AD-761 964

A FORTRAN V INTERACTIVE GRAPHICAL
SYSTEM

Alan C. Reed, et al

Utah University

Prepared for:

Advanced Research Projects Agency

3 April 1968

DISTRIBUTED BY:

National Technical Infermation Service
U. S. DEPARTMENT OF COMMERCE
5285 Port Royal Road, Springfield Va. 22151

BEST
AVAILABLE COPY

Technical Report 4-4 Alan C. Reed
D. E. Dallin
Scott T. Bennion

A FORTRAN V INTERACTIVE 7

GRAPHICAL SYSTEM 4 Jﬂﬁﬁ*

761964

AD

" April 3, 1968

Reproduced by

NATIONAL TECHNICAL
INFORMATION SERVICE

U S Departmant of Commerce
Springfield VA 22151

uL.,‘_J L S Y
B

o

Information Processing Systems

COMPUTER SCIENCE

University of Utah
Salt Lake City, Utah

DI T BRI R
A wea) 4 puklie e ecsd;

Ty s Jedunited

Advanced Research Projects Ageacy * Department of Defense ' ARPA order 829

~

Program code number 6D30 LI

\’/’T/

1e system described provides the capability of transforming
~n ordinary FORTRAN V program into a highly interactive prograr
The converted program makes the user, the display scope, and

letype console all an integral part of the execution of the
rrogram., At present, the system allows the user to modify'or

.. rieve current values of variables in the program or to effect

.nsfer of execution to various statement numbers when commands
ave typed., A group of display oriented programs is also described
wnich qreatly simplify the job of displaying the solution and aids
for finding the solution of the problem., A SWAP method is used

o provide sharing of the central processor between interactive

programs and the batch programs.

cztore proceedinyg with a discussion of the details of the
graphical system, 1t would seem only proper vo first ask and then

attempt to answer the following two fundamental questions:
What are the advantages of interaction?
Why interact with FORTRAN?
In regard to the first gquestion, the solution of any problem on
1 computer, especially one involving complex numerical computacion,
reguires an extreme degree of closeness between the programmer and the

algorithm. Interactive graphics places the proygrammer and users of

W2 PLoygraln 4 most advantageous position. The execution of the

4

a3 ., be monitored and action taken to help the program find

e so.ution, or to find 1t more quickly. In addition, since tiig

- can gulde the program, a much shorter logical path to the soi-

ion will be taken thawu could feasibly be coded into a batch program.

increase in speed of problem solution may quite conceivably be
¢ form ~f minutes versus day.s, or days versus months.
he answer to the second question is also highly pragmatic.

RUKAL is a popular lauguage which has Leen in wide use for severa.

0zt numericaelly oriented prcolews have been and are presenc.y

5 0l.°¢ on computers with FORTRAN programs. The desirability
racting with this type of program has previously been pointed c.:
is clear whea, that FORTRAN, at present, would be the most desir-

able choice.

At the ' -iversity of Utah, an interactive g.uphics laboratory

has been cstal . and 1s continually being expan.2d to provide

-2-

the computer scientist the necessary tools for research and develop-
ment into man/machine systems. This laboratory is separate and
distinct from the computer center and the Univac 1108 computer and
peripheral equipment.
The equipment in the graphics laboratory now includes:
An on-line Univac 1004 card reader/printer and 1108
console monitor which permit the user to read-in, execute
and obtain printed results of his programs while in the

graphics lab.

A PDP-8 computer connected on-line to the Univac 1108.
The PDP-8 acts as a controller for the graphics equipment
and serves as the communications link between this equipment

and the 1108.
A model 35 teletype which serves as the interactive keyboard.,

An IDI display scope which may be uéed to provide a window

into the solution space of the problem and may be combined

with the teletype to form an interactive console with

keyboard and display.

Other equipment and equipment features such as the Sylvania tablet,

IDI light pen, pen matching and tracking, light buttons, etc., are
not described in this report. We thought it best to limit our discussion
to our current work and the equipment and other associated software
necessary for the use of our present system.,

The interactive routines described herein are taken from and

—g=

built upon those described in the Graphics System Technical Report
(1). Those routines described in Technical Report 4-1 are located on
FASTRAND file $$GS$$ and the other. .. file $UUCCS. Both FASTRAND
files must be read into the program file through the CUR operations
(2) prior to execution.

In addition to generating displays and handling teletype input
and output, the set of routines includes those which establish the
modes of operation and interaction. The first such routine 1s RELOAD.
This routine must be called only once and before any others described
below. Its function 1S to initialize the graphics system and to type
out a sign-on message on the teletype console.

Hardware interrupts from the teletype, light pen, and Sylvania
-blet are saved by the graphics system in the 1108. They are then
recognized and activated as software interrupts by the user's progran
through subroutine IDLE. The name IDLE 1is a misnomer, for its function

1s to check if any interrupts have been received and then to transfer
control according to the type of interrupt. If it 1s a character
interrupt from the telatype, then program control will be passed to
the instruction set specified by a call to the subroutine CHRINT
(N,$STMT) .

The characters, STMT, denote a FORTRAN statement number definec
in the user's program at which the interrupt will be processed when
N characters have been typed. For other interrupt conditions, we

refer you to the Graphics System Technical Report (1).

Before transferring control to the interrupt location, the sub-
routine link parameter generated by CALL IDLE 1S pusheéd 1into the
top of a stack. Upon completion of handling an interrupt, the sub-
routine INTRET must be called tc unstack the top subroutine link
parameter. This parameter is then used to return program control
to the statement following the corresponding CALL IDLE statement.
Refer to page 12 for an example of the use of CHRINT and IDLE,.

Note that stacking the subroutine link parameter allows the user
to declare new interrupt statement numbers 1f necessary and to call
IpDLE within his interrupt handler. Care must be taken in unstacking
the link parameters 1in the correct sequence through calls to INTRET.

Swapping provides for use of the 1108 only when needed and allows

¢t to be relear d to the normal batch processing when not needed.
‘"he 1108 EXEC 11 system has been modified to time share the interactive
graphizs user and batch processing stream for economic reasous. When-
ever a call i1s made to subroutine SWAPER(N), the user's program 18
read out of memory onto a reserved region of an FH-432 drm and the
current or next batch stream program is read off of drum into memory
and is executed. At any tirme, the graphics user may swap out the
program currently being executed and swap his own program back 1in.

If N = 0, the user's program 18 swapped 1nto memory and executed
when the swip character is typed at tht teletype console. The swap
character 1s declared by a call to the subroutine SWPCHR('C) where

¢ denotes the swap character (usually a carriage return character,
0-7-8 punch). If N = 1, the swap occurs whenever any 1interrupt occurs

and a swap character neec not be declared.

~-5=

After the initial swap of the interactive program onto drum, the
EXEC II system resumes the normal batch processing mode and assumes,
for the most part, that the swapped out Job 1s terminated. This results
in restricted servicing of the interactive program when subsequently
swapped back in. Normal input and output is not allowed and will
cause an ENDSWP conditicsn on the 1108 teletype if done other than
through the subroutine ARPAIO (1). FORTRAN print/plot output may
be written on a reserved FASTRAND file and later retrieved. This
mechanism is initialized by a subroutine SWAPIO, which must be made
prior to the first call to the SWAPER routine. All print/plot
specifications subsequent tO the call to SWAPIO will cause the corres-
ponding fieldata print lines and plot commands to be written out
on the FASTRAND which can later be retrieved by executing the pro-
gram FSTDMP. Care must be taken to dump this file before the next
graphics user also writes on it. Since, under EXEC II, only one
araphics user may be active at a time, this restriction should not

cause too much difficulty.

Teletype Routines

The following package of subroutiues constitutes an extension
to FORTRAN V in which two new types of variables may be defined. The
first type 1s called an "Interaction variable", the value of which
may be changed or simply retrieved by the user. The second type is
called 1 "Command variable" which, when typed, causes transfer of
execution to a statement number in the program. Command variables

are also i1nteraction variables.

A command variable 1s an interaction variable which is further

declared 1n a call to subroutine JUMPS.,

NAMELIST/NAME/VAR1l, VARZ, ..., VARN

CALL SETLST

READ (5,NAME)

CALL JUMPS ('NAME',$STMT1, $STMT2, ..., $STMTM)

In the above example, M < N. The call to JUMPS declares the
first M variables appearing in namelist NAME to be command variables.
When VAR] 1s typed, 1 < I < M, the praogram transfers to STMT1 in the
program.

Finally, whenever the teletype is to be interrogated, a call to
subroutine TTY is made. Usually, the call will be the character
interrupt processing location specified in a call to CHRINT as demon-

strated by the following example:

LOGICAL FLAG

DIMENSION I (10,10)

MAMELIST/NAME/PLOT, STOP, A, GO, I, J, FLAG @ DEFINE

CALL SETLST e INTERACTION

READ (5,NAME) Q VAK.: ZLES
CALL JUMPS ('NAME', $10, $20, $30, $40) @ DEFINE COMMAND VARIAGLES
CALL CHRINT (1, $5) @ INTERRUPT TO 5 WHEN

CHAR IS TYPED.

2 CALL IDL. @ WAIT FOR

Namelist 1s a FORTRAN V feature which allows unformatted input

and output of the variables declared in the list (3)., In order to
mplish this, certain information regarding each variable must be

kept 1n core at execution time. It is the presence of this. information
which makes the interaction with variables possible.

Unfortunately, a namelist name may only appear in a READ or
WRITE statement. For this reason, a call to subroutine SETLST must
be followed by a READ or WRITE statement in order to make the name-
list table of information available to the system. The following
example will 1llustrate:

“AMELIST NAME/VARLl, VARZ2, ..., VARN

“SALL SETLST
READ (5,NAME)

SETLST anticipates that a READ statement of the form shown will
1mmediately follow the subroutine call. The information given 1in the
READ statement may be thought of as the argument list for SETLST. Ths
subroutine returns to the next statement folloiwng READ.

The function of SETLST is to declare VARL, ..., VARN as avail <ol

for interaction and takes 1into account their individual variable

(i)
3]

and dimensions. SETLST may be called more than once with various
namelist names.

An interaction variable 1s one which has been declared 1in a

NAMELIST where the name of that namelist has been provided to sub-

o

routine SLtisT 3% axecution time.

-7-

10

20

30

40

GO TO 2

CALL TTY

CALL INTRET

CALL PLOTER (I, J)

CALL INTRET

CALL EXIT

NEWVAL = A**3 + .5

CALL INTRET

CALL COMPUT (NEWVAL, FLAG)

CALL INTRET

@ INTERRUPT

@ INTERRUPT OCCURRED, INTERROGATE TTY
@ RETURN TO IDLE LOOP

@ 'PLOT' COMMAND WAS TYPED.,

@ RETURN TO IDLE LOOP

@ 'STOP' COMMAND WAS TYPED.

@ NEW VALUE OF 'A' WAS TYPED

@ RETURN TO IDLE LOOP

@ 'GO' WAS TYPED.

@ RETURN TO IDLE LOOP

The above program would call IDLE repeatedly until a character

ihterrupt caused a transfer out of IDLE to statement number 5 whe =

‘'Y would then be called. TTY
(&) was typed at which time it
happens next would depend upon

cxamples will illustrate:

PR

PLO’I‘),(. 3 3
STOP “ -
A= 3 . 5 P ¢ ¢ & s e .5 » @
A= 3 J { . ¢ 8 s e e s 5 e A s s
A sz

I(l,ll = &l By . . g 0O C & .

would wait until a carriage returr
would scan the input line. What

the line that was typed. Some

EFFECT

Transfer to statement 10

Transfer to statement 20

Value 3.5 is stored in A then tra-- e

to statement 30.

Value 3.0 is stored in A then tranc:.
to statement 30.

Transfer to statement 30.

Value 37 is stored in I then retur

statement after CALL TTY.

T~
2

I(3,3) = 40 X

1(1,25) = 2 i1

EFFECT

Va.ue 2 is stored in J then return to
statement after CALL TTY.

Value 40 is stored in I(J,J) where the
current value of J is used, then .eturn

to statement after CALL TTY.

Characters '25' underlined with '*' [(sub
script out of range) then wait fou more
input.

Type out current value of A. Do not crans

fer. Return to statement after CALL .

The abov. 1ist includes most of the common forms of input but 15 by 1

means exhaustive.

The following rules govern the use of Tiiy:

Values must adree in type with variable names as detined in

program,

The only exception is that a floating point variakb

may be given the value of 3 in lieu of 3. or 3,0,

Floating point input may be either of the F o: E format type.

Complex valies are input as two {loating point values separa:

by a comma.

Subscripts may be either integer constants or non-subscript

interactive integer variables.

1f a label and an equal sign are typed but not a value, the -

gramn ascumes retrieval is wanted and types out the current v

of tnhe variable.

-10~

B & ¢1 y cha:acter, ! 1s added and the string 1is stored
unch nged startiny left adjusted in ihe location denoted by
ADDR or 1t 1s converted according to the special format whose
1o sticn is denoted by FMT and stored in the locationrs denoted
oy VARL AR2, ., and = ‘%, This format is a special foriax
difieren* fro- those in FORTRAN V. I+ is designed so that the
t=letype user need not memorize or otherwise have at higs cciiie
which character positions (analcgous to card columns) each
number or character string must begin and end in. The format
must b~ cont.guous string of characters, the first one nainc
le adjusted 1n e location FMT The only admizzic'e
characters are 3, R, A, C, D, L and * where:
I means to inierpre. ~he next stiing ©. clarac.ur's ot
integer,
Kk means to interpret the next string of characters =
real (single precision floating point),
A m=zans to lnterﬁret +he next string of characters as

fieldata (alpha-numeric :ot zontaining a commaj,

< means Lo interpret the n=<i EWO strings of characts
s coempie +he first as the real part and the se
¥ Jmaglnary part,

. qmeans to interpret the next string of characters a=
¢usble precision floating poirt,

i means to interpret the nexXt straind of characters o«
weAnE e Soam thel adxt &ny.ng ol .Loaracters cac 1.

oy 1 FORTEAS constant fefiniticont.,

—
N
I

v

descr

TYPEQ

PIN

The user may effect the transfer of control assocliated with a
command variable whether by typing only the name of the variable,

or by specifying a value for the variable.

command variable transfer will not occur when there 1s error in
the input string or when the value of the variable 1is being

retrieved.

Whenever an error 1S detected in the input, the element found to
be in error is underlined with the character '*', and the subrou-

tins w- s for more input.
input must be folliowed by a carriage return.

More specialized teletype 1/0 may be handled with the twc rout:

ibed below:

UT (ADDR) or TYPROUT (FMT, VARI, VAR2, ..., VARH]

Types cut cn the teletype the fieldata character string whica
starts left adjusted in the location denoted by ADDR ot th
string generated ifrom the convers:on of the quantities i
locations VARY, VAR2, ...y VARN by means of a FORTRAN V form
whese leocation is denoted by FMT. 1In either case, the striv..

rnust be terminated by +he terminating character, A (11, 7, ¢t

(renR) or TYPIN {FMT, VAR, VAR2, .., VARM)
Gers tr-w the teletype the next fieldata character string t¢;

mirea.e by a carriage retuin and line fee. chargacter, =alt,

-11-

return has been typed, then a diagnostic is typed out and the
user is expected to retype the line correctly.
Example:
INTEGER DAY,MON,YR,HR,MIN,SEC
LOGICAL WAIT
CALL RELOAD
CALL SWPCHR ('&1 ')
CALL CHRINT (1,$100)
CALL TYPOUT ('ENTER DAY, MONTH YEAR)1>A')
WAILT= "rUE.
10 Cri_., SWAPER(0)
CzLL IDLE

IF (WAIT) GO TO 10

100 CALL TYPIN ('IAI',DAY,MON,YR)

CALL CHRINT (1,$200)

CALL TYPOUT ('ENTER HOUR,MINUTE,SECONDH>4')
.10 CALL SWAPER (0)

CALL IDLE

I¥ (WRIT) GO TO 110

Ca.L, INTRET
200 CiL.. TYPIN ('II1I',HR,MIN,SEC)

V2 0=, FALSEE.

CALL INYRET

A comma is used as the string delimiter., If the first character
typed 1n is a commna or if a string of n commas 1is typed 1in, then
a blank or n-1 blanks (teletype spaces) are assumed respective'v.
The teletype carriage return and line feed key 1s used in lieu
of a last or terminating comma. The conversion procedure 1is¢
the - eoxt string of w non blank characters and converts and = ¢
it according to a FORTRAN fourmat specified by the specis Jfovmas
character. If the format character is I, then the FOFTRAN V for-
mat spec.iied 1s Iw; K specifies Ew.0; A specifies Aw if w < ¢
and mAs, An if w > 6 where m = integral part or w/6 =nd ! = w-'
C r:ecifies Ewl.O, sz.o; D specifies Dw.0; L specifies v anc
* specifies one of the above according to the constant ©.
It w = 0, then a zero, blank or false value is storeo as recis
The first format character specifies that the first charactav
sti:ng will be converted as indicated and stored in the .ocat.
denoted by VARl, the second in VAR 2, etc.
If the string ABORT is typed in, the program will be abortec
through the EXIT subroutine. If another argument, $STMT, is
added to the calliny sequence, then control will be passed ¢
[] statement number denoted by STMT when the string F

s 1n. This escape function is useful when inputting
va _+.'e amount of data in an indefinite loop.
¢ the pumber of strings typed in is not equal tc the numbe
eper ‘-4 1n rhe cal) statement, a strirco is invalid accerd -

t.l.e at spec.fi1ed, or the rubsur key toilowed by a iy

=1 ¥

Display Routines

The IDI display scope permits the user to display vectors and
characters on a 1024 x 1024 grid which is about eleven inches sqguare.
Horizontal and vertical scaiing is provided for both vectors and
characters through control knobs on the IDI display console, and ailows
the user some flexibility in the size and position of his display
The grid origin (0,0) is located in the bottom left corne: sore
Therefore, the range of the grid coordinates are from ¢ v 1023
and any value specified outside of this range is treated moiuid -
causing .rap around" effect.

_.aracters may be written in a large, small, sma:. =

nall subscript mode. The screen is large enough fo

A

1 characters eaclh when in the large character mode. A large

1
LM

may be thought of as beinyg in a 16 X 16 box which includes sui©.
~n all sides.

The small character mode permits 128 characters per iine but

»ears to be about 3/4 the height of a large character. Therefcr=

it 18 probably best to think of the small characters as being in
box 8 x 12.

Tia foliowing set of routines are designed to permit the u
+.0 eas)ly generate a dispiay on .ne IDI scope. This set is buil
woon the Lasic set as descrived in the Graphics System Technica
Report,), yet provides nearly all of rhe s1exihility at a o¥

33VINgH roararming offort,

-15~

These routines generate display information and store 1t in a
user declared array relative to an index. The array size is linmited
to 2686 words of memory, and the index always points to the nex:
available location within the array, starting at one. This 1index
may be saved and altered at any point to permit insertions and rec n-
Structions of part or all of the display file. The average user will
probably alter the latter part of the display file leaving the f.. .=

part unchanged since 1t may contain, for example, informacion which

generates a f{ixed axis, grid or label.

SETDF (DF. INDEX)
“2ts the display file address to the location denctel by tha
argument DF and the display file index address to that
by INDEX. The file and the contents of INDEX are set to un.
All subsequent display routine calls will reference the disp.:zv
file DF and its index INDEX and update the index to the next
available location within the display file. This routine mus:
be called at least once for each display file used. A third
argument may be added to indicate the size of the display
file and is assumed to be 2500 if omitted.

RSETDY (DF, INDEX)
Sets the display file address to DF and the display file i
address to INDEX. It does not initialize flags or the var -
1NDEX. The purpose of this routine 1s to switch back to & .
vious.y used display file DF and/or to declare a previous.
use raw display file index denoted by INDEX., If a d-

rout ne call follows which puts informaticn inteo the dis

£11 , 1t will be inserted relative to the value of INDEX.
Again a third argument may be added to indicate the displey
file size and 1s assumed to be 2500 if omitted.

ORG (X.Y)
g=te the relative origin to absolute gril coord.nates X,Y.
All sabsequent display routine coordinates will be interpreted
relative to X,Y¥. Initially, X,Y = 0,0.

POS (X,Y)
Pusition beam at grid coordinates X,Y.

VEC (X, Y]

From current beam position, draw a vector to grid coordinates

DOT(X,Y)
Put a dot at grid coordinates X,Y.

DASH (X, Y)

From current beam position, draw a dashed vector to grid cr
crdinates X,Y. The dash is only effective for vectors lonus

than about 20 grid positions.

Example:

DIMENSION DF (2000)

CALL SETDF (DF, I)
CALL ORG(0,100)
ALL POS(0,0)

CALL VEC(100,0)

==

CALL DOT (100,0)
CALL POS({0,10)

CALL DASH(100,0)

LCHAR

Set character size to large

SCHAR

Set character size to small.

SUP

Set character size to small superscript.

Set character size to small subscript.

WRITAT (X, ,ADDR) or WRITAT (X,Y,FMT,VARL, .« ,VARN)
Write horizontally starting at relative jrid coordinates X,Y¥
the fieldata character string whose first character is left
adjusted in location ADDR and whose last charactef is 4 (1.,
<, 8 punch), or write horizonatlly starting at relative gI
crovrdinates X,Y the variables VARL, VAR2, ..., VARN conve:

by the format FMT into a fieldata character string whose

character is a 4.

WRITDN (& ADPR) or WRITDN (X, Y,FMT,VAR]1,VARZ, +++ ,VARN)
W erticaliy down starting at grid coordinates X,¥ i~

sae marner as WRITAT writes horizontally. ©dNote this <¢un-

W) 7

routine uses the margin, return to margin and line feed modes
which are also used in the subroutines MARGIN, NXTLIN and
SAMLIN described below.

Examples:
DIMENSION STRING(2)/'MESSAGE 1A'/
DIMENSION FMT1(4)/' (8HMESSAGE ,12,1HA)'/

DIMENSION FMT2(6)/' (8HMESSAGE ,I2,4H OR ,F3.1,1HA)/

A=4.0

3 LCHAKR

CALL WRITAT (0,500,STRING)

CALL WRITAT (0,400, 'MESSAGE 24')

CALL WRITAT (G,300,FMT1,I)

CALL WRITDN (0,1000,' (8EMESSAGE , I2,3H + ,F3.1,1HA)' I,A,’
CALL WRITAY (0,200,'X =10A")

CALL SUB

CALL WRITAT(0,216,'14")

CALL SUP

~aLL WRITAT(C,230,'24")

MARGIN ‘X, ¥)
s .v . nargin at relative grid coordirates X,Y.
NXTLIN G, Fv BTN (FMT,VARL,VAR2, ..., VARN)
R n the margin and write on the next line the characzer

string at location ADDR or the one generated by the format

FMT and the vari.bles VARl, VAR2, ..., VARN). (See WRITAT).

SAMLIN (ADDR) or SAMLN (FMT,VAR1,VAR2, ..., VARN)
Write a line as does NXTLN except write it at the current line
position instead of at the next line position.

Examples:

CALL MARGIN (10,1000)

DO 10 T=1,50

Cr7... LCHAR

CALL NXTLIN (' (3HX =,13,1H4)',1)
CALL SUB

10 CALL SAMLIMN '(2H ,I2,1HA)',)I)

SENDF
If N is the valu= of the current display file index, then the
first N-1 words of the current display file are sent to the

PDP-8 and are displayed on the ThHl scope.

PLOTDE
{f N is the value of the current display file index, then
first N-3J words of the current display file are sent to t
CAL CvI increlmental plotter and a perwanent hard copy cor:

. y cthe display on the IDI scope 18 producad.

REFERENCES

(1) Copeland, L., Carr, C.S. (1967): Graphics System,
Technical Report 4-1, University of Utah Computer

Science Devartment

(2) UNIVAC 1108 EXEC II Programmers Reference Manual (1965):

Sperry Rand Corporation, Section 3, page 37.

(3) UNIVAC 1108 FORTRAN V Programmers Reference Manual (19€6):

serry Rand Corporation, Section 7, page 12.

2/

