices with any formula
ve desires. Tﬁe formula chosen generally will vary prim-
arily with the nature of Fhe reflective surface.

c. Calculate the linear brightness intefpolation parameters as
in Section II, E, 2. )
Essentially, we have assumed that the apparent brightness in
the intéqior of the view plane image of a triangle is gdequate-
ly approximated by linear‘interpoLation of the brightnesses
at the three vertices of the triangle. The fordula is easily
derivable and will not be discussed here.

d. Calculate the linear distance ratio paramete-s.*
1) The distance ration w along any particular scan ray is

defined to be:

rie (Distance from view point to object)
(Distance from view point to image)

b .
In Figure 3, w = R/r for the scan ray R to the uppermost

vertex. For a given view point, the equation of the plane

*This section is a correction of the method used in calculating the distance
ratio parameters as detailed in AFIPS FJCC Proc. 31 p. 49, Nov. 1967. This
error was discovered by Gordon Romney and is the basis of the algorithm presen-
ted in ARPA REPORT 4.3 and used here in order to clarify the AFIPS Proceedings.



of each triangle is found and its coefficients retained.*

The plane is then

1l = axl + bx2 + cx3
1 2 3 . .
where X7, x°, and x~ are view basis coordinates. From
the definition of W, we see that

1 2 3
X" = wy X = wx X" = wz

where x and y are the view basis coordinates of points

on the view plane and 2z ig the distance from the view

point to the view plane and is constant throughout a

frame. Using these relations we may rewrite the cquation

for the triangle plane in terms of view plane coordinates

Xy, ¥V, Z.

1 = awx + bwy + cwz

Solving for % » We get

% = ax + by + cz
The quantities a, b and xz for each triangle are constants
throughout subsequent calculations.

2., Later in the algorithm, it will be necessary to find % for
each triangle intersected by a given scan ray. By comparing
the %’s for each of the triangles intersected, the triangle
closest to the view point is easily found. Since z is
ccastant, a scan ray is defined by the view plane coordi-
nates x and y. Now x and y may be inserted directly into

the above equation to find %-when needed.,

*
These are recomputed when and only when the view basis or, equivalently, the
orientation, of the object is changed.



VIEW POINT

Fizure 6. Scan line intersections of projscted trisngles -
on a simplified viev plans.
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Figure 8.

TRIANGLE NUMBEE.

I II  III
0 0 0 16
0 0 0 15
0 0 0 14
0 0 0 13
1 o 0 12
1 0 0 11
1 1 1 10
1 1 1 9
1 1 1 8
1 1 1 7
1 1 1 6
1 0 0 5 %
1 0 0 4
Y
1 0 0 3
1 0 0 2
| o 0 0 1

For a given y scan, an occupied table indicates
those triangles the scan line intersects. This
figure shows a sequence of occupied tables for the
entire segment of the view plane illustrated in
Figure 6. Only a single row of the occupied table
will exist at any instant for the current y.
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VIEW PLANE

TOP VIEW OF A SLICE
MADE BY THE
VIEW POINT SCANNING RAY.
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iect all three-dimensional triangles onto the view plane to
| © of two-dimensional triangles (Figures 2 and 3).
‘i ¢ nro. 1 image is going to be scanned from top to
Betio o & line at time, all of the triangles are sorted with
3 0 3 Lo e 'minate from consideration those triangles not
1 1’y the >rront scan line (Figure 6).
Ao 3200 the three vertices of each triangle with respact to
"y.* Tris allows the convenient segregation of all of the
entrance vertices from the set of exit vertices. The inter-
mediste vertices are ignoved.

. The v-entrance gable (fixdre 7), tells which, if any, triangles
are enteced (L.e., begl.. .o e l.tersected) by the scan line
at a given y. 1I% is built bv sorting the set of y-entrance
vertices.

c. Tue y-exir table, which is identical in structure to Figure 7,
tells which triangles are éxited by the scan line at a given y.

d. This way we will only have to look at those triangles that a
given scan line actuclly crnsses. This avoids examining all
of the triangles in the entire picture at each scan line
(Figure 6).

4. Start the y-scan.
Every time the scan is incremented by Ay, the y-occupiad table
(Figure &) is up-d:ted, if necessary, by looking at the y-entry

and exit tables to see if a triangle has been entered or exited.

* :
This sort actually switches the vertex data in core storage.




Per

n Figure 6, the scan line moves downward and triangles are

successively entered and exited. We turn on an occupied flag

when a triangle is entered and turn it off when it is exited.

tach triangle has its own location in which to put an occupied

flag (Jigure 8). Note that in Figure 8 only one row (or y-

cceunind table) of the S¢quence exists at a time. With a large

nurcer of triangles, the occupied table should be organized as

some data structure allowing an efficient search of the table

for'occupied triangles. This is the first major reduction in

computation.

scan line computations.

For the current scan line:

a. We go to the y-occupied table and get only the triangles that
this scan line crosses.

b. Find the x values of the intersections of the scan line with
the sides of the view plane images of the triangles pulled
out of the y-occupied table (Figures 6 and 9).

Sort each triangle's X-entry and x-exit intercepts into the Xx-

entry and x-exit tables, respectively. The x tab and sorts

are identical to those vsed in thg";:éntry and y-exit sorts shown

in Figure 7. They will not be shown in a figure.

Commence moving the scan ray along the scan line by Ax increments.

point calculatlons.

For the current X, look at the X-entry and x-exit tables to see

1f there is an intersection at this x. When an intersection

point is éncountered, we want to know if there is a change in

the visible (or hidden) status of a triangle,



a. If there is an intersection
1) Update the X-occupied table. The X-occupied table hag
the same structure and is built in the same way as the
y-occupied table.
2) Now go into the hidden parts calculation.
(Section II, T, 2.)*
0. If there is no intersection, increment x and test for an
intersection at the new x (i.e., increment x and go to Section I,
. D, 1), O
2. Hidden parts calculation,
a. Examine all triangles in the X-occupied table for the current x,
b. Using the distance ratio parameters computed previously in per
frame calculationsg (Section II, B, 1, d), calculate the dis-
tance along the scan ray from the view Point to each of the
three-space triangles entered in the ¥-occupied table (Figure 9),.
C. Sort the distances to find the smallest distance. The triangle
with the smallest distance ratio is the one visible,
3. Add to the visible table,.
a. Figure 10 shows a completed visible table for the scan line
shown in Figure 9,
b. The contents of the table are triangle names (or numbers)

showing which triangle is visible at a given x.

at an intersection of the scan line and a triangle side (Figure 9),
Intersecting triangles may be resolved into non—intersecting triangles by
& separate algorithm Prior to execution of the present half-tone perspec-
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¢. For each Ax increment of the scan ray, the visible table
1s modified by placing the name of the visible triangle,
if any, in the location corresponding to the present x
value (Figure 10).

d. The visible table is constructed for an entire scan line and
is then used to find which triangle’s intensity interpolation
parameters are to be used for each x.

Per point intensity calculations.
Calculate the intensities for each x in the current scan line.
1. We interpolate to find the irtensity over the visible interior

of a triangle using only the intensity values at the three vertices.,

This allows a considerable reduction in computing time. For

simplicity and speed, but not necessity, we chose linear inter-

polation, The linear interpolation parameters have already been
calculated and stored during the per frame calculations (Section

II,B, 1, c).

2. The formula for the intensity at a point x on the scan line y is
I =ax+by+c
where I is the intensity and a, b, and ¢ are the linear inter-
polation parameters for the visible triangle.
Output to display device
The list of intensities for this scan line is sent to a peripheral
device for eventual display. The output subroutines are distinct
and independent of the half-tone algorithm to permit flexibility

as the display havdware is improved or altered.



G.

22

In programming this algorithm, it should be noted that various
combirations of triangles present cases that require arithmetic of
great precision; e.g., triangles with common edges or vertices;
triangles that are coplanar, or nearly so. These cases are not
discussed here, but should be carefully examined by the programmer.
From our experieice, we have concluded that the description of the
object and all computation should be done in integer arithmetic,
Also, there should'be a total avoidance of division to eliminate

truncation error, which would make the logic of special cases

ambiguous.
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RESULTS
I. Program

A FORTRAN IV program of the algorithm (Figure 11), called PIXURE, has
been written* and used to produce half-tone pictures of a cuhe and tetra-
hedron (Figures 13 through 18). For both the cube (12 triangles) and the
tetrahedron (4 triangles) the execution time of PIXURE was roughly 25
seconds to calculate a frame of 512 x 512 points on a Univac 1108.
PIXURE at present is approximately 3800 Univac 1108 assembly language
instructions in length and occupies 14K 36-bit words of storage for
a picture of 100 triangle complexity.
Preliminary tests indicate that the execution time is most dependent on
the number of scan lines that intersect the two-space image of the
object (e.yg., there are eleven scan lines, 2 Sy £ 12, that intersect
triangles in (Figure 6). It also appears that this dependence is
closely linear. On the other hand, execution-time dependence on the
number of triangles, i.e., the number of intersection points per scan
line, appears to he much better than linear. The dependence on the num-
ber of hidden triangles per intersection point has not been rigorously

determined, but seems to be close to linear.

*Dramatically improved versions and extensions of this algorithm have now been
developed independently by G. Romney and J. Warnock. The resulting pictures
are calculated much more rapidly and are of objects of some interest: e.g.
combinations and intersections of cubes, tetrahedrons, planes and cones and
a rather detailed house.
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Hardware techniques

Jiach scan line that PIXURE generates is sent to a PDP-8 via a specially

II

designed interface (Figure 12). The PDP-8 serves essentially as

1) a buffer, 2) a raster generating device for an oscilloscope, and

3) an a-synchrcnous I/0 channel communicating with the 1108. Fach scan
line, in turn, is stored in the PDP-8 memory and then transmitted through
a digital to analog (D-A) converter to a Tektronix 433 oscilloscope.

The scan position is dictated by ten bit x and y registers in the D-A
converter. The intensity of the beam at each point in the scan is
controlled by 4 six bit z register. Due to storage and 1108-PDP-8 :rans-
mission-rate limitations, we have been forced to take time exposure
photographs cf the scope trace. As soon as a scarn line is completed,

the PDP-8 requests inforéation for the next scan line. For a 512 x

512 frame it takes approximately ten seconds to generate a picture.

I. Subjective interpretations

The principal objective of this project is to allow people to see three-
dimensional objects, as realistically as possible, using two-dimensional
images (or displays). We have chosen to erase hidden surfaces and use
half-tone shading to give the illusion of depth (or distance) and indi-
cate spatial relationships. Although we are presently limited to a
single source of illumination at the view point; nonetheless, the
pictures of our test objects show obvious dimensionality.

Figures 13, 14, and 15 represent a cube whose resolution differs by a
factor of ten. It is evident that Figure 14, representing a picture

of 512 x 512 points, supplies sufficient information to adequately

dc cribe the cube. A more ¢ itical test on the resolution of the
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receding edge could not have been made, and yet, the edge appears in the
higher resolution pictures. The unusual perspective, however, was merely
the result of an arbitrary choice in geometry. The apparent triangular
compositicn of the cube faces has since been corrected and a smooth
transition across the triangle boundaries achieved (Figure 16).

The pictures of the tetrahedron (Figures 17 and 18) are superior in
suzlity to those cf the cube for two reasons. First, a defect in the
display hardware was partially corrected, resulting in a more even
display pattern. Scan lines are still noticeable, but it is felt that
additional improvement in the hardware will significantly diminish

this deféct. The second improvement was in the selection of a more
correct range of intensity levels vsed in the brightness calculation.
Another objective is to display an object so that it will not be ambig-
uously interpreted. The tetrahedron in Figure 17 is decidgdly convex,
but Figure 18 could be either convex or concave unless the source of

illumination is specified.
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SIDMMARY

In the cases we have tested, the computing time grows almost linearly
with the resolution of the picture, the size of the visible portion of the
object and, apparently, the amount of hidden surface. This makes the
algorithm practical, and is a result of special sorting techniques which
greatly reduce the number of hidden surface comparisons required. The
objects we have displayed appear quite three-dimensional and their hidden
surfaces are effectively eliminated. The computing time required for a
picture composed of over 106 points was approximately 40 seconds on a
Univac 1108.

The present system definitely proves the feasibility of the real-time
display of two-dimensional half-tone images. It is felt that the technique
may be easily extended to stereo representation of half-tone images. Further-
more, the algorithm is so constructed as to allow computations to be executed
in parallel (see the dotted section in Figure 11). As many scan lines as
hardvare permits may be calculated simultaneously. Also, much of the compu-
tation may be performed by incremental hardware. The parallel and incremental
characteristics of the algorithm lead us to believe that real-time movement
and display of half-tone images is near realization.

A typical user wishes to describe an object in a form convenient for
him. Also a flexible and extensive data structure mist be constructed to
contain and manipulate an object. Therefore, the practical application of
the algorithm dc pends greatly on :the ability of the system to convert an
object into a suitable mesh of triangles. Our group has initiated work in
these directions and, at present, has a triangle generation algorithm oper-
ational for objects composed of planar surfaces.
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