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ABSTRACT

Previous calculations of barium cloud growth failed to
give reasonable estimates of striation scale size and onset
time because they either assumed no ionospheric end-shorting
or no ion diffusion (all modes unstahle) or strong shorting
(all modes stahle). We derive a set of eauations which in-
clude finite end-shorting and solve by a new numerical tech-
nique. For moderate end-shorting (in the cxnerimental rance)
we obtain a fastest esrowinp mode of reasonable size on the
rear of the cloud. The growth rates and instability rangpe
are very sensitive to the end-shorting and magnitude of the
amhient electric field. There is no growth helow a critical
value of E or above a critical value of the shortine. A
series of graphs are nresented. We also derive most nrevious

results as special cases of our equations.
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There seems to be general agreement that the EXB insta-
hility fﬁiﬂQﬂ' 1963] (sometimes called the gpradient drift
instability) is responsible for the onset of striations in
barium clouds released in the ionosphere., lowever, the prohlem
has been to demonstrate that this is actually so by calculating
the scale size and delay time and making comparison with
experiments. Previous attempts failed because they either
predict instability for all wavelenpths and with comnarable

srowth rate [Linson and Workman,1970: Vdlk and llaerendel, 1971]

or hecause they predict stahle behavior [Simon, 1970},

We have previously derived a set of equations [Simon and
Sleeper, 1972) which govern the growth of a barium cloud
immersed in a conducting medium. We now show that all earlier
results are included as special cases of these equations cor-
responding to no end shorting or strong shorting or neglect
of diffusion. In each of these cases, one can account for the
results obtained. We have now perfectzd a new numerical scheme
for solving these equations with arbitrary end-shorting. We
find that there is a preferred wave number and growth rate and
that the results are very sensitive to the amount of end
shorting and to the strength of the external amhient electric
field. For values comparahle to those in actual releases, we
find a prowth rate and scale size in peneral arreement with
the observations.

Tn the next section, we rederive the peneral equations

from a slightly more general viewpoint. Following that we

describe a particular solution of these equations. The
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corresponding numerical solutions and a discussion of the
results are then given. Finally, in Appendix A, we show that
previous results are indeed special cases of our set of equa-
tions, while Appendix B gives details of the computational

procedure.

BASIC EQUATIONS
We shall denote the number density of bharium ions, ambient
ions and electrons, respectively, by Np, Ny and n,. Fach

obeys the continuity equation

%%—}—v-(nx): 0 (1)

and quasineutrality holds, i.e.

|nB+nA-ne|<< MNe (2)

where we assume singly charged ions, for simplicity. Denoting
electrical current density per species as Jn = e npvp, JA =

e nAVA, Je = - neVe and using Eqs. (1) and (2), one has

‘7-(;z;'+:zé +:2;) =0 (3)

and this equation can be used in place of the electron con-
tinuity equation.
The velocities are given by the usual diffusion relations

in a magnetized medium

nv,= —Dyn * unk, (4

ny,=[-RunTunE,] 7 (ObXERVN+UNE] )



=3

written in the rest frame of the neutral background. The
upper signs refer to ions and the lower to electrons and all
symbols have their usual meaning in the neutral rest framec.

The corresponding species current divergence is

, .
) V"I, =z V//[”D%n i/"nEu]

(6)
9 [-DgntUnE] 2 T vnxE, b

where we neglect temperature variation in the nerpendicular

direction (over the cloud dimensions) and assume an electrs-

static field.

If one now substitutes Eq. (6) in Eq. (3), and divides all
terms by De, one obtains a complicated exnression which, however,
takes on a simple form in the limit (QT)e*w. In this limit,

Ea. (3) becomes
4 -
VMLVMHQ'*'—?:Y)QEMJ = 0 (7)

We assume that moving along a field line passineg through the
cloud, one ultimately reaches a non-conductine region (the
lower atmosphere) where all currents must vanish. Hence, we

integrate Eq. (7) twice and obtain
Leban, ¢ = - g &

where ¢ is the electrostatic notential and ¢ is a function of

r, oaly. This result for ¢ is of course only the first term
in a systematic exnansion of the equations in powers of n+/n_

[Simon and Slceper, 1972].
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Now integrate Eq. (3) along a magnetic field nassing
through the cloud all the way from one non-conducting terminus

to the other. By the boundary condition this becomes

fv,[g“*/@rfgie]d}:o

where the subscript I denotes the last two terms in Eq. (€)
and dt is a differential length along the magnetic field
direction., Let us further divide this integral into that part
which lies in the cloud and that which lies in the ionosnkere

outside the cloud. Then we write

/VJ'.[,ZJA“’,\\];B-*A];E ]dj"l—/VJ[‘Z;A 4;2;8 +J:-e]d[ =0 (9

P

Cloud fono

To lowest order in D#/De, the species expression for V,-Jy,

obtained by substitution of Eq. (8) in Fq. (6), is

*é’ V;IL = & VJ.'("'DJV.J.H;/JJHVJ-? J—l_{ﬁé—,@%e@.ne)

FHOT)LNX G 9 b ;M‘L(nT)eI%ev_qum.b (10)
We now assume that, in the cloud portion of the integral in
Eq. (9), the ambient ions are negligihle compared to the
barium ions. Thus,
Ng = MNe
Na = 0

(cloud region)

and that the reverse is true in the ionsophere nortion,

(ionosphere region)
~
With this assumption, Fq. (9), evaluated to lowest order in

D+/De’ takes the form:



Vi [-DUN-UN fﬂ* frr) Uil LN (1)

4' ‘7 [ Tﬂ LD — ‘_—B Vﬁ}?:]‘# )N\LF"{Zugy&éz = [0

Here we have defined
A/C =3 Cleud )’73 dﬂ 3 T,
D, = DE+ M-—-'D;(H%)
Moo= P (12)
MNp=— (D,L_J—/_",J: 2D, )7 n, dd

iono
ZB = ¢ / (,uﬁ—,u;e) 7, dAL
i edql2]
Nw=— &) [0 b0t 170, di
& 1one

and negzected variation of diffusion coefficients over the
dimensions of the cloud. We have allowed for election cross-
field transport contributions in the lower ionosnhere in the
definitions of‘z, L and‘l. Note that Lp is the height inte-
rrated (actually along a field line) Dedersen conductivitv
of the iosnosphere.

One ohtains a complete set of equations by combining
Fq. (11) with the barium ion continuity equation inteprated
over the length of the cloud and evaluated to lowest order
in D+/De,

N 4 g [-D, ~MiN. 7, 4 ]

ot (13)

"/UJ.(AT)( V_L?X,Q'VJNC = 0
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and the continutty equation for the ambient ions. These repre-
s2nt a set of counled integro-differential equations in the
variables Nc(gL,t), g(a,t) and nA(r,t). We now partially
decouple these by the assumption that variations in the ambhient
ion density have small influence on the dynamics of the ion
cloud. This, in effect, neglects the back effect of image
striations [Volk and Haerendel, 1971] on the cloud. With

this assumption, we set n, in Eq. (11) equal to its value in
the undisturbed ionosphere which means that V n,=0, T

1 A LS R )|
ALH=0, VLYB'O (all, over the dimensions of the cloud) and ZB

:n’

itself is the heipght integrated Pedersen conductivity of the

undisturbed ionosphere. Eg. (11) reduces to:
< - DN - N A 7,9xb - UN
[-&iv N =N J?]—J’(n_r) L3xR Vi
Js— ———ZB (742?:: 0 (‘4)

where we drop the subhscript on N and (Q1) and where this
equation plus Eq. (13) comprises a complete set. The houniary
conditions appropriate to an ion cloud created suddenly in a

localized region at t=0 are

N — 0 a3s r, —> ™
(15)
where F, is the ambient electric field (in the neutral rest

~A
frame). Fq. (14) is essentially equivalent to Fq. (8) of

Simon and Sleeper [1972] while Eq. (13} is the inteprated

form of Eq. (1) of that nanmer. In that paner, these equations
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were solved in the limit Zg>>ew N, i.e. highly conducting
background ionosphere. In this paper, we describe a new
numerical technique which allows us to solve the equations

for aribtrary values of ZB'

DYNAMICAL EQUATIONS FOR FOUILTBRIUM AND PERTURBATION
We shall solve Eqs. (13) and (14) in two stapes (which are
entwined in the actual numerical procedure). First a numerical
solution for a time and space dependent cloud eauilibrium with
slab geometry is obtained. 1If we choose the R- field in the
z-direction and assume that the density and electric fields
vary only in the x-direction, Fq. (14) hecomes:

. v L0 2q°€
2 [-92N _ N2 M 245N 2824 _
Bx[ 35 M‘NE%J+(HT) 2§ Ix 2 YL

Inteprating this once from the interior of the cloud to a
distant point, using the boundary conditions in Ea. (15),

one has

__2_?_; EAx ., _E_/_J_z Q.;D

IX = TN (AT) THN +fs(’“‘) )
where
Ax.t) = . eﬂ;gB(X,fl_ (17)
Note that -3g°/3y = FAV by the vanishinp of VXE. This solution
can then be substituted in Eq. (13) which becomes:

N . _
T -3 (4 55) + [ Eaym 2] (W)

+ -%E‘,yg/% .

(18)



where

/
XX, t) =
2ol ] + A(XA) (19)

It is a straightforward matter to solve Eq. (18) numeri-
cally. Note that a represents the effect of end-shorting and

that this varies from point to point.

Next, we linearize Eqs. (13) and (14) about the equilib-
rium derived above and fourier analyze in the v-direction (exn iky).

These equations are
¢ P b °
-y"" oo[ BXL"'&nI]“/U}‘%([N';%!*n"‘S%]
. ; ~Q°
— ks (Nikg, =1 Eqy) = LA [98-n22] 0,
2 _

and

3 o 5 P
-0 3 3 (138) - (v 3E)
+ [o@;/ﬁz—}' i/}//b EAy - ‘*&% %2{ ] " (21)
—_— /'41—541 A ,Z_E.?:?-g

Nt) X

+ [ KN + AR B+ K2R g, = 0

(NT) 2%

We solve Eqs. (20) and (21) by studying the erowth in time
of some arbhitrary perturbhations inlzf Netails of the numerical

procedure are given in Appendix B,
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Throughout our numerical! procedure we assume that the
initial density distribution is a gaussian with characteristic

length h. Thus .
~(x/h)

N (tzo0) = N € (22)

Using this characteristic length h and the initial central

density N we define the dimensionless variables
A'= A/h, t= DR
= e¢UuN/Zg | N=2nN/T
= MEL/Ds , A= hh . T 9up,
N'=nN/8  ad 9= g /0. ]
cF

and transform to the frame moving with the velocity __%Z, The

dimensionless form of Fqs. (18) - (21) are

N 3 (3N Eay C
= (xS )+ ey - N2 (an) = 0 (23)
L — (24)
K= TN

AN, I Eay N 3
2t T Ox* T a0 X T Jx(‘%n’)
w3 c/i»EAJ-ffL/i)Orj—)n, (25)

T(“ )+ [ AN - AT ]9,

A+ &l
&/
wiv
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p)
J”: k12 (26)
14 (B ON
—"[,ﬁ? (N*)\)‘J’%% 3 X ]?;
where all quantities are in dimensionless units and we have

suppressed the asterisk. Also

¢

29 Eax NN | Eay NN
IX T J+#+AN L JEIN X —+ (nT) )+ AN (27)

in the same units. In practice, we work with Eq. (26) and

the difference of Eqs. (25) and (26), which is

t —L 4 &—i[/f/(lﬂ‘g’]ﬂ +X()X‘ /1)31)

[} 4+ (71" JJN - 0
% (n'f) Sx 9 =

Note that the entire behav10r of a given k perturbation

B (28)

depends only on A, EAx’ EAy

is also worth noting that the equilibrium elective field in

, and 01 for the barium ions. Tt

the cloud interior (in dimensionless units) follows from Fq.

(8) and is

£ _ 297 ﬁ/ﬁ,,’_ s
g 4 )+ (Te/Tg)

E'j = EAV

Note also that the houndary conditions on n, and g, are that

n,+0 and Vg,+0 as | x| »e,
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NUIMERTCAL SOLUTIONS AND DISCUSSION
Solutions are obtained by inteprating forward in time usingp
an initial paussian for the equilibrium and an initial density
perturbation consisting of a suin of several llermite polvnomials
with amplitudes annronriate to white-noise and with randomlv
selected nhases. A linear instability is detected by oh-
serving the growth in time of the average density disturbance

defined as:
1/2

/ |n1k(x,t)lzdx
> = -2 (29)

/f lnlk(x,o)!zdx |

Details of the comnutational procedure are given in Anpendix

Mk

B. Let us now examine a number of the results.

Variation with A. To study the effect of variations in

A, we fixed the remaining variahles at (Qr)=10, Exal, Ev=-10.
The magnitudes of (21) and |E| are roughlv in the rance of
experimental rcleases while the Ex, EY ratio is arbitrary.
Some tynical time develonments of the equilibrium solution are
shown in Fig. 1 for three values of i; 0,25, 4 and 50 corres-
nonding to . trone shortinp, a typical erzneiimental value and
weak shorting, resnectively. Note that in the strong shorting
case, there is diffusion at the ion perpendicular rate as
expected [Simon, 1955] and that very little distortion occurs
since the shorting ratio a remains close to unity at all times.
The drift to the right is due to the combined effect of
Pedersen ion current and the actual EAY drift bheine (QT)ZcEAy/

B[1+(Qr)2] rather than cEAy/n. In the more typical second

case, we see reduced diffusion and distortion of the cloud
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due to the varying value of a across the cloud. Finally, in
the weak shorting case, we see a clond controlled almost
entirely by electrons (ambipolar cross-field diffusion).
Since we assumed (Qr)e+w, there is little change in time.

The time behavior of some perturbations about the A=4
equilibrium are shown in Fig. 2. Note that the growing modes
rapidly approach an exnonential growth and that there is a
fastest growing mode in the vicinity of k=4, Very skort and
very long wavelengths are stable. In fact, in a much longer
timescale, the growth rates of all the rrowinc modes decrease
and some become stable as the equilibrium diffuses and its
density gradient decreases. t is interesting to note that
the growing modes are 1ocalized on the rear of the cloud as
may be seen from the spatial evolution of the k=4 mode as
shown in Fig, 3.

Some idea of the effect of variation in X upon these
results is seen from the plot in Fie. 4 of the exnonential

growth rate Yy

-l d<np>
Vi = <N ‘——"d{_’ £30)

versus k from various values of ) (yk evaluated at t=0,02),
Note the strong dependence on A. For no end-shorting A=w,

all values of k are unstahle and vy anproaches an asymntotic
value as kz*m. This is in qualitative agreement with the
results in Linson and Workman [1970]) and indeed with the
result in Simon [1963) if one takes the limit (Qr)e*w in that
paper. As ) decreases, the growth rage decreases and a finite

range of unstahle k is estahlished. For strong shorting all
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modes are stable for A slightly less than 0.5,
It is interesting to compare the magnitude of the growth
rate with the simple estimate [Linson and Workman, 1970]
T = CE, (31)
B h

In dimensicnless units, this is

2
Y. 00 gt~ oo (32)
(A7)

in our case. We see, from Fig. 4, that the growth is about
seven times this value for A=« and ranidly decreases as A

decreases.

Variation with |Fal. Next we fix the angle hetween F,

and the slab normal at EAy/EAx=-10, set =4 and vary |EA|. The
resulting - growth rates (at t=0.2) are shown in Fis, 5. Note
the rapid decrease in hoth maximum growth and range of unstable
k as 'EAI decreases. In fact, if one plots Yygx VETsus Ey, as
shown in Fig. 6, one obtains a straight line which crosses the
axis at about n;--n.s for A=y, Note that as ) decreases, the
critical value of IEAI increases. The linear denendence indi-
cates that YMAX does indeed vary directly as ¢ EA/Rh. Indeed

in this range of 1, YMAX varies roughly as

- ,0_‘4\_ — ¢ (33)
Tuax = “b+n Ea P

where a, h, ¢ and d are constants.

Variation with Electric Field Angle. 1If we define ©=

tan'l(Ev/Ex), the variation of y (at t=0,2) with A is shown

in Fig. 7. The growth rate is larpest at angies close to m/2

and -m/2 [the -n/2 curve is identical to that for
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+7/2]. 1t is somewhat higher for the positive values. All
modes are stable at 0=0, This is not a general result., Insta-
bility occurs at 6=0 for larpe values of IEAI for small (Qr1).

A plot of the angular variation for two other values of IEAI

is shown in Fig. 8.

Variation with (Q21t). The variation of vy with Q1 is shown

in Fig. 9. One should remember however that the dimensionless

growth rate includes {(Qt) in its definition. 1In real time
MAX — MAX e B—;,L )4 m_(.)z

L CE,y (0NT)
Y rax Ef Bh )+inT)

{(34)

Hence, we plot yﬁAx(Qr)/[1+(Qr)2] versus (Q1) and ohserve
that the rcal growth rate increases with increasing (21) and
approaches a constant value for large (Q1). This is shown in
Fig. 10, .Note that this is close to the value c EA/Bh (for

A=4),

Shape of Fastest Mode. We note that the maximum value of

k for values of X in the neibhhborhood of A=4 are of the order
of k=4, This corresponds to a true wavelength in the y
direction which is A, = 2th/k* ¥ 2 h. Thus, the fastest
growine mode will have comnarahle dimensions in bhoth the x
and y- directions. A plot of the density perturhatsion is
given in Fip, 11. The corresponding perturhation in 25

is shown in Fig. 12, Note that the 74 maxima are disnlaced

a quarter-wavelength from the density maxima,

Discussion. In summary, we have demonstrated that one

must include finite ionosrheric end-shortine of the cloud
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in order to ohtain a most favored growth made of reasonable
size and that the results are quite sensitive to the shorting
ratio. Previous results can be exnlained in terms of either
no end shorting or no diffusion (all k unstahle) or larpge end-
shorting (all k stahle). Shorter wavelengths are stabilized hy
ion diffusion at moderate values of X, We demonstrate that
the growth rate is also a sensitive function of electrid

field strength and angle and that the plasma is stable if

|E| drops below a critical value. In addition, the erowth
rate increases with increasine Q1 but becomes a constant

for large values of same. The fastest growine mode, for
moderate values of X has a k about 4 corresnondine to fairly
circular striations in the nlane nerrendicular to B, and grows
with a rate of the order of c|E,[/B h.

One could relate this to delay time bv estimating the
number of e-folding times required for a thermal fluctuation
to grow and appreciahly modulate the original cloud. Ry
elementary statistical mechanics, the r.m.s. fluctuation of
the number of ions contained in a striation of length 1. and

transverse dimensions h is

i
AN o LnLth/Z

where n is the average ion number density in the cloud. Takinp,

as crude estimates, n = 106 cm'3, h=1%km, IL=10 km, one

finds AN/N = 10711 & ¢°25

. If we thus assume that 25 e-foldingp
times are required for a fluctuation of the fastest growing
k-mode to reach observable size, we obtain an estimate of

the delay time (in dimensionless units) as,
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Using the value of v§,y = 60 for IEA|510 and \=4, one would
estimate a delay time of 1/2 in dimensionless units or about
half the time to diffuse across the original cloud size since

t in real time is t %hZADL. This is of the order of

n =
tens of minutes in many experiments,

In conclusion, we note that a two-dimensional calculation
would differ from the one-dimensional one in one imnortant wav,
The finite ends of the cloud in the v-directinn would then
allow polarization charges to accumulate and one wonld have
a mechanism for shielding EAv in the interior with consequent
steepening of the cloud rear. This would add an additional
steepening mechanism which should also he strongly )-denendent,
One mipht expect the time scale for this steepening to he at
least as fast as the cross-field diffusion, so that striation and
steepening would he stronely entwined. In fact, if the stcen-
ening was ranid comnared to diffusion snreadine, one would have
1 mechanism which enhanced the instability esrowth rate as
time went on and a time plot such as that given in Fip, 2
might well show the curves bending unwards instead of down,

Further insight awaits the results of 2-D calculations which

are now under study,
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Appendix A

Special Cases Yiclding Previous Results

No [nd Shorting. We show here that one recovers the

results of Linson and Workman [1970] in the 1limit where xn»n.
This limit corresnonds to A+ and thus Fq. (23) reduces to

N/3t=0 with the ceneral solution

N = N () (A.

The corresnondine value of ¢° may be obtained from Fa. (27).

Tn this 1imit

— Eljlf = —+ .15211
3% N dX nNT (A,

We make corresnondence with Linson and “Worltman hv the choice

- X

N(X) = @€ (A.

Then

2 X

and Fq. (26) becomes:

—2hy iy pt Ljf(, tMlszmr)‘J)]n,

1)

2)

3)

m (3 :4
_Q_‘L = | - _(_2—1'_1 = censtant (A, &)

Xt IX (A.5)

-—/ng )= (NG )+ (A~ L2 ‘/?)N‘;, =0
while Fa. (28) becomes

i, &uunr))(/ EA*I)H_" &L/wmju
St

(A.6)
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Since these are linear equations in ny and Ngl, with constant
coefficients, we fourier analvze each of these variahles as
exp[iwt + imx] and immediately ohtain a disnersion rclation,

The resnlt 1is

REay L14+117)'] TAat)-m—im+h) ] S
(NT) [ R 4+miOT)+imetNND)]

W =

which one easily recosnizes as precisely the dispersion re-
lation in Linson and Workman [1970, Tq. (15)] correcting for
the fact that the ahove result is in the frame movine with the
cEAy/B velocity and is in dimensionless units. Thus, the
results of linson and Workman are for the case of no shorting
by the amhient ionosnhere which implies electron (amhipolar)
diffusion across the magnetic field (in their actunal calcnu-
lation (Qr)e+m) and strong instahility since the stahilizine
cffect of end-shortine is removed. Tt should he noted that
finite electron diffusion [(Qr)e finite rather than infinite]
does stahilize verv short wavelenaths, hnt this is for leneths
very much shorter than those stahilized by ion diffusion

1/2] and much smaller than striation

(by the ratio [(Q1),/(91),]
lenpths seen in actual exneriments.

ITnfinite Fnd Shortine. 1In this case ZR+m and )0,

From Eq. (26), we see that in this limit

2’ tg
_Si?% — R =0 (A.8)

The onlvy solution that vanishes at x=#» ig

?7 =B (A.9)
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By the equilibrium condition in Eq. (27), we have

0
7 _ _ = constant

X AX (A.10)

Hence Eq. (25) becomes:

M N, Eayyan,
3¢ 5‘;‘;*(54»: ,—,f)

+ (A= 1k C)(Eqy- E”’)J (A.11)

which obviously has decayine solutions only. Hence, all rer-

turhations are stahle in the caze of infinite end-shortine (and

in the limit D*/neaﬂ, as was assumed in the derivation of the

basic equations).

ITon Diffusion Neglected. We recover the results of Volk

and Haerendel [1971] if we use the arnroximations in their

paper. These are (in our notation),

N = N,exp(-Kx)

Eax= 0 (A.12)
= , dn, _ d2;i _
A=0 , e 277-7%—0

and neglect of N,;vn compared to u,nk. This 1ast assumption,

in dimensionless notation, means

EAy >> | (A.13)

We now annly these to Ea. (25) and ohtain

. 2 | _
(RE N, + R (N+5)$, = 0 (A.14)
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where we take (Qt1)>>1 and use Fa. (27) to see that 3g°/3x has
two terms of order unity and EAY/Q“, respectively. Now using

this result and our approximations in Eq. (28) we obtain

e . ] QN E
2 [ 1822000 REy 1140135 Eay .
e + [ ik ¢ H)\uum OT) (s Inz0 mas

The growth rate is determined by the last ternm onlv, Usinp

the definition of the equilibrium, we find the rrowth rate

Y to bhe:
. (14007 Eay K
T T Tan 1 (A.16)
[+ 551

This is in dimensionless units, In real units, this becomes

Y— —-—"-—Ayk (/‘/"-—‘E"‘ (A.17)

L

Comparing this with EKq. (49) of Vdolk and Haerendel, we see
that a similar result obtains with Zn/e quNC rlavine the role
of their DR, This identification is exact in the limit of
small ky'

Thus, we see that the results in Volk and Haerendel do
include the effects o€ en shorting. Howcver, their neglect
of ion diffusion removes this stabilizine effect on short
wavelergths and allows all these modes to grow at the same

rate,



-21-

Appendix B:

Computational Procedure

Finite difference methods are used in obtaining the
evolution of the equilibrium density N and the perturbations n,
and £1+ Equation (23) is a nonlinear parabolic equation for
the unknown N. It can be solycd by the Crank-Nicolson finite
difference scheme with forward nrojection of the nonlinear
cocfficient [von Rosenberg, 1969], The Crank-Nicolson analogs
of (26) and (28) also provide two tridiagonal systems for the
unknownS'n1 and gy The grid points for evaluating n, and 71
are located at time levels t=nAt., The erid noints for evalu-
ating N are located at time levels t=(n+%)At, so that the value
of N together with 3p°/3x from (27) can be easily used in
evaluating the coefficient of the two tridiaponal systems.

In carrying out the computations, we first solve for
the self-consistent 22 from the initial value n. We then
solve for N at ts%At from its initial value. The two tri-
diagonal systems arc then solved to obtain values of n, and
gq at t=4t. We then update the value of N to t=;At and solve
for ny and gy at t=2At and rencat thesec nrocedures. The
accuracy of the results was checked by comnaring results
ohtained using different grid spacings in space and in time
and using different total number of spatial erid points with

thc same spacing.
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