
^fl^fflpft^lllflj^^ »HffiTliri~lililTrmi ri M 'i • r iiiri<iiinmilfi<nrrTi i 1 w i ,,,M,,.f>'■1B■:■:vv?i;•^■■■

•<

AD-761 962

FLEX-A FLEXIBLE EXTENDABLE LANGUAGE

Alan C. Kay

Utah University

Prepared for:

Advanced Research Projects Agency

June 1968

DISTRIBUTED BY:

KJTn
National Technical information Service
U. S. DEPARTMENT OF COMMERCE
5285 Port Royal Road, Springfield Va. 22151

DISCLAIMER NOTICE

THIS DOCUMENT IS THE BEST

QUALITY AVAILABLE.

COPY FURNISHED CONTAINED

A SIGNIFICANT NUMBER OF

PAGES WHICH DO NOT

REPRODUCE LEGIBLY.

c ü

Technical Report 4-7 Alan C. Kay

CO

Q

i :

FLEX - A FLEXIBLE EXTENDABLE LANGUAGE

June, 1968

COMPUTER "SCIENCE

Information Processing Systems

University of Utah

Salt Lake City, Utah

D D C
JT^^ man
JUN 20 19B

SEitHITFiSlMJ

«-JL.,

Rooroduced by

NATIONAL TECHNICAL
INFORMATION SERVICE

U S Dopartmont of Commorce
i Springfield VA 22151

Advanced Research Projects Agency • Department of Defense ' ARPA Order 829

Program code number 6D30

Appv^ved for public release;
"Di -'.ribuiion Uldimited

1

■ ..,.,:.., —:-,Y^r*.f ;,:■ ■ Vi:iJ Y -. J;-.ii:.;, i >-.^i.vx.-r^,--.p-.v^, ,^^i -. ..■.,>.HJj».vli*Wc**fli.. !.*»«»*■ *^,'.U'i«,t, i-iJJJIil-i'iiH lOVi-.V.T:.-.■.].■

iof

^--T.MtclrtttJVÄW;
MAMMBMMftaMlmiuMiMi ■nwTiTMiiiinmwi «Mra'WwsWWW^WrtM^^W«^

Acknowledgments

This work could not have prospered without the

challenging and pertinent criticisms of many people. I

would particularly like to thank Professor David C. Evans

and Robert S. Barton of the University of Utah, for

providing an inspirational environment in which to work.

I also wish to thank'c. Stephen Carr for many hours of

fascinating discussion (both here and there) that certainly

has had a lot to do with the present form of the work.

Preceding page blank in

Table of Content«

I.

II.

Ill,

IV.

V.

VI.

Abstract

Preface

Introduction

The Language Environment

A. Pormalisms

B. FLEX

C. SCRIBE-.•••'

The User's Environment

The Pragmatic Environment . .

Progress to Date . .

References

Vita . . .

...

....

▼■

. 1

2

'8

9

. 44

. «4

. 66

. S8

. 100

. 101

iv

tu j'-rit.-.Ni IM fJIBITHH

m

Abstract

The FLEX system consists of merged "hardware" and

"software" that is optimized towards handling algorithmic

operations in an interactive, man-machine dialog.

The basic form is that of a hardware implementation

of a parametric compiler embedded in an environment that

is well-suited for semantically describing and prag-

matically executing a large class of languages. The semantic

language is called FLEX, includes the compiler-compiler

as a string operator and is used as the basic medium for

carrying out processes. It is of a higher-level nature

and may itself be used for desciibing many algorithmic

processes.

The machine itself is designed to be of the desk-top

variety and sell at a low price. Because of these design

parameters, many compromises in time and space had to be

made to save money. The software system is implemented in

read-only memory. To allow any possibility at all of

debugging such a scheme, the algorithms involved were

distilled down to their essence so that the entire system

for the machine can be displayed (in flow diagram form) on

a small wall chart.

In many senses the described system is a "syntax-

directed" computer.

■

I. PretacK

Tnis is ö working document submitted as wörk-in-

progress for the degree of Master of Science. It propobe-.

an integrated hardware-software system for performing

algorithmic operations.

The following is intended to be a complete and concise

description of the system rather than a mere report of

results in the hope that readers will not have to spend

valuable time trying to figure out how it is all accomplished,

Apologies for any and all gaps, chasms, and crevices.

o v;,w,i.*

II. Introduction

The FLEX language Is intended to be a simple yet

powerful and comprehensive notation to express computer-

oriented algorithms. It follows the traditions set by

ALGOL 60 and several generations of EULER. [1,21!

a. Calculation

At the lowest level of use FLEX is easier to learn than

either FORTRAN or ALGOL. The use of it as a desk calculation

language may be mastered in a few minutes. For example:

we may wish to evaluate a qalculation involving only numbers.

The expression is simply entered through the keyboard as

shown. Assigning the answer to the reserved word "display"

indicates that the answer is to be returned to the CRT.

,diaplay^l.6*2.9522/(19.7-9.2);

4.4985905

At this level of use the entered FLEX code is

executed statement by statement so that it acts as an

interactive language. The " ' " is supplied by the

processor and indicates to the user that FLEX is ready

for input.

MMnaRHmMm"

At any time the entered text nay be modified by

using the powerful text editor associated with the language,

b. variables

The next step for the initiate would be the evalu~

ation of simple algorithms using variables as well at

constants and perhaps a more, interesting display of results.

The following routine should be studied.

'begin

new a,b,o/d;

b+l;c-«-19.3;

d^glaj;.«-" aa''# (a-Ht>*c/l. 2+c)

♦ -d»" # ^d^a-b+c*1..2);

»=18,883333 b=30.243333

Notice that no format statements or separate write

commands are required. The handling of strings of textual

characters is a primitive operation within FLEX and the

catenation operator "#" is used to connect together literal

strings enclosed by quotes: "a=n/ to numbers generated

by executing arithmetic assignment statements.

The whole is realized as one string of characters

at the display end and is Output on the lower half of the

screen as shown.

n

mMrtnMwwi»>Sf:WirWrf»!t ^

The creation of variables is indicated to FLEX, by

the use of the reserved word new followed by a list of

variable names. Type neid not be specified. FLEX is

entirely free form in nature. There are no card column

numbers to worry about as: in FORTRAN.

c. Decisions

Decision-making and branching are handled by one ccmr

prehensive statement, it is of the form if C~l then] |

else I I. The boxes may be any construct in the language

including blocks and entire programs.

In almost all cases this eliminates the need and

use of one of the most common pitfalls in programming:

the label and associated go to statement. These are

provided in FLEX but they will rarely be used. Former

PORTtfAN programmers who convert to ALGOL find that they

almost never need to use labels or go top and time spent

in debugging gets reduced by a sizable factor.

d. The use of Blocks as in ALGOL 60-

The scope of variable identifiers may be delimited

by further use of the parentheses begin.end. For example»

begin

new a,b,c,d,e,f ,*

a-«-b+ci-d+e;

begin-

new a,fc,cf

a*b+c+d+e;

end;

jf-<-a+b;

end;

Within a block delineated by a begin end, pair, all

identif.teirs declared by a new list are considered to be

local to that block. An identifier used in the block

but npt declared there will be the one declared in the

nearest containing block.

In the example above 'a' in the outermost, block is

given a value in the assignment

a*-b+c+d+e ;

following this a new block is entered and a new declaration

is executed: new a^c. Effectively this overrides the

previous declaration so that, in this inner block, the

ii i.^.-.-.-'v:-. cv ,/■«...■i,'v -, -• , j .-,; ■,,,...,,!, .,.,. „,, ... -'(••!

variables a,brc are considered to be totally new and

local. In the assignment of identical form:

atb+c+d+e;

the a,b,c are from the inner bl6ök arid the dfh are from the

outer block. The a>b>c of the outer block are not

touched.

Ifhert the end of the inner block is reached, the

inner block ceases to exist; we ar^ again in the scope of

the outer block. The assignment f«-a+b sets f to the

value a+b wher«i a,b are the outer block variables.

The use of Block structute in this way allows sections

ot ptö^rams Written as blockpto be arbitrarily inserted

O Without, f*ar of destruction when variable names happen to

J(J*tc!h Äi can-eMily happen in unstructured languages like

FÖRTÄÄH.

The use of the word new means just that. The vari-

ables following are created fresh each time a block is

entered;

e. Mfeendabilitv

NiW binary and unary operators rpay be declarfBd

giving the programmer powerful control over the language

itself. For example, the functions max and mio may be

useful as operators, i.e.:

begin new max, min;

bop max «-'new a,b. if a>b then a else b';

bO£»min «-'new a,b. if a<b then a else b';

a-«-b+c*d max b-c*d? '"If d>b, then a+'b»1*

In this manner the programmer may tailor th« bperatof

structure of FLEX to suit his needs. This feature both

eases the programming burden and causes the program ±0

be easier to read and be understood by others.

FLEX may also be extended by either modifying itself

via the compiler-compiler contained in the language or

a wholly new language may be created using the same tools.

The use of the operators corri. and scribe will be discussed

in a later chapter,

f. Comments

Comments are handled very simply. Any tei^t

inserted between, the symbols ,',-,,f will be ignored by

FLEX. !Ühis allows comments to be inserted anywhere-

even in the middle of an arithmetic expression.

Examples:

a-^b+c*dl ' 'this expression is simple111;

a-t-b'' "this expression is simple'' l+c*d;

This in^jcpfihaction has barely scratched the surface

of the FLEX language» It was not intended as an exposition

of FLEX, but only to give the average user (a FORTRANer)

a feel for the more comprehensive discussions that follow.

■>*rM-*,KWl.*T**^WM^%&W^^JS£>Vt,iKil .

ü

Hl. The LaMguaaa ^Environment

A. Bacplanätion o| the Feramliims Ueafl

Syntax

Two formalisms are used to describe the syntax of

FLEX» A variant of BNF (Backus Normal Form) (with ,

factoring) and the syntax-chart method developed by

Burroughs Corporation. Uoi

For an example, let us describe a FLEX identifier.

In Englishi An identifier is a text string
of arbitrary length starting
with a letter and thereafter
composed of either letter* of
numbers.

<ident>ii"<l«tter> |<ident>
< letter> |<ident><number> In BMFi

In Chart: i
'. - fcl—»lletierl

nunfcerj

-

tEroa
.A box says that the construct is defined elsewhere

on the chart; a lozenge indicates that this is the definition.

Semantics and Pragmatics

The semantics and pragmatics of FLEX will be

largely described in English (drawing heavily from

accepted notions in mathematics and computer science).

Whenever possible, FLEX, itself, will be used

for description and, indeed, this is done in the

SCRIBE chapter where FLEX is presented written in

itself.

8

Uli The L«nau«<ita ^EnVironmant

A. Explanation of th» FormmlimB ümed

Syntax

Two formalisna are used to describe the syntax of

FLEXt A variant of BMF (Backus Normal Forn) (with ,

factoring) and the syntax-chart aethod developed by

Burrpughs Corporation. Uo]

For an example, let us describe a FLEX identifier.

in Englishi An identifier is a text string
of arbitrary length starting
with a letter and thereafter
composed of either letters of
numbers•

T *•» ^ident>« i-<letter> |<ideiit>
in wirs <tetter> |<ident><nuinber>

In Chert:

IE£E3

A box says that the construct is defined elsewhere

on the chart; a lozenge indicates that this is the definition.

Semantics and Pragmatics

The semantics and pragmatics of FLEX will be

largely described in English (drawing heavily from

accepted notions in mathematics and computer science).

Whenever possible, FLEX, itself, will be used

for description and, indeed, this is done in the

SCRIBE chapter where FLEX is presented written in

itself.

. iMrTtti**

'f.': ""'■'"■'/i „IM**.. •..: i .,,, • ' , ,. ■■■imi.mi-.MtiJriTrfimii-i ^-^^-lRhtl^■rl'ln"l'rOTW|yJr^ffn^''rflTT^^1fIT^^WT»T^^liT^fJ^wylllll^tmyl^

™

B«omaM of the r«cur»iv« nature of FLBX («ad fth«

FLEX dMcription) it i« impommihlm to doscribo 1t

in« iiiMar ordor. Thoroforo, aomm solldioo hau

boon placod on the usexli intuition for MM of the

examples presented.

ExMple»

The exanplee will be largely presented in FLEX

althoofh occasionally they will be drawn fron

ALOOZ» (0 and FORTRAN to present some interesting

contrasts.

B. The FLBX Language

1. ftmtactic Atoat«

Byntax

<letter>ts - A|l|...Y|Zja|bj...y|z|A|

<difrit>tt - 0|1|2|3|...|9

<deii*iter>ii - r | i I (I) f t I • I M H « I * I » I T IJI l| ♦

+ 1- |* |/j* |- I»1 l< l> 1^ l»I.A|v|Vl

<reserved werdB>:» - begin j end I new I if-| then | else |
^tt"i ' ^pe t^ilTfloSTI sin r
COB | gvan I abFTFana | pranZTThashl
exp i irTsgrn iSHTisn I any iwtf .
wKTleTas nEo IS ^ SSStt n[i£ll
bop | uop | name Tv^lTpap | act |
Icrminite | ieave"7 xinTyin I plat |
plpt FpTTn [control |

Semantics

The text charactere are simply numbers cf small

precision. The numbering ftarto with {0,,,,,9) for

("0,•,...,"f*,) and continues with (10,12...60) for

...

10

("A"....,"2-) and 111,1.3.^61) for (wa",, ..,"»■) .•

A special space symbol XB -nvmber^l 62, The' Aeliaiters

are numbered' frtom §3 on« {true, false) are identical

with (1.0).

Pragmatics

Text characters are integer®.

Justification

Many internal character sets have been used by

the industry. The principle! reasons for this one

are:

1, It is sortable,

2, It is easily extendable for number systems

of higher radix than 10.

3, It eliminates a table lookup for every

character that is input to the compiler.

<identifier>:: «<letters j <identifiers <letter>
{ • . i . ;. • ; j<identifier> <digit>

<integer> :; = <digit> | ^integer> ^digit>

<number> :: = < integer >i.{<integer > j}
(.<integer>

<text char> :« = <l©tter> j <digit> i <delim>

■'?•';?»-»«»«„,, •iiiiSl ■nNMMM MM '."^rw^cr.-r-aw.ra, vassevi'jAt T^TWtliiün ilWMiii Ji'n ■■!■ iMi«.

11

o
~^N fniegerh—W digit

(A)® " ©0 (b) f (z

u

(texr chat

letter digit delimeter

•v -,-

Semantics

<Reserved words> have the form of identifiers but

are considered to be semantical.ly identical to <delimiters>.

Indeed, many «preserved words> have their exact counterparts

among the delimiters >. For example, begin and (,end and)

are exactly identical -- so are/N and and, ^/and or.

<Identifiers> are considered to be names for con-

structs in the system and the basic flow of FLEX consists

of assigning these names dynamically to the various objects

which may be created.

<Numbers> are either integers or fractions. The

precision will be unspecified for this chapter.

Primaries

12

primary

selector

paramei-ers

process description

Q—"»I text [>Q

list * selector parameters

b
<primary>

<variable>

<parameter>

<literal>

= <literal>|<variable>{parameters>}

= {<op>}<identifier>

= <list>{<parameter>}|<selector>{<parameter> }

= ^ I00! <list>{<selector> {< parameter > } } |
<process description>|"<text char>"

<op> = val | mop i bop | ucp j act

w« „ .-..■.. . ;_,, .„l',.,,..,..,,, .,, _ -. - . ^ _ ^ . I ^ ■ „,,r--,LtlJJI.„..,.„.,..„„,

^p.^

a. Variables
{

1. «simple variable > Seimantics. Although this is not tile
. smalle&t syntactic ullit for a non*

literal, in'some cas«s it acts as
the smallest semantiO unit.

1&. <ident>

lb, val<ident>

Semantics.
rr

This has attributes
name

2, type
3, topology
4, value
all of which may be assigned dynamic
cally.
Semantics.« The val overrides any
value~tEat may have been assigned.
On the left side of the assignment
arrow xt will destroy any previous
value.

Justification. This allows the
programmer to override name
considerations to reassign a
procedure quotation and to access
a name.

1c. map<ident>

Id. bo£<ident>

Semantics. This allows a user-
derivecTprocess description (pro-
cedure) to be assigned to the access
path of the variable. This allows
complicated user structures to be ,
indexed in the same manner as FLEk
defined data structures. The map is
described more completely in the '
section on <selectors>.

Semantics, This moves the <ident>
into the parsing table as a binary
operator. If the ident has had a
^Body^ assigned to it, then it
will act as a binary operator.

le. uop<ident>

Pragmatics. A simple name inclusion
using EKe generality of the quotation
to full advantage.

Justification. The language may be
extended in a simple manner.

Note: Same as bop except <ident> is
parsed as a unary operator.

..■»>' ■I'm
•j* '•

•• •■.>■••

14

Examples;

jH-x+y '' 'same as a««-x+y' •»

val p^-'b'

p-^x+y • • • same as fc+x+y' •'

böp may-'new a,b; if a<b then b else a'

2. <simple varlable> <selector> Semantics. The
<slni^le variable>' is
assumed to contain data.
Selection is performed
äs in ALGOL 60 and
Euler. Tt acts like a
simple variable after
selection,

3. <8lmple variable> <list> Semanticfe, This is
just a procedure
activation with actual
parameters.

4. <sitople variable> <selector> <list>Semantics. selection
is performed first.
It then acts like a
simple Variable.

5. Notfti All further generalizations of this,type are
evaluated from left to right applying procedure
activation and selection where needed.

Examples:

a [x,y,x] (b^d); •'• "a" is an array of procedures'11

a (b/C^d) [x,yfz]; '" "a" is a procedure delivering an array"'

w'

15

b. Literale

1. ß Semantics. Mean« undefined. It is the rMtt&t
SI illegal operations. All identifiers are set
to this at declaration time.

Pragmatics. The logical word is flagged.

Justification. Allows a much more free syntax
while still permitting a check of illegality.

2. oo Semantics. Is the result of division by zero.
It is also used to map extendable arrays.

Pragmatics. The logical word is flagged.

Justification. Permits checking for overflow
and declaring unspecifxed bounds without
giving rise to a fatal error.

3. <number> Semantics. A fraction of unspecified
precxsion.

PriagHtatics. Space is created to confeai« it,

Justification. Useful for arithmetic.

4. Vtext:^' Semantics. A text literal is identical
to the string quote of ALGOL 60. It has
as wide a use as the <number>. Also, it
will be seen later that com "a+b*D" is
equivalent to 'a+b*D,c

Pragmatics. A text literal is mapped and
stored as a one-dimensional array.

Justification. Needed to generate^ text.

Examples;

If a ^ fithen b-«-a+1.34;

if a -^b 7^ «then display«-a

else display*-"error in a";

displayHLf a-rb ^ »then a else "error in a";

__
 ■.: .; . ..■-■,,.,„,^_

1«

5. The Ligt

Syntax

<List>
•nalT

in<Body>
^<io*y>)

StatewentN
List J

<9ody>»t«<0«cl«riition
Li«t>

Otmtmmnt Limt>
| <8tat«n8iit Li«t>

Saaantifl«. The mmning of a list depends greatly on its

form. All Hats «re thought of as executable elements that

are delimited by the parenthetic pairs begin end or ().

Bxectttten of the <Bedy> takes place first. Nhat remains

(if anything) is then handled as an operand.

Taken as a unit, the list may have value or it may con-

sume itself during execution. If a declaration is present

then the list acts as an ALGOL Block in that identifiers

declared in it are considered local to the list.

•Pragmatics. The extent of a list is delineated both by

parentheses and by commas. A list during execution is

considered to be a vector on the runtime stack whose

topology is determined by keeping track of the list of

delimiters.

Justification. Here we have one concept and one construction

replacing many that have been considered useful in ALGOLic

languages. Also, by adopting this form, mnay useful new

constructs are possible.

17

w/

O

it»

iii

111

111

111

ExampXea

(a+bxc) ' * *' MB & simple ©rllihmatic

((2,1), (3,2)) ,», as an array litar«!

begin"-« Iß+e t x^a-b end ' * * a« an ALGOLic compound atatenent

prod (afb/c-fd*) *'' an an actual parameter ilftt

begin '^i' as a valued block

new a,b,c.

a*a+(b^a*2+c);

end

The Declaration List

Syntax

<Declaration List>:.t?={^Declaration List^}<Deälaration>

<Declaration>; t-*ne*r<identifier list>;

<Identi£ier List>::={<identirier list>,}«identifier>

Declaration
T.int -

-o
identic
„ iJ.§^ i3*0

identifier

i :
■■■—

It

s^aumtAo», th« ptttpos« ®t a &mi%mfctim i» t» er^iiii «tad

dfttaxnln« tht'soop« of « nrnti väildk Mil @«rv« «i a Idkoli

or r«pr«a«nt«tlv« of some Iasttta@ eleraent«. A HMM

hat M It« Mopa tho <lM»dy> in which it %mm 4ool«ro«. Sinoo

both tyf ani top01O9y may he as@ifned ä^naatcallf aotliiatff

aoro nood be dono than to list the new nstnoo for oaoh <body>.

Itaw doclaratiens may be considered to be exeeiitod-in

the eenee that a vector consisting of undefined ▼aluea (Q)

it created in the runtime stack for th® duration of the

block. Fositiona in the vector correspond to each

identifier declared.

Jttetifioation« Block structure has proved to be an estremelv

useful aM important concept in ALGOLic langixafos. Besides

aidinf the proframmer freatly in his own debugginf# block

structure is also the ideal way t® delimit the scope of

users in a nultiprogramming and/©r time-sharing environment.

Examplesi

'''«fbjC are local to block A.'•' Aibegin

new a.,h,c.
a"«-a+(b+c-2) ;

B:begin

new a. ••'this a*is local to' block B and supersedes''•

•*b+c+2; '''the previous declaration, b,c are'''
end •«»from block A.•''

•♦■•+2l '''thiB a is the one declared in Block A'''
end;

19

The Statewnt List

SyRtax

<St*tement Li«t>: :«{<StÄt®ment LIst;-/} valued '«l«ient>
<valu«d eleinent> ! s«! <valued eiament >; ><Btat«B«nt>

Ptata—nt
List

®

c'em^ntlcs Both commas dud Kern:colons have their usual

Ai<GOL meanings .ilthough th.y are allowed a much more

flexible usage. A comma deiluUto ^laments in a vector so

it rnay be consideredi to preserve ehe value of the previous

expression or statement. A semicolon, then, may be considered

to destroy the value 01 the previo.is expression or statement.

As seen above, borh delimiters may be freely mixed in d <body>,

Pragmatics. A semicolon flu.snes the top eiemenc in the run-

time stack. A comma, increases the vector count by 1.

and leaves the top of the stack intact.

Justification. Ab seer, m fcht. examples, this construct

allows great freedom and flexibility in creauing lists of

values and is pragmaticaliy quite simple.

Reoroduced from
Ees. availablejopy.

Me^iWAViiA^rv.':''*' !>.»■'■—*-T.-,,.■,!■., i-^wWiOIW

20

ExamglM«

••'sinipl© li2.t,,,

(l»if a then b glgg c# " *b or c is left dependlnf en ifh«th«r 1 ——■• a j_s true or false'' *

BtX4-.5*(X<fA/X)| • •,8t«t«mefttö followed by *;" are not
retained1*•

if X2-A>e then

qqto d elae b+X+.iS, "Wttm öi h is left *hen sqrt
algorithm terminates'''

x+y) ••'value of x+y is ie^t'••

21

The Statement

Syntax

statement :=<empty>|<expression>| go to <statement>|

<variable><-<statement> j ^variable>as<statement>

| if < statement >then< stat -:iTient>else< statement>

|<identifier>:<statement>

Iwhile<statement>do<statement>

stafemenf

variable

rif

-{gofoj-*- stafemeni-

sf-afement

variable "-»■(asj »■ statemenf

—>-(Tise) 1 statement statement

A identifier —5^-/ . \- statement

~—]statement I—*\§°)—HZ5Ete'^^Z]
Semantics. All statements are considered to have value

except for the go to statement (which is not considered

to be a fundamental language concept, out is included for

practical reasons). The go to initiates an unconditional

branch in program control to the label specified by the

(label-valued) <statement>. For the same reasons the

labeled statement is not considered to be a language

primitive. The other statement types will be considered

separately,

■™™«™Mra„„...„™_„ ..._^ _ _ ^ —r -r, .vr.;--!! „-" ^■•"-^-^^^■-^^■^^^"y IrV,, ,;,il^l^l;^.l„l.,i,.i,i„ä;,,,,|,l,l^|,,,|-|| ,1-,—..„ „„,,, _______:

, ,(• . .■.•■,••• ,' .. . ,.

?2

Pragmatics. Since the syntax of a otat«ment> is 00 frMi»

and more meaningless constructions are permitted, the

limiting factor of produced nonsense is execution-time

semantic checking. ,.

The values of feihe statements are fetched into the

runtime stack and are operated on in turn by the,many

operators of the languages.

Examples t

abc: a*b+z,

go to if a then abc else xyz;

xyz: go to f [a-«-a+lJ^ab"c;

,

*;!':■;>>■

^J

23

The Expression: A. Presentation of Operators

Syntax

<expression>i:*{<fekpressiön><binary>}<unexp>

<unexp> i:«<unary op><unexp>I<primary>

<unary op> : t* Heaa j Tail | type j | | sin | COB | • •••

|com | scribe |...

<binary op> :•,= * \ * \ / \ // \ mod \ + \ ~ \ * \ ? \ < \

■ > I < I > I A 1 V iV| S | ^| of | is |...|

<user binary ops>| ••• j #...

ö ••• ____„„ ___. _ _
A ^~ "Uinary opV»>pu.nexp]■ primary J

Note: Binary operators are given in order of precedence.

Unary operators associate from the right.

Semantics. All operators generalize whenever possible to

arrays and lists.

a. Unary Operators

Operator Meaning

logical negation

unary minus

floor x: integer part of x

ceil x: if_ floor x=x then x else floor
x+1;

 ~™—».i—- ■d-ra irtTfitim e-«««: «-•uii,tnwi.w^:.Tw-ai*^Tr>^»E»»-';"w ywtf..n'*t&z*v tMWNM .^^.^ : ... Z _:.

I» ■ *

24

Operator Meaning

head

tail:

sin, cos

ab 8

scribe

com

yields current disposition of a primary

first element of a list

list with the head deleted

the usual trig functions

absolute value

described in Section C. The operiuid it
a string in "scribe" format which
defines a language. The result is a
set of tables for the compiler-compiler
(com) in effect a compiler,

described in Section C. As a unary
operator com accepts a string for one.
operand, and assumes 'he FLEX language
tables as the other. The refcult is a
compilation of the tes^t resulting in
an executable process description.

b. Binary Operators

Operator « Meaning

Arithmetic

/

mod

x+y means xy in the usual mathematical
sense for fractions

x*y means x.y in the usual mathematical
sense for fractions

x/y means jj/y in the usual mathematical
sense for fractions

x^y means floor (x/y) in the usual
mathematical sense for fractions

K mod y means floor (x-(x y*y)) In the
usual mathematical sense for fractions

x+y means xt-y in the usual mathematical
sense for fractions

x-y means x-y in the usual mathematical
sense for fractions

_:<:■■■<■■■ ■ ..■.'■ ■■■ . .. -...^ ;m

L ttuiMixin&attBUt&itmi0Mmmmmtmmm

25

Operator ' Koanin^

relational

"»I1» <»j<»^ *» yield true or false

logical

r t r/r=# , the usual logical operators yield
true' or false

compilative

com described in Section C. As a binary-
operator com accepts tables created
by scribe for its left operand and,
for its right operand takes a string
in the new object language. The
result is a compilation of the text
resulting in an executable process
description.

ramye

— *;he 12, operator describes a range of
integer values either atcending or
descending, useful in any kind of
interaction, A'[3 to- 6] means («f3J.
a[4]r afS], a[6J,). "abcdfg"{'2 to 51
rasahs "bcdf".. —"

the b^ operator modified the interval
within the range of a to. 1 by 3 to
10 insane f'l Ä T in^-*" ■*• —* 10 means (1, 4, 7, 10)

associative

of, is, isn, These operators permit the formation
and storage of relations between
names,

We may say: John is son of Bill
and: Eric is.son oF Bill

We may then ask questions:

.•
I .

26

x*? is son of Billf

-x will contain: ('John/', 'Eric')

x^John is son of ?

-x will contain ('Bill')

x+7 is ? of Bill

-x will contain ((•son», "John"), ('son', 'Eric'))

The e operation yields a logical result.
The possible associative operators follow.

form j^eanong

x is y of z creates and stores the relationship

x isn y of z destroys the relationship if it exists

xey of z asks if relationship is true

xjty of z asks if relationship is false

— in general we ask for

x R y of ? all z having relation y with x

x R ? of z all relationship between x and z

x R ? jpf ? all relations that x is involved in

? R y of_ z all values with relation y with z

? R y of ? all pairs having relation y

? R ? of z all relations and values that z is involved
in

Concatenation

is the concatenation operator. The result is the
concatenation of the two operands. The topology
of the result is the most general topology of the
two operands.

»ftw ojytsa n iMMIti
•riiti&w&Stf&iiifxm «'ft<»waftiw,ww.i««Uii4-_u,,3Jfjljll,„

i. - i ». '

dPjL

27

array
array
array
list

B

literal

A#E

array
Tiit
list

■ j £Xrendable array
 L_ir x ^ e i""-^----! g a rray

j extencuibi--" fist

b.

c.

Pragmatics

a. .Unarx. operators replace the top element of the

process stock with the result.

Binary operators replace the top two elements

of the process stock with the result.

The associative operators are really trinary in

■nature and therefore three names are actually

collected in the stack before any action is taken.

The resultant name replaces the three operands.

Justification

The use of binary and unary operators is justified both

by tradition and the fact that fewer parentheses are

needed than with functional notation.
"Beoroduced from

,}

> ..^

28

The Expression; B, Generalization of Operatora

ScojDe

If an operation is legal between two operands then it

is also legal between other structures that have these

operands as elements.

Arrays and Lists

If the dimensicas are* different between operands, then

a logical "adjustment" ii moade which logically creates

enough copies of the operand of smaller dimension until

the dimensions are matched. Then the operation is performed

as a vector operation.

(a, b, c) * (x, y, z) means la * x,b * y,c *2)

a * (x, y, z) means (a * x,a * y,a * z)

(a^) * (x, y, z) meana (a * x,b * yfz)
t

Examples of Expressions;

display ,,a=,, (b+2-4gc) #"£=" #if a<b then -c'else-g;

Note; if h^2, q=2, c=4 then this would output on the CRT;

| a= -44 EgT]

•'^^-H^^Kmrnmsz^K^

21

Th^ Conditional Sfatsni evL

Syntax

if <8tatecicnt> then <statement> else «.statements

^henV-^ s tat emeriti ^else' i statement statenent

Semantics

The value of the atateiaent tcilm^in^ the if muit be

reducible to true or false (one ^r sero). if'a one«

the statement-.following the theh' is eseecuted, then the

statement following; the entire conditional statement is

executed. If a zero, the sequence is similar to the above

except the statement following the else is executed instead

of the then.

The entire conditional staterrient has a value equal to

that of the executed branch.

Note: This, the so-called "Long-form: of the if

statement, is the only type presently available. It

includes the "shortform: semantically since the empty

statmnent is allowed. If it proves awkward to use, then

the short form will also be added.

Pragmatics

; There are only two jumps needed in the underlying

environments Jump-Unconditional and Jump-if-top-stack-

xero. These are invisible to the user and are ihserted

during the parse.

.* '. "i iX
!',•' • JA ■

30

Examples t

if a-'-b+c-d+e+.S-G

thea b^a+b»

eise b-^'a-b';....

if a<b<c

than (a*b; h+c)

elaeT ••'use of empty statement'''

tj»-

I

--:-..—■ ■ _■

,>' . 1

MMMMUMM iMMUruuw

'' ('!;.'■'•■' ■•l.

31

Tlie Assi^nweni-. S ha Ueiserit

Syntax

variable 1-^0—►|stateroe^t] fvariablQ>-v<statement>
Semantics

The value of the assignment statement is considered to

be the value of the <stfttement> mid is assigned to the

variable in a number of ways depending on which attribute

of a variable is to be assigned,

A« will, be-seen later, besides attaching a nunerio

value to a name, we may also dynamically specify the

particular topology of that value. This includes gross

structure auch as whether the data is an array of such

and such site, is a single item, or possibly a directed

graph or tree. Fine structure may also be indicated.

An item can be considered to be a number, a character, a

byte of any iidth, a quotation of a program, a record, etc.

Pragmatics

The operator has a value for its right operand and

a name for its left operand. The value is left in the

stack and the name is destroyed.

32

Examples;

»♦•b+c1

a^-array (x, (5*b,c), (1,2))

(if a<b then a else b)-<-b-fc

a^-b^c^b-fc

a-«-b*c+ (d^-b-fc)

aVb+c"

'"value of b+c is nsamd a*'1

'"a becomes the name for the
procedure b+c• " ;

•"a is mapped as a two-
dimensioned array whose
elements are x bits wide*'* t

•''either a or b is assigned
b+c depending on previous
values of a^b1'';

'' 'multiple assignment'' *;

'''nested assignment1''j

• 11 assignment of a text
literal'";

- ; ■

33

The AsGunte Statement

Syntax

lyylable-|--»^g)-^8tatement] <variable> as <8tatement>

Semantics

This is a generalization of the assignment statement

in that the <variable> "takes on" or "assumes" values

indicated by the <statement> one at a time if a loop is

indicated by an interative while statement. Outside of a

while only the first possible value is assumed and execution

continues. .The value of the assume statement is boolean:

—being true if the variable has just assumed a value and

false when there are no more possible values which may be

assumed.

Pragmatics

The as operator has a value for its right operand

and a name for its left operand. After all possible

assignments are done, the value in the stack is replaced

by a boolean value,

Justificatidn

This particularly general form is most useful in

iteration .and applies itself well to all kinds of operands.

Examples

Will be given in the section on the while statement.

'BwurovntfWriuvvauTOVf.^^,

pa . ■ • *..

•-•;. . ■■■.•••5 .;,i. .■.3- ••

'/■.."■■ " 34

The Iterative Statgggnt

Syntax

J^ile <8t«tement> do <stateinent>

Saaantica

The statement following the do will be executed as

long as the statement following the while is true. If

it becomes false, then control transfers to the next

sequential statement.

Pragmatics

Similar to the if statement except that a jurip back

is inserted after the statement following the do.

Justification

Besides covering a great many iterative situations

in a simple manner, the while statement allows for the

complete cessation of use of the 30^0 and <label>.

Examples I

*!lile I as 1 b^ 2 to 13 • • -as an ALGOLike for statement'. •

do <6tate>;

!±ile I as 1 x<5 ••«as ALGOLike for while state'''

do <state>;

!*ii£I as (1,5,3,! to 10,3 b^ -2 to -1) ...whichever list-■-

' J « (5,10,A bi B to 0 ■ ruhe-out, first will-..

ao <8tate>; ,,,.
terminate execution*'•

k>

./ . • . . . • ■

35

while X as ((Jones is parent of?)A (male is sex of ?))

do <state>; ' "X will assume all sons of ■Tones" •

•36

6. The grgggag Pegcription

Syntax

-process de8orl9tlMi>: P

Semantics

The process description is the backbone of the FUQC

language* The user at a console is considered to be inslte

a process and he is handled by the system as just another

active process.

The quotation may be named in the same manner as- other

literals in the language. A process may be created fron the

process description in one of two ways: as a serial

procedure which is executed before the calling program

is resumed, or as a parallel execution entity which' runs

concurrently and independently of the parent process.

In either case, if a new follows the ', the variables

named are taken to be the formal paxamebars of the process

description.

Pragmatics

The <Body> enclosed by the quotes is compiled separatoly

and set aside in the same manner as other literals. If

it is named, a reference is placed in the variable name °

area where it may be easily retrieved. A new stack is,.,. ■

created for each process and an event notice is entered

I u

if

ixito the process que. User processes are executecl on &

"z'ound robin" basis with a time quantum of about 10-1€ «a.

'Pfccaassa that are alive may ba acfr-ve or passive; these

states may be changed by themselves or by an interrupt

by the re&I time processes.

Justification

Procedures and data hanöüng are the keys to a

successful language. In FLEX both these concepts have

beer, generalized in a powerful msnner.

Exömpl?.s yf simple procesures;

i *■ 'b1; *''a "run-time" equivalence statement',1'

\ - 'b+c'T ,l,simple quotation without parameters'''

/ •*■ if b<c then 'b+c' else "b-c1 ; '■ ' 'conditional
assignment ,'r'

i i • + 5; '''the name ^ is assignee to the value of b1

ä +• z; '''the name b Is assigned to the value of z' ' '

val a ■*- 'c'; '''a is re,quivdlenced to c' ' "

z -t- x' ' ' 'the name z is assigned to the value of
b+c"'

x "•- z; '''a pragmatic error is generated since si is
a value'''

for <- 'new a, b, c, d, e; '''an ALGOLike "for" procedurfe'''

a «" b;

loop: if a <_" d

then (e; a -f- a<-c; goto loop)

else ';

ALGOL

for I: =1 step 1 until 50 do

^egin a :[I] .. = i + 5.

b [I + 2] : = 1

end ;

38

FLEK .

for ('I-, 1, 1, 50,

'a [I] - 1*5; b[I+2] 4- j t)

Note: a^^c.d^e are the formal parameters. Enclosing, an

actual parameter in quotes is. equivalent to the '

ALGOL "call by name". Unquoted actual parameters,

are equivalent to value calls. Nesting is obviously

easy.

:;

VI 0 J

39

The "Case" Statement

One of•. the most useful concepts in prograimnlng is the-

protected branch. This is illustrated by the if-Statestent*

if B then <3tat>l else <stat>0

ts

, m*j stat 1

This concept.-can,.eas 11 y be. genecaXized to n branches»

» »

It is quickly accomplished in FLEX by the following method:

a t. ('^stat 0>'f '<5tatl>', "\ '<statn-l>', ^stat^');

and used:

a[B] ;

Parallel Processing

If, in the previous example, the entire vector was

indicated instead of jupt one element:

' a;

,.._,.

%0:

0

tfean PLEX would execute the n statements in "Farallel",

This is also a protected scheme. The global process

is passive until all ©f the n statements are done. To ,

create and- release a process which will execute concurrently

with the global process, the followiag is done:

act for ('I', 1, 1, 50, »b [1] * I');

The for-loop will be executed in parallel with the state-

ments following this calli

We may also do:

a "- '('«istat 0>', '<stat 1>V/ •••^<8tat n~l>\ Uaim^n**)h

act a;

The n statements will be executed in parallel with the

global process and with themselves.

Coroutines

Another useful concept in programming is the coroutine

which is simply a process description which allows a return

from the middle of the code. The exit point is sayed and,

when the code is again called, control is transferred

to the previous exit point rather than to the beginning.

The. leave reserved identifier facilitates this feature-

it indicates to the event scheduler that the current

process is to be passivated and the current program step

saved.
-« ^

■^ "

I

41

7; The Selector

Syntax

<Selector>::- [<Body>]

Semantics

The construction [<Body>J is used to pass parameter»

to the access mechanisms of FLEX. It is used both with the

FLEX mapping operators array and field, and with user-

defined maps to select from some previously defined data

structure.

Pragmatics

A data descriptor may be marked with the information that

a segment is mapped. The map is executed to finally

produce a data descriptor of the selected element.

Justification

The separation of structure and data is the prime

consideration in any useful file system and allows great

flexibility as well as the use of "stupid" channels.

42

if^v

System Mapping

Syntax

«.feline array>;;«array Li«t
oäefine field>

:;«array
::=field List

Semantics

a. Array

■. Ths first parameter is the byte size of the elements

in bits. The following parameters describe the lower and

upper bounds of each dimension of the array. A logical

"procedure" is assigned to the map of the variable. The

actual parameters are reconciled with the bounds when an

access is requested to produce a descriptor or a value of

the element selected.

b. Field

The operator produces a logical procedure which may

be assigned to a variable just like any other quotation.

The procedure operates on a descriptor describing a field

of bits to produce a description of a new field. The first

parameter is the offset .n bits of the new field in relation

to the old. The second parameter is the and bit of the

new field.

.

43

Pragmatics

Both routines are called and executed like any other

sxmple procedure.

Justification

These routines allow the user to extract an arbitrary

sequence of bits from some other sequence of bits.

Examples:

a *■ array (7, 1 to 10, -255 to 0) ' ' 'a is mapped as a
two-dimensionaT array whose elements are 7 bits wide'''

a t-f -3] ,,,selection of a byte'''

a [5,1 '"selection of a row'"

a [2 to 5, -10 to -2] ,,,selection of a new square array'''

id *- field. (0 to 15) ; wages *■ field (16 to 31) ;

son *■ field (32 to 32 + 16) ; son 2 + field (32 + 15 to 63);

'•'this is a definition of the fields of a 64 bit wide

record, a use follows''1

employee + array (64, üFto'.lGOO) ; employee ■*• tape 2;

display «■ wages (employee [3 to 15]),

display ■*- employee [son (employee [5])];

44

C. The SCRIBE Language

Introduction

Although SCRIBE is a super-set of the core language

FLEX, it. is presented last with the feeling that some

intuitive grasp of the language environment will have been

achieved by now.

SCRIBE has its roots in the "Floyd-Evans production

scheme" 14,5] and FSL [6,7]. Basically it is a bottom-up,

bounded-context recognizer that uses FLEX as a sublanguage

to express sanantic relationships. Because of its bounded-

^ context properties, it will deliver the canonical parse of

any language (which may be expressed in this form) without

backing up. This ability allows a one-pass compiler to be

created simply and compactly; ideal attributes for inclusion

in the hardware of a machine.

The Basic Elements of SCRIBE

There are four levels of description necessary for

creating a language translator: meta declaration, terminal

declaration, the syntax algorithm, and semantic relation-

ships.

■£,

f..,

45

1. Meta Declaration

^P^Th^i&ent ii,tu^y^0 ^etas *■ {<id.ent>) ;

' Semantles
"l ——^

A meta symbol in SCRIBE is an <identifier> which has

the same use as £he symbols enclosed in <> in BNP; it is

used for tawnomic purposes as a generic or class name for

a certain construotion. The meta symbols ident, delim,

text are autoinatically included in any meta symbol listv

Pragmatics

The meta symbol« are transliterated to unique integers

which may bo used in generating the canonical p^rae.

Ju&tificatioji

The use of meta symbols as class names is Well-justified

in phrase structure language theory.

Examples;

nfitas + (a^xp, term, factor, prim);

i i

o
■■'k> :. •'•''?■ A ■'•■■,, ».

4€

2' Terminal Declaration

Syntax

fterrasj—-r~W4^\

term list

delin r—^^i
ident

equate list
»öta name—^(^syinbols

terminal

«7

fcsny (<tm ll8t>|i

<t«a» Ust>it« l<tm3m l*Mt>,} <tem«fttry>

<t@Ka •iitry>ri»««lli2> (<l*ent> | <«tpuito» | 'rlmn

««^ata llst»M- [KeqiMte li«t>f] <ei«nfery>

<«fn«z^>ti« <«^im> | <Went>

<olm® &mi>§xmmnt>ti* <ni<sta name> t-(<t«r« iiflt>)
S

TWäIEäI aynbole are the syntactic atoms of a lanfuaf».

In theory they «r« treated as ainfle characters but,

kecaoe© of ilnltAtlonB of character sets, aggregates of

charaoter« nay «lee «enote a .terminal symbol. For exaarpl«:

"+n an« ".« are terminal in FLEX ah« so also are begin

an* nmrt identifiers whose meaning is reserved. SCRI1E

allowe terminal symbols to be declared either in the form ■

•f single character delimiters or as identifiers.

It may be that more than one representative for a

terminal is desire« for purposes of serving more than one

character set or for clarification, begin and "(" are

«n example fro» FLEX. Syntactically the two representation.

are equal and ma^.be declared in SCRIBE as an equate:

.fbegin, "(").

, Many terminal symbols may belong to the same syntactic

class and an ability to assign them to a meta symbol can

. ____. , . .III;I l ■

48

save a great deal of effort in writing the syntactic algorithm.

The multiply operators provide an example; they arfe usually

assigned the same level of precedence and this fact can

be indicated in SCRIBE by the class assignment: mop *-■•{

("•*" ,."/"," T") , This provides an abbreviation or "parse

name!' for the three delimeters.

In fact, every terminal symbol can be considered to

have both an "external name", which is the character

itself, and a "parse nanie'r
! which is either the same as

the external name or is a meta symbol indicating membership

in a class. All comparisons in the syntax section are done

on the parse name.

Pragmatics

A table is built from the indicated relationships so

that the textual scanner may separate the terminal' symbols, and

discover their external and parse names.

Justification

The terminal declaration supplies a finite state

algorithm in the machine with enough information to

completely strip down the text into primary syntactic

atoms which is typically the dirtiest 30b in compiling.

Examples:

'''from both sections--to declare all symbols necessary

for handling arithmetic expressions'1'

MMMHMmwiMi ,■■„ ■

Ö 49

©

I

.

metas <- (aexp, term, fact, prim, aop, mop);

terms ^ ("{", ")"/(%", "exp"), mop ^ ("*", "/", "v"),
aop <- ("+", "-"));

o

3- The SynKix Algorifhm

Syn tax

SO

O

JMö)H-E2 ttem

■♦^A^- semantic WT^

0

syntax ■»- (^pattern list).);

<pattern list> :: = ^pattern list) ;\ <pattern>

<pottern> .= "I^stack pictures> "t" <Semantic> ^can. , go. <ident>, ^ntiO"! "

"' "<ident> • <pattern>

<stackp,cture> ::= ?<nieta symbol>*-] <parse names>

(parse names> :: = |{f<symbol>] 4symbol^ ^ymboh? ^symbo^

<Symboi> ::= A kmeta symbol) | ^ferm symbo^

6emantic> :: = <\6en^ Uemply>

<scan> ;: = scan | scan 2 | ^e;npty^

, ,..,.._. Ill< nlllMill

3::

SI

S®a«jatice

, , When a scan o^ramiua.Ä Is iesu#«[. tha t«Kt at thm current

point Is serutiwia:®*! Mid. & toxsiiaai syafe®! is isolated.

This is. looked up in the taM© that wa© Wr^afeed by tl

terms daclaration and this parse xmtm mui föKtsrMl ©f the

«yasl?©l is puahad into thm v»p.r§^ stmsk,',

Exmmlmt

' text i •!■..;.
ja .a j& p? ih A «a p . ^ jK TWi

.----'• , ■ ' 4. 4. ..4.

oaraa stack jLaent aop ident ., t.'paroe name fiele
I'' ' '' ■ i i ■ I • • 1 i)tflp^tJuMtert-J:tii^^-«rtM^^^'^-."'^Yy"''a*^^J''WJ'j|'^'«MWj^

after 3

scans»

'aal-
I i
' «WWiniH» liWllWWffcytwiiMlaw» mil r ■ i tvnxMAWwwtW'^•(i'Mut «•■««.■4: ■

a3 ^ ,,, »ext-naii© field

3, . • .value field
.'«■•.WJ,.li(M«J»j.Vl.il»iUU"-*M

The parse^nawe field in the stack contains the class .:.

names for the two identifiers and the "+". The value field

which .'is used by the semantic processor is blank..

A pattern to recognize this configuration would be:

j aexp *■ ident aop ident j sum, scan, go axp; exr 1 | ,-

The section "ident aop ident" asks, if that, configuration

is present in the stack-.. It is, so the semantic routine

"sum" is executed. This will be a routine writtei? in FLEX

and defined in the next section. It will be able to use

the pointers I and J which after a successful pattern match

are set to the lower and upper bounds of the pattern in

the stack.

(K always pdlnts

52

I J K

parse stack |a ident , abp i . ident

after a |a 'aal' "4," •Maa1

match; 1 • • 0 0 1 0

to the top of the etack).

After the return from the seaantic routine, th© first

section is examined to see whether or not a reehjotioa ia

r«»quested..' "aexp-»-"-; i£ present so tlte region of the stack

between 1 «4 J^willbe replaced with "aexp" in location-1.

' ■ *: ■. ■' . • . I' J K

parse-stijclf i^.?\aeyp: "j v„,

afteK...fc|ie
«

reductioni

';a

\1 o

Now the.<scan>■field is examined. A single scan is requested

and executed. ;

textj; tsL i a M^aTXTT IS T | "7 a
i ■■ .t—,.!.,-.-■■*,ii f «f«.,.

X i 5 i

parse stack) aeXp j mop j

after scan: I 'aal I • j II i; »I

i-^l™.!

•..- I«astly# the go is executed and control' is passed to

another pattern -in this case, the pattern labeled "axp"

^«^«««««u^aoumw^ÄwwaBÄs^an^,^^^^^^^;^,^,^,,^

\

53 .

If the pattern match had not baen successful, then the

last field would have been examlneoL. If <aapty> control

would be transferred to the next sequential pattern.

If an <ident> is present, then the semantic routine mmed

by the ident will be called—for this case it would be

"•rrl".

A "Ä" will always be accepted in the match.

Pragmatics

The handling of text, parse stack and petteirns is

accomplished by a compact "wired-in" algorithm. The pattttrna

themselves require only 64 "bits apiöce.

Justification

^ The algorithmic form of the syntax handler though

somewhat removed from the phrase structure descriptive

method, allows the user much more knowledge of what is

going on at each point and thus makes for a very compact

description of a language. It is this feature which allows

the tables for FLEX and SCRIBE to be implemented in hard-

ware.

|

«HSf«

54

example "' combining the above three sections to form a recognizer for arithmatlc

expressions'' '

metas *- (aexp, term, factor, primary, aop, mop);

terms*- ("(",")", ("f'VW). mop^-C'*","/"," "), aop*-("+"," "));

syntax^— (

■ --v

start:

atoms:

atom t

prim:

fact:

term:

aexp:

& 1 , scan >££ atoms ,

"(" | , scan ,£o atoms ,
aop j , scan ,jjo atom 1 ,

j primary *- ident Idt , scan ,go prim ,
| primary ♦" num nm , scan ,go prim , err'-
| factoro-factor "f" primary & opr ,go fact ,
|factor *- primary A ,go fact ,
1 factor "t" scan ,go atoms ,
j term*- term mop factor & opr ,go term ,
|term *~ factor b. ,go term ,
I term mop . scan ,go atoms.
1 aexp ♦-aexp aop term A opr , scan ,£0 aexp ,
j aexp ♦- aop term A unsum ,

••S2 aexp '
jaexp 4- term A, 1 '££ aexp '
j aexp aop 1 scan .go atoms ,
j primary*- "(" aexp ")" 1 scan ,go prim ,
1 aexp ft .jgo halt , trr2

Notice the similarity between the above and the p base structure definition for
arithmetic expressions:'''

<aexp>:: = 4iexp]> <äop> <;term">

lUaopi ^term>

t ^term^

< term>:: = <term> <mop> ifactor>

I ^.factor^

^factor>:: = <factor>t^primary>

I. ^factor^

<pritnary>:;- ident (num) ((aexp>)

<aop,>::= +|-

<mop>::= *\l |-^

. ^ . _»__.™™..™__ iü; ,,, „,.,,„„-;„,„.„„,„,

55

4. Semantic Relationships

Syntax

semantics ^ <list>;

Semantics
»i i

All identifiers used in the semantic fields are con-

sidered to b© global to the <list>, as are the various system

routines to aid the compiler writer. The identifiers

must be defined by a quotation assignment in the <list>.

Additional content in the <list> is left to the programmer/s.

discretion. The system aids will be described separately.

Pragmatics

Essentially, the semantics are in the form of a <case>

statement with each <case> bafrhg one of the identifiers

found in the semantic fields of the patterns.

Justification

The use of FLEX as a powerful descriptive language

for providing semantic referrents to the maching allows

translation building to be relatively easy.

Examples

(Will be given after exposition of system aids)

jgr-'V 56

Global Data Structures and Algorithms

A ■ ■'■ne Symbol Tab 1 e

The symbol table is a stack in which information may

be retained about <:identifiers" in the system. Automatic

controls for handling block structure are provided.

W

JJ -*

IT

1
1

■ 1

1 i i

I
1

t i J_

1
 J
name flag value

Symbol Table Routines

New Block

II and JJ delimit a block of symbols. New block

causes a push to occur and II and JJ are reset to handle

a new group of symbols.

Old Block

A-E££ of the symbols delimited by II and JJ is performed

and 11, JJ are reset to their lower level values.

find (name, from, to, found)

57

A search is performed in the raiwre sjMscified. "found"

is set to true and a global variable LL contains the

desired location if a match occurs. Otherwise "found"

is set to false.

enter (name, flag, value, enor)

A search is performed in the current block. if a

match is not made, then the "name, flag, ^alue" indi ated

are pushed into the current block. If a match was made

denoting that a symbol with the same name already exists

in the current block, "error" is set to true and no entry

is made,

S. Code Generation

System aids in this area are currently somewhat

primitive. A canonical parse will deliver operators and

operands to the semantic routines in a polish post fix

order—all that need be done is to generate the two kinds

of operators that the FLEX polish requires. The following

routines will eventually be replaced with machine independent

aids.

sop- fop)

In the FLEX machine simple operators are identical

with their delimiter representation, sop ("+") will

generate an "add" command.

cop (op, value;

Compound operators are necessary for specifying declara-

tions, variables, procedure calls, etc. Their description

... ::..__. . 1 , , ' . : . _.__^

58

and use is supplied in Section V on pragmatics of the

machine. The user's intuition wiii be relied on,

scrval (loc, value)

Stores just into the value field of a compound operator

at the specified location,

strop (loc, op)

Stores 3ust into the value field of a compound operator

at the specified location^

Giobal names

"cpd" is the current process description segment into

which code is being generated. "P" is the current code

location.

59

o

Examples: '" a simple compiler for arithmetic assignment statements delimited

by " # " '"

metas «,. (body, stat, aexp, term, factor, primary, aop, mop);

terms*- (";", "(,)", " ". " "^op ("* ", "/", " "),

aop (" + ", " - "));

Start:

On:

Atoms;

Atom 1 J

Syntax *•• (, |

Body ♦— | Set up

ident "♦- " 1

aexp:

Fold:

(aexp.*- aexp aop

j aexp ♦- aop

|aexp <-

"(" |

«op |

Ident I

nutn I

b. |

Ä I
"t" |
Ä I
A I

mop I

A I

^ !
ft I

idt

lira

opr

opr

I
primary *- <

jprimary **

prim: | factor factor "f" primary

| factor ■*- primary

fact: I factor

I terra*- term mop factor

|tarm *- factor

term: \ terra

terra & i opr

tern & j unsura

term

I *exp

jprlmary 4- "(" aexp

jstat* ident "♦- " aexp *• | assign

(body^ body stat "; " |

jbody «. body stat "# " I

Semonttc» #• (

set up^new biock; cop ("new",A) '"set up for handling variables'" ';

idt *- 'enter (ext (I), JJ+I, errr)"* if name not there, put in '";

'cop ("value call", vakje (LL)) '" generate a fetch request '" ';

nm *- numb (ext (I)) '"generate a literal for a number'" ' ;

op ♦- * sop (ext (I+l) '"pick up and output operator from external name

unsum^if ext (T) = "-" then soo (un min) else' '"unary minus'"

assign*-enter (ext (I), JJ+I, error) '"if name not there put in":

cop ("name caliy value (LL)) "'generate an address request1";

sop C'-«-") '"generate a store comm-ind"' ');

aop

, scan go start,
, scan 2 go on err 1 j

, scan go atoms err 2 j

, scan ,J5£ atoms

, scan .jgo atom 1

, scan ,go prim

, scan ,££ prim

,go fact

,££ fact

err1 |

, scan ,£0 atoms

,fiO terra

»go terra

.scan ,£0 atoms,

, scan ,£0 aexp ,

'•^ aexp '

>££ aexp •
, scan ,££ atoms ,

.scan ,££ prim ,

, go fold, err 3 |

, scan 2 , £o arr,

, go halt. err 4 j));

60
'The compiler for FLEX itself is a good example'

flex4-scribe metas_*- (body, list, stat, self, prim, labl, svar, var,

expr, factor, term, arit, rexp, rterm, aterm,

andl, oterm, orl, bool, assert, utm, uex, ifcl

trupart, aop, mop, rel, lop, asop, bup, unop,

iter, sop, set);

terms *- (",",";",(begin, "("), (end, ")"), "\","i",

"C", "]", ":", new, if, then, else, "#"/"-"/.",

com, unop*-(scribb, type, ("p, ceiO/fJ", floor),

sin, cos, qtan, "T!, abs, rand, prand, hash, exp.

In, sort, length), "f", aop^-f+'■,"-"), mop-«-

r*", "/", "~n,.mod),rel4-(,,=","#", "<", V, 'V,
ar)f "A", "V", lop^-CV", "S", '>"), sop^-

fn", V, "C"), «op4-(ls, isn, "6", "$"), of,

while, to, by,.do, 'bo", "11", tops-4-(bop, uop,

val, map), ident-^-farray, field, act, leave, term,

xin, yin, pist, plpt, piln, co^rol), (goto, go), ("?",

"any"), ar-H"^-", as));

syntax-»-C" patterns.

I

head: I body

bod; I body

empt: I body •

I body ■

I body •

I stat -

I selr <•

* I

"*" I quot

body new I new

body ";" I

body "," I coml

body end I endl

body "'" | equotl

body "]" I esell

i, scan fi* aid, jump field , error field 1"'

, scan , go head

, scan , go bod , errl 1;

, scan2 , go decl

, scan , go empt

, scan , go empt

,scan ,go lis ,

, scan , go sta ,

, scan , go sei ,

0

61

atoms: I body •

I body •

I prim •

I prim •

I prim ■

i prim -

I

I

I

I

I

next:

pri:

I labl •

I svar •

I Jvar ■

decl: I body •

I body •

svr: I body <

mbr: I body ■

I var <

I

I prim "

I prim <

I expr

I expr

im

I

n^ii
1 quot ,scan' »go bod/ j;

begin /Scan /go bod/ j;

lit 1 push 1 »scan /gO pri/ j;

"fl." 1 pushl /Scan /go pri/ 1;

■w 1 pushl /Scan /9opri/ I;
no» 1 pushl ,scan #go pri, 1;
if /scan /go atoms, I;
while /scan /go atoms, |;
com ,scan ,go atoms, I;
unop /Scan ,go atoms, i;
aop /scan /go atoms, 1;
goto /Scan /go atoms, I;
A

/Scan /go next/ j;
ident n.ii

label /scan /go atoms, /;
ident A nops / /go sur/ |;
tops ident ' tps /scan /go sur/ err2 |;

body ident n n . / decll /$can2 /go decl, |;
body ident it.» ,

/ 1 decl2 ,scan ,go empt, err3 1;
begin | /scan ,go bod, j;

"C" 1 /Scan ,go bod, |;
svar A | » ,go vr, |;
var ar | /Scan /go atoms, I;
var A | / /go pri/ |.

unop prim * 1 unop / /go pri/ |;
com prim A 1 popl / ,go exp, |;
com prim A 1 uncom / »go exp, |;

prim com | ,scan ,go atoms, 1;

fact:

trm:

art

rtm:

rxp:

anl:

01:

bl:

st:

prim «- prim

factor -4-

term ^-term

term*-

arit^-arlt

arlt •«-

arit -4-

rexp^-rterm

rterni'*—

rexp ■4|_

atomi ^—

andl ^—

andl "4—

oterm ^—

orl <4-

orl -4-

bool ■4—

bool "4-

set

set

set

prim f
II A II ,
t Pnm A

prim A

mop factor A

factor A

term mop

oop term .

aop term A

term

arit

rel arit

arit

aop

A

rterm rel

rterm .

rxp "A"

«P A

atsrm and 1 .

and I V"

and 1

oterm or I . a
bool lop or 1 .

orl

asserM-set

bool

sop bool

bool

set

set

asop set

- lop

A

A

sop

asop

A

popl

popl

popl

unmin

popl

mark

fill

mark

fill

popl

popl

scan

scan

scan

scan

scan

scan

scan

scan

scan

asop

62

go atoms / ■;

go prl ,1;

go fact , I;

go trm ,1;

go trm , I;

go atoms , I;

go or t ,1;

go art ,1;

go a rt ,1;

go atoms , I;

go rxp , I;

go rtm , I;

go atoms /I;

go rxp , I;

go atoms , I;

go an 1 ,1;

go an 1 ,1;

go atoms , I;

go Ol ,1;

go Ol ,1;

go bl ,1;

go bl ,1;

go atoms , i;

go st ,1;

go st ,1;

go atoms ,h

go atoms # I;

go ast , I;

6 3

utm^-assert of set A ,go ut ,

utm*- set Ä 'SI ut ,

ait: asserf of scan ,§£ atoms , err 4 j

ut: uex^-uex bup utm ^ pop 1 ./§£ ve ,

uex4- utm 1 ,go ve ,

ve: vex bop scan /go atoms j

expr-«t-expr "*" vex A pop 1 ,go exp

expr>*- vex A 'ä° exp

exp; expr "#" scan 'S£ atoms

stat-*- expr A '32. sta err 5 |

sta: stat*-var ar stat A pop 1 'SB. sta

staf-*- iabl stat A 'S° sta

stat--<H frupart stat A fill /go sta

sfat »f- gots stat A unop 'S£ sta

stal- H~ iter stat A itr '32. sta

if cU- if stat then mark , scan fgO atoms

Iruparf -4- - ifcl stat else els , scan ,ga atoms

iter -«H while stat do whl , scan ,go atoms

body -«$— body stat
II II com 2 , scan 'i£ empt

body -<- body stat ii, ii cln2 , scan '32. empt

list ■+- body stat end end , scan /9£ lis

staf -4- body stat "lÄ" equot , scan 'S° sta

sclr ■^- body stat "J esel , scan 'S£ sei , err6 '

lis: svar -4- svar list & [,90 sur

svar •<»- list A 1 ,90 mbr

sei: svar ^j— svar sein A 1 ,go svr r err7 |

64

IV. The User's Environment

Introduction

Most interactive systems use a special command language

for handling files, initiating jobs and communicating with

the compilers. In the FLEX system this language is FLEX-

no other languages need be learned. There are also no

special entities called "files" in the system as will be

seen.

Admitting the User to the Machine

When it is desired to allow a new user access to the

machine, a process is created and named with his password.

This process will not terminate during the period that he

is allowed to use the machine. Most of the time it will

lie passive on the secondary storage waiting to be

reactivated which is simply done by the user typing in

his password on the console.

The user's process is activated, and he is now able

to communicate with the machine through FLEX and the

powerful editor which controls a free-running compiler that

is translating everything that is entered through the

keyboard to FLEX code. Since his process is also declared

active, the pragmatic system will attempt to execute all

produced code. This will appear to the user as though his

commands at this lowest level are being executed statement

by statement.

\ J SB

By these means the user may entertain himself by

performing calculations, editing text, generating new

compilers, and generally going where his thoughts lead

him. When he desires to cease running, he simply types in

a leave- This is the coroutine exit command and, since .

the routine which called him is the process scheduler

itself, his process is passivated and the reentry point

retained.

On the next day (or next week) when he again types.

in his password, his process is reactivated and control is

passed to the reentry point; he is where he was the last

time on the machine. This is why files (and file handling

systems) are unnecessary on the FLEX machine. Any declara-

tions he may have made (and possibly stored data in),

have been saved to be used again.

Scope of the User

The user at the console is considered to be inside a

process description which in turn is interior to the FLEX

system and environment. This concept of system globality

fits well the FLEX philosophy and provides a convenient

meane of allowing the user access to entities such as the

FLEX language tables themselves, reserved identifiers

whose meaning he may wish to redefine, etc.

fc '*

o

v" The Pragma-tic Envxr@3puant

1, IntroduotLon

In this chaptei we dirst coiisider the isrobiems ot

j^tiysiCäily raalizxng the p'-j. lo.'jophies prascjnted In Lhe

px'sv.f.ous sections.

There have been numeroa:-, iipproachea to solving this -■'

problem; some successful, many more vmsiiccassful , Cesis^ter

programs in general also seam to work according to the ■

same ratio.

One bottleneck 13 the attempt, to "do alJ things for all

people"; another is to try to make the program work at

100% efficiency .100% of the Lime,, The first method

usually entails huge, unmanageable programs; the second

means that much fast hardware will have to be used.

The FLEX environment on the object machine takes a

drrterent tack. First the machine structure may be designed

so that it. is compatible both with the language that will

be executed and with the problems that will be solved.

Second, a statistica.l viewpoint is adopted, For almost

ail computer problems m general, on any machine (and m

particular those problems for which the obiect machine is

suited) neither 100% efficiency 100% or the time nor

blinding speed is necessary, Fortunately from the software

point of „lew, the .first is not needed and thankfully, for

the price tag, neither is the second,

 ! ! ___: : ; ^ ;

67

The environment seeks to keep the overheads to a

minimum for things that are done 9 0-9 8% of the time.

This means that most of the time the machine will act as

though it were far larger and faster than it actually is.

Witness some statistics from Stanford where a Burroughs

B-5000, a machine suited for algorithmic languages, actually

ran most problems faster than an IBM 7090—a machine whose

hardware was significantly faster than the B-5000.

Of course, occasionally, the piper must be paid. The

FLEX system seeks a graceful degradation in performance

ds the load goes up. The machine simply appears to slow

down. When there are too many active segments or numerous

quite large segments in core memory, an increasing burden

is put on the secondary storage. Where, most of the time,

the cheap secondary storage allows the machine to look

as though it had a large core memory, now saturation will

force operating speeds to approach the speed of the

secondary storage rather than that of the primary.

Another interesting consequence of this point of view

is that the environment works quite independently of the

particular storage limitations and conversely the efficiency

of the machine depends very much on diese same limitations.

J

63

What aTofss this aiüan

100 Ideal ' lachijji.

performance

—M«^

^..

4Jc
\8k V m

'xrikm.o t v^ m mty$r-

S of time

It means that for

1

lOv,

V^

0%

most problems, an .increase' in /tiemory

■ will not: drastically inprove performance, but ic

will dramatically reduce the percent or t« spent m

ov-rh-ad when th® Rystem becomes cloggcu/

It als© m»ÄR£ that the physlcaj w^*,^ »^.x, K„ -

v ■' ' ■•Ja-'tTTient ol programs—a h&n&y

not run any differently with

n sxgnificantiy better;

'■":f the ä?ys}t.(Säa,

feature, Most proqrams •■ill. i

an iß«r®»?-a In s««-oryj « Crv >-iii ru

still fewöx V7xll cmttirmf c

Reproduced from
best available copy.

Brj-...r.

«9

«A

2. Segment and Process Control

a. Segments

In the FLEX operating environment the basic logical

structure and the basic physical structure are one and the

same: The segment. Logically, the segment is a contiguous

string of 16-bit words in core memory and secondary storage

whose length may be changed with varying degrees of

effort.

Addressing in the system is relative to the segment

not to any particular memory location so that a particular

segment may be moved anywhere without disturbing access

t to it.

segment | displacemenF

Typical Segment Address '

Cor^' Memory

High speed memory initially consists of one segment called

garbage. All other segments, in the system are created by

portioning the garbage. An attempt is made by the system

to intersperse garbage segments between active segments.

This allows some expansion without rearrangement of other

■segments. This strategy will work well with relatively

static entities like process descriptions (code), and

arrays. Process stacks are another matter and some

shuffling is required.

•\

70

ga.baqe

f / S / .'

».'////
■/////
•f/.f/
■///// '/////
'///■//
■<•/-/ /
. .',•//.■
'/■////
> .■■ /.' /

■r-rr

//////
s.■///' / ,•//////
.•///• , s /////// ///////
/////■/•/
//////f
//.'/.' s .•
/ /1- / / / ///////
/'ss// //'//// ///////

" /
• ' r ss / // . /

/■/■/ / / / ' / / .' / ' / / "/
/•/ /// /// // /

segment 1

segment 2

seamen n
TTrrrrrrm-rrrrr

"55 jgrnenr
■fy-rrrr-r

V
-rrrrrrrrrm

segment "7"
////////////////i
segment 3

Segment Allocation in Core Storage

At this point paging she ild be considered. With

paging, the logical entity (variable length segments)

would be made up of one or more pages of some fixed size.

Paging has some advantages in that reclamation of garbage

and. transfer to secondary storage is made easier. The

disadvantages, however, outweigh the advantages for the

address path is more complicated requiring two table

lookups rather than one.

segment"" "page "| displacement

Typical Paged Address

In keeping with the strategy of optimizing most used

operations (and accessing memory is certainly at the top

of the list), while allowing a certain amount of dirty

work a small percentage of the time, paging is rejected

as too expensive for every access. Accordingly, segments

are mapped contiguously and memory must be reordered when

one segment threatens to overrun another.

71

iT"^

////////////////

segment 2

segment 1 segment 2
^TTTTm-rrTy-nrrrr

growing segmem

segment 1
«^ J I*I 111111 P P ,.

SSSS/'S/////////
r s //,'''"''''/' / '''///'//////s//*
'//'///S/////S//,

'////SS/////////,
''////I1//////////
'////ss//////////

f'///ys/s//s/,///

segment 2
*>f>fn J / / > r i i i , ,

segment 1

remapping segment reclaiming garbage

There are several ways to remap segments. The cheapest

is to find a large enough area of garbage and reallocate

the segment. If this cannot be done, then garbage must be

collected and arranged to form a large contiguous free

space which may then be used for allocation and new segment

creation.

If no garbage is available then some must be created by

transferring one or more active segments to secondary

storage. This operation is usually called swapping. if

there are many segments in the system, but only a few are

used at any one time, then the swapping overhead will be

low and the machine will act as though its usable core

memory is much longer. If there are many segments, and

many are accessed, then a system clog is created, and the

apparent access time becomes longer.

In all cases when a segment is expanded, it is not

lengthened by just one word but by a number of words equal

to some fraction of its current length. This allows some

room for further expansion without disturbing the system.

f.

72

•'

Second a rv Meniory

As it is pseudo-random in nature, secondary memory is

handled in a similar manner. The scale is larg^; the time

sJower, the intervals between garbage collection longer.

Once a segment is swapped out it will remain in the

secondary'Mneraory until an access is requested.

We now have the same problem that was presented to'us :'

in cure: garbage must be found to accommodate the. segment

being swapped m Again 11 no garbage can be found (bi: ..-O

made), it must be created by first swapping out one or •; '

more active segments. vhen ehe access-request may be

swapped :. n, ■ •

The realization of these algorithms will be presented

after process control is discussed since both operations are

inter twined.

b' Process Contro1

The basic data, structure has been discussed—now the

basic execution entity will be covered: the process.

Definition of Terras

A ££££^££_.^s££.LEli£{l. iS a segment that contains

executable code genera Lea by the compiler. By its very '■ ■■

nature this code is reentrant, which means that it does

not modify itself and therefore may be in several stages

o f e K e c u t ion a t a g i v e n 11 me.

73

A process is just an instance of execution of a process

description; there may be more than one process in

existence at one time for a given process description.

Parallel processes are required for operation of the

system. The I/O, the display, the keyboard, the compiler,

etc.,.must be able to run concurrently with the user^s

.programs and with themselves. Moreover, the compiler. ',■

which is interacting with the user at the keyboard may'

have to cun in parallel wich a logical "copy" of itself

executing the com operator in a user program.

Since this mechanism is needed it is no trick to allow

the user in FLEX to create concurrent processes of his

own-'-ail handled by the same algorithms.

This ability is literally invaluable for all kinds

of prograirmung, recursion, and event-oriented simulation—

a pnrtfe use for the MM-8 00 0.

Process Creation

The basic idea is simple. Since the process description

(the code} does not modify itself, it can contain no data.

Therefore, it must have some way of accessing data which is

independent of itself.

r- I

process
description

reentry point A

reentry point B

...__ ~-__™™___„

u 74

^^gg£„..P4.iS£A.gligi}_wxth Two Seta of Bata

One way this has b«en done in conventional B«-chi«*s.i«

to create a separate data area for each process and to force

the process description to access all its. data through

a base register which contain the low order-address of the

öösired data« Now the process description «lay be switched

from one process (the handling of data A)- to another (the

handling of data B) with ease provided, the reentry point

of each process is retained while the other is being

©Keouted,

To effectively run the two processes in parallel, a

fixed time of execution may be assigned to one process

before the other one must be started up. This is the

H££ quantum and typically is about 10 me.

It is not difficult to generalize this idea to the

FLEX environment and the segment system.

2kl^E£0££s^escri£tion is a segment. Each data

are* becomega segment and the base registar refers to the

data segment name. The reentry points may becott* p&rt of

their associated data. All that remains is to formulate

a scheme for scheduling the execution of each process. A

Bimple list containing the process names which is visited

"round-robin" fashion every 16 ms will do.

I ß A^

i
f

ct o
c
B

JT" RF

• I

cut rent event
<3 i
a o
t r
ö A

fe RF -

/

process
description

for both A
and B

u

FLFX Proceas Cootro'

he figure shows the; system about to execute B- This

..,.- Coiled uct-ivatiou. Dunny execution, process B is said

ro '.;:■■ •..", SXVL: and trie peiiod during the duration of B's

' ...i u.. quanc.'.jTi is said to be an event of B. All entities

.n the figu.ve ate segm^^.ts, and thus may be swapped,

i'c^- (■■;:_,:,tack

Bf.cause of the well-nested propertieb ot algorithmic

.'. . i;:;,iau':,.-: ;.n geneial, and FLEX in particular, the data for

a r. r cf.as IG an extendable ^.egitent called a process stack.

3'-
:

-L.- inioi'mcttion which is necessary for each event rs

r>-1 a: ned m the base of the s>.ack, such as the process

description name and the reentry point associated with it.

tv, ;. le C is having an ev'nt , the ether proc^s:-es are

a a ...a to be passive. When the pruce&g stack is collapsed.

'

S^S^uiiSi , ._. .__„ _:...^ .„■,r.,^.._. _,

76

and the process name is removed from the event list,

the process is said to be terminated.

Passivation

A process may be made passive by more than just the

ending of an event. In general, when a process initiates

an I/O operation, it will be passivated while the I/O

(
is running.

Indeed, all the £eal-time processes such as the I/O,

the display, the keyboard handler, etc,, because they

cannot wa.lt when something that involves them is happening,

have the ability to passivate (or interrupt) any other

process and to activate themselves.
■.I. ■ • . ■ -. '. ■ ' ■ ■

The round-robin algorithm must be modified slightly

to accommodate the real-time processes.

r

, i
B K.
 -j "~

i

) i
i

;tcr\-

keyf"^

I/Q

Event List

P.. S. I/O PD , '
in

read-only
memory

o 77

Ail the real-time event notices are logically

clustered. Between each event they are scanned by the

scheduler to see if act.vatäon is required. If not, the

process pointed to by the current-event pointer is activated,'

At any timo an outside rnteerupt may point into the real-

time area. When this happens,- the current er-ent is passi-

va't.ed and the real-time event activated.

A FORTRAN or ALGOL program consists of just one

process and so do many proarams in FLEX. Therefore process.

hand liny „nd access should be optimized- This is accomplished

■by filtering every request to memory through one of four

jase registers. Since the rearrangement of memory requires

an ££^^äiA£flJof .the iiarbatje process, during an event, core

memory is still and the base registers may contain

absolute addresses. These addresses are calculated "during■"

an activation and are the only contact with absolute address

that (..he entire system has. (Excluding the garbage

collector,, of course.)

Base Re go. sters

During an event one base register is free for system

use. Another holds the base address of the process

description; the next contains the base address for the

process stack. The last, as will be seen later, will aid ■•

i n a c c e s s i n g o 111 e r s e g m e n t s .

o i •/"//'i-i-V, memory .•cV.r-'...•,'.Vi 78

V)

-Us»-

procf
cfescri

ess,
iption

process stack

segment's

emofy

base reg
con Ire I

addressing

It can be Beer, that although the FLEX environment

has effectively dene; away with direct addressing and

introduced relative (.and moveable) data entities in the

segmenting scheme, brings actually hold still for the major

part of the time and the basic overhead during an event

is a short add whose time will be absorbed by the micro

code hardware.

Data Segments Associatnd with a Process Stack

The exact format of a process-stack will be discussed

in the next section or execution. Now it will suffice to

say that each slot in : le process stack is associated

with a different vari .. le name in FLEX. During compilation

a variable name in trn Tformed to a relative index in the

stack. The slot :'-tse" may hold a number or a pointer (called

a descriptor),

Q 79

u

If the variable remains unmapped and contains only

--numbers-- then this data may be accessed directly with

no overhead. If, however, a <list>, any other, entity,

or a map is assigned to the variable then the data is ■

put in a fresh segment and a descriptor is created

containing the new segment name and a description of the

data. The descriptor is stored in the' slot and is effe-

tiveiy a self-typed indirect address.

Example:

'new a/bfC

a " 1. ;

b-(3,4,5) ';

»

'c' num

■b' data
name

3 1

'a' num 1.0

P.D.
re-
entry

num

■ r

5.0

num 4.0

num 3.0

process stack segment 'namel'

Program and Realization (Schematic)

The slots are created in order and are initially set

to A. 'a' contains a 1.0 while 'b' contains a descriptor

which effectively points to the freshly created segment

'name 1'. Or course, the data descriptor in "I" cannot

 :

80

qontal-n the absclufe address for'tnäta& 1-' b&üause 'name 1'

mav have miurated to secondary storage during some other

ferocesses «vont.. So it .must contain a name for the segment

and the absolute address at any given time tm&t be looked up.,

unique names for froshly-created segments are doled

.it by a system routine and consist simply of a 12-16 bit

intagejc.

Tas ipegnient Ässociat i-on^a-bi-B

Thts operation thai needs to be performed is the sarae

as the associative operations m FLEX and the same

m^ohan.israR ar.d format^ are used. When a segment is qreated

or braucht into core storage, we wish to form an association

{ s thus-; Z.oc i_s base address of ceg-name;

The Lnvsrse operation needs to be performed when the

segment is accessed: ? is base-address of seg-name;

This will return the absolute location of the segment

Which will be placad in the fourth base register and then

used. When a segment is swapped out or destroyed, the

apaociati'on needs to be removed: 7 isn basev-'address of

seg-name;

If the association.fails, then the segment is residing

or the aocondary storage and a somewhat more leisurely

gie^rch may be made to find it and bring it into the core

jnemory.

"watrjxjsizfi-f.-wct isC

■

81

gj?6 Association Structure

This will be covered xn great detail in the next

ion, but the operation may be-demonstrated

y. Of course, the table itself is a segment

and has a logical format as shown:

section on axecut

schematicall

ab s
link a del

'v^y 'name 1'

HV 'name 2'

free expan,;

The Segme.n t Tab 1 e

A s s o c i a 11 v e h aid w.: ■ i

it cannot; be used to n i

and others [81 have sir

stimulate an associate ri,^,;r

used is similar to than

technique is derived troni

end

prohibitively expensive, so

the information. Feldman [7]

hashing may be used to

very effectively. The method

•AP [9i, although the hashing

ifferent source.

82

The name, a 12-16 bit number, is reduced by the hash

to a 4,5, or 6 bit number which is used as an index to

search the table. Since not even the best hashing

algorithm can totally eliminate the possibility of two

names hashing to the same place (as 'name 1' and "name 2»

have done) provisions must be made for this eventuality. ■

After the index selects a row, a comparison must be

made.to see if we have uniqueness. If we do (percentage

dependent on the hash size), then the absolute address

• may be delivered without further ado. If the name column

contains a zero, then there is nothing in core memory that

hashes to this slot, and the segment must be out on

secondary storage.' The same" applies to the case where the

comparison fails and the link field is zero indicating

a chain is piresent. The overhead for a good hit is 2 650

Us memory cycles. That for ä fault is 1 or 2 650 yjs

'memory cycles.

Now the high overhead case is considered. If the

absolute address of 'name 2' is required, a chain of

multip/le hits must be followed. Fortunately, this does

not happen very often.

In all the associative structures the percentage of

multiple hits is calculated. 2-4% is the maximum allowable

level; when this is exceeded, the associations are

iwiwaawfrta.-gj'-

m>
S3

recalculated for a larfs: /:^hi»f ar«s wMch pulls the

ffiultiple hits down to a sairo level.,

This scheme folluv;:- ,.;u: philosophy of the FLEX

environment. Most of the Lima it leeks like something

much better than it is; a assccl®ti¥e taemoryl For 2-41

or the time it looks J U.st-procss^ng table. . ."

Segment Creation

A segment .1B croai r>y converting an area of garbage

into active storage. for this segment must be found

and entered into the sen table,.

Since creation and ,, ruction are dynamic, a way

must be fcuhd to maximaJ Ly utilize the small number of

segment names available, ■., could he done by maintaining

a pool of unused names .in >. de..; to provide a new, unique

label for a segment—bur tro s is CQstly in terms of

storage, so a different path is taken.

When it is desired create a. segment, garbage is

found (or made) in the usual way. The machine contains

a random number generate! which is used to select a name.

Ar. access request for ■; h* name is then made to see whether

or not that number is aJ -ady m use as a segment name.

If it is, a new random ..■,*<•, .1.3 done and a new test is

made. Very rarely wii ! -.elected name be in use, so the

algorithm will almost aJw^ys work the fiist time.

H Reproduced from
best available copy.

■«irw-.v.ßJfrÄStsjW*»'.

v J

8.4

The new name may then be entered into the segment

table along with the absolute address of the displayed

garbage and segment creation is accomplished.

Criteria for swapping

How is a segment picked for transfer to secondary

storage for the purpose of creating garbage? No swapping

algorithm has been shown to be really satisfactory. The

one presented here will work quite well, and following the

FLEX philosophy, requires no bookkeeping on each memory

access,

The influence of the compiler extends directly down

to the lowest level of the machine and provides information

that is not commoniy available on other machines. Some

of this information has to do with an insight into the use

to which eaph segment will be put which may be partially

derived from mapping conventions and process use.

The volume of segments mapped as 8-bit bytes (text)

will tend to be high—yet use is limited by-storage äna \-

display restrictions. One might hope that these segments

will migrate to secondary storage in a fairly rapid manner.

General data segments have a somewhat higher priority—

yet they are clearly the next level to be thrown out.

Process descriptions and process stacks certainly

have a higher need to remain in primary storage in order

to sustain a rich amount of process activity.

L, ^M-.^V".-« ... ; ■

85

The real-time processes, the event list, the segment

table, and other system entities need to maintain residency

in primary storage all of the time. Therefore, they

should never be swapped,.

0- 2 0' 3(r 40"
oy-,

Priority: 12 3 4

These priorities may be expressed as a v/eighted

conditional probability or as the number of standard

(■fc) deviations on a normal curve.

The swapping scheme now works as follows, A random

number is selected just $s in segment creation. This is

hashed to locate a slot in the segment table and thus,

eventually, a segment. The type field is examined for

priority and a question is asked whose answer is

weighted towards that priority. For the normal curve

weighting scheme, the probability of a ;yes answer to the

question: "Should this segment be swapped?" is:

 area of a number
total area of a curve

If the segment was text, then it would have a 57%

probability of being swapped and a corresponding 33% chance

wwwwwMhiaia^. i „„^.M..,„^„ ...r....

86

of staying in. A system segment (having.priority 4)

will have a zero chance of being swapped.

Suppose now that a segment is in heavy use and is

swapped. Then it will come right back in—but the chance

for it being swapped again is now quite small since a

random selection is used. Conversely, a segment in little

use will simply remain swapped.

The end result is that ail segments in primary storage

are scrutinized uniformly and those that are active tend

to remain while those that are not will tend toward

secondary storage.

„,_, _..„. _

ja!*?!*

87

The Sfratefly For Segmenf and Procer;s Control

It now remains to put everything together.

p
R E
0 V

0
T
H
E
R

C E
E N
S T

S L
T.
S
T

active 'B'

active 'A'

active Key 6

active Display

active I/o

status name

DD . y -

•

s

J*

Base Registers

The doited lines are affective pointer: ("leaning that the reference really has to go

through the segment iable. An event for A' is taking place as shown by the base register

configuration.

MtMK^a-o'' tmm

name cai■ et -ck u

uujnp tn
7m : ta:
[Jy.mp

ie
LS<S

a > sp.lacement
d.i üp I'V erne- ■ '.
dxsplaceMienz
number oi ■. a c
nmaber oJ p^i.a
meteis

-■-mmas '..■ector s ize

I.). 1. era i), n t (:' q e i

.labe • .' address

-1 .. I'-^- !CU- ion

a. The Process Deaaription

A pi. sä aescrlptxo.ti .U;. a s®piuant that m&y im «Sf«c«ite4

b the hardwar: of fche FLEX m-achiM, Ther® are basically

.htre K.'.näö of entities contained ID, this segirwsnt: sisipl«

..Dti: a.or a ? compound op&ntors, a/\d numeric and string

t e t 4:
(I

I 7 i .i » ■. I

...^.J.....::.^., i l | op code j ^alue j

-.,1. :'±'',' l ■ v ,„.;.:/„ A compound operat jr

■■i se determines the length to be

L,3--s ; -:• the FLEX operators üxe

'npilöd us sjimplr- cn> --,. '"he r.arnes, requests for
I

jumps, !:•■ nie. rr.impound operators,

7,he cc pot ad •;, po] i oi

2IL.£2§£. Yj:L.::J.l mean ing
\v^,i ■. e all stac k i ;idex find a value, put it on,top of

B t a;."" k
o;e^te ö dsscrxptor, put it
on top of stack
Jump if top of stack true
Jump if top of stack false'
Jump unconditionally
create space
to match actual with formal
parameters ' |
create .. new segment 'vector
S12r long
create a stack number from
'integer '
used tor operand for goto'a

rarmwwiUM-iwit'i MM. t*a&mmmimmiiMl»Mm*mMuUmM»*m*mm >*■ mumm ^ , . :

Lack: i vc ä #aP . m I *W^ ß
.Hi»*W

HZ •! i *

Th^; coding is very compa.c\:.. To aöd.^two nurabejC^^ it tal

2<! '..lb LI 1 opes snd in Bism&k".].J££

8 ci ' . ■ i. both opef. ids in stsacks

Th.j.s : ;■ moio t.espe-cfcab] ■ ■ ■■.■:i mcml: sxngiä address machines

I jy a ^c>. i ! amount' .

L 4 Li i 7 40

1 lit :i num- , |

^al-jo^lwVÄJ';'-»■ * ^JfiMto!---

ca com m v. ■ shapes and sizes, s;''--^ßra

'.04,! can bt: hand by t.iie short form, Lar^p3t

tiumtaers sre hahdied by longer forms.

'e'C ■' ■.:.-

Th OT.pj Lei ;.; ■ ihe operators in polish post^Mx

f:orm. Execution iß clone .serially except for jumps,

■:,.-... and intermediate results ar® stored in the

procesK stack which has thiC following logical form:

..■. .■VM-il,;.,-,,_,.v,..,.jl_|

n'i<s»iöv.^^1.„^.-^i.oS«ÄMÄ**iiri., „,„.

,■.':'*'-"" 90

V >

,.; i .,

\/ Ci ;, , i ;' ■, i

I :

■■ Loc k .fe'%

/ y///
.'

i
■K u ;;i ■ ■

in ,■
I

i:

Stu 1 I

v;nti- . ;- s \

new Ci,b; b*-50. I.;

.(i'ipüi ar j.es

K• ■ jRO 5w p J MC...
i ~, ^iJilG

■i' 5.4 begin

:.\ ' ^ [nttraT5.4 1

new x/y; x-93,4 ;

: S!BI!]_SÜ3J3B
Ic-O, (new i^^Hfi^Sj

■ rium [j- -0] i nwjl | ptoTil I lit 5]

&*i no,*hi

^_ 1 i in in. .MirC .in I.- — ' Li m-irtmKii TH.IIJIJ fcV^vi',..i*^fr—' j-^-t "« —w

ej^c

cottirail 2 1 FeD.ct I
 vJ j -^ ^y; j

and

ti '^. y
icomma]2j end] M

nex^ pperator
to ijie executed

, w$lgr «w*Mi-»^i*m^—-

28 16-bit words

, ^produced from
' ^'j^Üable^py. ig

, SB»

■

til

hi\K ■ >: ■■■ ;

■ al) 'iiiätn-HlfxoA

Reproduced from
best available copy.

e ttion o .itinf

»Inl Air

■ ■ id toy

®s the

, .,■ Ht 3 Ij»

■ Lso

ibles a

. - - segment

- ced

sation

the

■

—WMilim-.

u 13
■

-

op< ■ ;-. new segnant; frmi the- v^ct^r

ä data deiä.crifjtof.. Tlni»

«eA fio^.® «severs i

Prooesaos

A procodure call rocesi activation) is realized

(

a f Cf 1) ;

,he drawing.

Reproduced from
best available copy.

„J-
rcr

vc TcT~l

■'

n>*: ;i v..ct ,; ex

■

If ■ ■

■ ng hat n >a

ict pasai

ite the i

.■ntxi the

built up m the stack

'"j cröÄta» the status

e vector from the parent

r.-vunt) , enters an event

sivatjM the parent process,

parent process will be

'' ft^^tivates^ it by executing.

eplaced by an

68fl is to be created, then

t. :'>ame eiwcent that the parent

eturn from the new process

.-, while a leave will simply

"v- around.

93

i . Recursion

Recursion is easy in the FLEX environment. Each

parent process simply creates a new child which is linked

to the patent by the returns. The | call | operator is

used so that juat one instance of the recursion is active

at any one time«

Following is a subroutine which calls itself for .

determining the factorial of a number.

fact ♦ 'new a. if a -■ 1 then 1 else a * fact (a-1) ' ;

'"This creates the following structures when activated by

the next statement11'

display - "fact (3) = "#fact (3);

fact. (3) =6.0

.4. .
parent

1st
instance

N 2
N "2

! ''/' j'
" ■""

I ,

2nd
instance

LEi
'Ni

1
"T

3rd
instance

Reproduced from
I best available copy.

All returns from a call as well as reactivating the

parent process also transfer the top element in t*ie stack

from the returned process to the top element in the stack

of the parent process. This ^ the way results are passed

back when a procedure is used as a function.

94

v r

Input/Output Conventions

I/O Devices

I/O in FLEX does not require an^ special statements;

it is handled as a generalization of the assignment

statement. How is this realized m actuality?

Each device has a reserved variable name associated

with it and, hence, there also exists a slot in a process

stack somewhere in the system that is also associated

with this name. This process stack is the I/O process

stack and is pointed to by the "1/0" event request in the

real-time sectior ot the process control que.

v

r
e 1
a

1 1

\
1
HI

1
I/O

event |
que

I/O Control

'tape 3'

'tape 2'
.' tape 1'
'tape 0'

DR1
DR2

DR3
'printer DD

'printer !ß_
' punch ' : f5

Line Going Out ...

^
^ ^S

15 1

'^'.M ds' !D£l2/2 \^
l/O process
stack

x b
Card Coming In...

An I/O interrupt uses the number of the device that

caused it as an index into the I/O process stack. In the

95

slot associated with the dovice there is either an Ü

or a data descriptor poirting to a segment which contains

data to go out or data coming in. The figure shows an

execution ot the statement:

printer 2 * "al3 = " # ai3# " b22=',#b22;

Since no format of any Kind has been specified, a

FLEX free-format is assumed. As the concatenations are

executed, a scratch segment is created in the usual way

to contain the generated string. When the %" is executed

it first looks at the description for the storand. It is

marked as a temporary and therefore only a name transfer

is needed rather than a copy. This is done into the slot

in the I/O process stack which is now marked active.

Some time in the near future the I/O system will

deliver an interrupt saying that printer 2 is free. The

"printer 2" device number (in this case: 4) finds the

data description in the stack indicating that something has

to go out. This is set up and that data is squirted out

on the channel coax. The "printer 2" slot is now marked

empty and life goes on as before.

If the above FLEX statement were in a loop for printing

out consequentively generated values of al3 and B2?, it

might very well be possible that another "printer 2"

assignment might be made before the previous line was

. »— -—..

96

transferred out. The answer ^s simple. If the "printer 2"

Liot doos not contain an &, then the current process is

passivated until the next txtie around the round-robin. By

then the line may or may not have gone out and the

algorithm is continued. Eventually the line will be printed

and the current "printer 2" statement will be executed.

Naturally, more than one line may be output m one statement-

a vector of lines may be assigned. The above just says

that an I/O statement to a unit must be physically realized

before another to the same unit may be made.

Input is similar. While assignments to the printer

have been going on, the card reader had been active. An

interrupt occurred saying that it had something to deliver.

A data descrj pt'".r was found showing a read request (one is

alv/ays there for pure input devices) and a card image was

delivered to a newly created scratch segment. Sometime

later a FLEX statement might be executed:

new card - format I (cards);

Formats in FLEX are simply functions or user-declared

unary operators which take a string as an argument and

deliver a string as a reult. The card image (being a

temporary) is renamed as the first parameter of format 1

and is thereupon operated on.

Pure input devices are immediately supplied with a

new data descriptor input request. So the "cards" section

is again set up to receive a card.

f ,!„,„ ^M*mMmi&ma**,

97

Two-Way Devices

These are handled in a similar manner to the printer

and punch except that both read-request and write-request

data descriptors are used. Also, it is important to note

that, since all I/O devices are just variables in the

system, they may be mapped and then selected on as the

data enters or leaves the machine. Suppose only the

first five words are needed from a tape record, then the

following statement might be appropriate:

buffer ■<- tape 3 [0 to 4] ;

Only the first five words will be read in and transferred.

 ■! I HI—«—I

98

VI. Progress to Date

Implementation

Two FLEX compilers have been programmed in ALGOL

on the UNIVAC 1108 and have been running since mid-February

1968. Several partially successful attempts were made

to combine the compilers with a number of the operating

text editors at the University of Utah. The failures

were partially due to the inadequacies of ALGOL as a

real-time and process language in general, and in parti-

cular, to the very real defects of the UNIVAC version of

ALGOL-60.

Implementation of the interpreter has been severely

delayed for several reasons—the main one being that it

took longer than expected to work out a rationale for a

segmenting and swapping system that would work on such a

small scale.

Current implementation is now taking place on an IBM

1130 partially because the machine can be dedicated most

of the time to this task and partly also because it is

small and does not tempt one into grandiose schemes.

Implementation on a PDP-10 is also being contemplated.

Future Expansion

The process-oriented nature of FLEX should make it an

ideal kernel for numerous discrete simulation schemes.

99

A search for primitives in tiUf as well as in the semantic

transformation area is currently going on, and it is expected

that some fruit will be available for plucking in the next

month on. this field of discourse.

Application packages are also being studied with a

view toward both allowing FLEX to do something useful and

providing a test-bench on which to evaluate the system.

To this end, the solid-state circuit design program developed

by W.R. Sutherland on the TX-2 computer at Lincoln Labora-

tories is being eye-balled. FLEX and LEAP (the implementa-

tion language at Lincoln) share some properties-notably

the ability to store and retrieve associations~and it

will be interesting to notice the difference between the

2 56k words of fast memory on the TX-2 versus 4 to 8k

smaller^words on the FLEX machine.

n

w

REFERENCES

Ifrnr In ^n'' "Rep0rt 0n the A1gorithmic Language
ÄLGOL-60, Communications of the ACM 3 (May. 196 0)
pp 299-314 ~" vliaJf' J-you).

fir^i ^."EU.ler " A ?enera^2ation Of ALGOL, and its
^ne ACM 9 vn •n: IT l' Part II',, Communicatxons of _ne_ACM 9 (January, February, 1966), pp. 13-25, 88-99:

^loyd R.S , "A Descript ve Language for Symbol
n t^ -o0n'" Journal i the ACM 8 (October, 1961), P K 7 ;-(- 584 'ft

iU
A . "An ALGOL-6 0 Compiler," Annual Revxew in
_i£ Prog) amminq,. Vo I 4, 1964, pp. 87-124.

fo
1962.

100

^ 1 'n
J ; "A Formai Semantics for Computer Languages

0 o ; ?? f^1?" In ä c-nP]ier-Compiler," Communica-
—2-^ • th£ ^CM 9 (January, 1966), pp. 3-9. E-

n TdS ^f" ^' "TITfL ComPa^-Compiler Reference Manual
UJ 1' umcoln Laboratories, MIT, January, 1967.

oldmn J "Aspe ts of Associated Processing," MIT
Lab r ror rechmcal Note 1965-13, April, 1965.

ill. A,, "A Note on the Use of Scrambled Addressing
Associative Memories," unpublished paper, December,

Rov.er^ P and Feldman, J., "The LEAP Language and

DS..-43;;'octob;:,M-967L:nCOin ^^ ^—al Note

Cha't' W
AL^ 'er.' L '^ W^choff' R" "A Syntactical

19 1 P ?! Communxcatlona of tha ACM 14 (September,

NOTE: F
rformiSlfS exposttlon on compiler-compilers and
a tcrmid.ble biography on the subject see:

Svff3'..J; " GrieS' D' "T^nslator Writing
iKa® s Commum ations of the ACM 11 (February,
1968) pp. 77-^3, * '

