
AD-761 653

TURBULENT DIFFUSION IN A STRATIFIED
FLUID WITH APPLICATION TO 'rHE OCEAN

Chester E. Grosch

Ocean and Atmospheric Science, Incorporated

Prepared for:

Office of Naval Research

21 June 1972

DISTRIBUTED BY:.

N1081101 Tocuia Inuftiuu Serice
U. S. DEPARTMENT OF COMMERCE
5285 Pot Royal Road, Sprngfeld Va. 22151

%-



OCEAN & ATMOSPHERIC SCIENCE. INC.
145 PALISADE STREET

DOBBS FERRY. NEW YORK 10522
9.4-093-9001

TR 72-092

Turbulent Diffusion

in a Stratified Fluid

with Application to the Ocean

Dr. Chester E. Grosch

;ubMitted to:

.dvanced Research Projects Agency
)epartment of Defense
40)0 Wilson Boulevard
ýrlin,,ton, Virginia 22202 June 21, 1972



OAS
OCEAN & ATMOSPHERIC SCIENCE. INC.

145 PALISADE STREET
DOBBS FERRY. NEW YORK 10522

914-693-9001

TR 72-09.

Turbulent Diffusion in a Stratified Fluid with Application

to the Ocean

by

C. E. Grosch

IA
Sponsored by

Advanced Research Projects Agency
ARPA Order No. 1910

ARPA Order Number: i910
Program Code Number: IEZO
Contract Number: N00014-72-C-0127
Principal Investigator Dr. Chester E. Grosch

and Phone Number: 914-693-9001
Name of Contractor: Ocean & Atmospheric Science, Inc.
Effective Date of Contract: August 1, 19,71
Contract Expiration Date: July 31, 1972
Amount of Contract: $ 104,728, 00
Scientific Officer: Director, Fluid Dynamics Program

Mathematic!%l and Information Sciences Division
Office of Naval Research
Department uf the Navy 4A
800 North Quincy Street

Arlington, Virginia 22217
Short Title of Work: Wakve Diffusion Modeling

This research wa'. supported by the The views and conclusions contained
Advanced Research Projects Agency in this document are those of the authors
of the Department of Defense and was and should not be interpreted as neces-
monitored by CNR under Contract sarily representing the official policies,

No. N00014-72-C-0127. either expressed or implied, of the
Advanced Research Projects Agency or I
the U.S. Government.



UNCLASSIFIED

DOCUMENT CONtRLDAA

0 ;1 t iGAC I# ."V6 .'9t _h,E D a&. nfrvote Sr.CUATIv CLA!- IFIFCA I lof

Ocean & Atmospheric Science, Inc. Ucasfc
145 Palisade Street 2b. GqtJ

Dobbs Ferry, New York IC5Z.2___________________________I REP(ORT IL
TURBULENT DIFFUSION IN A STRATIFIED FLUID WITH APPLICATION TO

OtC~~~sPPVg~I SiTl('p 1t.Dad InclueD. do#.ss

Technical Report________________________
S at) 1"Oft-S, (fful "~m. minddle Initial. :*at nama.)

- Dr. Chester E. Grosch

* REPORT OAYC 17a. TOTAL NO0. or PACE% oJi .Nor On Cs

June 21, 1972 60 17 27
to@. CONTfbACT Oft GovaPE NO ~.ORnGINA¶TOWPS REPORT NUUSCAC91
N00014-72-C-0127

6. wmojvlrcct ' TR 72-092

C. 9b. OTHER IMPORTl NOISE (Any? athiff AUJebV M~at au be safijned
fits. repe,.,

10 tHSTRIPUTIONSE 5A TV4C*4T

Distribution of the report is unlimited.

II- SUPPLE~CutslAfV %OTC$ ftz. SPONSORING MILI TARY ACTIVITY

None Advanced Research Prfojects Agency4

7The turbulent diffusion of a passive scalar in a stratified fluidA

E is studied using a simplified model for the calculations. A semi- empiricali
I formula for the diffusion coefficient is obtained as a function of turbulent

energy dissipation rate and scale of the diffusing patch. The formula is
-~ demonstrated to give values which are cons:i-tent with known experimental

results. It is suggested that the diffusion cot;;ficier-t at intermediate depths
is an order of magnitude smaller than that observed in near surface waters.

IUsing these values of the diffusion coefficients, calculations show that the i

I ~mean concentration for a patch initially 100 meters across decreases by a
f factor of 10 in two hours near the surface, but in eight hours at intermediate

depths.
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Abstract

The turbulent diffusion of a passive scalar in a stratified fluid is studied

using a simplified model for the calculations. A semi-empirical formula for

the diffusion coefficient is obtained as a function of turbulent energy dissipation

rate and scale of the :liffusing patch. The lormula is demonstrated to give

values which are consistent with kr.-wn experimentai results. •.t is suggested

that the diffusion coefficient at intermediate depths is an order of magnitude

smaller than that observed in near surface waters. Using these values of the

diffusion coefficients, calculations show that the mean concentration for a patch

initially 100 meters across decreases by a factor of 10 in 2 hours near the sur-

face, but in 8 hours at intermediate depths. a
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1.0 Introduction

The turbulent diffusion of a passive scalar in a stratified fluid was

studied using three models for turbulent difiusivity. The calculations are

approximate in the sense that only diffusion in one horizontal direction is con-

sidered anrd thai the effects of the turbulence are "modeled". Howevez, the

"model" diffusion equations are solved exactly, in some cases, or numerically

with high accuracy in all other cases.

It is assumed that the quantity whose diffusion is being studied is a

passive scalar. That is, the quantity undergoing diffusion can be, like temp-

erature or concentration of a substance, specified by a scalar function of space

and time and the dynamics of the flow are totally unaffected by the variation

in concentration of the diffusing quantity. It is further assumed that, what-

ever the diffusing substance is, it does not undergo any chemical reaction

, J with significait release or absorption of heat.

Finally it will be assumed that the fluid is stratified. In many areas

of the ocean there is an appreciable variation of density with depth outside of

a well mixed surface layer. It has been known for many years (see Sverdrup, et al

1942 ) that the presence of a stable stratification reduces the turbulent inten-

sity and inhibits vertical transport of both scalar and vect:r properties.

I Okubo and Pritchard (1969) give measured values of the horizontal and vertical

diffusion coefficients for the ocean. The horizcntal diffusion coefficients are

j.n the range of 10 to 5 x 103 cm 2 /sec + whi,, the vertical diffusion coefficierts

+ Ozmidov (1959) quotes values ranging from 104 to 1012Ccm 2 /sec

3 for the coefficient of horizontal diffusivity.
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call in the range 1 to 100 cmrI/sec. Okubo and Pritchard recommend, for

ro'ugh estimates, that the coefficient of vertical diffu.sivity be taken as:

in the upper mixed layer 10-100 cin/sec
in a significa it thermocline t. 01 - 1. OcmZ/sec
in the deep layer 0. 1- 10. 0cmz/sec
near bottom 1 - 10 cm 2 /sec.

It is cit-ar that, excluding the upper mixed layer. whichever of these values

is taken for the #__)efficient of vertical diffusivity, the ratio of the coefficient

of horiz~ontal diffusivity to the coefficient of vertical diffusivity is greater than

100. It therefore seeons r,tasonntl•e to neglect the vertical dlf,t• sion and to S

consider only diffusion in the horizintal plane. A

The source of t..e s-alar is assumed to be a self-propelled body

travel),Thg through the ocean. The scalar is assumed to be released into the 4

wake. The wake grows by entrainment and eventually collapses (see the model

of Ko. 1971). If the scalar is uniformly distributed throughout the wake just

behind the body, the model of the growth and collapse of the wake descrioes the

spread of the scalar. That is. the scalar is uniformly (on average) distributed

within the wal:e and the calculation of the wake boundary as a function of time

gives the mean distribution of the scalar as a function of time. The more dif-

ficult quest-on of the diffusion of the scalar from, szy, a point source within

I. the wake will be considered in a following report.

Ko's model shows that the turbulent intensity decreases rapidly with time

after the beginning of collpase. When the turbulent intensitr within the wake

U drops appreciably below the ambient turbulent intensity of the ocean, Ko's model

can no lcnger describe the diffusion process and the vu:rbulence of the ocean

S~-2-



controls the diffusion process.

In the calculation reported here, the "equivalence principle" is used,

iL e., the model is that of a "slice of the ocean" in a vertical plane perpendicular

to the axis of the wake. Since, as discussed above, vertical diffusion can be

neglected compared to horizontal diffusion, the problem can be reduced in this

approximation to that cf turbulent diffusion in one space dimension and time.

In fact, the problem is really a function of both spatial coordinates in 13

the horizontal plane and of time. Within the approximation used in this report,

for example, the meander of the wake due to large eddies cannot be described.

This is a serious limitation. A possible experiment would involve sampling

the wake along some path. if the sample were taken along a path parallel to

the track of the body, the meanders of the wake could cause large variations in

the observed concentration. The calculations reported here are of the average,

over an ensemble, of the concentration. While the variation of the mean con-

I centratL5n as a function of time is important, it is not the whole story. The

variation of the concentration with tiju,,e ' n the horizontal plane is now being

"investigated and will be reported at a later date.

I
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2. 0 Formulation of the Problemz

Let ) be the spatial coordinate parallel to the free surface and

perpendicular to the path of the sell-propelled bo"y, f be the time and

S be the mean concentration of some passive scalar, The concentration

SO•,.Jis thten governed by a diffusion equation

It has been assumed that mean veZocity of the fluid is zero. < is the

effective diffusien coefficient. If the fluid is "at rest", i.e., there is no

turbulence, , is the molecular diffusivity, but if, as is usually the

case, there is turbulence, then? is an eddy diffusivity.+

It is assumed that the concentration is uniform in a region of width

at some initial timv. which is taken to be 0. As discussed in the intro-

duction, this is some arbitrary time after the wake has collapsed and the in-

tensity of the wake turbulence has dropped below the ambient turbulence in-

"tensity. Thus th- initial condition is that

+ See Appendix A for a detailed discussion of the derivation of equation (1)

and the approximations used.
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Without any loss of generality S, can be taken equal to 1.

Equation (1) can be put into dimensionless form by defining appropriate

length and time scales. Let the length scale be -to and let X, be a

reference diffusivity (dimension (length) 2 /time). The time scale, to " is

thenI . =- /x -(s.),

Define the dimensionless spatial coordinate

and the dimensionless time coordinate

I

Under this transformation, equation (1) becomes

where the dimensionless diffusion coefficieiit

. EqtJ



The initial condition is now,

The problem is uniquely specified when is given. Since

a general olution to the turbulence problem is not available must be

apprcximated or, better, modeled. A common approximation is to use a

coitstant value for the eddy diffusivity. This is, at best, a very rough approxi-

mation and, of courre, is crucially dependent on the choice of a numerical

value of . The value -A not only varies from one location to another

in the ocean but also varies, at a given location, with the scale of the diffusing

patch. Because the constant eddy diffusivity model is so widely used, and be-

cause other, more appropriate diffusion models can sometimes be r-duced,

under a coordinate transformation, to an equation with a constant eddy diffusi-

vity, this model will be treated first.

The -ariation of•.A (or Z( ) with patch size can be anderstood in

terms oi the variation of energy in the spectr um of turbulent eddies. Consider

a patch of size J . Turbulent eddies which zre much larger than simply

convect the patch without appreciably distorting or zpre-ding it. Turbulent

eddies which are much smaller than stir up the patch and provide the fine

• scale mr.xing. Of course the small eddies do prt vice enhanced mixing at the

edges of the patch. However, it is the eddies v ith a scale aprroximately equal

to I that provide the major mixing. These eddies distort the patch and

greatly increase the surface area of the patch and thus enhance the mixing due

-6-



to the small eddies at the edges. Clearly the most import.:i-. qu-a.tity is

the rate of distortion of patch by the eddies oi scale . But, the turbulent

energ increases with decreasing ,i.e., with increasing -i
A

scale, at least lip to the maximum scale of the turbulence. Therefore, the

larger the patch, the more energy there is in the turbulent eddies of the

same scale which distort the patch. Of course there is an upper limit in

that the turbulent energy spectrum does not increase indefinitely with decreasing

I I; there is a peak in the spectrum at the scales at which the turbulence

is Leing generated. This is, however, unimportant in this problem. The peak

in the spectrum lies at scales greater than tens of kilometers and the patches

to be studicd here have sizes in range I meter to 10 kilometers.

Richardson (1926) studied the turbulent dispersion of particles in the

N

-. atmosphere and showed experimentally that

where • is a constant (dimensions cm 2 3 /see when ,• is in cm) and 1
is the separation of the particles. A number of other expcriments hIav-c beer,

performed on water surfaces, Richardson & Stommel (1948), Stommel &

Marin (1949), Ozmidov (1959) and Gray & Pochapsky (1964), and have also

shown agreement with equation (9). In a forthcoming report, Kuo (1972) will

3 discuss a theoretical justification of the "4/3" lsw. In view of this experi-

mental evidence and theoretical justification, it will be assumed that the best

model of the turbulent diffusion coefficient is the "4/3" law (equation (9)).

-7-
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The remaining conceptual problems are (1) what is the appropriate scale,

i.e., what is and (2) what is the value of C ? These questions will

be discussed in detail below. First, however, a number of eddy diffusivity

models will be studied.

_E

I
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3.0 Diffusivit-r Models

In this section, three models for the eddy diffusivity are examined,

namely, a constant, a variable, and an integral scale value. The resulting

mean concentration is calculated for each of these models in terms of a

dimensionless time variable.

• il

L14
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3.1 Constant Eddy Diffusivity Model

If the eddy diffusivity is constant,

74

Equation (6) is then

-g --

A with the initial condition given by (8).

I The solution is easily found to be

4 with defined, as usual,

-~ -- 22

r 
I

/7'1
0
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The three quantities of interest are (1) the spatial distribution of

the scalar at a fixed time (given by equation (12)); (2) the concentration at

the center of the patch as a function of time

and, (3) the "size" or "scale" of the patch.

The scale of the diffusing patch cannot be uniquely defined for -e

because S( ý )) #40 for all if •€•. A reasonable, but arbitrary,

definition of A ,the patch scale is

where 4• • " That is, .el. is defined as the distance from the

center of the patch at which the concentration has dropped to an arbitrary

but fixed fraction, , of the coacentration at the center. For given a
equation (15) can be solved numerically for O as a function of

i Another possibility is to define the scale of the patch in terms of the

-t variance of t&e distribution. Defining the variance, as usual, by

it is found that

Iii 4,
iiMOW

wmmwý(I?)



Then, if C is proportional to

where the zer-, subscript refers to values at = 0 ( = 0).

Equation (15), using equations (12) and (14), has been solved numeri-

cally for 4, = 0.1 and 0.25. The results, curves of C/.l( 0 as a function

of are plotted in Figure (1), along with values of the scaLe defined irn

terms of the variance, i.e., A/A from equation (18).

It can be seen from the results plotted in Figure (1) the.t there is little i
difference between the size of the patch as given by the different definitions of j

As expected, the largest size is obtained bý defining j as the

1/10 concentration point. The scale '-'zes defined by the 1/4 concentration

point and the variance agree within about 10% and are about 25% smaller than

the scale defined by the 1/10 concentration point. These scales are the same

to within the accuracy of the approximations which are imbedded in the calcu-

lations. In particular, there is uncertainty in the choice of an eddy diffusion

model and error in the use of an eddy diffusion to represent the turbulence in

"the first instance. Finally, the scale, as calculated here is an ensemble

average and in any single realization the actual scale will differ from the en-

semble average. In view of these uncertainties, it seems reasonable to use

the variance definition of the scale as a reasonable approximation. The rmean

concentration is then just the reciprocal of i.e.

-12-
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3.2 Variable Eddy Diffusivity Model

One possible choice for the scale to be used in the "4/3" law is to

take

e('#AM
_i }• This model is based on the idea that the scalar is diffusing away from the

center of the patch and therefore the appropriate scale is the distance from

the center of the patch. With this approximation

and

II
Therefore

and equation (6) becomes

I )

II 1
• -14-
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It can be shown using elementary techniques, see Appendix B, that

the solution to equation (24) which satisfies the initial condition (8), is

with

• =- • + . (..

The concentration at the center of the patch is,

"ji

with A3

f //Z
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If the scale, or size, of the patch is determined from

then equaiic-:- (25) through (30) can be solved numerically for i/.4 as a

function of for any particular choice o! 42 . If, however, the

scale is defined, as before, in terms of the variance, it can be shown (Appen-

di: B) that

and thus that

/7 (32)

The scale size, J as determined from equation (30), is plotted

in Figure (2) as a function of for a. =0.1 and 0.25 as well as the

"scale size defined in terms of the variance, equation (32). From E igure (2)

it is seen that the scale is approximately equal to until • 0.02

and then begins to grow rapidly.

In. contrast to the constant eddy diffusivity model, the variance scale

is 'r,-ger than 0. 10 and 0.25 concentration scales. This can be understood in

terms of the eddy diffusivity model, equation (23). The rate of diffusion in-

creases with increasing distance from the center of the patch. This tends to

give slow diffusion near the center of the patch and fast diffusion near the edges.

-16-
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This implies that there is a much sharper "edge" to the patch than in the

ca.'e of a constant eddy diffusivity and that there will be a long "tongue" of

* material at low concentration extending out from tle edge. Since the material

in the "tongue" is diffusing rapidly cc.-rpared to the material at the center, the

"tongue" grows rapidly. Now in calculating the variance the material at large

is heavily weighted (by ) and thus contributes more than material

near the center. Bec:%use of th3 sharp "edge" and long "tongue", a. large dif-

ference between variance scale and constant co;.centration scale is to be ex-

pected.

A reasonable approximation in this case would appear to be to take

the scale as the variance scale. Then mean concentration is then

V'3 A

-18-



3.3 Integral Scale Eddy Diff'isivit. Model

Finally, it can be argued that the appropriate scale for the diffusion

io constant at any instant of time and is, in fact, the "size" of the patch.

Taking

and

4I

withl( 1  defined by, say,

JA

/ J(3,7

or perhaps in terms of the variance scale,

The mathematical problem is now to solve

AA
I 1•

r- +19-



Since0A* is only a function of _, it is possible to eliminate

from equation (39) by a suitable coordinate transformation. De-

fine the weighted time coordinate ' by

then

d dT-

and equation (39) becomes

- O-"(93

with the same initial condition.

This is, of course, the diffusion equation for a constant eddy diffusivity.

The solution is equation (12) with replaced by • . In order to interpret

the results it is necessary to transform back from the ?0 to the I? variable.

(Recall that is directly proportional to the time while T' is a weighted

integral of the time.) The diffusion scale (J/!•o) can be calculated, whatever

its definition, as a function of ? . Then the eddy diffusivity can be calculated

from (1/4)" Nowthe edd4 diffusivity must be the same in the I and

coordinates when it is calculated at corresponding (not equal) values of

and ? . The correspondence is that determined by the transformation,

-20-
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equation (41). From the differential form of this transformation

Scan be obtained by using the above principle. Thus

and corresponding and , so that

- -

or

Using a constant concentration to define the scale, values of eI4
as a function of 2- are known from the numerical solution of equations (12),

. (14) and (15). The, *ing equations (36) and (47) a numerical integration

yields This calculation ha;5 been carried out with CL. (the value of

the concentration defining the edge of the patch) equal to 0.1 and 0.25. Since

.(1/4) and 5 (o,')are kaown as functions of e• , it is easy to tabu-

late ( ) as a function of and also ( 4).
On the other hard, if the scale is defined in terms of the variance, the

} transformation can be inverted anlytically. In terms of th' ? variable,

• -. % ... .. .1_



the variance scale is from equation (18)

4T'() j

Then, equation (36),

ALA

so that or0 0.

S" (-# (50"1"

f " = o+-z!-/ (Yto)

Therefore, solving for . as a function of

and substituting back into equation (48)

--- = (-- --

S_7 -22-



Figure (3) is a plot of (,t/4) as a function of ( ) for the

constant concentration scales, L't 0.1 and 0.25, and the variance scale.

Again the largest scale is that obtained from the 1/10 concentration point.

The variance scale and the 1/4 concentration point scale are very close,

within 10%. It appears to be reabonable to use the variance definition of the

scale. The mean concentration is the xeciprocal of and is

. 23-
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4. 0 Interpretation of the Numerical Results

4.1 Theoretical ConsidcrationsII
Although the consta.nt eddy diffusivity model has often been used, it

is clear, on both exiperimen.al and theoretical grounds, that the "4/3 law"

provides a better model of the diffusion process. While choosing a scale

proportional to the distance from the center of the patch (a local scale) may

be a reasonable approximation for small times, the integral scale is prob-

ably the most reasonable scale to use in the 4/3 law. Figure (4) shows the

variation of concentration at the center of the patch / 0O1) and the int-at

concentration () with time (f•/i. ) for all three models. From now on

all the discussion will center on the integral scale 4/3 law -- AI .

In order to interpret these results, the initial length scale,

and initial time scale must be determined. There is no problem with

the length scale; should be the initiaL size of the diffusing patch. As

"for

the initial eddy diffusivity

is required for definition. In order to pick a value of , experimental

data must be used.

-Z5-
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Most experimental studies of horizontal diffusion in the ocean have

been conducted in near surface waters, if not on the surface, see Ozmidov

(1959) and Okubo & Pritchard (1969). Although there is considerable scatter

in the data, a reasonable fit appears to be given by equation (35) with

0. 01 cm 2 / 3 /sec (Jin cm).

For the present purposes these measurements near the surface are

not satisfactory. The near surface waters are disturbed by wind driven

currents and surface waves, for example, and generally are not stratified.

It would be desirable to have an extensive set -f measurements of the diffu-

sion coeffcients as a function of scale for various depths and VaisalI periods.

Such experimental results are not available. There appears to be only a few

diffusion measurements at depth. Fortunately, some additional measurre-

ments are available, which, properly interpreted, will give further informa-

tion on the variation of A with depth ( D ) and Viisala" frequency (N).
!I

Batchelor has sh)wn (see Hinze, 1959) that in homogeneous turbulence

for intermediate times,

-I
i.e., that

t
Al "A ( •-,.

I-
-2 3

where is a constant and C is the dissipation rate (cm /sc



Ozmidov (1960) suggests that A is approximately equal to 0.1. As will

be seen below, E '% 10 2/cm 2/sec3 in near surface waters of the ocean

with moderate wave heights. AssumLng that 1 = l0- and =0

it is found that 2-W 0.05. Throughout the remainder of this report it

will be assumed that

I.

therefore

=o.o3- (s¢"v,)

Measurements of the energy dissipation rate, • , as a function of 0 j
and # thus yields information about the corresponding variation of

It is desired to use equation (59) to calculate the diffusion coefficient

as a functionof the energy dissipation rate, C , which, in turn, is a func-

tion of depth and Vaisý15 period. The validity of the 4/3 law has been demon-

strated experimentally for diffusion in near surface waters, and the constant

if in equation (59) has been obtained from this data. In order to apply this rela-

tion to intermediate depths, it is necessary, at least, to show that the flows

have similar character and that the application of (59) is consistent with the

limited data available.
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Ozmidov (1965) has suggested that a stable stratification can have the

effect of suppressing turbulence (at least the vertical motions of the turbulence).

It is, of course, well known that in a stratified fluid with shear, there exists a

critical Richardson number, such that if

S04,

the flow is unstable to small disturbances and presumably an unstable disturb-

ance will lead to transition to turbulence, (see Miles & Howard, 1964 or, for a

comprehensive review of the stability of stratified flows, Drazin and Howard, 1966 )

Miles & Howard suggest that 1= /4. If is the flux Richardson

number, see Lumley & Panofsky (1964), then K t (eddy conductivity/

eddy diffusivity) 1 1. Experimental results can be interpreted as giving

critical values. A# * l I

O zmidov argues that if

where £& is the turbulent intensity and is a turbulent scale, then
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So that, if is the vertical scale of the turbulence,

du..

with C a constant. The Richardson number of the turbulence is

after setting

For the turbulence to exist, i,' . ,.e.,

S(', " i/ " '//)•_< . (',

Therefore- there exists a critical length scale,

:-I .i:4
II

such that if .e • , the turbulence is three-dimensional and perhaps
C

j isotropic. If > )/ the stable stratification will inhibit the vt -.cal

component of the turbulent motion and moticn on this and larger scales will be

"two-dimensional turbulence (a random field of internal waves?)

-30-
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Lumley (1964) has also suggested that, in a stratified flow, there

exists a buoyancy subrange as well as an equilibrium subrange and that the

wave number separating these ranges

where C is a constant of order unity. if then4

R C-

b 6 (70)

The equilibrium subrange of the turbulence exists for wavenumbers,

where is the Kolmogorov microscale

SI7

with y the kinematic viscosity.
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If • the equilibzijum subrange disappears and possible,

there can exist only a random fie'd of internal waves. For even small scale

turbulence to exist, there would have to be an increase in the shear corres-

ponding to an increase in E , so that I would become larger than

This general picture is in agreement with the observations of Woods & Wiley

(IS 2) which show that the appearance of turbulent patches is due to short

internal waves in the microstructure, giving an increase in the local shear.

The critical dissipation rate for the existence of an equilibrium sub-

range can be estimated by equating .4 and

3/V (73

or

"Y /V

and for water (, 10 cm /sec) and 10-2S 10"3 sec-2

~ (~7cc C

"C j itp-
-32-



These considerations suggest an interesting experiment. Produce

a turbulent f.eld in a stratified fluid, perhaps by allowing flow, past a grid.

Initially • will be large and an equilibrium range will exist. If t is

large enough and the experimex.:tal facility (tunnel) is not very large, I
may be larger tha:n the diameter of the tunnel and a buoyancy subrange may

not exist. Downstream from the grid the turbulent energy and also L will

have decreased; a buoyancy subrange should then exist. Further downstream,

Ewill 'become less than 4F and, if this model is correct, the three-

dimensional character of the turbulence will entirely disappear leaving a ran-

dom field of 2-dimensional turbulence, possibly a random field of internal

waves.

It would also be interesting to calculate, say from Ko's model, the

point at which the energy dissipation rate in the wake drops below j .

Typical valucs of A ( R = j ) are shown below. Near surface
values of 6 a-e of the order of 10-2 dropping to 104 at depths.

__ •cmZ/sec3)4

-10 2 - 3 - 4

(s0, 10 10
10- 100 32 10

1_ 13 3200 1000 32010

I •.-33-
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It is clear that a strong thermocline ( /0 ) and/or small energy

dissipation rate will strongly suppress three-dimensional turbulence. There-

fore, the motion at intermediate depths is likely to be two-dimensional, at

least for scales larger than a few meters. However, this is also the case near

tie surface where the vertical extent of the eddiez will be of the order of the

distance to the surface. Since most ocean diffitsion experiments were carried

o,'t at depths of only a few meters, the large scale motions are Hikely to have

been two-dimensional in these experiments also. Thus there is at least no in-

consistency in the character of the motions at intermediate depths and near the

surface.

* -34-



4.2 Experimental Results

W'oods & Fosberry (1967) have made visual observations of dye

motions in the thermocline fine structure. They state that ) , the mini-

Anum eddy size observed varied from about 1 mm to 10 cm, depending on the

depth and stability. If • is taken to be the Kolmogorov micro-scale then

(76)

and corresponding to 1mm i n 10cm,

Hale (1971) has observed visually the spread of the dye above, in,

arnd below a thermocline in fresh water. He states that the turbulent motion

appears to have maximum c-ergy near the surface where it is 3-dimensional.

The turbulent intensity decreases with depth; in the thermnocline the motion

is largely 2-dimensional and is perhaps not turbulent at all. Below the thermo-

cline the intensity increases again and the motion becomes 3-dimensional once

more. Diffusion coefficients measured near the surface were stated to be un-

related to those at depth.

Webster (1969) has made horizontal current measurements at a site

on tile continental slope (39020? N, 70 0 W) about 175 km north of the mean axis

of the Gulf Stream. The water depth is 2600 in and measurements were made
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from near surface (6 m) to a depth of about 2000 m. He found that some

of the spectra of kinetic energy density decreased as :f"''for Z • 0.1

cycle/hour. Assuming that this was an inertial subrange, Webster calculated

the energy dissipation rate as a function of depth and fotud that the E thus

calculated was proportional to N. Webster calculated values of
5x 0" 4 cm 2 /sec 3 at = 10n, 10-4cm 2 /sec 3 at D = l00m and

10-5 cri 2 /sec 3 at D = 1000 m. A complete listing of Webster's calculated

values of f is given in Table 1.

Pochapsky (1972) measured the energy densities of vertical and

relative horizontal fluid velocities with neutrally buoyant floats. The measure-

ments, made at a number of locations, yielded spectra of the horizontal velo-

city having a frequency variation between and . Pochapsky

argued that most of the energy in this frequency range (0. 1 to 10 cph) was

associated with internal waves, not turbulence.

Grant, Stewart & Moillet (i962) have reported measurements of

turbulence specira in near surface waters of a tidal channel. From each of

their individual spectra they calculated energy dissipation rates. These

ranged from 0.02 to 1. 0 cm 2 /sec 3 with an average of about 0. 34 cm 2 /sec3.

These results are listed in Table 1.

Stewart and Grant (1962) have reported measurements of E at

Svarious depths from I to 15 m and with various wave heights in the 0. 1 to

0.9 m range. The energy dissipation rate showed a tendency to decrease
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TABLE I

Summary of reported measurements in the ocean of the energy dissipation rate

Data of Webster (1969)

D(m) ii(cm/sec) *xl05 (cmr2 /sec)

6 37.2 40.50

7 48.8 48.30

50 16.1 6.84

64 16.7 7.41

88 29.3 5.32

98 28.9 8.86

104 10.9 4.68

106 10.7 10.13

120 13.4 7.18

450 9.6 2.05

492 7.3 2. 60
'1

502 5.9 1.521
-- 511 11.9 3.49

522 5.4 2.58

930 6.7 2.28

940 5.4 1.07

950 5.7 1. Z3

1001 5.2 0.82

1013 7.7 1.38I °
1950 5. i 0.78

2002 4.2 1.06

2020 6.9 2.66
2026 3.7 2.11
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TABLE I (cont)

Data of Grant, Stewart & Moillet (1962)

Measured in a tidal channel -9 independent measurements

C (cm 2 /sec 3 )

0.610, 1.02, 0.395, 0.121, 0.235, 0.147, 0.044, 0.0187, 0.441

Data of Stewart and Grant (196Z)

Depth Wave Height

(n) (m) (cm2/sec3)

1.0 0.5 4.2x10-2

1.5 0.2 l. 5x10 2

1.5 0.4 2.3

2.0 0.1 5.2xx 10 3

2.0 0.3 2.9 x 10 2

2.0 0.5 2.2

2.0 0.9 4.5

12.0 0.5 2.5 x 10 4

03
15.0 0.1 1.1 x 10-

38
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TABLE I (ccnt)

Data of Grant, Moillet & Vogel (1968)

Depth NZ 1.0 E
(M)n__ (scc-2) (cm21_sec3) (cm /sec3)

• 15s 1. 56 x 10"5 2. 5 x 10-2 .O0.5x "2

27 1.56 5. 2x 10 3  1.00 S. 2x 10- 3

43 1.56 3.0 0.77 2.3

-458 5.80 x 10" 4.8 0.77 3.7

"73 2.05 1.9 0.53 1.0

89 1.24 1.1 0.31 3.4 x 10 4

90 1.24 1.0 0.31 3.1

90 1.24 4.8 0.31 1.5
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with increasing depth and decreasing wave height. Values of 6 ranged

from 4.5 x 10-2 to 2.5 x 10"cm2 /sec 3 . The values are given in Table 1.

Grant, Moillet and Vogel (1968) have measured C at a number of

depths in and above the thermocline. They found that LI decreased with

increasing depth and that, while the water above the thermocline was

essentially always turbulent, the turbulence was intermittent in the thermo-

chine and tended to die out with increasing depth. Figure (5) shows the vari-

ation with depth of the density profile, the energy dissipation rate ,

the intermittency factor If and the "average" energy dissipation rate e
(g • I[• )taken from the paper of Grant et al and /V" calculated from

the density profile. It can be seen that 4 differs by at least a factor of 5

acroEs the thermocline. Numerical values are given in Table 1.

Final'y there is the measurement of the diffusion coefficient at 300 m

depth by Schu -rt (1970). Schuert fitted his experimental results with a theo-

retical model -.oint source diffusing according to the 4/3 law and found

that the measur%-- value of e was approximately 1/10 of the values obtained

3 2!3
in surface experiments. Schuert found • 6.6 x 10' cm /sec, corres-

ponding to C = Z.a x 10-4 cM2 /sec 3 ( A O.06*%t a depth of 300m where

N ~4 x 10-5 sec-2, (calculated from Figure'l of Schuert's paper).

•o1
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Figure 5. Example of the variation of decnsity, P , square of Vaisal2•

- k-

frcquency, N 2, intermittency, • , energy dissipation rate, E ,

and average energy dissipation rate E" (• ' .•
with depth. Data of Grant, Moillet and Vogel (1968). .
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It is to be expected that the energy dissipation rates in the tidal

channel, as measured by Grant, Stewart & Moillet (1962) would be con-

siderably larger than those typical of the open ocean. The current in the

channel was several knots where the velocity in the open ocean might be

expected to be about 1/4 knot. For this reason the tidal current measure-

ments may be considered the probable upper limit to C
Near surface diffusion experiments, as well as turbulence measure-

ments, are likely to be made under conditions of light winds and small to

moderate seas. The measurements of Stewart & Grant (1962) are probably

representative of "normal" conditLoos. A representative value of

inear the surface would appear to be It - cm 2 /sec 3 .

To summarize, values of • measured at depth tend to lie in the range

l0" -10"4 cm /sec 3 , c:orresponding, using equation (59), to values of
in the range 5 x -03 - 2 x " cm 2 /3/sec. This is in reasonable agreement

~213

with Schuert's measured value of C = 6. 6 x 10-3 cm /sec at a depth of 300

meters. These values of £ are about 10 times smaller than that observed for

near surface experiments.
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5.0 Summary and Discussion

I The theoretical considerations and limited experimental data dis-

cussed in the previous sections suggest that:

T 1. For a patch scale 1 >A. (equation 67), the diffusion is two-
dimensional.

2. The vertical diffusion coefficient

= 5for

.='
C

3. The horizontal diffusion coefficient

for 2 larger than the microscale and

smaller than the energy-containing eddies.

4. The energy dissipation rate i , varies
with depth and Vaisala frequency. Approxi-
mate values and the corresponding
values of ? for different depths are

E (cm /sec3  L' (cm /3 sec)

Near surface l0-2 10-4

At r,.oderate 10- 104 5X10 3 -Zx 10 3

depths
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Considcr now a patch with an initial size, - 100m. The

E0
diffusion of this patch will be essentially 2-dimensional. The length scale

is of course = 1Ocm. The time scale is

Assuming that the integral 4/3 law is the appropriate model, r.- 4

and the values of near the surface and at depth are:

LC (m /ee) -to(sec)

near surface 10 2 x 10

at depth 3 x 10 3  6 x 104

Therefore the time scale is about 5.5 hours near the surface and 16. 5 hours

at moderate depths. The average concentration drops to about 1/10 the initial

value at 0.45, i.e., after about 2 hours near the surface and 7-1/2 2

hours at moderate depths.

-4
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F
The calculations and results presented and discussed in the previous

sections are based on a simple model of the diffusion process in the ocean.

There are a number of important phenoms.na which have not been inc:luded in

this model.

The calculations are of the mean (ensemble average) concentration

as a function of space and time. In any particular realization of this field

there will be statistical variation,. from ihe mean. The larger eddies will be

nearly frozen over periods of time of the order of For example,

turbulent velocities will be of the order of 10 cm/scc and for eddies of the

scale of 1/2 kin, the tiine scale will be of the order of 1-1/2 hours. The

frozen or nearly frozen eddies will cause meanders of .he wake which cannot

be predicted from this model. This model can predict the variation of the

concentration off the axis of the wake but not the meanders of the wake axis.

See Schuert (1970) for an example of the meandering drift of a single patch.

The model does not include the effect of geostrophic currents or

current shear on the diffusion, although the current velocities (a few cm/sec)

are comparable to the turbulent velocity. Nor have the effects of inertial

waves which produce fluid velocities comparable to that of the turbulent flow

field been included in the model" [Pochapsky (1972) has measured fluid velo-

cities due to inertial waves in the range 0. 5 io 10. 0 cm/secl.

Finally and perhaps most importantly, this model does not include

the intermittency of the turbulence. It is observed that in a thermocline
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turbulence appears intermittently, i.e., in patches. Woods & Fosberry

(1967) and Hale (1971) both comment on this patchiness. The measurements

of Grant, Moillet & Vogel (1968) clearly show the intermittent character of

the turbulence with the intermittency factor, • • 0.3 at Q = 90 meters.

Very recently, Woods & Wiley (1972) have suggested a mechanism

for mixing in the interior of all statistically stable flows. This mechanism

is based on dye studies of the microstructure in the thermocline. Woods &

Wiley call this mechanism billow turbulence and describe it as ".... free

shear turbulence modified by a density gradient and initiated by Kelvin-

Helmholtz instability".

The Woods & Fosberry mechanism can be described as follows:

The thermocline consists of thin sheets, which have
relatively large density changes across ther.ni and more uniform
layers 1 -2 meters thick. There is a velocity shear across the
layers due to the geostrophic current. Internal gravity waves
propagate along the sheets. It is observed that vrhen the sheets
are about 10 cm thick, short ( , 75 cm.), steep internal waves
propagating on the sheet produce enough additional shear to make
the laycr dynamically unstable ( l'e 4(fF•- ). The crests "roll
up" and produce a sequence of turbulent billows. Neighboring
billows coalesce, driven by the shear, producing a turbulent
patch of the order of 3 to 5 meters in horizontal extent and ap-
proximately 1 -2 sheet thickness (10 - 20 cm) in vertical extent.
The patch vrows somewhat by entrainment and the turbulence be-
gins to decay. The interior of the patch is relatively homogeneous
but there are large density gradients at the top and bottom edges
of the patch. That is, there are now two very thin sheets at the
top and bottom of the patch. These sheets spread by molecular
diffusion until they are about 10 cm thick and then the process
rereats. This mechanism produces patches of fine scaled, de-
caying homogeneous, isotropic turbulence. This mechanism is
assumed to be operative and controlling the formation of turbulence
throughout most of the ocean, i.e., outside of the near-shore areas
and away 1rom the major ocean currents.
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If this mechanism does describe the generation and distribution of

turbulence in the ocean, and the evidence that it is an accurate picture of,

at least part, of reality is impressive, then our model of turbulent diffusion

in the ocean must be drastically revised. The diffusion model would be only

appropriate as an average over a relatively long time scale (long compared

to the period of patch gestation).

A more accurate model would include large 3cale advection of the

passive scale by internal and inertial waves ana "twvo-dimensional" turbulence

(if it exists). At a finer scale, a sparse, random distribution of homogeneous,

isotropic turbulent "pancakes" would stir up the scalar locally. There must

be a gap of about one decade in the energy spectrum of the fluid velocities

since the shortest internal waves with appreciable energy (in this model) have

a w.,avenumber

and the largest turbulence scaler have a wavenumber

Ai number of approaches to this model incorporating large scale advection

and localized random mixing are possible. A description of these approaches

will be the subject of later reports.

-47-

--



APPENNDIX A

The Diffusion Equatien for a Passive Scalar

The discussion of diffusion given here is based upon the general dis-

cussion of this phenomena given by Landau & Lifshitz (1959) but is adzpted to
the case of particular interest, namely diffusion in the ocea, I.

Consider a mixture of two fluids. The equations of mass conservation

(continuity) and momentum balance (Navier-Stokes) remain unchanged.

dd

- + duc + +A=

where is the total density,

is the component of the velocity,

P is the pressure,

-iAs the 1st o- shear coefficiernr of visccsity,

7,is the 2nd or bulk coefficient of viscosity,

is the space coordinate, and

f, is the time.
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T

If the relative concentration of the two fluids in a given volume were

[ I constant, the moion would simply distort the volume and would be absolutely

reversible. The total change in concentration

I with S the concentration i. e. the ratio of the mass of one component to the total

~ j mass. Using (a-l1) this is equivalent to

Al ~ S (Josue)o.fuw!I
When there occurs an interchange of material on the molecular scale, as

is almost always the case, there is an irreversible change in concentration. The

rate of change of concentration then depends on the flux of material at the molecu-

lar level,
U

Assuming that such transfer occurs, the transport equation for S must be

SI modified.

After some algebra, one finds
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with

S the diffusion coefficient,

KT the thermal diffusion ratio,

Kp the pressure diffusion ratio, and

7' the temperature.

The second and third terms on the right hand side of (a-5) give the change

in concentration due to thermal and pressure diffusion. In the cases of interest

there is no measurable difference in diffusivities due to differences in physical

or chemical composition. Therefore

low(a.)

to the degree of approximation considered here. In this case,

This reduces, in the case of a stratified fluid (density gradient in the 3 direction )

to

ds d I d

If the relative change in desnity in the 3 direction is small, and the fluid is homo-

geneous in a horizontal plane (1-2 plane) then (a-8) reduces to

r• -50-



Now assume that the fluid velocity, ( , has a mean (ensemble) and

fluctuating part, i. e.

where, ) denoting an ensemble average,

W>")
Assuming that

with

equation (a-9) becomes, after taking averages and assuming the statistical in-

I
depcendence of (A and S

Invoking an "eddy diffusivity" or mean gradient hypothesis
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equation (a-14) becomes

If the fluid is stratified, there is no motion in the 3 direction,

equation (a-16) can be written in the form

with i

Assuming that the mean flow is zere,

this reduces to equation (i).

L
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APPENDIX B

Consider the equation

with the initial .ondition

57 (y•, o)-, _, _ _,l ,/• .z-

First, the fundamental solution will be found. Let

Under this transformation equation (b-i) becomes

C)Sz dCS h

Because (b-4) differs only in the (C)/SILdterm from the z:tandard

form of the diffusion equation, it i i expected that its fundamental solution will

be similar to that of the usual diffusion equation.

Therefore, let
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with b and C constants and N(•) an, as yet, undetermined function.

Substituting this ansatz into equation (b-1), it is found that

II'l

In order for this to hold for 41,and

t,= I (b,-i)

Thus

CI
Itis clear thatif f O

ar.d

showing that $1 has the character of a 4 function.
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It is also necessary that

Equation (b-12) is

Let

and equation (b-13) becomes

SI"< I, (b-, r
0

so that, vith (Gradshteyn & Ryzhik, 1965, 3.326)

Cz
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With the initial condition (b-2), (can be easily found by

integrating S* over the interval, thus

,'A

IrI

ILI

under the transformation

Then, with

- 6 A

II
l~
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The concentration at the center of the patch is given by

S(O1 )

.. As for the scale or size of the patch, it can be defined as in the case of the

constant eddy diffusivity,

K47('., J 5Y ? t

with O O'•CI. Equation (b-24) can be solved numerically for . as a

, function of , using (b-22) and (b-23). Z

Defining the variance as usual by

k -57-
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Defining the variance as usual by

it can be seen, substituting from equation (b- 18) that,

With the substitution ""',

and an interchange in the order of integrations

9/lu

"where, 49 Q/

ft• f 

"z•

Carrying out the integrations
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