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The turbulent diffusion of a passive scalar in a stratified fluid is studied
using a simplified model for the calculations. A semi-empirical formula for

the diffusion coefficient is obtained as a function of turbulent energy dissipatioa
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rate and scale of the diffusing patch. The formula is demonstrated to give
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values which are consistent with kr.~wn experimental results, It is suggested

that the diffusion coefficient at intermediate depths is an order of magnitude
smaller than that observed in near surface waters. Using these values of the

diffusion coefficients, calculations show that the mean concentration for a patch

initially 100 meters across decreases by a factor of 10 in 2 hours near the sur-

face, but in 8 hours at intermediate depths.
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1.0 Iatroduction

The turbulent diffusion of a passive scalar in a stratified fluid was
studied using three models for turbulent diffusivity. The calculations are
approximate in the sense that only diiffusion in one horizontal direction is con-
sidered and that the effects of the turbulence are "modeled". However, the
"model" difiusion equations are solved exactly, in some cases, or numerically
with high accuracy in all other cases.

It is assumed that the quantity whose diffusion is being studied is a
passive scalar. That is, the quantity undergoing diffusion can be, like temp-
erature or concentration of a substance, specified by a scalar function of space
and time and the dynamics of the flow are totally unaffected by the variation
in concentration of the diffusing quantity. It is further assumed that, what-
ever the diffusing substance is, it does not undergo any chemical reaction
with significaut release or absorption of heat.

Finally it will be assumed that the fluid is stratified. In many areas

of the occan there is an appreciable variation of density with depth outside of

a well mixed surface layer. It has been known for many years (see Sverdrup, et al

1942 ) that the presence of a stable stratirication reduces the turbulent inten-
sity and inhibits vertical transport of both scalar and vector prcperties.
Okubo and Pritchard (1969) give measured values of the horizontai and vertical

diffusiun coefficients for the ocean. The horizcntal diffusion coefficients are

+
in the range of 103 to 5 x 103 cmzlscc whi.e the vertical diffusion coefficients

012

cmé/sec

+ Ozmidov (1956) quotes values ranging from 10% to 1
for the coefficient cf horizontal diffusivity.
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€411 in the range 1 to 100 cm?/sec. Okubo and Pritchard recommend, for

rough estimates, that the coefficient of vertical diffusivity be taken as:

in the upper mixed layer 10 - 100 cm?/sec
in a significa it thermocline C.01 -1, 0cm?/sec
in the deep layer 0.1-10, 0cm?/sec
near bettomn 1-10cm?/sec.

It is clear that, excluding the upper mixed layer, whichever of these values

is taken for the coefficient of vertical diffusivity, the ratio of the coefficient
of horizontal diffusivity to the coefficient of vertical diffusivity is greater than
100, It therefore seems r2asonntle to neglect the vertical diff ision and to
consider only diffusion in the herizontal plane.

The source of th.e sralar is assumed to be a self-propelled body
traveling through the ocean., The scalar is assumed to be released into the
wake, The wake grows by entrainment and evex;tually coilapses (see the model
of Ko, 1971). If the scalar is uniformly distributed throughout the vake just
behind the body, the model of the growth and collapse of the wake descrioes the
spread of the scalar. That is, the scalar is uriformly (on avarage) distributed
within the walie and the calculation of the wake boundary as a function of time
gives the mean distribution of the scalar as a function of time. The more dif-

ficult question of the diffusion of the scalar from, s.y, a point source within

the wake will be considered in a following report,

Ko's model shows that the turbulent intensity decreaces rapidly with time
after the beginning of collpase. When the turbulent intensity within the wake
drops appreciably below the ambient turbulent intensity of the ocean, Ko's model

czn no longer describe the diffusion process and the wrbulence cf the ocean
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controls the diffusion process,

In the calculation reported here, the 'equivalence principle" is used,
i. e., the model is that of a '"slice of the ocean" in a vertical plane perpendicular
to ihe axis of the wake. Since, as discussed above, vertical diffusion can be
neglected compared to norizontal diffusion, the problem can be reduced in this
approximation to that cf turbulent diffusion in one space dimension and time.

In fact, the problem is really a function of both spatial coordinates in

the horizontal plane and of time, Within the approximation used in this repozxt,

for example, the meander of the wake due to large eddies cannot be described.

This is a serious limitation. A possible experiment would involve sampling

the wake along some pata. If the sample were taken along a path parallel to

the track of the body, the meanders of the wake could cause large variations in

the observed concentration, The calculations reported here are of the average,

over an ensemble, of the concentration. While the variation of the mean con-

centration as a function of time is important, it is not the whole story. The

variation of the concentration with timuc i the horizontal plane is now being

investigated and will be reported at a later date.
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2.0 Formulation of the Problem

Let x ve the spatial coordinite pavaliel tc the free surface and
perpendicular to the path of the self-propelled bely, f’ be the time and
S be the mean concentration of some passive scalar. The concentration
S[x’f)is then governed by a diffusicn equation
dS o /., IS (
ot ~x (N ox/ -

It has been assumed that mean velocity of the fluid is zero. K is the

effective diffusicn ceoeificient. If the fluid is *'at rest', i.e., there is no
[ 4
turbulence, .hes K is the molecular diffusivity, but if, as is usually the
- . . . . +
case, therc is turbulence, then?( is an eddy diffusivity.
It is assumed that the concentration is uniform in a region of width ’/b
at some initial tim¢ which is taken (o be 'f' = 0. Az discussed in the intro-
duction, this is some arbitrary time after the wake has collapsed and the in-

tensity of the wake turbulence has dropped below the ambient turbulence in-

tensity. Thus th= initial condition is that

5=5, jt=0,~-Aiext b /o, (2)

*+ See Appendix A for a detailed discussion of the derivation of equation (1)
and the approximations used,

mwwmm‘mam‘wwmmjmmmmmmw*"“!wwwmmm«w oL AR s ot B LB S L o Al AR 2006

S e L M bt g b e e

i




EHRA T

|
|
E

AN HEER

T

=
-
/3

= z
= -
= i
= i
s =

. £
= B

| = =
= -
3 :
LE z
- £
B= =
-5 x
= %
= E.
= i

= =
=
= £
- <
-
=

%

x

= -
~:

H

<

E 2
= A
i

=

¥

e |

et B B e

JE A

Without any loss of generality s‘ can be taken equal to 1.
Equation (1) can be put into dimensionless form by defining appropriate
length and time scales. Let the length scale be ,{c and let 7(6 be a

reference diffusivity (dimension (length)zltime). The time scale, t‘

0,is

then

to =’{ot/7(¢ . (2)

Define the dimensionless spatial coordinate

§ = X/, (v)

and the dimensionless time coordinate

’7= t/4, . (s)

Under this transformation, equation (l) becomes
05 _ D[, 25
0 ? - df s/a 3 (¢)

/

Pl

b T Sl R

"
)

where the dimensionless diffusion coefficieit

/“=7(/7(, . (7)
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The initial condition is now,
S22 ; §=o0, ~ifs 52 Ye. (¥

The problem is uniquely specified when/a {9: ?} is given. Since
a general .olution to the turbulence problem is not available ,/&i must be
apprcximated or, better, modeled. A common approximation is to use a
curstant value for the eddy diffusivity. This is, at best, a very rough approxi-
mation and, of cource, is crucially dependent on the choice of a numerical
value of / . The value ->f/‘( not only varies from one location to another
in the ocean but also varies, at a given location, with the scale of the diffusing
patch. Because the constant eddy diffusivity model is so widely used, and be-
cause other, more appropriate diffusion models can sometimes be reduced,
under a coordinatc transfor-nation, to an equation with a constant eddy diffusi-
vity, this model wiil be treated first.

The rariation of/a (or ;{ ) with patch size can be anderstood in
terms or the variation of energy in the spectrum of turbulent eddies. Consider
a patch of size j . Turbulent eddies whick are much iarger than / simply
convect the patch without appreciably distorting or sprezding it. Turbulent
eddies which are much smaller than /( stir up the patch and provide the fine
scale mixing. Of course the small eddies do precvice enhanced mixing at the
edges of the patch. However, it is the eddies v ith a scale aprroximately equal
to ,( that provide the major mixing. These eddies distort the patch and

greatly increase the surface area of the patch and thus enhance the mixing due
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to the small eddies at the edges. Clearly the most importas: guantity is

the rate of distortion of patch by the eddies or scale ,{ . DBut, the turbulent
energy)E(I))increases with decreasing 'I’ , i.¢., with increasing
scale, at least up to the maximum scale of the turbulence, Therefore, the

larger the patch, the more energy there is in the turbuient eddies of the

same scale which distort the patch. Of course there is an upper limit in

that the turbulent energy spectrum does not increase indefinitely with decreasing
' z ' ; there is a peak in the spectrum at the scales at which the turbulence

is Leing zenerated. This is, however, unimportant in this probiem. The peak

in the spectrum lies at scales greater than tens of kilometers and the patches

to be studicd here have sizes in range 1 meter to 10 kilometers.

Richardson {1926} studied the turbulent dispersion of particles in the

atmosphere and showed experimentally that
4/3
s
K= (9)
/

~ . . 2/3 . 1
where e is a constant (dimensions cm /sec when is in ¢cm) and

is the separation of the particles. A number of otlier expcriments

sa00 88

have been
performed on water surfaces, Richardson & Stommel (1948), Stommel &
Marin (1949), Ozmidov (1959) and Gray & Pochapsky (1964), and have also

shown agrecment with equation (9). 1In a ferthcoming report, Kuo (1972) will

discuss a theoretical justification of the ""4/3" law. In view of this experi-

mental evidence and theorctical justification, it will be assumed that the best

model of the turbulent diffusion coefficient is the "'4/3'" law {(equation (9)).
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The remaining conceptual problems are (1) what is the appropriate scale,

oy
i.e., what is /( and (2) what is the value of €& ? These questions will
be discussed in detail below. First, however, a number of eddy diffusivity

models will be studied.
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. 3.0 Diffusivit:r Models

In this section, three models for the eddy diffusivity are examined,

namely, a constant, a variable, and an integral scale value. The resulting

. mean concentration is calculated for each of these models in terms of a
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3.1 Constant Eddy Diffusivity Model

20 kR i 82 RN

T P T R Ve A VR R

If the eddy diffusivi‘ty is constant,

K=X, ond _u

L]
b

(7¢)
Zquation (6) is then

o5 _ o'
% o5 "7

with the initial condition given by (8).

it

The solution is easily found to be

ot i ." K
AT g e R R i
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The three quantities of interest are (1) the spatial distribution of

the scalar at a fixed time (given by equation (12)); (2) the concentration at

the center of the patch as a function of time

S(0,%)= er-f[:;;_é:"—; (1¢)

and, (3) the "size' or ''scale'’ of the patch.

Y e AT e b AP iy

The scale of the diffusing patch cannot be uniquely defined for f# o , Z

because 5(5 ?) # O for all y 2 4 7#0 A reasonable, but arbitrary,

definition of / , the patch scale is

B S(449) = a*Slo7), 9

ST

7
%

where V4 a‘< 1 . That is, ,(/z, is defined as the distance from the

i

it

center of the patch at which the concentration has dropped to an arbitrary

i,

i

i

*»
but fixed fraction, a* , of the coacentration at the center. For given fs A

&

equation (15) can be solved numerically for ,e as a function of ? .

Another pussibility is to define the scale of the patch in terms of the

variance of the distribution. Defining the variance, as usual, by
oo

ﬁ

~
~y
) s
i
vn
P

W)
™~
™
Nl
-

, (56)
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T 1
Then, if ,,e is proportionalto ¢~ ,

/4 =[¢7ﬁ’1=//+2“?7, (16)

where the zer~ subscript refers to values at ‘t =0 ( 7 = 0).

Equation (15), using equations (12) and (14), has been solved numeri-

W

b

R L e e ey G e i S R TR R

£ cally for Q"= 0.1 and 0.25. The results, curves of fe///o as a fenction
f of f’/t‘ are plotted in Figure (1), along with values of the scaie defired in
E terms of the variance, i.e., /(/A from equation (18},

It can be seen from the resuits plotted in Figure (1j that there ic little

el L‘Mﬁl‘%‘iiv;mmW.JMWMMM.WWMMwu‘.wmmmmwmkm;wrmmwﬂA,mmwmm.xm»_aww i

difference betweern the size of the patch as given by the different de{finitions of

’{//(0 . As expected, the largest size is obtained by defining j as the
1/10 concentration point. The scale .izes defined by the 1/4 concentration
point and the variance agree within about 10% and are about 25% smaller than

the scale defined by the 1/10 concentration point. These scales are the same

i AR EERA LR L

to within the accuracy of the approximations which are imbedded in the calcu-

o
I

lations. In particular, there is uncertainty in the choice of an eddy diffusion

il il

"

it
L]

model and error in the use of an eddy diffusion to represent the turbulence in

the first instance. Finally, the scale, as calculated here is an ensemble

L T R o

average and in any single realization the actual scale will differ from the en-

semble average. In view of these uncertainties, it seems reasonable to use

the variance definition of the scale as a reasonable approximation. The mean

concentration is then just the reciprocal of /(/,4 i.e.

o (S =[/+2f//z‘/£a)]-'ﬁ. (i1)
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3.2 Variabkle Eddy Diffusivity Mcdel

One possible choice for the scale to be used in the '"4/3" law is to

take

£=X. (29

This model is based on the idea that the scalar is difiusing away from the
center of the patch and therefore the appropriate scale is the distance from

the center of the patch. With this approximation

X = 2'7(% )

7(0 - ? ’/0 y/3. (’Lz)

Therefore

M= [Y///;)y/:’ =5 i (23)

and equation (6) becomes

25 ¢
97 ° /? /3"""" Y
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It can be shown using elementary techniques, sze Appendix B, that

the solution to aquaticn (24) which satisfies the initial condition (8), is

S(;/ 7) = _?4: GP-F[-ZI) - e"f{zt)

..?.... ""zzz t
",;,—-:/Z.LG --Z,,e’z' (tS)
J

with

2,=3(s-2)" fley Y

2,,:3{;,«;'-)'/’//:7;' (27)

The concentration at the center of the patch is,
S(e ):erf(z)--?—-%c"zz
) % ' /7 , (2 £)

with

!

M«mm”mtnl,.,wmmmk»mamwmmwmmm‘m‘.e.‘i,mmmﬂmmMWMMWMMm‘eﬁwmmwwunm»g»@muummmsmm&wmmu.»ummmm:wmwwmwumwmmmwmmam‘a.mmmmmmmmmwmmmmmwwmmmwmmm sttt bt A

2=3/(2"3"%). v

-15.

i

e amas PRI N




FZi I R I R % e 3 TR SECLEET NN = s S S RS S B
AT R A A R R U e T T N R T R T R R e R e s o e e s e e e e

If the scale, or size, of the patch is determined from

s(z4%)=a*5(0,3), (39

then equaiiciic (25) through (30) can be solved numerically for ,(/,[b as a
function of ? (f/{o)for any particular choice of a*. If, however, the
scale is defined, as before, in terms of the variance, it can be shown (Appen-

dix: B) that

2 £o
(%) ""725'"'/22«/3)7/3, (3

and thus that
/(/,4 = /7-,‘(3135;)73 ’ , (32)

The scale size, 1/,/0 ., as determined from equation (30}, is plotted

.. in Figure (2) as a function of {'/f. for CL*= 0.1 and 0.25 as well as the

scale size defined in terms of the variance, equation (32). From Figure (2)

o w

: : it is seen that the scale is approximately equal to /[, until f/fo =~ 0.02

~-16-

_ % : and then begins to grow rapidly.

‘ s In contrast to the constant eddy diffusivity model, the variance scale

? i is Yerger than 0.10 and 0.25 concentration scales. This can be understood in

, terms of the eddy diffusivity model, equation (23). The rate of diffusion in-

‘A

i B creases with increasing distance from the center of the patch. This tends to

i . give slow diffusion near the center of the patch and fast diffusion near the edges.

I i Lt A o b s AR | 1h NPT o il 4 o e . iath i ien ' b s il
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This implies that there is a much sharper "edge' to the patck than in the
cace of a constant eddy diffusivity and that there will be a long ''tongue' of
material at low concentration extending out from tte edge. Since the material
in the "tongue'" is diffusing rapidly ccompared to the material at the center, the
"tongue'' grows rapidly. Now in calculating the variance the material at large

f is heavily weighted (by f s ) and thus contributes more than material
near the center. Bec=»use of th2 sharp ''edge'’ and long ''tongue", a large dif-
ference between variance scale and constant concentration scale is to be ex-
pected.

A reasonable approximation in this case would appear to be to take

the scale as the variance scale. Thc mean concentration is then

(> = [ 10(25) (s )] . o

N—

A B R R VAL VA e e At S5 A a S M B s UK U GEIN ol At Loty

¥
3

TR R TY)

.
&

SOBARS b Ie  Fr SA T t e




S T T e T R R T A A R T B e AR R R R A TR

3.3 Integral Scale Eddy Diffusivity Model

Finally, it can be argued that the appropriate scale for the diffusion

is constant at any instant of time and is, in fact, the "size" of the patch.

Taking

X

"

Y
r 3 4 /" {39)

; and

~ '/
X, =24" (35)

.

E o) ¥
) A= (L)4,) /3/ ( 36)
with £ (%) defined by, say,

S(+4%) = a*5(6%), (37

AT AT

: - or perhaps in terms of the variance scale,

;, e //j / y 2 ?

2 = ?

E o = 1/t . (39 f
i - The inathematical problem is now to solve

2's

oS |
KL} AN Tsr (39

WL AT el S BT T

MMMﬁMMWMWMM&ME?MW&%@MMMM‘Mmma‘mwnMMMMWM%MWMMMMIMMMWMWmhm.wwmn\aﬁmbﬂmwww&wm‘m‘uM.mm‘wammmmmemmmwlmmmmmé&E‘u\«wnmwmumHm«a‘w.;mmrmﬂif"* :

i)

?;
I
1 S(5,0)= 1, ~h£5s e (49

AT AR
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Since/d is only a function of % , it is possible to eliminate
¢
/0[1) from egquation (39) by a suitable coordinate transformation. De-

fine the weighted time coordinate Z° by

= Jundy <D

then

J 2T ) P

57 oy v M, (Y

and equation (39) becomes

95 . 28 .
T IOF . v

with the same initial condition.

This is, of course, the diffusion equation for a constant eddy diffusivity.

The sclution is equation (12) with ? replaced by 2~ . Inorder to interpret
the results it is necessary to transform back from the ‘€ to the 9‘(’ variable.
(Recall that 7 is directly proportional to the time while 2~ is a weighted
integral of the time.) The diffusion scale ( 4/.[0 ) can be calculated, whatever
its definition, as a function of ?‘ . Then the eddy diffusivity can be calculated

-

from (;(/,[c ). Now,the edd; diffusivity must be the same in the ’7 and 2~

coordinates when it is calculated at corresponding (not equai) values of ‘%
LS

and . The correspondence is that deterrained by the transformation,

=
E
]
z
2
=
2
2
=
;‘%
‘2
5
2
3
2
3
=
;Jj
2
3
El
3
3
._}
hﬁx




equation (41). From the differential form of this transformation

L= _wl(zy)dy, (@)

')z can be obtained by using the above principle. Thus

() £ _2(7) /5)
and corresponding ‘% and f?" , So that

dr
3 AT

= c/'? , (‘/6}

) or
7z
- ¢
) _ 4T o)
-
/ (
. K () -
. o
- Using a constant concentration to define the scale, values of ,e//(fo

as 2 function of “Q” are known frcm the numerical sclution of equations (12),

(14) and (15). The: -ing equations (36) and {47) a numerical integration

yields 7{( 2') This calculation has been carricd out with a,* (the value of

A MWP“’(&WM\\«
M *.........}

the concentration defining the edge of the patch) equal 2o 0.1 and 0.25. Since
(,e/jo ) and S ( 0,'2‘) are kitown as functicens of 'Z" , it is easy to tabu-
late (I/ja) as a functien of 9( and also 3 {GJ ?).

Cn the other hand, if the scale is defined in terms of the variance, the

oo

transformation can be inverted anzlytically. In terms of th» ‘z variable,

2.?:“\”0’,“&.;”««/\“3, \"f‘"ﬁ‘ﬂ"{%ﬂ*k"‘*”‘m\“*m oW e, v
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the variance scale is from equatior (18)

=

Then, equation (36),

A (T)= (,?/1.)4/3.-: (/+z42')2/f (#9)
so that v Y ,
7 4z’ __ j(l-f-Z‘f' ') /3 gt

7 A (z)
'_Z (-;',s.')[(/+ 247) ~_ /] (39

"

Therefore, solving for " as a function of 7

v )[(rey)-1] v

and substituting back into equation (48)

L)L, = (/+a>7j3/z, (s52)

“‘"‘\"-ﬁ"*{f'(ﬂ.ﬁ}"h}"‘:t’f’”"”‘-’“ Sy oy ) A
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Figure (3} is a plot of (,e/“,;) as a function of ( f'/'£0 ) for the

constant concentration scales, CC" 0.1 and 0.25, and the variance scale.

i iaab el

Again the largest scale is that obtained from the 1/10 concentration point.

-

s

i

4
A

The variance scale and the 1/4 concentration pcint scale are very close,
within 10%. It appears to be reasonable to use the variance definition of the

scale. The mean concentration is the :1eciprocal of ”X{, and is

() 3[/7‘¢F/1‘/‘£‘o)_7 /Z. (53)
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4.0 Interpretation of the Numerical Results

¢ bra s i M

4.1 Theoretical Conside rations

{hh g

Although the constant eddy diffusivity model has often been used, it
is clear, on both experimen.al and theoretical grounds, that the '"4/3 law"
provides a better model of the diffusion process. While choosing a scale
proportional to the distance from the center of the patch (a lecal scale) may
be a reasonable approximation for small times, the integral scale iz prob-
ably the most reasonable scale to use in the 4/3 law. Figure (4) shows the
variation of concentration at the center of the patch § { 0,?) and the inean
concentration < S} with time ( t— /f‘ ) for all three models. From now on
all the discussion will center on the integral scale 4/3 law' ,a.-.- (//4) "{’

In order to interpret these results, the initial length scale, ,’. .

e

it g

and initial time scale i’o must be determined. There is no problem with

S MMHM,

the length scale; 'ID should be the initia: size of the diffusing patch. As

for & .
t, = /ﬁ,‘/}(, ; (59)

the initial eddy diffusivity

%:?//;ybl (55)

-~
is required for definition. In order to pick a value of € , experimental

data must be used.

i
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Most experimental studies of horizontal diffusion in the ocean have
been conducted in near surface waters, if not on the surface, see Ozmidov
(1959) and Okubo & Pritchard {1969). Although there is considerable scatter
in t};e data, a reasonable fit appears tc be given by equation (55) with

gz 0.01 cm2/3/sec { jin cm).

For the present purposes these measurements near the surface are
not satisfactory. The near surface waters are disturbed by wind driven
currents and surface waves, for example, and generally are not stratified.

It would be desirable to nave an extensive set of measurements of the diffu-
sion coeffcients as a function of scale for varicus depths and Vaisald periods.
Such experimental results are not available. There appears to be only a few
diffusion measurements at depth. Fortunately, some additional measurs:-
ments are available, which, properly interpreted, will give further informa-
tion on the variation of 7( with depth ( ) ) and Viisild frequency ( ¥ ).

Batchelor has shywn (see Hinze, 1959) that in homogeneous turbulence,

for intermediate times,
‘ 9/5
7( = A € /’j / ) ( 56 )
i.e., that

g':-.-ﬂé'/" (5‘7)

. . s e s 3
where A is a constant and € is the dissipation rate (cmzlscc )




TRy

A

Ei
£
§

I R Y PRI WS R L e

IRV e AN AL

2
>-<
t
B
-y

SR

-~

Ze FES ST A R e v T can s e —er— .
R S R e R e Y i T i T I T A R W e s e S D 2t 1 R N

Ozmidov (1960) suggests that A is approximately equal to 0.1. As will
be scen below, € 7= 1072 /cm?/sec? in near surface waters of the ocean
. . > -2 -2
with moderate wave heights. Assumungthat € =10"“and € =107°,

it is found that ﬂ X 0.05. Throughout the remainder of this report it

will be assumed that

A =o0.05 (5¢)

J

therefore

I,
o.05 e L Y

X

Measurements of the energy dissipation rate, € , as a functionof 0

and A/ thus yields information about the corresponding variation of z .
It is desired to use equation (59) to calculate tl;e diffusion coefficient

as a functionof the energy dissipation rate, e , which, in turn, is a func-

tion of depth and Vaisala period. The validity of the 4/3 law has been demon-

strated experimentally for diffusion in near surfzce waters, and the constant

in equation (59) has been obtained from this data. In order to apply this rela-

tion to intermediate depths, it is necessary, at least, to show that the flows

have similar character and that the application of (59) is consistent with the

limited data available.
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é Ozmidov (1965) has suggested that a stable stratification canr have the

3 effect of suppressing turbulence (at least the vertical motions of the turbulencej.

o R T R e

It is, of course, well known that in a stratified fluid with shear, there exists a

wy et A ey

- . *
critical Richardson number, R ¢ , such that if

= -B)(E)/(3%) <« &% tew

the flow is unstable to small disturbances and presumably an unstable disturb-

ance will lead to transition to turbulence, (see Miles & Howard, 1964 or, for a

comprehensive review of the stability of stratified flows, Drazin and Howard, 1966 ),

P
Miles & Howard suggest that Ky =1/4. If fC: is the flux Richardson

7 ‘whl‘ ih i

®
& number, see Lumley & Panofsky (1964), then E" = (eddy conductivity/

i

eddy diffusivity) ¥ 1. Experimental results can be interpreted as giving

critical values, l/V £ k‘.* ‘l.v /.

Y

et e

Ozmidov argues that if
.. 3
. €E~ U / 4 (¢1)

where @ is the turbulznt intensity and / is a turbulent scale, then
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So that, if ,( is the vertical scale of the turbulence,

?—é—: ce¢3j-y3’ (‘3)

with € a constant. The Richardson number of the turbulence is

- T p Y/
o, =AU Cc el (¢4)

4

after setting

Vo2 3E) | s

For the turbulence to exist, kt’ 5 k‘:ﬂ” i.e.,

NLCcet) e £Y (e

Therefore« there exists a critical length scale, /C ,
J
AL * P
- 3 2
cT|RAcet/y |, @Y
such that if ,( L ,(‘ , the turbulence is three-dimensional and pcrhaps
isotropic. If ,[ > '[C the stable stratification will inhibit the v - :cal

component of the turbulent motion and moticn on this and larger scales will be

two-dimensional turbulence (a2 randorn field of internal waves?)
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% Lumley (i964) has also suggested that, in a stratified flow, there 3
§ exists a buoyancy subrange as well as an eyuilibrium subrange and that the Ey
3 wave number separating these ranges 3
: 2

ety

Yy 3 -
4‘5 =c, ' Nl e /'; (6F)

. * TR
i R D b

where Cb is a constant of order unity. If then

S

-1 _ * .
1 % * k7 ¢ ) (69

£, = A=A

e e ) A L
P T SEE 1Y E o

A (70)

The equilibrium subrange of the turbulence exists for wavenumbers,

e
g
g
P
=3
2
P
e
=

k¢ A <4 (79

/

where “ is the Kolmogorov microscale

s Yy~ MW
| - £,V "e¥?, (72)

with 3 the kinematic viscosity.

£ R

P e

=
=
=
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If 46 :4‘ the equilibrium subrange disappears and possible,
ther.e can exist only a random field of internal waves. For even small scale
turbulence to exist, there would have to be an increase in the shear corres-
ponding to an increase in € , so that jb would become larger than ,/_’, .
This general picture is in agreement with the observations of Woods & Wiley
(15 2) which show that the appearance of turbulent patches is due to short
internal waves in the microstructure, giving an increase in the iocal shear.

The critical dissipation rate for the existence of an equilibrium sub-

range can be estimated by eguating 46 and 4‘ ,

Sk .-h _ v _:
14 £‘ =V éc fif (73)

or

T

é‘- = V/V y (79}

-2

b o

and for water { Y ¥ 10 cm?/sec) and 10'25 YA - 1073 sec~?

> A

O o e e e

€ = 70”7 cmt/sec’. (75)
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These considerations suggest an interesting experiment. Produce

TR 9 0k

a turbulent field in a stratified fluid, perhaps by allowing flow nast a grid.
Initially & will be large and an equilibrium range will exist. If € is

large enough and the experimertal facility (tunnel) is not very large, 4{5

RSN Ay SR LA

may be larger thau the diameter of the tunnel and a buoyancy subrange may

(it

not exist. Downstream from the grid the turbulent energy and also € will
5 have decreased; a buoyancy subrange should then exist. Further downstream,
| € will Yecome less than Gc and, if tuis model is correct, the three-
dimensional character of the turbulence will entirely disappear leaving a ran-
dom field of 2-dimensional turbulence, possibly a randem field of irternal
waves.

It would also be interezting to calculate, say from Ko's model, the

point at which the energy dissipation rate in the wakes drops below € c °

Typical valucs of '[C- { P(": C= /7 ) are shown below. Near surface

values of € ave of the order of 1072 dropping to 10 -4 at depths. %E

g

c c ( m ) =
3 P =
2/ 0d 3
E e (cm®/sec”) E
N N (sei™h 1072 1073 1074 4
SN 3
3 1072 100 32 10 3
3 3
. -3 2
3 19 320G 1000 320 I E
S B %
= . %
= - -33. E
3 =
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It is clear that a strong thermocline { /\/'V /OOV) and/or small energy
dissipation rate will strongly suppress three-dimensional turbulence. There-
fore, the motion at intermediate depths iz likely to be two-dimensional, at
least for scales larger than a few meters. However, this is also the cace near
tae surface where the vertical extent of the eddies will be of the order of the
distance to the surface. Since most ocean diffusion experiments were carried
oot at depths of only a few msaters, the large scale motions are likely to have
been two-dimensional in these experiments also. Thus there is at least no in-
consistency in the character of the motions at intermediate depths and near the

surface,
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4,2 Experimental Results

Woods & Fosberry (1967) have made visual observations of dye
motions in the thermocline fine structure. They state that A , tiic mini-

mum eddy size observed varied from about 1 mm to 10 cm, depending on the

depth and stability. If ) is taken to be the Kolmogorov micro-scale then

€=y/xr? (7¢)

J

and corresponding tolmm £ A £ 10cm,

W o

-/0 -
cnuf/gec’ £ €£ /o cmn'yéhecJL

/0

f Hale (1971) has observed visually the spread of the dye above, in,

': and below a thermocline in iresh water. He states that the turbulent motion
appears to have maximum e~ergy near the surface where it is 3-dimensional.
»

The turbulent intensity decreases with depth; in the therniocline the motion

is largely 2-dimensional and is perhaps not turbulent at all. Below the thermo-
cline the intensity increases again and the motion tecomes 3-dimensional once
more. Diffusion ccefficients measured near the surface were stated to be un-

related to those at depth.

) - Lo . p § il
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Webster (1969) has made horizontal current measurcments at a site
g on the continental slope (39°220' N, 70° W) about 175 km north of the mean axis ;
] of the Gulf Stream. The water depth is 2600 m and measurements were made _
2 -35.- :
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from near surface (6 m) to a depth of about 2000 m. He found that some

CHASEETRAR R SR A LR R R s

of the spectra of kinetic energy density decreased as f-'f/’for f z: 0.1

cycle/hour. Assuming that this was an inertial subrange, Webster calculated
the energy dissipation rate as a function of depth and found that the € thus

calculated was proportional to N, Webster calculated values of &

5x 10"%cm?/sec? at O =10m, 10'4cm2/sec3 at D =100m and

10°5t:mz/sec3 at O =1000m. A complete listing of Webster's calculated

values of € is given in Table 1.

Pl

Pochapsky (1972) measured the energy densities of vertical and
. relative horizontal fluid velocities with neutrally buoyant floats. The measure-
ments, made at a number of locatiens, yielded spectra of the horizontal velo-

qz -
city having a {requency variation between f and f 3. Pochapsky

argued that most of the energy in this frequency range (0.1 to 10 cph) was

ks o
B

associated with internal waves, not turbulence.

G

Grant, Stewart & Moillet (1962) have reported measurements of

MR HRA

4

turbulence specira in near surface waters of a tidal channel. From each of

et

their individual spectra they calculated energy dissipation rates. These

ranged from 0.02 to 1.0 cm?/sec3 with an average of about 0. 34 emé/sec?

e

"

These results are listed in Table 1.

I e e

-

Stewart and Grant (1962) have reported measurements of & at

- o
RO P T

various depths from 1 to 15 m and with various wave heights in the 0.1 to

0.9m range. The energy dissipation rate showed a tendency to decrease

LA R
AR g wisew o
] .
N
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Summary of reported measurements in the ocean of the energy dissipation rate

D{m)

it LA 100 TR, | UL R 3 [ oM D YN A TR TN B T

50

TR SO G ML B

64

ki

i A A

88
98
104
106
120

: 450

492

502

511

522

930
940
9590
1001

1013
1950
2002

2020
2026

Data of Webster (1969)
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uf{cm/sec)

37.2

48. 8

16.1

16,7

29.3

28.9

10. 9

10,7

13.4

9. 6

7.3

5.9

5.2

7.7
5. 4
4.2

6.9
3.7

leos(cmzl sec)

40. 50

48. 30

6. 84

7. 41

5.32

8. 86

4.68

10,13

7.18

2,05

2. 60

1.52

3.49

2.58

2,28
1,067
1.23
0.82

1,38
0.78
1.06
2.66
2.11
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TABLE I (cont)

Data of Grant, Stewart & Moillet (1962)

Measured in a tidal channel -9 independent measurements

é (cmzlsec3)

0.610, 1.02, 0.395%, 0.121, 0,235, Q,147, 0.044, 0.0187, 0. 441

Data of Stewart and Grant (1962)

Degth Wave Height e

(m) (m) {cm?/sec

-2

3)
1.0 0.5 4,.2x 10

1.5 0.2 1.5 x 1072

1.5 0,4 2.3

2.0 0.1 5.2x 10"
2.0 0.3 2.9 x 10
2.0 0.5 2.2

2.0 0.9 4.5

12,0 0.5 2.5x10

15.0 0.1 1.1 x10

N b NSRSt e A A s s D D B mmwmmw.mwuﬁmmmmwmmmmswm«mmmmmmma:w._,«uwmmMﬂmmmmmmmwmmmmm‘ il gl

1
il

%ﬁw»‘M,m,I.Jmm SRS Bl A R b bt




S e T R T S S R T L e R T T e T e e

2
=i
=

=

;::33
=
=

%

3
=
=
%
g
=
=
T
=
z
S
=3
=)
=

—=
=
=

=

E
=
3

=

%
=z
=

=

4
=

=
-
=
=
=
E
=
=
=
=
=
=]
a2
=

=
=

E
=
=
=

3
§
é
%
,§
=
El
E
=3
=

E

-
==

2

=

z

=

=
=

Z

=

O TR TR

i

%%

T3 FFP

RNy

TABLE I (cont)

Data of Grant, Moillet & Vogel (1968)

Depth N2 e ‘ é--:": UG

_{m) (s_ei_z_) (em%/secd) (cm®/sec
15 1.56 x 1072 2.5x 1072 1. 00 2.5x 10
27 1.56 5.2 x 1073 1.00 5.2x 10
43 1,56 3.0 0. 77 2.3

-4 4.8 0.77 3.7

58 5.80 x 10

3 2,05 1.9 0.53 1.0

89 1. 24 1.1 0.31 3.4x10°%

90 1. 24 1.0 0.31 3.1

90 1. 24 4,8 0. 31 1.5

bl bl
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with increasing depth and decreasing wave height. Values of € ranged

from 4.5 x 10’2 to 2.5 x 10-% cmzlsec3. The values are given in Tabie 1.

Grant, Moillet and Vogel (1968) have measured € at a number of
depths in and above the thermocline. They found that é decreased with

increasing depth and that, while the water above the thermocline was

essentially always turbulent, the turbulence was intermittent in the thermo-

cline and tended tuv die out with increasing depth. Figure (5) shows the vari-

CH P

ation with depth of the density profile, the energy dissipation rate €&

»

the intermittency factor 1 and the ''average'' energy dissipation rate E

- 4
(e =7 e) taken from the paper of Grant et al and N~ calculated from

the density profile. It can be seen that € differs by at least a factor of 5

g across the thermocline. Numerical values are given in Table 1.
2 Finally there is the measurement of the diffusion coefficient at 300 m
- depth by Schu 'rt (1970). Schuert fitted his experimental results with a theo-

retical model . : -oint source diffusing according to the 4/3 law and found

~F
2 that the measur- i value of € was approximately 1/10 of the values obtained

fiti

il

. . P 4 -3 2[3
in surface experimients. Schuert found € =6.6x 10"~ cm” “/sec, corres-

AR IR

E pondingto € =2.3x 10°% em2/sec3 ( A = 0.06')at a depth of 300 m: where

(e

. .
= N N dx 10°° sec‘z, (calculated from Figure 1 of Schuert's paper).
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Figure 5.

50
100}
D{m)

150+

200

frequency, N, intermittency,

and average cnergy dissipation rate €
Data of Grant, Moillet and Vogel (1968).

with depth.
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E It is to be expected that the energy dissipation rates in the tidal
% channel, as measured by Grant, Stewart & Moillet (1962) would be con-

siderably larger than those typical of the open ocean. The current in the

channel was several knots where the velocity in the open ocean might be
ments may be considered the prcbable upper limitto € .

ments, are likely to be made under conditions of light winds and small to

representative of "'normal' conditions. A representative value of €

near the surface would appear to be 1t -2 em?/sec3.

-3 -4

~ -3 2
with Schuert's measured value of € = 6.6 x10"° ¢m

/

near surface experiments.
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expected to be about 1/4 knot. For this reason the tidal current measure-
Ncar surface diffusion experiments, as well as turbulence measure-

moderate seas. The measurements of Stewart & Grant (1962) are probably

To summarize, values of § measured at depth tend to lie in the range

2 3 . . . foud

10 © - 10 ~ cm /sec”, corresponding, using equation (59), to values of €
in the range 5 x 103 - 2 x 1073 cm®/3/sec. This is in reasonable agreement

3/sec at a depth of 300

P
meters. These values of € are about 10 times smaller than that observed for
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5.0 Summary and Discussion

The theoretical considerations and limited experimental data dis-
cussed in the previous sections suggest that:

1. For a patch scale 1 >¢4 {equation 67) the diffusion is two-
dirnensicnal,

2. The vertical diffusion coefficient

7(! s 0,09 € ‘lso[‘,/,for 1—‘-4 ’ ‘/77)

7('2 - o.05 6’/’»\{- %> o j;,‘!c . (78)

3. The horizontal diffusion coefficient

MN=o0o05€PAY (79)

for /( larger than the microscale and
smaller than the energy-containing cddies,

4. The energy dissipation rate € , varies
with depth and vais&ld frequency. Approxi-
mate values £ and the corresponding
values of & for different depths are

€ (cmz,’sec3) E (cm2/3/scc)

Near surface l()°2 10'2
At r..oderate 1073 - 1074 5%1073-2x10"3
depths
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Considcr now a patch with an initial size, '(0

diffusion of this patch will be essentially 2-dimensional.

= 100m. The

The length scale

is of course ‘4,0 = 104 cm., The time scale is

£, * !:/;(o , (£0)

s
Assuming that the integral 4/3 law is the appropriate model, %: g'lé /
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and the values of t. near the surface and at depth are:

E g (cm2/3/sec) t sec

near surface 10°2 2 x 104

at depth 3x 1073 6 x 10*

0 BT bl B, o

Therefore the time scale is about 5.5 hours near the surface and 16.5 hours

at moderate depths. The averace concentration drops to about 1/10 the initiail *
value at t/f.?\‘. 0.45, i.e., after about 2 hours near the surface and 7-1/2
hours at moderate depths.
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Tke calculations and results presented and discussed in the previous
sections are based on a simple model of the diffusion process in the ocean.
There are a number of irnportant phenomeana which have not been included in
this model.

The calculations are of the mean (ensemble average) ~oncentration
as a function of space and time. In any particular realization of this field
there will be statistical variations. trom the mean. The larger eddies will be
nearly frozen over periods of time of the order of t, . For example,
turbulent velocities will be of the order of 10 cm/scc and for eddies of the
sczle of 1/2 km, the tiine scale will be of the order of 1-1/2 hours. The
frozen or nearly frozen eddies will cause meanders of .he wake which cannot
be predicted from this model. This model can predict the variation of the
concentration off the axis of the wake but not the meanders of the wake axis.
See Schuert (1970) for an example of the meandering drift of a single patch.

The model does not include the effect of geostrophic currents or
current shear on the diffusion, although the current velocities (a few cm/sec)
are comparable to the turbulent velocity. Nor have the eifects of inertial
waves which produce fluid velocities comparable to that of the turbulent flow
field been included in the model" [Pochapsky (1972) has measured fluid velo-
cities due to inertial waves in the range 0.5 to 10,0 cm/sec].

Finally and perhaps most importantly, this modci does not include

the intermittency of the turbulence. It is observed that in a thermocline
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turbulence appears intermittently, i.e., in patches. Woods & Fosberry
(1967) and Hale (1971) both comment on this patchiness. The measurements
of Grant, Moillet & Vogel (1968) clearly show the intermittent character of

the turbulence with the intermittency factor, ¥ & 0.3 at [ = 90 weters.

Very recently, Woods & Wiley (1972) have suggested a mechanism

for mixing in the interior of all statistically stable flows. This mechanism
is based on dye studies of the microstructure in the tuermocline. Woods &
Wiley call this mechanism billow turbulence and describe it as !',... free
shear turbulence modified by a density gradient and initiated by Kelvin-

Helmholtz instability''.

The Woods & Fosberry mechanism can be described as follows:

The thermocline consists of thin sheets, which have
relatively large density changes across thera and more uniform
layers 1 -2 meters thick. There is a velocity shear across the
layers due to the geostronhic current. Internal gravity waves
propagate along the sheets. It is observed that when the sheets
are about 10 cm thick, short { A =~ 75cm), steep internal waves
propagating on the sheet produce enough additional shear to make
the laycr dynamically unstable ( ff; & /@:* j. The crests "roll
up'' and produce a sequence of turbulent billows. Neighboring
billows coalesce, driven by the shear, producing a turbulent
patch of the order of 3 to 5 meters in horizontal extent and ap-
proximately 1 -2 sheet thickness (10 - 20 cm} in vertical extent.
‘The patch yrows somewhat by entrainment and the turbulence be-
gins to decay. The interior of the patch is relatively homogeneous
but therc are large density gradients at the top and bottom edges
of the patch. That is, there are now two very thin sheets at the
top and bottom of the patch. These sheets spread by molecular
diffusion until they are about 10 cm thick and then the process
rereats. This mechanism produces patches of fine scaled, de-
caying homogeneous, isotropic turbulence. This mechanism is
assumed to be operative and controlling the formation of turbulence
throughout most of the occan, i.c., outside of the near-shore arcas
and away irom the major ocean currents,
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£ If this mechanism does descrike the generation and distribution of g
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turbulence in the ocean, and the eviderice that it is an accurate picture of, _'%
3
3|
a2

at least part, of reality is impressive, then our model of turbulent diffusion

in the ocean must be drastically revised. The diffusion model would be only
appropriate as an average over a relatively long time scale (iong compared

to the period of patch gestation).

A more accurate model would include large scale advection of the
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passive scale by internal and inertial waves ana “two-dimensional’ turbulence

(if it exists). At a finer scale, a sparse, random distripution of homogeneous,

isotropic turbulent '""pancakes' would stir up the scalar locally. There must

b okt et A A s b
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be a gap of about one decade in the energy spectrum of the fluid velocities

LA

since the shortest internal waves with appreciable energy (in this model) have

BT e

A

i

a wavenuinber

v
b

and the largest turbulence scales have a wavenumber
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A number of approaches to this model incorporating large scale advection

N

N
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and localized random mixing are possible. A description of these appreaches
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‘ . 1 will be the subject of later reports.
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APPENDIX A

The Diffusion Equaticn for a Passive Scalar

The discussion of diffusion given here is based upon the general dis-
cussior of this phenomena given by Landau & Jifshitz (1959) but is adupted to
the case of particular interest, namely diffusion in the ocean.

Consider a mixture of two fluids.

The equations of mass conservation

{continuity) and momentum balance (Navier-

-;’-{- a—% (ra‘.) = o (a~1)

Stokes) remain unchanged,

where r is tire total density,
is the ¢ !-6

component of the velocity,

is the pressure,

is the 2nd or bulk coefficient of viscosity,

A is the 1st or shear cocfficienr of viscesity,

10 is the J’ys;uacc coordinate, and

/4
f’ is the time,
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If the relative concentration of the two fluids in a given volume were
constant, the motion wouid simply distort the volume and would be absolutely

reversible. The total change in concentration

Ds
— = O a-3)
Dt / f

with S the concentration i. e, the ratio of the mass of one component to the total

mass, Using (a-1) this is equivalent to

j’i—(fS)-l-;% fSu,;)sa. (a-%)

When there occturs an interchange of material on the molecular scale, as

is almost always the case, there is an irreversible change in concentration, The

rate of change of concentration then depends on the flux of material at the molecu-
lar level,

Assuming that such transfer occurs, the transport equation fcr S must be
modified.

After some algebra, one finds

P) 95)_ 9 0
f(aé‘*‘flag- '77?/?"[33";'-

0 /17
+ ( ’7(:) 3); * (—%) 'f/ iy, @)

s &
Kl
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with
d the diffusion coefficient,
KT the thermal diffusion ratio,

'(’ the pressure diffusion ratio, and

T the temperature.

The second and third terms on the right hand side of (a-5) give the change

LEUEATR

in concentration due to thermal and pressure diffusion. In the cases of interest
there is no measurable difference in diffusivities due to differences in physical
or chemical composition. Therefore

to the degree of approximation considered here. In this case,
= as
T f = ‘9 f’cl (a-7)

This reduces, in the case of a stratified fluid (density gradient in the 3 direction )

to

) os s 0°s
. ot * 5 o J6XJY rdx/“"")ﬁ"“"

If the relative change in desnity in the 3 direction is small, and the fluid is hemo-

ikl
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" geneous in a horizontal plane (1-2 plane) then (a-8) reduces to

=

ot "7 o T oxoy. . (7Y
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Now assume that the flaid velocity, L‘l' , has a mean (ensemble) and

fluctuating part, i.e.

u/ = U/ + o, (c-10)

where, ( > denoting an ensemble average,

<u/') = (}, : (a-11)

Assuming that
S=3S +s y (a-1Yy)

with

(-5, (-

equation (a-9) becomes, after taking averages and assuming the statistical in-

'
depcndence of (U, and §

d
oS as
'aT" ({7 3)9 > Jd)(-ay

Invoking an "eddy diffusivity' or mean gradient hypothesis
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equation (a-14) becomes .
25 , u. 95 . 'S 2 o3
/

Pttt ._._- la-/¢)
af 7 g: d Y- ();-

%

If the fluid is stratified, there is no motion in the 3 direction,
equation (a-16) can be written in the form
= — —
05 + U oS _ ( 7(
N 7 ' N~y "'"" Q-7
ot 1 %% ay. , @7
,
3 Xi =d + ?{7 .

Assuming that the mean flow is zerc,

if::'
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z
g
z
5
e
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E
s
E
g
2
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2
E
g%
]
-
=
5
%
E
=
g
E
z
}'§
%
H
g
=
Z
3
%
=
§
k|
i

(a-/5)

R Ry ’ il

L{/. = 0O, (a.-/?)

this reduces to equation (i).
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APPENDIX B

Consider the equation

£>J; ¢ é):;
é)‘?} c){;:- (/' /6’ , (’£7.-,J’

with the initial -ondition

Sls,0)=21 , «th s;s//z. (6-2)

First, the fundamental solution will be found. Let

5= 4°. (b-3)

Under this transformation equation (b-1) hecomes

' (g d/ (9)3}{- (5-9)

b s e MR i A 08 S SN DS B S S s e A S B 02 A R ST b s SRS AU e R s i e R G B YA D s R N i
A K B AN b : d

% Because (b-4) differs only in the (a S/déjterm from the standard

: form of the diffusion equation, it i: expected that its fundamental solution will

=

E | be similar to that of the uzual diffusion equation.

Therefore, let

T

* S* 1 €77 sy
E £(7) Y
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with b and (C constants and f(?) an, as yet, undetermined function.

Substituting this ansatz into equation (b-1), it is found that

| (+)[ £ 34?] (ef7)[ -1[je 7"

k-¢)

In order for this to hold for a//y and ?
= #/9 , (6-7)
£= 9", (6-¢)

Thus

s*5,7)=( ;,,, e~ (15%/1)

It is clear that if f # OI

Lo s*g,9)=0, (-1

E
%
E]
3
E
2
:
i
=
i
-
E
2
Z
=
=
3
=2
4
=
E
1
g;
5
=
%
§
%
E
g
=
i!é
=
=
E
=
e

ard

;i, S'(09)—=., (44

¥*
showing that S has the character of a S function.
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It is also necessary that

oo

J— S*( gl ?) /f =2. /b-/Z)

- o0

Equation (b-12) is

() [ (7 ) oo

Z = ("?%' %?, (614

and equation (b-13) becomes

Le) [e-2"ys
27/ 4 e dz =1, (b-15)

so that, with (Gradshteyn & Ryzhik, 1965, 3.326)

[ere*ae-p2) r(2) G-

c=9/¢f7 . (6-17)
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With the initial condition (b-2), can be easily found b
p 7 y y

integrating S over the interval, thus

h
S(5,9) = j s*(5-o,%)
Ty "‘7”‘-/'/‘64{; i

= 2 . _2%
’/—;/ze?/e, G-1F)
z

under the transformation

2=3(r-)%29%. (o

Z = 3(?'7')"5/27% ()
2,'—'—3[;4—{}'/’/2?7‘ ) (é-—z/}

il e ..
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. == S(59)= -z'-/e'-v‘(zz)-f*f/%)

g T i R b

< <
+5ze® -z,e" % } (4-22)

The concentration at the center of the patch is given by 1
3 3 ¢
S(ol?) = ”f[z’/.’?’/z] [Z /377",'7'/! € ( / ?)(6‘?3}

As for the scale or size of the patch, it can be defined as in the case of the

AL | W 1 R L g

LA

constant eddy diffusivity,

S(:4%)=2"5(03), (b-2y

NI, Uk el e

. with 0 € a"l[ Equation (b-24) can be solved numerically for ,( as a

AN, A

- function of 7 , using (b-22) and (b-23).

Defiring the variance as usual by

S A s R 1 Rt s

i 0__2= ‘!;F’S[F, z) /F' (6—257

Sobt L g
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e od =
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Defining the variance as usual by

‘= [§ stz o,

it can be seen, substituting from equation (b 18) that,

“er ?’/‘-[Y

With the substitution

-t

L)(F'«)‘/’J

and an interchange in the order of mtefrratlons

w'A 7 j {("‘)7’/

(;:;: )7’ Is + (6,-6,)7 L,k

lb-“"/

I,,.-E:Ly"e';‘d; -

Carrying out the integrations

=+ (3577
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