
AD-761 964

A FORTRAN V INTERACTIVE GRAPHICAL
SYSTEM

Alan C. Reed, et al

Utah University

Prepared for:

Advanced Research Projects Agency

3 April 1968

DISTRIBUTED BY:

PN
NitiiMl TwhiicalliifinMtiM Sirvici
U. S. DEPARTMENT OF COMMERCE
5285 Port Royal Road, SpringfwW Va. 22151

BEST
AVAILABLE COPY

Technical Report 4-4

A FORTRAN V INTERACTIVE

GRAPHICAL SYSTEM

Alan C. Reed
D. E. Dallin
Scott T. Bennion

"•w. X
/ /

dÜr
tf

April 3, 1968

kuproduced by

NATIONAL TECHNICAL
INFORMATION SERVICE

U S Depaftmont of Comnufrc«
Springfield VA 22151

COMPUTER SCIENCE

Information Processing Systems

University of Utah

Salt Lake City, Utah

• D D r

^ M 2C 1973

Jlk©[/u ■
B

W

DISTP iWA

Advanced Research Projects Ageiöy "'"Department of Defense * ARPA order 829

Program code number 6D30

'ha system described provides the capability of transforming

an ordinary FORTRAN V program into a highly interactive progran«

The converted program makes the user, the display scope, and

■etype console all an integral part of the execution of the

program. At present, the system allows the user to modify or

retrieve current values of variables in the program or to effect

transfaE of execution to various statement numbers when commands

are typed. A group of display oriented programs is also described

Lch greatly simplify the job of displaying the solution and aids

for finding the solution of the problem. A SWAP method is used

to provide sharing of the central processor between interactive

programs and. the batch programs.

1-

Before proceeding with 0. Jiocussion of the detaiis of the

graphical system, it woaxd seem only proper uo iirst ask and then

attempt to answer the following two fundamental questions:

What are the advantages of interaction?

Why interact with FORTRAN?

In regard to the first question, the solution of any problem on

.1 computer» especially one involving complex numerical computation1

requires an extreme degree of closeness between the programmer and the

algorithm. interactive graphics places the programmer and users of

,. c program a most advantageous position. The execution of the

px »gram la^ be monj-tored and action taken to help the program find

the solution, or to find it more quickly. In addition, since the

, .; can guide the program, a much shorter logical path to the sol-

ution will be taken than could feasibly be coded into a batch program

I 1 increase; in speed of problem solution may quite conceivably be

tie form ot minutes versus days, or days versus months.

"he answer to the second question is also highly pragmatic.

]RAN is a popular language which has ^een in wide use for severa-

Most numerically oriented prcialems have been and are pretentiy

n.j öOIV d -r. computers with FORTRAN programs. The desirability ...

racting with this type of program has previously been pointed c...

is clear then, that FORTRAN, at present, would be the most desir-

able choice.

At the : ■ersily of Utah, an interactive graphics laboratory

has been estak - md is continually being expanUad to provide

-2-

the computer scientist the necessary tools for research and develop-

ment into man/machine systems. This laboratory is separate and

distinct from the computer center and the Univac 1108 computer and

peripheral equipment-

The equipment in the graphics laboratory now includes:

An on-line Univac 1004 card reader/printer and 1108

console monitor which permit the user to read-in, execute

and obtain printed results of his programs while in the

graphics lab.

A PDP-8 computer connected on-line to the Uni/ac 1108.

The PDP-8 acts as a controller for the graphics equipment

and serves as the communications link between this equipment

and the 1108.

A model 35 teletype which serves as the interactive keyboard.

An IDI display scope which may be used to provide a window

into the solution space of the problem and may be combined

with the teletype to form an interactive console with

keyboard and display.

Other equipment and equipment features such as the Sylvania tablet,

IDI light pen, pen matching and tracking, light buttons, etc-, are

not described in this report. We thought it best to limit our discussion

to our current work and the equipment and other associated software

necessary for the use of our present system.

The interactive routines described herein are taken from and

-3-

built upon those descnbed in the Graphics System Technical Report

(1). Those routines described in Technical Report 4-1 are located on

FASTRAND file $$GS$$ and the other- v.. file $UUCC$. Both FASTRAND

files must be read into the program file through the CUR operations

(2) prior to execution.

In addition to generating displays and handling teletype input

and output, the set of routines includes those which establish the

modes of operation and interaction. The first such routine is RELOAD.

This routine must be called only once and before any others described

below. Its function is to initialize the graphics system and to type

out a sign-on message on the teletype console.

Hardware interrupts from the teletype, light pen, and Sylvani.a

;.blet are saved by the graphics system in the 1108, They are then

recognized and activated as software interrupts by the user's program

through subroutine IDLE. The name IDLE is a misnomer, for its function

is to check if any interrupts have been received and then to transfer

control according to the type of interrupt. If it is a character

interrupt from the teletype, then program control will be passed to

the instruction set specified by a call to the subroutine CHRINT

{N,$STMT).

The characters, STMT, denote a FORTRAN statement number defmec:

in the user's program at which the interrupt will be processed when

N characters have been typed. For other interrupt conditions, we

refer you to the Graphics System Technical Report (1).

-4-

Before transferring control to the interrupt location, the sub-

routine link parameter generated by CALL IDLE is pushed into the

top of a stack. Upon completion of handling an interrupt, the sub-

routine INTRET must be called tc unstack the top subroutine link

parameter. This parameter is then used to return program control

to the statement following the corresponding CALL IDLE statement.

Refer to page 12 for an example of the use of CHRINT and IDLE.

Note that stacking the subroutine link parameter allows the user

to declare new interrupt statement numbers if necessary and to call

JDLE within his interrupt handler. Care must be taken in unpacking

the link diameters in the correct sequence through calls to INTRET.

Swapping provides for use of the 1108 only when needed and .Hows

t to be relea' d to the normal batch processing when not needed.

Ths 1108 EXEC II system has been modified to time share the interactive

graphio» user and batch processing stream for economic reasons. When^

ever a call is made to subroutine SWAPER(N), the user's program is

read out of memory onto a reserved region of an FH-432 drnm and the

current or next batch stream program is read off of drum into memory

and is executed. At any tiire, the giaph^cs user may swap out the

program currently being executed and swap his own program back in.

If N = 0, the user's program is swapped into memo.y and executed

when the sw .p character is typed at the teletype console. The swap

character is declared by a call to the subroutine SWPCHRCC where

C denotes the swap character (usually a carriage return character,

0-7-8 punch). If K = 1, the swap occurs whenever any interrupt occurs

and a swap charactar need not be declared.

-5-

After the initial swap of the interactive program onto drum, the

EXEC II system resumes the normal batch processing mode and assumes,

for the most pa-t, that the swapped out 30h is terminated. This results

in restricted servicing of the interactive program when subsequently

swapped back m. Normal input and output is not allowed and will

cause an ENDSWP condition on the 1108 teletype if done other than

through the subroutine ARPAIO (1). FORTRAN print/plot output may

be written on a reserved FASTRAND file and later retrieved. This

mechanism is initialized by a subroutine SWAPIO, which must be made

prior to the first call to the SWAPER routine. All print/plot:

specifications subsequent to the call to SWAPIO will cause the corres-

ponding fieldata print lines and plot commands to be written out

on the FASTRAND which can later be retrieved by executing the pro-

gram FSTDMP. Care must be taken to dump this file before the next

graphics user also writes on it. Since, under EXEC II. only one

graphics user may be active at a time, this restriction should not

cause too much difficulty.

Teletype Routines

The following package of subroutines constitutes an extension

to FORTRAN V in which two new types of variables may be defined. The

first type is called an "Interaction variable", the value of which

may be changed or simply retrieved by the user. The second type is

.ailed a "Command variable" which, when typed, causes transfer of

execution to a statement number in the program. Command variables

are also interaction variables.

-6-

A command variable is an interaction variable which is further

declared in a call to subroutine JUMPS.

NAMELIST/NAME/VAR1, VAR2, ..,, VARN

CALL SETLST

READ (5,NAME)

CALL JUMPS ('NAME'#$STMT1# $STMT2; ..., $STMTM)

In the above example, M ^ N. The call to JUMPS declares the

first M varaabies appearing in namelist NAME to be command variables.

When VAR] i&) typed, I ^ I ^ M, the program transfers to STMTl in the

program.

Finally, whenever the teletype is to be interrogated, a call to

subroutine TTY is made. Usually, the call will be the character

interrupt processing location specified in a call to CHRINT as demon-

strated by the following example:

LOGICAL FLAG

DIMENSION I (10,10)

MAMELIST/NAME/PLOT, STOP, A, GO, I, J, FLAG

CALL SETLST

READ (5,NAME)

CALL JUMPS ('NAME', $10, $20, $30, $40)

CALL CHRINT (1, $5)

@ DEFINE

@ INTERACTION

@ VAR.^l-ES

@ DEFINE COMMAND VARIABLES

@ INTERRUPT TO 5 WHE*,'
CHAR IS TYPED.

2 CALL IDL. @ WAIT FOR

8-

Namelist is a FORTRAN V feature which allows unformatted input

and output of. the variables declared in the list (3). In order to

.mplish this, certain information regarding each variable must be

kept in core at execution time. It is the presence of this information

which makes the interaction with variables possible.

Unfortunately, a namelist name may only appear in a READ or

r-^K vhiQ rpason a call to subroutine SETLST must WRITE statement. For tnis reason, a t-aj-j.

be followed by a READ or WRITE statement m order to make the name-

list table of information available to the system. The following

example will illustrate:

•'AMELIA. NAME/VAR1, VAR2, ..., VARN

i

'ALL SETLST

READ (5,NAME)

SETLST anticipates that a READ statement of the form shown will

immediately follow the subroutine call. The information given in the

READ statement may be though of as the argument list for SETLST. The

ubroutxne returns to the next statement folloiwng READ.

The function of SETLST is to declare VARl VARN as avai.

r interaction and takes into account their individual variable ^

and dimensions. SETLST may be called more than once with various

a

fo

namelist names.

An interaction variable is one which has been declared m a

NAMELIST where the name of that namelist has been provided to sub-

routine SETLST ai execution time.

-7-

G0 T0 2 I INTERRUPT

5 CALL TTY | iNTERRUpT OCCURRED, INTERROGATE TTY

CALL INTRET | RETURN TO IDLE LOOP

10 CALL PLOTER (I, J) g .pL0T. C0MMAND WAS TYpEDj

CALL INTRET Cd RETURN T0 IDLE L00p

20 CALL EXIT | 'STOP' COMT^AND WAS TYPED.

30 NEWVAL = A**3 + .5 @ NEW VALUE OF 'A' WAS TYPED

CALL INTRET | RETURN TO IDLE LOOP

40 CALL COMPUT (NEWVAL, FLAG) @ 'GO' WAS TYPED,

CALL INTRET @ RETURN TO IDLE LOOP

The above program would call IDLE repeatedly until a character

interrupt caused a transfer out of IDLE to statement number 5 where

TY would then be called. TTY would wait until a carriage returi:

(*<) was typed at which time it would scan the input line. Wnat

happens next would depend upon the line that was typed. Some

examples will illustrates

i££äi EFFECT

BL0'1 M Transfer to statement 10

3T0P M Transfer to statement 20

A"3*5^ Value 3.5 is stored in A then tram er

to statement 30.

A"=3 /: Value 3.0 is stored in A then transfer

to statement 30.

Ar • • Transfer to statement 30.

r(1'-1' " • Value 37 is stored in I then retu:.: •

statement after CALL TTY.

-9-

INPL EFFECT

j = 2 j& Va^ae 2 is stored in J then return to

statement aiter CALL TTY.

I(j#j) x 40 ^ Value 40 is stored in I(J,J) where -he

current value of J is used, then *Gt;

to statement after CALL TTY.

1(1,25) =2 ^ Characters '25' underlined with '*

script out of range) then wait fox

input.

A _ /- Type out current value of P. Do no-- CXfclMI

fer. Return to statement, uttei ^hLi. f.

The abov list Includes most of the common forms oi input tat in Ly

means exhaustive. The following rules govern the use of CTYl

Values must agree in type with variaLln- names as .lei.*., u iA

program. The only exception is that a tloat-irg point van

may be given the value of 3 in lieu of 3. or 3,0.

Floating point input may be either of the F o." E format type .

Complex values are input as two floating point values separa-

L>y a comma.

SUXHC i'-rs may be either integer constants or non-subscript

interactive integer variables.

If a :abel and an equal sign are typed but not a value, the

gram assuaw retrieval is wanted and types out the current W

of 'he - triable.

-»t ci ^ cha.acter. ' is added and the string is stored

unch nged startup left adjusted in uhe location denoted by

ADDR or it is converted according to the special format whose

lo oticn is denoted by FMT and stored in the locatiors denoted

jy VAR1 AR2, . , and ■' ^. This format is a special for

difteren* froT? those in FORTRAN V. I- is designed so that the

teletype user need not memorize or otherwise have at his ecru,

whi^h character positions (analcyous to card column«) each

number or character string must bugin and end in. The •onuat

muat t- contiguous string of characters, the first one being

Je cid]usted in e location FMT Tne only admissible

characters are J, R, A, C, D, L and * where:

I meant to in-.erpre. he next stung d cf^iac -ja ...

integer,

K meaus to interpret th« next, string of charactuia ..

real (single precision floating point),

A means to interpret the next string of characters as

fi«ld«ta .xpha-numenc not containing a comma),

. tmtnH ■ its >'-e; th« n <i two itrings of charact«

.3 jjomplex the first as the real part and the sec

a ^ • -~ 1" :. jina ry yjart,

ma ; Lnte pret the next string of characters as

c«. bJe precision, floating poir.;.,

j ami tc rrteroiet the r^xt stntq of characters at

. . , . , . ., hhi naxt c i ■ r^'- oi . ■■ cactei I 8 tie 1 -

:■ .T-- >AI nonsta lefiniti« •

2-

The user may effect the transfer of control associated with a

coimand variable whether by typing only the name of the variable,

or by specifying a value for the variable.

Command variable transfer will not occur when there is error in

the input string or when the value of the variable is being

retrieved.

Whenever an error is detected in the input, the element found to

be in error is underlined with the character '*', and the subr.u-

tin® v .ts for more input.

KU input must be followed by a carriage return.

More specialized teletype I/O may be handled with the two rout

described below:

YPSOUT (ADDR) or TYP^OUT (FMT, VARl, VAR2, ...,

Types out on the teletype the fieldata character string whic

starts left adjusted in the location denoted by ADDR or th.

.tring generated from the conver. on of the quantities in

locations VAR3 , VAR2 VARN by means of a FORTRAN V forr,

whoSe location is denoted by FMT. In either case, the strv

must be terminated ny the terminating character, & (U, 7, I

TypiN (ADDR) OS T¥PI8 (FMT, VARl, VAR2, VARM)

Gets frei» the teletype the next fieldata character string «

ra.t,..>. by a carriage return and Line tee., character, M(0,

-11

return has been typed, then a diagnostic is typed out

user is expected to retype the line correctly.

Example:

INTEGER DAY^ON^YR^HR/MIN^EC

LOGICAL WAIT

CALL RELOAD

CALL SWPCHR ('ü ')

CALL CHRiNT (1,$100)

CALL TYPOUT ('ENTER DAY, MONTH YEARJt^')

WAIT- ' /''JE.

10 CALL SWAPER(O)

C;tLL IDLE

IF (WAIT) GO TO 10

100 CALL TYPIN ('lAI1,DAY,MON,YR)

CALL CHRINT ü,$200)

CALL TYPOUT (' ENTER HOUR,MINUTE,SECONDJ* > A ')

110 CALL SWAPER (0)

CALL IDLE

I? (HAIT) GO TO 110

Ch -- JNTRET

200 CALL T¥tl» CIII',HR,MIN,SEC)

V.7-. US»*fMSM*

CA.. "'"'PKT

and the

14-

A comma is used as the string delimiter. If the first rharacter

typed in is a conuna or if a string of n commas is typed in, then

a blank or n-l blanks (teletype spaces) are assumed respectiv-:y,

The teletype carnarje return and line feed key is used in lieu

of a last or terminating comma. The conversion procedure i8<

the • ext string of w non blank characters and converts and ' c ■<

it according to a FORTRAN format specified by the specia format

character. If the format character is I, then the FORTRAN V rev

mat spec ilied is Iw; R specifies Ew.Oj A specifies Aw Lf w ^ £

and irA' An if w > 6 where m ■ integral part or w/6 -_nü = w-

C • -icifies Ew^O, Ew-,.0; D specifies Dw.O; L specii,^.«? IM and

* specifies one or the above according to the constant t

It w « 0, then a zero, blank or false value is ttoreu M r«<

The first format character specifies tfeat the first onarac-

ati .ng will be converted as indicated and stored in the looati

denottd by VAR1, the second in VAR 2, etc.

It the string ABORT is typed in, the program will be aborte-

through the EXIT subroutine. It another argument, $STMT, is

addti to the alllim sequence, ther. control will be passed

; statement ...r.iber denoted by STMT when the string ?

cypad m. .his escape function is useful when inputtir

v.. ~ t amount of data in an indefinite loop.

the r-umber of stnrgs typed in is not equal tC the numbf

f:f i ^ in rhe call statotnert, a Uttinq is invalid arcc rr'

ti., iat »pecifiodi or the raboui key I ll^wed by ■ ein

13-

Display Routines

The IDI display scope permits the user to display vectors and

characters on a 1024 x 1024 grid which is about eleven inches square.

Horizontal and vertical scaling is provided for both vectors and

characters through control knobs on the IDI display consoie, and allows

the user some flexibility in the size and position of Ms displaj

The and origin (0,0) is located m tht bottom left cornei i scree! .

Therefore, the range of the grid coordinates are from 0 t .023

and any value specified outside of this range is treated modulo 1024

causing ■'■-aP around" effect.

...aracters may be written in a large, small, MMli

nail subscript nod** The screen is larye enough Cor • -

I ch«raot««l Mch UbMI U» the large cha.acer mode. A la }<

.nay U hOttfht of as being in a 16 x 16 box which include, tpaci,

->r\ ail aides.

The small character mode permits 128 characters per line buc

.ears to be about 3/4 the height of a large character. Theref.

it is pio.ably best to think of the small characters as being in

box 3 x 12.

T1 . :owing Mt of routines are designed to permit the i

,0 ^ily generate a display on Uie IDI scope. This set is Ml

uoon UN -i« -t as desc^ed in the Graphics System Technica

I part. ■ Yet provid»! nearly ill of t> riMlblUt» at a qt

•■ ■(!' swl ng effort. •non

-15-

These routines generate display information and store it in r

user declared array .eiative to an index. The array size is limited

to 2686 words of memory, and the index always points to the nex::

available location within the array, starting at one. This index

may be saved and altered at any point to permit insertions and re« m-

structions of part or all of the display file. The average user will

probably alter the latter part of the display file leaving bhe fij

part unchanged since it may contei.m, for example, information which

generates a fixed axis, grid or label.

SETDF (Dr. .NDEX)

ts the display file address to the location denote i by ehe

argument DF and the display file index address to that

by INDEX. The file and the contents of INDEX are set to unit

All subsequent display routine calls will reference the diaplay

file DF and its index INDEX and update the index to the next

available location within the display file. This routine mutt

be called at least once for each display file used. A third

argument may be added to indicate the size of the display

file and is assumed to be 2500 if omitted.

RSETDI' (DF, INDEX)

Sets the display file address to DF and the display file i

address to INDEX. It does not initialize flags or the var

l.NiUEX. The purpose of this routine is to switch back to ■

Viously used display file DF and/or to declare a previous

u r-'.' display file index denoted r>y INDEX. If a I

routiitfl oall follows which puts intormatio . into tne US]

-16-

fii , it will be inserted relative to the value of INDEX.

Again a third argument may be added to indicate the display

file size and is assumed to be 2500 if omitted.

ORG(X,Y)

S=t« the relative origin to absolute griä coordinates X,Y

All subsequent display routine coordinates will be interpreted

relative to X,Y. Initially, X,Y = 0,0.

POS(XFY)

Positaon beam at grid coordinates X,Y.

VEC (X, Y)

Prom current beam position, draw a vector to grid coordinates

DOT (X,Y)

tut a dot at grid coordinates X,Y.

DASti{X,Y)

From curremt beam position, draw a dashed vector to grin c(

crdinates X,Y. The dash is only effective for vectors longer

than about 20 grid positions.

Example:

DIMENSION DF(2000)

CALL SETDF(DF,I)

CALL ORG(0,100)

CALL POS(0,0)

CALL VEC(100,0)

-17-

CALL DOT(100,0)

CALL POS (0,10)

CALL DASH(100,0)

LCHAR

Set character size to large

SCHAR

Set character size to small,

SUP

Set character size to small superscript.

3UB

Set character size to small subscript.

WRITAT(X,Y,ADDR) or WRITAT(X,y,FMT#VARl, ...,VARN)

Write horizontally starting at relative jrid coordinates X,y

the fieldata character string whose first character is left

adjusted in location ADDR and whose last character is ^ (1

7, 8 punch), or write horizonatlly starting at relative g::

coordinates X,Y the variables VAR1, VAR2, ..., VARN conver

by the format FMT into a fieldata character string whose

character is a A.

WEITDN [X ,, , ADDR) or WRITDN (X, Y,FMT,VARl,VAR2 , . . . ,VARN)

Wri vertically down starting at grid coordinates X,Y In

same manner as WRITAT writes horizontally. Mote this BOI

-18-

routine uses the margin, return to margin and line feed modes

which are also .sed in the subroutines MARGIN, NXTLIN and

SAMLIN described below.

Examples:

DIMENSION STRING(2)/'MESSAGE 1A/

DIMENSION FMTIM)/' (8HMESSAGE ^»IH^)'/

DIMENSION FMT2(6)/, (8HMESSAGE ,I2,4H OR ,F3.1,lH/i)'/

I=i

A" 4 . 0

^CHAR

CALL WRITAT{0,500,STRING)

>.AL-L WRITAT (Ü^ÜO/MESSAGE 24')

CALL WRITA': tO f 3001FMT 1,1)

CALL WRITDNtO.iOOO,' (S^ESSAGE , I2,3H + ,F3.1, IRA) M , n,

CALL WRITA'i (O^OO/X ^OA')

CALL SUB

CKLL rtR^TAT(ö,216,,l4,)

CALL SUP

~LL V>RITAT(C,'<:30,,2^•)

MARGIN ■X.T.

narfin ftt relative grid coord-..ates X,^.

NXTLIN . '♦ ';Xrl,:«''FMT,v'ARl,VAR2, ..., VARN)

o t.G natfia and write on the next ..ine the chara:

-19-

string at location ADDR or the one generated by the format

FMT and the varubles VARl, VAR2, ..,, VARN) . (See WRITAT).

SAMLIN(ADDR) or SAMLN(FMT,VARl,VAR2, ..., VARN)

Write a line as does NXTLN except write it at the current line

position instead of at the next line position.

Examples:

CALL MARGIN(10,1000)

DO 10 T=l,50

CALL LCHAR

CALL NXTLIN(,(3HX =,I3,1H^)M)

CALL SUB

10 CALL SAMLIL ' (2H ,12,IH^)',)I)

Ü

SENDF

If N is the valu-i of the current display file index, then th

first N-l words of the current display file are sent to th

PDP-8 and are displayed on the Tr»i scope.

PLOTDI

If u is the vdiue of the current display file index, then

first N-] words of the current display file are sent to tl

CAL OMi Incremental plotter and a permanent hard copy cor

. ■ _. th i display on the IDT score is produced.

:0-

REFERENCES

(1) Copeland, L., Carr, C.S. (1967): Graphics System,

Technical Report 4-1, University of Utah Computer

Science Department

(2) UNIVAC 1108 EXEC II Programmers Reference Manual (1966):

Sperry Rand Corporation, Section 3, page 37.

(3) UNIVAC 1108 FORTRAN V Prograiomers Reference Manual (1966)

,.-rry Rand Corporation, Section 7, page 12.

^/

