AD-761 962

FLEX-A FLEXIBLE EXTENDABLE LANGUAGE

Alan C. Kay

Utah University

Prepared for:

Advanced Research Projects Agency

June 1968

DISTRIBUTED BY:

National Technical Information Service
U. S. DEPARTMENT OF COMMERCE
5285 Port Royal Road, Springfield Va. 22151

DISCLAIMER NOTICE

THIS DOCUMENT IS THE BEST
QUALITY AVAILABLE.

COPY FURNISHED CONTAINED
A SIGNIFICANT NUMBER OF
PAGES WHICH DO NOT
REPRODUCE LEGIBLY.

AD 761962

s
o e

Alan C. Kay

Technical Report 4-7

FLEX - A FLEXIBLE EXTENDABLE LANGUAGE

-

&

é' June, 1968

cnary

(="
JUN 26 9.

S GTY L

COMPUTER SCIENCE

— B s

Information Processing Systems (}
University of Utah

Salt Lake City, Utah

; Fiev)ro:iuced by

NATIONAL TECHNICAL
INFORMATION SERVICE

U S Department of Commaerce
Springfield VA 22151

Advancad Research Projects Agency °* Department of Defense ° ARPA Order 829

Program code number 6D30

TR T AT O
DISTRIBUTION STATDMENT A
—Apm:r_wcd for public release; j
"Divtribution Undimited \\\\\
-

Acknowledgments

This work could not héve prospered without the
challenging and pertinent criticisms of many people. I
would particularly like to thank Professor David C. Evans
and Robert S. Barton of the University of Utah, for
providing an 1nsp1ratlonal environment in whlch to work.

I also wish to thank C. Stephen Carr for many hours of
fascinating discussion (both here and there) that Ccertainly

has had a lot to do with the present form of the work.

iii

Preceding page blank

II.

III.

IV.‘

VI.

Table of Contents

Abstract « o o @ ;'alq o'a'o.o ® '

Preface. e: 0 o & o o e o' e o o o’

Introduction . . « » ¢ o o e o o
The Language Environment

A. Formalisms . « o« ¢ ¢ o o o o
B, FLEX ¢ ¢ ¢ ¢ o ¢ o o o ¢ o o
C. SCRIBE . « « ¢ « o o ¢ o 5 o
The User's Environment . . . « o
The Pragmatic Environment . . .
Progress.to Date . ..« « ¢ o « o

References . « « o o s o o o o o

' vita L] L] [] ¢ o L L] L] [] L] [] L] [] L]

iv

44

64

66

98
100
101

Ly

S

&
.
i
o i

g Abstract . ; 1

The FLEX system consists of merged "hardware" and ; 5ﬁ

"software" that is optimized towerds handling algorithmic

T TR

operations in an interactive, man-machine dialog.

T R I KR

The basic form is that of a hardware implementation

of a parametric compiler embedded in an environment that

is well-suited for semantically describing and prag-

matically executing a large class of larguages. The semantic

language is called FLEX, includes the compiler-compiler

T VSR P L RO A

as a string operator and is used as the basic medium for
carrying out processes. It is of a higher-level nature

and may itself be used for describing many algorithmic : J

gy,

s
processes.

The machine itself is designed to be of the desk-top
variety and sell at a low price. Because of these design
parameters, many compromises in time ;hd space had to be
made to save money. The software system is implemented in
read-only memory. To allow any possibility at all of

debugging such a' scheme, the algorithms involved were f

distilled down to their essence sc that the entire system

% ARSI

for the machine can be displayed (in flow diagram form) on

a8 small wall chart.

In many senses the described system 1s a "syntax- “

directed" computer.
P

th

B

o~

g]
)

Preface

Tnis 1s & working document submitted as work-in-
progress for the degree ot Master of Science. It proposen
an integrated hardware-software system for performing
algorithmic operations.

The following is intended toc be a complete and concise
description of the system rather than a mere report of
results in the hope that readers will not have to spend
valuable time trying to figure out how it is all accomplished.

Apologies for any and all gaps, chasms, and crevices.

()

O

II1. Introduction

The FLEX language is intended to be & simple yet
powerful and comprehensive notation to exprezs computer-
oriented algorithms. It follows the traditicns set hy
ALGOL 6C and several generations of EULER, ([1,2]

a. Calculation

. At the lowest level of use FLEX is easier to learn than
either FORTRAN or ALGOL. The use of it as a desk calculatien
language may be mastered in a few minutes. For example:
we may wish to evaluate a galculation involving only numbers.
The expression is simply entered through the keyboard as
shown, Assigning the answer to the reserved word Fdisglax"

indicates that the answer is to be returned to the CRT.
f

'display+l.6%2.9522/(19.7-9.2)

4.4985905

At this level of use the entered FLEX code is
executed statement by statement so that it acts as an','
interactive language. The " ' " is supplied by the
ptoceeaof.and indicates to the user that FLEX is ready

for input.

At any timaltheaenféred text may be modified by

ﬁsing the powerfui text editor associatéd with the language.

b, !griableg, _
| The~hext.step fbr the initiate would be the.evalué
ation of siﬁple algorithmns using variables as well as
' constants and perhapsla-mofe.interesting display of fesult-s

The follcwing routine should be studied..

~

'begin

‘new a,b,o0,d8;

b«l;c+l2,.3;
- display+"a="# (a+b*c/L.24c)
$rd=" § (d«a-h+c*l.2);

a=18,883333 b=30.243333

Notice that no format statements or separate write.
commands are required. The handling of“striﬁgs-of textual
characters is a primitive operaction within FLEX and the
catenation operator "#" is used to connect togeéher ;itéfai:
stringslenclosed by quotes: "a=", to numbers.generate¢. '
by executing arithmetic assignment statements. |

The whole is realized as one string of charactgrs”.
at the display end and is. cutput on the lower half of the

screen as shown,

e BRI

L

The c;pétion.oﬁ variables is indicated to FLEX by
the use of the reserved wor new followed by a list of.
variable pames, Type neid not be specified. FLEX is
entirely free form in.nqture. There are no card column.
.ngmbers to worry about as in FORTRAN.

Ce Decisions
becision-making-and branching are handled by one-com%

prehensive statement. It is of the form if. D_ then]::[

else []. The boxes may be any construct in the. language
inciuding blocks and entire programs. |)

In almost all cases this eliminates the need and
use: of one of £he most common pitfalls in érogramming;-,
the label and aiaociatéa go _to statement. fheig.ggg’ ”
provided in FLEX but they will rarely be used. Former
FOR&QAN programmers who convert to ALGOL find that they
almosgt never need to use labels or go _tog and time spent
in debugging gets' reduced by a sizable factor. |
da. The Usé of Blocks as in ALGOL 60'.

The scope of variable identifiers may- be delimited

by fhrther;use of the rurentheses begin end. For- example:

begin
new a,b,c;d,e,f;

a<+b+c+die;

new a,b,c:

a<+béci+d+te;

7/
]

end;

f«a+bh;

,l end;:
”_—-—

Within a block delineated by a begin end. pair, all
identiﬁieéﬁ deciared.by a new list are considered to be
local to that block. An identifier used in.the block
Butugggzdeclared there will be the one declared in the
nearest cohtaining block."

In the example above 'a' in the outermost block is .
given a value in the assignment

a+b+ct+d+e:;

following this a new block is entered and a new declaration

is-executed: new a,b,c. Effectively this overrides the:.

previous. declaration so that, in this inner block, the

e

(W

variables a,b,c are considered to be totally new and
local In the-asslgnment of : identical form:

arbicidte; &

the-a,b,c are from_thé-inner blétk and the d,é are from the

outer block.= The a,b,c of the outer block are not
touched. .

When the. end of the inner block is reached, the |
inner glock ceases to. exist; we. arg agaln in the scope of.
the outer black The assignment f+a+h sets f to the
valuo a+b whérd a,b are.the outer block varlables.

The use of Block Structure in this way allows aections
of. prdqzams written as blockg to be arbitrarlly inperted

withauh féar of destructlon when variable names happon to

'm&tdh a8 can ellily happen in unstructured langhagea like

roamm

The use-o% the wbrd'new means just that.- The vari-
ables following are created fresh each time a hlock is

entered.

i

e. gﬁtendabilltx

Néw-binary and unary operators may be dqclarpd

'giving the, programmer powerful control over the language.

itself. For example, the functions max and min may. be
ugseful as operators, i.e.:
begin new max, min;

bop max +'new a,b. if a>b then a else b';

bopemin +'new a,b. if a<b then a else b';

i

a+b+c*d max b-c*d; '*4f d>b, then a+b?*!

In this manner the programme:i may:tailor tho'operatoi
structure of FLEX to suit his needs. This feaﬁ&ie bbth
eases the programming burden and causes the program to
be easier to read and be understood by others. |

FLEX may also be extended by either modifying itself
via the compiler-compiler contained in the language or
a wholly new language may be created usging the saﬁe”tools.
The use of the operators com and gcribe will be discuéddd‘
in. a later chapter.

15 Comments

Comments are handled very simply. Any text
inserted between. the symbols '''~''! will be ignored: by
FLEX. 'This allows comments to be inserted anywhere-~-
even in the middle of an arithmetic expression.

Examples:

a+p+c*d"'this expression is simple''';

a+b'''this expression is simple"'+c*d;“

This intgpduction has barely scratched the surface
of the FLEX language. It was not intended as an exposition
of FLEX, but only to give the average user (a FbRTRANer)

a feel for the more comprehensive discussions that follow.

S U RS e

...,___“...,._.....,:......

iIl. The Egg!g ﬁg'Engironmane
A, Bxglanation oi the rornalicns u-o&

s!ntax | .
 Two formalisms are used to describe-the'lynta:'ot-

PLEX: A variant of BNF. (Backus Normal Porm) (with
factorinq) and, the nyntax—chart method dev.lopad by
Burrougha cOrpo:atibn. {10}

For- an example;.let us describe a FLEX idonﬁiti.t..,.

In English: An identifier is a text. string
B of arbitrary length starting
with a letter and thereafter .
composed. of either: letters ot
numbers.

<ident>sis<letter> |<ident>

In BNF3. <1ettgr>|<£dent><numbcr>

Iﬂ~Chaft:

|
.A box says that the construct is defined. alsewhere o ;1
on the chart; a lozénge-indiqates that this.is the definition. .w

- Semantics and Pragmatics N
The Semantics and pragmaﬁiqs.oleLEx wili be , W.
largely deacribed in English (drawing heavily from. | |
accggtbd.notions.in mathematiés and computer science).
Wheneve: possible, FLEX, itself, will be used
.for description and, indeed, this is done in the
" SCRIBE chgpter’where'FLEx is-pieaented written in
1ts§1f.

Y

III, The Lnnggaga'nngironmenﬁ
A. Bxglanation of the rorunlisns Uled

antax .
Two formalisms are used to describe the lyntsx of

FLEX: A variant of BNF (Backua Normal rorm)(with
tactorinq) and, the syntax-chart method devaloped hy

Burrougha COrpo;atibn. {10}

Forwan-example} let us describe a FLEX idontitttt....

In English; An identifier is a text string
a of arbitrary length starting
with a letter and thereafter
composed of either:letters of
numbers.

i <ident>:i=<letter> |<ident>
L <Ietter>l<ident><number>

In Ci’mrt :

 A box says that the construct is defined elsewhere
on the chart; a lozénge-indicatee that this.is the definition.
| SQEgntics and Praggatlc
The semantics and pragmatics of FLEx will be
largely described in English (drawing heavily from
accggtbd-notions in mathematics and computer science).
Wheneve: possible, FLEX, itself, will be used
for description and, indeed, this is done in the:
~ SCRIBE chapter ‘where FLEX is presented written in
1tse1f.

T o - e

Ry NP 1" ® o o ©
e, ";';.',a.Qﬁ"'ﬁ'..ﬁ""‘.":,.‘.:ﬂ‘ ':r.n

J

‘Because of the recursive nature of FLEX (and the | |
FLEX duéript:ion) it is impossible to describe it |
in a linear order. Therefore, some reliahce has

been plncod on the users intuition for some ‘of the
examples pruuntod. : l
The examples will be largely presented 1n' PLEX

althouqh occniomny tliey will be drm from
ALGOL 60 lnd FORTRAN to present some 1nt¢rut:l.n' | - . |

contrasts.

B. The FLEX Language
1. Syntactic Atoms
Syntax
<letter>:: = A|B|...Y|Z|alb
digit>ss = 011]2]3]...]9
<delimiter>ii = , |5 | () fe|s[L) [z i«|®|rP|I]]*]
tl=* |/t =A< |>]€ |2 |AlvA
1Di¢lel=jajnjuleci?z|"|.]| |

<reserved words>:: = #g |end |new |if -| then |slse |
~ oto | type [ceil | floor ls‘m T

ooylz]”l

cos at, ﬂ'l 5%9_ ra lh|
n an
1e n"?!" l do | arrn :I.ald'
act

T:_B_'E ea i t
TE T ra-a%ErL” ’—T“ |

Semantics -
The text characters are gimply numbers qf small
precision. The numbering starts with (0,...,9) for : o
("0",...,"9") and continues with (19,12...60) for 1
|

s PR s oo retsram s

. £

I A Y H A STV 0 LI s WX e v A NI S e PO o

10

("A",...,"2") and {11,13...61) for ("8",...,"8").

A special space systbol is mmbered 62. The delimiters

are numbered from 6% on. {true, false) are identicel
with (1.0).

Prqgggtics

Text characters are integers.

Justification

Many internal character sets have been used by
the industry. The principle reagons for this one
are:

1, It is sortable.

2, It is easily extendable for number systems

of higher radix thar 10,
3.' It eliminates a table lookup for every

character that is input to the compiler.

- cidentifier>:: = <leétter> | <:dentifier» <letter>

RN |<identifier> <digit:

<integer> <@igit> | <integer> <digit:>

<number> t: = <integer:{.{¢«integer:})

[.<integer>

<text char> :: = <lstter> | <«digit. | <delim>

e~ e BT e

N T . L e

o n s smesmsie

: 11
’S £

e

F T

identifle integer)

Iﬂnm limeger el dicrit

delimeter

-

e
numbier {\i‘exi‘ char)
i
] N l
integer : integer | !eﬂer§ digit delimeter

Semantics

<Reserved words> have the form of jidentifiers but
are considered to be semantically identical to <delimiters>.
Indeed, many <reserved words> have their exact counterparts
among the <delimiters>. Yor example, begin and (,ggg and)
are exactly identical -- so are /N and and, v~ and or.

<Identifiers> are considered to be names for con-
structs in the system and the basic flow of FLEY consists
of assigning these names dynamically to the various objects
which may be created.

<Numbers> are either integers or fractions. The

et precision will be unspecified for this chapter.

IR RIS ST

Primaries

12

variobhlz

A

i romE fars

[select0|
parameters

[den] Fiar 4|H

process description
eebéﬂ CR

<primary> HES
<variable> :: =
<parameter> :: =

<literal> "H

<0Op> HHEES

list selector [~ parameters

<literal>|<variable>{<parameters>}
{<op>}<identifier>
<list>{<parameter>}|<selector>{<parameter>}

Q|w|<list>{<selector>{<parameter>}}|
<process description>|"<text char>"

val | mop | bop | ucp | act |

R A R R NTDI et iny e

F- Variables

1 <slmp1e variable> Semantics. .

la. <ident>

1b. val<ident>»

w)
lc. mag{ident>
1d. bog<iden£>

le. uop<ident>

3

Although this is not tbo
smallest . syntactxc unit for a nene.
literal, in 'some casés it acts as
the smallest semanti¢ unit.

Semantics. This has attributes

. hnhame
2, type
3. topology
4, value
all of which may be assigned dynami-
cally. -
Semantics. The val overrides any

value that may have been assigned.

On the left side of the assignment
arrow it will destroy any previous
value,

Justification. This allows the
programmer to override name
considerationsg to reassign a
procedure quotation and to access
a name,

Semantics, This allows a user=-
agerived process description (pro-
cedure) to be assigned to the atcess
path of the variable. This allows
complicated user strlctures to he,
indexed in the same manner as FLEX
defined data structures. The map is
described more complétely in the
section on <selectors>.

Semantics.. This moves the <ident>
into the parsing table as a binary
cperator. If the ident hag had a
'«Body>' assigned to it, then it
will act os a binary operateor.

Pragmetics. A simple name inclusion

using the gcnerality of the quotation

to full advantage.

Justification. The language may be
extended in a simple manner.

Note: Same as bop except <ident> is
parsed as a unary Qperator.

AT W

Pty oot S

O

..P*fa'

4, <simple variable> <selectors <lists>Semantics. Selection

 Examples:

Pty "'é&@é'ié]Afx+y"'

val p+'b’

PRty ";samé as kex+y'"’

bop max+'new'a,b;'£§ﬁa<b then b else a'

2. «simple variable> <selector- Semantics. The

T m— . ' ' - : <simple variable>'ig -
-assumed to contain data,
Selection is performed
as in ALGOL 60 and
Euler. 7Tt acts like a)
simple variable afte
selection. - -

3. <simple variable> <list> _ ~ Semantics. This is
- ' : ' just a procedure
activation with actual .
parameters. LIl

is performed first. N
It then acts like a -
simple variable.

5. No&sf All further generalizations of this, type are

evaluated from left to right applying procedure
activation and selection where needed.

Examples:

a ..[x.,y',x] (b,c,d);. """ "a" ig an array -of procedures"'-'. .

a, (b,c,d) [k,y,z]; te "a" is a procedure delivering an array'''

I Sestemeessrsmnen e

b. Literéls

1. q Semantics. Means undefined. It is the
of 1llegal operaticns. All identifiers

to this at duclaration time.

result
are set

Pragmatics. The logical word.is.ﬁlagged.l

Justification. Allows a much more free syntax
while stilli permitting a check of illegality.

2, w Semantics. Is the resmult of division by zero.
It 1s also used to map extendable arrays.

Pragmatics; The logical word is flagged;

Justification. Permits checking for overflow
and declaring unspecified bounds without

giving rise to a fatal error.

3, <number> Semantics. A fraction of unspecified

————————r———
precision.

Pragmatics. Space is created to contain it.

Justification. Useful for arithmetic.

4. "<ctext>" Semantics. A text literal is identical =
to the string quote of ALGOL 60.

It has

as wide a use as the <number>. Also, it
will be seen later that com "a+b*D" is

equivalent to 'a+b*D’'.

Pragmatics. A text literal is mapped and
stored as a one-dimensional array. :

Justification. Needed'to generéteftext.

Examgles:
if a # Qthen b+a+l.34;

if a +b # ®then display+a

else display+«"error in a";

display+if a+b ¥ =then a else "error in a";

Llad e s

;- it 5

O

16

S. The List
_Sxﬁtax ;

<List>: z-a_'t%<lodv> '
<Body?>)
Ilﬂ o9 .
== <nody>::-dboclarution'.
List>

<Statement List>

| <Statemant List>
1ﬂl¢11rltiﬂn Statanent
- VARE List List ‘ -

Semantigs. The meaning of a list depends greatly on its

form. All lists are thought of as executable elements that
are delimited by'the parentheti pairs begin end or ().

ﬂxecuﬁiqh of the <Body> takes place first. What remains

(1 anything) is then handled as an operand.

Taken as a unit, the list may have value or it may con=
sume itself during execution. If a declaration is present;
then the list acts as an ALGOL Block in that identifiers’

declared in it are considered local to the list.

‘Pragmatics. The extent of a list is delineated both by

. parentheses and by commas. A list during execution is

considered to be a vector on the runtime stack whose

topology is -detérmined by keeping track of the list of

délimiters. .

Judtification. ‘Here we have one concept and one constructicn
replacing many that have been considered useful in ALGOLic
languages. Also, by ‘adopting this form, mnay useful new

constructs are possible.

A B L TR o

T USSR RN S M M st o Rt AT

17

Examples _
(a+bxc) . "1 @g & simple srithmetic primary ''°
((2,1), (3,2)) 'Y ag an array literal :.. 1 ' vee

!ggigfa,ﬁ#c; x+~a=b end ''' as an ALGOLic compound statement'''
prod (a,b,'c+d') "' an sn mctukl parameter 1ist . '

begin

. new a'b'Ch

-
r-

L' as & valued block SREEE

ava+ (bra*2+c);

end

The Declaration List - . _
Syntax L | - |
<Dec1arat16n¢Liet>:;:{%Declération List®}<Deélaration> . l
<Dec1arﬁtion>::agéﬁsidentifier list>; | | .,- sj

<Identifier List>::={<identifier ;ist>,}§idéntifier?_. | |

l

Declaration 4| Declaration

Liat
i identifier,..o]
& .l) p
— _List ! |

identifier

Declaration
List

—

o5

18

'sggggtgci. The purpésa of o dadlaration Lo te ctdlﬁi ald

determine the scope of & nan# whiah Wil merv‘ulﬂ a téken

6: roproloﬁtntive of éome lanQuaya el@Menta. A nllo | ,

.hll as its soope the <kody: in uhiah it was doolarol. Binoo

both typo anl topology may be apsigned dynamically n.thiug

more naod be dono than te list the new names for each <body>.
th declarations may be considered te be executed in

the sense that a vector censisting of undefined values (Q)

| is created in the.runtima stack for the duration of the

block. Positions in the vector correaspend to o@ch
identifier declared. “ .
Justification. Block structure has proved to be an §tt:|nﬁly
uleful.anﬁlilpertant concept in ALGOLic languages. iﬁlilﬁi

'. aiding the pregrammer greatly in his own debugqinq. blqék

structure is also the ideal way te delimit the scope of

users in a multiprogramming ~nd/er time-sharing envikonment.

Examples

r'Aigggig- '"'a,b,c are local to block A.'''
new a,b,c.
a<a+ (b+c-2);

E:bgﬁ;n _
new a. "''this a’'is local to block B and supersedes''’
a+b+c+2; '''the previous declaration. b,c a:e"".
end "*'from block A.''" o
| B a+at2; '"'this a is the one declared in Bleck AP“
| snds |

Py ——

Rt e

[T S e oo

TR R EESRES S AT RSN

19

b

o
The Statement List

antax

<Statement List>::={<Statement Lists,
<valued element>::ai<valued &lament;

}<valﬁed'plcnehtﬁ
<statement>

PP R I
e .~
- rn.-_\‘

il e --‘:'.*"‘.I
QHrPIEL A
S—— !

e o= e B : 1
Statement W .

List '—r S0

valuag —
elemant B -

Semantics. Both commas and sem.cslion: have their usual
L4GOL meanings :lthough th ., i aliowsd a much more
flexible usage. A4 comma <el.i ts -ilemants in a vector sc.
it ney be considerad to preserve che value of the previous

expression or statement. A semicolon, then, may be considered

to destroy the value ci the previo.s exo:iession or statement,
As seen anove. both delimiters may he fraely mixed in a <body>.

Pragmatics. A semicolon flusres the top eiement in the run--

time stack. A comma 1acrecses the ve:tor count by 1.

and leaves the top of the stack intact,

Justification. As seer in the examples, this construct
allows great freedom and flexibility in creating lists of

values and 18 pragmatically gquite simple.

duced from %
Rb:‘s){oavuacilable copY.

20

Examples:-
(a,b, (c,1) ,b¥c) **vgimple liut''!

(1,if a then b else ¢, '''b or ¢ is Left depending on whether

a is true or falpe'"!?

BiXe.5% (X4A/X) 3 '''SBtatements followed by "1" are not
reuined' ‘'

if X2?=A>e then

gato B slse Bexs.48, '''valud of b is left vhen -qrt
o ’ algorithm Baerminates'''

xfy) '''value of x+y is lefe''!

O

The Statement

Syntax
statement ::=<empty>|<expression>| go to <statement> |
<variable>«<statement>|.variable>as<statement>

|if<statement>then<sta! :ment>else<statement>

l|<identifier>:<statement>

]while<stntement>§9§statement>

e

glatemant

variable —b{-:—)—b- itatemeant | variable statement
—
statement ﬂ-—rl statement else statement

idenﬁfier -~--§t'=~&;—‘)"-"b* statement

@ : statement l— gg t staternent

Semantics. All statements are considered to have value

except for the go to statement (which is not considered
to be a fundamental language concept, wnut is included for

practical reasons). The go to initiates an unconditional

branch in program control to the label specified by the
(label-valued) <statement™. For the same reasons the
labeled statement is not considered to be a language
primitive. The other statement types will be considered

separately.

‘@"“ statement |
3 ————

U

2

Pragmatics. Since the-syntax of a <statement> 15-50 free,

énd-more-meaningless constructions are permitted, the

© limiting factor of produced nonsense is execution-time

semantic checking. ..
The values of ghe statements are fetched into the
runtime stack and. are operated on in turn by the many.

operators of the langu}ges.
Egamgles:'

‘abc: at*b+z,

'go?tdlig a then abc else xyz;

#yz:.'go to £ [a+a+l]<+abc;

23

The Expression: A. Presentation of Operators

antax

<expression>ssm{<expression><binary>}<unexp>
<unexp> $2=<unary op><unexp> |<primary>

<unary op> :3= Head | Tail | type | | | sin | cos | ee%

|eom | scribe |...

<binary op> :s= 4+ | * | / | // | mod | + | = | = | ¥ | < |

>l ziAnlvilizla]of | is [eeel

<user binary ops>| =¢c | #..

(i} ' L}ﬁprauuiun- binary o

' W%EEF—”
(Efi)...

Note: Binary operators are given in order of precedence.

- primary |

Unary operators associate from the right,

Semantics. All operators generalize whenever possible to
arrays and 1isbs;

a, Unary Operators'

Qgeratot Meaning

logical negation
unary minus
Lo | floor x: integer part of x

ceil x: if flooq x=x then x else floor
X+1;

e et e ot |

24
Operator Meaning .
'tzge | yields current disposition of a primary
head. first element of a list
tail list with the head deleted
sin, cos the usual trig functions
abs absolute value]
scribe described in Section C. The operand is ;
a string in "scribe" format which [[
defines a language,. The result is'a | £
set of tables for the compiler-compiler E
(¢8m) in effect a compiler., | %
com described in Section C. As a.unary: ;
operator com accepts a string for one,
operand, and assumes “~he FLEX language
tables as the other. The rebult is a
compilation of the teyxt resulting in.
'{“ ' . ' an executable process description.

b. Binary Operators

Operator =« Méaning

Arithmetic

4 X4y means x° in the usual mathematical
‘sense for fractions

* x*y means X.y in the usual mathematical :
sense for fractions i

/ x/y means &/y in the usual mathematical f
sense for fractions |

+ x+y means floor (x/y) in the usual 1
‘mathematical sense for fractions §3

mod 1z mod y means floor (x-(x y*y)) in the é"
usual mathematical sense for fractions {1

+ X+y means x%y in the usual mathematical 5
sense for fractions '

- X-y means x-y in the usual mathematical

sense for fractions

O

ggeraggg)

relational

a5

Koaning

2,98, <1 <13 > Yield true or false

logical

v v+ o/+E , the usual logical operators yield
true or“false .

compilative

com

ranqge

to

by

associative

of, ii' isn,

described in Section C. As a binary
operator com accepts tables created
by scribe for its left operand and,
for its right operand takes a string
in the new object language. The
result 1s a comp:.lation of the text
resulting in an executable process
description. '

the to operator describes a range of
integer values either accending or
descending. Useful in any kind of
interaction. "4 [3 to 6] means (al[3},

al4], a[5], a(6],)T "abcdfg"{2 to 5]

means "bedf".

the by operator modified the interval
within the range of a to. 1by 3 to
10" means (1, 4, 7, 10)

These operators permit the formation
and storage of relations between
names,

We may say: John is son of Bill
and: Eric is son &f Bill

We may then agk questions:

. = O —
= e P YR

AT R

A A S R RPN AT

O

?Ry

26

x+? is son of Bill,

-Xx will contain: ('Johnf; "Bric’)

x*Johﬁ is son of 7

-x will contain ('Bill'}

x+? is ? of Bill

-x will contain (('son', ‘'John'), ('son', ‘'Eric'))

The ¢ operation yields a logical result.
The possible associative operators follow,

Eg;m meaning

X is y of z creates and storgs the relationship

x isn y of z destroys the relationship 1f it exists

xey of z asks if relationship is true
xgy of 2z asks if relationship is false

-~ in general we ask for
X Ryof? all 2z having relation y with x
X R?of 2 all relationship betwe=en x and 2
x R?2 pf ? all relations that x is involved in
of z all values with relation y with 2
? Ryof? all pairs having relation y

? R? Qg 2 all relations and valuegthat z is involved
in

Concatenation

' # is the concatenation operator. The result is the

concatenation of the two operands. The topology
of the result is the most general topology of the
two operands.

R srmsansss

45
o

process stock with the result,

' 0 f » ' s a o e . r'. . R B
27
. Se— —
A B A%L
array | literal | extendabile drray
array | array Jgrxtondelle array
array | ligt edlvpdggxg_*lst
list Llist e¥tendabis T1st

* S rese e apemernd

Pragmatics
a. _Unarz_operatorr “eplace the top element Of the

b. Binary operators replace Lie top two elements
of the process stock wit!i the result,
€. The associative operators o really trihary in
'ﬁéfufé'and therefore three names are aétually
collected in the stack beicre ny action is taken.
The resultant name replaces the three operands.
Justification

The use of binary and unary opcr-tors Ls jﬁstified both

by tradition and the fact that feuer Parentheses are

needed than with functional notation.

|

Rep roduced from

bes! aval

ilable copy.

R

ARETSor

2

RIS

N A L R S I s e

Fiaey

g

28

The Expression: B, Generalization of Operators

Scope
1f an operation is legal between two operands then it

is also legal. between other structures that have these’
operands as elements.

Arrays and'Lists

If the dimensicas are different between operands, then
a. logical “adjusfment" ie moade which logically creatés
enough copieé of the operand of smaller dimension until

the dimensions are matched. Then the operation is performed

as a.vector operation.

(a, b, ¢) * (x, y, 2) means (a2 * x,b * y,c *z2)
a* (x, y, 2) means (a * x,a * y,a * z)

(a,b) * (x, y, z) meana (a * x,b * YeZ)

+

Examples of Expressions:

.display "a="(bt2-4gc) #"f£=" #if a<b then ¢ else-qg;

Note: if b=2, g=3, c=4 then this would output on the CRT:

[a= -1 =1

SIS

' Tﬁe.anditionaI'Statemeg&

s

Svntax _ .

if <statement> then <statements glse «statements

. statement| th:.\ri/; statement @—ﬁtatm‘nt

Semantics

The value of the statement féllwwin@ the if must be |

"teducible.to true.or false (one @r zero). If a one,
the atetement following the theph is | executed, then the g

. statement following;the entire conditional statenont.il- R

"executed.. If a zero, the seguence is simllar to tho abovo .*'J

except the etatement follow1nq the else is executed inlteld
of the then. . - B

The entire cond:.t:bnal statement has a value equal to

-that of the executed branch.

. ljgt_:_e_: - Thie, the so-called "Long-~form: of the if
e.tatement, is the- onllyl type presently available. It
i#cﬁiudes the "shortform: semantically since the empty
statement is allo‘wed. If it proves awkward to use, then

the short form will also be added.

Pragmatics

. There are only two jumps needed in the underlying
environment: Jumﬁebﬁconditional and J’ump-if-top-.fstack-
zaro.3'fhese are invisible to the user and are: inserted

during the paise .

" VAL

. N =,

s

AT

e sEv A S

Examples:
if a+b+c-d+et . 5=G

then b+'a+h’

elge b+«'a-b's....

iﬁ a<b<ec
then (a+b; b+c)

elser '''uge of empty statement''’

5
54

ok
i
'

30

Ty m oo

AR

A

S TR R

S S N

TR R D

S

"’

o

31

The Ass1gnmen1 JBratowent
Syntax

variable EE}—-i-statementg ‘variables>«<statement>
Semantics
W“

The value of the assignment statement ig conaidored to
be the value of the <statement: and is aeaigned to the
variable in a number of ways depending on whlch att:ibute
of a variable is to be assigned.

As wili.b;-seen later, besidesn attaching a numeric
vnlua-to a nama, we may also dynamically specify the
particula: tepology of that value, This includes gross
structuro ouch as whether the data is an array of such

and luch 8ize, is a single item, or p0331b1y a directed

. graph or tree. Fine structure may alse be lndlcated

An item ciﬁvhé considered to be a number, a chiaracter, a
byte of any ﬁzdth, @ quotation of a program, a record, etc.
Pragmatice

The «opar#tén: has a valus for its right operand and
a4 name for ite left operand. The value is left 1n the

aeack and the name 1s destroyed,

=5 B A T e 8 e |
I L S T N

e N,

s s

o Examglég:
:..i-bfl-c . |

as'bect

a*arrax(x,(s*b.c),(l.z))

(if a<b.then a else b)+b+c

a+b+c+b+e

a+b*c+ (deb+c)

- a+"b+c"

"32

"''value of btc is named.a"ﬁ

'''a becomes the name for tﬁe
procedure b+c''';

''"'a is mapped as a two-
dimensioned arra{ whose
elementﬁ'are Xb

'"'either a or b .is asaiqned

b+c depending on previoua
values of a,b"' .

."!multxple aaaignmant!P';

' 1nested assiéhﬁént"".

‘''assignment of a text
literal"'

ts wide!'',;

-
S

"ant

indicated by the <statements one at a time if a 1oop is-

'while only the- flrst p0551b1e value is assumed and execution .

.assumed.,

" Pragmatics

'and a name for its left operand. - After all p0551b1e
".as51gnments are done, the value in the stack is replaced
'by a boolean value.

'Justiflcation

33

‘The Assume Statement

[v ariable ‘E? statement] <variable> gé <statement>
Semantics

This 1s a generallzatlon of the ass1gnment statement

in that the <variable> "takes on" or "assumes" values
indicated by an interative while statement. Outside of a
contlnues. .The value of the assume statement is boolean-' R

--belng true 1f the varlable has just assumed 2 -value and

false when there are no more poss;ble values which may be

The as operator has a value fer its right operand

This partlcularly general form is most useful 1n

iteration and .applies 1tse1f well to all klnds of operands.

Exam Eles

Will be given in the section on the while statement.

§

o

R A A S RS Rl e S a i

by

R T e T

SRR

o
£
H
e

'

IR

R R

&w-&wﬂwwm“‘- s

34

The Iterative Stat mént -

' ¥hile <statement> do <statement>
Semantics

The statement following the do will be: executed as

long as the statement following the while is true. If

1t becomes false, then control transfers to the next

Sequential statement.

L Pragmatics

Similar to the. if statement except that a Jump back

RS Y- inserted after the statement following the do.

»tJustlfication

- Besides coverlng 4 great many 1terat1ve S1tuatlons
in a 51mple manner, the whlle statement’ allows for the

complete cessatlon of use of the go to and <labe1>.

Ex Eggles‘

- do
do

Ias 1-by 2 to 13 1riag an ALGOLike for. statement''!’
<state>; | ' ' |

I as 1l " X<5 "'as ALGOLike for while state''’

<etate>; . . .

Ias (1,5,3,1 to 10,3 by -2 to -l)l"fwhicheVer llst"'-

7 as (5,10,a by Btoc) ' '''rifs’ out. Eirsgt will'"!

do <state>~

''""terminate execution'''

ik ARSI

PR g | e

35
while X as ((Jones is parent of?) N (male is sex of ?))

do <state>; '''X will assume all sons of Jones'!''

SRR

f’i-"‘u.-n

,

3!
H
)
:

S A R,

rR e EF N RSPV TOOE Ry XU LIRS R TR S Yeaemsh il

w

‘36

S, The rrdocsl.nescription

process description ¢process descriptien>:w
'<Body>' .
' .
Semantics

The process description is the backbone of the FLEX
lanquage. The user at a console 1s consid@red to be inside
a'érocess and he is hin&led by the system as just another
acﬁive process. - |
| The;quotation may be named in the same manner as ether
literals in the language. A proééss may be created from the

process description in one of two ways: as a serial

. procedure which is executed before the calling program

is resumed, or as a parallel execution entigy which runs
concurrently and independently of the parent yrbcésa.

" In either case, if a new follows the",'thé variableﬁ
nlmea are taken to be the formal parameters of the.prdbesq
description.

Pragmatics

The <Body> enclosed by the quotes is compilda Béparltoly .

and sgt aside in the same manner as other literals. If

it is named, a reference is placed in the variable name
area where it may be easily retrieved. A new stack is

created for each process and an event notice is entered

pon

19

into the process que. 'ﬁser processes are executed oh:a'
?rduﬁﬁ cobin" basis with = time qﬁantum of abﬁut'l9-15 lb;'.
‘Pricescses that are alive mav be aorive or passive; these
states may be changed by themselves or by an inteirupt

py the real time processss.

Justification

_Précedures and data handiing are the key:s to &
successful language. 'In FLEX both these concepts have
beer. qencralizeﬁ in 4 powertful manner.

Ex:mples «f simple pro-esures:

3 + 'b'; ''a "run-time" equivalence sfatement';‘
X k.'b4u'; '''simple guotation without parameters'''
v « if b<c then 'b+c' else 'b-c'; '''conditional
T assignment'’ '
" “ 23 “'"'the pame 2 is& assignev to the value of b''!
1 “« 2, "''the name b s assigned to the'value of'z"‘
val a « 'c'; ;"a is requivalenced to ¢''!
z + x' '**"1the name z is assigred to the value of
b+c''!
x + Z; '''3 pragmat.c error is generated since x is

a value'"'! :

for « 'new-a, b, ¢, d, e; '''an ALGOL1ike "for" procedure'''
a=+ b;

loop: if a < d

then (e; a +~ atc; goto loop)

alse ';

i Il ot e N YT St T LA e A

e
>

@
LR Lt

s

S

R

2R SL s

ort o

Q”‘:

=3

Bads
%2

BAk oy

7o o
ﬁ’@n

5

3

o

}
.

38
ALGOL - FLEX _
for I: = 1 step 1 until 50 do . for ('1',1, 1, 50,
begin a {I] : = T 4 5, '3 (1] « 1#5; bli+2] « I7)
b [1+2] :=1

a,b,c,d,e are the formal parameters. Enclosing. an

actual parameter in quotes is equivalent to thé,_;

ALGOL "call by name". 'Unquoted actual parameters

are equivalent to value calls. Nesting is obﬁiously

easy.

T T 2

ST

WE T :.p 8 ,‘ b . 1
. Y ¥ ‘ o
SR SO, Ve.s 0 , a
gt i . / i
T " n
~ ’ .'. oy .
A
.
.
. ‘ot s
{3 2

39

H‘The-"Case“ Stacement

_ One of the most useful concepts in programming is the
protected hranch. Thls 1s illustrated by the if- Statpnbnts

if B then <stat>l else <stat>0

U [SEat 0!

1 Te[sta t__:f_"u""*
This concéptwcanfoaqi1y he genﬁmallzéd”to'n branches: '

igﬁf
lgtat nf
It is quickly.accomplished in FLEX by the following methoa:
a y.('gstat'0>', '<§tat 1s', *°°, '<stat n-1>', '<st§t nﬁi);
and used: | |
a[Bjr
.Parallel'frocessigg
I1f, in the;previous-exahple, the entire vector was
o .indicéted inétead of jﬁat one element:
W "

SLRLCS

X S

TR

e

“',then FLEx would execute the n statements in parallel"
| Thls is also a protected scneme The glokal prooees
1slpassive until all of the n statements are done. Te_.
: create and release a process which will execute concurrently
'with the global process, the following is done:
act for ('I', l 1, 50, 'b [I] = I)1

:..The for-locp will be executed in parallel with the state- '
'menta following this call: ' '
| We may ‘also do:

.a_+5'(5<stat 0>', '<stat 1>°', cer ' <stat n-1>‘,“'<statnh$?)iy.-

:

- , ‘_' act a;

AN
.\- &

N . ' The n statements will be executed in parallel with the

. - m global process and - W1th themselves.

Coroutlnes
| Another usefulrconcept'in programming'is the'coroutin; -
which,is'simply a process description which allows aereturn
from the middle of;the code. The exit point is saved and,
when the code is again called, control is transferred
to the prev1ous exit point rather than to the beglnning.
The.lgavg reserved 1dent1f1er fac111tates this featuree-

it indlcates to. the event scheduler that the current

Process is to be passivated and the current program step

saved,

41
7. The Selector -
Syntax ;
<Selectors::= [<Body>] i
1
| {
‘Semantics : :] | %
The construction [<Body>] is ased to pass parameters o o
to the access mechanisms of FLEX. It is used both with the
FLEX mépping operators- array and field, and with user-
defined maps to select from some previously defined data !
s structure. = - _ : : BN

Pragmatics

A data descriptor may be marked with the information that
a segment is mapped. The map is executed to finally
produce a data descriptor of the selected element.

.Justification

The separation of structure and data is the prime " i
consideration in any useful file system and allows great ’}

flexibility as well as the use of "stupid" channels.

-,

.
Y

42
System Mappiné

antax

dafine
f)-wmm

Semantics

<#eiine arrays::=arra
<define field»::=fie

a. - Array

g.THa first paraﬁeter is the.byte size of the elements
in bits; The following parameters describe the lower and
upper bound? of each dimension of the array. lA logical
"p;océdure" ié assigned to the ﬁap of the variable. The
actual parameters are reconciledlwith-the bounds when an
access is requested to produce a descriptor or a value of
the élehent selected..

b. Pield

The operator produces a logical procedure which may
be assigngd to a variable just like any other quotation.
The prbcedure operates on a descriptor describing a field
of bits to produce a description of a new field. The first
parameter is the offset .n bits of the new field in relation
to the Qld. The second parameter 1is the end bit of the

new field.

List
List

i

Pragmatics

Examples: ‘
a « array (7, 1 to 10, -255 to 0) '"''a is mapped as a
two-dimensional array whose elements are 7 bits wide''’
a (=, =31 "'selectidq of a byte'''
~a [5,] '''selection of a_;ow""
a [2 to 5, =10 te -2] '''selection of a new square array'''

record. a use follows'''

-aisplay « wages (employeé [3 to 15]),

43

Both routines are called and executed like any other
simple procedure.

Justification

These routines allow the user to extract an arbitrary

sequence of bits from some other sequence of bits.

- id « field. (0 to 15); wages ~ field (16 to 31);

gon « field (32 to 32 + 16); son 2 + field (32 + 15 to 63);

""'this is a definition of the fields of a 64 bit wide

employee + array (64, ﬁzgg{lOQO); employee +~ tape 2;

display + employee [son (employee [5])];

44

C. The SCRIBE Language

Introduction . o 71

Although SCRIBE is a super-set of the core language

FLEX, it is presented last with the feeling that some

intuitive grasp of the language environment will have been 5;
achieved by now. . '

SCRIBE has its roots in the "Floyd-Evans production Sf
scheme" [4,5] and FSL [6,7]. Basically it is a bottom-up, a?
bounded~context recognizer that uses FLEX as a sublanguaée
to express semantic relationships. Because of its bounded~ 15

. context properties, it will deliver the canonical parse of

4

any language (which may be expressed in this form) without i

backing up. This ability allows a one-pass compiler to be

created simply and compactly; ideal attributes for inclusion

in the hardware of a machine.

R AR

The Basic Elements of SCRIBE

RS A

Towin

Creating a language translator: meta declaration, terminal

declaration, the syntax algorithm, and semantic relatien-

There are four levels of description necessary for ' 1
:

ships°' ‘
|

i

P

] AN O (A L T e

A A

. which may be

45

~1l. Meta Declaration
_-m

-n- 0 »[ident liutl—"»@l—@ motas « (<ident>):

- Semantieg
A — ey

A meta symbol 1n.SCRIBE is an <identifier> which has

the same use as the symbols enclosed in <> in BNF; 1t is
used for taxonomic purposes as a generic or class nnme for '
a certain conqtruction. . The meta symbols ident, dellm,

text are automatically included in any meta symbol lilt.

;Pragmatics

The meta. symbols are transliterated to unique integers

used ‘in generating the canonical pqrse.3

' fJustlficatian

" The use o£ meta symbols as class names is well-justified

.'1n Phrase struycture language theory.
| Ex amples:
 metas +« (aexp, texm, factor, prim);

DT TR

46

-~ 2. "Terminal Declaratien

Syntax

v

| kqhate‘- listl —p,

-

terminal -
T of

SR b R R e

LU

TR

L1

. f-_m kurn nabh

<term umu- [<term 1!..t>,] <tern ontty>

<term en 11w <deliu> <ident> <ceguater> | <clage
ey | | nl-ignillta

coqmnto)sm- (<equate 115t>) . L

<oguata listrsim [<equate list>,] <e!°nt’Y’ ‘ }
q.'antgy»ttﬂ <delim> | cident> |
<olaag a@slgnnant>t:i <meta names> +(<terp'1i;t>)
Semantice o e

Titudn&l.hymbola are the syntactio atoms of a language..

.In theery they are treated as single characters but,
‘because of linltleions of character sets, aggregates of

'charaoters.may aleo denote a terminal symbol. - For example:

"+" ard "-" are terminal in FLEX and so also are beain

and news identifiers whose meanine is reserved. SCRIBE

‘allowa terminal symbels to be declared either in the form

of Bingle Character delimiters or as identifiers,

It may be that more than one representative for a
terminal is deeired for purposes of serving mere than ene
character aet or for clarlflcatlon. begin and "(" are
an example from FLEX. Syntactically the two representations

are equal and may.. be declared in SCRIBE as .an equate:

.(ngln, " (ll)

Many terminal symbols may belong to the same syntactlc

;?olasa and an abillty to assign them to a meta symbol can

S —

{n—:/j j

..... e el R

48

éﬁve a great deal of effort in writing the syntactic algorithm.
The multiply operators provide an example; they are usually
assigned the same level of precedence and this fact cdn.

be indicated in SCRIBE by the class assignment: mop =~ -
("*","/","%").: This provides an abbreviation or "parse

name" for the three delimeters,

In fact, every terminal symbol can be considered to
have both an "external name", which‘is the character
itself, and a "parse namef which is either the same as
the external name or is a meta symbol indicating membership
in a class, All comparisons in the syntax section are done
on the parse name.

Pragmatics

A table is built from the indicated ra&lationships so

that the textual scanner may’ separate the terminal symbols. and
discover their external and parse names. g

Justification

The terminal declaration supplies a finite state
algorithm in the machine with enough information to
completely strip down the text into primary syntactic
atoms which is typically the dirtiest job in compiling.

Examples:

"' from both sections--to declare all symbols necessary

for handling arithmetic expressions'''

R

=

oy

metas « (aexp, term, fact, prim, aop, mop);

terms « (n(u' lv)vv"(|v+|v'

aop <= (H+n’ ll_ll));.‘

nexp")’ mop - (II*T',

"/ll’

49

ll_:_") 7

e L

e ek b s e s mad

S0

3. The Syntax Algarithm

anrax

patttam | lxi

"“-r__

patbern el .'_. m

¥ K|
| mata srmbnl I [B ym bl l

syntax <~ ({patter listy);

{pattern list) :: = i(patfern fist) ;73 {patterndy
(pattem> :: = 1" ¢srack picturesy "I" Csemanticy Scany , go ident), ¢emanticy "l "
"l Lidenty {paltern

Glack picture) :: = f(mefo symbol)-«-} {parse names> |
] !

{porse nomes) :: = ”{(symbol‘)} Gymbaly § ¢symbaly } ¢symbaly ©
.

{symbal) = A [¢meta symbaly | ¢term symbaly :I

{semantic) = ¢identd | .emptyd
{seand #0% oscan | scan 2 | Lemply

il T T T N

yE

"& suantics

]

When a scan cpmmand Lo fagoaed, the tewt at the current

< 11

Cpoint is gerutinized and ¢ tezwinal svnkel iz lsolated.

This is leoked up in the takle That was orested by the

terms declaration and this parse nane and external ef the

LW e

gypbel i pushed inte the parse st

| 1
Lxdgple: %
ekt L

A it inwwmur ni)auw J‘jvg"i‘...xsﬂ .
b E

‘.-L l& I#v jnt ,.5 a 1.5 i

B, e e

- PR S X :
- B 'w |) -. o : {, i 4 {) .
parge stack { ident asg THERT .eoparse name field
. FEh i 1 B
after 3 taal’ T eda3t o, cexbenane fleld

(J o :) iL y ;-@ "‘?.M-vaﬂ.ﬁe Field . 1
i sl . '. ! ‘]

‘The parae-name field in the stack contains the class ..

names for the two identifiers and the "+". The value field
whlch is used by the semantic processor is blank.
P pattern to recognize this configuration would be:
{aexp « ident aop ident | suﬁ, séan> gy axp;‘err TIRY’
Tﬁe gection "ident aop ident" asks.if that{cgnfiguraticn
is pregent in the stack. It 19, so the semanﬁﬁc rountine

- 2 - D o . .
"sum™ is executed. This will be a veutine written in PLEX

and defined in the next section. It will be able to use
the pointers I and J which after a successful pattern match

are set to the lower and upper bounds of Lhe pattern in

el

oo the stack.

DA
-

v,
o O ST

i

Tt

o T A,
=4 RVEY

AR

i

ST

R

and executed

5&

(K always. points.

I I K
o ne

parse stack | ident | aop | ident | ...

after a. | _'aal" | "#" | 'paa3r| ...

nntch: N N

to the top of the stack)

After the return from the semantic routine, 'th&;s fi’fmt
section is examined to see whwhhwt or not & gduatiaa @a .

raqnested. 'aexp*" is present so tHe reglon cf the stmek

between<1 and J wlll bes replaced with aexp" in Jmﬁat#an 1.
ERURTRI 3 K |
-'-..........,......."'-’ A

paxsa suck 1"‘..‘ N T
gfter%#pe __1f7 "aqal' b

ot e e i

réduqtiqn:' [f“'v' 0

£l

Now the .<séan>-fieid is examined. A single scan is requested

text::{lé L 3 1 S0 A - ANV Y P P S -

parse=stackili anp i mop |

after scad:kl aal'i haEn ' . L

i

I.astly, the g__ is executad and contrul is passed to

e i

another pattern_-31n.thls czse, the pattern 1ﬁbaled Taxp".

o b mrrosre s ene

83

If the pattern match had not been sicceseful, then the

last field would have been éxamined,” If <empty> contzol .
woﬂld be transferred to the next sequentiél pattern,
If an <ident> is-pfésont, then the semantic routine vamed
by the idant will be called~-for this case it would he
"oiri"; .. | . |

A "% will alWaQs be acceptéd-in the matcﬁ.

Pragmatics

The handling of text, parse stack and matterxns is

accomplished by a compact "wired-in" algorithm. The patt.rni

themselves tequire only 64 'bits apiéce.

Justification

_ fhe algorithmic.form of the syntax handler though
somewhat removed fram the phrase structure descriptive
method. alloys the user much more knowledge of what is
going on at each point and thus makes for a very ceompact
description of a langyage. It is this feature which allews
the tables for FLEX and SCRIBY to be implemented in harde.

ware.

L R

TSI

PARES

RACH
AT AN

) -

Ve

example '''

expressions'''

metas 4~ (aexp, term, factor, primary, aop, mop);

terma‘k— ("("’ll)”’ (llfll’llexpll)’ mopd—'(.”*“,”/”,” II)’

DL
stort: | A
ofoms:' "
' aop
atomt | primary e ident
| primary < num
prim: | factorefactor "f" primary A
| factor <= primary a
fact: | factor i
i term 4~ term mop factor A
| term o= factor A
term: | term mop
laexp 4= aexp aop term 4
'aexp - aop term 1Y
|aexp 4= term A,
aexp: | aexp aop
Iprimary <~ "(" aexp "n
' aexp A

"''Notice the similarity between the above and the

arithmetic expressions:''’
{aexpd::=expd Gopd> {term”
{4aopd Ltermd
1 {termS
{termp::=Cterm) dmopd {factodd
| Lfactor®
{factord::={factort ¢primaryd
L {factord
{primaryys:= ident' num i ((aexpy)
LaopP: = +|-
dmopy ;= *l/ |+

combining the above three sections to

idt
ne

opr

opr

54

form a recognizer for arithmatic

aop* (II+II,|I II));

, §can »BO atoms , l H
,8can »EO atoms ' :
, sean »g0 atom 1 , {;
, scan »80 prim | 3
,5can »80 prim errl] 3
, ,go fact |
0 »go fact , l S
, 8can ,80 atoms I
, B0 term | s
’ s 80 term : l H
,8can » 8O atoms, | 3
,8can »B0 aexp | ;
? B0 aexp i
B s BO aexp ' ' H
,8can »g0 atoms , | 3
,8can »80 prim |3
. sgo halt , e::-r2 I);

phase structure definition for

AT R T I TH U EYN NN e ssrmarem s s

{) - | 55

4. Semantic Relationships

antax

(ementtcn (DR

semantics <« <list>;
L)

/

Semantics

All identifiers used in the semantic fields are con-
sidered to be 'global to the <list>, as are the y;ridhs system
routines to aid. the compiler writer. The identifie;s
must be defined by a quotatibn assignment in thef<list>.
Additional content in the <1list> is left to the programmer/s.

w4 discretion. The systeﬁ aids will be described separately.
" Pragmatics |

Esséntially, the semantics are in the form of a <case>
statement with each <case> baihg one of the identifiers
found in the semantic'fields of the patterns.

Justification

The use of FLEX as a powerful descriptive language
- for providing semantic referrents to the maching allows
translation building to be relatively easy..

Examples
(Will be given after exposition of system aids)

{r

‘ﬁ, &
N o

56

Global Data Structures and Algorithms

A. The Symbol Table

The symbol table is a stack in which irformation may
be retained about <identificrs> in the system. Automatic

controls for handling block structure are wrovided,

[a
. - Y
» - a

T o~ | | i |
| l | l

name flag value

Symbol Talsle Routines
New Block |
IT and JJ delimit a block of symbols. New block
causes a push to occur and II and JJ are reset to handle
a néw group of symbols.
01d_Block
A pop of the symbols delimited by II and JJ is performed

and 11, JJ are reset to their lower level values,

find (name, from, to, found)

e

B AL et e 10 s e

57

A seérch is peffdrmed in the range specified. “found"
is éet tovgggg and a global variable LL contains the
desired location if a match occurs. Otherwise "found”
is set to false. |
enter (name, flag, value, enor)

A search is performed in the current block. I1f a
match is not made, then the "naﬁe, flag, value"_indi“atéd

are pusbéd into the current block. If a match was made

':denoping that a symbol with the same name already exists

in the current block, "error" is set to true and no entry
is made,.

5. Code Generation

System aids in this area are currently somewhat
primitive. A canonical parse will deliver operators and

operands to the semantic routines in a polish post fix

-ofder—-all that need be done is to generate the two kinds

of operatcrs that the FLEX polish requires. The following

- routines will eventually be replaced with machine indeperndent

aids.
soptop)

In tﬁe FLEX machine simple operators are identical
with their delimiter repiesentation. sop ("+") will

o

generate an "add" command.

cop (op, value)

Compound operators are necessary for specifying declara-

tions, variables, procedure calls, etc. Their descraiption

J

and ase is supplied in Section V on pragmatics of the
machine. The user's intuition will be relied on,
scrval (loc, value)

Stores just into the value field ot & compound operator
at the specified location.

strop (loc, op)

Stores just into the value field cf a compound cperatcr
at. the specified location-:

Giobal names

"cpd" is the current process descriptlon segment into
which code is being generated. "P" 1s the current code

tocation.,

58

?

Rnren
STty

e R

e

)

59
Examples: "' a simple compiler for arithmetic assignment statements delimited
by wF nan
metos ¢- (body, stat, aexp, term, factor, primary, aop, mop);
terms & (I" H 0 ’ “(’)"l " "l ! "I mop (" * "l "/"l " ")I
qop (II + ", n -]));
Syntax e {) a | , scan go start,)
Start: | Body 4= "] set wp » scan 2 go on err 1|3
on: l ident "a- IlI , scan .8.0. atoms err 2 i H
Afoms:: men : , 8can B0 atoms | s
aop , 8CAn B0 atom 1, |
Atom 1e | primary & , tdent l idt , 8can g prim | i
|grimary + nun | om , 5can vgo prim , errl |3
) prim: | factor factor "f" primary & | opr , »go fact s
3
'factor primary & , ,go fact | s
) fact: | S factor "f” | ,8can ,go atoms 1
(-_) lterm« term mop factor A | opr ‘ , ,g0 term };
| torm '-" factor A : , ;B0 term |
term: | term mop , 8Can »B0 atoms, | 3
laexpa- aexp aop term A | opr ,8can ,B0 aexp |
:aexp : aop ternm A | unsum R 1B pexp l;
aex ;
P term A ' ’ »BO aexp l ’
aexp: | aexp zop | ,8can RO atoms | ;
lprimary & "(' aexp e , BCan ' »80 prim 13
|state fdent e~ " aexp A | assign s , go fold, err3 | ;
Fold: {body = body stat "; " | » scan 2, go arx, I
|body e= body stat "# " | s , go half, err 4 |);

Semantics & (

" mo,
1

set up"new biock; cop ("new",01) "set up for handling variables

idt & ‘enter (ext (), JJ+I, ewr)™ if nome not there, put in ™;

no,
’

‘cop ("value call", volue (LL)) " generate u fetch request

nm @~ 'numb (ext (1)) "generote o literal for a number" ' ;

"pick up ond vutput operotor from external name " ';

op - 's_o& (ext (I+)

unsumt‘-lf_ ext) ="-" then son (un min) else' ™

unary minus™

ussigno-'enfer {ext (i), JJ+l, error) "if name not there put in'™:;

cop ("nanie cally velue (LL)) "generate an address request™;

"generate a store comm~nd" ');

sop (u_‘-u)

head:
bed:

empt:

""'The compiler for FLEX itself is a good example'"!

flex ¢=scribe

terms = (_",",“;",’a)eginvl ,"(")’ (end, ")), L CRCILE
n[u’ ||]n’ "' new, if, then, else, ll#llll'll h’n.n’
com, uno.p<—(scrib'e, type, ("I, ceil), (1", floor),

sin, cos, atan, "1, abs, rand, prand, hash, exp,

synfax <= ("' patterns...

|

| body <—
| body <
| body €—
| body ¢—
| body +—
| stat <—
| selr €~

bedy
body
body
body
body
body

A

en

"n
'

un
r

end

II,II

Il]ll

metas @4~ (body, list, stat, selr, prim, labl, svar, var,
expr, factor, term, arit, rexp, rtem, aferm,
andl, oterm, orl, bool, assert, utm, vex, ifcl

trupart, aop, mop, rel, lop, asop, bup, unop,

iter, sop, set);

60

In, sart, length), "4", aop4-('f+'i,."*"), mop 4—

(ll*l‘ll II/'lI' “":-n[,mOd.)vlreI,".v(.v'=“[’“”#“[|l<ll’ Ilsll,’ II>II’
“3“)’ IIAII’ llv’lll !op*_(llxlll “"..-z‘.“[l‘}“)l sop‘__

(I_lnlll “U“I IIC“)’ asop‘_ﬁs’ isnl ne"l “¢II)’ of’
while, to, by, do, 'bd',' ", topsﬂbop, uop,

val, map), ident<=(array, field, act, leave, tem,

xin, yin, plst, plpt, pltn, control), (goto, go), ("7,

"any"), or ‘_(n‘_n’ ’as)),

| semantic field, scan field, jump field ,

I quot

I new

|

I coml

| endl

| equotl
I esell

s scan
. 5can
1+ scan2
, scan
, scan
,5¢an
; scan

; scan

+ go head
+ g0 bod
+ go decl
+ 90 empt
+ go empt
s go lis
190 sta

; go sel

r

r

ervor field "’

errl

T R

M~ ieh—

RS

atoms:

next:

decl:

svr:

mbr:

pris

body 4—
body 4
prim «4—
prim <4—
prim <—
prim <4—

lobl <—
svar ¢—
svar <4-
body «— body
body < bady
body «g—
body «¢-
VOr -

prim <4—
prim «=— unop

expr <¢—prim com
expr «¢— com

ident
ident
tops

ident

ident

svar
var
var
prim
prim
prim

prim

com

goto

.ident

begin
n EII

p o> »

com

quot

push 1
push]
push!
pushl

label
nops

' tps

decl!
decl2

unop

popl
uncom

,scon’
,scan
,scan
,scan
,5€an
,scan

,5can

- ,5can

,5can
,5can
,5can
,5can
,5can
,5con
7

,5con
,scon2
,5can
,5can

,5can

,5¢an

14

,scan

61

+go bod,
190 bOdI
+go pri,
+go pri,
+go pri,
/90 pri,
190 atams,
190 atoms,
140 atoms,
190 atoms,
1ge atams,
180 atoms,
+90 next,
+go otoms,
190 sur,
sgosur, err2
¢80 decl,
+go empt, enr3
199 bod,
+go bod,
190 vr,
7- atoms,
+g0 pri,
+go pii,
190 exp,
190 exp,
190 otoms,

f'_"‘.-

)

fact:

trm:

ort

rim:

rxp:

onl:

O1l:

st:

|

| prime~prim
| foctor

| term ¢=—term
i term -

|

| orit 4—arlt
| arit @

| arit <~

|

| rexp<-rterm
| rterm 4=

!

| rexp q=—

| oterm «@¢—

| ond1 @—

| ondl ¢~

| oterm g

| orl -

| or]l <=

| bool «=—

| bool ¢—

|

| set 44— set

| set ¢~

|

|
| ossertq-set

Ilf"

mop

aop

aop

rel

ot2rm

oterm

bool

sop

osop

prim "4 "
prim
prim 4
factor ,
foctor ,
term mop
term
term
term
arit. aop
orit .
orit
rierm rel
rterm
mp A"
rxp R
ond 1 ,
and 1 '\/"
and'1
or 1
lopor1 ,
orl ,
bool . Top
bool
bool
sefl sop
sef osop
sef A

popl

popl

pop 1
unmin

popl

mark
fill

mark
filt

popl

popl

asop

¢ SCan

otoms
prl
fact
frm -
frm
otoms
ort
art
ort
otoms
rxp
rtm
otoms
rxp
ofoms
onl
onl
atoms
Ol
o1

bl

bl
ofoms
st

st
oftoms
otoms

ost

Al £ A L AR s

o

A P Ao et e e

i

ve:

exp:

sta:

utme-assert of set
utm ¢~ set
assert
vex<4-uex bup utm
uex ¢- utm
vex
expre-expr " vex
eXpr - vex
expr
stat 4 expr
state-var ar stat
stat 4~ iabl stat
stat 4~ trupart stat
stat 44— gots stat
stal «g- iter stat
if cl a— if stat
trupart @— if ¢l stat
iter ~<g— while stat
body 4— body stat
body 4~ body stat
list 4— body stat
stat €— body stat
sclr «¢- body stot
svar 4- svar list
svar - list
SVar o~ svar scln

A

a

then

else

do

n
’

u,n
’

end

Ilm!l

n=u

J

)

a

pop |

pop |

pop |

fill

unop

mark
els
whl
com 2
cln 2
end
equot

esel

14

14

14

14

?

scan

scan

scan

scan
scan

scan

scan
scon
scan

scan

182
182

90

a9°

190
190
+go
190
190
199
190
190
190
+90
)
199
190
190
190
190
190
190
190
190

1)

ut
ut
atoms
ve
ve
atoms
exp
exp
atoms
sta
sta
sta
sta
sto
sta
afoms

atoms

sur
mbr

svr

, errd

1

, errh

’
?

14

, erré

, err7

E B R

|
|

R

64

IV. The User's Environment

Introduction

Most inﬁeractive systems use a special command language
for handling files, initiating jobs and communicating with
the compilers. -In the FLEX system this language is FLEX~~
no other languages need be learned. There are also no
special entities called "fileg" iﬁ the system as will be
seen,

Admitting the User to the Machine

When it is desired to allow a new user access to thel
machine, a process 1s created and named with his password.
This process will not terminate during the period that he
is allowed to use the machine, Most of the time it will
lie passive on the secondary storage waiting to be
reactivated which is simply done by the user typing in
his password on the console.

The user's process 1is activated, and he is now able
to communicate with the machine through FLEX and the
powerful editor which controls a free-running compiler that
is translating everything that is entered through the
keyboard to FLEX code. since his process is also deélared

active, the pragmatic system will attempt to execute all

produced code. This will appear to the user as though his

comndands at this lowest level are being executed statement

by statement.

1 e

{J

L3}
o

;

By.these méans the user may entertain himself by
performing calculations, editing text; generating new
compilers, and generally going where his thoughts lead
him. When he desires to cease running, he simply types in
a lggzg. This is the coroutine exit command and, since

the routine which called him is the process scheduler

itself, his process is passivated and the reentry point
retained.

On' the next day (or next week) when he again types.
in his password, his process is reactivated and contrél is
passed to the reentry point; he 1s where he was the last
time on the machine. This is why files (and file handling
systems) are unnecessary on the FLEX machine. Any declara-
tions he may have made (and possibiy stored data in),

have been saved to be used again,

Scope 0of the User

| The: user at the console is considered to be inside a
process description which in turn is interior to the FLEX
system and environment. This concept of system globality
fits well the FLEX philosophy and provides a convenient
means of allowing the user access to entities such as the
FLEX language tables themselves, reserved i1dentifiers

whose meaning he may wish to redefine, etc,

rar e

3

e

V. The Pragmatic

i e

tn o tis chaptor we Flrst counsider the wrebplems of
whysically realizing the P losowhios presantod in bhe
et Ous gection:.

There have been numerco. . app vachos to calving thous .

zyoblem; some succeessful, Miany uar ¢ ounsacoens ol

Programs 1 general also sea2n Lo woik accordindg Lo tiwe
SOHRE T aTio.

One bottlencck 1s tne aitempt to "do all things for all
people’; danother 1s toe tiy to mahe the program work at
10C% efficiency 100% of the Limes, The ficst melhod
usuallily entarls huge, unnaneyeable programs: the socoad
medans that much fast nardwacse will have to pe used.

The [PLEX environment orn the cbhyect machine takes a
different tack. First the machine stiucture may pe déSLgned
sO Lhat i1t Ls compatibie both with the language tnacv will
be executed and with the problems that will be solved.

Second, a4 statistical viewpoint is adopted, For almost
all computer problems in gensral on any machine {and in
perticular those probiems for which the object machine 1s
aditea nelther LO0% ebffic.ency 100% of rhe time nor
blindong speed 15 necessqary. Foitunately rrom the softwarze
peint .t aow, the first 1s not needed and thankfully, for

the price tag, neither 1s the second,

e

EOTTTRY TNt R ROty ke

kb
]

O T O N e

AT RS ATAR

s

P
¢ "on,

67

The environment seeks to keep the overheads to a
minimum for things that are done 90-98% of the time.
This means that most of the time the machine will act.as
though it were far larger and fastef than it actually as.
Witness some statistics from Stanford whore a Burroughs
B-5000, a machine suited for algorithmic languages, actually
ran most problems faster than an IBM 709C-~a machine whose.m !
hardware was significantly fasﬁer than the B-5000.

Of course, océasionally, the piper‘must be paid. The l
FLEX system seeks a graceful degradation in performance
as the load goes up. The machine simply appears to slow

1 . .
down. When there are too lmany active segments or 1umerous A

quite large segments in core memory, an increasing hurden
is put on the secondary storage. Where, most of the time,
the cheap secondary storage éllows the machine to iook
as though it had a large core memory, now saturation will
force operating speeds to approach the speed of the
secondary storage rather than that of the primary.
Another interesting consequence of this point of view
is that the environment works quite independently of the | .
particular storage limitalbions and conversely the efficiency

of the machine depends very much on these same limitations.

What does this mear:

160 Idaal ‘loenio..

) Maiac N
S .
_'“"“\.. tay
- =mu,, ., ~
\\ . "
N

: 8k
performance 4k mmmalﬁ\ n@mﬁ '
‘|

L oof tine 10% 5& 0%

it means that for MO

|. . g
vhiems, an increase’ in enory |
Giie will pot drasticaily improve periormance, but ic

will dramatically reduce .«

percent of time spent in

orerhead when the system becomes clogger:.

It also means chat - physical syatem ey he expanded

Ci raduged without reuqi. ing Sjustment of Programs--a handy

featyre, Heat Programs 1l ast run any differently with

WOLRANea TS in e X¥: oA ey ol run significantly bhetter: - ‘
srill fewar will courini. ol thie w ot

Reproduced from %
be?t available copy

=
T

1
2. Segment and Pxocess Control

a. Segments

In the FLEX operating'environment the basic logical

strueture and the basic physical structure are one and the
same: The segment. Logically, the segment is a.contiguoue
strlng of 16-bit words in core memory and secondary storage
whose length may be changed with varylng degrees of
effort. - .

. Addressing in the system is relative to the segment

net to any particular memory location so that a particular

‘'segment may be moved anywhere without disturbing access

to it.

- | Seqment] displacement |

Typical Segment Address

. Coré"Memory

High speed memory initially con51sts of one segment called

‘garbage. All other segments. in the system are created by -

| portlonlng the garbage, .An attempt is made by'the.system

to 1ntersperse garbage segments between active segments;

This allows some expansion without rearrangement of other

’segments.. This strategy,w1ll work well w1thorelat1vely

static entities like process'descriptions (code) and
arrays. Process stacks are another matter and some

shuffling 1s requlred
. i

R A AARARAARAAAAAAAA, Y 7777777777777777
LR AA DY CII1107727275277077 A LA LLLL L YL 4LLL
AR 1770272777777 777 A
AR 7777772700 222707 segment 4
VP IIIII 1200707 ‘
p} F1I 11202270, 7 AL
g(j.b(]qeh/.‘///.’///..«//// segmenf 1 1127472777747 777
kK 2117272277202 777 men
b /77070777727 7777 IIFTTIIITIIITITTY
AR AR AR AR /27027027272 722777A V0101070220 77272777
AR AR AR AR V777777207 2727727774 :
RARAARAAAASAAAA V//27222222227777 4 segment /Z
[/ 4000000000000/ VTV VT TT I I T T T ITTY
SARAAARALAARAARARS 1200777772777 2777 4
V1122072077727 777 segment 2 2PGLLGLL LIS A%
V17277227277 77277 t 3
0L /27222727 22227277 segmen

Segment Allocation in Core Storage

At this point paging shnild be considered. With
paging, the logical entity (variable length segments)
would be made up of one or more pages of some fixed size.
Paging has some advantages in that reclamation of garbage
and transfer to seconcdary storage is made easier. The
disadvantages, however, outweigh the advantages for the
address path is more complicated requiring two table

lookups rather than one.

| 'segment | page | displacement |

Typical Paged Address

In keeping with the strategy of optimizing most used
operations (and accessing memory is certainly at the top
of the 1ist), while allowing a certain amount of dirty
work a small percentage of the time, paging is rejected
as too expensive for every access. Accordingly, segments
are mappad contiguously and memory must be reordered when

one segment threatens to overrun another.

PV ——

e i o«

.

?

VIP10P777277777 AAALAARARRARR AN TIV I TTTTTTYTIrY>
A o e
Y/ I1I177777
i segment .
segment 2 WY VY YYYYYYY, AAAAAAAAAAAAAAA
TT VYT yy L24220202227727777
Yy yyyyyy, se menf 2
segment 1 - segment 2
’///,/,//,,,///,, YV 7277 7TV Ty ryr
R A AT, 0000000054055 YYY YV YYYYI
AR .
170772727727 777
L207070200227777 555554499559 segmen
3 . P
growing segmen: remapping segment reclclmlng gcrbcge

There are several ways to remap segments. The cheapest
is to find a large enough area of garbage and reallocate
the segment. If this cannot be done, then garbage must be
collected and arranged to form a large contiguous free
space which may then be used for allocation and new segment
creation.

If no garbage is available then some must be created by
transferring one or more active segments to secondary
stecrage. This operation is usually called swapping. If
there are many segments in the system, but only a few are
used at any one time, then the swapping overhead will be
low and the machine will act as though its usable core
memory is much longer. If there are many segments, and
many are accessed, then a system clog is created, and the
apparent access time becomes longer.

In all cases when a segment is expanded, it is not
lengthened by just one word but by a number of words equal

to some fraction of its current length. This allows some

room for further expansion without disturbing the system.

o

Jam

rcondary Memory

As 1t 19 pseudo-random in
handled 10 a sindlay manner .
eJowez. the 1ntervals Letween
Once a segment 33 swapped out

secondar yimenory until an acce

We now have vhe sane problem that was’presented-to'us

N Coraes

being swapped n

72

hature, secondary memory is
The scale is largef, the time
garbage collection longer.

it will remain in the

ess 1s requested.

garbige must be tound to accommodate the segment

Ageln 1f no garbdge can ‘be found (or_.“'

maue) , 1t must be oreated by first swapplng out one or -

more avtive segments. hen the access-request may be

swapped n,

The vealizalion of these algorithms will be presented

abler process contiol
intertwined,

b. Process Control

1# discussed since both operations are

The basic data s:ructure hag been discussed--now the

basic execution cntity will be

Definition of Termg

A process description i1s

covered:

the process.

segment that contains

executable code generated by the compiler. By its very

A

nature this code is ree 1ernt

which means that it does

not modify i1tself and thercfore may be in several stages

of execution 2t & given time.

73

A process 1s just anlinstance of execution of a ﬁrocess
description; there may be more than one process in
existence at one time for a givenlpfocess description,
Parallel processes are required fbr bpefation of the
system. The IL/0, the display, the keyboard, the compiler,

etc.,.must be able to run conrurrently with the user's

programs and with themselves. Moreover, the compiler .

which is inceracting with the user at the keyboérd way
have to run in parallel with a logical "copy" of itself
execating the com operator 1n a user program.

Since this meéhanmsm 15 needed it is no trick to allow
the user 1in FLEX to create concurrent proéesses of his
own-~all handled by the same algorithms.

This ability 1s literally inQaluable for all kinds
of programm.ng, recugsion, and event-oriented simulation-f
3 primfe use for the MM~8000.

Process Creabion

The basic idea 1s s:mple. Since the process description
{the code) does not modity 1tself, it can contain no data.
Therefore, it must have some way of accessing data which is

independent of i1tself.

== [, | data reentry point Al

process
description

Feentry point B

e . . e e B

P
{

74

Prosess Description with Tweo Sets of DPata

One way this has been done in cenventienal machimes is
to create a separate data area for aach process and to foroce
tha process description to access all its data through
a base reglster which contain the low order’ address of the
désired data. Now the process description may be switched
from one process f{(the handling of déta A)'tolinother (the
nandling of data B) with case Provided, the feentry-point
of e@ach process is retainad while the other is being
exeouted,

Lo effectively run the two processes in parallel, al
fixed time of execution may be assigned %o one process
sefore the other one must be started up., Thiec is the

time gquantupn and typically is about 10 mg.

It is not difficult to generalize this idea to the
FLEX enviroument and the segment system,

Th2 procegs description is a segment. Ena~h Jdata

aree becomese segment and the base register refdrs to the
deta segment name. The reentry points may become part of
their essociated data. All that remains is to férmulate
& scheme for scheduling the executien of each proaess. 'A
simple list containing the process names which is visited

"..

“ound-r oban" fashion evecry 16 ms will do.

EOCH R PR - S ’ | - N /

~3
Y

oo

.M/f““\\\\ process

description

e o o o d

/ for both A

current Nt A2
arrent eve and B

3 ~t
o O b

Pt AR P —

PLFE Process Contro’

he: figure shows the svatem about to execute B. Thisc

oo tatied somivation, Dusano execution, process B 1s saild

oo oorave and tne peraod during the duration of B's

Fae quantim s sald to he an gvent of B. .All entities
cn fhe figure are segments, ond thus may be swapped,
b S mataCl
Oreavse of tho well-nested properties of algorithmic
Ladut s 0 gensral, and FLIOX 1n particular, the data for

A4 L 0a3s 15 an extendsikle sogment called & process stack.

Svera anivimaticon which s necessary for each event is
retaned in the base of tne s.ack, such as the process
deccripbion name and the r:entry pnint associated with it.

Woais Bous having oo evont, the cther processes are

Saxtl Lo be passive. When the procespg stack i1s collapsed

."W__.....__.

o,

76

and the process name is removed from the event list,

-

the process 1s said to be tarminated.
- = edt s
Passivation
H ' . 3 ' : K

A process may be mdde paSSlve by ‘more than just the

ending of an event, In quELal, when a process 1n1t1ates
0o 0 A B : R . \ s SR !
an 1/0 operation, it will be passivated whllebthe I/0
A o -°0N N B B W : oo ') B

is running.

v . ¢ : L . . iy . 0 ’".: N q ._'-' kR (

Indeed, all the reai-tlme processes such as the I/O,

¢ - et

the display, the keybu ard nandltr,'etc,, because they

cannot walt when something that 1nvolves them is happenlng,

‘

have the ability to passivate (or interrupt)'any other
process and to activate themselves.
' ‘ 1,

Thw Lound robln anOthhm must be modlfled sllghtly

to acc ommoddte the Ledl~11me processes.

— o
[AT Bl
> —»Ih! \\\ - =3 For
B I‘i;\\‘ —= [&
T /’f A and B
Y i P | A
j [CUErant 3 d
‘ _g& : r[""-.- : -y
" n O P.S. 1/0 PD
{ eto M o - ' in
| — . _ . . read-only
keyl - B I _—. memory"
\”DEFN\‘ |- i '
_____ o /,~-~~~-4-.1 | ;
\,l/q ~ e p.g,for

Fvent List

s et

e

77

All the real-time event notices are logically
clustered. Between e@ach event they are scanned by the
scheduler to see 1f acl. valion is required. If not, the
process pointed to by the current-event pointer is activateds

b

Aboany time an outside iatorrupt may point into the real-

time area. When this happons, £le current event is passi-

vated and the real-time event activated,.

o ————.

A FPORTRAN or ALGOL program consisis of just one

s i . . . e

process and so do many proarams in FLEX. Therefore process.
handling and access should Lo optimized. This is accomplished

by Liltering every re.ae

~i Lo memory through one of four

ha

(]

e r

1

|

|

;
grsters., Since Lhe L@urranéement of memory regquires !
an activation-<of the darbaye process, during an event, core
‘memnory 1s still and the base reg;stérs may contain
absolute addresses. These addresses are calculated”during~‘
an activation and are the only contact with absolute address
that the entire system has. {Excluding the gérhage

collector, of course.)

Base Registers

During an event orne base register is free for system
use. Another holds the base address of the process

description; the next contains the base address for the

process stack. The last, as will be seen later, will aid

in accessing other segments,

FoEm s r A S e

A 2y ey esy 78
b i _.,’,(\. 2., memory r"r'};"'fmf"'f"’-"'
et R S 4 /'-', - KIEANSR EA
e lropy o i tane)| '|| 2 _') \,‘l
!f"";' 2 ‘I“L.l ,'u//' 1‘ AN AT ‘)/' vjf, X -"\-'}/l N :(le-/{\"’/'-}"

= rocess
escription

sl process stack

W M POT>

T segments

] @MY 2
" E
Lp
o oy . D
buse reg R
control E
E
S
Addressing S

It can be seewr that althoujth the FLEX environment
hags effectively dcne away with direct addressing and
introduced relative rand moveable) data entities in the
segmenting scheme. t-ings actually hold still for the major

part of the time and the basic overhead during an event

shoct add whose time will 2e absorbad by the micro

o

is
c¢hde hardware.

Data Segments Associat..d with a Process Stack

The exact format of a process-stack will be discussed
in the next section or exccution. Now it will suffice to
say that each slot in @12 process stack is associated
with a different vari. le name in FLEX. During compilation
a variable name ir try sformed to a relalive index in the
stack. The slot ‘tsc = may hold a numker or a pointer {called

a degcriptor).

W

e A S e ot st . e iava

79

If the variable remains unmapped and contains only
snumbers> then this data may be accessed direétly with
no overhead. 1f, however, a <list>, any other. entity,
Oor a map 1s assigned to the variable then the|data is
put in a fresh segment and a descriptor is created
containing the new segment name and a description of the
data. The descriptor 1s stored in the’ slot and is effe-
tively a self-typed indirect address.

Bxample:

'new a,b,c

a-1l,:; }
b-(3,4,5)'; i
!
5.0)
‘c! |Inum num : |
Rame
'b'idatal 3 [1 |~ cam | 200 |
“a' fnum ! 1.0 N .] ‘M
re- - T~ e | UM 3.0
| P.D. entry |

1 ¥
process stack segment 'namel

Program and Realization {Schematic)

The slots are created in order and are initially set
to . 'a' contains a 1.0 while 'b' contains a descriptor
which effectively points to the freshly created segment

'name l'. Or course, the data descriptor in "I" cannot

IR i

Y

‘im/"'

80
: i ‘
contaln the absclute address for ‘rdme 14 bédause 'name 1
mev have midrated to secondary storage during some othex

foocesges evont. 8o 1Lt must contain a name for the segment

and “he absolute address at any given time must ke looked up.

Unicue names for freshly-credted segments are doled

& by a syslem routine and copsist simply of a 12-1& bit

The Sugnent Assoclation RN
“he operation that needs :0 be performed is the same
48 the assocrabive oparations 2n FLEX and the same -

mechanisms ard formats are used. When a segment is c¢created
crobrpught into core storage, we wish to form an association
thugs Lot 13 base address of seg-name;

Tha invorse operation needs to be performed when the
sogment 1o accessed: 7 o1 lase-address of seg-name;

Thigs will return the abesolute location of the segment
wiien will be placad an the fourth base regikster and then

veed. When a segment i¢ swapped out or destroyed, the

s

agsocliation needs to be removed: ? iga baseraddress of
B - NADE §

Tf the association feills, then the segment 1s residing
or the secondary storage and a somewhat more leisurely
suegrah may be made to find it and bring it into the core

MEMOT Y .

e s - e S G

-4

o J s ..m—ummJ
S T T RN AT A bt .

i |

81

(W

The Association Structuse

This will be coversd .» great detail in the next

i

section on execution, but Lhe Operation may be:demonstrated

schematically. Of course, the table itself is a segment
% and has a logical formst .- shown:
]
)
rg') ak
Link addl
——ms s —
;&'F-___-"‘x it
i q T @ L
maie] ENW wat N
|
N i hashing area
- I | "l*—"- .
——— . I[. f
-y ST |xHx
. f \H) "name 1°'
s S e e L | e
' / | . (ﬁﬁ.'name 2"
L & — L -— !
1
s I'] d
1 i |
A= e L J
free expe.. .. . ond 3
|
T'he Segment Table
Assgociative hardw.. prohipitively expensive, so
Lt cannoe be used to r 1., & the information. Feldman [7)
and others [8] have sf hashing may be used to H
stimuizte an associate . v very effectively. The method
used 1s similar to thar .. o ap (91, although the hashing i
technigue 1s derived 1. . t1fferent source.
;
&

atem,
41

'&t/

.82

The name, a 12-16 bit number, is reduced by the hash

" to a 4,5, or 6 bit number which is used as an 1ndex to

search the table. Since not even the best hashlng,

algorithm can totally eliminate thejpossibfiity of "two

names hashing to the same place (as 'name 1 ena 'name 2!

have done) provisions must be made for this eventuallty.:“.
After the index selects a row, a comparlson must beﬁiﬁ

made to see if we have unlqueness.. If we do (percentage

dependent on the hash size), then the absolute address

- may be delivered without further ado. If the name column

COntalns a Zero, then there is nothlng in core memory that

hashes to this slot, and the seément must be out on

.secondary storage.' The same*applies to the case where the

. : : YogS a1 q s & R0 —
comparison fails and the link field is Zzero indicating

+'a chain“is present. 'The ovérhead for a Qood hit is 2 650

us memory cycles. That for a fault is 1 or 2 650.ns

rmémory cycles.

Now the high overhead case is considered. If the

absolute address of 'name 2' is required, a chaln of

‘multiple hits must be followed. Fortunately, this does

not happen very often.

In all the associative structures the percentage of

»multiple hits is calculated. 2-4% is the maximum allowable

level; when this is exceeded, the associations are

ST

4w %‘
: ORI . i
recaleulated for a luvge shing are: which pulls the
mpltiple hits down o = ol o level,

This scheme follww: e philosophy of the PLEX

snvireonment, HMogt of th uma % loeks llke something
much batter than it is: assevdabive nomary, For 2-4%
of the time it loéké i List=-procs sy ing table, . 1f.
Seyment Craation
A gegment is croe. converting «n area of garbage
nte active storage. Lor this cogment must be found
and entered inte the « table.
Since creation and coruction arc dunamie, a way |
must be found to maximea: ptilize the snet L number of
segment names availlab! o focould he done by maintaining
a pocl of unused namcs 20 to provide & new, unigue |

iabel for & segment-~but (15 ig CQstiy 1n terms of

storage, sc a differen: 1 Ls taken. i
When it is desir~. ceate a segment, garbage is |
found {or made) in the i@l way. The machine contains
A random numper generat wirch 18 used to select a name.
Ar access request for rame 18 then made to see whether ,
oY not that number is 4 ¢ 1N use as & segment name., ?
YE ut is, a new randon - 1s done and a new test is i
made. Very rarely wil' 2lected name »e 1n use, go the %
algorithm will almost . 5 worl the {.:st¢ time, |
a1 o
e . G

84

Jraa i

N
The new name may then be entered into the segment
table along with the absolute address of the displayed
garbage and segment creation is accomplished.

Criteria for Swapping

How is a segment picked for transfer to secondary
storage for the purpose of creating garbage? No swapping
algorithm has been shown to be really satisfactory. The
one presented here will work quite well, and following the
FLEX philosophy, reguires no bookkeeping on each memory
aCCess.

The influence of ithe compiler extends directly down
to the lowest level of the machine and provides information

%:; that is not commonly available on other machines. Some
of this information has to do with an insight into the use
to which eagh segment will be put which may be partially
derived from mapping conventions and process use.

The volume of segments mapped as 8-bit bytes (text)
will tend to be high--yast use is limited by -storage an.
display restrictions. One might hope that these segments
will migrate to secondary storage in a fairly rapid manner.

General data segments have a somewhat higher priority--
yet they are clearly the next level to be thrown out.

Process descriptions and process stacks certainly
have a higher need to remain in praimary storage in order

to sustain a rich amount of process activity.

SLREATR A

f |
e

g s A T St b B AL S S

85

The real-time process:s, the event list, the segment

table, and other system entities need to maintain residency -

in primary storage all of the time, Therefore, they

should never be swapped.

G 20 3 40

AP IIIE N B,
//{ O N 7S
N 7
N / /};,"‘
VI A N
//.j\ g ,///i ~
f/. N AN
LLLL LN e N T —

Priority:

3%
(8]

1 4
These priorities may be expressed as a weighted
conditional probability or as the number of standard
deviations on a normal curve.
The swapping scheme now works as follows. A random
number 1s selected just a: 1n segment creation. 'This is
hashed to locate a slot in the segment table and thus,
eventually, a segment. The type field is examined for
priority and a questicn is zsked whose answer is
welghted towards that priority. For the normal curve |
welghting scheme, the probability of a yes answer to the f
gquestion: "Should this segment be swapped?" is:

area ol a number
total area of a curve

Tf the segment was text, then it would have a §7%

probability of being swapped and a corresponding 33% chance

PZEse

%

86

of staying in. A system segment (having.priority 4)
will have a zero chance of being swapped.

Suppose now that a segment is in heavy use and is
swapped., Then it will come right back in--but the chance
for it being swapped again 18 how-quite small since a
random selection 1s used. Conversely, a segment in little

nse will simply remain swapped.
SES% :

The end result 1s that all segments in primary storage

are scrutinized uniformly and those that are active tend

to remain while those that are not will tend'toward

secondary storage.

SmE
R

SN

i

R T

25
s

Sltad

330

9‘:“\ b2
R

Ay

TR
ety

S

e

I
%

e

)

S

R

b

o R SR S

AL LT T

£
Qa

o

i I

Wi

B

87
The Strategy Far Segment and Process Contral
It naw remains ta put everything tagether.
P g ‘
e]
0 X - , DD y -~
C J . nt . AY
BN R _jactive B 3
S T T | lactive ‘A . \
S I ;)
L M 4 active iKey 6 \
g E | lactive |Display N ‘
T |active [7/0 Process Seack ‘A | dace
status nome l Tak ‘4! e
|
\
5
] ""\L\
v endEay BTk
] .
P 3 o L ||.1I
N v abs nome . I| |
no|4 L LTI [|
L . e * ¥
] AT r
B 5 = ol]
i B |3 - e G LI Frocecs
i S degeription
-El 8 |9 " y gl
H fi il p
T it : ."“"‘-—\..: W'
—_
[4 H i,

L e -

The dotted lines are affective pointer (meaning that the reference really has ta go

Frocesa
descripklion

Irbeean
pidcic

i

5E Bh = |

-

Base Registers

thraugh the segment 1able. An event for "A" is taking place as shown by the base register

configuration.

(AR

Byt 1on

B R D EeR)

A pr. s descriptiot ls: & segment thak wmiky be evecuted

B

Hootoe hardwar s of che VLER machine., There are bagically

boe ®onde of sniivies contrioed 1o this segment: simple

el s ove, compound opercrors, and numeric and string

w 7 3 R
; ; vp code | ovalue |
LA ¥ o Aocompound overat yr
T s A se determines the length to be
™
s O Pt i Lhe FLEY cperators are
ok bed sl wengs) e o o The vames, requests for
TS ;0 u: cound oparators,
oo nd 1 \
op code] a1
Valoae oall Sha fe Find a value, puat 1t on top of
ACach
pame call CRNEER S vimste o descriplor, put it _ .
on top of srack ' : 1

araplacenant Jump 4f ktop of stack true
dispiatene Jumgr 1€ top of stack false
digeiaceman Jump tnconditionally

ARSI

nuaber Ll ac create space '
nomber ol uias o match actual with formal ' :

Wt er s parameters ,

Lmma s Ve ROr B iEe Ccreati . new segment 'vector : 9
o Siza' Long N |
Lt eger create a stack number irom : . l
integer! ' |

Ced sddyessy used for operand for goto's

Rl

B

s

Tha oodiog 15 very compact, Mo add Awo aunbens, it takoss

>

3 i = . T 3 ;,ﬁwu'e
Bohite o cne s an Sracks [TRE T A 1wy} CBY 52% i
: 3 Ay ¥ : L) oz
- ; Ll v atal St Seas Rl LG
vl [T S ST ATI LT RUR S 3 L] <1 .
L Y e LT T IV s NI Pk
§ IF Ao b ; gy e e E“‘“’ "y
d l=n c1 bath oo Poooan SRS o

Peon M tespect b Coooomwe b sangle address nachines

A " 7 40

! e auany

LUIReE cd TP OF G LS

T A N SR e shapes and si1zes., LOaE {4+ L

\
coo e duds e b onaenad s . by the short form. Lasdges
3
al ; s hardled by tonget Zorms.
=
e i ler arrve or o the operators in polish postﬁfgx
Foow, Daocution gs daae Leraelly except for jumps,
ree Laral ro . and talenr meds, recults are gtored in the
prarmas stock whach hng Lee following legical form:
e

4

e DR it edat G Al LT S
B i

b

AT

AR

TR
R
<

P
!

QS

bogin

i } ot T g

i X ‘ |

il In o ' new b b*“‘_.')o.,l.‘,'
4 i - .

b (5 N

LApOLEY LS

e e ‘_11? -h>.{B@&TZ] Mﬁwlu.¥£§¢_50. %]fﬂ

%

?: ’ Cy 5.4 begin
' e . ‘ 8N m s fauharee. st A Ao
!; - [nam 5,4J
, L : o A Bl e W S B (A, S

B

new X,y; x-93,4; -

.

g

i i gt

| : [Raw 2 TRE TS [aum [8ITe }?3§"%'
t

| - i

5 , |

S RO SN

LBy (new 1, krie5 N

g | ACR S Fa

i 4 : E | em }‘,:,9} UL 3~J na 9J 1it5 13[}]

ariith)

ST [
o168

s ingrr.

Igomma 21 end‘

LAt L

snd!

& N, . it o o - ‘. : o
{ L i %Fomm&]éw end] Ej A
{ L pdeeyl I 1 2

: -

next pperator
& d,
; to bhe exracuted

; 28 la~-bit words }
of code qunegrated *
;

Reproduced |

C rom W2

besy available copy. %
7/

e

T
3 i N
= -~
. .
h v
3
R
$
'
3
2 Ky
“

i, bthe ompiler is 3%&

o

i

J J At
wlarabions willifall

t
[y

Yo i

, mil what os andeﬁ

!

Ll cowle e ﬂﬁ'iﬁﬁﬂﬁi?f@m
Reproduced from
best available copy.

fatmiaun section Censisting

eyl wEE Ly W peintey
chanism 18 used by
i i #i the
. 48 Lo tewporal i ly
Y AL LRTOry are RRRETY)
W VaT Yables are

o temches Zere, the segment

e name of W o1s referenced

e L the Stbh Locabion

o n the

b s

A o
n?

Pogs Lk uREY XL T
= g <

A

\yji" OO T

nel e

B Y

re cal

203

92

© new segment frem the vecter
a data descriptor. This

the drawing.

L .

LA}

cw@&*&g&ivation) is realized
Reproduced from
best available copy.

x |{"ve | b jjve | e |

W, ¢, 1)

5 burlt vp in the stack

LT creates the statuys

)

.he vectox from the parent

agmeht) , enters an event
ssjvates the parent process.
s e S Ry e .

= parent process will be

v reactivates it by executing.

~placed by an QEEEJ
cesn 18 to be created, then
same emcept that the parent
cerurn from the new process

while a leave will simply

me around.,

Recursion

Recursion is easy in the FLEX environment.

93

Each

parent process simply creates a npew child which 1s linked

to the parent by the returns.
used so that just one 1instance
at any one time-

Following 1s a subroutine
determining the factorial of a

fact - 'new a.

The I_EEITfi operator is

of the recursion is active

which calls 1tself for.!

nunmber.

ii a = 1 then 1 else a * fact (a-1)';

" 1This creates the following structures when activated by

the next statement'''

display ~ "fact (3)

fact (3)

1st
instance

4
{ I

All returns from a call
parent process also transfer
from the returned process to

of the parent process. This

2nd
instance

"#fact (3);

i

6.0

3rd
instance

Reproduced from

best availabl> copa

as well as reactivating the
the top element 1in the stack
the top element in the stack

is the way results are passed

back when a procedure 1s used as a function.

94

Input,/Output Conventions

1/0 Devices

I/0 1n FLEX does not require anv special statements;
1t 1s handled as a generalization of the assignment
statement. How 1s this realized iq actuality?

Each device has a reserved variable name associated
with 1t and, hence, there also exists a slot in a process
stack somewhere 1n the syvstem that is also associated

with this name. This process stack is the I,/0 process

stack and 1s pointed to by the "1/0" event request in the

real-time sectior of the process control que.

r
e
a
1
t o . S B
.l[= :]
"1 Jro] reape 30 [
event | 'tape 2' |__
que) ‘tape 1' |
/ “'tape 0' ;
DR1 [N
DR2 43_;*_::¥:“
DR3 [lm;w,;ni§> Line Going Out ...
' ! //"’ - . - .
printer \DD}///1 o3 §)
'printer L%\\T\\: (o 1 3! = [5 1.2 { !..6;]
'punch' % \\:E\\\
P S NNNANNNN |
‘cards' DY/ 7] - q-w [flofr| fal |+] |[x|b| | ...
I/0 process Card Coming In...

stack
1,0 Control

An I/0 interrupt uses the number of the device that

caused 1t as an index into the I/0 process stack. In the

95

slot associated with the device there is either an 0

or a data descriptor pointing to a segment which contains
data to go out or data coming in. The figure shows an
execution of the statement:

printer 2 "al3 = " 4 al3#4 " b22="#b22;

Since no format of any kind has been specified, a
FLEX free-format 1s assumed. As the concatenations are
executed, a scratch segment 1s created in the usual way
to contain the generated string. When the "«" 1s executed
1t first looks at the description fdr the storand. It is
marked as a temporary and therefore only a name transfer
is needed rather than a copy. This is done into the slot
in the I/0 nrocess stack which 1s noQ marked active.

Some time in the near future the 1/0 system will
deliver an interrupt saying that printer 2 is free. The
"printer 2" device number (in this case: 4) finds the
data descraiption in the stack indicating that something has
to go out. This is set up and that data is squirted out
on the channel coax. The "printer 2" slot is now marked
empty and life goes on as before.

If the above FLEX statement were in a loop for printing
out consequentively generated values of al3 and B22, it
might véry well be possible that another "printer 2"

assignment might be made before the previous line was

(s

96
transferred out. The answer .s simple. If the "printer 2"
¢lot does not contain an i, then the current process is
passivated until the next time around the round-robin. By
then the line may or may not have gone out and the
algorithm 1s continued. Eventually the line will be printed
and the current "printer 2" statement will be executed.
Naturally, more than one line may be output i1in one statement--
a vector of lines may be assigned. The above just says
that an I/0 statement to a unit must be physically realized
béfore another to the same unit may be made.

Input is similar. While assignments to the printer
have been going on, the card reader had been active. An
interrupt occurred saying that 1t had something to deliver.
A data descriptnr was found showing a read request (one is
always there f:: pure i1nput devices) and a card image was
delivered to a newly created scratch segment. Sometime
later a FLEX statement might be executed:

new card - format 1 (cards);

Formats in FLEX are simply functions or user-declared
unary operators which take a string as an argument and
delaver a string as a reult. The card image (being a
temporary) is renamed as the first parameter of format 1
and 1s thereupon operated on.

Pure input devices are immediately supplied with a
new data descriptor 1input request. So the "cards" section

1s again set up to receive a card.

9w

Two-Way Devices

These are handled in a similar manner to the printer
and punch except that both read-request and write-request
data descriptors are used. Also, it is important to note
that, since all I/0 devices are just variables in the
system, they may be mapped and then selected on as the

data enters or leaves the machine. Suppose only the

first five words are needed from a tape record, then the
following statement might be appropriate:
buffer « tape 3 [0 to 4];

Only the flrst five words will be read in and transferred.

98

Vi. Progress to Date

Implementation

Two FLEX compilers have been programmed in ALGOL
on the UNIVAC 1108 and have been running since mid-February
1968. Several partially successful attempts were made
to combine tne compilers with a numbér of the operating
t2xt editors at the University of Utah. The failures
were partially due to the inadequacies of ALGOL as a
real-time and process language in general, and in parti-
cular, to the very real defects of the UNIVAC version of
ALGOL-60.

Implementation of the interpreter has been severely

.delayed for several reasons--the main one being that it

took longer than expected to work out a rationale for a
segmenting and swapping system that would work on such a
small scale.

Current implementatioh is now taking place on an IBM
1130 partially because the machine can be dedicated most
of the time to this task and partly also because it is
small and does not tempt one into grandiose schemes.
Implementatioﬂ on a PDP-10 is also being contemplated.

Future Expansion

The process-oriented nature of FLEX should make it an

ideal kernel for numerous discrete simulation schemes.

s

99

A.search for primitives in th.s as well as in the semantic
transformation area is currently going on, and it is expected
that some fruit will be available for plucking in the next
month oﬁ.this field of discourse.

Application packages are also being studiéd with a
view toward both allowing FLEX to do something useful and
pProviding a test-bench on which to evaluate the system.
To this end;ithe solid~state circuit design program deve10ped'
by WZR; Suthérland on the TX-2 computer at Lincoln Labora-
tories is being eye-balled. FLEX and LEAP (tﬁe implémenta-
tion language at Lincoln) share some properties--notably
the ability to étore and retrieve associations--and<it
will be intereéting to notice the difference between the
256k words of fast memory on the TX-2 versus 4 to 8k

smaller words on the FLEX machine.

A P

<

NOTE :

100

REFERENCES

Neur, P. ted.) "Report on the Algorithmic Language
~LGOL-60," Communications of the ACM 3 (May, 1960).
pPp 299-314

W.rth, K, "EBuler - A generalization of ALGOL, and its
rormal definitien: Part I, Part II," Communications of
fle ACM 9 (January, February, 1966), pp. 13-25, 88-99.

Floyd, ®.S., "A Descrint.ve Language for Symbol
Mapipulation," Journal ot the ACM 8 (October, 1961),
o]+ = Lo oW

A , "An ALGOIL-60 Compiler," Annual Review in
U -+1C Progiamming, Vol. 4, 1964, pp. 87-124,

i0l e, 3., "A Permal Semantics for Computer Languages

a . its Applicalion in a Cuwpller-Compiler," Communica-
0:8 =t the ACM 9 (January, 1966), pp. 3-9.

“onds lhein, L., "VITAL Compiler-Compiler Reference Manual

N ot“E7=1," Lincoin Laboratories, MIT, January, 1967.
<ldm:n J., "Aspe:ts of Associated Processing," MIT,

' € In Lab rstory Technical Note 1965-13, April, 1965.

Newall, A,, "A Note on the Use of Scrambled Addressing

fo Assocrative Memories," unpublished pPaper, December,
1962,

Rovier, F., and Fe dman, J., "The LEAP Language and
Lo Stricture,” MIT, Lincoln Laboratory Technical Note
DS~5434, Octobe:, 1967.

T:ylor W ., Tu -er, L and Waychoff, R., "A Syntactical
Cha.t ALCOI, " -mm-nications of the ACM 14 (September,
194} p. #§3.

Fr. a complete exposition on compiler-compilers and
a fermidible biography on the subject see:

Fe'ladan, J.: Sha Gries. D., "Translator Writing
~y:te's " Communi ations of the ACM 11 (February,
1768) p.. 77-1:3.

