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SUMMARY

Several basic conditions which detcrmine the shape of the free fluid
surface due to the vertical immersion of an infinite wedge in a perfect
fluid are analyzed. Continuity of the fluid flow, dynamic similarity, and
finally the conditions for irrotational potential flow are applied to es-
timated surface shapes until, by an iterative solution method, a unique
surface shape is obtLined for a given wedge angle. This method of analysis
is carried out for several wedges (deadrise angles up to 500), and the
corresponding free surface shapes are constructed in detail. Empirical
formulae for the relative spray thickness are also given.

Knowledge of the free surface shape enables a solution for the
velocity and potential everywhere on the free surface, and also in the
wedge itself. From these data, the impact force and pressure distribution
on the wedge are computed. Comparison of the pressures with a previous
simpler analysis based on an analogy with the flow around an expanding
flat plate shows reasonabl,. agreement at low angles, but a large percent-
age reduction in pressure at high deadrise angles.

The study was made at the Experimental Towing Tank, Stevens Institute
of Technology, under the sponsorship of the Office of Naval Research,
Department of the Navy.

INTRODUCTION

This report is one of a series prepared at the Experimental Towing
Tank, Stevens Institute of Technology, in connection with the research on
planing surfaces conducted under Contract No. N6onr-247, Task Order IV,
with the Office of Naval Research. The research project, which includes
theoretical and experimental investigations on the problem of planing on
the surface of water, is divided into two general groupings:

a) Investigation of the fundamental nature of the hydrodynamic
planing preness.

b) Collection and organization of seaplane and flying-boat design
data for the establisliment of rational design methods and for
comparison with theoretical results.

Group (a) is primarily of a theoretical or mathematical nature,
dealing with the detailed fluid flow in the vicinity of a planing surface.
Results of these theoretical studies are presented in Refeiences 1, 2,
and 3. with additional reports in the process of preparation. Group (b)
is primarily experimental and empirical, dealing with an over-all evalu-
ation of the effects of the many parameters that influence the planing
process. Results of the empirical studies completed to date are presented
in References 4, 5, 6, and 7.
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The present report is a portion of the investigation into the funda-
mental nature of the hydrodynamic planing process. It deals in detail
with t..e rise of the surface, formation of spray, pressures, and loads
,"hicb occur during the normal penetration of a fluid surface by an in-
finite wedge.

The general appearance of the spray and wave surface which results
from the penetration of a fluid surface by a wedge shape has been experi-
mentally noted by many observers. However, the transitory nature of the
problem and the small measurements involved have made accuratp experimen-
tal data difficult to obtain. Loads and pressure distributions for wedge
inmersions have been determined experirentally (because of the importance
of the problem in seaplane design), but only at the expense of intricate
and costly test procedures.

Analysis and understanding of the experimental data obtained have
be.n hampered by : lack of a basic analytical solution to the penetration
problem. The earlier work of Wagner (Reference 8), brief and cryptic as it
is, has nevertheless provided a groundwork for the theoretical study of
the many problems associated with planing and impact. Previous reports of
ti'is series have amplified and extended Wagner's analyses for the detailed
flow in the spray-root and trailing-edge regions and, by the expanding-
plate analogy, for the loads and pressares on a wedge penetrating the
fluid surface. These analyses were limited to relatively low angles by
the assumptions required for their solutions. The removal of the restric-
tion to low deadrise angle would make the results of these theoretical
studies of greater practical engineering value.

It is the purpose of this report to present the more general method
of analysis suggested by Wagner which yields the free surface shape and
associated pressures and loads during the symmetrical penetration of a
fluid surface by a wedge of any angle.

SYMBO.S

a.b points on free surface of fluid; also distance of points from origin
o

no..,nal wetted half-width
d subscript pertaining to doublet
id subscript pertaining to image doublet
k UiV at point on surface
n distance normal to free surface, + inward
o origin of x,y axes
0 edge of spray, origin for s
p pressure at any point in flow field [p( /at) - p(U2/2) + pF(t)]
B distance to doublet center
r distance from origin to point in fluid (usually on surface curve)
N distance along surface from its origin at solid boundary (Figure 2);

also general point on free surface or wedge

A- - ~-
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t time
U r,.sultant velocity at any point/ u; v2
u velocity component I x axis: 4 - , f'/x, ;k/y
V velocity of wedge or field velocity at m
V velocity component II y axis; + t ; 20/Zy,--?4/Zx
Z horizontal distance to t. symmetry
7 position of peak pressure on bottom
Yo vertical distance to apex of wedge (from undisturbed water surface)
a angle between velocity vector, U, and radius, r
,6 angle of deadrise (as a subscript, denotes polar coordinate system

(Figure '))
y angular orientation with respect to doublet

spray thickness
angle between the radial velocity and the surface velocity past the

radius
y coordinate of particular fluid particle (especially surface par-

ticles)
0 angle between radius from doublet and free surface at any point

/1 angle subtended at the doublet by the line yo0'

x coordinate of particular fluid particle (especially surface par-
ticles)

P mass density of fluid
velocity potential

,P stream function
V differential operator (VO - grade)
V2  Laplacian operator c div grad

THEORETICAL ANALYSIS

CONDITIONS OF THE PROBLEM

1he problem is treated as a two-dimensional one, and the infinite
wedge is assumed to be symmetrical about the vertical centerline plane,
and perfectly rigid. For this first analysis, the velocity of penetration
is taken as a constant (very high mass or forced penetration).

The fluid is assumed incompressible and frictionleas. The flow field
is assumed to be initially irrotational, and thus must remain so under
Lhe first assumption of the perfecL fluid, The velocity of penetration is
assumed to be sufficiently high and the size of the wedge great enough
that the effects of gravity and surface tension may be safely neglected.

The initial penetration of the wedge splits the previously undis-
turbed fluid surface into two surface sheets- On the basis of the assump-
tions of perfect fluid and irrotational flow, it follows that particles
on the original surface remain and no new particles are added (Reference
9) and, since the fluid is incompressible, the surface as deflected by
the wedge penetration must have a constant length of arc.

These conditions correspond to the requirements for a potential
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flow. For convenience in application to the problem, however, three con-
ditions are abstracted which define the shape of the free surface:

1) Continuity! The fluid displaced by the wedge must appear above
the original water surface in the form of a wave and/or spray
(incompressibility), and the arc length of the surface must be
constant.

2) Similarity: Since the wedge is symmetrical ard the immersion
is normal to the undisturbed surface, the field of flow is di-
vided into two halves by the centerline of symmetry. The neglect
of gravity forces and scale effects leads to the deiinition of
surface shape and dynamic state of the field of flow entirely
in terms of the wedge penetration (distance and velocity). At
constant penetration velocity, the flow field and surface shape
must then begeometrically and dynamically :i;milar at all times.

3) Irrotationality: The fluid flow field may be represented by
the potential function, q5. For irrotational flow, the relation
V2 -= 0 must be satisfied everywhere in the flow field, where
V2 is the Laplacian operator jiv grad.

METHOD OF APPLICATION OF GENERAL CONDITIONS

CONl INU ITY

There are any number of possible soletions for the free surface
shape on the basis of continuity alone. Two extreme solutions are shown
in Figure 1: one limiting case is all wave with infinitesimally thick
spray, while the other is the opposite -- all spray and no wave. Between
these extremes lie the combinations of various spray and wave shapes as
indicated in Figure 2_

One analytic expression for the 'all wave' condition is obtained
from the equations of flow about a flat plate as given in References 3
and 8. From consideration of the potential flow about a flat plate, with
the flat-plate width treated as a variable, it is possible to determine
the velocity distribution and then the effective surface rise in the plane
of the plate (as shown in Figure 1). This solution gives an analytic ex-
pression for the wave rise, 77. The rate of expansion of the plate deter-
mines the equivalent deadrise, 3, to which this analytic solution is as-
sumed to apply. It is simple to demonstrate by integration of the area
under the wave that the continuity condition is satisfied.

From Figure 1, the areas A and B for thi 'all wave' condition ae

A tan# ( 2() (I I
2 77

an
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B :ia__ (C _.c)+ dx (2)
n C

From Equation 38 of Reference 8, (or Equations 11 and 13 of Reference 3),
tha wave rise 77 is given by:

2tanA x arcsin c. 2_tani c (3)
77 X 77

CD CO

7? dx = c ; -X2 arcsin -x - dx

. tan3 C,2 2x2 arcsin2+ 2 c 4 4xj

22 X VCn]

tan/3 c2 Li)]4

Therefore, combining Equations (2) and (4) gives:

B -anl6C 2 ( + tanA 2(4i)

2 7) 2

which is equivalent to the expression for the area A.

The 'all spray' coiidition could be solved directly by simultaneous
equations for the area and length equalities required by the continuity
condition:

A = B and oa = o$ . (6)

However, these two cases are evidently not real possibilities because of
the sharp fluid corner which would be required either at the wedge or at
the :sill wauer surface. T1hey merely represent the extremes between which
an infinite variation of wave and surface shape may occur.

In general, any thickness of spray may be associated with an un-
limited variety of waves and still not violate the continuity requirement.

S I I LAR ITY

The principle of similarity for the proportional increase of the
wave and spray with continued penetration is the second basic considera=
tion. Not only must the displaced fluid appear above the initially undis-

L m~
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turbed surface, but the wave and spray must be increasing in such a man-
rer that the shape and velocities are everywhere determined by the posi-
tion and penetration velocity of the wedge. By a geometrical construction
and integration process proposed by Wagner (Reference 8), it is possible
to relate the surface shape and velocities so that for any spray thick-
ness, one corresponding wave and spray-root shape which meets the require-
ments of similarity and continuity is determined.

In an ideal fluid where gravity, viscosity, and surface tension ef-
fects are reglected, the shape of the free surface is uniquely determined
by the shape of the body, and the size of the shapes is determined by the
amount of penetration. Thus, fora simple wedge penetration, the free sur-
face shape is always the same.

For the same relative positions in the fluid and on the surface,
the dynamic conditions of pressure and velocity depend upon the surface
shape and must bear the same relationship to the penetration velocity at
every instant of time. It should be noted that this statement applies to
a relative position in the fluid and not to a particular fluid element
since, as it will be shown later, particular particles move from one posi-
tion to another and are subject to varying pressure and velocity with the
passage of time

For example, consider the several stages of the penetration process
illustrated in Figure 3. Initial contact is made at point o, splitting
the surface layer. Penetration into the fluid raises the initially flat
surface into a wave and deflects the nearby particles out along the wedge
surface as spray. (The transition area where the wave surface is rapidly
curved around into the spray is termed the spray root.) The resulting
surface shape expands with the penetration of the wedge as indicated by
the several positions o' alb,c1 , o'ya~h f2, and o' ab c3 .

Under the assumed perfect properties of the fluid, such a series of
scalar curves for a constant velocity immersion could just as well be
represented by any one of the curves, the scale of the diagram then de-
pending on the wedge penetration. Since the fluid particles are not re-
stricted in size, the scale of the diagram is of no consequence. Thus,
the radiating lines oa, ob, etc. define corresponding points on the sur-
faces for similitude since the point o is the origin of the motion.

(It is interesting to note that several points other than the origin
chosen could be used as a center of symmetry for the expanding surface.
The wedge apex, yo, the spray tip, o', or the intersection of the wedge
side with the still water surface could be considered as points of origin
for the expansion of the flow. Jilwever, the latter two would appear as
double centers for the complete wedge, and all three have the disadvantage
that die 'center' of the expansion would be moving with respect to the
initial pfnetration point and wich respect to the fluid at e great dis-
tance from the wedge. Since such motions of the center of expansion would
complicate the problem unnecessarily, the initial contact point, o, will
be used.)

~~,L
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Corresponding points on the surface are determined by the ratios:

O01,a, _ ' 22 o2b2  o' 3b3- 2 a 2 l o .b2  ; e t c .. ( 1 3 )

oa1  oa2  ob2  ob3

Also, the velocity at corresponding points must be equal:

Ual - Va2 = bU1 3 = 
ka Ub b  = k6 V; etc., (14)

where ka, kb, etc represent the proportionality factors between the velo-
city U at positions a, b, etc., and the penetration Velocity, V.

At any point on the surface, say c., the velocity t determined
from consideration of th.is condition of similarity. From the instant of
contac-t, the surface may be considered to have been sliding past the
radius oc in a direction tangent to the surface at c3 , at a rate suffi-
cient to maintain the ratios in Equation (13). Thus, a particle at the
surface (at point ca) is momentarily moving with the expansion of the
radius, and at the same time sliding past the radius towards the spray
region. The vector sum of these two motions Ur + U..) yields the re-
sultant velocity Uc of the particle at the point in question.

The radial expansion velocity, Ur, and the surface velocity past
the radius, U., a3 well as the resultant velocity, U, are each directly
proportional to the penetration velocity, V (Equation(14)). Thus, for con-
stant penetration velocity, V, the velocity components (U,. and Us.) at
position c are constant, and the vector sum of the velocities may be ob-
tained from the radial distance and the arc length:

The radial distance oc3 = r is giver, by:
t

r -JfUr dt = Urc L.

0 C

The veel~or s is constructed tangent to the surface at c so that s
equals the arc length o'c:

t
e/

c  c0

The vector sum is then.,

S + r 1f U de - Ur t (15)

0

Now the actual fluio particles on the surface do not follow the
radiating lines but remain at a fixed arc length from the split edge of
the surface, o'. For example, a particle initially at rest at
rises firat as a part of the wave surface and later becomes a part of the
spray. The velocity of the particle varies with its position on the sur-
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face. The motion of the particle is thus a function of its relative posi-
tion and is given at any time by the integral relation:

C

V " ) U ( , 7 ) dt (16)

or more specifically,

t
- ~ u(ffU ) d, (16a)

v~f,,7 d, -(16b)

The problem is to determine the velocity of the particle , atany point in its path, and then to relate the position and time so thatthe integral may be solved. This does not appear to have an analytic so-lution, but the graphical solution is easily carried out.

The velocity of the particle (e,71) may be found directly at anyparticular time by constructing the surface of the proper penetration,locating the point according to its arc length from o', and performingthe vector addition of Equation (15). However, this would be a tediousProcess to determine enough points for step-by-step integration of Equa-tion (16). A more simple alternate method is to change the variable fromtime to arc length, which is done in the following manner.

Assume particle (j,'7) at time t2 to be at position c2 . Then, at t2,U tiC.7 which may be determined on the t 3 curve at c, . In other wordsthe surface points d3c3b3 correspond to earlier times on the particlepath. The time t2 is related to t3 by the arc lengths at corresponding
points c2 and c3'

S C c.3. . i S  ._.2 -so
t c t 2 t2

or, in general, with t = the earlier time t 2 , and s the corresponding
arc length on the surface at time t3:

and

d t -- ~.-.. j d,
S
2



Substitution for dt in Equations (16a) and (16b) gives

-3 d. Uo  dy (17a)

and a

S - -d (17b)

s
o

The horizontal and vertical components, ut and vt, may be found at
any point along the surface by using Equation (15), and a step-by-step
integration of the above formulae may be accomplished. Any trial curve
which satisfies the continuity condition may be used as a starting point
for the determination of the surface velocities. The solution of Equations
(17a) and (17b) determines a new curve which is used in turn to obta-in
revised value of the velocity components. This iterative process is con4
tinued until negligible differences occur between computedand trial
curves of surface shape.

Actually, the integral equations relate the rise at a particular
point to all the points more distant from the wedge. Thus, the path of
each point on the surface follows the same related pattern, and the sur-
face shape fits the requirements for similarity. Although rigorous ana-
lytical proof is omitted, it appears from the actual computations which
have been made that the integral relationship (Equations (17a) and (17b))
rRiduces the number of possible spray-wave combinations to one for each
spray thicLness.

POTEr TiAL AND STPE41/ F.:OTIOri Oti THE FREE SURFACE

For use in the application of the third condition, which follows,
a potential function that satisfies the first two conditions is assumed
to exist for the fluid field of each spray-wave combination (even though
such an assumption can be true only for the one free surface shape which
meets all the conditions of the problei;. The values of the potential t
and the stream function ' o. the free surface may be found as follows.

In Figure 3, the tangential velocity, ;33I/s, along the surface at a
position c is given by - * Urc cos . In terms of the potential t, the
tangential velocity - ,sFor points along the surface (at fixed im-
mersion), cor' is given by dr/ds. (The values of dr/ds for the particular
surface, such as 3, should not be confused with dr/ds = r/s for aconstant
position, such as c.) Then

V, dr (]8)" -- S r -s r os USe - re

The peneral differential equation is obtained by multiplying Equatior. (18)
by t ds and dropping the subscript c (noting that tt'. s and fUr - r)
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-t dt z s ds - dr (19)

Integration gives

(-5L=--r) + A (0
2

Since €- 0 at s zr -, A 0 and

r . s _ = /r2 - us2 (21)
20 2

The stre, function 'P on the free su-face is found in a similar
matiner. At position c, the normal velocity is given by Ure sint. In terms
of p,

Multiplication by t ds gives:

t w ds r sin" ds

The integration of the right-hand side is accomplished graphically since
it represents the area swept out by the radius r. Thus,

t ds = -2 (prea oo'co)

and in general terms, the general position s replaces the particular point
C, and

t 'Ps -- t 00, - 2 (area oo'so)

For '- 0 on the centerline of symmetry, cPo is determined by the
constant normal component of the velocity at the wedge surface, Us:

n  ' cosp,

- (yoo') V cos 3  (yoo') yo cosf = 2 (area oo'yoo)

and thus

( 0., 2 (area oo'yo - area oo'so) (22)

It aiI I be noted that as s - M, the area oo'so becomes equal to the
area oo'yoO by virtue of their common area and the condition of continu-



ity. Thus, O = 0 which is as it should be.

IRROTATIONAt.ITY

Irrotational potential flow is the final condition for the field of
the wedge penetrating the fluid surface. Everywhere within the fluid and
on the boundaries, the requirement must be satisfied that V2 = 0. This
may be written in several equivalent forms:

- + _ = 0. (23)22 2 2x'- 'AS = n 2 sZ n

From the graphical constructions made for the condition of simi-
larity, it is possible to obtain q, Un, US, and even ZUs/s along the
free surface boundary; but WnUn/7Dn is not obtainable, and no interior
values may be found. Therefore, it is not possible to use Equation (23)
as a direct check on the surface shapes obtained through application of
the first two conditions. Instead, an indirect method of approach is used,
based on Greene's theorem (Reference 9).

Greene's theorem, which relates s ,rface integrals to volume inte-
grals for superimposed potential flows, states that for irrotationalpd-
tential flows:

$ S

where ¢ and 42 are any two irrotational, potential flows superimposed in

a common region S, and the integral is taken over the boundary surface of
the region only. If the known irrotational potential function for a
doublet, rd, is chosen for q,, and 0 = 0 (the questionable value deter-
mined fro-n the free surface shape), te integrals will check only if k is
also a potential function for an irrotational flow.

The doublet may be located anywhere on the assumed free surface.
However, the field of a doublet decreases rapidly with distance, and
the choice of locatioa for this checking purpose may be quite critical.
Since the largesL deviation from irrotational potential flow could be ex-
pected in the spray-root region, the doublet is located in this region as
shown in Figure 4. (Tt is necessary to add the image doublet above the
wedge to give =!n [I on the wcdge surface, because th: graphical con-
struction which satisfies the similarity condition doe. not yield any in-
formation on the potential along the wedge.)

Consider the flow ;" the itraediate area of the doublet as shown in
Figure 5, an enlarged section of Figure 4. The field of the doublet is
given by

sin (25)R

rL -+
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1 from which the velocities due to this field are given by

sini (26)
dli p2

cosa (27)

At the free surface, the normal component is given by

ftd sin6 - cos 4 d = .-- (-sinO sina - cosO cosa)rn R a R

- cos(a - (28)

it2

The potential and velocity equations for the image doublet are the same
as the above except that a and 9 are interpreted as positive in the
counter-clockwise directioi, (and of course the R values are measured to
a different center).

On the f below the wedge apex, the doublets do not exactly balance
because of the change in angle Letween the wedge bottom and the D. Since,
at this distance, the velocities due to the doublet or its image are small
(as 1/ 2 ), the net difference normal to rth k is very small and may be
safely neglected.

The surface integral required to check the V2q0 condition may be
evaluated from the known potential field of the doublets and the measured
field characteristics of the assumed surface shape by breaking the sur-
face into a number of segments:

XCO

f f f + f ftb-f f°4.
ZM C-0 Z-- C

The evaluation of the integral on each segment will be discussed separately
and reduced to its simplest form before writing Equation (24) in its an-

i rety.

The portion of the surface integral on the $,of symmetry below the
wedge apex is represented byf x__o. Y ;Y*
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This portion of the integral may be shown to be convergent to a small
value, which may be safely neglected. Over the part of the surface
4/n = 0, Od is small (on the order of Il1), and

0

J (0) (sina/B) ds 0

for s - R at infinity. Also, ? d/Jn for one doublet is very small at and
below Yo (on the order of I/R2). For the pair of doublets, the value is
the difference between the two, an eve -smaller value. On the &below
the wedge, 0 is not given by the analysis so far, hut from the expanding-
plate analogy (Reference 3), the value is on the order of R., at the wedge
apex, and diminishes rapidly below the wedge, giving

y Y' cos (a ds
RYo R 2

which is convergent for s - R - . Since the small finite value which
might accrue from this integral appears co be much lower than the mechan-
ical accuracy of the graphical method to be used, this term may be neg-
lected.

The value of the integral along the solid boundary from wedge apex
to spray tip,

Xyo

may be determined analytically. Along the wedge, q5 is not known, but is
finite, while ' 'd/Zn = 0, so that

of
4j 2d ds= 0.

The doublet and its image add along the wedae:

,d = 2 sino ,
R

Since ?4ki n = V cosk and ds R do./sina,
1 0

y, aQy

where ;A is 4 yodo' ,

Two terms
5.=$ d

- f S=X,

f and

which represent the integrals on the free surface from the 3pray tip to
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the doublet and from the doublet to infinity are indicate4 because the
free surface is theoretically broken for a distance 2c at the doublet
(5 - sd). At all other points of the free surface, P and 4P/an are given
by constructions for the assumed surface, and (d and 4d/Zr are given by
Equations (25) and (28). Because of the discontinuity at the doublet
center, a small semi-circular path is followed around the singular point
to obtain

Sd

d
(The distance 2E is taken so small that the effect of the image doublet
is infinitesimal.) The doublet potential and normal velocity components
are given by Equations (26) and (27). The potential and normal velocity
of the main flow field are obtained on this small semi-circular segment
by assumingaiovaiiation of the field ve;ocity forthe small area involved.
As shown in Figure 5.

-4 + R cos - (forR -c only)
d R

and

osa41J - sina t-4k

d d

where Id indicates a constant value for the main flow field in the im-
mediate region of the doublet. Thus,

1cosa42ij -R sina.. Id on

and

0,a " 1 .2-4 d Od 22 R da

dg d

d

Also:
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S d +0!

aa

J (~ + BcosL4:AI-. B-sina)

Id D

The closing segment of the co:,tour from the free surface to-the '
of symmetry on the infinite boundary is represented by

Even though this integral is over an infinite boundary, it is definitely
zero because 06, k0d, B!/n, and Bd/Bn are zero on the infinite boundary.

Now that the integral for each segment of the contour has been re-
viewed, it is simple to write the integral Equation (24)

$ 77

which may be broken down into sections according to the discussion above
to give;

2 V!Lcosg- +f d -E21=1f' Nds+ J(0
oCd d

This reduces to-

-, 2 V-Cos, -- €fd - d (31)
d o

Equation (31) expresses the condition of irrotationality in a form
which may be applied to the trial curves which have been obtained from
the first two conditions. By trial-and-error solution, the final shape of
the fluid surface. which will satisfy the third end final condition may be
found for each wedge angle.

IETERMINJATION OF LOADS ANDl FRESSURES

From the abot:e portion of the analysis, the shape of the free sur-
face for potential flow due to the constant-velocity immersion of a wedge
has been determined. The values of vel*,;ity, potential, and stream func-
tion on the free surface corresponding to this shape are directly ob-
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tained, as indicated previously. However, (in order to obtain the pres-
sure on the wedge) velocity and potential values along the wedge surface
are required, and these are not directly given by the analysis so far.
The study will be extended to yield this information, but first, the
method of obtaining the total load as proposed by Wagner (Referecce 8)
will be developed.

.AGr,,ER'S %,'ETHOD FOR TOTAL LOAD

Penetration of the wedge into the fluid generates pressures on the
wedge which appear in the fluid flow as momentum and kinetic energy (under
the initial assumptions of the perfect. fluid without restraining bounda-
ries). The total force at any time equals the rate of change of momentum,
and the work done by the force is equivalent to the kinetic energy of the
fluid

The momentum of the fluid, M, is given by summation of the products
of incremental volume, d(volj, and the local velocity vector, Vt = grade:

M PZffP 0 d(vol)

Since the local velocity, Vf, at any position is constant for a constant
velocity penetration, the change in momentum with respect to time at a
given position in the fluid is given by the rate of increase of the dif-
ferential volume. For the two-dimensional case under consideration, the
differential volume, d(vol), to occupy a given space increases directly
as tbe area of immersion, or directly as the square of the depth of im-
mersion. Thus, d(vol) A P yo t

The total force is then given by

p - -,_ p  fff 2 V t d(vol)

dt 'd tJJJU

where %4 and d(vol)/t2 are for relative positions and independent of time
t. The differential of the integral with respect to time gives

, P tfffv d(vol) . (32)

This integral can be transformed to a surface integral by the theorem o
divergence (Gauss' theorem)

ff 7 d(v01) -J/f If

where the differential area, df, is a vector normal to the surface, posi-
tive inward with respect to the surface. Substitution in Equation (32)
gives
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Pt = -2pJ' df (33)

which for the two-dimensional case under consideration may be written:

Pt = 2pJO ds

where P represents the load per unit length of the infinite wedge.

Because of the symmetry of the problem, the horizontal components
of the vector, q df, balance. Thus, only the vertical components need be
integrated to obtain the load P (which must obviously be normal to the
initial fluid surface for the symmetrical problem under consideration).
The vertical components of the incremental vectors, 05 ds, may be written
as 0 dx, where dx is the horizontal projection of an elemental surface
length. The direction (up or down) of 0 dx is determined by thesign of
the quantity dx, depending upon the position of the surface with respect
to the fluid, as shown in Figure 6. Along the wedge, dx = cos 3 ds and the
vertical component of 0 ds = cosA 0 ds. On the spray surface the inward
vector is upwardly inclined so that ds , -dx, while on the wave surface
the inward normal is downward so that ds , dx.

Now, if Vn represents the component of the field velocity, V, normal
to the surface and positive inwards, V, will be negative in the spray and
positive in the wave area as shomn in Figure 6. Thus, in both regions, dx
may be written as

d = V-- ds
V

and the vertical component of q5 df is

x = d- s .
V

The integral for total load, Equation (33), may then be written
two parts: one for the body, SB, and one for the free surface, Sw:

Pt = -2p d0 ds - -2P d dx
S

and

Pt = -2P cosW pds -2 V ds (34)

SS S P3B NR

The kinetic energy, K.E., of the fluid field is given by Greene's
theorem in trns .f a surface integral (Reference 9):

.= ~~fjf~ ~i +... ~d(voll = --f fk. df, (35)

where positive energy is indicated by flow outward through the surface,
-3 /0n. The kinetic energy per unit thickness of the wedge is therefore
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K. E. d

By virtue of the uniform growth of the loaded area for the simple
wedge immersing at constant velocity, the load on the wedge increases
linearly with time. (This may also be deduced, mathematically, from Equa-
tion (32).) Thus P = (P/t)t, vnd the work done is given by the integral
of the load, P, times the distance, dy ( = V dt):

Work "- P dy f t V dt = V = 2

Since the work done on the perfect fluid must equal the change in kinetic
energy,

Pvt -K.E. -.0 z ds (36)

S
Since, at the body, ?. /Zn = + V coso, and on thp free surface, cO -.n is
negative, variable with position, Equation (36) may be written:

2 2k O n
SW

or

Pt = -p cos qb ds -% ds (37)

It will be noted that Loth Equations (34) and (37) contain a term
which requil-es values of the potential on the body for solution. However,
they may be solved simultaneously to yield a solution for the load P in
terms of the free surface integrals alone, eliminating the troublesome

term.

Equation (34) minus twice Equation (37) gives:

Pt - 2 Pt -2, -f-. ds + 2f q 2A ds
Sr Sy

-PVt -2p( f b Ads pfq V. ds)

'DnI

This integral may be evaluated for each deadrise investigated since
the required potential and normal velocities are given at every point on
the free surface. In general, the velocity and potential have been ob-
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tained in terms of distances in the geometric construction (tV, to).
Eauation (38) may be converted to this form by multiplication by t

2 "

Pet'. - -2p to (.tvn, + t 6n )dS

SW

or since y. tV,

Pv2  oa
2

St

Equation (39) is the final form for convenient evaluation of the
load on the immersing wedge in terms of the free surface shape determined
in the previous section.

It may be seen by reference to Equation (20) and Figure 3 that the
major portion of this integral accrues in the spray region. The value of
potential is large at the spray tip and decreases rapidly to low values
past the spray root, while the relative normal velocity conponint in-
creases to a much smaller extent in the spray-root region. The product of
potential and normal velocity diminishes rapidly to zero along the wave
surface towards infinity because, while the velocity approaches a con-
stant value (tVn - t(Zt/ n) = tV], the product tqb diminishes as the dis-
tance squared.

Closer scrdtiny of the relative velocity (Vn - (BO/Zn)] shows the
direct relationship between the spray thickness and the total force ac-
cording toEquation (38). The velocity [Vn - (20/Zn)] is actually the nor-
mal component of the vector sum of V and Uc in Figure 3. In the spray
region, this is practically constant and equal to the velocity of the
spray tip along the wedge times the angle between spray and wedge. Thus,
the thickness of spray determines the relative normal component in the
region in which the greatest part of the force integral is determined,
and so the force is roughly proportional to the spray thickness.

D)ERtVATION OF POTENTIAL AND VELCITY DISTRIBUTIONS ON THE W,'EDGE SURFACE

From the simple graphical constructions described in the previous
section. the analysis of the free ,iirface shape for any wedge angle will
give directly the velocity and potential distributions on the free sur-
face. Also, a method has been given for obtaining the total load on the
wedge, which circumvents thenecessity for detailed flow information along
the wedge itself. However, the disribution of the pressure on the wedge
has not been given, and for that purpose the potential and velocity dis-
tributions ca the wedge surface are required.

On the premise that the uniq,- free surface .,hape for each wedge is
a rrstl't of potential flow, the velocity and potential at anypoint may
be represented by complex analytic functions:
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U U

to which the Cauchy integral equation may be applied, relating the point
value of a function to the integral around a bounding contour of values
of the function at other points. The standard integral for the point
within the boundary is-

f(z z)(4) dz (

C

where z is the complex coordinate of the position in he fieldl. Since
points on the solid boundary are to be investigated, the bounding contour
circles only halfway around the point in passing so that thu facttcr 2'n is
reduced to 77, and the principal value of the integral is used. Thus, for
the velocity U up -ivp = Hz):

(J(Zo) , dz . (41)

C

This equation may be separated into real and imaginary parts by
placing the origin of coordinates, zp = xp + iy , at the point z. being
investigated, and writing z in the polar form:

z pe i  e I p + i  (42)

d z I e nP+ i 0 [d(ln p) + i d ] = z [d(ln p) + i d 3. (43)

Substitution of these expressions for z and dz into Equation (41) gives

U(ZO) - -[ t' - iv ] [d(ln p) + i d 0] (44)

C
Rearranging the terms gives

zU n '716 up d(Ino) + v. dO + L [aId - v8 d(ln t)I

C

so thaL the real and imaginary parts of U(x,) may be separated:

0 p 6 d(In P) (45a)

C
,, uA dO -vo d(n A) (45b)

C

Voa
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The construction for performing this integration is shown in Figure
7. The complex coordinates are taken with the iy axis along the wedge.
positive towards the spray tip. The xp axis is then normal to the wedge
surface, positive into the fluid. The axes are sochosen that the integral
for v, need not be evaluated along one side of the wedge since up is con-
sLant (= V coso) and dO = 0 (except for the infinitesimal region of the
singularity). On the far side of the wedge, the value of vp must be esti-
mated until the first solutions for vsare obtained. However, these points
are sufficiently distant to have small effect, and a rapidly convergent
solution is obtained.

The potential on the wedge surface may be obtained by integrating
the velocity along the wedge from the spray tip (where the free surface
formula, Equation (20), gives the coincident value) to the apex of the
wedge. Tne potential may also be found directly by the integral relation
corresponding to Equation (45) (0 in place of u8, and 4' in place of -up).
This is more laborious, and only a few points need be investigated to
check the results from the velocity integration along the surface of the
wedge.

PRESSURE D ISTRIBUTI ON

The velocity distribution and potential along both the free surface
and the immersed portion of the wedge have been determined in the previ-
ous sections. It now remains to compute the pressures which correspond to
this potential flow.

As was noted before, particles in the fluid move relative to the
shape of the flow field (across instantaneous streamlines). Thus, the
simple Bernoulli pressure equation may not be u.ed since particular
streamlines exist only instantaneously, even though the flow pattern is
always similar. For this problem, the general equation for fluid pressure
in a pctential flow muot be used (Reference 9):

P -U, i F(t) + 0 (46)
p 7t 2

Since che fluid has been assumed to be at rest at infinity, with gravity
neglected, the gravitational field and extraneous impulses, represented
by Q and F(t), Pre zero. The resultant field velocity, U, has been deter-
mined on the free surface, 'Equation (15)), and on the ""cdge (Eqtion
(45)). The rate of change of potential with time, 2/Bt, maybe determined
as foin,.

At any position r/yo in the fluid (see Figure 8), the potential '
is a linear function of time (since time is directly related to the scale,
or size, of the symmetrical, constant-velocity penetration under consid-
eration)-

_t . (47 )
L" i ty
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However, at a fixed point (x,y) in the field, this is not so. Con-

sider the point (x,y) to coincide w-;th the position rtI/yo at t1 . At
t = t + IAt, the position rt/yo isa 'istance r =rit/t from (x,y). (For

small LAt, the velocity U in the region may be assumed constant in magni-

tude and d;rection.)

Then, at t tjr

€(x,y/)tl ¢t

at t t + 6t

4(xY) OJrt - Ucosa r

where :j cosa is the component of the velocity along r. Thus,

o= 4+(xY)t rt U6r cosa O r (48)
t ti

With ± t1 + 6t, from. Equation (47),

t + 6t
q t j t Ir t tI t1

Equation (48) then reduces to

- + AL Or U & Cosa (49)

The partial derivative -0 9.t is obtained from the limit of Equation
(49) as 6t approaches O

- At 0 A (t ti 6 t

S_ r V Cosa (50)
t t

where the subscripts are no longer needed since the analysis applies to

all points in the fluid. The pressure distribution is then determined by

I- ,trU Cosa _ U)



R-381
-23-

where the expression for ?O/t from Equation (50) has been substituted in
Equation (46) (with 11 = F(e) = 0).

On the free surface. the pressure should be zero. This may be
checked by referring back to the geometric relations between the velo-
cities and potential shown in Figure 3 and Equation (21). These values
substituted in Equation (53) yield

P Us2 Ur 2 + r cosa ---2_ U2

p 2 2 2

the right-hand side of which will be recognized to be zero from the solu-
tion for a triangle side U. in terms of Ur, U, and the included angle, a.

On the wedge, the pressure may be found by substituting the values
of r, 0, U, and a determined previouply. The total load on the wedge is
obtained from the integration of the .edge pressure across the projected
wetted width. This value may then be compared with that obtained on the
basis of Wagner's analysis for the integral over the free surface only
(Equation (39)).

Maximum-pressure location and magnitude along thewedge may be found
by setting equal to zero the first derivative with respect to s of Equa-
tion (51):

dP = i df , 1 U cosadr - r cosa dU _ U du = o.
WT -ST ds t 7T d

Now U cosa = dq/dr so that at P... (or P*),

cosadU = V dU (52)t ds ds

A maximum or minimum can occur when dUlds = 0 or when r/t =U/cosa. Since
the former occurs at the spray tip, a minimum pressure point, it may be
ignored. Substitution of the latter into Equation (51) gives

P + j 2  (53)
p t 2

or in terms of r,

P"r = --0*, cos 2'2 (54)
p t 2t2

Further study of the relationship r/t =U/cosa shows that at this

ILI
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point, a must be zero. This follows from the observation that the com-
ponent of U at the wedge normal to the wedge is constant anti equal to
the component of r/t normal to the wedge. Thus, r/t can equal U/cosa
only when r/t U and a - 00. Dividing both sides of Equation (54) by
V2/2 = y2/2t2 and putting cosa = 1, gives

P. a_ -¢t + r2 2._t + U2  (55)

pV2/2 yo2 Yo2 yo 2  V2

at the point (or points) where rit = U.

It is interesting to note that the peak pressure point r/t = U
corresponds to a stagnation point in that the same particle occupies the
same relative position at all times. However, the pressure is not the
simple relation pU2I2, but is greater or less depending on whether the
potential at the point is less or greater than 0.

RESULTS OF ANALYSIS AND COMDARISONS WITH OTHER METHODS

SURFACE SHAPE

The details of computation and drafting required for the application
of the continuity, similarity, and irrotationality conditions to the
penetration of a 400 deadrise angle wedge are given in Appendix I. Simi-
lar calculations were performed for angles of 200 , 300, and 500. The
final surface shape determined by the iterative solution is shown for
each angle in Figure 9.

The spray thickness appears to be the most critical characteristic
for a quantitative description of each surface. However, since the spray
is tapered to a point at its edge and merges into the spray-root region,
it is necessary to establish a consistent definition for the spray thick-
ness. It was noted that in every case the spray root comes quite close to
the nominal half-width, c. Therefore, this nominal width was used as a
reference line, and the spray thickness was defined as the distance from
the wedge surface to the intersection of the straight portion ofthe spray
surface extended to the half-width, c, as shown in Figure 9. 1he ratio of
spray thickness to half-width, S/c, defines the relative spray for each
wedge angle. The three surfaces computed in detail were used as the basis
for the plot of relative spray thickness vs. wedge angle given in Figure
10. The points are approximately fitted by the formula

__ _ sine tanA (56)- 3-.3-n

Tin spray thickness fr 6 5 200 va taken fr~m the carve determined by the other three, and
only contlauic, and ailmlrity conditions were applied.

L I ... ... .. :, .' _ . - i ' ' "' : , , '



In References 3 and 8, an analytical solution is obtained for the $
flow in the region of an immersing wedge by comparison with the solution
for the flow around an expanding flat plate. This solution gives an ex-
pression for the rise of the free water surface (Equation (3)), with no
spray.

The mathematical analysis of the spray-root region (References 2
and 8) describes the flow in the immediate area of the spray root, but
the boundaries of the problem are doubly infinite and do not correspond
to the conditions of the penetrating wedge. The flow is defined in terms
of the spray thickness which is not readily determined for the finite
problem.

Wagner obtained an approximate expression for the spray thickness
by comparing the flow fields at infinity for the- spray-root and expanding-
plate analyses (Reference 8, Equation 47):

c 8

where u 2 tanp/n, and therefore,

-tan 2 .1 (57)
c 2-n

However, the logical procedure by which this formula was obtained is not
readily apparent in the referenced report. Later, uipublished work by
Wagner indicated that a factor *1 0.7 (approximately) shoula be applied
to the spray thickness obtained from Equation (57).

A more reasonable comparison of the spray-root and expanding-plate
analyses may be made in the region of the spray root itself. This com-
parison is based upon the assumption thnt UAxe stagnation point of the
spray-root analysis will occur at the peak-pressure point for the expand-
ing-plate analysis. A superposition of the two flows with the 'stignation'
as a common point is sh,-n in Figure 1!.

In the previous analysis of spray-root flow (Reference 2), the
scale was indeterminate and the local region was not related to the over-
all picture of a wedge-penetration problem. The distance A in Figure 11
is approximately eq,'il to the distan:e from spray root to stagnation
point of the previous a,,4lysis, and may be obtained in terms of the spray
hichno fro Figure 6 or R.efr..c 2 by project n ef the root into

the xz/8 axis (at n value of 6). "lor the angles investigated, A 61718andI

c - (8 tano + A) cosj3 '- 8 ( +ir. 6 cos3) (5R)

The expanding-plate analogy mentioned previously does not give a
practical physical solvtic because of the absence of spray, but by that



--'R-38!

- 26 -

method of analysis, a definite relationship is established between the
wedge angle and the stagnation point. Now i/c is given by Equation 30 of
Reference 3 as

-- /7~% ~/j - (2 tanfl 2

and substitution of this value from the expanding-plate analogy into Equa-
tion (58) relates the spray thickness ratio 5/c to the wedge angle, fi:

- c v1i - (2 tan3/7') 2 - (sin6 + I cosA)
77

-T TU a~n!)2 (59)
C sirl +-- cas.

Eqtations (57) apd (59) are plotted in Figure 10 for comparison
with the points determir.id by the present analysis. It will bo noted that
the thrae poinn_ computed in detail (at 300, 400, and 500 deadrise) ap-
proach the t.rve of Eq'ation ('9) at the lower angles. Also, Equation
(59) approaches 70, of Equation (57) at low deadrise angles.

VELOCITY POTENTIAL, AitO STREAM FUNCTION

Under the conditions for irr-otational flow of a perfect fluid, the
shape of the free surface ha2 been determined for several wedge angles.
in fact, the solution for the surface shape is the key to the field of
fj,, everywhere in the fluid. The values of the velocity, potential,
and stream function on the free su-face are given directly, while the
values 2n the wedge must bc estimated aud then refined by en iterative
solution.

FEE RCFACE

Velocity and potential at the free surface Pre given by Equations
(15) and (21) respeccively. These havz already been computed for the
several stage. of the sotutio. for the free surface, shape. Thie final set
of valts for each wedge angle are plotted in Figures 12, 13, and 14 as
Ut,,'V, a, and €t/cz respectively vs. position on the surface, s/c. The
stream iunction is given on the free surface by Equation (22). The values
'f 4i./c2 vs. X/! for the sevetal wedge, angles are plotted in Figure IS.

At the wedge, the normal component of the velocity, ti, is constant
(V coso), and the stream funcLton is given dircctly by
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= sV cosl3 + oo V cosA,

where s, the distance from the spray tip, will be negative along the
wedge. The tangential component f.f the velocity at the wedge, v0, must be
estimated so that the complete Integral, Equation (45), may be evaluated.
The revised values obtaiaied from the iterated solution of the Cauchy in-
tegral for each wedge angle are plotted in Figure 16. These data are com-
bined with the constant u and shown in Figures 12 and 13.

Values of the potential on the wedge were obtained from the inte-
gration of the velocity distribution from wedge apex to spray tip and
vice versa. The end points for the potential (at spray tip and wedge apex)
were obtained from Equatio.. (21) and the potential relationship corre-
sponding to Equation (45). '.,ince he mechanical work involved in the con-
struction practically precludes a perfect agreement, the curves of Ot/c 2

vs. s/c along the wedge presented in Figure 14 repr ,-.ent average values
obtained by working from either end toward the center of the wedge side.

It is of interest to compare the potential and velocity from the
present analysis with thoe ior the immersing wedge as given by the ex-
panding-plate analogy. Equation 4 of Rererence 3 gives for the potential
on the plate

,p _VJ'C 2 X2

or

qkt. = -Vt /7 _1T2

C2 C V C/

This expression is indicated by the dotted lines in Figure 14 (with signs
reversed ior clarity).

Equation 5 of Reference 3 gives for the velocity along the plate
V 's -- U =  V XVC27 X 2

or

This expression is represented by the dotted lines in Figure 16.

It will be noted that the velocity and potential distributions
along the wedge obtained by the earlier method (Reference 3) are in par-
tial agreement at the lower angles, but that the results of the two meth-
ods diverge at higher angles.
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PRESSURES AND LOADS

The pressure distribution on the wedge surface is given by Equation
(51). The values of Ot/c 2 , U/V, and a have been calculated already and
are plotted in Figures 14, 12, and 13, while r/Vt may be measured direct-
ly. The computed pressures for the 200, 300 , 400, and 500 deadrise wedges
are plotted in Figure 17.

Total load on the wedge may be ebtained by integrating the pressure
distribution along the bottom. Because of the symmetry of the wedge, only
the vertical component need be taken since the lateral forces from the
two sides will cancel each other. Thus, for the complete wedge (two
sides):

0

P= 2 c os8I f p ds

y.
and

of

P 2 cosI p

cfpV2 /2) - J pV2 /2 ds

y
The loads obtained by integrating the pressures for the three wedges in-
vestigated have been used to construct the curve of P/c(pV 2/2) vs. A
given in Figure 18.

For comparison with Wagner's analysis of the total load, the values
of P/c(pV2/2) obtained by Equation (39) are also shown in Figure 18. The
functions in Equation (39) to be integrated are plotted in Figure 19 for
each wedge angle.

The earlier analysis (Reference 3) of the immersing wedge was shown
to be in agreement with experimental data at deadrise angles of ap-
proximately 200. For comparison with the present, more detailed analysis,
the pressure distributions and loads from the expanding-plate analogy
have been computed and are plotted in Figures 17 and 18 (according to
Equation 46 of Reference 3)for 200, 300, 400, and 50' deadrise.

In Equation 76 of Reference 8, the solution for total load on an
180 wedge was given as*

P = 49 8 T p V'

w4ere T is equivalent, in the notation of this report, to V (2c/,r')tan.I
Then,
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K = 49.8 x2 tan 180 x 2 z 20.7 (two sides)
c (V 2/2)

This value for 6 = 180 is indicated in F'aure 18, along with Wagner's ap-
proximation for the variation of load with leadrise (Equation 78 of Ref-
erence 8),

c - 2 tanA _-# _ 1)c (PV /2) 1

Comparison of the various load results shown in Figure 18 indicates
several noteworrhy trends. As was to be expe!cted (within the accuracy of
the drafting and computation required), the loads obtained by the present
analysis are in reasonable agreement whether obtained by Wagner's method
or by integration of Cte bottom pressures. The expanding-plato *.alogv
indicates higher pressures and loads than the present analysis, with the
percentage difference increasing with deadrise angle up to 500. The single
point for load at p = 180 given in Reference 8 lies far below the curve
obtained on the basis of the expanding-plate analogy (Reference 3). This
point and Wagner's approximate curve lie about 86 below an extension of
the curve of loads determined by the present analysis.

Thus, the variation of load with deadrise angle, as determined by
the integration of the bottom pressure, may be approximated by

P90 o 0 2
c~pV22) '2.16 tani \--,-- I)1

DISCUSSION

SURFACE SHAPE

The theoretical analysis for the determination of the spray thick-

ness was concluded with a method for checking the irrotationality of the
flow field, using an artifice involving the superpositio of a known flow
(doublet) and the gra0aical application of Greene's theorem (Equation
(31)). In spite of the great care taken in drafting and computation
details, the spray thickness could not be established as precisely as de-
sired. The curve presented in Figure 10 was selected as representative of
the computed points, even though the relative position of the 300 and 400
points indicate a possible flexure n the curve.

After the determination of the loads and pressures, another check
on the spray thickness became apparent- Wagner's analysis for the total
load based upon a simultaneous solution of momentum and kinetic energy



relationships holds only for irrotational potential flow. It was noted
previously that the load was almost directly proportional to the spray
thickness. Also, it appeared from the actual calculations that the velo-
city and potential distributions were affected only slightly by the value
of the spray thickness. Thus, the agreement between the results of the
earlier load analysis (Equatiw (39)) with the integration of the pres-
sures on the wedge is a measure of the accuracy of the spray thickness.

Application of this criterion to the results given in Figure 18 in-
dicates that the spray thicknesses fof 4 0 and 500 deadrise are too large,
while- at 200, the estimated spray must have been too thin. If the load
analyses are assumed to be accurate, then the revisions in spray thick-
nesses required to give consistent force resdlts are proportional to the
difference between the computed load points.A revised set of spray thick-
ness points was determined in this manner and plotted in Figure 10.
These revised values of the spray thickness are very well fitted by

(p2 =(60)

It should be noted that the spray thickness is of a small order of
magnitude. At 200 deadrise, the total thickness is only slightly more
than 1% of the weted half-width, while atthe highest angle investigated,
the spray thickness ratio is only 87. (This factor will make experimental
verification of the surface s'.ape very difficult except in a qualitative
way.) In view of the amuunt of graphical construction involved in the
present analysis, the spread between the spray thickness curves in Figure
10 is not unreasonable.

If extension of the computations to higher deadrise angles becomes
desirable, it will probably be sufficient to by-pass the doublet check on
irrotationality and go directly to the determination of loads and pres-
sures for surface curves based on the extrapolated values of 3/c fror
Equation (60). Since the computation of loads and pressures is not too
tedious for the estimated spray thickness and surface shape, and since
the approximate correction to the spray may be estimated using the ap-
proximate proportionality between the load and spray thickness, it vould
be economical to use the load integrals as the check on the irrotation-
ality of the flow field.

The emphasis in this discussion has been upon the determination of
the relative spray thickness. This is so because the shape of the surface
may be very closely approximated by the graphical construction method for
siriliarity and continuity once the proper spray thickness is known.

VELOCITY AND POTENfIAL DISTRIBUTIONS ALONG THE WEDGE

It has been noted that the velocity along the wedge as determined
from this analysis is in partial agreement with that indicated by the ex-
panding-plate analysis. As discussed in Reference 3, the plate analogy
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breaks down near the edge with the indication of infinite velocity. That
would be a physical impossibility, and in actuality, a spray root is
formed. The velocity increases less rapidly than indicated by the expand-
ing-plate analysis, as indicated in Figure 16, and then levels off to a
cnnstant value in the spray.

By virtue of the symmetry, at the centerline of a flat expanding
plate the velocity along the plate must be zero. However, on the actual
wedge, there is a component along the wedge toward the center so that the
resultant velocity at the apex is vertical (not normal to the bottom of
the wedge).

{ OATt

V~ V'o/

V- 
V V CO S

=- S / (ATf

This is the difference which appears at x/c = 0 in Figure 16. The
close agreement between the velocity curves in the range 0.4 < x/c < 0.95
is quite remarkable, expecial!y for the 300 deadrise wedge. The increase
with increasing deadrise in the difference between the present curves
and those from the expanding-plate analogy appears to be due primarily to
the condition at the step apex discussed above.

With respect to the potential on the wedge as given by the present
analysis compared to that from the expanding-plate analogy, a more in-
volved reasoning is required. It will be noted in Figure 14 that the pre-
vious and present analyses give the same shape of poteptial distribution,
but that the expanding-plate analogy indicates higher negative values
(almost a constant difference along s/c for any particular deadrise

JIagIt)'1. Ldef thE OSURIPtiOns of 1afeece 3 (expandirig-plate analogy),
the potential is based at zero on the level of the plate. This becomes an
untenable position at any appreciable deadrise angle, since the level
water surface lies above the wedge apex, and the plate cannot be construed
as being at several levels simultaneously. The difference in potential of
the field for a reference-level change of yo (=(2c/)tan.8] is Vyo . In
terms of the scale on Figure 14, the change in ,t/c2 is

.t tVY0  y0 
2  4 tan 23

C2 C C 2 72
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This is almost exactly the difference at the lower deadrisc angleFabetween
the expanding-plate potentiol and the distribution given by the present,
more exact analysis.

PRESSURES AND LOADS

Because of the independent check of the spray thickness by the com-
parison of total load and itntegrated pressure distributions, it may be
reasoned that the pressures are reasonably accurate. This could not be
assumed to be the case if such a check had not been obtained, because of
the number of torms and graphical constructions involved in the steps
leading to the determination of the pressure.

The failure of the expanding-plate analogy inpredicting the orrect
wedge pressures may be partly due to the difference in potential which
was discuased above. It may be shown (by reference to Equation (51)) that
a change in potential (&P =Vy0 ) shows up in the pressure ratio, P/(pV 2/2),
as an additive term (of value -2). Thus, a changed potential reference in
the expanding-plate analogy will reduce the pressures shown in Figure 17
by 2. This does not bring all of the curves into alignment, but a trend
in that direcLion is obviously correct.

It ary be seen in Figure 17 that the trends of the pressure differ-
ences at the peak (in the spray root) and at the k~el are opposite. Al-
though the expanding-plate maximum prestures are higher than those ob-
tained from the present detailed analysis, the percentage excess decreases
with decreasing deadrise. On che other hand, the keel pressure given by
the earlier analysis is higher at iow deadrise angles (approximately by
the amount of 2, as mentioned above), but the difference decreases with
increasing angle.

It is interesting to note that a rather uniform pressure distribu-
tion is obtained at 400 deadrise angle. At lower angles, the peak pres-
sures greatly exceed the average value across the section, while at higher
angles, the lack of a well-defined stagnation area in the spray-root
region lets the pressure drop below the value at the keel. This trend had
been shown before in the expanding-plate analysis, but could not be ac-
cepted upon that basis alone becAuse of the wide divergence from the con-
ditions assumed fur that analysis. However, the removal of the restriction
to low angles made possible by the present analysis has resulted ii a
similar variation of pressure with deadrise angle, so that the trend may
be considered to be established,

CONCLUSIONS

1. A method has been presented for the theoretical determination of
the free surface shape arising from the symmetrical penetration of the
surface of a perfect iluid by an infinite wedge-shaped body at constant

V!
'l-
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velocity (normal to the initial undisturbed surface)

2, The actual surface shapes have been constructed for 200, 300,
400, and 500 deadrise angles.

3. Since no restriction upon the wedge angle or slope of the free
surface was necessary to this solution, the method may be used for even
greater deadrise angles when desirable.

4 In the process for constructing these surface shapes, the spray
thickness ratio appeared as the most critical dimension. The spray is
uniformly tapered from zero thickness at the tip to a maximum in the
spray root where it is related to the wetted half-width by the empirical
relationship s/c = (,p/7) 2

5. Distributions of the velocity, potential, and pressure along the
wedge surface were evaluated by the extension of the solution for the
free surface shape These distributions are similar to those givei, by the
earlier expanding-plate analysis (Reference 3) except that an accurate
description of the flow is now given in the spray-root region.

6 The total loads, obtained by the integration of the pressure
over the wetted width of the wedge, are given by the empirical relation-
Ship

p = 2

P 2.16 tanfl(- 1)
c(pV2/2) %268 - i

which is 8% higher than Wagner's approximation of the same form.
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APPENDIX I

SAMPLE CONSTRUCTION OF THE FREE SURFACE SHAPE

This appendix presents the details of the -omputations and drafting
methods employed in the construction of the free surface shape that meets
the conditions of continuity, similarity, and irrotationality. To obtain
greater clarity, not all of the construction lines are drawn and some of
the tablet; are abbreviated.

FIRST ESTIMATE OF THE SURFACE SHAPE

A5 noted in the body of the report, the free surface is built up of
spray and wave- The first estimate of the wave rise is given by Equation
(3). For this particular case, c is taken as 10 inches for 0 = 400 and

2c tanj8(x Cx 1e )no =- -- arcsin -- 1)= 5.34 arcsin -- 1 1

ct SYMMETRY

. > ~ ~ I 15---

4 00°

IF IGURE I-1

The spray tip, o', is located by measuring along the wave and wedge
from x = 15 a distance s x = 15. (At the distance x =151 the-waveslope ib vet-y z-1i111 zu Lthd X ibC Vefy clOb tappuxiitiuivi.)
thickness r .tio, 8/c = 0.055, was assumed.

The addition of spray requires that the wave rise be reduced to
satisfy continuity oi the flow. In order to keep a simple analytic form
for the wave at a distance, the value of no is reduced proportionately:

an 0



and the spray is blended into the reduced wave to form the spray-root re-

gion.

c I0

r 10

F IGURE 1-2

The spray tip is located more exactly by following the curved sur-

face, and area B plus C is made to equal area A by varying the wave rise

71ino and to a small extent, by the spray-root curve. The area 
C beyond

x 15 on the wave-rise curve may be obtained by the integral of Equation

(3):

X IS X =15

Area C 7 dx z a %o dx (see Equation (4)).

APPLICATION OF SIMILARITY CONDITION

The estimated surface shape, as drawn above, is of the correct

length and encloses the proper fluid area. It is then necessary to apply

the test of Equation (17), using the assumed shape to jetermine the velo-

eiry c-mponents -- ure 3). The actual calculations for this parti~cuaar

case are given in Table I.

If the first approximation to the 3urface shape is in error, the

vaiues of r and f resulting from this graphical integration will differ

from the asumed values. Then. the process is repeated, using the 
newly

calculated coordinates of the free surface until a close check is obtained

in Tabl 1 between the starting and final n and f.
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APPLICATION OF CONDITION FOR IRROTATIONAL FLOW

The superposition of the potential flow dut to a doublet upon the
flow pattern determined by the free surface shape obtained above must
satisfy Equation (31) for irrotational flow. The quantities to and
t {Zo/Zn) for the trial surface shape are obtained by Equations (20) and
(15) as shown in Figure I-i (resolving tV parallel and normal tothe sur-
face). The values of Od and '0d/Zn for the doublet are given by Equations
(25) and (28) and are computed in Table II. The values of t and t(BO/Zn)
are computed in Table III.

From Figure I-1, the left-hand side of Equation (31) (multiplied by
t) may be evaluated. For the particular case of 8/c = 0.055 for A =400
(c = 10 inches), the value of t at the doublet (with respect to the
doublet) is d

t B = Sd - Yo cos0 = -6.18
Bod

Also. tV cos,0 = y. cos, 0 4.09 and 2.86 radians. Thus,

zol-(-6.18) 2 (4-09)(2.86)
+ 2Vu cosp +

SId t

+42.8

t

The right-hand side of Equation (31) is evaluated by computing the
values of [to(%rd/'n) - Od t(@/Zn)] and integrating along the surface.
This is done in Table III, making use of the values of od and Zod/Z from
Table Il In this particular case, an approximately correct spray thick-
ness was chosefi so that value of the integral

fl O od o)ds 42.1

-s very clese to the left-had Side vau, 1i2.8/,, '"ieio aboye.

In general, however, several spray thicknesses would be assumed and
the complete process 'arried out to this stage. Then plots of the left-
and right-hand sides of Equation (31) vs. E/c would determine by their
crossing the correct value of the spray thickness ratio.



S R-'3 81

TABLE I

TABULAR INTEGRATION FOR SURFACE SHAPE (EQUATION (17))

(A = 40', c = 10 inches, 8 0.55 inches)

tv tv itv u u U
1? 7-6S As f f u- s L-

STARr NEW START NE

15.0 0 7 1.43 0.0064 0.0247 0.37
~0.018

!3.0 0.56 2.13 0.0126 0.0427 0.56 0 0.09 0.0005 0 0
0. 018 O 0

12.0 0 72 3.21 0.0224 0.0607 0.73 0.01 0.26 0.0018 0.001 0.012
0.014 0.0015

11.5 0.86 4.12 0.0312 0.0747 0.86 0.03 0.50 0.0038 0.0025 0.029
0.0185 0. 003U

11.0 1 02 5.46 0.0450 0.0932 1.025 0.06 1.00 0 0083 0.0055 0 060
0:6212 0.6641

10.6 1 21 7.0! 0.0624 0.1144 1.21 0.11 1.88 0.0167 . 0.0099 0.105
0.0306 0.0116

10.2 1.48 9,87 0.0949 0.14501 1.48 0.22 4.64 0.0446 0.0215 0.219
0. 0432 1O. 0276

9-8 1.85 11.61 0.1210 0.1882 1.85 0-48 9.28 0.0967 0.0A91 0.481
0.949 6 0. 0508

9 4 I 2 24 11.0' 0.1252 0.2378 2.24 0.94 13.60- 6.1540 0.0999 0.939
0.0502 0.0692

9.0 2 59 10.16 0.1255 0.2880 2.59 1.52 15.41 0.1903 0.1691 1.521
0. 064 0. 1045

8.S 2-99 9 42 0. i303 0.3520 2.99 2.33 16.40 0.2272 0.2736 2.325S i0.C683 10.12.
8.0 1 3.36 9.16 0.1431 0.4203 3.36 3.16 1.68 0.2605 0.3946 3.165

1 0.161 0.3025

87.0-407 8 97 0.1810 0.5813 4.07 4.88 16.98 0.346 0.6971 4.88

.161j _____ J 0302
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TABLE Il

COMPUTATION OF Od AND Bd/n
(e =400, c = 10 inches, S = 0.55 inches)

'Rd F d cid Od I id Od

3.0 6.90 6.98 169.0 166.0 8.0 17.5 0.063 0.002
5.0 4.93 5.10 165.5 159.0 11.5 24.5 0.121 0.010
7.0 2.99 3.39 158.0 145.0 18.5 38.5 0.294 0.060
8.0 2.06 2.69 149.5 131.0 24.5 54.5 0.527 0.167
8.5 1.00 2.45 143.0 121.5 28.5 67.5 0.724 0.260
9.0 1.16 2.34 132.5 109.5 30.5 8.P0 1.039 0.324
9.4 0.82 2.40 121.0 100.0 29.5 109.5 1.455 0.210

9.6 0.58 2.53 2111.0 95.0 23.5 130.5 2.004 0.257
9.87 0.39 2.68 102.5 92.0 1S.0 150.0 2.876 0.476

10.07 0.20 2.86 96.5 90.0 ?.0 165.5 5.318 0.249
10.27 0 3.06 90.0 90.0 0 180.0 0.3271(D 0
10.47 0.20 3.26 96.5 90.5 5.0 10.5 -4.661 -0.671
10.67 0.39 3.45 99.5 91.0 8.5 16.5 -2.239 -0.137

10.87 0.59 3.65 102.5 92.0 10.0 20.0 -1.341 -0.148

11.0 0.71 3.76 105.5 93.0 11.0 23.0 -1.091 -0.18011.5 1.21 4.21 112.5 96.5 11.0 27.5 -0.528 -0.156
12.0 1.70 4.65 116.0 99.5 12.0 28.5 -0.317 -0.099
13.0 2.69 5.53 121.0 104.5 11.5 28.0 -0.144 -0.054
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TABLE III

EVALUATION OF EQUATION (31)
400, c - 10 inches, 8 0.55 inches)

v toD -t--~b2

0 16 28 128.P 5.14 0.063 0 002 0-256 0.324
50 14.38 91.24 5.14 0.121 0-010 O.912 0.622

7.0 12 53 54.24 5.14 O.294 0 060 3 255 1.51)
8.0 11 63 35.89 5.72 0.527 J 0 167 5-994 3 014
8 S 11.20 26.80 6 18 0.724 J 0 260 6 968 4.474
9.0 10.82 18.13 7.40 1.039 1 0.324 5.874 7 689
9 4 10 56 11.90 8.90 1.455 0,210 2-499 12 95
9 67 10.45 8 d3 10.08 2.004 0.257 2-064 20-20
9.87 10.42 5. i4 10.98 2.876 0 476 2.685 '.A!58

10 07 10 45 4.0C 10.00 S 318 0 249 !0.69 5? 18
10 27 10.55 2.,8 8 96 0.327- 0 0 2 930C.t'
20 47 10.68 2.36 7.57 -4.661 -0 671 -1.584 -35 28
10 67 10-82 1.81 6.77 -2.239 -0,137 -0.248 -15.16
10 87 10.98 1.21 6.08 -1.381 -0.148 -0.179 - 8.396
3. 0 11.08 1.19 5,40 -1.091 -0.180 -0 214 - 5 391
JS S 11.55 0.83 4.10 -0.528 -0 15, -0.129 - 2 165

12 0 12 03 0.56 3.20 -0.?17 -0.099 -0 055 - 1-014
13.0 13 91 0.30 2 13 -0-144 -0 054 -0 016 - 0 307

I -. u
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FIGURE 2

ol

SPRAY EDGE

SYMMETRY

MOTION OF SPRAY

WEDGE
FREE SURFACE

SPRAY ROOT

STILL WATER SURFACE

GENERAL SHAPE OF THE FREE SURFACE OF A FLUID
DUE TO PENETRATION BY A WEDGE



R-8

0~

00 3

DIGAMAI RPEETTO OFTECNIINSFRSMLRT

yet V

I'v



R-38 - -6e - v--i-

-44-

FiGURE 4

//

I//,'"

//." o/1

lo/

YO

LOCATION OF DOUBLETS FOR IRROTATIONALITY CHECK



R-381
-45-

FIGURE 5
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FiGURE 9c
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R--3 81
-5'-

FIGURE 9d
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FIGURE 10

VARIATION OF SPRAY THICKNESS WITH DEADRISE ANGLE
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FIGURE I
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18 FIGURE 17 I 9-
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FIGURE 18

VARIATION OF LOAD WITH DEADRISE ANGLE
FOR CONSTANT VELOCITY-WEDGE PENETRATION
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FIGURE 19

PRODUCT OF POTENTIAL AND NORMAL VELOCITY
ALONG THE FREE SURFACE
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