
AD-761 626

PERFORMANCE EVALUATION OF HOMING
GUIDANCE LAWS FOR TACTICAL MISSILES

Charle3 F. Price, et al

Analytic Sciences Corporation

rj

Prepared for:

Office of Naval Research

1 January 1973

DISTRIBUTED BY:

Natiul Technical Infermatie Sorvce

U. S. DEPARTMENT OF COMMERCE
5285 Port Royal Road, Springfield Va. 22151



1

i PERFORMANCE EVALUATION
OF HOMING GUIDANCE LAWS

FOR TACTICAL MISSILES

11 January 1973,

I

I
I P

i
I

I1

" 'i - i " " Ii .. i . . ll =ri W" i l ...



I THE ANALYTIC SCIENCES CORPORATION

:PERFORMANCE EVALUATION
OF HOMING GUIDANCE LAWS

FOR TACTICAL MISSILES

"," 1 January 1973

do DDC,

Prepared for the JUN iS I
,, OFFICE OF NAVAL RESEARCH ..- l-:

AERONAUTICS PROGRAMS, CODE 461
DEPARTMENT OF THE NAVY C
ARLINGTON, VIRGINIA 22217

Under

Contract Number N00014-69-C-0391

~Prepared by:

Reproduction in whole or in Ceare by:

part is permitted for any Charles F. Price

purpose of the United'States Ronald S. Warren

Government Approved by:

Approved for public release; Arthur A. Sutherland, Jr.

distributed unlimited Arthur Gelb

THE ANALYTIC SCIENCES CORPORATION
6 Jacob Way

Reading, Massachu --tts 01867

II / I



UNCLSSIIEDDOCUMENT COMTROL DATA - R &D
(U.artj~assitcation of till*, be* of abetted and Mo~ode annmation, must be entd when th. avetafl ropert t. claassitod)

I- ORIGINATING ACTIVITY (Comlea)28. REPORT SECURITY CLASSIFICATION

The Analytic Sciences Corporation I Unclassified
6 Jacob' Way lab. GROUP

Reading, Massachusetts 01867
.REPORT TITLEI

PERFORMANCE EVALUATION OF HOMING GUIDANCE LAWS
FOR TACTICAL MISSILES

4. DESCRIPTIVE NOTES (Tyrp of tpI~t and IMclusive dates)
~.AUMOIS(Technical Report I

Charles F. Price
Ronald S. Warren

S. REPORT DATE 78. TOTAL NO. OF PAGES 7b. NO OF REFSL1 January 1973101NI
kCONTRACT OR *RANT NO. a.ORIGINATOWS REPORT NU§KtUR(Sl

N00014-69-C-0391 TR-170-S4
bPROJECT NO.

IS. :STualified requestors may obtain copies of this report from DDC.

03. ANSTRACTArigoVrna221

A number of homing guidance laws, designed using
principles of modern stochastic control theory, are compared
using a recently developed analytical technique (CADET) for
propagating the statistics of nonlinear, randomly excited systems.
The guidance laws include proportional guidance, optimal linear
guidance,, and optimal nonlinear guidance. Each law is evaluated

* in a realistic nonlinear model of the missile guidance system and
the homing geometry. This work provides a direct comparative
evaluation of several important guidance techniques, and extends
the usefulness of CADET for analyzing nonlinear guidance systems.

DD ,'ss.473 &M.T FORARMY Use. AN.WICISUNCLASSIFIED

t U~~Icanlty Ctessfaiog



Ste ,,iMncti

14. LINK A LINK a LINK C
WtY WOROS - -

ROLM WT ROLa Wy ROLE WT

Milsile Guidance
Optimal Guidance
Homing Guidance
Terminal Control
Nonlinear Stochastic Systems Analysis

'71

|I

UNCLASSIFIED
Se6wIty Classification



r

THE ANALYTIC SCIENCES CORPORATION

I
I

I

FOREWORD

This report completes a broad research pro-
gram in new concepts for guidance and control of tactical
missiles. Other work performed under this contract is
described in: TR-170-1, "Adaptive Control and Guidance
for Tactical Missiles"; TR-170-2, "Optimal Stochastic
Guidance Laws for Tactical Missiles "; TR-170-3,
"Adaptive Control with Explicit Parameter Identifica-
tion for Tactical Missiles". The authors wish to express
appreciation to Mr. David Siegel of the Office of Naval
Research for his encouragement and support throughout
this investigation.
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11. INTRODUCTION

I,

1.1 BACKGROUND

msi Previous investigations of homing guidance laws for tactical

missiles have discussed a number of guidance techniques derived using

principles of optimal stochastic control theory (Refs. 1-5),which offer

potential improvement over conventional proportional guidance. In the past,

comparative evaluations of these guidance laws obtained from computer
simulations have generally been based upon simplified linear models of

I guidance system dynamics. It is found that certain frequently neglected
effects, such as limited missile maneuvering capability and dynamic

I coupling between the missile airframe and its homing seeker, signifi-

cantly influence missile performance. Although the simplified models

I are adequate for obtaining qualitative comparisons of performance for

different guidance laws, definitive quantitative evaluations require more

accurate mathematical representations of the missile-target engage-

ment situation.

The purpose of this study is to provide comparative perfor-

mance evaluations of several modern guidance laws using a computer

simulation based upon a mathematical "truth" model of the guidance

Isystem. The model includes descriptions of the following critical and

often neglected missile characteristics: autopilot dynamics, acceleration

I limit, homing seeker dynamics, range dependent seeker noise, geomet-

ric nonlinearities, and random target motion. The guidance laws to be
*1

I-I : --
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compared include proportional guidance, optimal linear guidance and op-

timal nonlinear guidance. These laws are derived based upon a simpli-

fled "design" model that neglects many of the above effects; then their

performance is tested in a simulation of the truth model. This deter-

, Imines the sensitivity of the guidance system to errors in the design

assumptions.

1.2 METHODOLOGY

Traditionally the analysis of random effects in a nonlinear

system is accomplished using the monte carlo simulation technique.
That is, a large number of sample solutions to the randomly excited
differential equations of motion are generated by computer, and ensemble

I averages of the variables of interest are computed. Frequently a large

number of trials (e.g., several hundred) are required to obtain a suffi-

ciently accurate estimate of average performance. This procedure is

quite expensive in terms of computer running time and, for a complex

I system, only a few different system configurations can be evaluated

within a limited computational budget.

Recently a new approximate analytical technique has been

developed for calculating the statistics of nonlinear stochastic systems
(Ref. 6). This method, called the Covariance Analysis Describing

Function Technique (CADET), yields good agreement with monte carlo

results and requires significantly less computer running time. The basic

principal of CADET is that the system nonlinearities are linearized using

describing function theory; then the statistics of the resulting linearized
[ system model are analyzed using covariance analysis techniques. The

saving in computer time arises because only one solution to a matrix

1-2 -
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Jdifferential, (or difference) equation is required to determine the statistics

of a given system configuration, as compared with several hundred solu-

I tions of the system differential (or difference) equations with the monte

carlo method. The CADET technique is attractive for analyzing guidance

I systems because it permits the investigation of several different guidance

laws over a wide range of values- of the system parameters. Consequently,

:: Ithe approach taken in this study is to perform most of the guidance sys-

tem performance evaluations with a CADET computer simulation, validat-

I ing the latter with a monte carlo simulation in a selected number of

cases.

i 1.3 ORGANIZATION

j Chapter 2 of the report outlines the principal features of the

simulation truth model and the guidance laws under comparison. Chapter

iI 3 presents simulation results; a summary and list of the major conclu-

sions are given in Chapter 4. Appendix A provides a detailed discussion

of the system truth model; the theoretical background for CADET is pre-

sented in Appendix B.

I

I
I
I
I
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2. GUIDANCE SYSTEM MODEL

1 2.1 System Dynamics

The principal elements of a missile guidance system are indi-

cated in the block diagram of Fig. 2.1-1. This section briefly describes

the function of each subsystem, exclusive of the guidance law,, and the

-.. features included in the simulation model. The missile guidance law is

'treated in Section 2.2. The reader is referred to Appendix A for more
complete details.

-MISSILE r ~~COMMANDED ,-I

ACCELERATION

"J SEEKER GUIDANC AUTOPILOT

i MISI
DISTANCE

-!
M M Figure 2.1-1 Guidance System Truth Model with T

Major Subsystems

MIS

U !2-1
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Seeker- The homing seeker has the function of tracking the

target. Fundamentally it measures the angular position of the line-of-

sight (LOS) to the target relative to the sensor centerline by observing

the direction of electromagnetic energy reflected from the target (as in

1 T a radar seeker) or transmitted by the target (in the case of an infrared

or electrooptical seeker). This measured. error signal generally serves

two functions: first, in the case of a gimballed seeker, the error is

used to drive the seeker antenna so as to maintain a small tracking error;

this is necessary to prevent losing track of the target. Secondly, the

response of the seeker--e. g., its gimbal angle rate, the magnitude of

1"I the tracking error, etc. -- is used to infer the LOS angular rate, or the

LOS angle measured witb respect to some reference orientation. Either

j of these quantities may be used in the guidance law for generating mis-

sile acceleration commands which direct the missile toward intercept.

AThe model of the seeker includes the antenna pointing dynamics,

T as well as parasitic coupling with the missile airframe. The latter can

arise from an error in the direction of the LOS, as perceived by the

L I seeker, caused by aberration of the electromagnetic energy as it passes

through the protective covering (radome in the case of a radar) of the mis-
sile. This error typically depends upon the missile attitude; therefore the

Iairframe dynamics are coupled to the seeker measurement.

I Autopilot - The autopilot refers to the missile airframe

dynamics, together with its stability augmentation system. It can be

viewed as a servomechanism designed so that its output acceleration

follows the input acceleration commands as closely as possible. This

: I study uses two selectable models for the autopilot--one is a first-order

lag which provides a first approximation to actual airframe response;

I the other is a third-order transfer function which more closely represents

s | the dynamics of an actual airframe. In addition, the autopilot model

2-2 5
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J1- includes one of the most significant guidance system nonlinearities--an

input-command limiter which represents the limited maneuvering capa-

bility of the airframe.

Missile-Target Kinematics- The model of the missile-target

k kinematics assumes that the relative closing velocity (range-rate) is con-

stant and that the missile and target accelerations are normal to their

respective velocity vectors. This implies that both velocities have- con-

stant magnitude but variable direction. The components of missile and

target acceleration which are normal to the line-of-sight, and which

T control the terminal miss distance, are represented as trigonometric

functions of the appropriate orientation angles. This constitutes another

7 important nonlinearity included in the model.

Measurement Noise - The noise in the measurement of line-j Iof-sight angle is caused by a-number of different error sources, some

of which are range dependent. Three types of noise are included in the

model: effective receiver noise (decreases with decreasing range), target

angular scintillation noise (increases with decreasing range), and range

independent noise caused by the seeker servo system and possibly by

amplitude fluctuations in the received signal.

Target Motion - The guidance system model includes a pro-

jvision for a randomly accelerating target. The latter is representative
of maneuvers that are constant in magnitude, but switch sign at random

times--sometimes referred to as "jinking". The random motion is

modeled as the output of a low pass filter driven by white noise, the

latter has the same autocorrelatibn function as the jinking maneuver.

in the Initial Conditions- A number of initial conditions are specified

in the system model which determine the missile trajectory and influence

2-3 6
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terminal accuracy. These include:

* Launch Range

6 Missile Velocity

* Target Velocity

0 Missile Heading Error

& Closing Velocity

- For this investigation, most of the above quantities were assigned

L - nominal values that were held fixed throughout the study.

Mathematical models are developed in Appendix A for each

of the subsystems indicated in Fig. 2. 1-1. Figure 2.1-2 provides a

detailed block diagram of the complete guidance system. The missile-

target motion is assumed to be restricted to a single plane and the effects

-of gravity and aerodynamic drag are neglected. The kinematic variables--

rtm, Vm' vt R V 0a' e, a., and at are defined in Fig. 2.1-3. The quan-

_ tity kr is a gain representing the aberration error which dynamically

couples the missile airframe motion to the homing seeker. The transfer

function coefficients rl, Xt' a, a2, a3, b, b 2, and b3 are assigned

- values to yield realistic dynamic characteristics. The switches

S and S2 are positioned according to the type of guidance law being
1' evaluated; their settings are explained in Section 2.2.

One of the more important autopilot parameters is a3 , which

combines with kr in determining the high frequency open loop gain of the

I parasitic attitude loop; if the latter is excessively large, system insta-
bility can result. The value of a3 tends to increase with missile altitude

l because a larger missile angle of attack, and hence a higher transient

pitch rate, is needed to generate a given acceleration as the air density

I decreases.

7
1 2-4
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L

T Figure 2.1-2 uses Laplace transform notation to indicate

input-o tput relations associated with linear subsystems. However, the

system performance cannot be analyzed in terms of this notation because

of the nonlinearities, a time-varying gain (1/rtm) and time-varying rms

,seeker measurement noise. Chapter 3 discusses the methodology used

to determine the rms terminal miss distance.

2.2 MISSILE GUIDANCE LAWS

- The motivation for this study is partially provided by previous

d. work, described in Ref. 7, which investigated optimal stochastic guid-

ance laws in the presence of missile acceleration limiting, Vsing a

limited number of monte carlo simulations and a simplified system model.
T It was determined ° hat under some circumstances an optimal nonlinear

law achieves as much as fifty percent reduction in the miss distance

achieved with the linear law. The optimal guidance laws, together with

classical guidance methods, provide a hierarchy of techniques that are

w |potentially applicable for tactical inisstles, and which need evaluation
Uusing a more realistic system model.

Generally speakingthe guidance law is thought of as two cas-

caded functions -- filtering, or state estimation, and control. The function

of the filtering operation is to obtain estimates of those variables needed

to mechanize the control law. The latter prescribes the acceleration

Fcommand P-cording to a policy which will direct the missile trajectory
to intercept the target. The methodology used for designing the various

laws is discussed in Section A. 6. Five different laws are considered;

their distinguishing characteristics are summarized in Table 2.2-1.

2-9
2-6 -"
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LI TABLE 2.2-1

MISSILE GUIDANCE LAWS

Identifying Type of
-- Symbol Distinguishing Characteristics Filter

A Proportional Guidance First-Order,
Low-Pass

B Proportional Guidance Kalman

C Optimal Linear Guidance; Kalman
Accounts for Target Maneuvers

D Optimal Linear Guidance; Kalman
Accounts for Target Maneuvers
and Missile Autopilot Dynamics

T: E Optimal Nonlinear Guidance Kalman
Accou ts for Target Maneuvers
Missile" Autopilot Dynamics,
and Missile Airframe Saturation

Law A is simply conventional proportional guidance, preceded

T* by a low-pass filter to suppress measurement noise in the sensor output,

6'. For this case switches S1 and S2 in Fig. 2.1-2 are both in position 1,
I and the guidance law is mechanized as shown in Fig. 2.2-1, where n' is

a specified constant navigation ratio and vc is the missile-target closing

velocity* (range-rate).

Guidance law B uses a Kalman filter to provide an optimal

estimate of LOS angular rate, together with the same proportional

I *It is assumed that the errors in measuring vc, rtm, and a. are negligible.

This is a reasonable assumption in the case of a radar %*ming seeker.

However, range and range rate are not accurately known in a system
using an infrared seeker.

1 10
2-7
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guidance law as configuration A. A detailed diagram of the filter is

shown in Fig. A. 6-3; it estimates the three state variables Yd' id and at,

assuming that both range (rtm) and missile acceleration* (a ) are known.

These estimates of Yd and id are combined to yield an estimate of A

according to

id V c Yd
r= m + (2.2-1)rtm r tm

I The switches S1 and S2 (Fig. 2.1-2) are both in position 2 and Fig. 2.2-2
illustrates the mechanization of the guidance law. The Kalman filter is

I inherently a digital processor; therefore the acceleration command is
computed discretely, rather than continuously. Observe that the

I estimate of target acceleration is not used for control in configura-
tion B.

IGuidance Laws C, D and E are all represented by the diagram
in Fig. 2.2-3. In configurations C and D, the control laws are chosen to

-[minimize the performance index

(2 tf 2
J = lim E I (miss distance) + v0 ac (t) dt (2.2-2)

Y-0 0 0

j Imaking use of known results from optimal stochastic control tneory.

Configuration C minimizes J, neglecting autopilot dynamics, resulting in

I c4 = 0, n' = constant, and c3 is determined as a function of target band-

width (Xt) and time-to. go until intercept (t g). Configuration D is derived

i including a first-order model of autopilot dynamics having bandwidth Xm;
for this case c3 is the same as in law B, whereas n 'and c4 are both functions

*See footnote on page 2-7

2-8
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of Xm and t g. Both laws C and D are optimal linear guidance law ; the

principal difference between them is that in law D, n' increases with

- decreasing range and becomes very large near intercept to compensate

for the effective lag in missile acceleration caused by the dynamics of the

missile-autopilot combination.

Configurat..,n E is designed to minimize

J = E I miss distance (2.2-3)

subject to the explicit constraint

. 15acIamax (2.2-4)

Because the limit on missile acceleration is accounted for in the problem

* formulation, the resulting optimal nonlinear guidance law differs from

j those described previously. The mechanization takes the same form as

that in Fig. 2.2-3; the only difference is the manner in which n 'is com-

puted. Typically, the value of n' is much larger than for guidance law D

over most of the trajectory, as indicated in Fig. A. 6-4. This is explained by
the fact that between seeker measurements, guidance law E attempts to

completely null the predicted miss distance before the next seeker measure-

ment is processed. By contrast, the other guidance laws effectively only

attempt to reduce the predicted miss distance at each stage. This law is

useful in the sense that it provides a lower bound on the miss distance that

can be achieved, for the assumed airframe, seeker noise, etc.Il
The computational requirements of guidance laws B, C, D, and

E are primarily dictated by the Kalman filter. In Section A. 7 the follow-

ing conservative estimates of storage capacity and processing time per

measurement cycle are obtained for a typical existing digital mini-

computer:

2-10 "
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Storage - 600 words
tom

Processing Time - 0.01 sec

The storage requirement is well within the memory capacity of modern

AW lightweight computers, and the processing time is sufficiently small to

achieve good missile control. Therefore, these guidance laws are judged

d to be potentially suitable for mechanization in tactical missiles, provided

their performance is sufficiently superior to conventional laws to justify

the cost of the computer. The issue of performance is treated in Chapter 3.

1

I
,, 2-11
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3. GUIDANCE SYSTEM EVALUATION

3.1 EVALUATION PROCEDURE

The Covariance Analysis Describing Function Technique

(CADET) is a powerful new approximate method for analyzing the statis-

j Iitical behavior of nonlinear stochastic systems, particularly for develop-

ing performance sensitivity curves (Ref. 6). Its advantage lies in theST
fact that mean square values of system state variables for a given system

design can be determined from one solution of a matrix differential (or

! | difference) equation. By contrast,many solutions of the system equa-

tions of motion are required to analyze statistics by monte carlo tech- J
niques.

The guidance system model displayed in Fig. 2.1-2 has a
4 mixed continuous-discrete character in ehe sense that the optimal

guidance laws discussed in Chapter 2 process data at discrete times

whereas the seeker, missile, and airframe equations of motion are

described by differential equations. Appendix B presents a detailed ex-

planation of how CADET is used to analyze such a system; the principal

steps to be followed are summarized below:

. Replace each nonlinear element by its correspond-
ing random input describing function gain, based
upon an assumed probability density function for
the input to the nonlinearity.

0 Using the resulting linear system model, employ
conventional covariance analysis techniques to
propagate the statistics of the system state vec-
tor--i. e., its mean and covariance--recognizing
that the describing function gains are functions of
those statistics.

I . 15
3-1
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Compute the rms miss distance at the intercept
IAN, time from the elements of the system covariance

matrix.

'* iTypically, the input to each nonlinearity is a state variable that

is assumed to be a gaussian random process. The gaussian assumption
Is based upon the fact that the system state variables tend to be a super-

- position of past values of both the nonlinearity outputs and various random

system inputs. Thus, in the sense of the "central limit theorem" (Ref.

S- 8), the probability density function for the system state variables tends

toward the gaussian form, regardless of the densities of individual random

events. Of course, this assertion is only approximately valid; the extent
to which it holds depends upon the amount of low pass filtering in the sys-

Ij tem, the number of nonlinearities, and the bandwidth of the random inputs.

To avoid actually calculating the required probability density function, a

I task at least as time-consuming as performing monte carlo simulations,

the gausslan assumption stated above is imposed at t&ie outset. Its validity

I for a specific system is investigated through comparisons with selected

monte carlo results.

UThe two nonlinearities associated with the guidance system

investigated in this study are the saturation and sine functions shown in

Fig. 2.1-2. The corresponding describing function gains are computed

- I as functions of their input statistics in Section B. 5.

In all the cases treated here, the mean value of the system

I state vector is zero; hence we are concerned only with the propagation

of the system covariance matrix according to the procedure described in

_ I Section B. 4, and calculating the rms miss distance. The latter is given

by the rms value of Yd (Fig. 2.1-3) at the intercept time. The next sec-

tion gives comparisons of guidance law performance for a range of

-|representative system parameter values.

3-2 16



THE ANALYTIC SCIENCES CORPORATION,

'4 3.2 SIMULATION RESULTS

I' In order to compare the performance of the guidance laws

listed in Table 2.2-1, nominal values were chosen for the missile-target

engagement initial conditions, and for the parameters of the model in

I I Fig. 2.1-2. These quantities are listed in Table 3.-2-1. All exceptions

to the nominal conditions are explicitly stated in the subsequent dis-

cussion.

Observe that the -autopilot parameters are chosen to yield

first-order dynamics with a 0.1 sec time constant (10 sec - 1 bandwidth),

IThe seeker noise levels selected represent an angular measurement

error of about 0.7 mrad at a missile-target separation of 10, 000 feet.

I The missile-target initial conditions yield a nearly head-on intercept

trajectory.

To determine the validity of CADET as an analysis technique,

the rms miss distance was computed using both monte carlo and CADET

techniques for selected trajectories. Results are shown in Fig. 3.2-1

I for conventional proportional guidance (Law A), as a function of the mis-

sile acceleration limit; other off-nominal conditions are stated in the

1 figure. The monte carlo points are obtained from 200 missile trajectory

simulations. The dashed line represents the value of rms miss which

I would be obtained from a linear covariance analysis that neglects all the

nonlinear effects.

- Evidently, the discrepancy between CADET and monte carlo

I results tends to increase as a decreases. This is to be expected

because the system nonlinear behavior becomes more pronounced as

a max decreases and CADET, being an approximate method for analyzing

nonlinear systems, will tend to have larger errors. However, the fact

3-3 17
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I

TABLE 3.2-1

NOMINAL CONDITIONS

SNominal Value
Quantity Specification

a 1
L a  0

Autopilot Parameters b 0.1 sec
b b2 0

b 0
b3  0

. sec-1
Target Maneuver Bandwidth, xt  0.2 sec

rms Target Acceleration, at 300 ft/sec
800--ft/sec 2

Missile Acceleration Limit, a8 fe
max

Seeker Time Constant, rl 0.1 sec

Radome Slope Parameter, kr 0

Guidance Navigation Ratio (Laws A, B, and C only), n' 3

Launch Range 24,000 ft

rms Heading Error 0.15 rad

Closing Velocity (assumed constant) 4000 ft/sec

Target Velocity 1000 ft/sec

I Interceptor Velocity 3000 ft/sec

Receiver, 4 x 1o8 ft "1

Noise Parameters Scintillation, a8 r  4 ft

Range Independent, a 4 x 10 rad

3ii4
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2 GUIDANCE LAW A
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SLINEAR

U' I
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I

100
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Fgr 3 MISSILE ACCELERATION LIMIT, o,,,(ft/ec 2)

vmFigure 3.2-1 Cadet-Monte Carlo Comparisonversus Missile Acceleration
CCopibility

that CADET captures the major effect of the nonlinearity, and gives

accurate results when the system is moderately nonlinear--e. g., whenI amax = 200 ft/sec2 in Fig. 3.2-1--makes it a valuable technique for

comparing different guidance system designs.

The justification for using CADET lies in the time saving

realized relative to the monte carlo approach. The monte carlo points

in Fig. 3.2-1 each required 720 seconds of computer time; the correspond-[ing values: from the CADET results each require 25 seconds of computer

19
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time. Thus many more-parameter studies of a nonlinear guidance

system can be achieved with CADET, for a given computationaL-budget.

n 'All five guidance laws are compared in Fig. 3.22 over a

- range of values for the target maneuver bandwidth. * In order that Law

A (proportional guidance) be fairly compared with the others, its-filter

time constant, 'r2 in Fig. 2.2-1, is optimized to yield the lowest value

- , of rms miss distance for each value of Xt" The dispersion between the

- various laws generally increases with s However, the major improvement
!" over conventional proportional guidance is achieved through use of Law C,

which adds a control gain to account for target maneuvers. Some addi-

tional improvement is achieved by accounting for missile autopilot

i:| - dynamics (Law D). Guidance law E provides a lower bound on the

achievable miss distance, neglecting the effect of the kinematic sine-

function nonlinearities in Fig. 2.1-2. (The latter are included in the
44 truth model but not in the design model.)

Observe that there is no appreciable difference between the

Iperformance of Laws A and B, although Law B should be superior because

it employs a Kalman filter to estimate line -of-sight rate. This is ex-Its~
plained by the fact that most of the miss distance associated with pro-

portional guidance law is caused by target maneuvers, rather than hom-

ing sensor measurement noise. This is illustrated in Fig. 3.2-3 for a

case with no target maneuver and larger noise levels. Evidently the

* ~miss distance achieved with the Kalman filter is about half that achieved

with an optimized first-order filter. However, this difference is not

- *Guidance Laws B through D listed in Table 2.2-1 depend upon knowledge

J14 of the bandwidths of the target maneuver (Xt) and the first-order design

model for the autopilot (X m). Unless otherwise stated in the following
discussion, it is assumed that these quantities are equal to the values
assumed for the truth model; i.e., the optimal guidance laws are
matched to the truth model.

3-6
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wtFigure 3.2-2 Guidance Law Performance versus
Target Maneuver Bandwidth
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Figure 3.2-3 Performance of Proportional Guidance[& Using a Kalman Filter versus a First-
Order Filter

3-7



THE ANALYTIC SCIENCES CORPORATION-

IT

- significant at the nominal noise levels, when target maneuvers are also

present.

I Us Another aspect of the comparison in Fig. 3.2-2 is the fact
- that Laws A, B and C have constant navigation ratios, whereas those
A associated with D and E are time-varying. The performance of the

first three laws can be improved if their associated values of n' are

optimized, in the same fashion as the filter time constant associated

with Law A is optimized in Fig. 3.2-3. This is demonstrated in Fig.

3.2-4 for Law B. Generally, n I should be larger than the value three,
which is obtained in Section A. 6, assuming no target acceleration and
neglecting autopilot dynamics, to compensate for target maneuvers and

- autopilot dynamics.

- Figure 3.2-5 displays guidance law performance as a function
of missile maneuver capability*. As amax approaches the target rms

L2
acceleration level (300 ft/sec ), Laws C, D, and E offer marked improve-

ment over proportional guidance (Law B). In addition, the dispersion

between D and E increases; this is attributable to the fact that Law E

explicitly accounts for the acceleration limit whereas D does not. Hence
the former offers greater improvement over the latter as acceleration

saturation becomes more pronounced; this effect is also observed in
Ref. 7.

The influence of the missile autopilot time constant on miss[ Idistance is demonstrated in Fig. 3.2-6. As the latter gets larger, Laws

D and E, which explicitly account for autopilot dynamics, offer signifi-
2 ~ cantly better performance than Laws B and C. This is primarily

*Law A is omitted from this and further guidance law comparisons on
the basis that it yields performance quite close to Law B when its filter
time constant is optimized (see Fig. 3.2-2) at the nominal noise levels.

t22|3-8 -1 Z
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Figure 3.2-6 Guidance Law Performance versus Missile
Autopilot Time Constant

attributed to the large values of n' (see Fig. A. 6-4) used in Laws D and

mE over portions trajectory.

Figure 3.2-7 compares the performance of Laws B, D, and E

as a function of target acceleration. Ordinarily one might expect the

miss distance to increase more rapidly with target acceleration than

-these curves indicate. This is explained by the fact that the target

Itrajectory turns, while evading the missile, so that the component of its
lateral acceleration normal to the line-of-sight is reduced. The greater

Sthe target acceleration, the more its trajectory turns and the greater the

reduction in its effective maneuvering acceleration, normal to the LOS.

In the limit when the target's acceleration becomes directed along the

line-of-sight, it will have little influence upon miss distance. Thus, the

1 curves in Fig. 3.2-7 tend to level off at large maneuver levels. This

behavior is captured by the kinematic sine-functions nonlinearities shown

Iin Fig. 2.1-2; it would not be visible in apurely linear system analysis.

3-10 24
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Figure 3.2-7 Guidance Law Performance versus
Target Maneuver Level

U In all the cases treated thus far, the design of guidance Laws

D and E is matched to the truth model representation of missile dynamics,

except for the kinematic nonlinearities mentioned above. An important

issue remaining to be investigated is the sensitivity of guidance law per-

formance to variations in missile parameters from their assumed values.

Recall that one of the potentially important effects is autopilot-

seeker coupling through the seeker aberration effect. This is represent-

ed in Fig. 2.1-2 by the constant kr, which has heretofore been chosen as

zero. Figure 3.2-8 illustrates the effect on guidance system performance

3-11 2
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Figure 3.2-8 Guidance Law Sensitivity to Aberration Error;
Dominant Autopilot Pole =-I.0 see -

I when kr is nonzero. For this case, the parameters al, a2, bl, b2, and

b3 are selected to yield autopilot poles at -1 rad/sec and -7.5 ±j 15 rad/

sec, and zeros at ± 20 rad/sec. The design model for Laws D and E
assumes the autopilot is first-order with time constant (r m) equal to 1
sec. The value of a3 is chosen to be representative of high altitudes,

where autopilot seeker coupling is most pronounced. With the exception
'i Ithat here kr / 0, the above conditions are nearly the same as those in

Fig. 3.2-6 when the autopilot time constant = 1.0 sec. Figure 3.2-9

displays the sensitivity to k r for another case where the dominant auto-pilot pole is 3.3 rad/sec.

I As kr increases, the performance advantage of Laws D and E

<I deteriorates relative to Laws B and C. This is attributed to the fact that
the high value of n associated with Laws D and E is incompatible with

3-12
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.- Figure 3.2-9 Guidance Law Sensitivity to Aberration Error;
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the parasitic attitude loop in Fig. 2.1-2, because the latter is not

accounted for in the derivation of the guidance law. Generally kr may

be an unknown, even time-varying quantity, so that it cannot be accounted

for exactly. Consequently, some degradation in the performance of the

"high-gain" guidance laws will be experienced in situations where the

effect of kr is important--i. e., at high altitudes. The performance of

I iLaw E tends to degrade more rapidly than the other guidance laws

because of its relatively large navigation ratio (see Fig. A. 6-4). It is

i the most sensitive to errors in the design assumptions.

I Finally, the sensitivity of guidance law performance to an error -

in knowledge of the dominant autopilot time constant is shown in Fig.

3-327
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l3.2-10 for Laws D and E. The actual time constant is 1 sec, corres-

ponding to the conditions at the right hand side of the graph in Fig. 3.2-6;

the design value of the autopilot time constant (1m) is varied over the

range indicated on the abscissa in Fig. 3.2-10. When the design value of

is one, both laws E and D are matched to the autopilot and law E has

the best performance. When r M 1, Law E degrades more rapidly than

Law D because of its larger navigation ratio.

400 P-193

I I
E(UDNCE LAW)

4 D

z

AUTOPILOT TRUTH MODEL
! lTime Constant - 1.0 sec

II10 0.1 0. ID

DESIGN VALUE OF AUTOPILOT TIM'E CONSTANTm (sec)

Figure 3.2-10 Guidance Law Sensitivity to Design Value

of the Autopilot Time Constant

3
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I __

4. SUMMARY AND CONCLU9IDNS

4.1 SUMMARY I
This report presents comparisons of performance for the

J guidance laws summarized in Table 4.1-1 and derived in Appendix A.

Each law is evaluated in a guidance system model that incorporates sig-

I nificant linear and nonlinear dynamic effects. These include the follow-

ing missile characteristics: homing seeker noise, homing seeker

I dynamics, autopilot dynamics, maneuvering acceleration limit, parasitic

autopilot-seeker dynamic coupling, random target accelerations, and

j nonlinear missile-target geometric effects. The rms miss distance

achieved with each guidance law is calculated using a recently developed

I analytical procedure for determining the statistical properties of non-

linear systems--the Covariance Analysis Describing Function Technique

I (CADET). The latter achieves a good approximation to monte carlo

results, and offers the advantage of requiring significantly less compu-

I tation time.

TABLE 4.1-1

I _MISSILE GUIDANCE LAWS

I Guidance Type of
Laws Distinguishing Characteristics Noise Filter

A Proportional Guidance First-Order,
Low-Pass

B Proportional Guidance Kalman

C Optimal Linear Guidance; Kalman
Accounts for Target Maneuvers

D Optimal Linear Guidance; Kalmin
Accounts for Target Maneuvers
and Missile Autopilot Dynamics

E Optimal Nonlinear Guidance; Kalman
Accounts for Target Maneuvers
Missile Autopilot Dynamics,
and Missile Airframe Saturation

I
T 4-1 . 2
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4.2 CONCLUSIONS

The principal conclusions of this work are as follows:

* Conventional proportional guidance using a first
order filter (Law A) is adequate for nonmaneuver-
ing targets and moderate homing sensor noise
levels. The miss caused by large noise levels
can be reduced by as much as 50 percent using

Wit a Kalman filter (Law B) to process seeker meas-
urements.

* Guidance Law C generally offers the biggest
A 4 relative improvement over proportional guidance
-. against maneuvering targets, provided the mis-

sile autopilot time constant is small (< 0.2 sec).

a Guidance Laws D and E are significantly better
than LawC when the missile autopilot time con-

WA stant is large (> 0.2 sec).

* Laws D and E are sensitive to errors in the21 design assumptions about the missile autopilot
dynamics; LawE is most sensitive because of its
relatively large control gains.

0 The principal computational burden imposed by
the optimal guidance laws is associated with the
Kalman filter. The storage capacity and meas-
urement processing time needed to mechanize
the filters are conservatively estimated at 600

T words and 0.01 sec, respectively. These require-
ments are compatible with modern airborne-type
computers.

: • CADET is found to be a useful technique in
analyzing guidance system performance. The
saving in computer time over 200 run monte
carlo analysis is about 30:1 for the system
model used in these studies.

The above conclusions, together with the quantitative performance

results provided in Chapter 3 will provide a basis for choosing among

optimal guidance laws in particular applications.

S30
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APPENDIX A
TRU TH MODEL DEVELOPMENT

A meaningful comparison of homing guidance systems for tacr-
" - tical missiles -requires realistic models for the missile and its target
[ ~engagement geometry model in order-to accurately evaluate terminal miss

I distance. This model should include the important dynamics and, system

nonlinearities which influence performance, and yet be representative

of tactical missiles in general. A system truth model that satisfies theselii requirements is developed in this appendix. The various modules dis-

cussed in subsequent sections are based on the functional diagram in Fig.
in 2.1 -1. It should be noted at the outset that the model developed herein

assumes that the target and missile motion are constrained to a plane.

Consequently, development of the missile and-guidance models is limited

S!"to a single channel.r A. 1 SEEKER MODULE

L IThe function of the seeker subsystem is two-fold; it provides

-the measurements of target motion required to mechanize the guidance
-law, and it tracks the target with the antenna or energy receiving device. *

The typical seeker hardware consists of two or three gimbals on which

are mounted. gyros and an antenna. Associated with each gimbal is a
servomechanism which is used to adjust its angular orientation in res-
ponse to the tracking error signal measured by the radar receiver.

(Only one gimbal and its associated dynamics is required for the planar
Ii motion model.) It should be noted that there are also body mounted

antenna systems which do not use moveable gimbals to position the anten-

na. These systems use either a fixed antenna position relative to the

7 missile or electronic beam steering by means of a phased array (radar)ii antenna. These configurations are rather atypical of tactical missiles
and will not be specifically considered, although the use of electronic

*Generally we shall use the term "antenna" to refer to any type of energy
collecting device--radar, infrared, or optical.

A-1 31
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beam steering is in many ways analogous to the gimballed system as far

i as the resulting guidance system operation is concerned.

Seeker Meaiurement Geometry- The fundamental measure-

ment obtained from thea homing sensor receiver is-assumed-to be the

-indicated angular position of the target relative to the antenna center-line

or boresight. The guidance laws considered in this report require line-

I; of --sight (LOS) angle or LOS angular rate as the fundamental measurement

for terminal g ldance. Illustrated in Fig. A. 1-1, the LOS angle, 0, is

the angle between a line from the center of the seeker antenna to the

target, and some arbitrary non-rotating reference linte. It is convenient
:to' seledit this reference equal to the LOS-position at the beginning of the

homing guidance phase. Consequently, e(t) at time t is the total change
in the angular position of the LOS relative to the initial LOS.

,

The angular position of the missile body center line, 0 m' is
measured relative to the initial LOS as shown in Figure A. 1-1. The

I angular position of the antenna centerline measured relative to the body

centerline is defined as eh in Figure A. 1-1. Therefore, 6 is given by

0 em +9h+C (A.1-1)

, Alternatively, by writing Eq. (A. 1,.1) as

S= - - 0 h (A.1-2)

we obtain an expression for the true boresight error. It is important to

note that boresight error is a function of both the missile attitude relative

to inertial space and the angular position of the antenna relative to the

missile center-line. Since 9 or 0 is the desired measurement for

i ]guidance purposes, it is necessary to remove missile motion from the

LOS measurement data.

A-2
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LOS TO TARGET,1

I ANTENNA

..ANTENNA -

;'lANTENNA : COVER'

m.-- :__ ..._ _._NON-ROTATING

Figure A. 1 -1 Seeker-Radome Geometry

One requirement on the seeker system Is to keep the antenna
$$ pointed at the target so that c is always much smaller than the bea

width of the received energy. In the region of small c, the seeker re-
:l ceiver measurement of indicated boresight error is nearly linear. How-

ever, if c cannot be considered small relative to the antenna beamwidth,

|the receiverboresight-error processor operation may become nonlinear, as

illustrated in Fig. A. 1-2. In -fact, if c is allowed to 'approach the half
beamwidth of the antenna, the receiver detection cirtzuitry will at some

~point loose lock and all guidance information will be lost. Therefore,

A |i the seeker must track the target sufficiently closely so that large bore-

* sight errors do not occur. Otherwise the nonlinearity of the boresight

° error position should be considered as an Important system nonlinearity.

~Since the actual form of the boresight error processor nonlinearity is

o strongly dependent on the specific beam width, processing scheme (mono-

° pulse radar, c. w. radar, etc.) and detector characteristics of indivi-

,, dual systems, it will not be ncluded n tlie general system model for the

o current study. It will be assumed that the beam 'width and the tracking

~A-3 . 33
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Figure A. 1-2 Signal Processing Nonlinearities

response of the seeker are adequate to keep the boresight error pro-

cessor in its linear region.

Aberration Error -The aberration angle error is the result of

nonlinear distortions in the received energy as it passes through the pro-

tective covering (radome in the case of a radar homing sensor) over the

antenna. This distortion produces a false boresight error signal, c'

which Is interpreted as an error in the angular position and motion of the

target by the guidance package. Referring to Fig. A. 1-3, the indicated

boresight error in the presence of aberration angle, 6r, is given by

3 by
9' =e+er- 6m - eh (A.1-3)

The size of this measurement error, 8.r, depends on the orientation of the

antenna with respect to the antenna cover, which is fixed to the missile

I airframe. This dependency of 6 r on em couples body motion into the bore-
sight error signal, thus forming what is called the "parasitic attitude loop".

I The latter can drastically alter missile response characteristics and in
turn increase miss distance. This Is particularly true at high altitudes

] I where the missilebody motion tends to be greatest. (This effect is dis-
cussed more fully in Section A. 3).

34
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I Figure A. 1-3 Effect of Aberration Error

J The aberration angle error can be a nonlinear function of

several factors: the angle between the missile center line and the LOS to

I the target (look angle) as illustrated in Fig. A. 1-4; the thickness dis-

tribution, material, shape, and optical or electrical properties of the

i antenna cover; frequency, and polarization of the received signal; manu-

facturing tolerances; erosion of the surface during flight. Therefore, an

i accurate model may require a nonlinear, time-varying statistical charac-

terization of the radome. However, since these characteristics tend to

vary over rather wide limits depending on the particular application and

missile configuration, a constant aberration error slope model is used

i to capture the important body coupling effect, consistent with the desire

for a general system model.
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Figure A. 1-4 Typical Aberration Angle Error as a
Function of Look Angle

A linear model for the general aberration angle characteristic

* given in Fig. A. 1-4 is obtained from a simple Taylor series approxima-

tion

er = 6rb + (6 - 6m)kr (.-4)

where kr is the error slope and 0rb is a bias angle. Substituting Eq.

(A, 1-4) into Eq. (A. 1-3) for c ' yields

E'_ (I+k)(e -m)+6rb - 0h (A.I-5)

The boresight error bias will be assumed negligible relative to other sys-

I tern errors. There also is a possible contribution of the aberration error

to measurement noise when the frequency of the received signal is varied in
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F! a pseudo-random fashion to reduce -the effect of a potential enemy Jammer,
e. g. , when the seeker is an active or semiactive -radar. This noise isFf simply treated as a contributor to range independent noise (Section A. 2).

Seeker Track- and Stabilization Loops - The assumed configura-
'tion for t,-he .seeker is illustrated in Fig. A. 1-.5. The indicatedboresight

error , c , is- scaled by I1,r Iwhich forms the desired -rate command toH the stabilization loop. (Although an actual system requires the imple-
mentation of two or three channels 1:0 account for motion in three dimen-
sions, only one channel is required for thezplanar, intercept model: con-
sidered he rein.)

R-9210

ANEN + INA MEASURED

I-RC SEEKER RATE

[Rc:

9 2 ne-of- sight angle

4e 3Measured boresight error angle

h a Seeker gimbol oangle rate relotive to missile41§ w Missile attitude angle (of@
T, Track lowp tirme constant

Figure A. 1-5 Seeker Subsystem Block Diagram

A-7 37



I THE ANALYTIC SCIENCES CORPORATION

The stabilization dynamics are comprised of the gimbal servo

and rate gyro (mounted on the antenna) and-typically have very wide band-

i width; e.g., greater than 100 rad/sec. The track loop model has simple

first-order dynamics; it commands a gimbal rate proportional to the

measured boresight error. The loop attempts to drive the boresight

T error to zero, thereby causing the antenna to track the target. It is

straightforward to show that the linear transfer function from 0 to C' --

assuming unity gain for the antenna cover, the signal processor, and the

stabilization dynamics -- is

I-= = (A.1-6)6 l+sT1

I Therefore, at low frequencies (w < 1/1r), the indicated boresight error

is proportional to the LOS rate. The latter is the desired measurement for

classical proportional navigation guidance,which commands a missile

~' 1 lateral acceleration proportional to the LOS rate.

1It was assumed in the above development of the seeker opera-

tion that the boresight error processor nonlinearity illustrated in Fig.

A. 1-2 could be neglected. Equation (A. 1-6) provides an indication of the

important region of boresight error linearity. Using the fact that C I is

proportional to 6 in steady state for a constant 6, we obtain the follow-

Sizg expression for c

E 'm b =( (A. 1-7)ma max

A- 3
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4! .
If '1 is sufficiently small, C can be held within the linear range ofJ max
the received beamwidth. The resulting seeker block diagram with the j
linear aberration error model is given in Fig. A. 1-6.

It i The importance of the aberration angle error slope, kr, is
illustrated by the linear, continuous transfer function relating 61 to e'

I In Fig. A. 1-6. The latter is given by

1t -kr (A.1-8)
am ( +'i s )

Thus the measured LOS rate is corrupted by a term proportional to body

rate. Since body rate is a result of commanded acceleration, a loop isSI
formed which can have a destabilizing effect on missile attitude and in-

I crease miss distance, Note that when kr is zero, the contributions from

the body angular rate input in Fig. A. 1-6 cancel, producing no effect on c

R-7152o
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Figure A. 1-6 Seeker Model with Track Loop
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3 LOS Angle Measurement - Although classical proportional

guidance uses measurements of LOS rate, it is more convenient to use

Imeasurements of LOS angle in guidance laws that utilize a Kalman filter.

To obtain the latter, we define the measured LOS angle, , as

e' = (1+kr)e -kr em (A.1-9)

Then from Fig. A. -6 it follows that

= (A.1-10)
+18

Since the boresight error is an observable quantity, Eq. (A. 1-10) can be
inverted to yield

ITe' - (A. 1 -11)
i 11

T That is, 0' can be recovered from the measured seeker boresight error.
IThis is represented in Fig. 2.1-2 by direct pickoff of e'.

II

A. 2 NOISE MODULE

As indicated in Section A. 1, LOS angle is the fundamental

quantity measured by the Seeker Module. These measurements will

generally be corrupted by various types of noise which can be categorized

according to the dependency of their rms levels on the missile-to-target

range. The actual noise levels and bandwidths are dependent on the

exact form of the measurement signal processor, target configuration

I
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and characteristics, environmental conditions and a multitude of related

- system effects. However, using measurements obtained from actual

hardware or mathematical models, most of the observed measurement

-- noise can be lumped into one of three assumed forms: receiver* noise,

range independent noise or angular scintillation noise.

Receiver Noise - Receiver noise consists primarily of thermal

noise generated by the antenna and receiver electronics on board the

missile. The effective amplitude of this noise increases with increasing

range because of the corresponding decreasing signal-to-noise ratio.

There are in general three types of missile receivers which can be con-

sidered:

-, 0 Passive - Target supplies radiated signal

° Semi-Active - Target is illuminated by a source
* which is not on board the missile

0 Active - Target is illuminated by source on
'I Tboard the missile

The receiver will generally include some type of automatic

If gain control which attempts to keep the receiver signal power nearly

constant. As a result, the effective noise level will change with received

it signal power relative to some reference level. A normalized angular

measurement noise model will be defined which ises the variance (or

I power spectral density) of the indicated boresight error, measured at a

range that yields a signal-to-noise ratio of unity as the reference level.

I The resulting expressions for the variances of the effective noise on the

LOS angle for the three types of receivers are:

I |*Again, the term receiver can refer to any type of homing sensor.

I41
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Passive

2 2 /rtm 2
ar 0 rp kro)(.21

Semi-Active

2 2 /rtmrit 0
'r (A.2-2)

0

Active

2 =a Irtm\
ir ra \r/ (A.2-3)

where:

rtm = missile-to-target range

rit = illuminator-to-target range

r0 = range at which S/N = 1

2
Crp = passive noise variance at S/N = 1
2

arsa = semi-active noise variance at S/N = 1rsa

-ra = active noise variance at S/N = 1

at = effective target crossection

ao = reference target crossection

- All three types of rpceiver noise exhibit the characteristic of increasing

variance with increasing range. Also, note that the passive model is not

dependent or the effective target crossection since the energy received
by the missile is direct radiation and not the result of reflected energy.
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Often the illuminator to target range for a semi-active radar

is nearly constant; in this case the semi-active noise variance will have
nearly the same variation with rtm as the passive noise for a given
target crossection. Sice most tactical missiles tend to be passive or

semi-active, the passive noise model will be used in the truth model.

The noise bandwidth is dictated by the post-detection bandwidth

Sin general tends to be. much larger than the signal
bandwidth. Consequently, it can be assumed that the noise is "white"

over the signal spectrum of interest without loss of generality. In the
case of a sampled data system, errors in the sampled and held values of

LOS angle are assumed to be uncorrelated from sample to sample. If it
is assumed that the receiver has a double-sided square °spectrum f Hz

I in width with a constant noise power spectral density of qr rad2/Hz,
the variance of the noise is simply

rqr Af (rad2) (A. 2-4)

IIf the receiver output is sampled and held with a sample period

of 'rs sec, where s is much larger than l/Aft resulting in independent

noise samples, the output noise spectral density, qs has a low frequency

level of approximately

a2 rad2 )(A.2-5)
t qs r Af 7s = 'r 7's (-Hz..25

Assuming that the bandwidth of the signal is smaller than the sampling

frequency, Eq. (A. 2-5) yields the level of the equivalent white noise

spectral density.

Range Independent Noise - Range independent noise is a collec-

1 tion of all noise sources which contribute a constant rms error in the

measurement of LOS angle throughout the flight. Typical sources include

4" 43IA-1
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servo noise generated by-the seeker servo, and target amplitude scintilla-

!I tion noise. It will be assumed that the noise is also white over the

receiver bandwidth, and the preceeding discussion of bandwidths and

sampling is applicable. The varianc e of the range independent noise is

defined as a2

Angular Scintillation Noise - Angular scintillation noise is

I caused by the wandering of the apparent centroid of radiation across the

visible surface of the target. Although the magnitude of the wander is

I essentially range independent, the equivalent noise on the LOS angle

measurements increases as range decreases, resulting in a measurement

noise variance of 2
2 ad

2 __wd (A. 2-6)
rtm

I where
2

a wd = variance of the apparent wander distance

Total Measurement Noise The total measurement noise

variance is the sum of the variances of the individual uncorrelated noise

components,

"2  2  2  2
a Or +  + (A. 2-7)

As lreviously noted, receiver and range independent noise are generally

assumed wide-band relative to the guidance system bandwidth. Angular

scintillation noise is in general a narrow band source and Is often modeledV. a: white noise through a low pass filter with a time constant which depends

primarily on the target motion spectrum. On the other hand, if for a

radar seeker the radar frequency is changed in a pseudo-random manner
from sample-to-sample so as to reduce the ability of the enemy to jam

A -14A4 4
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I .. the missile receiver, then the apparent centroid of target radiation will

tend to be independent from sample-to-sample. It -will be assumed that

all three noise sources are independent and wide-band relative to the

guidance system bandwidth.

WA. 3 AUTOPILOT MODULE

~The function of the autopilot subsystem is three-fold; it provides-A.3 UTPIOTMOUL

the required missile lateral acceleration response characteristics, it must

stabilize or damp the bare airframe, and it reduces the missile perform-

ance sensitivity to disturbance inputs over the required flight envelope.

The autopilot configuration illustrated in Fig. A. 3-1 uses

accelerometer feedback so as to control the lateral acceleration of

the missile. Lateral acceleration control is used in accordance with the

proportional navigation guidance law which requires a missile lateral

acceleration proportional to the measured missile-to-target line-of-sight

Ii rotation rate. The body mounted rate gyro senses body attitude rate,
0m' which is used by the autopilot to increase the effective damping ratio

of the airframe short period poles.

F; The aerodynamic characteristics of the missile airframe are
an integral part of the autopilot design and operation. Therefore, the

H design of an autopilot must be tailored to each individual missile airframe

configuration and its associated aerodynamic characteristics,which are

nonlinear functions of missile velocity, angle-of-attack, control surface

deflection and altitude.

It is standard practice in the design of missile autopilots to

utilize the linearized second order airframe model given in Chapter 8 of

I A-15 4
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[1

VC LAAINAANDOMPELSTERALLATERALES iO AC UA7OR AIRFRAME ''ACCELERATION
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,A'.aLEROMETER 
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Figure A. 3-1 General Missile Autopilot Configuration

Ref. 5. The reqmired stability- derivatives are obtained from the non-

linear moment and force coefficient-by making the following assumptions:

4 Constant missile velocity

• Body lift force is a linear function, of the change in angle
of attak, a, aout some trim condition, a0

. Constant altitude

Constant center of pressure

0 * Fixed missile mass and inertia

1 I '. Control surface lift-force is a linear function of control
surface deflection angle, 6, and independent of a

1 Although the above assumptions appear to be rather restrictive, they

simplify the autopilot design task considerably. Practical experience has

I .shown that the resulting autopilot response characteristics with the
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nonlinear airframe, are closely approximated by the linearized response

characteristics near the given nominal conditions, for a properly designed

autopilot. In this report, a realistic autopilot model is developed v.hich

requires knowledge of very few specific aerodynamic parameters, yet its

response characteristics are easily related to the important missile aero-

dynamic properties.

Acceleration Command Limiting - The most important-nonlinear

characteristic associated with the airframe is acceleration saturation,

which occurs when the missile attempts to pull a large angle of attack. It

is desirable to avoid a large angle of attack since the associated drag

results in a rapid loss of missile velocity. There is also the airframe

structural limit which must not be exceeded. It is common practice to

limit the commanded lateral acceleration so as to prevent both angle-of-

attack saturation and structural failure. Therefore, autopilot command

I limiting is assumed to be the dominant nonlinear effect and all other non-

linear characteristics such, as actuator angle and angle rate limiting,
aerodynamic nonlinearities, instrumentation nonlinearities, etc., are

assumed to be secondary or equivalently represented as acceleration

I limiting, or as changes -in autopilot dynamics. The resulting model is

simple and generally applicable to a wide range of missile systems, and

I captures what is known to be a dominant nonlinear system characteristic

and an important factor in miss distance performance--lateral accelera-

*tion saturation.

Linear Autopilot Response Characteristics - Using a linearized

airframe model (Ref. 5), the closed loop transfer function for the general

I autopilot configuration of Fig. A. 3-1 can be developed for specific gains

and compensation, an example of which is given in Fig. A. 3-2. The linear-

ized airframe transfer functions, as given by Eq. (8.1-1) of Ref. 5, are:

,47
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FriG
1 - =k (1+a as+a s 2)A(A.3-1)

a.
G2 - G (A. 3-2)

Jl G3 =em- ks (I + a s)I, (A. 3-3)

=1+ - + -T (A.3-4)[wa 'wa

R- 8043

I

II.,

Figure A. 3-2 Linear Autopilot Block Diagram
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where

a - bare airframe natural frequency

a = bare airframe damping ratio

H a = developedlateral acceleration

aa = measured lateral acceleration

em = body attitude rate
8 = control-sufface. deflection

a, - transfer function parameters obtained from

linearized aero-data and given in Eq. (8.1-8)
of Ref. 5.tThe G2 transfer function in Eq. (A. 3-2) will be assumed equal

to G1; this is true if the accelerometer is located at the c. g. of the

missile and has a wide bandwidth. The actuator dynamics are assumed

to be at a frequency which is much higher than the-crossover frequency

of the rate loop and will therefore be ignored.

IUsing Eqs. (A. 3-2) through (A. 3-4) the closed loop transfer

function from commanded to developed lateral acceleration Fig. A. 3-2

is

a 1_+_a,_s_+_a,.. _

= k ' , ',2  ]
1 2 3

(A. 3-5)r + al s +a2 skc 12 s2)

2

sU

4 .4

1. A-19 4
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where
1 242i~il bl (A.3-6)

242 _1
b2 2 (A.3-7)

2

kc = closed- loop d-c gain in Fig. A. 3-2.

K-: In the case of a tail-controlled missile, the transfer function in Eq. (A. 3-5)

is non-minimum phase... i.e., it has a right-half-plane zero; this produces

the "wrong-way" or "tailo-wags-dog" effect, discussed in Ref. 5. The

transfer function from commanded acceleration to developed body attitude

rate is:

6r k (1+ a3 s)
m -c __________ (A. 3-9)I2 3ac Vm 1+b 2 s+b 2 s + b3 s

where vm is the missile velocity.

Recall from the discussion in Section A. 1 that radome errors

can couple body angle rate, em, into the LOS measurements. This

forms a "parasitic attitude loop" since LOS data is used to form the
lateral acceleration command which results in a change of body attitude

! in Eq. (A. 3-9). As this coupling becomes large, guidance stability is

compromised and miss distance will tend to increase. An important

I measure of the required missile attitude rate is a3 , which tends to in-

crease with altitude thus intensifying the parasitic attitude loop problem.
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tT

in Eq. (A. 3-5). For many systems it is possible, and desirable where

attitude loop stability is a consideration, to design the autopilot such that

W is much larger than al and 0.5. The value of w2 depends pri-

marily on the rate loop gain for the assumed configuration of Figure

f A. 3-2. If the actuator bandwith is much larger than the open rate loop

- crossover frequency, wr which is in turn much larger than the airframe

natural frequency, wa, then w can be approximated as

[ rIksm6 I

p where k. Is defined in Fig. A. 3-2 and m8 is the pitch-moment-effectiveness

of the control surface. The magnitude of m8 tends to increase with Mach

number and decrease with altitude. if k. Is adjusted (adaptively) so as to

keep w nearly constant, then under the stated condition, w2 and t will

tend to remain nearly constant over a wide range of altitude and velocity

conditions. At altitudes less than 10 000 feet, w, tends to be nearly con-

stant over a wide range of missile Mah numbers. At higher altitudes, W,

tends to decrease with increasing altitude and increase with increasing
1Mach number. However for an assumed constant velocity intercept with-

in a narrow altitude band, w1 will remain nearly constant. Therefore,

4 the guidance system truth model will use a constant coefficient autopilot

having the assumed form of Eqs. (A. 3-5) and (A. 3-9), as shown in Fig. A,3-3.

A. 4 GEOMETRY MODULE

The general form of the intercept geometry is illustrated in

Fig. A. 4-1. The reference coordinate system is defined with its x-axis

I! along the original missile-to-target line-of-sight (LOS) defined at the

initiation of the terminal phase. It is assumed that missile-target motion

1 A251
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Figure A. 4-1 Intercept Geometry
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is constrained to the intercept plane, defined-by the orthogonal reference

x and y axes. The intercept plane can in general assume any orientation

with respect to the earth, depending on the initial relative missile and

target position and the orientation of their respective velocity -vectors.

A nominal co-altitude intercept trajectory is assumed herein. This

eliminates the specification of an altitude profile and the associated re-

quirement to handle nonstationary, altitude dependent aerodynamic charac -

i "teristics in the autopilot model. It is also assumed that gravity compen-

7 sation is used in the missile guidance law to negate the effect of gravity

on missile performance. Of course, for any orientation of the intercept

plane that is not horizontal, there will be an altitude change -for moteon in

the y-direction.

Equations of Motion -As illustrated in Fig. A. 4-1, the

reference coordinate system is non-rotating but is allowed to translate

with the missile. This selection of reference system is dictated primarily

T by the proportional navigation guidance law which attempts to null the

LOS rotation rate, b, by commanding a proportional missile acceleration

normal to the LOS. If this guidance scheme works well, 0 will remain

near its initial zero value and the severity of a number of geometric non-

I linearities can be reduced and in many cases linearized.

The missile lead angle, 8 , and the target aspect angle, 8a'

I Iin Fig. A. 4-1 define the orientation of the respective missile and target

velocity vectors in the intercept plane relative to the original LOS.

I Closing velocity, vc,is defined as the relative velocity measured along

the LOS; viz.,

v = m cos (8£ +9ehe e) + vt cos (ea +8) (A.4-1)
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b€

, U where

Vm = missile velocity

IL vt = target velocity

6he = heading error

P Heading error, ehe, is the angular error in the collision-course triangle

definedat the.initiation of the terminal phase. The sides of the collision-

course triangle are- established by the closing velocity along the original

LOS, the missile velocity vector and the target-velocity vector. Given a

target aspect angle, Qa, the collision-course missile lead angle must be

,,sin-I-2

c=s [ Vm sin ea] (A.42)

41 If the orientation and magnitude of the velocity vectors were to remain

fixed for the remainder of the terminal-phase, the two vehicles wouldI. collide. In practice, it is not possible to achieve the collision course

I lead angle and the difference between 9 and the actual lead angle 9£ is

defined as the heading error. For missile systems having a midcourse

o Iphase preceding the terminal phase, heading error tends to be small,

having an rms value of a few degrees or less; in a "dog-fight missile"

V I engagement, heading error can be tens of degrees. It is assumed in the

following model development that heading error Is less than 10 deg.

I The missile and target accelerations are assumed to be normal

to their respective velocity vectors. In reality, there are also components

of acceleration developed aleng their velocity vectors due to aerodynamic

g 'and induced drag which integrate into a net reduction of the velocity vector
magnitudes. This to particularly true of the missile after engine burn-out.
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However, if it is assumed that drag acceleration is small or a sustainer

engine is used to maintain a nearly constant velocity, only the acceleration

normal to the velocity vector, at, need be considered. Since it will be

assumed that the magnitude of the velocity vector is constant, the rate of

change of its orientation is proportional to the normal acceleration, result -

ing in the following expression for lead angle rate:

a (A. 4-3)

The analogous expression for target output angle rate due to target

acceleration, at, normal to its velocity vector is

at (A. 4-4)
ba vt

Therefore, the rotation rates of the velocity vectors are proportional to

I the respective lateral accelerations.

The relative velocity normal to the original LOS, id' is

id =vt sin ea -vm sin e (A. 4-5)

where

t

0 a dt + e8c+h (A. 4-6)in = "c Ohe

0

t
a v t 0ac (A. 4-7)

55A-25



THE ANALYTIC SCIENCES CORPORATION

From Fig. A. 4-1, e is given by

9 tan"- (A. 4-8)

U where Xtm is the missile-to-target range measured along the original LOS.

S- As previously mentioned, e tends to remain small if the guidance law is

4WJV operating properly throughout the duration of the terminal phase. How-

- ever, during the last fraction of a second as intercept is approached, Xtm
Ai "" approaches zero and 8 will tend to increase for a given value of Yd" With

- - only a fraction of a second left before the end of the flight, there isn't

enough time for the missile lateral position to respond to the rapidly in-

- creasing LOS angle. In fact, the high LOS rate generally results in

saturation of the autopilot acceleration command before 0 becomes large.

Therefore, for modeling purposes, accurate computation of e is not
required during the period in which it becomes large, thus allowing the

small angle approximation of Eq. (A. 4-9) to eliminate the tan -1 nonlinear

operation.

Y dF (rad) (A. 4-9)X~tm

It is important to note that Xtm appears in the denominator of

It Eq. (A. 4-9). Therefore, if Xtm is modelled as a system state, it is

necessary to handle the associated nonlinear ratio of states. However,

I if Xtm can be modelled as a deterministic quantity which is only a function

of time, Eq. (A. 4-9) is linear and the computation of e is considerably

I simplified. It will be shown in the following paragraph that the difficultiesI
associated with the computation of e and miss distance are all related to

a non-constant closing velocity.
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Miss Distance - Miss distance is defined as the point of closest

Iapproach between the missile and target, illustrated in Fig. A. 4-2, and
is given by te relative range when the closing velocity is equal to zero

in Eq. (A. 4-1). Since closing velocity is defined as the relative velocity

between the missile and target projected onto the instantaneous LOS, miss

distance is equal to the missile to target range when the inner product of

range and range rate is equal to zero, viz.,

miss =rtm .[ (A.4-10)r tm • "tM 0

LI where

rtm= Xtm + YdJ

i = unit vector in the x direction

j = unit vector in the y direction

Y R-8117
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Figure A. 4-2 Relative Missile-Target
Geometry Near Intercept
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At the point in space where the orthogonality of the relative range and

velocity vectors required by Eq. (A. 4-10) exists, miss distance is given

by

miss = ( i + (A. 4-11)

For many intercept situations, Xtmis much larger than jd in Eq. (A. 4-11).

Therefore the downrange component of miss distance is neglected in these
L studies.

Although miss distance is closely approximated by Yd' it (the
miss) is defined at only-one point during the flight--namely the point

of closest approach. Therefore it is conditioned on a spatial rather
than a time relationship. In a monte carlo study, the orthogonality con-
dition is tested near the expectod end of each flight and Yd is saved when
the condition is satisfied. Thezefore, if the closing velocity is not con-

stant or there Is a significant down range miss component, the time-of-
flight at which miss distance is measured will not be constant from one

trial to the next. The ensemble miss distance statistics are computed

using the "saved" values of miss distance, each of which occurs at a
different time of flight. By contrast, the covariance analysis technique
provides ensemble performance statistics as a function of time. There-
fore, additional computations or approximations are required to obtain

miss distance using the covariance analysis approach.

The primary contributor to a nonconstant time-of-flight, for a

given initial range, is the fact that the closing velocity in Eq. (A. 4-1) is

not constant. Since it has already been assumed that the magnitudes of

the missile and target velocity vectors ar :onstant, anv change in Yd is

a result of the change in the orientation of the velocity vectors. However,
if the change in these angles is assumed to be small during the flight, the

( closing velocity will remain nearly constant except as the point of mini-

mum range is approached where it rapidly approaches zero. The projec-
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- tion of missile and target velocity onto the original LOS, tm' ill also
L be nearly constant throughout the flight. Therefore, itm is assumed to

be a deterministic quantity which goes to zero at a known fixed time.

This assumption eliminates the previously mentioned computational-prob-

T. lem associated with 9 in Eq. (A. 4-9).

From Eq. (A. 4-10) it follows that miss is defined when

Xtm = - d (A. 4-12)

XtXt

The incremental time, At, between when Eq. (A. 4-12) is satisfied and

Xtm is equal to zero is approximated'by simply dividing Eq. (A. 4-12) by

Xtm"

II Yd id
t = 2 (A. 4-13)

F For most intercepts, At is on the order of milliseconds. The change in

Yd over such a small interval is negligible and miss distance can be

approximated as Yd measured when Xtm equals zero.

I A. 5 TARGET MODULE

I The target velocity vector is assumed to have a constant mag-

nitude, and a direction described by ea in Fig. (A. 4-1). It is further

Sassumed that the target may have random changes in its acceleration

normal to its velocity vector. The assumed acceleration time history

U lmodel is a randomly reversing poisson square wave as illustrated in

Fig. A. 5-1. This square wave switches between ± P ft/sec2 with random
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Poisson distribufted Switching times having an average Of v' zero -crossings,K?~t peasnd. Th aIsoorrlatiOn -function (Ref. 9) for observation times

2v It tbI(Pe (A. 5-1)

U 1~Equation-(A. 5-)indicates that the, mean-sqrevaeoft if 2

q ua ed al e o a 1 & and, asv approaches zero, at approaches a constant. The power spectral densityassociated with at is

U~~X +(w (2~[ 2A. 5-2)

F-804

at

Figure A. 5 -1 Poisson Square Wave for Target Acceleration
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whr Is16 defined as the maneuver bandwidth and is equal to 2 v. The
resulting maneuver model hasthe same mean and autocorrelation function
as a first-order markov process. Therefore, the target lateral maneuver
acceleration will be modelled as the output of a low pas filter with band-

width X driven by white noise with a power spectral density of 2A2,

resulting in a rms acceleration level of 8.

It is interesting to note-that although the autocorrelation:func-

tion and the- corresponding power spectral density for the poisson square
wave are identical to that of a markov process, the associated probability

density functions can be quite different. It is obvious from Fig. A. 5-1
that the poisson square wave can only take on values of ±. The resulting

-,bi-polar amplitude probability density function consists of impulses with

a weighting of 0.5 at plus and minus P whereas the markov process is
generally assumed to have a gaussian amplitude distribution. Therefore,

the response of an amplitude dependent nonlinear operator could be quite

I different when driven by each of these two signal forms. However, if the
random square wave is passed~through a narrow band filter or integrator,
it would experience rounding due to the finite bandwidth. In the case of
an integrator, the resulting wave shape wouldbe a series of constant

I slope segments. By application of the central limit theorm, as illus-
trated in. Ref. 8*, the resulting output distribution approaches the gaussian
density function.

ii

I *page 179
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A. 6. GUIDANCE MODULE

The operation of 'the guidance module may be separated into

two cascaded functions: 1) filtering of the noisy measurements obtained

from the seeker and 2) utilization of the filtered measurements to con-

trol the missile lateral acceleration. There are a number of filtering

andcontrol schemes-that can be used by tactical missiles, as reported

in Refs. 5-and 7. However, the current study willbe limited to-the con-

figurations listed in Table 2.2-1; each of these is discussed below.

Configuration A - This configuration can be considered-as the

dclassical approach to missile guidance. The boresight error signal from

the seeker module is processed through a constant bandwidth low-pass

noise filter. For modelling purposes, it is assumed that the measurement

rate, is much faster than the noise filter bandwidth. The resulting system

Jcan therefore be characterized by a continuous model which is represen-

tative of a missile with either an analog on-board signal processor or a

digital unit with a high cycle rate. This system can also be considered

ias one of minimum complexity.

The boresight error signal obtained from the seeker module is

a noisy measurement of LOS rate at frequencies below that of the seeker
track-loop bandwidth. Therefore, the output of the guidance noise filter

is also a band-limited indication of LOS rate. Classical proportional
guidance requires the development of a lateral acceleration of the missile

normal to the LOS, which is proportional to the LOS rate as given by

n'vI
a= cos (6 - 6) 6 (A.6-1)
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where

v~ = closing velocity (ft/sec)

e = LOS rate (rad/sec)

6 = LOS angle (rad)

n' navigation ratio

9, = lead angle (rad)

The proportionality factor is comprised of the navigation ratio,

closing velocity multiplier and a geometric gain factor which accounts for

the fact that the orientation of the missile velocity vector is not necessarily

along the instantaneous LOS. Since missile lateral acceleration is devel-

opednormalto its velocity vector, it must be increased by the indicated

factor so the projection normal to the LOS will be proportional to 6.

In practice, neither 6 or 6 are directly available for use by

the guidance module. If the guidance law is operating properly, 6 will be

if small for all but the last fraction of a second before intercept. If the

variation of the lead angle is small, then the factor of proportionality can

Bbe considered constant for all practical purposes. (This is also consistent

with the assumption of a constant closing velocity in the geometry module).

Some missile systems use the gimbal angle, eh, to approximate (8 - e)

or simply enter a constant which is representative of the average value.

In this study, a constant value will be used in the truth model; any error
in this value can be accounted for as an effective change in the navigation

ratio. The resulting block diagram for Guidance Law A is given in Fig.

A.6-1.
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'.3 R4~120

'-A

Figure A. 6,4 Guidance Law A

Kalman Filter for Configurations B, C, D and E - The Kalman

filter is implemented in the non-rotating, -initial LOS coordinate system.jii For the purpose of designating the filter,it is assumed that both the target

and missile maneuver with their accelerations normal to the initial LOS;

the resulting plant model for the Kalman filter is given in Fig. A. 6-2.

1 -8040a

p TARGET id(0)

LATERAL
ACCELERATION RELATIVEii CLERTO t + d Y d POSITIONT S NORMAL TOORIGINAL LOS

MISSILE
LATERALACCELERATION

I
Figure A. 6-2 Kalman Filter Plant Mode)
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Instate-sPacenotation, the filter model equations of motion are given by
the vector differential equation

I ic(t)=Fx (t)+ u (t)+ b (t) (A. 6-2)

Iwhere

Y d 0 1 0

, id F= 0 0 1

at 0 0 "

0 0 0 0

b -a 0 0 0

0 0 0 2Xt

Eju (r) ) =Q 8(t-T

0 0 0

E x_ (0)_x (0) P -(o)- o 2 o0
0 0 at(0)

Note that this model is identical to the system truth model used in the

I target and geometry modules with the exception that target and missile

acceleration are assumed normal to the orginal LOS. The system truth

model is more exact in that the missile and target lateral accelerations

. are assumed to be normal to their respective velocity vectors, which in
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general do not lie along the original LOS. Furthermore, for the purpose

H of mechanizing the filter, it is assumed that the autopilot output a can

be measured without error.<H
The measurement to be processed by the Kalman filter is the

sampled LOS angle 81, having additive independent samples of noise vk.

The latter have zero mean and variance given by

22I~V k I=4(tk) +a2 +%a2(tk)=4RkI

where a.r a, and a. represent the noise components defined in Section

A.2; T- term- of the state vector x in Eq. (A.6-2), the LOS angle
measurement is expressed as

zk =h T (tk)x+vk 
(A. 6-3)

l hT t) = rtm Wt 0 0

The discrete Kalman filter mechanization equations have the

form

x (t)= Fi (t) + b (t); between measurements (A. 6-4)

+ kk(zk - h (T a) ); at a measurement (A.6-5)

H where A denotes the solution to Eq. (A. 6-4) just before a measurement

Is processed. The gain vector kk is obtained recursively from the

matrix covarlance equation associated with the Kalman filter;

1 - 66
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IB
:1l k M k hMkhk+Rk)

T
Mk 0 Pk-@4 + Qs

=k Mklk(hk Mk + k)

" At

_ Qs e Fo e(At-r) Q[e F(At-r)]T dr

P0 - Ejx(0)x(0f)Tl 0 eFt (A.6-6)

tIThe gains cannot be precomputed and stored because h and R in Eqs.
(A. 6-6) are- range dependent; this requirement is responsible for most
of the digital computational capability required by the guidance system.

The mechanization of the Kalman filter is illustrated in Fig.
A. 6-3 where yd and at are the respective estimates and at.

T Discrete updates of the estimates occur when the sampler closes.
Between updates, the estimates simply propagate according to the
modelled dynamics. The gains klk' k2k and k3k are the elements of kk

in Eqs. (A. 6-6).

The initial covariance matrix P (0) used in the computation of
the Kalman gains contains two non-zero elements. The initial value of

± its third diagonal element, P33 ' is the variance of the target accelera-
tion at the initiation of the terminal phase. It will, be assumed that the
target has been maneuvering prior to the start of terminal phase and
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H R-S11l$

I'MEASUJRED SAMPLE A
LOS ANGLE' AND'HOLD Yd_

[]

LATERAL
+ ACCELERATION

I A

tt

I Figure A. 6-3 Kalman Filter Mechanization Diagram

the initial variance is equal to the steady-state maneuver level, f 2

(Eq. A. 5-1). The initial value of the second diagonal element of P,

is equal to the variance of the relative velocity normal to the initial

LOS at the initiation of the terminal phase. From Eq. (A. 4-5) of Section

f A. 4, it can be shown that the initial value of id is apprcdmated by

Yd (0) %he vm  (A. 6-7)

for small values of initial heading error, e h* Therefore, since vm is

assumed to be a true constant,

2 2pO = m(A. 6-8)P22 (0) = he "m

where ahe is the standard deviation of initial heading error.
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pController for Guidance Laws B, C, and D- The control input

to be determined is the commanded missile lateral acceleration in

Fig. A. 3M3. Continuous control will be assumed in deriving the

guidance laws and it is desired to minimize the expected square of the

miss distance subject to -a penalty function on the total control energy.

Therefore, the performance index to be minimized is given by

ii tf
I J = y (t') + a, t 2 d (A. 6-9)

0

subject to the equations of motion in Eq. (A. 6-2) and the

autopilot dynamics modeled by the first order transfer function

- aa I+Xm

T Note that the saturation in Fig. A. 3-3 is neglected in Eq. (A. 6-10), as

well as the higher-order autopilot dynamics. The quantities Yd (tf) and

y are respectively the terminal miss distance at intercept time tf and

the weighting on control effort. The solution to this problem is called an

optimal guidance law. By invoking the separation principle (Ref. 10) it

Is known that the control will be of the formA

Sac= cl Yd+ c 2 Y + c 3 a+c 4 a, (A.6.11)

The indicated control gains, which minimize the performance index in

Eq. (A. 6-9),have been determined by Willems in Ref. 2 and are

repeated below for convenience (t is the time until intercept):

n t

= - (A.6-12)
if' t

A-go

[II
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An c2L= t (A. 6-13)

m (A. 6-14)

S 4 2 2

e m go

C -n (A.6-15)

3t
34'V 4 9 go )+t3 3+ 1+2

" I If there is no constraint on acceleration, v is equal to zero and the

resulting navigation ratio from Eq. (A. 6-17) is constant with a value of
S1 3. The optimal navigation ratio from Eq. (A. 6-16) tends to increase as

o go approaches zero. If y is equal to zero, n 'will approach extremely
large values as t approaches zero. However, for a non-zero vlue of

v, n'will first increase as t becomes small; after a point it will begin

gg0
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to decrease with tgo, and finally approach zero as tgo goes to zero.

This nonstationary behavior of the navigation ratio becomes more pro-

L fnounced as X becomes small. Increasing n' results in a direct scaling

of all four control gains, which in turn increases the autopilot command,

L ac, to compensate for the dynamic lag represented by Eq. (A. 6-10).

L t Given this set of optimal linear control gains, various sub-

7" optimal approximations can be made to simplify the computational re-

quirements. If y, 1/X m, c3 and c 4 are arbitrarily set to zero,classical

-proportional navigation with n' = 3 (Guidance LawB) is the resulting con-

trol policy. This is shown by differentiating the expression for LOS

angle,

.- Yd_ (A. 6-18)
Xmt

to obtain
,.L~d Xmt Yd Xmt

Yd 'm=  (A. 6-19)

Xmt

I For the assumed constant closing velocity intercept,

I Xmt =VC tgo (A. 6-20)

I and Eq. (A. 6-19) becomes

1
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- iClassical proportional navigation is defined asi ° °
_.a c  n#*v (A. 6-22)
1c C

Substituting Eq. (A. 6-21) for 6 in Eq. (A. 6-22) and replacing y.and Yd

i, by their best estimates, obtained from the Kalman filter, yilds

'. a' -n Y + 1d (A.6-23)
-790 tgoJ

K Comparing Eq. (A. 6-23) with Eqs. (A. 6-I), (A. 6-12), (A. 6-13), and

(A. 6-17) proves the equivalence between proportional navigation and the
-optimal guidance law under the conditions 1Am =y =C =c 4 =0. The

7- navigation rafio is held constart in Eq. (A. 6-23). Guidance Law C is

obtained by including a component of target acceleration in the formula-

tion of the autopilot command via c . Finally, Guidance Law D is

realized by including 1 /x M 0 in the computation of n', as well as the
9 term involving cm4 in Eq. (A. 6-11). In all cases investigated here the

,* weighting, y, on the control penalty in Eq. (A. 6-9) is set equal to zero.

Optimal Nonlinear Controller - The optimal nonlinear guidance
law is based u. n the same system model used for the optimal linear laws

S described above; however its performance objective is different. Name-
ly, an acceleration command is sought such that

J = E {Imiss distance (A. 6-24)

I is minimized, subject to the constraint

ea i < area x  (A.6-25)
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where ar is the maximum airframe acceleration. Thus the limit on

missile acceleration capability is incorporated explicitly into the prob-

lem formulation; this is contrasted with the quadratic integral penalty

termzon a' (t) in Eq. (A.6-9).

I The solution to the above problem is derived in Refs. 7 and

11. The resulting optimal nonlinear guidance law has the same struc-

ture as the linear laws discussed previously; however, the control gains

7 Cl, c2, c3 and c4 are computed differently. The latter are obtained at

each control computation stage as a resulit of the following steps:

T .• Determine the predicted terminal miss distance
based on the Kalman filter estimate of the state
vector at the current control computation stage,
and the dynamic model defined in Eqs. (A. 6-2)
and (A. 6-10).

0 Determine the value of commanded acceleration,
a I, required over a single control interval to null
the predicted terminal miss distance, neglecting
the constraint in Eq,. (A. 6-25).

* • Determine the actual acceleration command, a,,
by passing a ' through a saturation function

7 'that satisfies Eq. (A. 6-25).

To carry out the above calculations, we first combine Eqs.
j (A.6-2) and (A. 6-10) into the form

M F . (t) + ba c (t) (A.6-26)
where

0 1 0 0 0

0 0 1 -1 0<I F b - (A.6-27)
, 0 0 "_X 0 0

*Te0 0 0 _Xj i
m m

*The law Is called an optimal nonlinear law because the nonlinear con-
SIstraint on ac is incorporated in the problem formulation.
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I The predicted terminal miss based on a, state estimate at time t is given

by

YTf (tft 0 Mt (A.6-28)

where (tf,10 is. the first row, of the state transition matrix corresponding

Ito Fin Eq. (A. 6-27). The effect of a-con stant command a., , Apoliedoveran

I interval At, on the terminal miss distance is given by

A T 4 A. t+A. Tb

II 4 d (tf) v I (ti 0I.T&t./ rj ac d,

46 W (A. 6-29)C I
I The objective is to select a' such that

Ii~~ ~ Ayd(f dt) (A. Q-30)

in order to null the predicted miss distance. Substituting from Eqs.

(A. 6-28) and (A. 6-29) leads to the result

= +c~y + 3 a c (A. 6-31)

Carrying out the computation forec through c we find that they

~ I are the same ats in Eqs. (A. 6-12) through (A. 6-15) except that the navi-
gation ratio. n,' is given by

1 74
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- t2

-x(na) Xi (A. 6-321t11. + At e (I-e +

The values of n given by Eqs. (A. 6-16) and (A. 6-32) behave quite dif-

ferently as functions of tgo, as demonstrated in Fig. A. 6-4. The explana-

tion for this is that the nonlinear law attempts to completely null the

predicted miss at each control stage; this requires much larger missile

acceleration early in the trajectory than the linear laws, which tend to

- reduce the predicted miss distance more gradually. The nonlinear law

has a smaller gain near interceptbecause it reduces the miss distance

faster than the linear law.

,II i ,
NOPTIMAL INEALAW, )"O

z 10

TIME-TO-G2. too (sec)

I Figure A. 6-4 Comparison of Navigation .Ratios for
Optimal Linear and Nonlinear Laws

A-45 75I



THE ANALYTIC SCIJENCES CORPORATIONti I .. ..

Autopilot Command - The autopilot acceleration command

given by Eq. (A. 6-11) will in practice be contained in the output register

- "of a-digital computer. The value of'this command will change at discrete

intervals which are nearly:coincident with the -LOS measurements :pro-

cessed by the Kalman filter. In practice there will be a transport lag

between the LOS measurement and the update of the control signal due to
the computer processing time requirements. It will'be assumed that the
time delay is small cL jared to the sampling period and will be neg-

lected. Since the control signal changes at the sample instant and is

constant between samples, this operation is equivalent to that of a zero-

order hold. Therefore, the autopilot and autopilot model are driven by

a stair-case signal which is the sampled and held acceleration command

given by Eq. (A. 6-11).

}i A. 7 COMPUTATIONAL REQUIREMENTS

I "The computational requirements for the guidance laws dis-

cussed in Section A. 6 are primarily dictated by the mechanization equa-

h tione for the Kalman filter in Eq. (A. 6-6). Reference 15 provides a

ill guide for estimating the Kalman filter computational requirements, in

terms of numbers of additions, multiplications, and logical operations

j H required to complete the processing of each measurement, and the

associated memory capacity needed. Logical operations constitute those

involved with retrieving variables from memory, storing in memory,

reading instructions, etc.; these frequently contribute as much to the total
computation time as do the arithmetical (add, multiply, etc.) calculations.

i Using the expressions derived in Ref. 15, the following results

Uare obtained:
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I
3-State -Kalman Filter Computational Requirements

No. of Multiplications _ 125

No. of Additions _ 90
No. of Logical Operation Units _ 2950,

I Programming - 490.No. of Storage Locations Arras - 60- Arrays - 60

IRepresentative execution times for a modern minicomputer are:
multiplication = 8 usec; addition = 2 sec, logical operation unit = 1 psec.

Applying these multiplication factors to the numbers of operations item-j ized above, and allowing for the use of two 3-state Kalman filters in the
3-dimensional engagement situation, the total execution time per

I measurement cycle and storage requirements given in Table A. 7-1 are
obtained. These estimates are conservative in that they do- not allow for

J programming efficiencies that can be gained by accounting for sparse
matrices (lots of zero elements) in the Kalman filter equations (Eq.

I (A.6-6)).

TABLE A. 7-1

APPROXIMATE KALMAN FILTER
COMPUTER REQUIREMENTS:

TWO THREE-STATE FILTERS

Operation Number Required Computation Time (Lsec)

I Addition 180 360
Multiplicatic i 250 2000

I Logical
(Load, Store, etc.) 5900 5900

TOTAL J 8260
Storage Requirement 610 words
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APPENDIX B

THE COVARIANCE ANALYSIS DESCRIBING

FUNCTION TECHNIQUE (CADET)

The Covariance Analysis Describing Function Technique

(CADET,) is a met-hod for analytically determining the statistical pro-

perties of a nonlinear system, recently developed at The Analytic

Sciences Corporation (Ref. 6). The principal advantage of this technique

is Ithat it circumvents monte carlo simulations, thereby achieving sub- :1
stantial savings in computer running time. We first motivate the dis-

cussion by reviewing covariance analysis methods for linear systems;

,i )then we develop an analogous procedure (CADET) for the nonlinear

case.

B. 1 COVARIANCE ANALYSIS FOR LINEAR SYSTEMS

The dynamics of a linear continuous stochastic system can be

represented by a first-order vector-matrix differential equation in which

x(t) is the system state vector and w(t) Is a random forcing function,

! _(t) = F (t)x (t) + w(t) (B. 1-1)

i Figure B. 1-1 illustrates the equation. The state vector is composed of

any set of quantities sufficient to completely describe the behavior of the

system. The forcing function w(t) represents disturbances as well as

control inputs, that may act upon the system. It can be assumed without
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T

-- R-230

Figure B. 1 -1 Illustration of Continuous Representation
of Linear Dynamic System Equations

Tloss of generality that the system states and the forcing function are

random processes, each having an ensemble average value of zero; i.e.,

I they have zero mean. In what follows the forcing function w(t) is

assumed to be composed of elements which are uncorrelated in time;

[I that is, w(t) is "white" noise having the spectral density matrix Q(t)

defined by*

E [w(t)w('r) T  = Q(t)8 (t-r)

I Under the above conditions, the random state can be described

in terms of its covariance matrix P (t),
P! I(t) =4 E Lx( t) x(t)T (B. 1-2)

The equation for the propagation of the covariance matrix for the system

described by Eq. (B. 1-1) can be written as (Ref. 10).

D P(t) = F(t) P(t) + P(t)F(t) +Q(t) (B.1-3)

*E denotes ensemble expectation, or average value; T denotes matrix

transpose.
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The diagonal elements of P(t) are the mean square values of the state

variables; the off-diagonal elements represent the amount of correlation

between different state variables.
-I.

tsca Equation (B. 1-3) provides a direct method for analyzing the sta-

tistica properties of x (t). This is to be contrasted with the monte carlo
method where many sample trajectories of x (t) are calculated-from com-
puter-generated random noise, or random numbers in the case of a digital

computer. If, using the latter technique, m such trajectories are generat-
I ed using Eq. (B. I. l)--each denoted by xk(t),k = 1, ... , m--then P (t) is

i! given approximately by

P(t) . ) AM PM (t)k (t)T (B.1-4)

In the limit as m approaches Infinity we have

lim P(t) = P(t) (B.1-5)

Note that Eq. (B. 1.3) provides an exact solution for P(t), to

within computer integration accuracy, whereas the monte carlo method

yields an approximate solution for a finite value of m. Furthermore, Eq.

(B. 1-3) need be solved only once over the trajectory, whereas Eq.

(B. 1-1) must be solved many times using the monte carlo technique;

11] consequently the direct analytical method is generally the most efficient

technique for analyzing linear systems. Our purpose here is to describe

a procedure whereby the statistics of a nonlinear system can be com-

puted approximately using a recursion relationship similar in form to

Eq. (B.1-3).
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B. 2 COVARL46NCE ANALYSIS FOR NONLINEAR SYSTEMS

The nonlinear counterpart of Eq. (B. 1 -1) has the form

i(t) = f (x(t)) + w t) B. 2-1)

In order to develop a covariance analysis method similar to that used
for liniar systems it is desirable to approximate f(x) in Eq. (B. 2-1) as
a linear operation on x(t). In particular, we assume that x(t) is com-
posed of a known mean X"'(t) and an unbiased additive random component r(t),

x (t) = X^(t) + r (t) (B. 2-2)

and we shall seek an approximation tof x) of the form

=f) f (x(t)) (t t)f) B 23

where Nf t) and (t) are to be specified. The structure of this approxi-
mation is illustrated in Fig. B. 2-1. If Eq. (B. 2-3) is substituted Into

Eq. (B. 2-1), then the equations of motion for x (t) become linear;

ict j(t) + Nf (t) (X(t) - i(t)) + W (t)(B-4

Taking the expected value of both sites of Eq. (B. 2-4) yields

an equation for the propagation of i(t)--namely,
AA

i~t Wt (X f(0t) (B, 2-5)

Subtracting Eq. (B. 2-5) frcom Eq. (B. 2-4) produces an equation. for

r(t) having the same form as Eq. (B. 1-1);

(t) =Nf (t) r(t) + w (t) (B. 2-6)
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j . - R-8123

X(t(t) ------ )

" t Nf

' lFigure B. 2-1 Block Diagram Interpretation of the

] Linearizing Approixanation

~~Thus by aj.alogy with Eq. (B. l-3),the covariance matrix associated with
~r~t) -- also referred to as the covariance of x--satisfies the differential

equation
P (t) = Nf(t) P (Z) + P(t) Nf(t) T + Q(t) (B.2-7)

Equations ( B. 2- B. 2-7) together prode the desired analytical

" description of the statistics of x(t)--namely its m mn value and itsShcovariance matrix-assuming that t) and Nf(t) are known. Subsequent
paragraphs discuss the approach taken in CADET for datermining these
quantities.

Statistical Linearization: The Scalar Cas-ae method used

in CADET for approximating f(x) in Eq. (B. 2-1) is based upon statistical
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linearization. The basic principle of this technique is conveniently

illustrated for a scalar function, f(x), of a random variable x.

Assume that f (x) is to be approximated by the linear expres-

sion

f(x) n0 + nIx (B.2-8)

In order to determine appropriate values of the coefficients n0 and n1 we

define a function representation error, e, of the form

e = f(x) - n0 -nx (B.2-9)

It is desirable that the coefficients be chosen so that e is small in some

"average" sense; the procedure used to accomplish this goal is to mini-

mize the mean square error, E [e 2 ]. Thus, forming

E(e2) E2 + n02 + n2 x - 2n 0 f - 2nlfx+ 2n 0 nl x j[i (B. 2-0)

we require that
, E(2) _

bn 0
Ee2)

bE(e 2= 0 (B. 2-11)

which are necessary conditions for a minimum. Solving Eq. (B. 2-11) for

n and n1 produces

n 0

A

nl f - f (B.2-12)

x :3
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V where the () notation denotes expectation. The fact that these values

actually minimize the mean square error can be verified by examining

the second derivative of E (e2) with respect to no and n1 . Substituting

n from Eq. (B. 2-12) into Eq. (B. 2-8) produces

f(x) = f + n 1 (x-i) (B. 2-13)

Equation (B. 2-13) constitutes a statistical linearization of f

about the mean value of x because it depends upon the probability density

V function for x, p(x). That is,

f = f (x) p(x)dx

- (B. 2-14)

Sf xf f(xp)xp(x)dx

Observe that Eq. (B. 2-13) is in the desired form of Eq. (B. 2-1) with y

.. and Nf identified as the scalar quantities, f and n1 respectively.

The quantity n! in Eq. (B. 2-12) is usually referred to as the

describing function gain. Describing functions are given in Ref. 12 for

a wide variety of nonlinear functions with gaussian inputs. From
A

knowledge of n1 and f, the statistics of x can be computed using Eqs.

(B. 2-5) and (B. 2-7)--hence the terminology Covariance Analysis

Describing Function Technique (CADET).

A more common method of linearizing a nonlinear function is

the use of a first-order Taylor series expansion

f(x) f + (x -) (B. 2-15)
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T

- In many cases, the CADET procedure tends to be the more accurate

approach from a statistical point of view. To demonstrate why this is

so consider the'example of the saturation nonlinearity in Fig. B. 2-2(a)

and assume its input has zero mean. If f(x) for this case is expanded in

a Taylor series of any order about the origin ( - 0), we obtain

f (x) -- x (B.2-16)

The effect of the saturation is completely lost because of the discontinuity

- in the first derivative of f. By contrast, if statistical linearization is

used, we have

tf (x) n1 x (B. 7 -17)

ii where n1 is the describing function gain defined by

If xf (x) p (x) dx

n1 = (B. 2-18)

pfp(x)dx

Iand p (x) is the probability density function for x. If we now assume that x

is a zero mean gaussian random variable, then

p(x) 21 (B. 2-19)

Substituting Eq. (B. 2-19) into Eq. (B. 2-18) and evaluating n1 for the

j saturation function shown in Fig. B. 2-2(a), we obtain (from Ref. 12)

the result shown in Fig. B. 2-2(b). It can be seen that n1 is a function
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(a) SATURATING NONLINEARITY
(b) DESCRIBING FUNCTION

Figure B. 2-2 The Describing Function for a Saturation
Nonlinearity (Ref. 12)

of the linear part of f(x), the point 6 at which saturation occurs, and the

standard deviation of x. The essential feature of the describing function

is that it takes into account the probability that x can lie within the sat-

uration region.

For values of a which are small relative to 6 , the probability

of saturation is low and n1 is approximately equal to 1; i.e., fl is

approximately equal to the Tayjor series given in Eq. (B. 2-16). For

- larger values of a, n1 is significantly smaller than 1 because there is a

higher probability of saturation.

1As a result of the above discussion, we can see one distinct

advantp that statistical linearization has over the Taylor series ex-

pansion; it does not require the existence of derivatives of f(x). Thus, a.

large number of nonlinearities--relays, saturation, threshold, etc.--

B-9
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can be treated by this method without having to approximate discon-

tinuities at corners in f(x) by smooth functions. On the other hand, an

Apparent disadvantage of the method is that the probability density func-

tion for x must be known In order to compute f and n,, a requirement

that does not exist when f(x) is expanded in a Taylor series about its

mean value. However, as discussed in Section B. 3, approximations can

often be made for-the probability density function such that the resulting

I' statistical approximation for f (x) is considerably more accurate than the

Taylor series, from a statisiical point of view.

Statistical Linearization- -The Vector Case - We now
K seek a linear approximation for a vector function f (x)- of a vector

random variable x, having probability density function p (x). Following
the statistical approximation technique outlined for the scalar case, we

propose to approximate f(x) by the expression

f(x) La + Nf x (B.2,20)

where a and Nf, are a vector and a matrix to be determined. Defining

,j the error

e f(x) - a - Nf x (B. 2-21)

a and Nf are chosen so that the quantity

iJ1 J = E!T Ae1 (B.2-22)

p is minimized for some symmetric positive semidefinite matrix A. Sub-

stituting Eq. (B. 2-21) into Eq. (B. 2-22) and setting the partial derivative

of J with respect to the elements of a equal to zero, we obtain

E [A f(x) - a - Nfx)1= 0 (B. 2-23)
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Therefore, a is given by

-a=f (x) - NfX (B.2-24)

Substituting a from Eq. (B. 2-24) into J and taking the partial deriva-

tive with respect to the elements of Nf yields

E [[NfxxT + (f x) - x =0 (. 2-25)

whee

Solving Eq. (B. 2-25) produces

Nf xTf -fx (B.2-26)

where P is the covariance matrix of x. Observe that both.a and Nf as

given by Eqs. (B. 2-24) and (B. 2-26) are independent of the weighting

matrix A; hence, they provide a generalized minimum mean square
i error approximation to f.

• Upon substitution from Eq. (B. 2-24) into Eq. (B. 2-20) we

obtain

f (x) =f (x) + Nf (x - _ B.2-27)

which is the form specified in Eq. (B. 2-3). The quantity Nf is called

the describing function matrix; as expected, Nf reduces to n, in Eq.

(B. 2-12) when xand f are scalars. Because Nf is potentially a function

of both the mean and covariance of x, denoted by Nf (P, _), equations

(B. 2-5) and (B. 2-7) become a set of coupled nonlinear differential

equations;
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K ~)=Nf (P, i)P + PNf (P, )T+ Q(t) (B. 248)

B. 3 COMPUTATION OF DESCREBING FUNCTIONS

In order to carry out the Integration of Eq. (B. 2-28),f It is
necessary to compute j(t) and Nf (t). From the discussion in Section
B. 2, we know that

I^ y t) = f(t) 1
Tft T 1 - (B. 3-1)

where X" and P are the mean and covarlances-of x(t), respectively and

-f J(x) p(x) dx

f Tfx T W p x dx (B. 3-2)

-CO

Thus x and P can be continuously evaluated If the probability density
function p (x) In Eq. (B. 3-2) Is known.liiiGenerally speaking, It is not practical to analytically evaluate
the probability density function for the state of a nonlinear dynamical

* ii system; therefore an approimate form of p (xc) must be obtained. One
frequently used assumption Is that x Is gausslon:

I B-12 8
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ai p(x) (2ffDet (P)) "n /2 exp -(x - i)T P-1 (x -) (B.3-3)

This is based upon the fact that the states of the nonlinear system are

the result of integrating the quantity f (+x) w. Therefore x (t) is a linear

superposition of past values of random quantities, which will tend to be

gaussion even through f(x) and w may not be nongaussian. The latter

- assertion Is based on qualitative application of the central limit theorum

(Ref. 8). If Eqs. (B. 3-2) and (B. 3-3) are combined with Eq. (B. 2-28),
A

x (t) and P (t) can be evaluated numerically on a digital computer.

From the abOve discussion, it is clear that more computation

is required in applying covariance analysis techniques to nonlinear sys-

tems than for linear systems, because of the procedure used to evaluate

f and Nf. Consequently, efficient means for calculating the right hand

sides of Eq. (B. 3-2) are desired. One useful simplification arises when

I the nonlinear system consists of a few single-state-input single-output

nonlinearities, such as that Illustrated in Fig. B. 3-1. In this case,

making the gaussion assumption described above, each nonlinear opera-

tion is replaced by its mean value and its describing function gain as

I indicated in Fig. B. 2-1, both of which are scalars computed according

to Eq. (B.2-12). Then the first-order vector and-matri-x differential

equations In Eqs. (B. 2-28) can be formulated by inspection of the result-

ing linear system block diagram. Thus the CADET equations can be

constructed using existing tabulated describing functions for single-input

i 90
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RANDOM R-S124
INPUTS

:.. DYNAMICS DYNAMICS

MULTIPLE- STATE INTERCONNECTION

Figure B. 3-1 Example of a Single-State-Input
Single-Output Nonlinearity

single-output nonlinearities (Ref. 12). The proof of this assertion

follows from the fact that f and Nf are related by

f A (x(t))
NA(t) (B. 3-4)

where x is assumed to be a gaussian random variable. Eq. (B. 3-4) is

Vderived in Ref. 13. In the case of a single nonlinearity, as in Fig.

B. 3-1, the system equations can be written in the form

1 L6

= F_ + f. (x.)
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where the term Fx describes the dynamics of the linear part of the sys-

tern. Applying Eq. (B.3-4), we have

0

0

I 0

(B.3-6)

00 
* 0 0 "

F + 0 .- , 0

020

L 0 0 0

0 0 . 0

0.00

The term bf /bx t is simply the describing function gain for L, as

determined by the statistics of its input, xi; thus Nf Is determined by

the dynamics (F) of the linear system and the single-input describing

r gain. The extension of the above argument to the case when several

P single-state-input nonlinearities exist is straightforward.

B. 4 MIXED CONTINUOUS-DISCRETE SYSTEMS

Preceeding sections of this appendix have treated continuous

jj !nonlinear systems; i.e., those governed by differential equations.

However, in many practical applications, the system may include a

idigital computer whose input and output are expressed in terms of

diiference equations, as illvtrated in Fig. B. 4-1. Such a structure

B-15 3
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arises in missile guidance systems where digital control laws are used
to command the missile's maneuvering acceleration. In this section,

I equations are developed for propagating the mean and covariance of a 4
nonlinear, mixed continuous-discrete system.

ii The equations of motion for a system of the type shown in

r -Fig. B. 4-1 are written in mixed differential-difference equation format.

First of all, between sampling intervals the digital computer is effectively

Idle and the continuous part of the system satisfies an equation of the
form
form (t) f t)) gkt))!6wtt) } tk+1 B.4-1)

where xc(t) refers to the continuously varying states in the system, and

i d (t) is a collection of digital states (e.g., states in the digital computer)

which remain unchanged during the sampling interval. Assuming that

the composite state vector, x, defined by

RANDOM DISCRETE RS2INPUT DYNAMICS

CONTINUOUS 01. DIGITAt OL CONTINUOUS

ilDYNAMIC COMPOUTER IDYNAMICS

L . . . ..

Figure B. 4-1 An Example of a Mixed Continuous
Discrete System
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X=

is gaussian with its mean and covariance matrix known at time tk,

then its statistics during the sampling interval can be calculated using

*xd -c~t [i t))+ gd <tk

dt L -d(t)J

L(t) P(t)+ P(t) [

t ,t k :gt < t k+1  (B3.4-2)

where Nf and Ng are the describing function gain matrixes Associated

with f and g respectively. Observe that Ng remains constant throughout

the sampling interval because -Ed is itself constant.

Now, at a sampling interval, tiie digital computer performs a

calculation which can be represented as a difference equation of the form

c (tk+J) 25c (tk+) 1F 0---I-----1--- - + H ---
x (t + 2dt l-)) : kL:dk1( , k I W' I .- j

(B. 4-3)

where the superscrpt (-) denotes the solution to Eq. (B. 4-1) just beforeI the sampling instant and (+) denotes the new values of the state variables

94-
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I just after a sampling instant. The vector -yk+ represents a random

quantity that can enter the digital calculation as a result of instrument

measurement noise. It is assumed that .wk+l has zero mean and
covariance matrix Qk 1l Observe that in Eq. (B. 4-3) - remains un-

I changed-because only the digital states can change instantaneously in

time.

I Because the mean and covariance of x and x at t are
-c -d k+1

known from Eq. (B. 4-2), the describing function gain matrix H cor-

responding to h in Eq. (B., 4-3) can be evaluated. Thus we can rewrite

Eq. (B. 4-3) approximately as

2! (tk+i+) =x (t~-

I (t+ h - (~- ) + !!k+l
H 

(B. 4-4)

I From Eq. (B. 4-4) it follows that the mean and covariance of the system

states just after the sample-time are given by

i(L" =I I (t! 0 I If_ 1h iO
Ii (t +[

I -~tK+1)=L~j k+1 L(tk+1j
+ P(tk+1 ) +.

to (B.4-5)

After evaluating Eqs.(B. 4-5), x (tk+l+) and P (tk+l+ ) are the initial

conditions for propagating the mean and covariance over the next
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sampling interval using Eqs. (B. 4-2). Thus by alternately evaluating the

differential and difference propagation equations, the mean and covariance

matrix of the mixed continuous -discrete nonlinear system car be evaluated.

B. 5 DESCRIBING FUNCTIONS FOR SATURATION AND SINUSIDAL

NONLINEARITIES

Describing functions for the saturation and sinusoidal non-

liniarities in Fig. 2.1-2 are calculated in Ref. 12 for gaussian inputs.

These are shown graphically in Figs. B. 5-1 and B. 5-2. The exact

analytical expressions are as follows:

Saturation

PI- J exp - 2dv (B.5-1)

Sinusoidal

n (a) = Mmem/2 (B.5-2)

Equation (B. 5-1) contains a term, PI (A), which Is the integral of the

gaussian density function, sometimes called a probability integral.

The latter cannot be expressed in closed form. However, an approxi-

mate expression which is accurate to one part in 10- 5 is given by (Ref. 14)

96
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3;3

I ir-1r 7J=1

I+

b = 0./33267 a = -0.1201676
2 ~(B. 5-3)

a1 = 0. 4361836 a3 = 0.9372980

k Equations (B. 5-1) through (B. 5-3) are used to calculate the describing

function gains In the CADET simulation.

I 1.0R-5156a

1 0.9 X

0.78

12X T2 X
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Figure B. 5-1 Describing Function for Saturation
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Figure B. 5-2 Describing Function for a SinusoidI with a Gaussion Input
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