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Abstract 

The FLEX system consists of merged "hardware" and 

"software" that is optimized towards handling algorithmic 

operations in an interactive, man-machine dialog. 

The basic form is that of a hardware implementation 

of a parametric compiler embedded in an environment that 

is well-suited for semantically describing and prag- 

matically executing a large class of languages.  The semantic 

language is called FLEX, includes the compiler-compiler 

as a string operator and is used as the basic medium for 

carrying out processes.  It is of a higher-level nature 

and may itself be used for desciibing many algorithmic 

processes. 

The machine itself is designed to be of the desk-top 

variety and sell at a low price.  Because of these design 

parameters, many compromises in time and space had to be 

made to save money.  The software system is implemented in 

read-only memory.  To allow any possibility at all of 

debugging such a scheme, the algorithms involved were 

distilled down to their essence so that the entire system 

for the machine can be displayed (in flow diagram form) on 

a small wall chart. 

In many senses the described system is a "syntax- 

directed" computer. 

■ 



I.  PretacK 

Tnis is ö  working document submitted as wörk-in- 

progress for the degree of Master of Science.  It propobe-. 

an integrated hardware-software system for performing 

algorithmic operations. 

The following is intended to be a complete and concise 

description of the system rather than a mere report of 

results in the hope that readers will not have to spend 

valuable time trying to figure out how it is all accomplished, 

Apologies for any and all gaps, chasms, and crevices. 

o v;,w,i.* 



II.  Introduction 

The FLEX language Is intended to be a simple yet 

powerful and comprehensive notation to express computer- 

oriented algorithms.  It follows the traditions set by 

ALGOL 60 and several generations of EULER. [1,21! 

a. Calculation 

At the lowest level of use FLEX is easier to learn than 

either FORTRAN or ALGOL.  The use of it as a desk calculation 

language may be mastered in a few minutes. For example: 

we may wish to evaluate a qalculation involving only numbers. 

The expression is simply entered through the keyboard as 

shown. Assigning the answer to the reserved word "display" 

indicates that the answer is to be returned to the CRT. 

,diaplay^l.6*2.9522/(19.7-9.2); 

4.4985905 

At this level of use the entered FLEX code is 

executed statement by statement so that it acts as an 

interactive language. The " ' " is supplied by the 

processor and indicates to the user that FLEX is ready 

for input. 
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At any time the entered text nay be modified by 

using the powerful text editor associated with the language, 

b.   variables 

The next step for the initiate would be the evalu~ 

ation of simple algorithms using variables as well at 

constants and perhaps a more, interesting display of results. 

The following routine should be studied. 

'begin 

new a,b,o/d; 

b+l;c-«-19.3; 

d^glaj;.«-" aa''# (a-Ht>*c/l. 2+c) 

♦ -d»" # ^d^a-b+c*1..2); 

»=18,883333 b=30.243333 

Notice that no format statements or separate write 

commands are required. The handling of strings of textual 

characters is a primitive operation within FLEX and the 

catenation operator "#" is used to connect together literal 

strings enclosed by quotes: "a=n/ to numbers generated 

by executing arithmetic assignment statements. 

The whole is realized as one string of characters 

at the display end and is Output on the lower half of the 

screen as shown. 

n 
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The creation of variables is indicated to FLEX, by 

the use of the reserved word new followed by a list of 

variable names. Type neid not be specified. FLEX is 

entirely free form in nature. There are no card column 

numbers to worry about as: in FORTRAN. 

c. Decisions 

Decision-making and branching are handled by one ccmr 

prehensive statement, it is of the form if C~l then ]  | 

else I  I. The boxes may be any construct in the language 

including blocks and entire programs. 

In almost all cases this eliminates the need and 

use of one of the most common pitfalls in programming: 

the label and associated go to statement. These are 

provided in FLEX but they will rarely be used. Former 

PORTtfAN programmers who convert to ALGOL find that they 

almost never need to use labels or go top and time spent 

in debugging gets reduced by a sizable factor. 

d. The use of Blocks as in ALGOL 60- 

The scope of variable identifiers may be delimited 

by further use of the parentheses begin.end. For example» 

begin 

new a,b,c,d,e,f ,* 

a-«-b+ci-d+e; 



begin- 

new a,fc,cf 

a*b+c+d+e; 

end; 

jf-<-a+b; 

end; 

Within a block delineated by a begin end, pair, all 

identif.teirs declared by a new list are considered to be 

local to that block. An identifier used in the block 

but npt declared there will be the one declared in the 

nearest containing block. 

In the example above 'a' in the outermost, block is 

given a value in the assignment 

a*-b+c+d+e ; 

following this a new block is entered and a new declaration 

is executed: new a^c.  Effectively this overrides the 

previous declaration so that, in this inner block, the 
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variables a,brc are considered to be totally new and 

local.  In the assignment of identical form: 

atb+c+d+e; 

the a,b,c are from the inner bl6ök arid the dfh  are from the 

outer block. The a>b>c of the outer block are not 

touched. 

Ifhert the end of the inner block is reached, the 

inner block ceases to exist; we ar^ again in the scope of 

the outer block.  The assignment f«-a+b sets f to the 

value a+b wher«i a,b are the outer block variables. 

The use of Block structute in this way allows sections 

ot ptö^rams Written as blockpto be arbitrarily inserted 

O Without, f*ar of destruction when variable names happen to 

J(J*tc!h Äi can-eMily happen in unstructured languages like 

FÖRTÄÄH. 

The use of  the word new means just that. The vari- 

ables following are created fresh each time a block is 

entered; 

e.   Mfeendabilitv 

NiW binary and unary operators rpay be declarfBd 

giving the programmer powerful control over the language 

itself. For example, the functions max and mio may be 

useful as operators, i.e.: 

begin new max, min; 

bop max «-'new a,b. if a>b then a else b'; 

bO£»min «-'new a,b. if a<b then a else b'; 



a-«-b+c*d max b-c*d? '"If d>b, then a+'b»1* 

In this manner the programmer may tailor th« bperatof 

structure of FLEX to suit his needs. This feature both 

eases the programming burden and causes the program ±0 

be easier to read and be understood by others. 

FLEX may also be extended by either modifying itself 

via the compiler-compiler contained in the language or 

a wholly new language may be created using the same tools. 

The use of the operators corri. and scribe will be discussed 

in a later chapter, 

f.   Comments 

Comments are handled very simply.  Any tei^t 

inserted between, the symbols ,',-,,f will be ignored by 

FLEX.  !Ühis allows comments to be inserted anywhere- 

even in the middle of an arithmetic expression. 

Examples: 

a-^b+c*dl ' 'this expression is simple111; 

a-t-b'' "this expression is simple'' l+c*d; 

This in^jcpfihaction has barely scratched the surface 

of the FLEX language»  It was not intended as an exposition 

of FLEX, but only to give the average user (a FORTRANer) 

a feel for the more comprehensive discussions that follow. 

■>*rM-*,KWl.*T**^WM^%&W^^JS£>Vt,iKil   . 
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Hl.    The LaMguaaa ^Environment 

A.    Bacplanätion o| the Feramliims Ueafl 

Syntax 

Two formalisms are used to describe the syntax of 

FLEX» A variant of BNF (Backus Normal Form) (with , 

factoring) and the syntax-chart method developed by 

Burroughs Corporation. Uoi 

For an example, let us describe a FLEX identifier. 

In Englishi An identifier is a text string 
of arbitrary length starting 
with a letter and thereafter 
composed of either letter* of 
numbers. 

<ident>ii"<l«tter>  |<ident> 
< letter> |<ident><number> In BMFi 

In Chart: i 
'. -   fcl—»lletierl 

nunfcerj 

- 

tEroa 
.A box says that the construct is defined elsewhere 

on the chart; a lozenge indicates that this is the definition. 

Semantics and Pragmatics 

The semantics and pragmatics of FLEX will be 

largely described in English (drawing heavily from 

accepted notions in mathematics and computer science). 

Whenever possible, FLEX, itself, will be used 

for description and, indeed, this is done in the 

SCRIBE chapter where FLEX is presented written in 

itself. 
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Uli    The L«nau«<ita ^EnVironmant 

A.    Explanation of th» FormmlimB ümed 

Syntax 

Two formalisna are used to describe the syntax of 

FLEXt A variant of BMF (Backus Normal Forn) (with , 

factoring) and the syntax-chart aethod developed by 

Burrpughs Corporation. Uo] 

For an example, let us describe a FLEX identifier. 

in Englishi An identifier is a text string 
of arbitrary length starting 
with a letter and thereafter 
composed of either letters of 
numbers• 

T *•»     ^ident>« i-<letter> |<ideiit> 
in wirs    <tetter> |<ident><nuinber> 

In Chert: 

IE£E3 

A box says that the construct is defined elsewhere 

on the chart; a lozenge indicates that this is the definition. 

Semantics and Pragmatics 

The semantics and pragmatics of FLEX will be 

largely described in English (drawing heavily from 

accepted notions in mathematics and computer science). 

Whenever possible, FLEX, itself, will be used 

for description and, indeed, this is done in the 

SCRIBE chapter where FLEX is presented written in 

itself. 

. iMrTtti** 
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B«omaM of the r«cur»iv« nature of FLBX («ad fth« 

FLEX dMcription) it i« impommihlm to doscribo 1t 

in« iiiMar ordor. Thoroforo, aomm solldioo hau 

boon placod on the usexli intuition for MM of the 

examples presented. 

ExMple» 

The exanplee will be largely presented in FLEX 

althoofh occasionally they will be drawn fron 

ALOOZ» (0 and FORTRAN to present some interesting 

contrasts. 

B. The FLBX Language 

1. ftmtactic Atoat« 

Byntax 

<letter>ts - A|l|...Y|Zja|bj...y|z|A| 

<difrit>tt - 0|1|2|3|...|9 

<deii*iter>ii - r | i I ( I ) f t I • I M H « I * I » I T IJI l| ♦ 

+ 1- |* |/j* |- I»1 l< l> 1^ l»I.A|v|Vl 

<reserved werdB>:» -   begin j end I new I if-| then | else | 
^tt"i ' ^pe t^ilTfloSTI sin r 
COB | gvan I abFTFana | pranZTThashl 
exp i irTsgrn iSHTisn I any iwtf  . 
wKTleTas nEo IS   ^ SSStt n[i£ll 
bop | uop | name Tv^lTpap | act | 
Icrminite | ieave"7 xinTyin I plat | 
plpt FpTTn [control | 

Semantics 

The text charactere are simply numbers cf small 

precision. The numbering ftarto with {0,,,,,9) for 

("0,•,...,"f*,) and continues with (10,12...60) for 
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("A"....,"2-) and 111,1.3.^61) for (wa",, ..,"»■) .• 

A special space symbol XB -nvmber^l  62, The' Aeliaiters 

are numbered' frtom §3 on«  {true, false) are identical 

with (1.0). 

Pragmatics 

Text characters are integer®. 

Justification 

Many internal character sets have been used by 

the industry. The principle! reasons for this one 

are: 

1, It is sortable, 

2, It is easily extendable for number systems 

of higher radix than 10. 

3, It eliminates a table lookup for every 

character that is input to the compiler. 

<identifier>:: «<letters j <identifiers <letter> 
{ •  . i . ;. • ;     j<identifier> <digit> 

<integer>   :; = <digit> | ^integer> ^digit> 

<number>   :: = < integer >i.{<integer > j} 
(.<integer> 

<text char> :« = <l©tter> j <digit> i <delim> 
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o 
~^N        fniegerh—W digit 

(A)® " ©0 (b)   f (z 

u 

(texr chat 

letter digit delimeter 

•v  -,- 

Semantics 

<Reserved words> have the form of identifiers but 

are considered to be semantical.ly identical to <delimiters>. 

Indeed, many «preserved words> have their exact counterparts 

among the delimiters >.  For example, begin and (,end and) 

are exactly identical -- so are/N and and, ^/and or. 

<Identifiers> are considered to be names for con- 

structs in the system and the basic flow of FLEX consists 

of assigning these names dynamically to the various objects 

which may be created. 

<Numbers> are either integers or fractions.  The 

precision will be unspecified for this chapter. 
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primary 

selector 

paramei-ers 

process description 

Q—"»I   text       [ >Q 

list * selector parameters 

b 
<primary> 

<variable> 

<parameter> 

<literal> 

= <literal>|<variable>{parameters>} 

= {<op>}<identifier> 

= <list>{<parameter>}|<selector>{<parameter> } 

= ^ I00! <list>{<selector> {< parameter > } } | 
<process description>|"<text char>" 

<op> = val | mop i bop | ucp j act 
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a. Variables 
{ 

1. «simple variable > Seimantics. Although this is not tile 
.   smalle&t syntactic ullit for a non* 

literal, in'some cas«s it acts as 
the smallest semantiO unit. 

1&. <ident> 

lb, val<ident> 

Semantics. 
rr 

This has attributes 
name 

2, type 
3, topology 
4, value 
all of which may be assigned dynamic 
cally.      
Semantics.«  The val overrides any 
value~tEat may have been assigned. 
On the left side of the assignment 
arrow xt will destroy any previous 
value. 

Justification.  This allows the 
programmer to override name 
considerations to reassign a 
procedure quotation and to access 
a name. 

1c. map<ident> 

Id. bo£<ident> 

Semantics.  This allows a user- 
derivecTprocess description (pro- 
cedure) to be assigned to the access 
path of the variable.  This allows 
complicated user structures to be , 
indexed in the same manner as FLEk 
defined data structures.  The map is 
described more completely in the ' 
section on <selectors>. 

Semantics,  This moves the <ident> 
into the parsing table as a binary 
operator.  If the ident has had a 
^Body^ assigned to it, then it 
will act as a binary operator. 

le. uop<ident> 

Pragmatics.  A simple name inclusion 
using EKe generality of the quotation 
to full advantage. 

Justification.  The language may be 
extended in a simple manner. 

Note: Same as bop except <ident> is 
parsed as a unary operator. 
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Examples; 

jH-x+y  '' 'same as a««-x+y' •» 

val p^-'b' 

p-^x+y  • • • same as fc+x+y' •' 

böp may-'new a,b; if a<b then b else a' 

2. <simple varlable> <selector>      Semantics. The 
<slni^le variable>' is 
assumed to contain data. 
Selection is performed 
äs in ALGOL 60 and 
Euler.  Tt acts like a 
simple variable after 
selection, 

3. <8lmple variable> <list> Semanticfe, This is 
just a procedure 
activation with actual 
parameters. 

4. <sitople variable> <selector> <list>Semantics. selection 
is performed first. 
It then acts like a 
simple Variable. 

5. Notfti All further generalizations of this,type are 
evaluated from left to right applying procedure 
activation and selection where needed. 

Examples: 

a [x,y,x] (b^d); •'• "a" is an array of procedures'11 

a (b/C^d)  [x,yfz]; '" "a" is a procedure delivering an array"' 

w' 
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b. Literale 

1. ß Semantics. Mean« undefined.  It is the rMtt&t 
SI illegal operations. All identifiers are set 
to this at declaration time. 

Pragmatics.  The logical word is flagged. 

Justification.  Allows a much more free syntax 
while still permitting a check of illegality. 

2. oo Semantics.  Is the result of division by zero. 
It is also used to map extendable arrays. 

Pragmatics.  The logical word is flagged. 

Justification.  Permits checking for overflow 
and declaring unspecifxed bounds without 
giving rise to a fatal error. 

3. <number> Semantics.  A fraction of unspecified 
precxsion. 

PriagHtatics.  Space is created to confeai« it, 

Justification.  Useful for arithmetic. 

4. Vtext:^' Semantics. A text literal is identical 
to the string quote of ALGOL 60.  It has 
as wide a use as the <number>. Also, it 
will be seen later that com "a+b*D" is 
equivalent to 'a+b*D,c 

Pragmatics. A text literal is mapped and 
stored as a one-dimensional array. 

Justification.  Needed to generate^ text. 

Examples; 

If a ^ fithen b-«-a+1.34; 

if a -^b 7^ «then display«-a 

else display*-"error in a"; 

displayHLf a-rb ^ »then a else "error in a"; 
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5. The Ligt 

Syntax 

<List> 
•nalT 

in<Body> 
^<io*y>) 

StatewentN 
List J 

<9ody>»t«<0«cl«riition 
Li«t> 

Otmtmmnt Limt> 
| <8tat«n8iit Li«t> 

Saaantifl«. The mmning of  a list depends greatly on its 

form. All Hats «re thought of as executable elements that 

are delimited by the parenthetic pairs begin end or ( ). 

Bxectttten of the <Bedy> takes place first. Nhat remains 

(if anything) is then handled as an operand. 

Taken as a unit, the list may have value or it may con- 

sume itself during execution.  If a declaration is present 

then the list acts as an ALGOL Block in that identifiers 

declared in it are considered local to the list. 

•Pragmatics. The extent of a list is delineated both by 

parentheses and by commas. A list during execution is 

considered to be a vector on the runtime stack whose 

topology is determined by keeping track of the list of 

delimiters. 

Justification.  Here we have one concept and one construction 

replacing many that have been considered useful in ALGOLic 

languages. Also, by adopting this form, mnay useful new 

constructs are possible. 
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111 

111 

111 

ExampXea 

(a+bxc) ' * *' MB &  simple ©rllihmatic 

((2,1), (3,2))        ,», as an array litar«! 

begin"-« Iß+e t  x^a-b end ' * * a« an ALGOLic compound  atatenent 

prod (afb/c-fd*)      *'' an an actual parameter ilftt 

begin '^i' as a valued block 

new a,b,c. 

a*a+(b^a*2+c); 

end 

The Declaration List 

Syntax 

<Declaration List>:.t?={^Declaration List^}<Deälaration> 

<Declaration>; t-*ne*r<identifier list>; 

<Identi£ier List>::={<identirier list>,}«identifier> 

Declaration 
T.int - 

-o 
identic 
„ iJ.§^ i3*0 

identifier 

i : 
■■■— 



It 

s^aumtAo», th« ptttpos« ®t a &mi%mfctim i» t» er^iiii «tad 

dfttaxnln« tht'soop« of « nrnti väildk Mil @«rv« «i a Idkoli 

or r«pr«a«nt«tlv« of some Iast$tta$@ eleraent«. A HMM 

hat M It« Mopa tho <lM»dy> in which it %mm  4ool«ro«. Sinoo 

both tyf ani top01O9y may he  as@ifned ä^naatcallf aotliiatff 

aoro nood be dono than to list the new nstnoo for oaoh <body>. 

Itaw doclaratiens may be considered to be exeeiitod-in 

the eenee that a vector consisting of undefined ▼aluea (Q) 

it created in the runtime stack for th® duration of the 

block. Fositiona in the vector correspond to each 

identifier declared. 

Jttetifioation« Block structure has proved to be an estremelv 

useful aM important concept in ALGOLic langixafos. Besides 

aidinf the proframmer freatly in his own debugginf# block 

structure is also the ideal way t® delimit the scope of 

users in a nultiprogramming and/©r time-sharing environment. 

Examplesi 

'''«fbjC are local to block A.'•' Aibegin 

new a.,h,c. 
a"«-a+(b+c-2) ; 

B:begin 

new a.   ••'this a*is local to' block B and supersedes''• 

•*b+c+2;  '''the previous declaration, b,c are''' 
end        •«»from block A.•'' 

•♦■•+2l    '''thiB a is the one declared in Block A''' 
end; 
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The Statewnt List 

SyRtax 

<St*tement Li«t>: :«{<StÄt®ment LIst;-/} valued '«l«ient> 
<valu«d eleinent> ! s«! <valued eiament >; ><Btat«B«nt> 

Ptata—nt 
List 

® 

c'em^ntlcs  Both commas dud Kern:colons have their usual 

Ai<GOL meanings .ilthough th.y are allowed a much more 

flexible usage.  A comma deiluUto ^laments in a vector so 

it rnay be consideredi to preserve ehe value of the previous 

expression or statement.  A semicolon, then, may be considered 

to destroy the value 01 the previo.is expression or statement. 

As seen above, borh delimiters may be freely mixed in d <body>, 

Pragmatics.  A semicolon flu.snes the top eiemenc in the run- 

time stack. A comma, increases the vector count by 1. 

and leaves the top of the stack intact. 

Justification.  Ab seer, m fcht. examples, this construct 

allows great freedom and flexibility in creauing lists of 

values and is pragmaticaliy quite simple. 

Reoroduced from 
Ees.  availablejopy. 
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ExamglM« 

••'sinipl© li2.t,,, 

(l»if a then b glgg c# " *b or c is left dependlnf en ifh«th«r 1   ——■•   a j_s true or false'' * 

BtX4-.5*(X<fA/X)|  • •,8t«t«mefttö followed by *;" are not 
retained1*• 

if X2-A>e then 

qqto d elae b+X+.iS, "Wttm öi h is  left *hen sqrt 
algorithm terminates''' 

x+y)  ••'value of x+y is ie^t'•• 
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The Statement 

Syntax 

statement :=<empty>|<expression>| go to <statement>| 

<variable><-<statement> j ^variable>as<statement> 

| if < statement >then< stat -:iTient>else< statement> 

|<identifier>:<statement> 

Iwhile<statement>do<statement> 

stafemenf 

variable 

rif 

-{gofoj-*- stafemeni- 

sf-afement 

variable     "-»■(asj    »■    statemenf 

—>-(Tise) 1 statement statement 

A   identifier     —5^-/ . \- statement 

~—]statement I—*\§°)—HZ5Ete'^^Z] 
Semantics.  All statements are considered to have value 

except for the go to statement (which is not considered 

to be a fundamental language concept, out is included for 

practical reasons).  The go to initiates an unconditional 

branch in program control to the label specified by the 

(label-valued) <statement>.  For the same reasons the 

labeled statement is not considered to be a language 

primitive.  The other statement types will be considered 

separately, 
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Pragmatics. Since the syntax of a otat«ment> is 00 frMi» 

and more meaningless constructions are permitted, the 

limiting factor of produced nonsense is execution-time 

semantic checking. ,. 

The values of feihe statements are fetched into the 

runtime stack and are operated on in turn by the,many 

operators of the languages. 

Examples t 

abc: a*b+z, 

go to if a then abc else xyz; 

xyz: go to f [a-«-a+lJ^ab"c; 

, 
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The Expression: A. Presentation of Operators 

Syntax 

<expression>i:*{<fekpressiön><binary>}<unexp> 

<unexp>    i:«<unary op><unexp>I<primary> 

<unary op> : t* Heaa j Tail | type j   |   | sin | COB | • ••• 

|com | scribe |... 

<binary op>   :•,=  *   \  *   \  /   \  //  \  mod   \   +   \  ~  \  *   \  ?  \   <   \ 

■       > I < I > I A 1 V iV| S | ^| of | is |...| 

<user binary ops>| ••• j #... 

ö   •••    ____„„ ___. _ _ 
A ^~  "Uinary opV»>pu.nexp ]■  primary J 

Note:  Binary operators are given in order of precedence. 

Unary operators associate from the right. 

Semantics.  All operators generalize whenever possible to 

arrays and lists. 

a.  Unary Operators 

Operator  Meaning 

logical negation 

unary minus 

floor x:  integer part of x 

ceil x:  if_ floor x=x then x else floor 
x+1; 
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Operator  Meaning 

head 

tail: 

sin, cos 

ab 8 

scribe 

com 

yields current disposition of a primary 

first element of a list 

list with the head deleted 

the usual trig functions 

absolute value 

described in Section C. The operiuid it 
a string in "scribe" format which 
defines a language. The result is a 
set of tables for the compiler-compiler 
(com) in effect a compiler, 

described in Section C. As a unary 
operator com accepts a string for one. 
operand, and assumes 'he FLEX language 
tables as the other.  The refcult is a 
compilation of the tes^t resulting in 
an executable process description. 

b. Binary Operators 

Operator «  Meaning 

Arithmetic 

/ 

mod 

x+y means xy in the usual mathematical 
sense for fractions 

x*y means x.y in the usual mathematical 
sense for fractions 

x/y means jj/y in the usual mathematical 
sense for fractions 

x^y means floor (x/y) in the usual 
mathematical sense for fractions 

K  mod y means floor (x-(x y*y)) In the 
usual mathematical sense for fractions 

x+y means xt-y  in the usual mathematical 
sense for fractions 

x-y means x-y in the usual mathematical 
sense for fractions 
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Operator '   Koanin^ 

relational 

"»I1» <»j<»^ *» yield true or false 

logical 

r   t   r/r=# ,  the usual logical operators yield 
true' or false 

compilative 

com described in Section C. As a binary- 
operator com accepts tables created 
by scribe for its left operand and, 
for its right operand takes a string 
in the new object language.  The 
result is a compilation of the text 
resulting in an executable process 
description. 

ramye 

—        *;he 12, operator describes a range of 
integer values either atcending or 
descending, useful in any kind of 
interaction, A'[3 to- 6] means («f3J. 
a[4]r afS], a[6J, ).  "abcdfg"{'2 to 51 
rasahs "bcdf".. —" 

the b^ operator modified the interval 
within the range of a to. 1 by 3 to 
10 insane f'l   Ä  T  in^-*"     ■*•   —* 10 means (1, 4,  7, 10) 

associative 

of, is, isn, These operators permit the formation 
and storage of relations between 
names, 

We may say:  John is son of Bill 
and:  Eric is.son oF Bill 

We may then ask questions: 

.• 
I . 
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x*? is son of Billf 

-x will contain: ('John/', 'Eric') 

x^John is son of ? 

-x will contain ('Bill') 

x+7  is ? of Bill 

-x will contain ((•son», "John"), ('son', 'Eric')) 

The e operation yields a logical result. 
The possible associative operators follow. 

form j^eanong 

x is y of z creates and stores the relationship 

x isn y of z destroys the relationship if it exists 

xey of z asks if relationship is true 

xjty  of z asks if relationship is false 

— in general we ask for 

x R y of ? all z having relation y with x 

x R ? of z all relationship between x and z 

x R ? jpf ? all relations that x is involved in 

? R y of_ z all values with relation y with z 

? R y of ? all pairs having relation y 

? R ? of z  all relations and values that z is involved 
in 

Concatenation 

# is the concatenation operator.  The result is the 
concatenation of the two operands.  The topology 
of the result is the most general topology of the 
two operands. 
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array 
array 
array 
list 

B 

literal 

A#E 

array 
Tiit 
list 

■ j £Xrendable array 
 L_ir x ^ e i""-^----! g a rray 

j extencuibi--" fist 

b. 

c. 

Pragmatics 

a. .Unarx. operators replace the   top element of the 

process stock with the result. 

Binary operators replace the top two elements 

of the process stock with the result. 

The associative operators are really trinary in 

■nature and therefore three names are actually 

collected in the stack before any action is taken. 

The resultant name replaces the three operands. 

Justification 

The use of binary and unary operators is justified both 

by tradition and the fact that fewer parentheses are 

needed than with functional notation. 
"Beoroduced from 
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The Expression;  B,  Generalization of Operatora 

ScojDe 

If an operation is legal between two operands then it 

is also legal between other structures that have these 

operands as elements. 

Arrays and Lists 

If the dimensicas are* different between operands, then 

a logical "adjustment" ii moade which logically creates 

enough copies of the operand of smaller dimension until 

the dimensions are matched.  Then the operation is performed 

as a vector operation. 

(a, b, c) * (x, y, z) means la * x,b * y,c *2) 

a * (x, y, z) means (a * x,a * y,a * z) 

(a^) * (x, y, z) meana (a * x,b * yfz) 
t 

Examples of Expressions; 

display ,,a=,, (b+2-4gc) #"£=" #if a<b then -c'else-g; 

Note;  if h^2,  q=2,   c=4 then this would output on the CRT; 

| a= -44 EgT] 

•'^^-H^^Kmrnmsz^K^ 
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Th^ Conditional Sfatsni evL 

Syntax 

if <8tatecicnt> then <statement> else «.statements 

^henV-^ s tat emeriti ^else' i statement statenent 

Semantics 

The value of the atateiaent tcilm^in^ the  if muit be 

reducible to true or false (one ^r sero). if'a one« 

the statement-.following the theh' is eseecuted, then the 

statement following; the entire conditional statement is 

executed. If a zero, the sequence is similar to the above 

except the statement following the else  is executed instead 

of the then. 

The entire conditional staterrient has a value equal to 

that of the executed branch. 

Note: This, the so-called "Long-form: of the if 

statement, is the only type presently available.  It 

includes the "shortform: semantically since the empty 

statmnent is allowed.  If it proves awkward to use, then 

the short form will also be added. 

Pragmatics 

; There are only two jumps needed in the underlying 

environments  Jump-Unconditional and Jump-if-top-stack- 

xero. These are invisible to the user and are ihserted 

during the parse. 
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Examples t 

if a-'-b+c-d+e+.S-G 

thea b^a+b» 

eise b-^'a-b';.... 

if a<b<c 

than (a*b; h+c) 

elaeT ••'use of empty statement''' 

tj»- 

I 
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Tlie Assi^nweni-.  S ha Ueiserit 

Syntax 

variable 1-^0—►|stateroe^t] fvariablQ>-v<statement> 
Semantics 

The value of the assignment statement is considered to 

be the value of the <stfttement> mid  is assigned to the 

variable in a number of ways depending on which attribute 

of a variable is to be assigned, 

A« will, be-seen later, besides attaching a nunerio 

value to a name, we may also dynamically specify the 

particular topology of that value. This includes gross 

structure auch as whether the data is an array of such 

and such site, is a single item, or possibly a directed 

graph or tree.  Fine structure may also be indicated. 

An item can be considered to be a number, a character, a 

byte of any iidth, a quotation of a program, a record, etc. 

Pragmatics 

The operator has a value for its right operand and 

a name for its left operand. The value is left in the 

stack and the name is destroyed. 
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Examples; 

»♦•b+c1 

a^-array (x, (5*b,c), (1,2)) 

(if a<b then a else b)-<-b-fc 

a^-b^c^b-fc 

a-«-b*c+ (d^-b-fc) 

aVb+c" 

'"value of b+c is nsamd  a*'1 

'"a becomes the name for the 
procedure b+c• " ; 

•"a is mapped as a two- 
dimensioned array whose 
elements are x bits wide*'* t 

•''either a or b is assigned 
b+c depending on previous 
values of a^b1''; 

'' 'multiple assignment'' *; 

'''nested assignment1''j 

• 11 assignment of a text 
literal'"; 
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The AsGunte Statement 

Syntax 

lyylable-|--»^g)-^8tatement]  <variable> as <8tatement> 

Semantics 

This is a generalization of the assignment statement 

in that the <variable> "takes on" or "assumes" values 

indicated by the <statement> one at a time if a loop is 

indicated by an interative while statement. Outside of a 

while only the first possible value is assumed and execution 

continues. .The value of the assume statement is boolean: 

—being true if the variable has just assumed a value and 

false when there are no more possible values which may be 

assumed. 

Pragmatics 

The as operator has a value for its right operand 

and a name for its left operand.  After all possible 

assignments are done, the value in the stack is replaced 

by a boolean value, 

Justificatidn 

This particularly general form is most useful in 

iteration .and applies itself well to all kinds of operands. 

Examples 

Will be given in the section on the while statement. 
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The Iterative Statgggnt 

Syntax 

J^ile <8t«tement> do <stateinent> 

Saaantica 

The statement following the do will be executed as 

long as the statement following the while is true. If 

it becomes false, then control transfers to the next 

sequential statement. 

Pragmatics 

Similar to the if statement except that a jurip back 

is inserted after the statement following the do. 

Justification 

Besides covering a great many iterative situations 

in a simple manner, the while statement allows for the 

complete cessation of use of the 30^0 and <label>. 

Examples I 

*!lile I as 1 b^ 2 to 13  • • -as an ALGOLike for statement'. • 

do <6tate>; 

!±ile I as 1  x<5  ••«as ALGOLike for while state''' 

do <state>; 

!*ii£I as (1,5,3,! to 10,3 b^ -2 to -1) ...whichever list-■- 

' J « (5,10,A bi B to 0 ■  .    ...ruhe-out, first will-.. 

ao <8tate>; ,,,. 
terminate execution*'• 
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while X as ((Jones is parent of?)A (male is sex of ?)) 

do <state>; ' "X will assume all sons of ■Tones" • 
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6. The  grgggag Pegcription 

Syntax 

-process de8orl9tlMi>: P 

Semantics 

The process description is the backbone of the FUQC 

language* The user at a console is considered to be inslte 

a process and he is handled by the system as just another 

active process. 

The quotation may be named in the same manner as- other 

literals in the language.  A process may be created fron the 

process description in one of two ways: as a serial 

procedure which is executed before the calling program 

is resumed, or as a parallel execution entity which' runs 

concurrently and independently of the parent process. 

In either case, if a new follows the ', the variables 

named are taken to be the formal paxamebars of the process 

description. 

Pragmatics 

The <Body> enclosed by the quotes is compiled separatoly 

and set aside in the same manner as other literals.  If 

it is named, a reference is placed in the variable name ° 

area where it may be easily retrieved. A new stack is,.,. ■ 

created for each process and an event notice is entered 
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ixito  the  process que.  User processes are executecl on & 

"z'ound robin" basis with a time quantum of about 10-1€ «a. 

'Pfccaassa that are alive may ba acfr-ve or passive; these 

states may be changed by themselves or by an interrupt 

by the re&I time processes. 

Justification 

Procedures and data hanöüng are the keys to a 

successful language.  In FLEX both these concepts have 

beer, generalized in a powerful msnner. 

Exömpl?.s yf simple procesures; 

i    *■ 'b1;  *''a "run-time" equivalence statement',1' 

\    - 'b+c'T ,l,simple quotation without parameters''' 

/    •*■  if b<c then 'b+c' else "b-c1 ; '■ ' 'conditional 
assignment ,'r' 

i i • +  5;     '''the name ^ is assignee to the value of b1 

ä    +• z;     '''the name b Is assigned to the value of z' ' ' 

val a ■*- 'c';   '''a is re,quivdlenced to c' ' " 

z    -t- x'     ' ' 'the name z is assigned to the value of 
b+c"' 

x    "•- z;    '''a pragmatic error is generated since si is 
a value''' 

for <- 'new a, b, c, d, e; '''an ALGOLike "for" procedurfe''' 

a «" b; 

loop: if a <_" d 

then (e; a -f- a<-c; goto loop) 

else '; 



ALGOL 

for I: =1 step 1 until 50 do 

^egin a :[I] .. = i + 5. 

b [I + 2] : = 1 

end ; 

38 

FLEK . 

for  ('I-, 1, 1, 50, 

'a [I] - 1*5; b[I+2] 4- j t) 

Note:  a^^c.d^e are the formal parameters.  Enclosing, an 

actual parameter in quotes is. equivalent to the  ' 

ALGOL "call by name".  Unquoted actual parameters, 

are equivalent to value calls.  Nesting is obviously 

easy. 

:; 

VI 0 J 
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The "Case" Statement 

One of•. the most useful concepts in prograimnlng is the- 

protected branch.  This is illustrated by the if-Statestent* 

if B then <3tat>l else <stat>0 

ts 

, m*j stat 1 

This concept.-can,.eas 11 y be. genecaXized to n branches» 

» » 

It is quickly accomplished in FLEX by the following method: 

a t. ('^stat 0>'f '<5tatl>', "\   '<statn-l>', ^stat^'); 

and used: 

a[B] ; 

Parallel Processing 

If, in the previous example, the entire vector was 

indicated instead of jupt one element: 

' a; 
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tfean PLEX would execute the n statements in "Farallel", 

This is also a protected scheme.  The global process 

is passive until all ©f the n  statements are done. To , 

create and- release a process which will execute concurrently 

with the global process, the followiag is done: 

act for ('I', 1, 1, 50, »b [1]  * I'); 

The for-loop will be executed in parallel with the state- 

ments following this calli 

We may also do: 

a "- '('«istat 0>', '<stat 1>V/ •••^<8tat n~l>\   Uaim^n**)h 

act a; 

The n statements will be executed in parallel with the 

global process and with themselves. 

Coroutines 

Another useful concept in programming is the coroutine 

which is simply a process description which allows a return 

from the middle of the code.  The exit point is sayed and, 

when the code is again called, control is transferred 

to the previous exit point rather than to the beginning. 

The. leave reserved identifier facilitates this feature- 

it indicates to the event scheduler that the current 

process is to be passivated and the current program step 

saved. 
-« ^ 



■^ " 

I 

41 

7;  The Selector 

Syntax 

<Selector>::- [<Body>] 

Semantics 

The construction [<Body>J is used to pass parameter» 

to the access mechanisms of FLEX.  It is used both with the 

FLEX mapping operators array and field, and with user- 

defined maps to select from some previously defined data 

structure. 

Pragmatics 

A data descriptor may be marked with the information that 

a segment is mapped.  The map is executed to finally 

produce a data descriptor of the selected element. 

Justification 

The separation of structure and data is the prime 

consideration in any useful file system and allows great 

flexibility as well as the use of "stupid" channels. 
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System Mapping 

Syntax 

«.feline array>;;«array Li«t 
oäefine field> 

:;«array 
::=field List 

Semantics 

a. Array 

■. Ths first parameter is the byte size of the elements 

in bits.  The following parameters describe the lower and 

upper bounds of each dimension of the array.  A logical 

"procedure" is assigned to the map of the variable.  The 

actual parameters are reconciled with the bounds when an 

access is requested to produce a descriptor or a value of 

the element selected. 

b. Field 

The operator produces a logical procedure which may 

be assigned to a variable just like any other quotation. 

The procedure operates on a descriptor describing a field 

of bits to produce a description of a new field.  The first 

parameter is the offset .n bits of the new field in relation 

to the old.  The second parameter is the and bit of the 

new field. 

. 
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Pragmatics 

Both routines are called and executed like any other 

sxmple procedure. 

Justification 

These routines allow the user to extract an arbitrary 

sequence of bits from some other sequence of bits. 

Examples: 

a *■ array (7, 1 to 10, -255 to 0) ' ' 'a is mapped as a 
two-dimensionaT array whose elements are 7 bits wide''' 

a t-f -3] ,,,selection of a byte''' 

a [5,1 '"selection of a row'" 

a [2  to 5, -10 to -2] ,,,selection of a new square array''' 

id *- field. (0 to 15) ; wages *■  field (16 to 31) ; 

son *■  field (32 to 32 + 16) ; son 2 + field (32 + 15 to 63); 

'•'this is a definition of the fields of a 64 bit wide 

record,  a use follows''1 

employee +  array (64, üFto'.lGOO) ; employee ■*•  tape 2; 

display «■ wages (employee [3 to 15]), 

display ■*-  employee [son (employee [5])]; 
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C.  The SCRIBE Language 

Introduction 

Although SCRIBE is a super-set of the core language 

FLEX, it. is presented last with the feeling that some 

intuitive grasp of the language environment will have been 

achieved by now. 

SCRIBE has its roots in the "Floyd-Evans production 

scheme" 14,5] and FSL [6,7].  Basically it is a bottom-up, 

bounded-context recognizer that uses FLEX as a sublanguage 

to express sanantic relationships.  Because of its bounded- 

^ context properties, it will deliver the canonical parse of 

any language (which may be expressed in this form) without 

backing up.  This ability allows a one-pass compiler to be 

created simply and compactly; ideal attributes for inclusion 

in the hardware of a machine. 

The Basic Elements of SCRIBE 

There are four levels of description necessary for 

creating a language translator: meta declaration, terminal 

declaration, the syntax algorithm, and semantic relation- 

ships. 
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1.  Meta Declaration 

^P^Th^i&ent ii,tu^y^0 ^etas  *■   {<id.ent>) ; 

' Semantles 
"l       ——^ 

A meta symbol in SCRIBE is an <identifier> which has 

the same use as £he symbols enclosed in <> in BNP; it is 

used for tawnomic purposes as a generic or class name for 

a certain construotion. The meta symbols ident, delim, 

text are autoinatically included in any meta symbol listv 

Pragmatics 

The meta symbol« are transliterated to unique integers 

which may bo used in generating the canonical p^rae. 

Ju&tificatioji 

The use of  meta symbols as class names is Well-justified 

in phrase structure language theory. 

Examples; 

nfitas +  (a^xp, term, factor, prim); 

i i 
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2'  Terminal Declaration 

Syntax 

fterrasj—-r~W4^\ 

term list 

delin r—^^i 
ident 

equate list 
»öta name—^(^syinbols 

terminal 
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fcsny     (<tm ll8t>|i 

<t«a» Ust>it« l<tm3m l*Mt>,} <tem«fttry> 

<t@Ka •iitry>ri»««lli2> ( <l*ent>  | <«tpuito»  | 'rlmn 

««^ata llst»M-    [KeqiMte li«t>f ]  <ei«nfery> 

<«fn«z^>ti« <«^im>  | <Went> 

<olm® &mi>§xmmnt>ti* <ni<sta name> t-(<t«r« iiflt>) 
S 

TWäIEäI aynbole are the syntactic atoms of a lanfuaf». 

In theory they «r« treated as ainfle characters but, 

kecaoe© of ilnltAtlonB of character sets, aggregates of 

charaoter« nay «lee «enote a .terminal symbol. For exaarpl«: 

"+n  an« ".« are terminal in FLEX ah« so also are begin 

an* nmrt identifiers whose meaning is reserved.  SCRI1E 

allowe terminal symbols to be declared either in the form ■ 

•f single character delimiters or as identifiers. 

It may be that more than one representative for a 

terminal is desire« for purposes of serving more than one 

character set or for clarification, begin and "(" are 

«n example fro» FLEX.  Syntactically the two representation. 

are equal and ma^.be declared in SCRIBE as an equate: 

.fbegin, "("). 

,  Many terminal symbols may belong to the same syntactic 

class and an ability to assign them to a meta symbol can 
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save a great deal of effort in writing the syntactic algorithm. 

The multiply operators provide an example; they arfe usually 

assigned the same level of precedence and this fact can 

be indicated in SCRIBE by the class assignment:  mop *-■•{ 

("•*" ,."/"," T" ) ,  This provides an abbreviation or "parse 

name!' for the three delimeters. 

In fact, every terminal symbol can be considered to 

have both an "external name", which is the character 

itself, and a "parse nanie'r
! which is either the same as 

the external name or is a meta symbol indicating membership 

in a   class.  All comparisons in the syntax section are done 

on the parse name. 

Pragmatics 

A table is built from the indicated relationships so 

that the textual scanner may separate the terminal' symbols, and 

discover their external and parse names. 

Justification 

The terminal declaration supplies a finite state 

algorithm in the machine with enough information to 

completely strip down the text into primary syntactic 

atoms which is typically the dirtiest 30b in compiling. 

Examples: 

'''from both sections--to declare all symbols necessary 

for handling arithmetic expressions'1' 
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I 

. 

metas <- (aexp, term, fact, prim, aop, mop); 

terms ^ ( "{", ")"/(%", "exp"), mop ^ ("*", "/", "v"), 
aop <- ("+", "-")); 
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3- The SynKix Algorifhm 

Syn tax 

SO 

O 

JMö)H-E2 ttem 

■♦^A^- semantic WT^ 

0 

syntax ■»- (^pattern list).  ); 

<pattern list> :: =   ^pattern list)  ;\ <pattern> 

<pottern>    .=    "I^stack pictures> "t"   <Semantic> ^can.    ,   go. <ident>, ^ntiO"! " 

"' "<ident>   •    <pattern> 

<stackp,cture>   ::=   ?<nieta symbol>*-] <parse names> 

(parse names>     :: = |{f<symbol>]  4symbol^ ^ymboh?   ^symbo^ 

<Symboi> ::=      A   kmeta symbol)    |   ^ferm symbo^ 

6emantic> ::   =    <\6en^     Uemply> 

<scan> ;:   =    scan   |    scan 2   |   ^e;npty^ 
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SI 

S®a«jatice 

, , When a scan o^ramiua.Ä Is iesu#«[.   tha t«Kt at thm current 

point Is serutiwia:®*! Mid. & toxsiiaai syafe®! is isolated. 

This is. looked up in the taM© that wa© Wr^afeed by tl 

terms daclaration and this parse xmtm mui föKtsrMl ©f the 

«yasl?©l  is puahad into thm v»p.r§^ stmsk,', 

Exmmlmt 

' text i •!■..;. 
ja   .a   j&   p?  ih  A  «a   p   .     ^ jK  TWi 

.----'• , ■  ' 4.  4. ..4. 

oaraa stack   jLaent  aop   ident  ., t.'paroe name fiele 
I'' ' '' ■  i     i  ■    I    • • 1 i)tflp^tJuMtert-J:tii^^-«rtM^^^'^-."'^Yy"''a*^^J''WJ'j|'^'«MWj^ 

after 3 

scans» 

'aal- 
I i 
' «WWiniH» liWllWWffcytwiiMlaw» mil r ■ i tvnxMAWwwtW'^•(i'Mut «•■««.■4: ■ 

a3 ^   ,,, »ext-naii© field 

3, . • .value field 
.'«■•.WJ,.li(M«J»j.Vl.il»iUU"-*M 

The parse^nawe field in the stack contains the class .:. 

names for the two identifiers and the "+".  The value field 

which .'is used by the semantic processor is blank.. 

A  pattern to recognize this configuration would be: 

j aexp *■ ident aop ident j sum, scan, go axp; exr  1   | ,- 

The section "ident aop ident" asks, if that, configuration 

is present in the stack-..  It is, so the semantic routine 

"sum" is executed.  This will be a routine writtei? in FLEX 

and defined in the next section.  It will be able to use 

the pointers I and J  which after a successful pattern match 

are set to the lower and upper bounds of the pattern in 

the stack. 
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I J K 

parse stack |a ident , abp i . ident 

after a    |a 'aal' "4," •Maa1 

match;     1 • • 0 0   1 0 

to the top of the etack). 

After the return from the seaantic routine, th© first 

section is examined to  see whether or not a reehjotioa ia 

r«»quested..' "aexp-»-"-; i£ present so tlte region of the stack 

between 1 «4 J^willbe replaced with "aexp" in location-1. 

' ■ *: ■. ■' .    • . I' J K 

parse-stijclf i^.?\aeyp: "j v„, 

afteK...fc|ie 
« 

reductioni 

';a 

\1 o 

Now the.<scan>■field is examined.  A single scan is requested 

and executed. ; 

textj; tsL i a M^aTXTT IS T | "7 a 
i ■■ .t—,.!.,-.-■■*,ii f «f«.,. 

X i 5 i 

parse stack )  aeXp j mop j 

after scan: I  'aal I • j   II i; »I 

i-^l™.! 

•..- I«astly# the go is executed and control' is passed to 

another pattern -in this case, the pattern labeled "axp" 

^«^«««««u^aoumw^ÄwwaBÄs^an^,^^^^^^^;^,^,^,,^ 
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If the pattern match had not baen successful, then the 

last field would have been examlneoL.  If <aapty> control 

would be transferred to the next sequential pattern. 

If an <ident> is present, then the semantic routine mmed 

by the ident will be called—for this case it would be 

"•rrl". 

A "Ä" will always be accepted in the match. 

Pragmatics 

The handling of text, parse stack and petteirns is 

accomplished by a compact "wired-in" algorithm.  The pattttrna 

themselves require only 64 "bits apiöce. 

Justification 

^ The algorithmic form of the syntax handler though 

somewhat removed from the phrase structure descriptive 

method, allows the user much more knowledge of what is 

going on at each point and thus makes for a very compact 

description of a language.  It is this feature which allows 

the tables for FLEX and SCRIBE to be implemented in hard- 

ware. 

| 
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example "' combining the above three sections to form a recognizer for arithmatlc 

expressions'' ' 

metas *- (aexp, term, factor, primary, aop, mop); 

terms*-  ("(",")", ("f'VW).  mop^-C'*","/"," "),  aop*-("+"," ")); 

syntax^— ( 

■ --v 

start: 

atoms: 

atom t 

prim: 

fact: 

term: 

aexp: 

&     1 , scan >££ atoms     , 

"("    | , scan ,£o  atoms     , 
aop    j , scan ,jjo atom 1  , 

j primary *- ident Idt , scan ,go prim      , 
| primary ♦" num nm , scan ,go prim      ,   err'- 
| factoro-factor "f"    primary & opr ,go  fact      , 
|factor *-                    primary A ,go fact      , 
1                                       factor "t" scan ,go atoms    , 
j term*- term mop      factor & opr ,go  term      , 
|term *~                      factor b. ,go  term      , 
I                                    term mop . scan ,go atoms. 
1 aexp ♦-aexp aop       term A opr                    , scan ,£0   aexp      , 
j aexp ♦-          aop       term A unsum                   , 

••S2  aexp      ' 
jaexp 4-                       term A, 1 '££  aexp      ' 
j                                      aexp aop 1 scan .go atoms    , 
j primary*-    "("      aexp ")" 1 scan ,go prim      , 
1                                      aexp ft .jgo halt      ,   trr2 

Notice the  similarity between the above and  the p base structure definition for 
arithmetic expressions:''' 

<aexp>:: = 4iexp]> <äop>  <;term"> 

lUaopi ^term> 

t ^term^ 

< term>:: = <term> <mop>  ifactor> 

I ^.factor^ 

^factor>:: = <factor>t^primary> 

I. ^factor^ 

<pritnary>:;- ident (   num ) ((aexp>) 

<aop,>::= +|- 

<mop>::= *\l |-^ 
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4.  Semantic Relationships 

Syntax 

semantics ^ <list>; 

Semantics 
»i i 

All identifiers used in the semantic fields are con- 

sidered to b© global to the <list>,  as are the various system 

routines to aid the compiler writer. The identifiers 

must be defined by a quotation assignment in the <list>. 

Additional content in the <list> is left to the programmer/s. 

discretion. The system aids will be described separately. 

Pragmatics 

Essentially, the semantics are in the form of a <case> 

statement with each <case> bafrhg one of the identifiers 

found in the semantic fields of the patterns. 

Justification 

The use of FLEX as a powerful descriptive language 

for providing semantic referrents to the maching allows 

translation building to be relatively easy. 

Examples 

(Will be given after exposition of system aids) 
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Global Data Structures and Algorithms 

A ■  ■'■ne Symbol Tab 1 e 

The symbol table is a stack in which information may 

be retained about <:identifiers" in the system.  Automatic 

controls for handling block structure are provided. 

W 

JJ -* 

IT 

1 
1 

■   1 

1       i       i 

I 
1 

t       i         J_ 

1 
            J      
name   flag  value 

Symbol Table Routines 

New Block 

II and JJ delimit a block of symbols.  New block 

causes a push to occur and II and JJ are reset to handle 

a new group of symbols. 

Old Block 

A-E££ of the symbols delimited by II and JJ is performed 

and 11, JJ are reset to their lower level values. 

find (name, from, to, found) 
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A search is performed in the raiwre sjMscified.  "found" 

is set to true and a global variable LL contains the 

desired location if a match occurs.  Otherwise "found" 

is set to false. 

enter (name, flag, value, enor) 

A search is performed in the current block.  if a 

match is not made, then the "name, flag, ^alue" indi ated 

are pushed into the current block.  If a match was made 

denoting that a symbol with the same name already exists 

in the current block, "error" is set to true and no entry 

is made, 

S.  Code Generation 

System aids in this area are currently somewhat 

primitive.  A canonical parse will deliver operators and 

operands to the semantic routines in a polish post fix 

order—all that need be done is to generate the two kinds 

of operators that the FLEX polish requires.  The following 

routines will eventually be replaced with machine independent 

aids. 

sop- fop) 

In the FLEX machine simple operators are identical 

with their delimiter representation,  sop ("+") will 

generate an "add" command. 

cop (op, value; 

Compound operators are necessary for specifying declara- 

tions, variables, procedure calls, etc.  Their description 
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and use is supplied in Section V on pragmatics of the 

machine.  The user's intuition wiii be relied on, 

scrval (loc, value) 

Stores just into the value field of a compound operator 

at the specified location, 

strop (loc, op) 

Stores 3ust into the value field of a compound operator 

at the specified location^ 

Giobal names 

"cpd" is the current process description segment into 

which code is being generated.  "P" is the current code 

location. 
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o 

Examples: '" a simple compiler for arithmetic assignment statements delimited 

by   "   #   "   '" 

metas «,. (body, stat, aexp, term, factor, primary, aop, mop); 

terms*- (";",   "(,)",   "  ".   "     "^op      ("* ", "/", "    "), 

aop      (" + ",   " - " ) ); 

Start: 

On: 

Atoms; 

Atom 1 J 

Syntax    *•• (,   | 

Body   ♦— |    Set up 

ident    "♦- " 1 

aexp: 

Fold: 

(aexp.*- aexp aop 

j aexp ♦- aop 

|aexp <- 

"(" | 

«op | 

Ident I 

nutn I 

b. | 

Ä I 
"t" | 
Ä I 
A I 

mop I 

A I 

^ ! 
ft I 

idt 

lira 

opr 

opr 

I 
primary *- < 

jprimary ** 

prim:    | factor   factor "f"    primary 

| factor ■*- primary 

fact:     I factor 

I terra*- term mop      factor 

|tarm *- factor 

term:     \ terra 

terra &        i   opr 

tern & j unsura 

term 

I *exp 

jprlmary 4-    "("      aexp 

jstat* ident    "♦- " aexp *• | assign 

(body^ body stat    ";   " | 

jbody «. body  stat    "# " I 

Semonttc» #• ( 

set up^new biock; cop ("new",A) '"set up for handling variables'" '; 

idt *- 'enter (ext (I), JJ+I, errr )"* if name not there, put in '"; 

'cop ("value call", vakje (LL)) '" generate a fetch request '" '; 

nm *-   numb  (ext (I )) '"generate a literal for a number'" ' ; 

op ♦- * sop  (ext (I+l) '"pick up and output operator from external name 

unsum^if ext (T) = "-" then soo (un min) else' '"unary minus'" 

assign*-enter (ext (I), JJ+I, error) '"if name not there put in": 

cop ("name caliy value (LL)) "'generate an address request1"; 

sop C'-«-")  '"generate a store comm-ind"' '); 

aop 

, scan go start, 
, scan 2 go on err 1  j 

, scan go atoms err 2  j 

, scan ,J5£ atoms 

, scan .jgo atom 1 

, scan ,go prim 

, scan ,££ prim 

,go fact 

,££ fact 

err1   | 

, scan ,£0 atoms 

,fiO  terra 

»go terra 

.scan ,£0 atoms, 

, scan ,£0 aexp  , 

'•^ aexp  ' 

>££ aexp  • 
, scan ,££ atoms  , 

.scan ,££ prim  , 

, go fold, err 3  | 

, scan 2 , £o arr, 

, go halt. err 4  j) ); 
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'The compiler for FLEX itself is a good example' 

flex4-scribe metas_*- (body, list, stat, self, prim, labl, svar, var, 

expr, factor, term, arit, rexp, rterm, aterm, 

andl, oterm, orl, bool, assert, utm, uex, ifcl 

trupart, aop, mop, rel, lop, asop, bup, unop, 

iter, sop, set); 

terms *- (",",";",(begin, "("),   (end, ")"), "\","i", 

"C", "]", ":", new, if, then, else, "#"/"-"/.", 

com, unop*-(scribb, type, ( "p,  ceiO/fJ", floor), 

sin, cos, qtan, "T!, abs, rand, prand, hash, exp. 

In, sort, length), "f", aop^-f+'■,"-"), mop-«- 

r*", "/", "~n,.mod),rel4-(,,=","#", "<", V, 'V, 
ar)f "A", "V",    lop^-CV", "S", '>"), sop^- 

fn", V, "C"), «op4-(ls, isn, "6", "$"), of, 

while, to, by,.do, 'bo", "11", tops-4-(bop, uop, 

val, map), ident-^-farray, field, act, leave, term, 

xin, yin, pist, plpt, piln, co^rol), (goto, go), ("?", 

"any"), ar-H"^-", as)); 

syntax-»-C" patterns. 

I 

head: I body 

bod; I body 

empt: I body • 

I body ■ 

I body • 

I stat - 

I selr <• 

* I 

"*" I quot 

body  new I new 

body   ";" I 

body   "," I coml 

body end I endl 

body   "'" | equotl 

body   "]" I esell 

i, scan fi* aid, jump field ,    error field 1"' 

, scan , go head 

, scan , go bod ,      errl          1; 

, scan2 , go decl 

, scan , go empt 

, scan , go empt 

,scan ,go lis         , 

, scan , go sta        , 

, scan , go sei        , 

0 
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atoms:   I    body • 

I    body • 

I    prim • 

I    prim • 

I    prim ■ 

i    prim - 

I 

I 

I 

I 

I 

next: 

pri: 

I    labl • 

I    svar • 

I Jvar ■ 

decl:    I body • 

I body • 

svr:       I body < 

mbr:     I body ■ 

I var   < 

I 

I prim " 

I prim < 

I expr 

I expr 

im 

I 

n^ii 
1      quot ,scan' »go bod/            j; 

begin /Scan /go bod/            j; 

lit 1      push 1 »scan /gO pri/                    j; 

"fl." 1      pushl /Scan /go pri/             1; 

■w 1      pushl /Scan /9opri/             I; 
no» 1      pushl ,scan #go pri,              1; 
if /scan /go atoms,          I; 
while /scan /go atoms,          |; 
com ,scan ,go atoms,          I; 
unop /Scan ,go atoms,          i; 
aop /scan /go atoms,          1; 
goto /Scan /go atoms,          I; 
A 

/Scan /go next/           j; 
ident n.ii 

label /scan /go atoms,         /; 
ident A nops / /go sur/              |; 
tops ident ' tps /scan /go sur/    err2  |; 

body ident n   n             . / decll /$can2 /go decl,           |; 
body ident it.»              , 

/                1 decl2 ,scan ,go empt, err3   1; 
begin      | /scan ,go bod,            j; 

"C"      1 /Scan ,go bod,            |; 
svar A                  | » ,go vr,               |; 
var ar            | /Scan /go atoms,         I; 
var A                 | / /go pri/             |. 

unop prim *                 1 unop / /go pri/             |; 
com prim A                     1 popl / ,go exp,            |; 
com prim A                     1 uncom / »go exp,             |; 

prim com         | ,scan ,go atoms,         1; 



fact: 

trm: 

art 

rtm: 

rxp: 

anl: 

01: 

bl: 

st: 

prim «- prim 

factor -4- 

term ^-term 

term*- 

arit^-arlt 

arlt •«- 

arit -4- 

rexp^-rterm 

rterni'*— 

rexp ■4|_ 

atomi ^— 

andl ^— 

andl "4— 

oterm ^— 

orl  <4- 

orl  -4- 

bool ■4— 

bool "4- 

set 

set 

set 

prim     f 
II A II , 
t       Pnm     A 

prim     A 

mop factor A 

factor A 

term      mop 

oop     term      . 

aop     term     A 

term 

arit 

rel      arit 

arit 

aop 

A 

rterm    rel 

rterm     . 

rxp        "A" 

«P       A 

atsrm and 1     . 

and I    V" 

and 1 

oterm or   I      . a 
bool    lop or 1   . 

orl 

asserM-set 

bool 

sop     bool 

bool 

set 

set 

asop   set 

- lop 

A 

A 

sop 

asop 

A 

popl 

popl 

popl 

unmin 

popl 

mark 

fill 

mark 

fill 

popl 

popl 

scan 

scan 

scan 

scan 

scan 

scan 

scan 

scan 

scan 

asop 
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go   atoms / ■; 

go   prl ,1; 

go    fact , I; 

go    trm ,1; 

go   trm , I; 

go   atoms , I; 

go   or t ,1; 

go   art ,1; 

go   a rt ,1; 

go   atoms , I; 

go    rxp , I; 

go   rtm , I; 

go   atoms /I; 

go   rxp , I; 

go   atoms , I; 

go   an 1 ,1; 

go   an 1 ,1; 

go   atoms , I; 

go   Ol ,1; 

go   Ol ,1; 

go   bl ,1; 

go   bl ,1; 

go   atoms , i; 

go   st ,1; 

go   st ,1; 

go    atoms ,h 

go   atoms # I; 

go   ast , I; 
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utm^-assert of set A ,go ut          , 

utm*- set Ä 'SI ut          , 

ait: asserf of scan ,§£ atoms        , err 4           j 

ut: uex^-uex bup utm ^ pop 1 ./§£ ve          , 

uex4- utm 1 ,go ve          , 

ve: vex bop scan /go atoms    j 

expr-«t-expr "*" vex A pop 1 ,go exp 

expr>*- vex A 'ä° exp 

exp; expr "#" scan 'S£ atoms 

stat-*- expr A '32. sta err 5            | 

sta: stat*-var ar stat A pop 1 'SB. sta 

staf-*- iabl stat A 'S° sta 

stat--<H frupart stat A fill /go sta 

sfat »f- gots stat A unop 'S£ sta 

stal- H~ iter stat A itr '32. sta 

if cU- if stat then mark , scan fgO atoms 

Iruparf -4- -   ifcl stat else els , scan ,ga atoms 

iter -«H while stat do whl , scan ,go atoms 

body -«$— body stat 
II      II com 2 , scan 'i£ empt 

body -<- body stat ii, ii cln2 , scan '32. empt 

list ■+- body stat end end , scan /9£ lis 

staf -4- body stat "lÄ" equot , scan 'S° sta 

sclr ■^- body stat "J esel , scan 'S£ sei , err6            ' 

lis: svar -4- svar list & [ ,90 sur 

svar •<»- list A 1 ,90 mbr 

sei: svar ^j— svar sein A 1 ,go svr r err7                | 
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IV.  The User's Environment 

Introduction 

Most interactive systems use a special command language 

for handling files, initiating jobs and communicating with 

the compilers.  In the FLEX system this language is FLEX- 

no other languages need be learned.  There are also no 

special entities called "files" in the system as will be 

seen. 

Admitting the User to the Machine 

When it is desired to allow a new user access to the 

machine, a process is created and named with his password. 

This process will not terminate during the period that he 

is allowed to use the machine.  Most of the time it will 

lie passive on the secondary storage waiting to be 

reactivated which is simply done by the user typing in 

his password on the console. 

The user's process is activated, and he is now able 

to communicate with the machine through FLEX and the 

powerful editor which controls a free-running compiler that 

is translating everything that is entered through the 

keyboard to FLEX code.  Since his process is also declared 

active, the pragmatic system will attempt to execute all 

produced code.  This will appear to the user as though his 

commands at this lowest level are being executed statement 

by statement. 
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By these means the user may entertain himself by 

performing calculations, editing text, generating new 

compilers, and generally going where his thoughts lead 

him.  When he desires to cease running, he simply types in 

a leave-  This is the coroutine exit command and, since . 

the routine which called him is the process scheduler 

itself, his process is passivated and the reentry point 

retained. 

On the next day (or next week) when he again types. 

in his password, his process is reactivated and control is 

passed to the reentry point; he is where he was the last 

time on the machine.  This is why files (and file handling 

systems) are unnecessary on the FLEX machine.  Any declara- 

tions he may have made (and possibly stored data in), 

have been saved to be used again. 

Scope of the User 

The user at the console is considered to be inside a 

process description which in turn is interior to the FLEX 

system and environment. This concept of system globality 

fits well the FLEX philosophy and provides a convenient 

meane of allowing the user access to entities such as the 

FLEX language tables themselves, reserved identifiers 

whose meaning he may wish to redefine, etc. 
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v"  The Pragma-tic Envxr@3puant 

1,  IntroduotLon 

In this chaptei we dirst coiisider the isrobiems ot 

j^tiysiCäily raalizxng the p'-j. lo.'jophies prascjnted In Lhe 

px'sv.f.ous sections. 

There have been numeroa:-, iipproachea to  solving this  -■' 

problem; some successful, many more vmsiiccassful ,  Cesis^ter 

programs in general also seam to work according to the ■ 

same ratio. 

One bottleneck 13 the attempt, to "do alJ things for all 

people"; another is to try to make the program work at 

100% efficiency .100% of the Lime,,  The first method 

usually entails huge, unmanageable programs; the second 

means that much fast hardware will have to be used. 

The FLEX environment on the object machine takes a 

drrterent tack.  First the machine structure may be designed 

so that it. is compatible both with the language that will 

be executed and with the problems that will be solved. 

Second, a statistica.l viewpoint is adopted,  For almost 

ail computer problems m general, on any machine (and m 

particular those problems for which the obiect machine is 

suited) neither 100% efficiency 100% or the time nor 

blinding speed is necessary,  Fortunately from the software 

point of „lew, the .first is not needed and thankfully, for 

the price tag, neither is the second, 
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The environment seeks to keep the overheads to a 

minimum for things that are done 9 0-9 8% of the time. 

This means that most of the time the machine will act as 

though it were far larger and faster than it actually is. 

Witness some statistics from Stanford where a Burroughs 

B-5000, a machine suited for algorithmic languages, actually 

ran most problems faster than an IBM 7090—a machine whose 

hardware was significantly faster than the B-5000. 

Of course, occasionally, the piper must be paid.  The 

FLEX system seeks a graceful degradation in performance 

ds the load goes up.  The machine simply appears to slow 

down.  When there are too many active segments or numerous 

quite large segments in core memory, an increasing burden 

is put on the secondary storage.  Where, most of the time, 

the cheap secondary storage allows the machine to look 

as though it had a large core memory, now saturation will 

force operating speeds to approach the speed of the 

secondary storage rather than that of the primary. 

Another interesting consequence of this point of view 

is that the environment works quite independently of the 

particular storage limitations and conversely the efficiency 

of the machine depends very much on diese same limitations. 

J 
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What aTofss this aiüan 

100 Ideal ' lachijji. 

performance 

—M«^ 

^.. 

4Jc 
\8k     V m 

'xrikm.o t v^  m mty$r- 

S  of   time 

It means   that  for 

1 

lOv, 

V^ 

0% 

most   problems,   an   .increase' in /tiemory 

■  will   not:   drastically   inprove  performance,   but   ic 

will  dramatically  reduce  the percent  or  t«  spent  m 

ov-rh-ad when th®  Rystem becomes  cloggcu/ 

It als© m»ÄR£  that   the  physlcaj   w^*,^ »^.x,  K„   - 

v     ■'  ' ■•Ja-'tTTient ol  programs—a h&n&y 

not   run  any  differently  with 

n   sxgnificantiy   better; 

'■":f the ä?ys}t.(Säa, 

feature,     Most proqrams  •■ill.       i 

an iß«r®»?-a  In s««-oryj   «   Crv >-iii  ru 

still  fewöx  V7xll  cmttirmf   c 

Reproduced  from 
best  available  copy. 
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2.  Segment and Process Control 

a. Segments 

In the FLEX operating environment the basic logical 

structure and the basic physical structure are one and the 

same: The segment. Logically, the segment is a contiguous 

string of 16-bit words in core memory and secondary storage 

whose length may be changed with varying degrees of 

effort. 

Addressing in the system is relative to the segment 

not to any particular memory location so that a particular 

segment may be moved anywhere without disturbing access 

t to it. 

segment | displacemenF 

Typical Segment Address  ' 

Cor^' Memory 

High speed memory initially consists of one segment called 

garbage. All other segments, in the system are created by 

portioning the garbage.  An attempt is made by the system 

to intersperse garbage segments between active segments. 

This allows some expansion without rearrangement of other 

■segments.  This strategy will work well with relatively 

static entities like process descriptions (code), and 

arrays.  Process stacks are another matter and some 

shuffling is required. 

•\ 
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Segment Allocation in Core Storage 

At this point paging she ild be considered.  With 

paging, the logical entity (variable length segments) 

would be made up of one or more pages of some fixed size. 

Paging has some advantages in that reclamation of garbage 

and. transfer to secondary storage is made easier.  The 

disadvantages, however, outweigh the advantages for the 

address path is more complicated requiring two table 

lookups rather than one. 

segment"" "page "| displacement 

Typical Paged Address 

In keeping with the strategy of optimizing most used 

operations (and accessing memory is certainly at the top 

of the list), while allowing a certain amount of dirty 

work a small percentage of the time, paging is rejected 

as too expensive for every access.  Accordingly, segments 

are mapped contiguously and memory must be reordered when 

one segment threatens to overrun another. 
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remapping segment reclaiming garbage 

There are several ways to remap segments.  The cheapest 

is to find a large enough area of garbage and reallocate 

the segment.  If this cannot be done, then garbage must be 

collected and arranged to form a large contiguous free 

space which may then be used for allocation and new segment 

creation. 

If no garbage is available then some must be created by 

transferring one or more active segments to secondary 

storage.  This operation is usually called swapping.  if 

there are many segments in the system, but only a few are 

used at any one time, then the swapping overhead will be 

low and the machine will act as though its usable core 

memory is much longer.  If there are many segments, and 

many are accessed, then a system clog is created, and the 

apparent access time becomes longer. 

In all cases when a segment is expanded, it is not 

lengthened by just one word but by a number of words equal 

to some fraction of its current length.  This allows some 

room for further expansion without disturbing the system. 



f. 

72 

•' 

Second a rv Meniory 

As it is pseudo-random in nature, secondary memory is 

handled in a  similar manner.  The scale is larg^; the time 

sJower, the intervals between garbage collection longer. 

Once a segment is swapped out it will remain in the 

secondary'Mneraory until an access is requested. 

We now have the same problem that was presented to'us :' 

in cure:  garbage must be found to accommodate the. segment 

being swapped m  Again 11 no garbage can be found (bi: ..-O 

made), it must be created by first swapping out one or •; ' 

more active segments.  vhen ehe access-request may be 

swapped :. n, ■  • 

The realization of these algorithms will be presented 

after process control is discussed since both operations are 

inter twined. 

b'  Process Contro1 

The basic data, structure has been discussed—now the 

basic execution entity will be covered:  the process. 

Definition of Terras 

A ££££^££_.^s££.LEli£{l. iS a segment that contains 

executable code genera Lea by the compiler.  By its very '■ ■■ 

nature this code is reentrant, which means that it does 

not modify itself and therefore may be in several stages 

o f e K e c u t ion a t a g i v e n 11 me. 
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A process is just an instance of execution of a process 

description; there may be more than one process in 

existence at one time for a given process description. 

Parallel processes are required for operation of the 

system.  The I/O, the display, the keyboard, the compiler, 

etc.,.must be able to run concurrently with the user^s 

.programs and with themselves.  Moreover, the compiler. ',■ 

which is interacting with the user at the keyboard may' 

have to cun in parallel wich a logical "copy" of itself 

executing the com operator in a user program. 

Since this mechanism is needed it is no trick to allow 

the user in FLEX to create concurrent processes of his 

own-'-ail handled by the same algorithms. 

This ability is literally invaluable for all kinds 

of prograirmung, recursion, and event-oriented simulation— 

a pnrtfe use for the MM-8 00 0. 

Process Creation 

The basic idea is   simple.  Since the process description 

(the code} does not modify itself, it can contain no data. 

Therefore, it must have some way of accessing data which is 

independent of itself. 

r- I 

process 
description 

reentry point A 

reentry point B 
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^^gg£„..P4.iS£A.gligi}_wxth Two Seta of Bata 

One way this has  b«en done in conventional B«-chi«*s.i« 

to create a separate data area for each process and to force 

the  process description to access all its. data through 

a base register which contain the low order-address of the 

öösired data«  Now the process description «lay be switched 

from one process (the handling of data A)- to another (the 

handling of data B)  with ease provided, the reentry point 

of each process is retained while the other is being 

©Keouted, 

To effectively run the two processes in parallel, a 

fixed time of execution may be assigned to one process 

before the other one must be started up.  This is the 

H££ quantum and typically is about 10 me. 

It is not difficult to generalize this idea to the 

FLEX environment and the segment system. 

2kl^E£0££s^escri£tion is a segment.  Each data 

are* becomega segment and the base registar refers to the 

data segment name.  The reentry points may becott*  p&rt of 

their associated data.  All that remains is to formulate 

a scheme for scheduling the execution of each process.  A 

Bimple list containing the process names which is visited 

"round-robin" fashion every 16 ms will do. 
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FLFX Proceas Cootro' 

he figure shows the; system about to execute B-  This 

..,.- Coiled uct-ivatiou.  Dunny execution, process B is said 

ro  '.;:■■  •..", SXVL: and trie peiiod during the duration of B's 

' ...i u.. quanc.'.jTi is said to be an event of B.  All entities 

.n the figu.ve ate segm^^.ts, and thus may be swapped, 

i'c^- (■■;:_,:,tack 

Bf.cause of the well-nested propertieb ot algorithmic 

.'. . i;:;,iau':,.-: ;.n geneial, and FLEX in particular, the data for 

a r. r cf.as IG an extendable ^.egitent called a process stack. 

3'-
:

-L.- inioi'mcttion which is necessary for each event rs 

r>-1 a: ned m the base of the s>.ack, such as the process 

description name and the reentry point associated with it. 

tv, ;. le C is having an ev'nt , the ether proc^s:-es are 

a a ...a to be passive.  When the pruce&g stack is collapsed. 

' 
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and the process name is removed from the event list, 

the process is said to be terminated. 

Passivation 

A process may be made passive by more than just the 

ending of an event.  In general, when a process initiates 

an I/O operation, it will be passivated while the I/O 

( 
is running. 

Indeed, all the £eal-time processes such as the I/O, 

the display, the keyboard handler, etc,, because they 

cannot wa.lt when something that involves them is happening, 

have the ability to passivate (or interrupt) any other 

process and to activate themselves. 
■.I. ■ • . ■       -. '. ■     '  ■ ■ 

The round-robin algorithm must be modified slightly 

to accommodate the real-time processes. 

r 

, i 
B K. 
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i 

 ) i 
i 
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Event List 

P.. S. I/O  PD , ' 
in 

read-only 
memory 
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Ail the real-time event notices are logically 

clustered.  Between each event they are scanned by the 

scheduler to see if act.vatäon is required.  If not, the 

process pointed to by the current-event pointer is activated,' 

At any timo an outside rnteerupt may point into the real- 

time area.  When this happens,- the current er-ent is passi- 

va't.ed and the real-time event activated. 

A FORTRAN or ALGOL program consists of just one 

process and so do many proarams in FLEX.  Therefore process. 

hand liny „nd access should be optimized-  This is accomplished 

■by filtering every request to memory through one of four 

jase registers.  Since the rearrangement of memory requires 

an ££^^äiA£flJof .the iiarbatje process, during an event, core 

memory is still and the base registers may contain 

absolute addresses.  These addresses are calculated "during■" 

an activation and are the only contact with absolute address 

that (..he entire system has.  (Excluding the garbage 

collector,, of course.) 

Base Re go. sters 

During an event one base register is free for system 

use.  Another holds the base address of the process 

description; the next contains the base address for the 

process stack.  The last, as will be seen later, will aid  ■• 

i n a c c e s s i n g o 111 e r s e g m e n t s . 
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It can be Beer, that although the FLEX environment 

has effectively dene; away with direct addressing and 

introduced relative (.and moveable) data entities in the 

segmenting scheme, brings actually hold still for the major 

part of the time and the basic overhead during an event 

is a short add whose time will be absorbed by the micro 

code hardware. 

Data Segments Associatnd with a Process Stack 

The exact format of a process-stack will be discussed 

in the next section or execution.  Now it will suffice to 

say that each slot in : le process stack is associated 

with a different vari .. le name in FLEX.  During compilation 

a variable name in trn Tformed to a relative index in the 

stack.  The slot :'-tse"  may hold a number or a pointer (called 

a descriptor), 
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If the variable remains unmapped and contains only 

--numbers-- then this data may be accessed directly with 

no overhead.  If, however, a <list>, any other, entity, 

or a map is assigned to the variable then the data is ■ 

put in a fresh segment and a descriptor is created 

containing the new segment name and a description of the 

data.  The descriptor is stored in the' slot and is effe- 

tiveiy a self-typed indirect address. 

Example: 

'new a/bfC 

a " 1. ; 

b-(3,4,5) '; 

» 

'c' num 

■b' data 
name 

3    1 

'a' num 1.0 

P.D. 
re- 
entry 

num 

■ r 

5.0 

num 4.0 

num 3.0 

process stack segment 'namel' 

Program and Realization (Schematic) 

The slots are created in order and are initially set 

to A.  'a' contains a 1.0 while 'b' contains a descriptor 

which effectively points to the freshly created segment 

'name 1'.  Or course, the data descriptor in "I" cannot 
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qontal-n the absclufe address for'tnäta&  1-' b&üause 'name 1' 

mav have miurated to secondary storage during some other 

ferocesses «vont..  So it .must contain a name for the segment 

and the absolute address at any given time tm&t  be looked up., 

unique names for froshly-created segments are doled 

.it by a system routine and consist simply of a 12-16 bit 

intagejc. 

Tas ipegnient Ässociat i-on^a-bi-B 

Thts operation thai needs to be performed is the sarae 

as the associative operations m FLEX and the same 

m^ohan.israR ar.d format^ are used.  When a segment is qreated 

or braucht into core storage, we wish to form an association 

{ s thus-;  Z.oc i_s base address of ceg-name; 

The Lnvsrse operation needs to be performed when the 

segment is  accessed:  ? is base-address of seg-name; 

This will return the absolute location of the segment 

Which will be placad in the fourth base register and then 

used.  When a segment is swapped out or destroyed, the 

apaociati'on needs to be removed: 7  isn basev-'address of 

seg-name; 

If the association.fails, then the segment is residing 

or the aocondary storage and a somewhat more leisurely 

gie^rch may be made to find it and bring it into the core 

jnemory. 

"watrjxjsizfi-f.-wct isC 
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gj?6 Association Structure 

This will be covered xn great detail in the next 

ion, but the  operation may be-demonstrated 

y.  Of course, the table itself is a segment 

and has a logical format as shown: 

section on axecut 

schematicall 

ab s 
link  a del 

'v^y 'name 1' 

HV 'name 2' 

free expan,; 

The Segme.n t Tab 1 e 

A s s o c i a 11 v e h aid w.: ■ i 

it cannot; be used to n i 

and others [81 have sir 

stimulate an associate ri,^,;r 

used is similar to than 

technique is derived troni 

end 

prohibitively expensive, so 

the information.  Feldman [7] 

hashing may be used to 

very effectively.  The method 

•AP [9i, although the hashing 

ifferent source. 
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The name, a 12-16 bit number, is reduced by the hash 

to a 4,5, or 6 bit number which is used as an index to 

search the table.  Since not even the best hashing 

algorithm can totally eliminate the possibility of two 

names hashing to the same place (as 'name 1' and "name 2» 

have done) provisions must be made for this eventuality. ■ 

After the index selects a row, a comparison must be 

made.to see if we have uniqueness.  If we do (percentage 

dependent on the hash size), then the absolute address 

• may be delivered without further ado.  If the name column 

contains a zero, then there is nothing in core memory that 

hashes to this slot, and the segment must be out on 

secondary storage.' The same" applies to the case where the 

comparison fails and the link field is zero indicating 

a chain is piresent.  The overhead for a good hit is 2 650 

Us memory cycles.  That for ä fault is 1 or 2 650 yjs 

'memory cycles. 

Now the high overhead case is considered.  If the 

absolute address of 'name 2' is required, a chain of 

multip/le hits must be followed. Fortunately, this does 

not happen very often. 

In all the associative structures the percentage of 

multiple hits is calculated.  2-4% is the maximum allowable 

level; when this is exceeded, the associations are 

iwiwaawfrta.-gj'- 
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recalculated for a larfs:  /:^hi»f ar«s wMch pulls the 

ffiultiple hits down to a sairo level., 

This scheme folluv;:- ,.;u: philosophy of the FLEX 

environment. Most of the Lima it leeks like something 

much better than it is;   a  assccl®ti¥e taemoryl  For 2-41 

or the time it looks J      U.st-procss^ng table. . ." 

Segment Creation 

A segment .1B croai   r>y converting an area of garbage 

into active storage.        for this segment must be found 

and entered into the sen    table,. 

Since creation and   ,, ruction are dynamic, a way 

must be fcuhd to maximaJ Ly utilize the small number of 

segment names available,    ■., could he  done by maintaining 

a pool of unused names .in >. de..; to provide a new, unique 

label for a segment—bur tro s is CQstly in terms of 

storage, so a different path is taken. 

When it is desired   create a. segment, garbage is 

found (or made) in the usual way.  The machine contains 

a random number generate! which is used to select a name. 

Ar. access request for ■; h*     name is then made to see whether 

or not that number is aJ  -ady m use as a segment name. 

If it is, a new random ..■,*<•, .1.3 done and a new test is 

made.  Very rarely wii !   -.elected name be in  use, so the 

algorithm will almost aJw^ys work the fiist time. 

H Reproduced from 
best available copy. 

■«irw-.v.ßJfrÄStsjW*»'. 
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The new name may then be entered into the segment 

table along with the absolute address of the displayed 

garbage and segment creation is accomplished. 

Criteria for swapping 

How is a segment picked for transfer to secondary 

storage for the purpose of creating garbage?  No swapping 

algorithm has been shown to be really satisfactory.  The 

one presented here will work quite well, and following the 

FLEX philosophy, requires no bookkeeping on each memory 

access, 

The influence of the compiler extends directly down 

to the lowest level of the machine and provides information 

that is not commoniy available on other machines.  Some 

of this information has to  do with an insight into the use 

to which eaph segment will be put which may be partially 

derived from mapping conventions and process use. 

The volume of segments mapped as 8-bit bytes (text) 

will tend to be high—yet use is limited by-storage äna \- 

display restrictions.  One might hope that these segments 

will migrate to secondary storage in a fairly rapid manner. 

General data segments have a somewhat higher priority— 

yet they are clearly the next level to be thrown out. 

Process descriptions and process stacks certainly 

have a higher need to remain in primary storage in order 

to sustain a rich amount of process activity. 
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The real-time processes, the event list, the segment 

table, and other system entities need to maintain residency 

in primary storage all of the time.  Therefore, they 

should never be swapped,. 

0-  2 0'  3(r      40" 
oy-, 

Priority:        12    3    4 

These priorities may be expressed as a v/eighted 

conditional probability or as the number of standard 

(■fc) deviations on a normal curve. 

The swapping scheme now works as follows,  A random 

number is selected just $s in segment creation.  This is 

hashed to locate a slot in the segment table and thus, 

eventually, a segment.  The type field is examined for 

priority and a question  is asked whose answer is 

weighted towards that priority.  For the normal curve 

weighting scheme, the probability of a ;yes answer to the 

question:  "Should this segment be swapped?" is: 

 area of a number 
total area of a curve 

If the segment was text, then it would have a 57% 

probability of being swapped and a corresponding 33% chance 
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of staying in.  A system segment (having.priority 4) 

will have a zero chance of being swapped. 

Suppose now that a segment is in heavy use and is 

swapped.  Then it will come right back in—but the chance 

for it being swapped again is now quite small since a 

random selection is used.  Conversely, a segment in little 

use will simply remain swapped. 

The end result is that ail segments in primary storage 

are scrutinized uniformly and those that are active tend 

to remain while those that are not will tend toward 

secondary storage. 



„,_, _..„. _   

ja!*?!* 

87 

The Sfratefly For Segmenf and Procer;s Control 

It now remains to put everything together. 

p 
R    E 
0    V 

0 
T 
H 
E 
R 

C    E 
E     N 
S    T 

S    L 
T. 
S 
T 

active 'B' 

active 'A' 

active Key  6 

active Display 

active    I/o 

status   name 

DD . y - 

• 

s 

J* 

Base  Registers 

The doited lines are affective pointer:   ("leaning that the reference really has to go 

through the segment iable.   An event for   A' is taking place as shown by the base register 

configuration. 

MtMK^a-o'' tmm 
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a.     The Process   Deaaription 

A pi.     sä  aescrlptxo.ti  .U;.  a  s®piuant  that m&y im «Sf«c«ite4 

b     the  hardwar:   of   fche  FLEX m-achiM,     Ther® are basically 

.htre  K.'.näö  of   entities  contained  ID,  this  segirwsnt:     sisipl« 

..Dti: a.or a ?   compound  op&ntors,   a/\d numeric  and   string 

t e t 4: 
(I 

I        7 i .i » ■. I 

...^.J.....::.^.,  i l |   op code   j   ^alue   j 

-.,1.    :'±'',' l   ■ v    ,„.;.:/„ A compound operat jr 

■■i se determines  the  length to be 

L,3--s     ; -:•   the FLEX operators  üxe 

'npilöd   us   sjimplr-  cn> --,.     '"he  r.arnes,   requests   for 
I 

jumps,   !:•■      nie.  rr.impound   operators, 

7,he  cc    pot ad •;, po]    i oi 

2IL.£2§£. Yj:L.::J.l mean ing 
\v^,i ■. e     all       stac k   i ;idex find  a   value,   put  it  on,top of 

B t a;."" k 
o;e^te  ö  dsscrxptor,   put  it 
on   top of   stack 
Jump if top of stack true 
Jump if top of stack false' 
Jump unconditionally 
create space 
to match actual with formal 
parameters '   | 
create .. new segment 'vector 
S12r long 
create  a   stack  number   from 
'integer ' 
used tor operand for goto'a 
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i . Recursion 

Recursion is easy in the FLEX environment.  Each 

parent process simply creates a new child which is linked 

to the patent by the returns.  The | call | operator is 

used so that juat one instance of the recursion is active 

at any one time« 

Following is a subroutine which calls itself for . 

determining the factorial of a number. 

fact ♦ 'new a. if a -■ 1 then 1 else a * fact (a-1) ' ; 

'"This creates the following structures when activated by 

the next statement11' 

display - "fact (3) = "#fact (3); 

fact. (3) =6.0 

.4. . 
parent 

1st 
instance 
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2nd 
instance 

LEi 
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Reproduced from 
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All returns from a call as well as reactivating the 

parent process also transfer the top element in t*ie stack 

from the returned process to the top element in the stack 

of the parent process.  This ^ the way results are passed 

back when a procedure is used as a function. 
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Input/Output Conventions 

I/O Devices 

I/O in FLEX does not require an^ special statements; 

it is handled as a generalization of the assignment 

statement.  How is this realized m actuality? 

Each device has a reserved variable name associated 

with it and, hence, there also exists a slot in a process 

stack somewhere in the system that is also associated 

with this name.  This process stack is the I/O process 

stack and is pointed to by the "1/0" event request in the 

real-time sectior ot the process control que. 

v 

r 
e 1 
a 

1 1 

\ 
1 
HI 

1 
I/O 

event | 
que 

I/O Control 

'tape 3' 

'tape 2' 
.' tape 1' 
'tape 0' 

DR1 
DR2 

DR3 
'printer DD 

'printer !ß_ 
' punch ' : f5 

Line Going Out ... 

^ 
^ ^S 

15 1 

'^'.M ds' !D£l2/2 \^ 
l/O process 
stack 

x b 
Card Coming In... 

An I/O interrupt uses the number of the device that 

caused it as an index into the I/O process stack.  In the 



95 

slot associated with the dovice there is either an Ü 

or a data descriptor poirting to a segment which contains 

data to go out or data coming in.  The figure shows an 

execution ot the statement: 

printer 2 *   "al3  = " # ai3# " b22=',#b22; 

Since no format of any Kind has been specified, a 

FLEX free-format is assumed.  As the concatenations are 

executed, a scratch segment is created in the usual way 

to contain the generated string.  When the %" is executed 

it first looks at the description for the storand.  It is 

marked as a temporary and therefore only a name transfer 

is needed rather than a copy.  This is done into the slot 

in the I/O process stack which is now marked active. 

Some time in the near future the I/O system will 

deliver an interrupt saying that printer 2 is free.  The 

"printer 2" device number (in this case:  4) finds the 

data description in the stack indicating that something has 

to go out.  This is set up and that data is squirted out 

on the channel coax.  The "printer 2" slot is now marked 

empty and life goes on as before. 

If the above FLEX statement were in a loop for printing 

out consequentively generated values of al3 and B2?, it 

might very well be possible that another "printer 2" 

assignment might be made before the previous line was 
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transferred out.  The answer ^s simple.  If the "printer 2" 

Liot doos not contain an &,   then the current process is 

passivated until the next txtie around the round-robin.  By 

then the line may or may not have gone out and the 

algorithm is continued.  Eventually the line will be printed 

and the current "printer 2" statement will be executed. 

Naturally, more than one line may be output m one statement- 

a vector of lines may be assigned.  The above just says 

that an I/O statement to a unit must be physically realized 

before another to the same unit may be made. 

Input is similar.  While assignments to the printer 

have been going on, the card reader had been active.  An 

interrupt occurred saying that it had something to deliver. 

A data descrj pt'".r was found showing a read request (one is 

alv/ays there for pure input devices) and a card image was 

delivered to a newly created scratch segment.  Sometime 

later a FLEX statement might be executed: 

new card - format I (cards); 

Formats in FLEX are simply functions or user-declared 

unary operators which take a string as an argument and 

deliver a string as a reult.  The card image (being a 

temporary) is renamed as the first parameter of format 1 

and is thereupon operated on. 

Pure input devices are immediately supplied with a 

new data descriptor input request.  So the "cards" section 

is again set up to receive a card. 
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Two-Way Devices 

These are handled in a similar manner to the printer 

and punch except that both read-request and write-request 

data descriptors are used. Also, it is important to note 

that, since all I/O devices are just variables in the 

system, they may be mapped and then selected on as the 

data enters or leaves the machine.  Suppose only the 

first five words are needed from a tape record, then the 

following statement might be appropriate: 

buffer ■<- tape 3 [0 to 4] ; 

Only the first five words will be read in and transferred. 
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VI.  Progress to Date 

Implementation 

Two FLEX compilers have been programmed in ALGOL 

on the UNIVAC 1108 and have been running since mid-February 

1968.  Several partially successful attempts were made 

to combine the compilers with a number of the operating 

text editors at the University of Utah.  The failures 

were partially due to the inadequacies of ALGOL as a 

real-time and process language in general, and in parti- 

cular, to the very real defects of the UNIVAC version of 

ALGOL-60. 

Implementation of the interpreter has been severely 

delayed for several reasons—the main one being that it 

took longer than expected to work out a rationale for a 

segmenting and swapping system that would work on such a 

small scale. 

Current implementation is now taking place on an IBM 

1130 partially because the machine can be dedicated most 

of the time to this task and partly also because it is 

small and does not tempt one into grandiose schemes. 

Implementation on a PDP-10 is also being contemplated. 

Future Expansion 

The process-oriented nature of FLEX should make it an 

ideal kernel for numerous discrete simulation schemes. 
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A search for primitives in tiUf as well as in  the semantic 

transformation area is currently going on, and it is expected 

that some fruit will be available for plucking in the next 

month on. this field of discourse. 

Application packages are also being studied with a 

view toward both allowing FLEX to do something useful and 

providing a test-bench on which to evaluate the system. 

To this end, the solid-state circuit design program developed 

by W.R. Sutherland on the TX-2 computer at Lincoln Labora- 

tories is being eye-balled.  FLEX and LEAP (the implementa- 

tion language at Lincoln) share some properties-notably 

the ability to store and retrieve associations~and it 

will be interesting to notice the difference between the 

2 56k words of fast memory on the TX-2 versus 4 to 8k 

smaller^words on the FLEX machine. 



n 

w 

REFERENCES 

Ifrnr In ^n'' "Rep0rt 0n the A1gorithmic Language 
ÄLGOL-60, Communications of the ACM 3 (May. 196 0) 
pp  299-314 ~"  vliaJf' J-you). 

fir^i ^."EU.ler " A ?enera^2ation Of ALGOL, and its 
^ne ACM 9  vn •n: IT   l'   Part II',,  Communicatxons of _ne_ACM 9 (January, February, 1966), pp. 13-25, 88-99:  

^loyd  R.S , "A Descript ve Language for Symbol 
n  t^ -o0n'" Journal  i the ACM 8 (October, 1961), P     K 7 ;-(- 584 'ft 

iU 
A . "An ALGOL-6 0 Compiler," Annual Revxew in 
_i£ Prog) amminq,. Vo I  4, 1964, pp. 87-124.  

fo 
1962. 

100 

^ 1    'n
J ; "A Formai Semantics for Computer Languages 

0 o ;   ?? f^1?" In ä c-nP]ier-Compiler," Communica- 
—2-^ • th£ ^CM 9 (January, 1966), pp. 3-9.  E- 

n TdS ^f" ^' "TITfL ComPa^-Compiler Reference Manual 
UJ 1'  umcoln Laboratories, MIT, January, 1967. 

oldmn J  "Aspe ts of Associated Processing," MIT 
Lab r ror  rechmcal Note 1965-13, April, 1965. 

ill. A,, "A Note on the Use of Scrambled Addressing 
Associative Memories," unpublished paper, December, 

Rov.er^ P  and Feldman, J., "The LEAP Language and 

DS..-43;;'octob;:,M-967L:nCOin ^^ ^—al Note 

Cha't' W
AL^ 'er.' L  '^ W^choff' R" "A Syntactical 

19 1  P   ?!     Communxcatlona of tha ACM 14 (September, 

NOTE:      F 
rformiSlfS  exposttlon  on compiler-compilers  and 
a   tcrmid.ble  biography  on   the  subject  see: 

Svff3'..J;     "      GrieS'   D'   "T^nslator Writing 
iKa®   s       Commum   ations  of   the  ACM  11   (February, 
1968)      pp.   77-^3, * ' 


