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FOREWORD

'This report completes a broad research pro-
gram innew concepts for guidance and control of tactical
migsiles. Other work performed under this contract is
described in: TR-170-1, ""Adaptive Control and Guidance
for Tactical Missiles'; TR-170-2, "Optimal Stochastic
Guidance Laws for Tactical Missiles'; TR-170-3,
""Adaptive Control with Explicit Parameter Identifica~
tionfor Tactical Missiles". The authors wish to express
appreciation to Mr. David Siegel of the Office of Naval
Research for his encouragement and support throughout
this investigation.
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1, INTRODUCTION :

PO—1 | —"Y

1.1 BACKGROUND *

Previous investigations of homing guidance laws for tactical
missiles have discussed a number of guidance techniques derived using
principles of optimal stochastic control theory (Refs.1-5),which offer
potential improvement over conventional proportional guidance. Inthe past,
comparative evaluations of these guidance laws obtained from computer
simulations have generally been based upon simplified linear models of
guidance system dynamics. It is found that certain frequently neglected
effects, such as limited missile maneuvering capability and dynamic
coupling between the missile airframe and its homing seeker, signifi-
cantly influence missile performance. Although the simplified models
are adequate for obtaining qualitative comparisons of performance for

B N
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different guidance laws, definitive quantitative evaluations require more
accurate mathematical representations of the missile-target engage-
ment situation,

The purpose of this study is to provide comparative perfor-
mance evaluations of several modern guidance laws using a computer
simulation based upon a mathematical ""truth" model of the guidance
system. The mode! includes descriptions of the following critical and

k9
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often neglected missile characteristics: autopilot dynamics, acceleration
limit, homing seeker dynamics, range dependent seeker noise, geomet-
ric nonlinearities, and random target motion. The guidance laws to be
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compared include proportional guidance, optimal linear guidance and op-
timal nonlinear guidance. These laws are derived based upon a simpli-
fied "design' model that neglects many of the above effects; then their
performance is tested in a simulation of the truth model. This deter-
mines the sensitivity of the guidance system to errors in the design
assumptions,

1.2 METHODOLOGY

~Traditionally the analysis of random effects in a nonlinear
system is accomplished using the monte carlo simulation technique.
That is, a large number of sample solutions to the randomly excited
differential equaticns of motion are generated by computer, and ensembie
averages of the variables of interest are computed. Frequently a large
number of trials (e.g., several hundred) are required to obt2in a suffi-
ciently accurate estimate of average performance. This procedure is
quite expensive in terms of computer running time and, for a complex
system, only a few different system configurations can be evaluated
within a limited computational budget.

Recently a new approximate analytical technique has been
developed for calculating the statistics of nonlinear stochastic systems
(Ref. 6). This method, called the Covariance Analysis Describing
Function Technique (CADET), yields good agreement with monte carlo
results and requires significantly less computer running time. The basic
principal of CADET is that the system nonlinearities are linearized using
describing function theory; then the statistics of the resulting linearized
system model are analyzed using covariance analysis techriques., The
saving in computer time arises because only one solution to a matrix

1_2 i 2
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differential (or difference) equation is required to determine the statistics 4
of a given system configuration, as compared with several hundred solu-

et

tions of the system differential (or difference) equations with the monte i I
carlo method. The CADET technique is attractive for analyzing guidance

Horomni)
e

systems because it permits the investigation of several different guidance

r laws over a wide range of values-of the system parameters. Consequently,
the approach taken in this study is to perforim most of the guidance sys- L
tem performance evaluations with a CADET computer simulation, validat- ;3
ing the latter with a monte carlo simulation in a selected number of
cases,

i e

1.3 ORGANIZATION

Chapter 2 of the report outlines the principal features of the
simulation truth model and the guidance laws under comparison. Chapter
3 presents simulation results; a summary and list of the major conclu-
sions are given in Chapter 4. Appendix A provides a detailed discussion
of the system truth model; the theoretical background for CADET is pre-
sented in Appendix B.
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GUIDANCE SYSTEM MODEL

2.1 System Dynamics

The principal elements of a missile guidance system are indi-
cated in the block diagram of Fig. 2.1-1. This section briefly describes

the function of each subsystem, exclusive of the guidance law, and the

features included in the simulation model. The missile guidance law is
treated in Section 2.2. The reader is referred to Appendix A for more

complete details.

MISSILE
r.__......._....._......_.._._........._.._.__._ 28110
COMMANDED
| /ACCEI.ERA'HON l
1. | Guibance N |
> SEEKER > LAW AUTOPILOT }
l 1
0 PARASITIC ATTITUDE LOOP ;
LOS ANGLE
MEASUREIAENT MEASUREMENT | (LOSANGLE | missite-TARGET L., MISSILE ACCELERATION
NOISE i KINEMATICS -
A A
TARGET
TARGET ACCELERATION INITIAL
MOTION CONDITIONS
MISS
DISTANCE

Figure 2.1-1

Guidance System Truth Model with

Major Subsystems
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Seeker— The homing seeker has the function of tracking the
target. Fundamentally it measures the angular position of the line-of=
sight (LOS) to the target relative to the sensor centerline by observing
the direction of electromagnetic energy reflected from the target (as in
a radar seeker) or transmitted by the target (in the case of an infcared
or electrooptical seeker). This measured error signal generally serves
two functions: first, in the case of a gimballed seeker, the error is
used to drive the seeker antenna 8o as to maintain a small tracking error;
this is necessary to prevent losing track of the iarget. Secondly, the
response of the seeker--e.g., its gimbal angle rate, the magnitude of
the tracking error, etc.--ig used to infer the LOS angular rate, or the
LOS angle measured with respect to some reference orientation. Either
of these quantities may be used in the guidance law for generating mis-
sile acceleration commands which direct the missile toward intercept.

The model of the seeker includes the antenna pointing dynamics,
as well as paragitic coupling with the missile airframe. The latter can
arise from an error in the direction of the LOS, as perceived by the
seeker, caused by aberration of the electromagnetic energy as it passes
through the protective covering (radome in the case of a radar) of the mis-~
sile. This error typically depends upon the missile attitude; therefore the
airframe dynamics are coupled to the seeker measurement.

Autopilot — The autopilot refers to the missile airframe
dynamics, together with its stability augmentation system. It can be
viewed as a servomechanism designed so that its output acceleration
follows the input acceleration commands as closely as possible. This
study uses two selectable models for the autopilot--one is a first-order
lag which provides a first approximation to actual airframe response;
the other is a third-order transfer function which more closely represents
the dynamics of an actual airframe. In addition, the autopilot model

9-2 T O
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includes one of the most significant guidance system nonlinearities--an-
input.command limiter which represents the limited maneuvering capa-
bility of the airframe.

Missile-Target Kinematics — The model of the migsile-target

kinematics assumes that the relative closing velocity {range-rate) is con-
stant and that the missile and target accelerations are normal to their
respective velocity vectors. This implies that both velocities have con=
stant magnitude but variable direction. The components of missile and
target acceleration which are normal to the line-of-gight, and which
control the terminal miss distance, are represented as trigonometric
functions of the appropriate orientation angles, This constitutes anothaer
important nonlinearity included in the model.

Measurement Noise — The noise in the measurement of line-

of-gight angle is caused by a.number of different error sources, some

of which are range dependent. Three types of noise are included in the
model: effective receiver noise (decreases with decréasiné range), target
angular scintillation noise (increases with decreasing range), and range
independent noise caused by the seeker servo system and possibly by
amplitude fluctuations in the received signal.

Target Motion — The guidance system model includes a pro-

vigion for a randomly accelerating target. The latter 1s representative
of maneuvers that are constant in magnitude, but switch sign at random
times--gometimes referred to as "jinking'". The random motion is
modeled as the output of a low pass filter driven by white noise; the
latter has the same autocorrelatibon function as the jinking maneuver.

Initial Conditions — A number of initial conditions are specified

in the system model which determine the missile trajectory and influence
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termiral accuracy. These include:

¢ Launch Range

¢ Missile Velocity

o Target Velocity

¢ Missile Heading Error
s Closing Velocity

For this'investigation, most of the above quantities were assigned
nominal values that were held fixed throughout the study.

Mathematical models are developed in Appendix A for each
of the subsystems indicated in Fig. 2.1-1. Figure 2.1-2 provides a
detailed bleck diagram of the complete guidance system. The missile-
target motion is assumed to be restricted to a single plane and the effects
of gravity and aerodynamic drag are neglected. The kinematic variables--
T Ve Vo 92, Ba, 0, az , and a, are defined in Fig. 2.1-3. The quan-
tity kr is a gain representing the aberration error which dynamically
couples the missile airframe motion to the homing seeker. The transfer
function coefficients Ty At’ a4y 2y 2g, bl’ b2, and b3 are assigned
values to yield realistic dynamic characteristics. The switches
S1 and 82 are positioned according to the type of guidance law being
evaluated; their settings are explained in Section 2. 2.

One of the more important autopilot parameters is ag; which
combines with kr in determining the high frequency open loop gain of the
parasitic attitude loop; if the latter is excessively large, system insta-
bility can result. The value of ag tends to increase with missile altitude
because a larger missile angle of attack, and hence a higher transient

pitch rate, is needed to generate a given acceleration as the air density
decreases.
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L @ I Figure 2.1-2 uses Laplace transform notation to indicate

N input-ovtput relations associated with linear subsystems. However, the
: ' T system performance cannot be analyzed in terms of this notation because
: | = of the nonlinearities, a time-varying gain (1 /rtm) and time-varying rms
1 seeker measurement noise. Chapter 3 discusses the methodclogy used
foco- to determine the rms terminal miss distance.

e 2.2 MISSILE GUIDANCE LAWS

The motivation for this study is partially provided by previous

—
o

d work, described in Ref. 7, which investigated optimal stochastic guid-
Lo ance laws in the presence of missile acceleration limiting, using a
| 1 limited number of monte carlo simulations and a simplified system model.
It was determined that under some circumstances an optimal nonlinear
law achkieves as much as fifty percent reduction in the miss distance

achieved with the linear law. The optimal guidance laws, together with
classical guidance methods, provide a hierarchy of techniques that are
potentially applicable for tactical .nissiies, and which need evaluation
using a more realistic system model.

Generalily speaking,the guidance law is thought of as two cas-
caded functions --filtering, or state estimation, and control. The function
of the filtering operation is to obtain estimates of those variables needed
to mechanize the control law. The latter prescribes the acceleration
command 22cording to a policy which will direct the missile trajectory
to intercept the target, The methodology used for designing the various

laws is discussed in Section A.6. Five different laws are considered;
their distinguishing characteristics are summarized in Table 2. 2-1,

ik
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E TABLE 2. 2-1 i
r i
= MISSILE GUIDANCE LAWS
S Identifying Type of 1
A - Symbol Distinguishing Characteristics Filter
7 F=—-___== = == |
- A Proportional Guidance ~ First-Order, 1
2 Low-Pass
ST B Proportional Guidance Kalman |
L - C Optimal Linear Guidance; Kalman
U Accounts for Target Maneuvers
- D Optimal Linear Guidance; Kalman ,
: Accounts for Target Maneuvers ;j
1 Lo and Missile Autopilot Dynamics
F T E Optimal Nonlinear Guidance Kalman §
| ae Accounts for Target Maneuvers
- Migsile Autopilot Dynamics, ’
;o and Missile Airframe Saturation 4
T e

¢

TGS TN Y e\t 9, s

m -, Ry " A oty nrT— "
N o Smitrnay A -y N " =

Law A is simply conventional proportional guidance, preceded
by a low-pass filter to suppress measurement noise in the sensor output, {
é /. For this case switches 81 and 82 in Fig. 2.1-2 are both in position 1,
and the guidance law is mechanized as shown in Fig. 2.2-1, where n’ is
a specified constant navigation ratio and Vo is the missile-target closing
velocity* (range-rate).

Guidance law B uses a Kalman filter to provide an optimal
estimate of LOS angular rate, together with the same proportional

*It 18 assumed that the errors in measuringv , r,_, and a, are negligible.
This is a reasonable assumption in the case of a radar oming seeker.

However, range and range rate are not accurately known in a system
using an infrared seeker.

10
2-1
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guidance law as configuration A. A detailed diagram of the filter is
shown in Fig. A.6-3; it estimates the three state variables y a y d and 2,
assuming that both range (rt m) and missile acceleration* (a z) are known.

These estimates of y d and y qare combined to yield an estimate of A

g B

&

'L according to
bl ] o ? -;
s Y vy ;
T oL, 2 (2. 2-1)
tm Tem
]‘ The switches 81 and 82 (Fig. 2.1-2) are both in position 2and Fig. 2. 2-2 ]

illustrates the mechanization of the guidance law. The Kalman filter is %
inherently a digital processor; therefore the acceleration command is 3
computed discretely, rather than continuously. Observe that the

estimate of target acceleration is not used for control in configura-
tion B, :

o |

Guidance Laws C, D and E are all represented by the diagram i
in Fig. 2.2-3. In configurations C and D, the control laws are chosen to
minimize the perforrance index

t
f
J=1limE {(miss dista.nce)2 +y f ag (t) dt } (2.2-2)
Y0 0

making use of known results from optimal stochastic control theory.
Configuration C minimizes J, neglecting autopilot dynamics, resulting in
Cy= 0, n’ = constant, and Cy is determined as a function of target band-
width (At) and time-to- go until intercept (tgo). Configuration D is derived
including a first-order model of autopilot dynamics having bandwidth Am;
for this case cq is the same as in law B, whereasn’andc 4are both functions

*See footnote on page 2-7
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of )‘m and t Both laws C and D are optimal linear guidance lawd; the

go’
principal difference between them is that in law D, n’ increases with

decreasing range and becomes very large near intercept to compensate
for the effective lag in missile acceleration caused by the dynamics of the
missile-autopilot combination.

Configurat..n E is designed to minimize
J=E {]miss distance |} (2.2-3)
subject to the explicit constraint

la,|=a

max (2.2-4)

Because the limit on missile acceleration is accounted for in the prcblem
formulation, the resulting optimal nonlinear guidance law differs from
those described previously. The mechanization takes the same form as
that in Fig. 2.2-3; the only difference is the manner in which n’ is com-~
puted. Typically, the value of n’ is much larger than for guidance law D

over most of the trajectory, as indicated in Fig. A.6-4. This is explained by

the fact that between seeker measurements, guidance law E attempts to

completely null the predicted miss distance before the next seeker measure-

ment is processed. By contrast, the other guidance laws effectively only
attempt to reduce the predicted miss distance at each stage. This law is
useful in the sense that it provides a lower bound on the miss distance that

can be achieved, for the assumed airframe, seeker noise, etc.

The computational requirements of guidance laws B, C, D, and
E are primarily dictated by the Kalman filter. In Section A.7 the follow-
ing conservative estimates of storage capacity and processing time per

meusurement cycle are obtained for a typical existing digital mini-
computer:
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Storage = 600 words
Processing Time = 0,01 sec

The storage requirement is well within the memory capacity of modern
lightweight computers, and the processing time is sufficiently small to
achieve good missile control. Therefore, these guidance laws are judged
to be potentially suitable for mechanization in tactical migsiles, provided
their performance is suificiently superior to conventional laws to justify

the cost of the computer. The issue of performance is treated in Chapter 3.
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3. GUIDANCE SYSTEM EVALUATION

3.1 EVALUATION PROCEDURE

The Covariance Analysis Describing Function Technique
(CADET) is a powerful new apﬁroximate method for analyzing the statis-
tical behavior of nonlinear stochastic systems, particularly for develop-
ing performance sensitivity curves (Ref, 6). Its advantage lies in the
fact that mean square values of system state variables for a given system
design can be determined from one solution of a matrix differential (or
difference) equation. By contrast,many solutions of the system equa-

tions of motion are required to analyze statistics by monte carlo tech-
niques.

The guidance system model displayed in Fig, 2.1-2 has a
mixed continuous-discrete character in che sense that the optimal
guidarce laws discussed in Chapter 2 process data at discrete times
whereas the seeker, misgile, and airframe equations of motion are
described by differential equations. Appendix B presents a detailed ex-
planation of how CADET is used to analyze such a system; the principal
steps to b2 followed are summarized below:

o Replace each nonlinear element by its correspond- ,
ing random input describing function gain, based :
upon an assumed probability density function for
the input to the nonlinearity.

e Using the resulting linear system model, employ
conventional covariance analysis techniques to
propagate the statistics of the system state vec-
tor--i.e., its mean and covariance-~recognizing
that the describing function gains are functions of
those statistics.

15
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e Compute the rms miss distance at the intercept
time from the elements of the system covariance
matrix.

Typically, the input to each nonlinearity is a state variable that
is assumed to be a gausgian random process. The gaussian assumption
is based upon the fact that the system state variables tend to be a super-
position of past values of both the nonlinearity outputs and various random
system inputs. Thus, in the sense of the "central limit theorem" (Ref.
8), the probability density function for the system state variables tends
toward the gaussian form, regardless of the densities of individual random
events. Of course, this assertion is only approximately valid; the extent
to which it holds depends upon the amount of low pass filtering in the sys-
tem, the number of nonlinearities, and the bandwidth of the random inputs.
To avoid actually calculating the required probability density function, a
task at least as time-consuming as performing monte carlo simulations,
the gaussian assumption stated above is imposed at the outset. Its validity
for a specific system is investigated through comparisons with selected
monte carlo results.

The two nonlinearities associated with the guidance system
investigated in this stﬁdy are the saturation and sine functions shown in
Fig. 2.1-2. The corresponding describing function gains are computed
as functions of their input statistics in Section B.5.

In all the cases treated here, the mean value of the system
state vector is zero; hence we are concerned only with the propagation
of the system covariance matrix according to the procedure described in
Section B. 4, and calculating the rms miss distance. The latter is given
by the rms value of y d (Fig. 2.1-3) at the intercept time. The next sec-
tion gives comparisons of guidance law performance for a range of
representative system parameter values.

3-9 ... 16
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3.2 SIMULATION RESULTS

In order to compare the performance of the guidance laws
listed in Table 2. 2-1, nominal values were chosen for the missile~target
engagement initial conditions, and for the parameters of the model in
Fig. 2.1-2, These quantities are listed in Table 3.2-i. All exceptions
to the nominal conditions are explicitly stated in the subsequent dis-
cussion.

I

Cbserve that the-autopilot parameters are chosen to yield
first-order dynamics with a 0.1 sec time constant (10 sec -1 bandwidth).
The seeker noise levels selected represent an angular measurement
error of about 0.7 mrad at a missile-target separation of 10, 000 feet.
The missile-target initial conditions yield a nearly head-on intercept
trajectory. .

v

To determine the validity of CADET as an analysis technique,
the rms miss distance was computed using both monte carlo and CADET :
techniques for selected trajectories. Results are shown in Fig. 3.2-1 o
for conventional proportional guidance (Law A), as a function of the mis-
sile acceleration limit; other off-nominal conditions are stated in the
figure. ‘The monte carlo points are obtained from 200 missile trajectory
simulations. The dashed line represents the value of rms miss which
would be obtained from a linear covariance analysis that neglects all the
nonlinear effects.

Evidently, the discrepancy between CADET and monte carlo
results tends to increase as & ax decreases. Thig is to be expected
hecause the system nonlinear behavior becornes more pronounced as
2 ax decreases and CADET, being an approximate method for analyzing
nonlinear systems, will tend to have larger errors. However, the fact
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TABLE 3..2-1
NOMINAL CONDITIONS

Nominal Value
Quantity ’ | Specification
| e 7
a 0
V22 0
Autopilot Parameters by 0.1 sec
by 0
bg 0
Target Maneuver Bandwidth, A, 0.2 sec™] 5
rms Target Acceleration, A 300 ft/sec2
Missile Acceleration Limit, 8 o - 800-ft/sec
Seeker Time Constant, 1 0.1 sec
Radome Slope Parameter, k, 0
Guidance Navigation Ratio (Laws A, B, and C only), n’ 3
Launch Range 24,000 ft
rms Heading Error 0.15 rad
Closing Velocity (assumed constant) 4000 ft/sec
Target Velocity 1000 ft/sec
Interceptor Velocity 3000 ft/sec
Receiver, g_/r 4x10°8 gt
Noise Parameters{ Scintillation, og¥ 4 fi‘:1
Range Independent, ¢ 4x10 " rad
18
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SR ¥
’?F I that CADET captures the major effect of the nonlinearity, and gives ?
i I accurate results when the system is moderately nonlinear--e.g., when i
) E ' 8 ax = 200 ft/sec? in Fig. 3.2-1--makes it a valuable technique for -
) 3 ] i comparing different guidance system designs. :
i | - q
: The justification for using CADET lies in the time saving ; ‘f
g I realized relative to the monte carlo apprcach. The monte carlo points J
. in Fig. 3.2-1 each required 720 seconds of computer time; the correspond- .
i I ing values: from the CADET results each require 25 seconds of computer E
' .
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time. Thus many more parameter studies of a nonlinear guidance
system can be achieved with CADET, for a given computational-budget.

All five guidance laws are compared in Fig. 3.2-2 over a
range of values for the target maneuver bandwidth.* In order that Law
A (proportional guidance) be fairly compared with the others, its filter
time constant, To in Fig. 2.2-1, is optimized to yield the lowest value
of rms miss distance for each value of At‘ The dispersion between the
various laws generally increases with At' However, the major improvement

-over conventional proportional guidance is achieved throughuse of Law C,

which adds a control gain to account for target maneuvers. Some addi-
tional improvement is achieved by accounting for missile autopilot
dynamics (Law D). Guidance law E provides a lower bound on the
achievable miss distance, neglecting the effect of the kinematic sine-
function nonlinearities in Fig. 2.1-2. (The latter are included in the
truth model but not in the design model.)

Observe that there is no appreciable difference between the
performance of Laws A and B, although Law B should be superior because
it employs a Kalman filter to estimate line~-of-gight rate. This is ex-
plained by the fact that most of the miss distance associated with pro-
portional guidance law is caused by target maneuvers, rather than hom-
ing sensor measurement noise. This is illustrated in Fig. 3.2-3 for a
case with no target maneuver and larger noise levels. Evidently the
miss distance achieved with the Kalman filter is about half that achieved
with an optimized first-order filter. However, this difference is not

*Guidance Laws B through D listed in Table 2.2-1 depend upon knowledge
of the bandwidths of the target maneuver O‘t) and the first-order design
model for the autopilot O‘m)' Unless otherwise stated in the following

discussion, it is assumed that these quantities are equal to the values
assumed for the truth model; i.e., the optimal guidance laws are
matched to the truth model.
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3 ; - significant at the nominal noise levels, when targst maneuvers are also
. * e present. :
% : a Another aspect of the comparison in Fig. 3.2-2 is the fact
4 ~ that Laws A, B and C have constant navigation ratios, whereas those ‘
f : s associated with D and E are time-varying. The performance of the ‘ ;
D .- " first three laws can be improved if their associated values of n’are ,

. optimized, in the same fashion as the filter time constant associated b
; with Law A isoptimized in Fig. 3.2-3. This is demonstrated-in Fig. jj
Lo 3.2-4 for Law B, Generally, n’ should be larger than the value thres, o
f - which is obtained in Section A.6, assuming no target acceleration and ;
: - neglecting autopilot dynamics, to compensate for target maneuvers and " I
E‘“* & - autopilot dynamies. ; d
L Figure 3.2-5 displays guidance law performance as a function z

,, of missile maneuver capability*. As 2 nax approaches the target rms , ”
[ ; - acceleration level (300 ft/secz), Laws C, D, and E offer marked improve- §

T oae ment over proportional guidance (Law B). In addition, the dispersion i
F~ " - between D and E increases; this is attributable to the fact that Law E ?
| L .; explicitly accounts for the acceleration limit whereas D does not. Hence } ’4
3 f( the former offers greater improvement over the latter as acceleration ,

g saturation becomes more pronounced; this effect is also observed in } 4

% Ref. 7. B

" The influence of the missile autopilot time constant on miss

distance is demonstrated in Fig. 3.2-6. As the latter gets larger, Laws
D and E, which explicitly account for autopilot dynamics, offer signifi- ]
cantly better performance than Laws B and C. This is primarily

R g
- A

- —
PSS Bl <

¥Law A is omitted from this and further guidance law comparisons on
the basis that it yields performance quite close to Law B when its filter
time constant is optimized (see Fig. 3.2-2) at the nominal noise levels.
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Figure 3.2-6 Guidance Law Performance versus Missile
Autopilot Time Constant

attributed to the large values of n’ (see Fig. A.6-4) used in Laws D and
’ E over portions of the migsile trajectory.

Figure 3. 2-7 compares the performance of Laws B, D, and E
as a function of target acceleration. Ordinarily one might expect the
miss distance to increase more rapidly with target acceleration than
these curves indicate. This is explained by the fact that the target
trajectory turns, while evading the missile, so that the component of its
lateral acceleration normal to the line-of-sight is reduced. The greater
the target acceleration, the more its trajectory turns and the greater the
reduction in its effective maneuvering acceleration, normal to the LOS.
In the limit when the target's acceleration becomes directed along the 1
line-of-sight, it will have little influence upon miss distance. Thus, the
curves in Fig. 3.2-7 tend to level off at large maneuver levels, This
behavior is captured by the kinematic sine-functions nonlinearities shown
in Fig. 2.1-2; it would not be visible in a purely linear system analysis. , i

-
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Figure 3.2-7 Guidance Law Performance versus
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In all the cases treated thus far, the design of guidance Laws
D and E is matched to the truth model representation of missiie dynamics,
except for the kinematic nonlinearities mentioned above. An important
issue remaining to be investigated is the sensitivity of guidance law per-
formance to variations in missile paré.meters from their assumed values.

Recall that one of the potentially important effects is autopilot-
seeker coupling through the seeker aberration effect. This is represent- ”
ed in Fig. 2.1-2 by the constant k, which has heretofore been chosen as %
zero. Figure 3.2-8 illustrates the effect on guidance system performance

3-11 25
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when kr is nonzero. For this case, the parameters a5 g bl’ b2’ and
b3 are selected to yield autopilot poles at -1 rad/sec and -7.5 +j15 rad/
sec, and zeros at * 20 rad/sec. The design model for Laws D and E
assumes the autopilot is first-order with time constant (Tm) equal to 1
sec. The value of ag is chosen to be representative of high altitudes,
where autopilot seeker coupling is most pronounced. With the exception ;
that here kr # 0, the above conditions are nearly the same as those in
Fig. 3.2-6 when the autopilot time constant = 1.0 sec. Figure 3, 2-9
displays the sensitivity to kr for another case where the dominant auto-
pilot pole is 3.3 rad/sec.

Gmed  EB—i B—i

As kr increases, the performance advantage of Laws D and E
deteriorates relative to Laws B and C. This is attributed to the fact that
the high value of n’ associated with Laws D and E is incompatible with

v
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A ‘L the parasitic attitude loop in Fig, 2.1-2, because the latter is not

accounted for in the derivation of the guidance law. Generally kr may

be an unknown, even time-varying quantity, so that it cannot be accounted
for exactly. Consequently, some degradation in the performance of the
"high-gain' guidance laws will be experienced in situations where the
effect of k r is important--i.e., at high altitudes. The performance of
Law E tends to degrade more rapidly than the other guidance laws
because of its relatively large navigation ratio (see Fig. A.6-4)., Itis
the most sensitive to errors in the design assumptions.

Finally, the sensitivity of guidance law performance to an error
in knowledge of the dominant autopilot time constant is shown in Fig,
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L
I 3.2-10 for Laws D and E. The actual time constant is 1 sec, corres-
SR ponding to the conditions at the right hand side of the graph in Fig. 3.2-6;
i the design value of the autopilot time constant (r m) is varied over the
b range indicated on the absciggain Fig. 3,2-16. When the design value of
PR Tm is one, both laws E and D are matched to the autopilot and law E has
L the best performance. When r # 1, Law E degrades more rapidly than
C L Law D because of its larger navigation ratio,
]
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4, SUMMARY AND CONCLUSIONS

4.1 SUMMARY

This report presents comparisons of performance for the
guidance laws summarized in Table 4.1-1 and derived in Appendix A.
Each law is evaluated in a guidance system rnodel that incorporates sig-
nificant linear and nonlinear dynamic effects. These include the follow-
ing missile characteristics: homing seeker noise, homing seeker
dynamies, autopilot dynamics, maneuvering acceleration limit, parasitic
autopilot-seeker dynamic coupling, random target accelerations, and
nonlinear missile-target geometric effects. The rms miss distance
achieved with each guidance law is calculated using a recently developed
analytical procedure for determining the statistical properties of non-
linear systems--the Covariance Analysis Describing Function Technique
(CADET). The latter achieves a good approximation to monte carlo
results, and offers the advantage of requiring significantly less compu-
tation time.

- TABLE 4.1-1
MISSILE GUIDANCE LAWS

Guidance Type of
Laws Distinguishing Characteristics Noise Filter
A Proportional Guidance First-Order,
Low-Pass
B Propertional Guidance Kalman
C Optimal Linear Guidance; Kalman
Accounts for Target Maneuvers
D Optimal Linear Guidance; Kalman

Accounts for Target Maneuvers
and Missile Autopilot Dynamics

E Optimal Nonlinear Guidance; Kalman
Accounts for Target Maneuvers
Missile Autopilot Dynamies,

and Missile Airframe Saturation
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4.2 CONCLUSIONS

-
-2 *
™

The principal conclusions of this work are as follows:

2—i

Conventional proportional guidance using a first r
order filter (Law A) is adequate for nonmaneuver-
I ing targets and moderate homing sensor noisé :
levels. The migs caused by large noise levels '
can be reduced by as much as 50 percent using

"y a Kalman filter (Law B) to process seeker meas-
urements.

e Guidance LawC generally offers the biggest
relative improvernent over proportional guidance

- against maneuvering targets, provided the mis-

J sile autopilot time constant is small (< 0.2 sec).

» Guidance Laws Dand E are significantly better
than LawC when the missile autopilot time con-
s stant is large (> 0.2 sec).

ik tita
L

T

e Laws D and E are sensitive to errors in the
design assumptions about the missile autopilot
dynamics; LawE is most sensitive because of its -
relatively large control gains. 5

e The principal computational burden imposed by
the optimal guidance laws is associated with the
Kalman filter, The storage capacity and meas-
urement processing time needed to mechanize
the filters are conservatively estimated at 600
words and 0.01 sec, respectively. These require-
ments are compatible with modern airborne-~type
computers.

o CADET is found to be a useful technique in
analyzing guidance system performance. The
saving in computer time over 200 run monte
carlo analysis is about 30:1 for the system
model used in these studies.

—t k1

4 4 i

The above conclusions, together with the quantitative performance
resuits provided in Chapter 3 will provide a basis for choosing among
optimal guidance laws in particular applications.
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APPENDIX A
TRUTH MODEL DEVELOPMENT

A meaningful comparison of homing guidance systems for tac-
tical migsiles requires realistic models for the missile and its target
engagement geometry model in order-to accurately evaluate terminal miss
distance. This riodel should include the important dynamics and system
nonlinearities which influence performance, and yet be representative
of tactical missiles in general. A system truth model that satisfies these
requirements is developed in this appendix. The various modules dis-
cussed in subsequent sections are based on the functional diagram in Fig.
2.1-1, It should be noted at the outset that the model developed herein
assumes that the target and missile motion are constrained to a plane.
Consequently, development.of the missile and guidance models is limited
to a single channel.

A.1 SEEKER MODULE

The function of the seeker subsystem is two-fold; it provides

the measurements of target motion required to mechanize the guidance

law, and it tracks the target with the antenna or energy receiving device. *
The typical seeker hardware consists of two or three gimbals on which
are mounted gyros and an antenna. Associated with each gimbal is a
servomechanism which is used to adjust its angular orientation in res-
ponse to the tracking error signal measured by the radar receiver,

(Only one gimbal and its associated dynamics is required for the planar
motion model.) It should be noted that there are also body mounted
antenna systems which do not use moveable gimbals to position the anten-
na. These systems use either a fixed antenna position relative to the
missile or clectronic beam steering by means of a phased array (radar)
antenna. These configurations are rather atypical of tactical missiles
and will not be specifically considered, although the use of electronic

*Generally we shall use the term "antenna' to refer to any type of energy
collecting device--radar, infrared, or optical.
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beam steering is in many ways analogous to the gimballed system as far
as the resulting guidance system operation is concerned.
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Seeker Meanurement Geometry The fundamental measure-
ment obtained from the homing sensor receiver ig.assumed:to be the
indicated angular position of the target relative to the antenna center-line
or boresight, The guidance laws considered in this report require line-
of -gight -(LZOS) angle or LOS angular rate as the fundamental méagurement
for termiral giiidance. Illustrated in Fig. A.1-1, the LOS angle, 6, is
the angle between a line from the ¢énter of the seéker antenna to the
target, and some arbitrary ndns-i'otating reference line. It is convenient
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— g dF - “to-gelect this reference equal to the LOS position at the beginning of the
3 -g- homing guidance phase. Consequently, 6(t) at time t is the total change
B in the angular position of the LOS relative to the initial LOS.

: j u The angular position of the missile body center line, § m’ is

measured relative to the initial LOS as shown in Figure A.1-1. The
angular position of the antenna centerline measured relative to the body
centerline is defined as eh in Figure A.1-1. Therefore, 6 is given by

R e

6 =86, +0 +¢€ (A.1-1)

Alternatively, by writing Eq. (A.1-1) as

? O
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€=6 - Gm - Gh (A.1-2)

we obtain an expression for the true boresight error. It is important to
note that boresight error is a function of both the missile attitude relative
to inertial space and the angular position of the antenna relative to the
missile center-line. Since 8 or6 is the desired measurement for

guidance purposes, it is necessary to remove migsile motion from the
LOS measurement data.
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One requirement on the seeker system is to keep the antenna
pointed at the target so that ¢ is always much smaller than the beam
width of the received energy. In the region of small ¢, the seeker re-
ceiver measurement of indicated boresight error is nearly linear. How-
ever, if ¢ cannot be considered smell relative to the antenna beamwidth,
the receiverboresight-error processor operation maybecome nonlinear, as
illustrated in Fig. A.1-2. Infact, if ¢ is allowed to approach the half
beamwidth of the antenna, the receiver detection eircuitry will at some
point loose lock and all guidance information will be lost. Therefore,
the seeker must track the target sufficiently closely so that large bore-
sight errors do not occur. Otherwise the nonlinearity of the boresight
error position should be considered as an important system nonlinearity.
Since the actual form of the boresight error processor nonlinearity is
strongly dependent on the specific beam width, processing scheme (mono-
pulse radar, c.w. radar, etc.) and detector characteristics of indivi-
dual systems, it will not be included in the general system model for the
current study. It will be assumed that the beam width and the tracking
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“ Figure A.1-2 Signal Processing Nonlinearities

L response of the seeker are adequate to keep the boresight error pro-

cessor in its linear region.

Aberration Error — The aberration angle error is the result of

l The size of this measurement error, e,r, depends on the orientation of the

' e nonlinear digtortibné in the received energy as it passes through the pro-
tective covering (radome in the case of a radar homing sensor) over the
I . antenna. This distortion produces a false boresight error signal, ¢/,
which is interpreted as an error in the angular position and motion of the
i target by the guidance package. Referring to Fig. A.1-3, the indicated
boresight error in the presence of aberration angle, er, is given by

€’=06+6,-6, -0

m "~ % (A.1-3)

antenna with respect to the antenna cover, which is fixed to the missile

airframe. This dependency of 6 p o0 em couples body motion into the bore-

sight error signal, thus forming what is called the "parasitic attitude loop".

The latter can drastically alter missile response characteristics and in

’ turn increase miss distance. This is particularly true at high altitudes

ﬂ%f 1 where the missile body motion tends to be greatest. (This effect is dis-
cussed more fully in Section A. 3).
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Figure A.1-3 Effect of Aberration Error

The aberration angle error can be a nonlinear function of
several factors: the angle between the missile center line and the LOS to
the target (look angle)-as illustrated in Fig. A.1-4; the thickness dis-
tribution, material, shape, and optical or electrical properties of the
antenna cover; frequency, and polarization of the received signal; manu-
facturing tolerances; erosion of the surface during flight. Therefore, an
accurate model may require a nonlinear, time-varying statistical charac-
terization of the radome. However, since these characteristics tend to
vary over rather wide limits depending on the particular application and
missile configuration, a constant aberration error slope model is used
to capture the important body coupling effect, consistent with the desire
for a general system model.
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R-7151
ABERRATION
ANGLE
| for, ias ancie
LOOK ANGLE
{ 8- 9,“)
ke
EPROR
SLOPE

Figure A.1-4 Typical Aberration Angle Error as a
Function of Look Angle

A linear model for the general aberration angle characteristic
given in Fig. A.1-4 is obtained from a simple Taylor series approxima-
tion

6. =64 +(8-6)k (A.1-4)

m r

where k r is the error slope and erb is a bias angle. Substituting Eq.
(A.1-4) into Eq. (A.1-3) for ¢’ yields

G, B (1 + kr) (9 = em) + Grb - Gh (A, 1"5)

The boresight error bias will be assumed negligible relative to other sys-

tem errors. There also is a possible contribution of the aberration error

to measurement noise when the frequency of the received signal is varied in

A-6 . 36
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a pseudo-random fashion to reduce the effect of a potential enemy jammer,
e.g., when the seeker i8 an active or semiactive radar. This noise is

==t

simply treated as a contributor to range independent noise (Section A.2).

[
| Sty

Seeker Track and Stabilization Locps — The assumed configura-
tion for the-seeker is illustrated in Fig. A.1-5. The indicatedboresight
error , ¢’, is'scaled by 1/7,,which forms the desired rate command to

b

the stabilization loop. (Although an actual system requires the imple-
mentation of two or three channelsto-account for motion in three dimen-
sions, only one channel is required for the:planar intercept model con-
sidered herein,)
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The stabilization dynamics are comprised of the gimbal servo
and rate gyro (mounted on the antenna) and typically have very wide band-
width; e.g., greater than 100 rad/sec. The track loop model has simple
first-order dynamics; it commands a gimbal rate proportional to the
measured boresight error. The loop attempts to drive the boresight
error to zero, thereby causing the antenna to track the target., itis
straightforward to show that the linear transfer function from 6 to ¢’ --
assuming unity gain for the antenna cover, the signal processor, and the
stabilization dynamics -- is

Bomaa

¢/ T

] 1+ s'rl

(A.1-6)

Therefore, at low frequencies (w < 1/7-1)‘, the indicated boresight error

is proportional to the LOS rate. The latter is the desired measurementfor
classical proportional navigation guidance,which commands a missile
lateral acceleration proportional to the LOS rate.

1l

It was assumed in the above development of the seeker opera- '
tion that the boresight error processor nonlinearity illustrated in Fig.
; A.1-2 could be neglected. Equation (A.1-6) provides an indication of the
important region of boresight error linearity. Using the fact that ¢/ is
proportional to @ in steady state for a constant §, we obtain the follow-

3.- 3 I'4 .
g expression for ¢ max'

(A.1-7)
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If 7, is sufficiently small, ¢ can be held within the linear range of
the received beamwidth. The resuiting seeker block diagram with the
linear aberration error model is giveh in Fig. A.1-6.

The importance of the aberration angle error slope, kr" is
illustrated by the linear, continuous transfer function relating 6 m to 6’
in Fig, A.1-6, The latter is given by

-k

8’ r
o - (A.1-8)
9m {1 +718)

Thus the measured LOS rate is corrupted by a term proportional to body
rate. Since body rate is a result of commanded acceleration, a loop is
formed which can have a destabilizing effect on missile attitude and in-
crease miss distance. Note that when k,, is zero, the contributions from
the body angular rate input in Fig.A.1-6 cancel, producing no effect on ¢’,
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Figure A,1-6 Seeker Model with Track Loop
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LOS Angle Measurement — Although classical proportional
guidance uses measurements of LOS rate, it is more convenient to use
mezsurements of LOS angle in guidance laws that utilize a Kalman filter.
To obtain the latter, we define the measured LOS angle, 8, as b

. 8’ = (1+kp) 6-k, 0, (A.1-9)
= Then from Fig, A.1-6 it follows that )
‘ ‘ X , T8 e’
Lo
I Since the boresight error is an observable quantity, Eq. (A.1-10) can be
’ inverted to yield
; I 1 +87y J
‘ 8’ = €’ (A.1-11) i
7,8
3l
' That is, 6’ can be recovered from the measured seeker boresight error. .

This is represented in Fig. 2.1-2 by direct pickoff of 6°.

A.2 NOISE MODULE

As indicated in Section A.1, LOS angle is the fundamental
quantity measured by the Seeker Module. These measurements will ]

- s — r .
s
— S K A Sy rr—————

generally be corrupted by various types of noise which can be categorized : n
according to the dependency of their rms levels on the missile-to-target
range. The actual noise levels and bandwidths are dependent on the
exact form of the measurement signal processor, target configuration
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2
ua and characteristics,environmental conditions and a multitude of related
- system effects. However, using measurements obtained from actual
| e hardware or mathematical models, most of the observed measurement
- noise can be lumped into cne of three assumed forms: receiver* noise,
] - range independent noise or angular scintillation noise.

e Receiver Noise — Receiver noise consists primarily of thermal

noise generated by the antenna and receiver electronics on board the
o missile. The effective amplitude of this noise increases with increasing
range because of the corresponding decreasing signal-to-noise ratio.
There are in general three types of missile receivers which can be con-
sidered:

- Passive — Target supplies radiated signal

Semi~Active ~ Target is illuminated by a source
which is not on board the missile

-1

¢ Active ~ Target is illuminated by source on
board the missile

The receiver will generally include some type of automatic
gain control which attempts to keep the receiver signal power nearly
constant. As a result, the effective noise level will change with received
signal power relative to some reference level. A normalized angular
measurement noise model will be defined which uses the variance (or t
power spectral density) of the indicated boresight error, measured at 4
range that yields a signai-to-noise ratio of unity as the reference level.
The resulting expressions for the variances of the effective noise on the
LOS angle for the three Lypes of receivers are:

*Again, the term receiver can refer to any type of homing sensor.

=Ty

A-11 "
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where:

All three types of receiver noise exhibit the characteristic of increasing
variance with increasing range. Also, note that the passive medel is not 4
dependent or. the effective target crossection since the energy received A

by the missile is direct radiation and not the result of reflected energy.

Passive
2
2 o 2 {Im
r p \ T,
Semi~-Active
r, T 2
2 _ 2 tm'it) °0
r “%raa P) o
Iy t
Active
4
o2 =g2 [Ltm)
by ra 1‘0 o't
Tiy = missile~-to-target range
Ty = illuminator-to-target range
r, = range at which S/N=1
crf,p = passive noise variance at S/N =1
“isa = gemi-active noise variance at /N =1
ofa = active noise variance at S/N=1

o = effective target crossection

oy = reference target crossection

(A.2-1)

(A.2-2)

(A.2-3)
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Often the illuminator to target range for a semi-active radar
is nearly constant; in this case the semi-active noise variance will have
nearly the same variation with Ty 38 the passive noise for a given
target crossection. Since most tactical misgsiles tend to be passive or
semi-active, the passive noise model will be used in the truth model.

The noise bandwidth is dictated by the post-detection bandwidth
of the receiver which in general tends to be much larger than the signal
bandwidth. Consequently, it can be assumed that the noise is "white"
over the signal spectrum of interest without loss of generality. In the
case of a sampled data system, errors in the sampled and held values of
LOS angle are assumed to be uncorrelated from sample to sample. If it
is assumed that the receiver has a double-sided square spectrum A £ Hz
in width with a constant noise power spectral density of ap radz/Hz,
the variance of tr{e noise is simply

o2 = 4 A, (rad®) (a.2-4)

If the receiver output is sampled and held with a sample period
of 7 sec, where 7 g is much larger than 1/Af, resulting in independent
noise samples, the output noise spectral density, dg has a low frequency
level of approximately

2
2 rad
Gg = dp Af"'s =0,Tg ( o ) (A. 2-5)

Assuming that the bandwidth of the signal is smaller than the sampling

frequency, Eq. (A.2-5) yields the level of the equivalent white noise
spectral density.

Range Independent Noise .. Range independent noise is a collec-
tion of all noise sources which contribute a constant rms error in the
measurement of LOS angle throughout the flight. Typical sources include

A-13 ._. 43
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servo noise generated by -the seeker servo, and target amplitude scintilla-
tion noise. It will be agsumed that the noise is aiso white over the
receiver bandwidth, and the preceeding discussion of bandwidths and
sampling is applicable, The variance of the range independent noise is
defined as o°. |

Angular Scintillation Noise - Angular scintillation noise is
caused by the wandering of the apparent centroid of radiation across the
visible surface of the target. Although the magnitude of the wander is
essentially range independent, the equivalent noise on the LOS angle
measurements increases as range decreases, resulting in a measurement
noise variance of

9
o

og - (A. 2-6)
rtm

where

°3vd = variance of the apparent wander distance
Total Measurement Noise The total measurement noise

variance is the sum of the variances of the individual uncorrelated noise
components,

2 2 . 2 2
g =0p *0 +0, (A.2-7)

c
As previously noted, receiver and range independent noise are generally
assumed wide-band relative to the guidance system bandwidth. Angular
scintillation noise is in general a narrow band source and is often modeled
aS white noise through a low pass filter with a time constant which depends
primarily on the target motion spectrum. On the other hand, if for a
radar seeker the radar frequency is changed in a pseudo-random manner
from sample-to-sample so as tc reduce the ability of the enemy to jam

A-14 T 44
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. the missile receiver, then the apparent centroid of target radiation will
tend to be independent from sample-to-sample. It will be assumed.that
all three noise sources are independpnt and wide-band relative to the
guidance ,sgstem bandwidth.
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T A.3 AUTOPILOT MODULE

The function of the autopilot subsystem is three-fold; it provides:
— the required missile lateral acceleration response characteristics, it must

f ; stabilize or damp the bare airframe, and it reduces the missile perforin-
b i ance sensitivity to disturbance inputs over the required flight envelope.
-4
r The autopilot configuration illustrated inh Fig. A.3-1 uses
“ } accelerometer feedback so as to control the lateral acceleration of

the missile. Lateral acceleration control is used in accordance with the
proportional navigation guidance iaw which requires a missile lateral
acceleration proportional to the measured missileto-target line-of-sight
rotation rate. The body mounted rate gyro senses body attitude rate,
bm’ which is used by the autopilot to increase the effective damping ratio
of the airframe short period poles.

The aerodynamic characteristics of the missile airframe are
an integral part of the autopilot design and operation. Therefore, the
design of an autopilot ﬁmst be tailored to each individual missile airframe
configuration and its associated aerodynamic characteristics, which are
nonlinear functions of missile velocity, angle-of-attack, control surface
deflection and altitude.

It is standard practice in the design of missile autopilots to
utilize the linearized second order airframe model given in Chapter 8 of

A-15 ' : 45
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Figure A.3-1 General Missile Autopilot Configuration

Ref.5. The required stability derivatives are obtained from the non-

linear moment and force coefficients-by making the following assumptions:

Constant missile velocity

Body lift force is a linear function of the change in angle
of attack, o, about some trim condition, L

Constant altitude
Constant center of pressure
Fixed missile mass and inertia

Control surface lift.-force is a linear function of control
surface deflection angle, 6, andindependent of .

Although the above assumptions:-appear to be rather restrictive, they
simplify the autopilot design task considerably. Practical experience has
shown that the resulting autopilot response characteristics with the

A-16 .. 46
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nonlinear airframe, are closely approximated by the linearized response
characteristics near the given nominal conditions, for a properly designed
¥ autopilot. In this report, a realistic autopilot model is developed v.hich

!

[T —
[ T

=

. b requires knowledge of very few specific aerodynamic parameters, yet its
e response characteristics are easily related to the important missile aero-
b dynamic properties.

Acceleration Command Limiting — The most important nonlinear

characteristic associated with the :airframe is acceleration saturation,
which occurs when the missile attempts to pull a large angle of attack. It
is desirable to avoid a large angle of attack since the associated drag
results in a rapid loss of missile velocity. There is also the airframe
structural limit which must not be exceeded. It is common practice to
limit the commandéd lateral acceleration so as to prevent both angle-of-
attack saturation and structural failure. Therefore, autopilot command
limiting is assumed to be the dominant nonlinear effeét and all other non-
s linear characteristics such‘.as actuator angle and angle rate limiting,
aerodynamic nonlinearities, instrumentation nonlinearities, etc., are
assumed to be secondary or equivalently represented as acceleration
limiting, or as changes in autopilot dynamics. The resuiting model is
simple and generally applicable to a wide range of missile systems, and
caprures what is known to be a dominant nonlinear system characteristic
and an important factor in miss distance performance--lateral accelera-
tion saturation.

s B et |

>

ision)

Linear Autopilot Response Characteristics — Using a linearized
airframe model (Ref. 5), the closed loop transfer function for the general
autopilot configuration of Fig. A.3-1 can be developed for specific gains
and compensation, an example of which is given in Fig, A.3-2. The linear-
ized airframe transfer functions, as given by Eq. (8.1-1) of Ref, 5, are:

v, _‘.‘ ,Y ,
-2 ' - <
- \"

.49
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2 2
Gy =5 =k (1+818+&28 )/A (A.3-1)
2
G2a= T £ G1 (A.3-2)
Gy = .3“1 =kg (1+a,8)/a (A.3-3)
2¢ 2
A =1+ 2354+ 5 A.3-4
w, Z:' ( )

R-8043

Figure A.3-2 Linear Autopilot Block Diagram
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where
w, = bare airframe natural frequency
Ea = bare airframe damping ratio
a, = developed lateral acceleration
a, = measured lateral acceleration
6, = body attitude rate

-6 = control surface. deflection -

transfer function parameters obtained from
linearized aero-data and given in Eq. (8.1-8)
of Ref, 5.

._“”
1}

The G2 transfer function in Eq. (A.3-2) will be assumed equal
to G‘r1 ; this is true if the accelerometer is located at the c.g. of the
missile and has a wide bandwidth. The actuator dynamics are assumed
to be at a frequency which is much higher than the-crossover frequency
of the rate lcop and will therefore be ignored.

Using Eqs. (A.3-2) through (A.3-4) the closed loop transfer
function from commanded to developed lateral acceleration Fig. A.3-2
is.

2
3&.-1{ | 1+als+%2§
a ¢t k)
c 1+b18+b28 +bss
(A.3-5)
1+ als+a282
=k -
c g | 252'8 s‘2
14 — 1+ +—2
“ Wo We
49
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where
2
by = 1,22 (A.3-6)
wp Y
2
2 1
b= — + (Ao3"7)
2 ® T
2. W
o _a_g).
wy Wy

kc = closed loop-d-c gain in Fig. A.3-2.
In the case of a tail-controlied missile, the transfer function in Eq. (A.3-5)
is non-minimum phase...i.e., it has a right-half-plane zero; this produces
the "wrong-way" or "tail-wags-dog" effect, discussed in Ref, 5. The

transfer function from commanded acceleration to developed body attitude
rate is:

8, k. (1+ ags)
——a—-— = ;’—-— - T 3 (A.3"'9)
(¢ m 1+bzs+bzs +b38

where V 18 the missile velocity.

Recall from the discussion in Section A.1 that radome errors
can couple body angle rate, ém, into the LOS measurements. This
forms a "parasitic attitude loop" since LOS data is used to form the
lateral acceleration command which results in a change of body attitude
in Eq. (A.3-9). As this coupling becomes large, guidance stability is
compromised and miss distance will tend to increase. An important
measure of the required missile attitude rate is ag, which tends to in-

crease with altitude thus intensifying the parasitic attitude loop problem.
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Therei is a wide range of values that can be selected for Wy Wy and
§2 in Eq. (A.3-5). For many systems it is possible, and desirable where
attitude loop stability is a consideration, to design the autopilot such that
Wy is much larger than wy and 523- 0.5. The value of Wy depends pri-
marily on the rate loop gain for the assumed configuration of Figure
A,.3-2. X the actuator bandwith is much larger than the open rate loop
crossover frequency, Wy which is in turn much larger than the airframe
natural frequency, W then W, can be approximated as

W, = lksmd |

where ks is defined in Fig. A.3-2 and m, is'the pitch-moment-effectiveness
of the control surface. The magnitude of m, tends to increase with Mach
number and decrease with altitude, If ks is adjusted (adaptively) so as to
keep Wy, nearly constant, then under the stated condition, Wo and £y will
tend to remain nearly constant over a wide range of altitude and velocity
conditions., At altitudes less than 10, 000 feet, Wy tends to be nearly con-
stant over a wide range of missile Mach numbers. At higher altitudes, Wy
tends to decrease with increasing altitude and increase with increasing
Mach number. However for an assumed constant velocity intercept with-
in & narrow altitude band, wy will remain nearly constant. Therefore,

the guidance system truth model will use a constant coefficient autopilot
having the assumed form of Egs. (A. 3-5) and (A. 3-9), as shown in Fig. A.3-3,

A.4 GEOMETRY MODULE

The general form of the intercept geometry is illustrated in
Fig. A.4-1, The reference coordinate system is defined with its x-axis
along the original missile-to-target line-of-sight (LOS) defined at the
initiation of the terminal phase. It is assumed that missile-target motion
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Figure A.3-3

Simulation Autopilot Model
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Figure A.4-1 Intercept Geometry
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e is constrained to the intercept plane, defined by thé orthogonal reference i )
x and y axes. Theintercept plane can‘in general assume any orientation !
L with respect to the earth, depending on the initial relative missile and i
A target position and the orientation of their respective velocity vectors.
e A nominal eo-altitude intercept trajectory is assumed herein. This
eliminates the specification of an altitude profile and the asscciated re-
quirement to handle nonstationary altitude dependent aerocdynamic charac-
* tevistics in the autopilot modei. It is also assumed that gravity compen-

g sation is used in the missile guidance 1aw to negate the effect of gravity
on missile performance. Of course, for any orientation of the intercept
plane that is not horizontal, there will be an altitude change for motion in
the y-direction.

s o i

Equations of Motion — As illustrated in Fig., A.4-1, the
reference coordinate System is non-rotating hut is ailowed to translate
with the missile. This éelection of reference system is dictatedprimarily
by the proportional navigation guidance law which attempts to null the
LOS rotation rate, é, by commanding a proportional missile acceleration
normal to the LOS. If this guidance scheme works well, § will remain
near its initial zero value and the severity of a number of geometric non-
linearities can be reduced and in many cases linearized,

— &= 1 1

o

The migsile lead angle, 8 27 and the target aspect angle, Ga_, ‘
in Fig. A.4-1 define the orientation of the respective missile and target :
velocity vectors in the intercept plane relative to the original LOS.
Closing velocity, vc,is defined as the relative velocity measured along
the LOS; viz.,

- " -
o el ey, o . 2F

LR

=V COS (ez + ehe -08)+ v, cos (ea + 6) (A.4-1)
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where
Vi = migsile velocity
vy = target velocity
eh_e = heading error

Heading errox, Gh e’ is the angular error in the collision-course triangle
defined at the initiation of the terminal phase, The sides of the collision-
course triangle are-established by the closing velocity along the original
LOS, the missile velocity vector and the target velocity vector. Given a
target aspect angle, ea.’ the collision-course missile lead angle must be

| .
ezc‘ sin [——- sin ea] (A.4-2)

If the orientation and magnitude of the velocity vectors were to remainr
fixed for the remainder of the terminal phase, the two vehicles would
collide. In practice, it is not possible to achieve the collision course
lead angle and the difference between 6, and the actual lead angle 9 P is
defined as the heading error. For missile systems having a midcourse
phase preceding the terminal phase, heading error tende to be small,
having an rms value of 2 few degrees or less; in a ""dog-fight missile"
engagement, heading error can be tens of degrees. It is assumed in the
following model development that heading error is less than 10 deg.

The missile and target accelerations are assumed to be normal
to their respective velocity vectors. In reality, there are also components
of acceleration deveioped alcag their velocity vectors due to aerodynamic
and induced drag which integrate into a net reduction of the velocity vector
magnitudes. This ig particularly true of the missile after engine burn-out.
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However, if it is assumed that drag acceleration is small or a sustainer
engine is used to maintain a nearly constant velocity, only the acceleration
normal to the velocity vector, a 2 need be considered. Since it will be
assumed that the magnitude of the velocity vector is constant, the rate of

change of its orientation is proportional to the normal acceleration, resul* -

ing in the following expression for lead angle rate:

. (A.4-3)
6, = — A.4-3
2 Vm

The analogous expression for target output angle rate due to target
acceleration, a,, normal to its velecity vector is

. a,
Oa = -‘;: (A.4-4)

Therefore, the rotation rates of the velocity vectors are proportional to
the respective lateral accelerations.

The relative velocity normal to the original LOS, y o 18

Vq =V, sind, -v, sing, (A. 4-5)
t .
_ 1
92-7— /‘azdt+ e£c+ahe (A. 4-6)
m
0
t
1
ea'f _/ B dt+ 8, (A.4-7)
0
. 35
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From Fig. A.4-1, 8 is given by

y
6 = tan"! (-i‘—) (A.4-8)
Ttm

where Xim is the missile-to-target range measured along the original LOS,

As previously mentioned, f tends to remain small if the guidance law is
operating properly throughout the duration of the terminal phase. How-
ever, during the last fraction of a second as intercept is approached, X,
approaches zero and 6 will tend to increase for a given value of y d With
only a fraction of a second left before the end of the flight, there isn't
enough time for the missile lateral position to respond to the rapidly in-
creasing LOS angle. In fact, the high LOS rate generally results in
saturation of the autopilot acceleration command before 8 becomes large.
Therefore, for modeling purposes, accurate computation of 8 is not
required during the period in which it becomes large, thus allowing the
small angle approximation of Eq. (A.4-9) to eliminate the tan™} nonlinear
operation.

Y4
§ = % (rad) (A.4-9)
Xtm

It is important to note that x tm 2PPears in the denominator of
Eq. (A.4-9). Therefore, if x.,, is modelled as a system state, it is
necessary to handle the associated nonlinear ratio of states. However,
if Xip, CAN be modelled as a deterministic quantity which is only a function
of time, Eq. (A.4-9) is linear and the computation of 6 is considerably
simplified. It will be shown in the following paragraph that the difficulties
associated with the computation of § and miss distance are all related to
a non-constant closing velocity. '
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Miss Distance — Miss distance is defined as the point of closest

approach between the missile and target, illustrated in Fig. A.4-2, and
is given by tue relative range when the closing velocity is equal to zero
in Eq. (A.4-1), Since closing velocity is defined as the relative velocity

between the missile and target projected onto the instantaneous LOS, miss

distance is equal to the missile to target range when the inner product of
range and range rate is equal to zero, viz.,

where

miss = |z, | Cn o (A.4-10)
~tm =tm
Tim = FmltYqd
i = unit vector in the x direction
J = unit vector in the y direction
y R-8N7
A
TARGET
TRAJECTQF}L
- T . '
- Yy
MISS fim 4
1 ».x
Xtm
MISSILE
Figure A.4-2 Relative Migsile-Target
Geometry Near Intercert
5%
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At the point in space where the orthogonality of the relative range and
velocity vectors required by Eq. (A.4-10) exists, miss distance is given
by

&d
miss =y4 \- i+i) (A.4-11)
tm

For many intercept situations, itm is muchlargerthan i"’d inEq. (A.4-11).
Therefore the downrange component of miss distance is neglected in these
studies.

Although miss c_l,isfa'nce is closely approximated by y & it {the
missg) is defined at only-one point during the flight--namely the point
of closest approach. Therefore it is conditioned on a spatial rather
than a time relationship. In a monte cario study, the orthogonality con-
dition is tested near the expectnd end of each flight and y d is saved when
the condition is satisfied. Thesefore, if the closing velecity is not con-
stant or there is a significant down range miss component, the time-of-
flight at which miss distance is measured will not be constant from one
trial to the next. The ensemble miss distance statistics are computed
using the "saved" values of miss distance, each of which occurs at a
different time of flight. By contrast, the covariance analysis technique
provides ensemble performance statistics as a function of time. There-~
fore, additional computations or approximations are required to obtain
miss distance using the covariance analysis approach.

The primary contributor to a noncorstant time-of-flight, for a
given initial range, is the fact that the closing velocity in Eq. (A.4-1) is
not constant. Since it has already been assumed that the magnitudes of
the missile and target velocity vectors ar ‘onstant, any change in y d is
a result of the change in the orientation of the velocity vectors. However,
if the change in these angles is assumed to be small during the flight, the
closing velocity will remain nearly constant except as the point of mini-
mum range is approached where it rapidly approaches zero. The projec-
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f-rand

tion of missile and targt velocity onto the eriginal LOS, *tm’ will also
be nearly constant throughout the flight. Therefore, itm is agsumed to
be a deterministic quantity which goes to zero at a known fixed time.

<4

E )

- This assumption eliminates the previcusly mentioned computational -prob-
: E lem associated with ¢ in Eq. (A.4-9).

N
; T From Eq. (A.4-10) it follows that miss is defined when
! .
; YaY
d’d
£ = - -
iy Xim = - (A.4-12)
[ x
| tm

é, The incremental time, A between when Eq. (A.4-12) is satisfied and

Xm is equal to zero is approximated by simply dividing Eq. (A.4-12) by

7 “L xtm‘

- V.Y

I I A =- _2_.‘1 d (A.4-13)
51 Xtm

Eaned

T

o o B o |

For most intercepts, A is on the order of milliseconds. The change in
¥4 over such a small interval is negligible and miss distance can be
approximated as y d measured when X equals zero.

e e

A.5 TARGET MODULE

The target velocity vector is agssumed to have a constant mag-
nitude and a direction described by 8, in Fig. (A.4-1). It is further
assumed that the target may have random: changes in its acceleration
normal to its velocity vector. The assumed acceleration time history
model is a randomly reversing poisson square wave as illustrated in
Fig. A.5-1. This square wave switches between * 8 ﬁ:/asec2 with random

=3
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poisscn distributed switching times having an average of v Zero-crossings
per-second. The autocorrelation function (Ref. 9) for observation times
ta and tb is

vl -4l (A.5-1)

Ly _ o2
P (ta - 'b) =8"e
Equation(A. 5-1)indicates that the mean-squared value of a, is ,32 and, as
v apgroaches Zero, 4, approaches a constant. The power spectral density
asscciated with'at,is

2, L2

8 (w) =2Atﬁz[ 1 } (A.5-2)
i ¥ )

4 R-2042
ay
p P T———
t .
-8

Figure A.5-1 Poigson Square Wave for Target Acceleration
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where A is defined as the maneuver bandwidth and is equal to 2v. The
resulting maneuver model has-the same mean.and autocorrelation function
as a first-order markov process. Therefore, the target lateral maneuver
width At driven by white noise with a power spectral density of Zmz,
resulting in a rms acceleration level of 3.

It i3 interesting to note:that although the autocorrelation:func-
tion-and the corresponding pewer speciral density for the poisson square
wave are identical to that of a markov process, the associated probability
density functions can be quite different. It is obvious from Fig. A.5-1
that the poisson square wave can only take on values of 8. The resulting
bi-polar amplitude probability density function consists of impulses with
a weighting of 0.5 at plus and minus 8 whereas the markov process is
generally assumed to have a gaussian amplitude distribution. Therefore,

the response of an amplitude dependent nonlinear operator could be quite
different when driven by each of these two signal forms. However, if the
random square wave is passed-through a narréw band filter or integrator,
it would experience rounding due to the finite bandwidth. In the case of
an integrator, the resulting wave shape would be a series of constant
slope segments. By application of the central limit theorm, as illus-

trated in Ref. 8*, the resulting output distribution approaches the gaussian
density function.

*page 179
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A.6. GUIDANCE MODULE

The operation of the guidance module may be separaied: into
two cascaded functions: 1) filtering of the noisy measurements obtained
from the seeker and 2) utilizatiofi of the filtered measurements to con~
trol the missile lateral acceleration., There are a number of filteririg
and-control schemes-that can be used by tactical missiles, as reported
in Refs. 5-and 7. However, the current study will'be limited.to-thé con=-
figurations listed in Table 2. 2-1; each of these is discussed below.

Configuration A — This configuration can be considered-as the
classical approach to mis‘sil‘e guidance. The boresight error signal from
the seeker module is processed through a constant bandwidth low-pass
noige filter. For modelling purposes, it is assumed that the measurement
rate is much faster than the noise filter bandwidth. The resulting system
can therefore be characterized by a continuous model which is represen-

tative of a missile with either an analog ocn-board signal processor or a
digital unit with a high cycle rate. This system can also be considered
as-one of minimum complexity.

The boresight error signal obtained from the seeker module is
a noisy measurement of LOS rate at frequencies below that of the seeker
track-loop bandwidth. Therefore, the output of the guidance noise filter
is also a band-limited indication of I.OS rate. Classical proportional
guidance requires the development of a lateral acceleration of the missile
normal to the L.OS, which is proportional to the LOS rate as given by

n’
VC

Sac ) 6 (A.6-1)
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where

Vo = closing velocity (ft/sec)

LOS rate (rad/sec).

8 = LOS angle (rad)
n’ = navigation ratio
6, = lead angle (rad)

The proportionality factor is comprised of the navigation ratio,
closing velocity multiplier and a geometric gain factor which accounts for
the fact that the orientation of the missile velocity vector is not necessarily
along the instantaneous I.OS. Since missile lateral acceleration is devel-
oped normal to its velocity vector, it must be increased by the indicated
factor so the projection normal to the LOS will be proportional to e

In practice, neither 6 or 6 j are directly available for use by
the guidance module. If the guidance law is operating properly, ¢ will be
small for all but the last fraction of a second before intercept. If the
variation of the lead angle is small, then the factor of proportionality can
be congidered constant for all practical purposes. (This is also consistent
with the agsumption of a constant closing velocity in the gecmetry module).
Some missile systems use the gimbal angle, B} to approximate (3 - 0)
or simply enter a constant which is representative of the average value. .
In this study, a constant value will be used in the truth model; any error
in this value can be accounted for as an effective change in the navigation

ratio. The resulting block diagram for Guidance Law A is given in Fig.
A.6-1,
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R-B120

Figure A.6-1 Guidance Law A

Kalman Filter for Configurations B, C, D and E— The Kalman
filter is impleménted in the non-rotating, initial LOS coordinate system.
For the purpose of designating the filter,it is assumed that both the target
and missile maneuver with their accelerations normai to the initial LOS;
the resulting plant model for the Kalman filter is given in Fig. A.6-2.

R-8040a

TARGET

LATERAL

ACCELERATION RELATIVE

U+ ap POSITION
: > NORMAL TO
- ORIGINAL LOS
Ay £ %y

MISSILE
LATERAL
ACCELERATION

Figure A.6-2 Kalman Filter Plant Mode)
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In.state-gpace notation, the filter-model equations of motion are given by
] the vector differential equation
XM =Fx@®+u@®)+b () (A.6-2)
S where
. [y 4 ] 0 1 0]
. § = y. d F = 0 O 1
i a ] _0 0 "‘t_
0 | 0 0 0
]
; i
b -a, Q=10 0 0
e 0 0 0 2,82
I | t_

PR

E{u@u )} = Q8¢ -r)

, 0 0 0
| E{xOx O} -P@= |0 FZ0 o
‘ 0 o af (0)

: Note that this model is identical to the system truth model used in the

3 ; target and geometry modules with the exception that target and missile

" acceleration are assumed normal to the orginal LOS. The system truth
model is more exact in that the missile and target lateral accelerations
are assumed to be normal to their respective velocity vectors, which in
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st -

general do not lie along the original LOS. Furthermore, for the purpose
of mechanizing the filter, it is assumed that the autopilot output a , can
be measured without error.

The measurement to be processed by the Kalman filter is the
sampled LOS angle 6/, having additive independent samples of noise vj..
The latter have zero mean and variance given by

E {6 eo o () ER,

where Op O and Og represent the noise components defined in Section
A 2, Interms of the state vector x in Eq. (A.6-2), the LOS angle
measurement is expressed as

B =h () Xt vy

(A.6-3)
T 1
o= [ o o

The discrete Kalman filter mechanization equations have the
form

_f:i_ (t) = F_% (t) + b (t); between measurements’ (A.6-4)

~ -

A . T A - .
X =%, + k, (z-h" (t)) X, ); at a measurement  (A.6-5)

where .5:‘.12 denotes the solution to Eq. (A.6-4) just before a measurement
is processed. The gain vector l‘-k is obtained recursively from the
matrix covariance equation associated with the Xalman filter;
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by - ey

T
‘I’Pk-l & +Qs

o

| T
Py = My k(g My Ry
| At
0
Py = E{x(@x T} o= eFat (A.6-6)

The gains cannot be precomputed and stored because h and R in Eqgs.
(A.6-6) are range dependent; this requirement is responsible for most
of the digital computational capability required by the guidance system.

The mechanization of the Kalman filter is illustrated in Fig.
A.6-3 where ¥ d,; d and a, are the respective estimates of y & y d and a,.
Discrete updates of the estimates occur when the sampler cleses.
Between updates, the estimates simply propagate according to the

modelled dynamics. The gains klk’ ko and k3k are the elements of':iy‘gk
in Eqs. (A.6-6).

The initial covariance matrix P (0) used in the computation of
the Kalman gains contains two non-zero elements. The initial value of
its third diagonal element, Pgg is the variance of the target accelera-
tion at the initiation of the terminal phase. It will be assumed that the
target has been maneuvering prior to the start of terminal phase and
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y l the initial variance is equal to the steady-state maneuver level, 8 ;
¢ :

(Eq. A.5-1). The initial value of the second diagonal element of P, %
{ Pao, is equal to the variance of the relative velocity normal to the initial
) LOS at the initiation of the terminal phase. From Eq. (A.4-5) of Section
A.4, it can be shown that the initial value of y 4 18 apprezimated by

i Y40 = -g v (A.6-1)

for small values of initial heading error, eh. Therefore, since Vi is

assumed to be 2 true constant,
|
T 2 2 -
g Pgo 0) = Ohe ¥m (A.6-8) )
| |
where Ohe is the standard deviation of initial heading error.
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pacioup!

Coniroller for Guidance LawsB, C, and D— The control input
to be determined is the commanded missiie lateral acceleration in

Hene

t

Fig. A.3-3 . Continuous control will be.assumed in deriving the

[
i,

guidance laws and it is desired to minimize the expected square of the

miss distance subject to a penalty function on the total control energy.

M s Mo it h T i v
L Lo
W

Therefore, the performance index to be minimized is given by

i t
3=y ;)2
=Yqt) +y [ a @) dt (A.6-9)
1- 0 .
i subject to the equations of motion in Eq. (A.6-2) and the

autopilot dynamics modeled by the first order transfer function

B T W T

A
- g2 _ ‘;‘ (A.6-10)

I
)
)
=

Note that the saturation in Fig. A.3-3 is neglected in Eq. (A.6-10), as
well as the higher-order autopilot dynamics. The quantities y d (tf) and

e

v are respectively the terminal miss distance at intercept time tf and

E——j

the weighting on control effort. The solution to this problem is called an
optimal guidance law. By invoking the separation principle (Ref. 10) it
is known that the control will be of the form

|

(A.6.11)

‘" a ® N
ac— clyd+ czyd+ 033t+ 043.!'

_ g

,,

The indicated control gaing, which minimize the performance index in
Eq. (A.6-9),have been determined by Willems in Ref. 2 and are
repeated below for convenience (t o0 is the time until intercept):

o

L

T,
o

4
= -1 (A.6-12)
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n' (A.6-13)

=
(s ol

03=h’ 2{;2 (A.6-14)
N -t
e O go_”\ tgo-l
c4=-n’ 12 2 (A.8-15)
m g‘-"

The optiwal navigation ratio, n’, is given by

. 3t§o[tgo-( P )/’m]

-2)_t 3t -x .t
3 m go go m go 2 3
37+—3-<1-e ) —-2-(1-29 ) t t - —

2Am )‘m ‘ g\ &° lm

(A.6-16)
The expression for n’ is considerably simplified as Am approaches in-
finity; i.e., "

go
I’m ) mg: (A.6-17)

T e R . .

If there is no constraint on acceleration, y is equal to zero and the
resulting navigation ratio from Eq. (A.6-17) is constant with a value of
3. The optimal navigation ratio from Eq. (A.6-16) tends to increase as
t go approaches zero. If y is equal to zero, n’will approach extremely
- large values as t g0 approaches zero. However, for a non-zero value of

v, n’will first increase as t &0 becomes small; after a point it will begin

‘;E’
i
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to decrease with t g0’ and finally approach zero as t g0 goes to zero.
This nonstationary behavior of the navigation ratio becomes more pro-
nounced as >‘m becomes small. Increasing n’ results in a direct scaling _
of all four control gains, which in turn increases the autopilot command,
&, to compensate for the dynamic lag represented by Eq. (A.6-10).

Given this set of optimal linear control gains, various sub-
optimal approximationg can be made to simplify the computational re-
quirements. If ¥, 1/) me cgand ¢ 4 2re arbitrarily set to zero,classical

‘proportional navigation with n’= 3 (Guidance LawB) is the resulting con-

trol policy. This is shown by differentiating the expression for LOS

angle,
y
g o (A.6-18)
mt
to ohtain
VgX . -V4X
5 = dmt ‘d"mt (A. 6-19)
Emt
For the assumed constant clogsing velocity intercept,
Xt = Vctg0 (A.6-20)
and Eq. (A.6-19) becomes
. 1Y% ¥
6 = 7= t+9-+ -t-ﬁd— (A.6-21)
e g0 -
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Classical proportional navigation is defined as

¢ ? p -
a; = n'v g (A.6-22)

Substituting Eq. (A.6-21) for g in Eq. (A.6-22) and replacing s'(,iand V4

R by their best estimates, obtained from the Kalman filter, yizids
L , y y
a’ =n' |5 + 0 (A.6-23)
go go
, i Comparing Eq. {A.6-23) with Eqs. (A.G-il), (A.6-12), (A.6-13), and
- (A.6-17) proves the equivalence between proportional navigation and the
i optimal guidance law under the conditions 1/Am =y =cCg=ce,= 0. The
o navigation ratio is held constant in Eq. (A.6-23). Guidance Law C is
v obtained by including a component of target acceleration in the formula-

tion of the autopilot command via Cq- Finally, Guidance Law D is

realized by including 1/) m # 0 in the computation of n’, as well as the
term involving ¢, in Eq. (A.6-11). In all cases investigated here the
weighting, v, on the control penalty in Eq. (A.6-9) is set equal to zero.

Optimal Nonlinear Controller — The optimal nonlinear guidance
law is based u_ .n the same system inodel usedfor the optimal linear laws
described above; however its performance objective is different. Name-
ly, an acceleration command is sought such that

J=F {lmiss distance | } (A.6-24)

is minimized, subject to the constraint

Ia,clsa

max (A.6-25)

¥)
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where & max is the maximum airframe acceleration. Thus the limit on
missile acceleration capability is incorporated explicitly into the prob-

lem formulation; this is contrasted with the quadratic integral penalty
term;on.a'c (t) in Eq. (A.6-9).

The solution to the above problem is derived in Refs. 7 and
11. The resulting optimal nonlinear guidance law has the same struc-
ture as the linear laws discussed previously; however, the control gains
€y) Cos Cq and ¢ 4 are computed differently. The latter are obtained at
each control computation stage as a resuit of the following steps:

e Determine the predicted terminal miss distance
based on the Kalman filter estimate of the state
vector at the current control computation stage,
and the dynamic model defined in Egs. (A.6-2)
and (A.6-10).

e Determine the value of commandead acceleration,
a’, required over a single control interval to null
the predicted terminal miss distance, neglecting
the constraint in Eq. (A.6-25).

e Determine the actual acceleration command, a_, !
by passing a} through a saturation function i
that satisfies Eq. (A.6-25). !

To carry out the above calculations, we first combine Eqs.

(A.6-2) and (A.6-10) into the form .
x(t)=Fx®)+ba ) (A.6-26)
where _ - -
0 1 0 O 0
~ 0 0 1 -1 |, 0 a
F = ;D = (A.6-27) ;
0 0 0 - A
- m) | m_ i

*The Taw is called an optimal nonlinear law because the nonlinear con~
straint on a, is incorporated in the problem formulation.

A-43 73




*

THE ANALYTIC SCIENCES.CORPORATION

The predicted terminal miss based on a state estimate at time t is given i
by g
Vgl = 'éT X 1) % (t) ~ (A.8-28) S

where_?g’T (tf,t) is the first row of the state transition matrix corresponding E
to F in Eq. (A.8-27). The effect of a-constant command 8/ , appliedoveran
interval At, on the terminalmiss distance is given by

R e eyt

ey

t+At
434 (t) = re (t t+at) / ot+at, 7)b adr
t

=6

25,t)a, (A.6-29) L

—
TASTE Bl o i
Py g' l

The objective is to select ag such that

SACERE A (4.6-30)

6 e = Y ETI)

in order to null the predicted miss distance. Suvbstituting from Eqs.
(A.6-28) and (A.6-29) leads to the resuit

s,
EIUR R e TR W o

ot et et e

1 ~ "
ag = -5 gT(tf,t)zc_(t)'

X e

A ' " ? ”
= -[czyd + Cy¥q t Ca?y + Cy az] (A.6-31)

T e iy ”

Carrying out the computation for ¢y through ¢ 4 Ve find that they
are the same as in Eqs. (A.6-12) through (A.6-15) except that the navi-
gation ratio. n’ is given by

7

;! H
A-44 !
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(.t'z’ g
n’ = -x‘ (t .-At) S -l At (A06- 2)
I Rt (1-e"=%)
Ap & e

The values of n’given by Eqs. (A.6-16)-and (A.6-32) behave quite dif-
ferently as functions of t g0’ as demonstrated in Fig. A.6-4. The explana-
tion for this is that the nonlinear law attempts to completely nuli the
predicted miss at each control stage; this requires much larger misgsile
acceleration early in the trajectory than the linear laws, which tend to
reduce the predicted miss distance more gradually. The nonlinear law
has a smaller gain near interceptbecause it reduces the miss distance
fgster than the linear law.

R-8118

100(

XM s 55«"
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NAVIGATION RATIO, n*
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Figure A.6-4 Comparison of Navigation Ratios for
Optimal Linear and Nonlinear Laws
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Autopilot Commmand — The autopilot acceleration command
given by Eq. (A.6-11) will in practice be contained in the output register
of a digital computer. The value of this command will change at discrete
intervals which are nearly:coincident with the LOS measurements pro~
cessed by the Kalman filter. In practice there will be a transport lag
between the LOS measurement and the update of the control signal due to
the computer processing time requirements. It will'be assumed that the
time delay is small c. Jared to-the sampling period and will be neg-
lected. Since the control signal changes at the sample instant and is
constant between samples, this operation is equivalent to that of a zero-
order hold. Therefore, the autopilot and autopilot model are driven by
a stair-case signal which is the sampled and held acceleration command
given by Eq. (A.6-11).

A.7 COMPUTATIONAL REQUIREMENTS

The computational requirements for the guidance laws dis-
cussed in Section A.6 are primarily dictated by the mechanization equa-
tions for the Kalman filter in Eq. (A.6-6). Reference 15 provides a
guide for estimating the Kalman filter computational requiremeats, in
terms of numbers of additions, multiplications, and logical operations
required to complete the processing of each measurement, and the
associated memory capacity needed. Logical operations constitute those
involved with retrieving variables from memory, storing in memory,
reading instructions, etc.; these frequently contribute as much to the total
computation time as do the arithmetical (add, multiply, etc.) calculations.

Using the expressions derived in Ref. 15, the following results
are obtained:
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3-State Kalman Filter Computational Requirements

No. of Multiplications = 125
No. of Additions = 90
No. of Logical Operation Units = 2950.
. - Programming - 490.
No. of Storage Locations =S Arrays - 60

Representative execution times for a modern minicomputer are:
multiplication = 8 ysec; addition = 2 ysec, logical operation unit = 1 useec.
Applying these multiplication factors to the numbers of operations item-
ized above, and allowing for the use of two 3-state Kalman filters in the
3-dimensional engagement situation, the total execution time per
measurement cycle and storage requirements given in Table A.7-1 are
obtained. These estimates are conservative in that they do- not allow for
programming efficiencies that can be gained by accounting for sparse
matrices (lots of zero elements) in the Kalman filter equations (Eq.

(A.6-6)).
TABLE A.7-1
APPROXIMATE KALMAN FILTER
COMPUTER REQUIREMENTS:
TWO THREE-STATE FILTERS
Operation Number Required | Computation Time (usec)
Addition 180 360
Multiplicaticu 250 2000
Logical .
(Load, Store, etc.) 5900 5900
TOTAL 8260
HrStarage Requirement 610 words |
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APPENDIX B

T}FELCOVARIAN(}E ANALYSIS DESCRIBING
FUNCTION TECHNIQUE (CADET)

The Covariance Analysis Describing Function Technique
(CADET) is a method for analytically determining the statistical pro-
perties of a nonlinear system, recently developed at The Analytic
Sciences Corporation (Ref. 6). The principal advantage of this technique
is that it circumvents monte carlo simulations, thereby achieving sub-
stantial savinge in computer running time. We first motivate the dis-
cussion by reviewing covariance analysis methods for linear systems;
then we develop an analogous procedure (CADET) for the nonlinear
case,

B.1 COVARIANCE ANALYSIS FOR LINEAR SYSTEMS

The dynamics of a linear continuous stochastic system can be
repregented by a first-order vector-matrix differential equation in which
x (t) is the system state vector and w(t) is a random forcing function,

xt) = F(t)xt) + w(t) (B.1-1)

Figure B.1-1 illustrates the equation. The state vector is composed of
any set of quantities sufficient to completely describe the behavior of the
system. The forcing function w(t) represents disturbances as well as
control inputs, that may act upon the system. It can be agssumed without

B-1 ¢S
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R-230

Figure B.1-1 " Tlustration of Continuous Representation

of Linear Dynamic System Equations

loss of generality that the system states and the forcing function are

random processes, each having an ensemble average value of zero; i.e.,

they have zero mean. In what follows the forcing function w(t) is
assurmmed tc be composed of elements which are uncorrelated in time;
that is, w(t) is "white" noise having the spectral density matrix Q(t)

defined by *

E[wl®)wir) ] = QW6 (t-7)

Under the above conditions, the random state can be described

in terms of its covariance matrix P (t),

Pt) 2 E[x(Dx®"]

The equation for the propagation of the covariance matrix for the system

described by Eq. (B.1-1) can be written as (Ref. 10).

B{t) = FOPE) + POFW®T + Q)

(B.1-2)

(B.1-3)

*E denotes ensemble expectation, or average value; T denotes matrix

transpose.
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The diagonal elements of P{t) are the mean square values of the atate

variables; the off-diagonal elements represent the amount of correlation
between different state variables.

TP SO
PR

r Equation (B.1-3) provides a direct method for analyzing the sta-

1 “ tistical properties of x(t). This is to be contrasted with the monte carlo

: method where many sample trajectories of x(t) are calculated from com-

{ : puter-generated random noise, or random numbers in the case of a digital
computer. If, using the latter technique, m such trajectories are generat-

5 ed using Eq. (B.1.1)--each denoted by ik(t):k =1, ..., m--then P (t) is

given approximately by

TN T T, 5
\ “

JE RV U A SO o )2

P 3
'
o —e

P@) = P £ -11; i x Oz ©F (B.1-4)
- k=1

S ')"'“
o ——
e

In the limit a8 m approaches infinity we have

lim P(t) = P®) (B.1-5)
m=a$o

Note that Eq. (B.1-3) provides an exact solution for P(t), to
within computer integration accuracy, whereas the monte carlo method
yields an approximate solution for a finite value of m. Furthermore, Eq.
(B.1-3) need be solved only once over the trajectory, whereas Eq.
(B.1-1) must be solved many times using the monte carlo technique;
consequently the direct analytical method is generally the most efficient
technique for analyzing linear systems. Our purpose here is to describe
a procedure whereby the statistics of a nonlinear system can be com-
puted approximately using a recursion relationship similar in form to
Eq. (B.1-3).
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B.2 COVARIANCE ANALYSIS FOR NONLINEAR SYSTEMS
The nonlinear counterpart of Eq. (B.1-1) has the form
x(t) = £t + w(t) B.2-1)

In order to develop a covariance analysis method similar to that used
for liniar systems it is desirable to approximate f(z) in Eq. (B.2-1) as
a linear operation onx(t). In particular, we assume that x(t) is com-

posed of & known mean X(t) andan unbiased additive random component r(t),

xt) = x(t) + r(t) (B.2-2)
and we shall seek an approximation to £(x) of the form
vt £ 1x®) = 50+ N® 20 (8.2-3)

where N(t) and §(t) are to be specified. The structure of ihis approxi-
mation is illustrated in Fig. B.2-1, If Eq. (B.2-3) is substituted iato
Eq. (B.2-1), then the equations of motion for x(t) become linear;

X(t) = §) + Nit) (x(0) - %0)) + wi®) (B.2-4)

Taking the expected value of both sites of Eq. (B.2-4) vields
an equation for the propagation of x(t)--namely,

.55“) =30 = £(x() (B;2-5)

Subtracting Eq. (B.2-3) frez Eq. (B.2-4) produces an equation for
r(t) having the same form as Eq. (B.1-1);

rft) = N rt) + w(t) (B.2-6)
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i d.0
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x(t)
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Kigess

] Figure B.2-~1 Block Diagram Interpretation of the
] Linearizing Approximation

Thus by analogy with Eq. (B.1-3),the covariance matrix associated with
r(t) -- also referved to as the covariance of x--satisfies the differential
equation

! PH) = NOPY + PONGT « Q) (B.27)

Eguations (B.2-5) and (B.2-7) together provide the desired analytical

description of the statistics.of x(t)--namely its mean value and its

covariance matrix--assuming that i(t) and Nf(t) are known. Subsequent

paragraphs discuss the approach taken in CADET for determining these
I quantities.

( Statistical Linearization: The Scalar Case —The method used
- in CADET for approximating £(x) in Eq. (B.2-1) is based upon statistical

SN B-5 82
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linearization. The basic principle of this technique is conveniently
illustrateqd for a scalar function, f(x), of a random variable x.

Assume that f(x) is to be approximated by the linear expres-
sion

flx) = ny + n;x (B.2-8)

In order to determine appropriate values of the coefficients n, and n; we
define a function representation error, e, of the form

e = f(x) - no-nlic (B.2-9)

It is desirable that the coefficients be chosen so that e is small in some

"average' sense; the procedure used to accomplish this goal is to mini-
mize the mean square error, E [e2 ] Thus, forming

E(ez)'= E [fz + ng + nf x2 - 2n Of - 2n Ifx + 2n 0.n1x]

(B.2-10)
we require that

bE@%
o,

u
o

bE£ (ez)

T 0 (B.2-11)

which are necessary conditions for a minimum. Solving Eq. (B.2-11) for

n, and ny produces

n0 =f - nlx
A i

n, = f,’;fz - ix (B.2-12)
x° - %2
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where the (* ) notation denotes expectation. The fact that these values

actually minimize the mean square error can be verified by examining
the second derivative of E (ez) with respect to n, and n,. Substituting i
ng from Eq. (B.2-12) into Eq. (B.2-8) produces

fx) T+ n, (x - %) (B.2-13)

Equation (B.2-~13) constitutes a statistical linearization of f
about the mean value of x because it depends upon the probability density
function for x, p(x). That is,

©

f = /f(x)p(x}dx

H (B.2-14)
. N\

Lf" ix = / f(x) xpx) dx

§ -

| - Observe that Eq. (B.2-13) is in the desired form of Eq. (B.2-1) with y

- and Nf identified as the scalar quantities, f and ny resgpectively.

The quantity n, in Eq. (B.2-12) is usually referred to as the
1 describing function gair. Describing functions are given in Ref. 12 for

{ a wide variety of nonlinear functions with gaussian inputs. From
‘j “ knowledge of n, and f, the statistics of x can be computed using Eqgs.
i (B.2-5) and (B. 2-7)--hence the terminology Covariance Analysis
ii Describing Function Technique (CADET).

A more common method of linearizing a nonlinear function is
the use of a first-order Taylor series expansion

punwuy St |

(WY@ + L] x-® (B. 2-15)
{"3 X=X
- B7 84
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In many cases, the CADET procedure tends to be the more accurate
approach from a statistical point of view. To demonstrate why this is
8o consider the.example of the saturation nonlinearity in Fig. B.2-2(a)
and assume its input has zerc mean. I f(x) for this case is expanded in
a Taylor series of any order about the origin (X = 0), we obtzain

f(x) = x (B.2-16)
The effect of the saturation is completely lost because of the discontinuity

in the first derivative of f. By contrast, if statistical linearization is
used, we have

f(X) = n,x (B.7-17)
where ny is the describing function gain defined by

w

f xf (x) p (x) dx

n1 = (B. 2-18)

@®

f xzp(x) dx

=00

and p (x) is the prcbability density function for x. If we now acsume that x
is a zero mean gaussian random variable, then

%2

)
1_ ¢ 20 (B.2-19)

p(x) =
2ro

Substituting Eq. (B.2-19) into Eq. (B.2-18) and evaluating n, for the
saturation function shown in Fig. B.2-2(a), we obtain (from Ref. 12)
the result shown in Fig. B.2-2(b). It can be seen that ny is a function

B-8 . 85
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{b) DESCRIBING FUNCTION

Figure B. 2-2 The Describing Function for a Saturation
Nonlinearity (Ref. 12)

of the linear part of £(x), the point § at which saturation cccurs, and the
standard deviation of x. The essential feature of the describing function
is that it takes into account the probability that x can lie within the sat-

uration region.

For values of ¢ which are small relative to 5, the probability
of saturation is low and ny is approximately equal to 1; i.e., f1 is
approximately equal to the Tayjor series given in Eq. (B.2-16). For

larger values of ¢, ny is significantly smaller than 1 because there is a
higher probability of saturation.

As a result of the above discussion, we can see one distinct
advant2 that statistical linearization has over the Taylor series ex-
pansion; it does not require the existence of derivatives of f(x). Thus, s,
large number of nonlinearities--relays, saturation, threshold, etc.--
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can be treated by this method without having to approximate discon-
tinuities at corners in f(x) by smooth functions. On the other hand, an
apparent disadvantage of the method is that the probability density func-
tion for x must be known in order to computef and ny, a requirement
that does not exist when £(x) is expanded in a Taylor series about its
mean value. However, as discussed in Section B.3, approximations can
often be made for-the probability density function such that the resilting
statistical approximation for f (x) is considerably more accurate than the
Taylor series, from a statisiical point of view.

Statistical Linearization--The Vector Case — We now
seek a linear approxiination for a vecfor function £ (x) of a vector
random variable X, having probability density function p (x). Following
the statistical approximation technique outlined for the scalar case, we
propose to approximate £(x) by the expression ‘

_ f(x) = a + Nyx (B. 2-20)

where 2 and N¢, are a vector and a matrix to be determined. Defining
the error '

efi® -a- Nx (B.2-21)

a and Nf are chosen so that the quantity
J=E[ Ae] (B.2-22)

is minimized for some symmetric positive semidefinite matrix A, Sub-
stituting Eq. (B.2-21) into Eq. (B.2-22) and setting the partial derivative
of J with respect to the elements of a equal to zero, we obtain

EA((x) - a - Nfgg)]: 0 {B.2-23)

B-10 87
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Therefore, 2 is given by

a=f @ -Nx . (B.2-24)

f

Substituting a from Eq. (B.2-24) into J and taking the partial deriva-
tive with respect to the elements of Nf yields

B [apxx” + (@ - 1@)F7)] -0 (.22

whe’.a
Xx=z-%
Solving Eq. (B.2-25) produces
/\ .
N, = [£x" -f&7]P (B.2-26)

where P is the covariance matrix of x. Observe that both.a and N, as
given by Eqs. (B.2-24) and (B.2-26) are independent of the weighting
matrix A; hence, they provide a generalized minimum mean square
error approximation to f.

Upon substitution from Eq. (B.2-24) into Eq. (B.2-20) we
obtain
1@ =1@+ N -3 (B.2-27)

which is the form specified in Eq. (B.2-3). The quantity Nf is calied
the describing function matrix; as expected, Nf reduces to n, in Eq.
(B.2-12) when x.and f are scalars. Because N, is potentially a function
of both the mean and covariance of x, denoted by Nf P, i), equations
(B.2-5) and (B, 2-7) become a set of coupled nonlinear differential

equations;
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0 =30

P(t)

N, (P, HP + PN, (P, BT + Q) (B.2-25)

B.3 COMPUTATION OF DESCRIBING FUNCTIONS

In order to carry out the integration of Eq. (B.2-28), it is
necessary to compute _i(t) and Nf(t). From the discussion in Section
B.2, we know that

§®) = 1()

N
N = [tx’ - f27 )P (B.3-1)

|m»>
| 54>

where 2 and P are the mean and covariances of x(t), respectively and

f = f_g@p@dgg
A .-}
£§T = / f(x) §Tp(§) dx (B.3-2)

=00

Thus x and P can be continuously evaluated if the probability density
function p (x) in Eq. (B.3-2) is known.

Generally speaking, it is not practical to analytically evaluate
the probability density function for the state of a nonlinear dynamical
system; therefore an approximate form of p (x) must be obtained. One
frequently used assumption is that X is gaussion:
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gf‘.

l

p() =(2nDet @) 2 exp [- 1 x- 9T 2 x-D)  (B.3-9) .

- This is based upon the fact that the states of the nonlinear sysiem are
v the result of integrating the quantity f (x) + w. Therefore x(t) is a linear

b s e

superposition of past values of random quantities, which will tend to he
gaussion even through f (x) and w may not be nongaussian. The latter

d

, assertion is based on qualitative applicaticn of the central limit theorum
] ' (Ref. 8). If Egs. (B.3-2) and (B.3-3) are combined with Eq. (B.2-28),

_;5 (t) and P (t) can be evaluated numerically on a digital computer.

.
a ot el Sl

¥
-3
s

bt

From the above discussion, it is clear that more computation

E.s

is required in applying covariance analysis techniques to nonlinear sys-

ol b

tems than for linear systems, because of the procedure used to evaluate
f and Nf. Consequently, efficient means for calculating the right hand
sides of Eq. (B.3-2) are desired. One useful simplification arises when
the nonlinear system consists of a few single-state-input single-output
nonlinearities, such as that illustrated in Fig. B.3-1. In this case,
making the gaussion assumption described above, each nonlinear opera-

tion is replaced by its mean value and its describing function gain as
indicated in Fig. B.2-1, both of which are scalarg computed according
to Eq. (B.2-12). Then the first-order vector and-matrix differential
equations in Eqs. (B.2-28) can be formulated by inspection of the result-

i) Nt sl St s d i

ing linear system block diagram. Thus the CADET equations can be
constructed using existing tabulated describing functions for single-input
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RANDOM R-8124
INPUTS

|

LINEAR
DYNAMICS

LINEAR
DYNAMICS

MULTIPLE - STATE INTERCONNECTION

Figure B.3-1 Exampie of a Single-State-Input
Single-Output Nonlinearity

single-output nonlinearities (Ref. 12). The proof of this assertion
follows from the fact that { and N]f are related by

(B.3-4)

where X is agsumed to be a gaugsian random variable. Eq. (B.3-4) is
derived in Ref. 13. In the case of a single nonlinearity, as in Fig.
B.3-1, the system equations can be written in the form

) (B.3-5)

1
1}
1%
+

lad)
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where the term Fx describes the dynamics of the linear part of the sys-
tem. Applying Eq. (B.3-4), we have

_9 .
0
2 R ~
N T — Fx-i- f(x.)
Iz =T
- 0
0
- (B.3-6)
[ 0]
=F+

QeoeOe 66 ¢ OO
® & & ¢ & o ¢ ¢ ¢ o & o o
® ©® & 6 & o o ¢ o & » o o

oo 0o e D ¢ O

The term t&j/ d ;:i is simply the describing function gain for fj’ as
determined by the statistics of its input, x,; thus Nf is determined by
the dynamics (F) of the linear system and the single-input describing
gain. The extension of the above argument to the case when several
single-state~input nonlinearities exist is straightforward.

B.4 MIXED CONTINUOUS-DISCRETE SYSTEMS

Preceeding sections of this appendix have treated continuous
nonlinear systems; i.e., those governed by differential equations.
However, in many practical applications, the system may inciude a
digital computer whose input and output are expressed in terms of
dirfference equations, as ilivetrated in Fig. B.4-1. Such a structure
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arises in missile guidance systems where digital control laws are used
to command the missile's maneuvering acceleration. In this section,
equations are developed for propagating the mean and covariance of a
nonlinear, mixed continuous-discrete system.

The equations of motion for a system of the type shown in
Fig. B.4-1 are written in mixed differential-difference equation format.
First of all, between sampling intervals the digital computer is effectively
idle and the continuous part of the system satisfies an equation of the
form

x,(t) = £@x O glxg @) + W)

htt<tyy

. _ +1 \B . 4"1)
x,() =0

where gc(t) refers to the continuously varying states in the system, and
.3 (t) is a collection of digital states (e.g., states in the digital computer)
which remain unchanged during the sampling interval. Assuming that
the composite state vector, x, defined by

RANDOM DISCRETE R-8125
lNiUt r —— -_D-YN_A_fiﬂCE_ —_— o _i
| sameter saprer | ouTPuT
CONTINUQUS DIGITAL o1  CONTINYOUS -
™ Drnamics "'""' $°"7 COMPUTER °—+| | HOWD =2 “pynamics >
b o e J
Figure B.4-1 An Example of a Mixed Continuous

Discrete System .
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L ¥, E_c
E =
L‘-d}

is gaussian with its mean and covariance matrix known at time tk’
g then its statistics during the sampling intervai can be calculated using

= d %c(t) A PN
- - 1. = | fx {)+gx,) |5 ¢, st<t

- ét Ed(t) ["‘ -C d ] k k+1
|
L , M) N N7 o Qw0

P(t)= P(t) + P(t) +
0 0 Ng 0 0 0
tk <t <tk+1 (B.4-2)

where Nf and N g are the describing function gain matrixes dssociated
with { and g respectively., Observe that N e remains constant throughout
the sampling interval because . is itself constant.

Now, at a sampling interval, lue digital computer performs a
calculation which can be represented as 3 difference equation of the form

Z s ") X (a1 ) 0

........ R + | meme-

Zaltyys ) E(’-‘c(tkﬂ-)’ ’-‘d(tk+1-)) ¥ies1
(B.4-3)

where the superscript (-) denotes the solution to Eq. (B.4-1) just before
the sampling instant and (+) denotes the new values of the state variables
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just after a sampling instant. The vector L represents a random
quantity that can enter the digital calculation as a result of instrument
measurement noise. It is agsumed that Wieet has zero mean and
covariance matrix Qk+1' Observe that in Eq. (B.4-3) X, remains un-
changed because only the digital states can change instantaneously in
time.

Because the mean and covariance of %, and X4 att, . are

k+1
known from Eq. (B.4-2), the describing function gain matrix Hh cor-
responding to h in Eq. (B.4-3) can be evaluated. Thus we can rewrite

Eq. (B.4-3) approximately as

X (tk+1+) =% (tk+1-)

+ - 2 -
§d(tk+1 )=h + I-Ih (E(tkﬂ ) '§(tk+1 )> T Wil
(B.4-4)
From Eq. (B.4-4) it follows that the mean and covariance of the system

states just after the sample-time are given by

EXCWRI I (W ]
g(tk+1+) - - .
_3d(tk+1+)_ _E(}—{c (tk+1 D §d(tk+1 -))_
1!o0 I 00
Plog,g )= |- | Pl |- Byl +[----
i H 0 ; 0!Q

(B.4-5)

After evaluating Eqs.(B.4-5), x(t, ,") and P (tk+1+) are the initial
conditions for propagating the mean and covariance over the next
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sampling interval using Eqs. (B.4-2). Thus by alternately evaluating the
differential and difference propagation equations, the mean and covariance
matrix of the mixed continuous-discrete nonlinear system can be evaluated.

B.5 DESCRIBING FUNCTIONS FOR SATURATION AND SINUSCIDAL
NONLINEARITIES

Describing functions for the saturation and sinusvidal non-
liniarities in Fig. 2.1-2 are calculated in Ref. 12 for gaussian inputs.
These are shown graphically in Figs. B.5-1 and B.5-2. The exact
analytical expressions are as follows:

Saturation

n(p)=m l-zpr (%-) -1]

6/,
PI <-§-) - / iTﬁxp [- -V-.—?-] dv (B.5-1)
c m 2

Sinusoidal

(B.5-2)

Equation (B.5-1) contains a term, PI =
gaussian density function, sometimes called a probability integral.

The latter cannot be expressed in closed form. Hewever, an approxi-
mate expression which is accurate to one part in 10"‘5 is given by (Ref. 14)

5 ) , which is the integral of the

96
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2 3 .
n(®)wrfm [ 2] T
) Var - 20 i=1
1
w = 'I—-BT
$ —
e
b = 0.33267 a, = -0.1201676
(B.5-3)
a, = 0.4361836 ag = 0.9372980

Equations (B.5-1) through (R.5-3) are used to calculate the describing
function gains in the CADET simulation.
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Figure B.5-1 Describing Function for Saturation
with a Gaussian Input
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Figure B.5-2 Describing Function for a Sinusoid
with a Gaussion Input
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