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SUMMARY

Several basic conditions which determine the shape of the free fluid
surface due to the vertical immersion ~f an infinite wedge in a perfect
fluid are analyzed. Continuity of the fluid flow, dynamic similarity, and
finally the conditions for irrotational potential flow are applizd to es-
timated surface shapes until, by an iterative solution method, a unique
surface shape is obteined for a given wedge angle. This method of analysis
1s carried out for several wedges (deadrise angles up to 50°), and the
corresponding free surface shapes are constructed in detail. Empirical
formulae for the relative spray thickness are also given.

Knowledge of the free surface shape enables a solution for the
velocity and potential everywhere on the free surface, and also in the
wedge itself. From thcse data, the impact force and pressure distribution
on the wedge are computed. Comparison of the pressures with a previous
simpler analysis based on an analogy with the flow around an expanding
flat plate shows reasonabl« agreement at low angles, but a large percent-
age reduction in pressure at high deadrise angles.

The study wasmade at the Experimental Towing Tank, Stevens Institute
of Technology, under the sponsorship of the Qffice of Naval Research,
Department of the Navy.

INTRODUCTION

This report is one of a series prepared at the Experimental Towing
Tank, Stevens Institute of Technelogy, in connection with the research on
planing surfaces conducted under Contract No. Noonr-247, Task Order IV,
with the Office of Naval Research. The research project, which incliudes
theoretical and experimental investigations on the problem of planing on
the surface of water, is divided into two general groupings:

a) Investigation of the fundamentai nature of the hydrodynamic
planing precess.

b) Collection and organization of seaplane and flying-boat design
data for the establishment of rational design methods and for
comparison with theoretical results.

Group (@) is primarily of a thecretical or mathematical nature,
dealing with the detailed fluid flow inthe vicinity of a planing surface.
Results of these theoretical studies are presented in Refeiences 1, 2,
and 3, with additional reports in the process of preparation. Group (b)
is primarily experimental and empirical, dealing with an over-all evalu-
ation of the effects of the many parameters that influence the planing
process. Results of the empirical studies completed to date are presented
in References 4, 5, 6, and 7.
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The present report is aportion of the investigation into the funda-
mental nature of the hydrodynamic planiag process. It deals in detail
with tue rise of the surface, formation of spray, pressures, and loads ;
vhich occur during the normal penetration of a fluid surface by an in- i
finite wedge.

D e e ————

The genaral appearance of the spray and wave surface which results
from the penetration of a fluid surface by a wedge shape has been experi- X
mentally noted by many observers. However, the transitory nature of the
problem and the small measurements invclved have made accurate experimen- '

tal data difficult to obtain. Loads and pressure distributions for wedge
immersions have been determined experimentally (because of the importance |
of the problem in seaplane design), but only at the expense of intricate |
and costly test procedures. !
'

Analysis and understanding of the experimental data obtained have
Le:n hampered by - lack of a basic analytical solution to the penetration
problem. The earlier work of Wagner (Reference 8), brief and cryptic as it
1s, has nevertheless provided a groundwork for the theoretical study of
the many problems associated with planing and impact. Previous reports of
this series have amplified and extended Wagner’s analyses for the detailed
flow in the spray-root ané trailing-edge regions and, by the expanding-
plate analogy, for the loads and pressures on a wedge penetrating the
fluid surface. These analyses were limited to relatively low angles by
Lhe assumptions required for their solutions. The removal of the restric-
tion to low deadrise angle would make the results of these theoretical
studics of greater practical engineering value.

It 1s the purpuse of this report to present the more géneral method
of analysis suggested by Wagner which yields the free surface shape and
associated pressures and loads during the symmetrical penetration of a
fluid surface by a wedge of any angle.

SYMBOLS

<]
o

points on free surface of fluid; also distance of points from origin
o

nominal watted half-width

subseript pertaining to doublet

subscript pertaining to image doublet

U/V at point on surface

distance normal to free surface, + inward

origin of x,y axes

edge of spray, origin for s

pressure at sny point in flow field [-p(2#/3t) - p(U?/2) + pF(t)]

distance to doublet center

distance from origin to point in fluid (usually on surface curve)

| distance along surface from itsorigin at solid boundary (Figure 2);
also general point on free surface or wedge

&
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v

time

resultant velocity at any pointy u? + »?

velocity component || x axis: + = ; 8¢/0x, /3y

velocity of wedge or field velocity at &

velocity component [l y axis; + { ; %p/%y,-%/ox

horizontal distance to ¢ symmetry

position of peak pressure on bottom

vertical distance to apex of wedge (from undisturbed water surface)

angle between velocity vector, U, and radius, r

angle of deadrise (as a subscript, denotes polar coordinate system
(Figure 7))

angular orientation with respect to doublet

spray thickness

angle between the radial velocity and the surface velocity pas®: the
radius

y coordinate of particular fluid particle(especially surface par-
ticles)

angle betwzen radius from doublet and free surface at any point

angle subtended at the doublet by the line y,o’

x coordinate of particular fluid particle (especially surface par-
ticles)

mass density of fluid

velocity potential

stream function

differential operator (V¢ = gradg)

Laplacian operator ¢ div grad

T~ N ‘mpc'fmuc:-..-_:c:u
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THEORETICAL ANALYSIS

CONDITIONS OF THE PROBLEM

The problem 1s treated as a two-dimensional one, and the infinite
wedge )s assumed to be symmetrical about the verticzl centerline plane,
and perfeactly rigid, For this firat analysis, the velocity of penetration
15 taken as a constant (very high mass or forced penetration).

The fluid is assumed incompressible and frictionless. The flow field
i3 assumed to be 1nitially irrotational, and thus must remain so under
the first assumption of the perfect fiuid. The velocity of penetration is
assumed to be sufficiently high and the size of the wedge great enough
that the effects of gravity and surface tension may be safely neglected.

The initial penetration of the wedge splits the previously undis-
turbed fluid surface intn two surface sheets. On the basis of the assump-
tions of perfect fluid and irrotational flow, it follows that particles
on the original surface remain and no new particles are added (Reference
9) and, since the filuid 13 incompressible, the surface as deflected by
the wedge penetration must have a constant length of arc.

These conditions correspond to the requirements for a potential

R-381
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1) Continuity: The fluid displaced by the wedge must appear abeve |
the original water surface in the form of a wave and/or spray
(incompressibility), and the arc length of the surface must be |
constant, }

I

-d - !
flow. For convenience in application to the problem, however, three con- @
ditions are abstracted which define the shape of the free surface: i
i 2) Similarity: Since the wedge is symmetrical and the immersion

1s normal te the undisturbed surface, the field of flow is di-

vided into two halves by thecenterline of symmetry. The neglect

of gravity forces and scale effects leads to the deiinition of

surface shape and dynamic state of the field of flow entirely

in terms of the wedge penetration (distance and velocity). At

constant penetration velocicy, the flow field and surface shape

must then be geometrically and dynamically similar at all times.
! 3) Irrotationality: The fluid flow field may be represented by
the potential function, ¢. For irrotational flow, the relation
V24 = 0 must be satisfied everywhere in the flow field, where
V? is the Laplacian operator div grad.

METHOD OF APPLICATION OF GENERAL COND!TIONS

e o et

CONT INU'TY

There are any number of possible solutions for the free surface
shape on the basis of continuity alone. Two extreme solutions are shown
in Figure 1: one limiting case is all wave with infinitesimelly thick
spray, while the other is the opposite -- all spray and no wave. Between
these extremes lie the combinations of various spray and wave shapes as
indicated in Figure 2.

One analyti- expression for the ‘all wave' condition is obtained
from the equations of flow about a £lat plate as given in Refavences 3
and 8. From consideration of the potential flow about a flat plate, with
the flat-plate width treated as a variable, it is possible to determine
the velocity distribution and then the effective surface rise in the plane
of the plate (as shown in Figure 1). This solution gives an analytic ex-
pression for the wave rise, 7. The rate »f expansion of the plate deter-
mines the equivalent deadrise, 5, to which this analytic solution is as-
sumed to apply. It is simple to demonstrate by integration of the area
f under the wave that the continuity condition is satisfied.

] From Figure 1, the areas 4 and B for th: ‘all wave' condition ace

A n&fﬂlﬁ(lc)z (1)
9 7

and

. e xR airettind.
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B = Lans (c -_%c)2+ Sadz . (2) |

[ g

From Equation 38 of Reference 8, (or Equatiens 11 and 13 of Reference 3),
the wave rise m is given by:

) = 2tansd » aresin £ - 28and . T (3)
7 x 7
® ©
/n dx = tansd .2 (—4-’—‘- arcsin £ - -—l-‘-)dx
o 2 mc? x  Te

tang .2 [ 2x2 0 [T izl
= 2an7 ¢ X_ arcsin.f + £ /x - o? LA
2 c? x rc ne jo

- tans 2 [-(1 %)] , (4)

Therefore, cembining Equations (2) and (4) gives:

B:ﬁi;_nécz(i__g_)2+can cz(l; )

n 2 i

which is equivalent to the expression for the area A.

P S U W P I T

The ‘all spray’ condition could be solved directly by simultaneous

equations for the area and length equalities required by the continuity
condition:

A =B and oa = o'e . (6)

However, these two cases are evidently not real possibilities because of
the sharp fluid corner which would be required either at the wedge cr at
the still water surface. They merely represent the extremes between which
an infinite variation of wave and surface shape may occur.

-r

In general, any thickness of spray may be associated with an un-
limited variety of waves and still not violate the continuity requirement.

SIMILARITY

The principle of similaricy for the proportional increase of the
wave and spray with continued penctration is the second basic considerd™

3 . . . “ .. .
tion. Not only must the displaced fluid appear above the initially undis-

——
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turbed surface, but the wave and spray must be increasing in such a man-
ner that the shape and velocities are everywhere determined by the posi-
tion and penetration velocity of the wedge. By a geometrical construction
and integration process proposed by Wagner (Reference 8), it is possible
to relate the surface shape and velocities so that for any spray thick-
ness, one corresponding wave and spray-root shape which meets the require-
ments of similarity and continuity is determined.

In an ideal fluid where gravity, viscosity, and surface tension ef-
fects are reglected, the shapz of the free surface is uniquely determined
by the shape of the body, and the size of the shapes is determined by the
amount of penetration. Thus, for a simple wedge penetration, the free sur-
face shape is always the same.

For the same relative positions in the fluid and on the surface,
the dynamic conditions of pressure and velocity depend upon the surface
shape and must bear the same relationship to the pene<ration velocity at
every instant of time. It should be noted that this statement applies to
a relative position in the fluvid and not to a particular fluid element
since, as it will be shown later, particular particles move from one posi-
tion to another and are subject to varying pressure and velocity with the
passage of time

For example, consider the several stages of the penetration process
illustrated in Figure 3. Initial contact is made at point o, splitting
the surface layer. Penetration into the fluid raises the initially flat
surface into a wave and deflects the nearby particles out along the wedge
surface as spray. (The transition area where the wave surface is rapidly
curved around into the spray is termed the spray root.) The resulting
surface shape expands with the penetration of the wedge as indicated by
the several positions o'ja;b,c,;, 0’,a,b,c,, and o' a;b,c,.

Under the assumed perfect properties of the fluid, such a series of
scalar curves for a constant velocity immersion could just as well be
represented by any one of the curves, the scale of the diagram then de-
pending on the wedge penccration. Since the fluid particles are not re-
stricted in size, the scale of the diagram is of no consequence. Thus,
the radiating lines oa, ob, etc. define corresponding points on the sur-
faces for samilitude since the point o is the origin of the motion.

(It is 1interesting tonote that several points other than the origin
chosen could be used as a center of symmetcy for the expanding suriace.
The wedge apex, y,, the spray tip, o', or the intersection of the wedge
side with the stil) water surface could be considered as points of origin
for the expansion of the flow. However, the latter two wonld appear as
doukle centers for the complete weuge, and all three have the disadvantage
that the "center’ of the cxpansion would be moving with respect to the
initial penetration point and with respect to the fluid at 2 great dis-
tance from the wedge. Since such motions of the center of expansion would
complicate the problem unnecessarily, the initial contact point, o, will
be used.)
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Corresponding points on the surface are determined by the ratios:
0'ya; _o'ya,  o'yb, o'sby
= ; = ; ete. (13)
oa, oa, ob, ob,
Also, the velocity at corresponding points must be equal:
Ug, = Ug, = Us = kgV i Uy =Uy =0y = kgV; ete., (14)

where k;, ky, etc represent the proportionality factors between the velo-
city U at positions a, b, etc., and che penetration velocity, V.

At any point on the surface, say c,, the velocity i determined
from consideration of this condition of similarity. From the instant of
contact, the surface may be considered to have been sliding past the
radius oc in a direction tangent to the surface at c,, at a rate suffi-
cient to maintain the ratios in Equation (13) Thus, a particle at the
surface (at point ¢;) is momentarily moving with the expansion of the
radius, and at the ame time sliding past the radius towards the spray
region., The vector sum of thesc two motions (U, re * Ug,) yields the re-
sultant velocity U, of the particle at the point 1n quest1on.

The radial expansion velocity, U_, and the surface velocity past
the radius, Ug, as well as the resultant velocity, U, are each direccly
proportional to the penetration velocity, V (Equation(14)). Thus, for con-
stant penetration velocity, V, the velocity components (U, _and Ug.) at
position ¢ are constant, and the vector sum of the veloc1t1es may be ob-
tained from the radial dlstance and the arc leagth:

The radial distance ocy = r is giver by:
£ 3

The vecror s is constructed tangent to the surface at ¢ so that s
equais the arc length o’c:

Y

o s s .
s ¢ c
The vector sum is then:
[ 4
s + 1 :/p L. de = Ut . (15)
o

Now the actual fluic particles on the surface do not follow the
radiating lines but remain at a fixed arc length from the split edge of
the surface, o’. For example, a particle initially at rest at (£,,2)
rises first as a patt of the wave surface and later becomes a part of the
spray. The velocity of the particle varies with its position on the sur-

o
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face. The motion of the particle is thus a function of its relative posi-
tion and is given at any time by the integrel relation:
t

(£ - & m =s/'u(§,,,) dt (16)
or more specifically,
t
£ w §u "fﬂ(_f’n) dt (168)
¢
-~
K '8/’ v(e,m) 9t - (16b)

The problem is to determine the velocity of the particle (£,7) at
any point in its path, and then to relate the position and time so that
the integral may be solved. This does not appear to have an analytic so-
lution, but the graphical solution is easily carried out.

The velocity of the particle (£,n) may be found directly at any
particular time by constructing the surface of the proper penetration,
locating the point according to its arc length from o', and performing
the vector addition of Equation (15). However, this would be a tedious
Process to determine enough points for step-by-step integration of Egua-
tion (16). A more simple alternate method is to change the variable from
time to arc length, which is done in the following maaner. :

Assume particle (&,7) at time t, to be at position c,. Then, at t,,
Ug - U, , which may be determined on the t; curve at c;. In other words
the surface points djc;b; correspond to earlier times on the particle
path. The time t, is related to t3 by the arc lengths at corresponding
points <, and c,"

or, in general, with ¢ = the earlier time t,, and s = the corresponding

arc length on the surface at time t,:
¢ = Sela
s
and
4
dt = .0 4L g

e | ~—--—rw

e
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Substitution for d¢ in Equations (16a) and (16b) gives

S &
} st ut
5 - £, 5 ue (- g ds) = s, f— ds (17a)
. R ) 2 2 M
s §
L
and x e
'th
M T s, ds . (17b)
ST

The horizontal and vertical components, ut and vt, may be found at
any point along the surface by using Equation (15), and a step-by-step
integration of the above formulae may be accompiished. Any trial curve
which satisfies the continuity condition may be used as a starting point
for the determination of the surface velocities. The solution of Equations
(17a) and (17b) determines a new curve which is used in turn to obtain
revised values of the velocity components. This iterative process is coni
tinued until negligible differences occur between computed-and trial
curves of surface shape.

Actually, the integral equations relate the rise at a particular
point to all the points more distant from the wedge. Thus, the path of
each point on the surface follows the same related pattern, and the sur-
face shape fits the requirements for similarity. Although rigorous ana-
lytical proof is omitted, it appesrs from the actual computations which
have been made that the integral relationship (Equations (17a) and (17b))
reduces the number of possible spray-wave combinations to one for each
spray thickness.

POTENT IAL AND STREAN FUNCTION O THE FREE SURFACE

For use in the application of the third condition, which follows,
a potential function that satisfies the first two conditions is assumed
to exist for the fluid field of each spray-wave combination (even though
such an assumption can be true only for the one free surface shape which
meets all the conditions of the probler). The values of the potential ¢
and the stream function i ca the free surface may be found as follows.

In Figure 3, the tangential velocity, 2¢/9s, along the surface at a
position ¢ is given by -U;_ + U, cosi. In terms of the putential #, the
tangential velocity = 2¢/%s .. For points along the surface (at fixed im-
mersion), cos’ is given by dr/ds. (The values of dr/ds for the particular
surtace, such as 3, should not be confused with dr/ds = r/s for aconstant

position, such as c¢.) Then

2 =0 - U, cosl = v, - U, % {(18)
K M » (o [>d

ot
»

2}
~

Y

The general differential equation is obtained by multiplying Equation (18)
by t ds and dropping the subscript ¢ (notimg that tl'g < s and tU, - r)

e« e
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~tdd = s ds - r dr (19)

Integration gives

Y (-2—2.—:_'-_2) + 4

Since @ - at s = r -, A =0 and

P . r? - g? Ur2 - Usz . (21)
¢ 2t2 2

The strezm function ¥ on the free surface is found in a similar

mauner. At position ¢, the normal velocity is given by U._ sin{. In terms
of ,

E’"} = U :
-2 sinl .
ER Fe

Multiplication by t ds gives:

té?g ds = ¢ _sinf ds .
ds ¢

The integration of the right-hand side is accomplished graphically since
1t represents the area swept out by the radius r. Thus,

e, ‘,c
t 2 as = o2 (prea oo’co)
ds

v"/.-vlrn ]

and in gencral terms, the general position s replaces the particular point
¢, and

t v[;s =t ﬂfloz - 2 (area OO'SO)

For v + 0 on the centerline of symmetry, tY, is determined by the

constant normal component of the velocity at the wedge surface, U,:

U, = V cosg ,
t Yyr = t (y50') ¥ cos = (y,0') y, cosp = 2 (area 00'yy0)
and thus
t yi; = 2 (area oo’y 0 - area oo'so) . (22)

It will be noted that as s - ®, the area oo’so becomes equal to the
area oo'y,0 by virtue of their common area and the condition of continu-




ity. Thus, o = 0 = wya, which is as it should be.

IRROTATIONALITY

Irrotational potential flow is the final condition for the field of
the wedge penetrating the fluid surface. Everywhere within the fluid and
on the boundaries, the requirement must be satisfied that V%¢ = 0. This
may be written in several equivalent forms:

=0, (23)

924 - % s 3% _ % . 32y _ By . El
r 322 %2 m? 2 Os

"

From tle graphical constructions made for the condition of simi-
larity, it is possible to obtain ¢, U,, U, and even 23U /9s along the
free surface boundary; but @V, /3z is not obtainable, and no interior
values may be found. Therefore, it is not possible to use Equation (23)
as a direct check on the surface shapes obtained through application of
the first two conditions. Instead. an indirect method of approach is used,
based on Greene's theorem (Reference 9).

e e | isad

o

Greene’s theorem, which relates s+rface integrals to volume inte-

grals for superimposed potential flows, states that for irrotationalpo-
tential flows:

2%, o
f¢1 i ds = f @b, —L s . (24
3 °n s 2 9on

where ¢, and 2, are any two irrotational, potential flows superimposed in
a common region S, and the integral is taken over the boundary surface of
the region only. If the known irrotational pctential function for a
doublet, &, is chosen for #,, and @, = ¢ (the questionable value deter-
mined from the free surface shape), the integrals will check only if @ is
also a potential function for an irrcotational flow.

The doublet may be located anywhere on the assumed free surface.
However, the field of a doublet decreases rapidly with distance, and
] the choice of location for this checking purpose may be quite critical.
Since the largest deviation from irrotational potential flow could be ex-
pected in the spray-root region, the doublet is located in this region as
shown in Figure 4. (Tt 1s necessary to add the image donblet above the
wedge to give :/2n = 0 on the wedge surface, because the graphical con-
struction which satisfies the siuilarity condition does not yield any in-
formation on the potential along the wedge.)

Consider the flow i the immediate arsza of the doublet as shown in

Figure 5, an enlarged section of Figure 4. The field of the doublet 1s
given by

By aééﬁi. , (25)

e e
v —
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from which the velocities due to this field are piven by

%4 sim (26)
aR BZ
B¢U
~ COST .

At the free surface, the normal comporent is given by

o -
.‘d : smé—di'- - cosﬁ—a—@- = L (-sinf sina - cosé cosa)
en <R Rea g2

. .cosla - 6) (28)
r?

The potential and velocity equations for the image doublet are the same
as the above except that o zud 6 are interpreted as positive in the

counter-clockvise direction (and of course the R values are measured to
a different center).

On the & below the wedge apex, the doublets do not exactly balance
because of the change xn angle Letween the wedge bottom and the &. Since,
at this distance, the velocities due to the doublet or its image are small

(as 1/R?), the net difference normal te the § is very small and may be
safely neglected.

The surface integral required to check the V?¢ condition may be
evaluated from the known potential field of the doublets and the measured

field characteristics of the essumed surface shape by breaking the sur-
face into a number of segments:

f LS

The evalnation of the integral on each segment will be discussed separately

and reduced to its simplest form before writing Equation (24) in its en-
tirety.

The portion of the surface integral on the & of symmetry below the
wedge apex is represented by

ek 4 oo TS,
. .- e L il . e
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This portion of the integral may be shown to be convergent to a small
value, which may be safely neglected. Over the part of the surface
ep/on = 0, ¢; is small (on the order of 1/R), and

[0}

-/” (0) (sina/R) ds = 0

]

for s = R at infinity. Also, Edu/an for one doublet is very small at and

below y, (on the order of 1/R?). For the pair of doublets, the value is

the difference between the two, an ever smaller value. On the & below

the wedge, ¢ is not given by the analysza so far, hut from the expanding-

plate analogy (Reference 3), the value is on the order of R,  at the wedge

apex, and diminishes rapldly below the wedge, giving
y3y,

J' R, cos (a -8 4o
)9 RZ

which is convergent for s ¥~ R — @, Since the small finite value which
might accrue from this integral appears to be much lower than the mechan-
ical accuracy nf the graphical method to be used, this term may be neg-
lected.

O

The value of the integral along the solid boundary fromwedge apex
to spray tip,
§=0

x=0
y-y,
may be determined analyt1cally Along the wedge, ¢ is not known, but is
inite, while 9¢;/%n = 0, so that

ol

The doublet and its image add along the wedge:

PYRP s1ino
d R
Since 2¢/on = V cosf and ds = R do/sina,
] M'
fvt.._aﬁdc = /. ?V cosfida = 9 V‘ucnc_ﬁ ,
o @ 3p o
Y, ay,
where u is J y,do’.

Two terms

S“Sd"f sEX
f and
5=0 525 t€

d
which represent the integrals on the free surface from the spray tip to
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the doublet and from the doublet to infinity are indicated because the
free surface 1s theoretically broken for a distance 2¢ at the doublet
{s = s4). AL all other points of the free surface, ¢ and 2$/3n are given
by constructions for the assumed surface, and ¢, and 3¢;/3n are given by
Equations (25) and (28). Becanuse of the discontinuity at the doublet

center, a small semi-circular path is follewed around the singular point

to obtain
sd+e

3 ,~C

d

(The distance 2¢ 1s taken so small that the effect of the image doublet
1s infinitesimal.) The doublet potential and normal velocity components
are given by Equations (26) and (27). The potential and normal velocity
of the main flow field are obtained on this small semi-circular segment
by assuming novariation of the field vejocity for the small area involved.
As shown 1n Figure 5,

B -'45' + R cos 22 (for R — € only)
P R
and
5 T cosa=E sina £ .
d d

| I . . . .
where |z indicates a constunt value for the main flow field in the im-
mediate region of the doublet. Thus,

P - ¢‘ + R cosaégéi - R sina-@ﬁ
d an
d

s
d
and
SRS p2
}i ;8—2 - a
,/' hy 2 ds ¢d-§§n da
d‘ /
«TF2 ’
-;/ (.5_1..'1.?'.) (cosa_“:é - 5100 _B_ﬁ‘ )B da
1 R n s
. d d
« .1
2 9s
5
Also:
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The closing segment of the coutour from the free surface to-the &
of symmetrv on the infinite boundary is represented by
L1

s

Even though this integral is over an infinite boundary, it is definitely
zerc because ¢, ¢y, 38/9n, and 94,/3n are zero on the infinite boundary.

Now that the integral for ‘each segment of the contour has been re-
viewed, 1t is simple to write the integral Equation (24)

3% . . g
sf¢d~§-’-‘- ds ;f ¢'.-a-’;- ds

which may be broken down into sections according to the discussion above
to give:

& . @
7 : ﬁ ,ﬂ_@l =f E‘i j—’ﬁl .
2 /FCOSC + ¢d an ds 2 35 ¢ .an ds + 2 35 (30)
0' d o] d
This reduces to-
[+
.n. 8D +2V#cosﬁ=f <15"a:—3‘)i"4"d‘c‘\g ds . (31)
Is o! an on

Equation {31) expresses the condition of irrotationality in a ferm
which may be applied to the trial curves which have been obtained from
the first two conditions, By trial-and-error solution, the final shape of

the fluid surface which will satisfy the third 2nd final condition may be
found for each wedge angle.

DETERMINATION OF LOADS AND FRESSLRES

From the above portion of the analysis, the shape of the free sur-
fuce for potential flow due tu the constant-velocity immersion of a wedge
has been determined. The values of velocity, potential, and stream func-
tion on the free surface corresponding to this shape are directly ob-

- e e . aama

—
R-381 ‘
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e en g R {
-71/2 '
r .
‘f @l +R cosa-28| - R sina-,:?_ﬁb ZSIn\p da
)a d on ads 32
d d
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tained, as indicated previously. However, {in order to obtain the pres-
sure on the wedge) velocity and potential values along the wedge surface
are required, and these are not directly given by the analysis so far.
The study will be extended to yield this information, but first, the
method of obtaining the total load as proposed by Wagrer (Refererce 8)
will be developed.

HAGHER 'S METHOD FOR TOTAL LQAD

Penetration of the wedge into the fluid generates pressures on the
wedge which appear inthe fluid flow as momentum and kinetic energy (under
the mnitial assumptions of the perfecr. fluid without restraining bounda~
ries). The total force at any time equals the rate of change of momentum,

and the work done by the force is eguivalent to the kinetic energy of the
fluid.

The momentum of the fluid, M, is given by summation of the products
of incremental volume, d(volJ, and the local velocity vector, V¢ = grade:

y off v ¢ d(vel) .

Since the local velocity, V¢, at any position is constart for a constant
velocity penetration, the change in momentum with respect to time at a
given position in the fluid is given by the rate of increase of the dif-
ferential volume. For the two-dimensional case under consideration, the
differential volume, d{vol), to occupy a given space increases directly
as the area of immersion, or directly as the square of the depth of im-
mersion. Thus, d{val) 2 4 » y°2 ~t? .,

The total force is then given bv

o . dY d 2 . d{vol)
P - 2L L AT BARALY A
TR dz_/:[f M :

where V¢ and d(vol)/t? are for velative positions and independent of time
t. The differential of the integral with respect to time gives

2 _’ﬁ/:/'_/‘v & d(vol) . (32)

This integral can be transformed to a surface integral by the theorem of
divergence (Gauss’ theorem)

SIS % 4 atvory S b,

where the differential area, df, is a vector normal to the surface, posi-

tive inward with respect to the surface. Substitution in Equation (32)
gives
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-25/f¢ df (33)

which for the two-dimensional case under corsideration may be written:

Pt = -2;3/'4:&5 ,

where P represents the load per unit length of the infinite wedge.

Because of the symmetry of the problem, the horizontal components
of the vector, ¢ df, balance. Thus, only the vertical components need be
integrated to obtain the load P (which must obviously be normal to the
initial fluid surface for the symmetrical problem under consideration).
The vertical components of the incremental vectors, ¢ ds, may be written
as ¢ dx, where dx is the horizontal projection of an elemental surface
Yength. The direction (up or down) of ¢ dx is determined by thesign of
the quantity dx, depending upon the position of the surface with respect
to the fluid, as shown in Figure 6. Along the wedge, dx = cosa ds and the
vertical component of @ ds = cosf ¢ ds. On the spray surface the inward
vector is upwardly inclined so that ds 3 -dx, while on the wave surface
the inward normal is downward so that ds =z dx.

Now, if V_ represents the component of the field velocity, V, normal
to the surface and positive inwards, V, will be negative in the spray and
positive in the wave area as shown in Figure 6. Thus, in both regions, dx
niay be written as

14
dz = —‘7”-ds

and the vertical component of ¢ df is
14
& dz =r.b-—v'l-ds

The integral for total load, Equation (33), mazy then be written in
two parts: one for the body, Sp, and one for the free surface, Sy:

e 4 =z - dd
Pt 22/'¢ds 2?/‘ .

»)

and

Py o V. .

> = . d - - d . 34

Pt 20 cost:/ @ ds 25/ Q@ v s (34)
3 S

B "
The kinetic energy, K.E., of the fluid field is given by Greene's
theorem in terms .f a surface integral (Reference 9):

K.E. = pfff(d);z +—‘%1f) d(vol} = --gfffa"—%‘fdf, (35)

where positive energy is indicated by flow outward through the surface,
-%/3n, The kinetic energy per unit thickness cf the wedge is therefore

|
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By virtue of the uniform growth of the loaded area for the simple
wedge immersing at constant velocity, the load on the wedge increases
linearly with time. (This may also be deduced, mathematically, from Equa-
tion (32).) Thus P = (P/t)t, snd the work done is given by the integral
of the load, P, times the distance, dy ( =V dt):

Work'—/de=f€?—)tth =(—€)V—t§=£§£ .

Since the work done on the perfect fluid must equal the change in kinetic
energy,

Pye . )
LY = K.E. 1/1;5 2 ds . (36)
S

Since, at the body, 26/3n = + V cosg, and on the free surface, op/¢r is
negative, variable with position, Equation (36) may be written:

—&;—El‘- --g (+Vcos§a/.qbds;{. qb-%ds)

or

= - iy :
P pcos.z/. ¢ ds qub% ds . (37)
¥

8

It will be noted that Loth Equations (34) and (37) contain a term
which requires values of the potential on the body for soluction. However,
they may be solved simultaneously to yield a solution for the load P in
terms of the free surface integrals alone, eliminating the troubiesome
term.

Equation (34) minus twice Equation (37) gives:

v
Pt - 2Pt = -2 [ ¢-Dds + 20 [ 432y
s.f v "s.f o

~PVt = 2,«;( f¢_3¢;ds -frpvn ds)
aﬂ s'

Sy

-PVt = Qof g (~Vn +_a?"_":i)ds . (38)
S

This integral may be evalnated for each deandrise investigated since
the required potential and normal velocities are given at every point on
the free surface. In general, the velocity and potential have been ob-
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tained in terms of distances in the geometric construction (tV, tp).
Eauation (38) may be converted to this form by multiplication by t?

PVC3=-./ - tﬁ.d
2ps t¢( tV, + aﬂ) s

or since y, = tV,

P-4 4 Vet 28 \ds . (39)
Ly? yafd)(‘" 3n)s
5 o

Sy

Equation (39) is the lfinal form for convenient evaluation of the
load on the immersing wedge in terms of the free surface shape determined
in the previous section.

It may be seen by reference to Equation (20) and Figure 3 that the
ma jor pornion of this integral accrues in the spray region. The value of
potential is large at the spray tip and decreases rapidly to low values
past the spray root, while the relative normal \eloc1ty conponent in-
creases to a much smaller extent in the spray-root region. The product of
potential and normal velocity diminishes rapidly to zero along the wave
surface towards infinity because, while the velocity approaches a con-
stant value [tV - t(%/9n) = tV], the product t$ diminiches as the dis-
tance squared.

Closer scrutiny of the relative velocity [V - (3p/%n)] shows the
direct relationship between the spray thickness and the total force ac-
cording toEquation (38). The velocity [V, - (3$/3n)] is actually the nor-
mal component of the vector sum of V and U. in Figure 3. In the spray
region, this is practically constant and equal to the velocity of the
spray tip along the wedge times the angle between spray and wedge. Thus,
the thickness of spray determines the relative normal component in the
region in which the greatest part of the force integral is determined,

and so the force is roughly proporticnal to the spray thickness.

DERTVATION OF POTENTIAL AND VELOCITY DISTRIBUTIONS ON THE WEDGE SURFACE

From the simple graphical constructions described in the previous
section, the analysis of the free surface shape for any wedge angle will
give directly the velocity and potential distributions on the free sur-
face. Also, a method has been given for obtaining the total load on the
? wedge, which circumvents the necessity for detailed flow information along
the wedge itself. However, the discribution of the pressure on the wedge
1 has not been given, and for that purpose the potential and velocity dis-
tributions en the wedge surface are required.

On the premise that the uniqr» free surface ~hape for each wedge is
.a restlt of potential flow, the velocity and potential at anypoint may
be represented by complex analytic functions:
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to which the Cauchy integral equation may be applied, relating the point
value of a function to the integral around a bounding contour of values
of the function at other points. The standard integral for the point
within the boundary is-

flzy) ‘/_\L(_z_)_ dz , (40)

where z is the complex coordinate of the position §{n the field. Since
points on the solid boundary are to be 1nvest1gated the bounding contour
circles only haliwey around the peint in passing so that the facter 27 is
reduced to 7, and the principal value of the integral is used. Thus, for
the velocity U = ug -ivﬁ = f(z):

Ufz,) = zﬁg_-(:ii_ dz . (41)
o

c
This equatior. may be separated into real and imaginary parts by

placing the origin of coordmates, zg = zg * iyp, at the point z, being
investigated, and writing z in the polar form:

2 = pelf = olnpti?d (42}

dz = e'®P*18 [d(ln p) + id6) =z [d(lnp) + id6) . (43)

Substitution of these expressions for z and dz into Equation (41) gives

U(Za) ~ uaJ3 - Luoﬂ & WI;/EU'B - ”’ﬂ] fd(ln p) + id6] . (44)

c
Resrranging the terms gives

”"‘oﬂ + 7"’05 :[uﬁ d(Inp) + vg dé + 1 [uﬁdé - vg d(ln 3

s
so that the real and imagirary parts of U(z,) may be separated:

vaﬂ —é’:/;ﬂ 46 + ug d(1n p) (45a}
c

"o’ ‘-%-/:ﬁ dé - vg dfln p) . (45Db)
r3

r""" T e
} ‘

b
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The construction for performing this integration is shown in Figure
7. The complex coordinates are taken with the iy; axis along the wedge.
positive towards the spray tip. The x4 axis is tﬁen normal to the wedge
surface, positive into the fluid. The axes are sochesen that the integral
for vg need not be evaluated along one side of the wedge since ug is con-
stant (= V cosB) and df = 0 (except for the infinitesimal region of the
singularity). On the far side of the wedge, the value of v; must be esti-
mated until the first solutions for vz are obtained. However, these points
are sufficiently distznt to have small effect, and a rapidly convergent
solution is obtained.

The potential on the wedge surface may be obtained by integrating
the velocity along the wedge from the spray tip (where the free surface
formula, Equation (20), gives the coincident value) to the apex of the
wedge. Tnhe potential may also be found directly by the integral relation
corresponding to Equation (45) (¢ in place of ug, and ¢ in place of -vg).
This is more laborious, and only a few points need be investigated to
check the results from the velocity integration along the surface of the
wedge.

PRESSURE DISTRIBUTION

The velocity distribution and potential along both the free surface
and the immersed portion of the wedge have been determined in the previ-
ous sections. It now remains to compute the pressures which cerrespond teo
this potential flow.

As was noted before, particles in the fluid move relative to the
shape of the flow field (across instantaneous streamlines). Thus, the
simple Bernoulli pressure equation may not be u.ed since particular
streamlines exist only instantaneously, even though the flow pattern is
always similar. Fer this problem, the general equatien for fluid pressure
in a pctential flow must be used (Reference 9):

_I;‘.-é.@.~.lﬁ4,'-‘(t)+ﬂ . (46)

Since che fluid has been assumed to be at rest at infinity, with gravity
neglected, the gravitational field and extraneous impulses, represented
by 1 and F(t), are zero. The resultant field velocity, U, has been deter-
mined on the free surface, {Eyuation (15)), and on the wedge (Equat:ion
(45)). The rate of change of potential with time, 2@/3t, may be determined
as follows,

At any position r/y, in the fluid (see Figure 8), the potential ¢
is a linear function of time (since time is directly related to the scale,
or size, of the symmetrical, constant-velocity penetration under consid-
eration):

b _~¢rt L, (47)

Tt

R-38L
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However, at a fixed point (x,y) in the field, this is not so. Con-
sider the point (x,y) to coincide with the position rt,/yo at t,. At
t = t, + Ot, the position r,/y, isa 'istance &r =rdt/t from (z,y). (For
small Ot, the velocity U in the region may be assumed constant in magny.~

tude and direction.)

Then, at ¢t ¢,

= @

¢x’ Y ’
{ y)tl t,

at t = t, + O,

P(x

'y)t,+&t = ¢;t - U cosa fOr ,

where i/ cosa is the component of the velocity along r. Thus,
&g = ¢Y"y)tf+6t - ¢("7)t1 " ¢}t - U Or cosa - ¢yt‘ . (48)

With ¢ = t, « At, from Lguation (47),

t, + 4t
b =@, —L =g +BLg |

)
t t, ty t t, t,

Equation (48) then reduces to

O = + Bt ¢, =~ UDbrcosa . (49)
ty 't

~ The partial derivative o4/9t is obtained from the limit of Equation
(49) as Ar approaches 0:

¢

3 . 1im 0@ . ty A

—— im < lim b P 2 U o
ED &t-o Ot At~o t At

1

- v % T Ucosa . (50)
t t

Y

where the subscripts are no longer needed since the analysis applies to
all points in the fluid, The pressure distribucion is then determined by

PPy cosa - UL , {51)
= t t 2 .
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where the expression for 9¢/dt irom Equation (50) has been substituted in
Equation (46) (with Q = F(e) = 0).

el & o o

On the free surface. the pressure should be zern. This may be
checked by referring back to the geometric relations between the velo-
cities and potential shown in Figure 3 and Equation (21). These values
substituted in Equation (53) yield

Iy

2 2
NANLL'S cosa - U
p Ty Ty tUUpcesa-T

the right-hand side of which will be recognized to be zero from the solu-
tion for a triangle side U in terms of U., U, and the included angle, a.

g

On the wedge, the pressure may be found by substituting the values
of r, &, U, and a determined previously. The total load on the wedge 1is
obtained from the integration of the .cdge pressure across the projected
wetted width. This value may then be compared with that obtained on the

basis of Wagner’s analysis for the integral over the free surface only
(Equation (39)).

Maximum-pressure location and magnitude along the wedge may be found
by setting equal to zero the first derivative with respect to s of Equa~

tion (51):

-

dP . 1dp , 1y cosa 80 + T cosa U - pdU - g,

ds tds 't ds t ds ds
k Now U cosa = d@/dr so that at P, (or P_, ),
}
= cosa 8l = ydl | (52)
t s ds

A maximum or minimum can occur when dU/ds = 0 or when r/t = U/cosa. Since
the former occurs at the spray tip, a minimum pressure point, it may be
{ ) ignored. Substitution of the latter into Equation (51) gives

P

LXK RS = _i +£2_ . (53)
r fo. t 2
or in terms of r,
P-ox - r? cosla . (54)
4 t 9¢2
b
Further study of the relationship r/t = U/cosa shows that at this

Y Y al e Py il o e el
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point, 2 must be zero. This follows from the observation that the com-
ponent of U at the wedge nermal to the wedge is constant and equal to
the component of r/t normal to the wedge. Thus, r/t can equal U/cosa
only when r/t = U and a = 09 Dividing both sides of Equation (54) by
¥2/2 = y2/9¢? and putting cosa = 1, gives

Pass . _ 20t ,r% __ 29t , U® (55)
ov2 o Yol ¥’ yoz )

at the point (or points) where r/t = U.

It is interesting to note that the peak pressure point r/t = U
corresponds to a stagnation point in that the same particle occupies the
same relative position at all times. However, the pressure is not the
simple relation oU%/2, but is greater or less depending on whether the
potential at the point is less or greater than 0.

RESULTS OF ANALYSIS AND COMPARISONS WITH OTHER METHODS

SURFACE SHAPE

The details of computation and drafting required for the application
of the continuity, similarity, and irrotationality conditions to the
penetration of a 40° deadrise angle wedge are given in Appendix I. Simi-
lar calculations were performed for angles of 209, 306°, and 50°. The
final surface shape determined by the iterative solution is shown for
each angle in Figure 9.

The spray thickness appears to be the most critical characteristic
for a quantitative description of each surface. However, since the spray
is tapered to a point a2t its edge and merges into the spray-root region,
it 13 necessary to establish a consistent definition for the spray thick~
ness. It was noted that in every case the spray root comes quite close to
the nominal half-width, ¢. Therefore, this nominal width was used as a
reference line, and the spray thickness was defined as the distance from
the wedge surface to the intersection of the straight portion of the spray
surface extended to the half-width, ¢, as shown in Figure 9. The ratio of
spray thickness to half-width, &/c, defines the relative spray for each
wedge angle. The three surfaces computed in detail were used as the basis
for the plot of relative spray thickness vs. wedge angle given in Figure
10. The points are approximately fitted by the formula

. Sing tang (56)
3.37

[a] lc/.

* The spray thackness for 5 = 20° was taken frim the curye determined by the other three, aad
caly coatimulty and zimilarity cenditions were applied.
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In References 3 and 8, an analytical solution is obtained for the
flow in the region of an immersing wedge by comparison with the solution
for the flow around an expanding flat plate. This solution gives an ex-
pression for the rise of the free water surface (Equation (3)), with no
spray.

e o —— s A

The mathematical analysis of the spray-root region (References 2
and 8) describes the flow in the immediate area of the spray root, but
the boundaries of the problem are donbly infinite and do not correspond
to the conditions of the penetrating wedge. The flew is defined in terms
of the spray thickness which is not readily determinsd for the finite
problem,

Wagner obtained an approximate expression for the spray thickness
by comparing the flow fields at infinity for the spray-rcot and expanding-
plate analyses (Reference 8, Equation 47):

7,2
i ’

2.

[+4

where u = 2 tans/m, and therefore,

_f_ = t;g_’..é . (57) :

However, the logical procedure by which this formula was obtained is not
readily apparent in the referenced report. Later, unpublished work by
Wagner indicated that a factor of 0.7 (approximately) should be applied
to the spray thickness obtained from Equation {57).

A more reasonable c¢omparison of the spray-root and expanding-plate
analyses may be made in the region of the spray root itself. This com-
parison is based upon the assumption thet Lhe stagnation point of the
spray-root analysis will occur at the peak-pressure point for the expand-
ing-plate analysis. A superposition of the two flows with the ‘stugnation’
as a common point is shoun in Figure 11.

In the previcus analysis of spray-roet flow (Reference 2}, the
scale was indeterminate and the local region was not related to the over~
all picture of a wedge-penetraticn problem. The distance 4 in Figure 11
is approximately eqval to the distance from spray root te stagnation
point of the previous a.-~lysis, and may bs obtained in terms of the spray
thickaess, $. from Tigure & of Bofeorence 2 by projection of the root into
the x7/5 axis (at a value of 6). For the angles investigated, 4 = 6n/3
and

c - X = (5 tand + A) cos? = & (5ip3 *-% cosA) . (52)

The expanding-plate analogy mentioned previously does not give a
practical physical soluticn because of the sbsence of spray, but by that




method of analysis, a definite relationship is established between the
wedge angle and the stagnation point. Now ¥/c is given by Equation 30 of |
t Reference 3 as

é; = /1 - A = /1 - (2 cans/m)?

and substitution of this value from the expanding-plate analogy into Equa-
tion (58) relates the spray thickness ratio 3/c to the wedge angle, £:

s -2 V1 - (2 tang/m)% = 8 (sing +%cosﬂ)

Gaut s el e

$§.1-V1-¢2 vang/m)? (59)
¢ 8irg +§;c03ﬂ

T

Equations {(57) ard (59) sre plotted in Figure 10 for comparison
vith the points determirad by the present analysis. It will be noted that
the threez poinrs computed in detail {at 30°, 40°, and 50° deadrise) ap-
proach the vurve of Eyvation (59) at the lower angles. Also, Equation
k {59) approaches 70% of Egquation (37) at low deadrise angles.

YELOCITY POTENTIAL, AND STREAM FUNCTION

Under the conditions For irrotational flow of a perfect fluid, the
shape of the free surface has been determirnrd for szveral wedge angles.
In fact, the solution for the surface shape is the key to the field of
flyy everywhere in the fluid. The values of the velocity, potential,
and stream functioa on the {ree surface are given directly, while the
values un the wedge must be estimated and then refined by an iterative
solution.

LS

FREE SURFACE

Velocity and potential at the free surface ere given by Equations
(15) and {31} respectively. These havz already been computed for the
several stage: of the scliutior for the free surface shape. The f{inai set
of valuns for each wedge angle are plotted in Figures 12, 13, and 14 as
vry, 2, and ¢tjc’ respectively vs. position on the surface, s/c. The
stream tunction is given c¢n the free surface by Equation (22). The values
of Yu/c? vs. s/z for the several wedge angles are plotted in Figure 15.

T

SOLID BOUNOARY

At ihe wedge, the normal component of the velocity, ug, 1s constant
\ (V cosd), and the stream function is given directly by
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Y = sV cosB + ¥ 6' V coss,

where s, the distance from the spray tip, will be negative along the
wedge. The tangential component rf the velocity at the wedge, vg, must be
estimated so that the complete ntegral, Equation (45), may be evaluated.
The revised values obtained frcm the iterated solution of the Cauchy in-
tegral for each wedge angle are plovted in Figure 16. These data are com-
bined with the constant ug and shown in Figures 12 and 13.

Values of the potential on the wedge were obtained from the inte-
gration of the velocity distributior from wedge apex to spray tip and
vice versa. The end points for the potential (at spray tip and wedge apex)
were obtained from Equatio. (21) and the potential relationship corre-
sponding to Equation (45). Zince the mechanical work involved in the con-
struction practically precludes a perfect agreement, the curves of ¢t/c?
vs. s/c along the wedge presented in Figure 14 represvent average values
obtained by working from either end toward the center of the wedge side.

It is of interest to compare the potential and velocity from the
present analysis with those I¢r the immersing wedge as given by the ex-
panding-plate analogy. Equation 4 of Reference 3 gives for the potential
on the plate

@ = -VWe? - z2

or

Pt _ _ YVt -
Sl G

This expression is indiczted by the dotted lines in Figure 14 (with signs
reversed for clarity).

Equation 5 of Reference 3 gives for tne velocity along the plate

= = VY ol
LT L (S —

62-12

or

< ty

R e
Jleix)? - 1

This expression is represented by the dotted lines in Figure 16.

It will be noted that the velocity and potential distributions
along the wedge obtained by the earlier method (Reference 3) are in par-
tial agreement at the lower angles, but that the results of the twometh-
ods diverge at higher angles.




PRESSURES AND LOADS

The pressure distribution on the wedge surface is given by Equation
(51). The values of ¢t/c?, U/V, and ¢ have been calculated already and
are plotted in Figures 14, 12, and 13, while r/¥t may be measured direct-
ly. The computed pressures for the 202, 30°, 40°, and 50° deadrise wedges
are plotted in Figure 17.

Total load on the wedge may be cbtained by integrating the pressure
distribution along the bottom. Because of the symmetry of the wedge, only
the vertical component need be taken since the lateral forces from the
two sides will cancel each other. Thus, for the complete wedge (two
sides):

and

P _ 2 cosB P
e (0¥2/2) e pV?/2
Yo
The loads obtained by integrating the pressures for the three wedges in-

vestigated have been used to construct the curve of P/c(oV2/2) vs. B
given in Figure 18.

ds .

For comparison with Wagaer’s analysis of the total load, the values
of P/c(pV?/2) obtained by Equation (39) are also shown in Figure 18. The
functions in Equation (39) to be integrated are plotted in Figure 19 for
each wedge angle.

The earlier analysis (Reference 3) of the immersing wedge was shown
to Le in agreement with experimental data at deadrise angles of ap-
proximately 20°. For comparison with the present, more detailed analysis,
the pressure distributions and loads from the expanding-plate analogy
have been computed and are plotted in Figures 17 and 18 (according to
Equation 46 of Reference 3) for 20°, 30°, 40°, and 50° deadrise.

In Equation 76 of Reference 8, the solution for total load on an
182 wedge was given as:

P:=498Tp V? '

witere T 1s equivalent, in the notation of this report, to V = (2¢/=)tanB.
Then,




e e - '

P~ %

—— s 2 tan 18° . .
c(sV2/2) 49.8 x = tan 18° x 2 = 20.7 (two sides)

This value for g = 18° is indicated in Figzure 18, along with Wagner's ap-
proximation for the variation of load with leadrise (Equatior 78 of Ref-
erence 8),

P

900 2
c(pV’/Z) -2tanﬁ(p -1)

Comparison of the various load results shown in Figure 18 indicates
several noteworthy trends. As was to be expected (within the accuracy of
the drafting and computat.on required), the loads obtained by the present
analysis are 1n reasonable 2greement whether obtained by Wagner's method
or by integration of tie bottom pressures. The expanding-plate ~nalogy
indicates higher pressures and lsads than the present analysis, with the
percentage difference increasing with deadrise angle up to 50° The single
point for load at g = 18° given in Reference 8 lies far below the curve
obtained on the basis of the expanding-plate analogy (Reference 3). This
point and Wagner’s approximate curve lie abcut 8% below an extension of
the curve of loads determined by the present analysis.

Thus, the variation of load with deadrise angle, as determined by
the integration of the bottom pressure, may be approximated by

p 900 2
(V772 2.16 tans ( 7 - 1)

DISCUSSION

SURFACE SHAPE

The theoretical analysis for the determination of the spray thick-
ness was concluded with a method for checking the irrotationality of the
flow field, using an artifice involving the superpositior of a known flow
(doublet) and the graghical application of Greene’s theorem (Equation
(31)). In spite of the great care taken in drafting and computation
details, the spray thickness could not be established as precisely as de-
sired. The curve presented in Figure 10 was selected as representative of
the computed points, even though the relative position of the 30° and 40°
points indicate a possible flexure 3n the curve.

After the determination of the loads and pressures, another check
on the spray thickness became apparent. Wagner's analysis for the total
load based upon a simultaneous solution of momentum and kinetic energy
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relationships holds cnly for irrotational potential flow. It was noted
previously that the load was almost directly proportional to the spray
thickness. Also, it appeared from the actual calculations that the velo~
city and potential distributions were affected only slightly by the value
of the spray thickness. Thus, the agreement between the results of the
earlier load analysis {Equation {35)} with the integration of the pres-
sures on the wedge is a measure of the accuracy of the spray thickness.

Application of this criterion co the results given in Figure 18 in-
dicates that the spray thicknesses for 4G® and 50° deadrise are too large,
while at 209 the estimated spray must have been too thin. If the load
analyses are assumed to be accurate, then the revisions in spray thick-
nesses required to give consistent force resdlts are proportional to the
difference between tke computed load points.A revised set of svray thick-
ness points was determined in this manner and plotted in Figure 10.
These revised values of the spray thickness are very well fitted by

Lo & : (60)
c "

It should be noted that the spray thickness is of a small order of
magnitude. At 20° deadrise, the total thickness is only slightly more
than 1% of the we*ted half-width, while atthe highest angle investigated,
the spray thickness ratio is only 8%. (This factor will make experimental
verification ¢f thke surface s'ape very difficult except in a qualitative
way.) In view of the amount of graphical construction involved in the
present analysis, the spread between the spray thickness curves in Figure
10 1s not unreasonable.

If extension of the computations to higker deadrise angles becomes
desirable, it will probubly be sufficient to by-pass the doublet check on
irrotationality and go directly to the determination of loads and pres-
sures for surface curves based on the extrapolated values of §/c¢ from
Equation (60). Since the computation of loads and pressures is not too
tedious for the estimated spray thickness and surface shape, and since
the approximate correctizn to the spray may be estimated using the ap-
proximate proportionality between the load and spray thickness, it would
be economical to use the lsad integrals as the check on the irrotation-
ality of the flow field.

The emphasis in this discussion has been upon the deztermination of
the relative spray thickness. This is so because the shape of the surface
may be very closely approximated by the graphical construction method for
similiarity and continuity once the proper spray thickness is known.

VELOCITY AND POTENTIAL DISTRIBUTIONS ALONG THE WEDGE

It has been noted that the veloacity along the wedge as determined
from this analysis is in partial agreement with that indicated by the ex-
panding-plate analysis. As discussed in Reference 3, the plate analogy

PRSP arlilbn .. W IO .
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breaks down near the edge with the indication of infinite velocity. That
would be a physical impossibility, and in actuality, a spray root is
formed. The veleocity increases less rapidly than indicated by the expand-
ing~plate analysis, as indicated in Figure 16, and then levels off to a
constant value in the spray.

By virtue of the symmetry, at the centerline of a flat expanding
plate the velocity aleng the plate must be zero. However, on the actual
wedge, there is a component along the wedge toward the center so that the
resultant velocity at the apex is vertical (not normal to the bottom of
the wedge).

v =V = x-ﬁcosﬁ - uﬁtsmﬁ (a1¢)
Ua% = -y Sl"ﬁ

This is the difference which appears at x/c = Q in Figure 15. The
close agreement between the velocity curves in the range 0.4 < x/c < 0.95
is quite remarkable, expecially for the 30° deadrise wedge. The increase
with 1increasing deadrise in the difference between the present curves
and those from the expanding-plate analogy appears to be due primarily to
the condition at the step apex discussed zbove.

With respect to the potential on the wedge as given by the present
analysis compared to that from the expanding-plate analogy, a more in-
volved reasoning is required. It will be noted in Figure 14 that the pre-
vious and present analyses give the same shape of potertial distribution,
but that the expanding-plate analogy indicates higher negative values
(almost a constant difference slong s/c for any particular deadrise
angle). Uuder the assumptions of Reference 3 {expanding-plate analogy),
the potential 1s based at zero on the level of the plate. This becomes an
untenzble position at any appreciable deadrise angle, since the level
water surface lies above the wedge apex, and the plate cannot be construed
as being at several levels simultaneously. The difference in potential of
the field for a reference-level change of y, {=(2¢/)tang] is vy,. In
terms of the scale on Figure 14, the change in ¢t/c? 1s
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This is almost exactly the difference at the lower deadrise anglesbetween
the expanding-plate potentigl and the distribution given by the present,
more exact analysis.

PRESSURES AND LOADS

Because of the .independent check of the spray thickness by the com-
parison of total load and integrated pressure distributions, it may be
reasoned that the pressures are reasonably accurate. This could rot be
assumed to be the case if such 2 check had not been obteined. because of
the number of térms and graphical constructions involved in the steps
leading to the determination of the pressure.

The failure of the expanding-plate analogy inpredicting the gorrect
wedge pressures may be partly due to the difference in potential which
was discussed above. It may be shown (by reference to Equation (51)) that
a change in potential (84 <=Vy,) shows up in the pressure ratio, P/(pV’/2)
as an additive term (of value -2). Thus, a changed potentinl reference in
the expanding-plate analogy will reduce the pressures shown in Figure 17
by 2. This does not bring all of the curves into alignment, but s trend
in that direclion is obviously correct.

It way be seen in Figure 17 that the trends of the pressure differ-
ences at the peak (in the spray root) and at the keel are opposite. Al-
though the expznding-plate maximum prescures are higher than those ob-
tained from the present detailed analysis, the perventage excess decreases
with decreasing deadrise. On che other hand, the keel pressure given by
the ecarlier analygis is higher &t low deadr1se angles (approximately by
the amount of 2, as mentioned above), but the difference decreases with
increasing angle.

It is interesting to note that a rather uniform pressure distribu-
tion is cbtained at 40° deadrise angle. At lower angles, the peak pres-
sures greatly exceed the average vaiue across the section, whileat higher
angles, the lack of a well-defined stegnation area in the spray-root
region lets the pressure drop below the value at the keel. This trend had
been shown before in the expanding-plate analysis, but could not be ac-
cepted upon that hasis alone because of the wide divergence from the con-
ditions assumed fer that analysis, However, the removal of the restriction
to low angles made possible by the present analysis has resulted in a
similar variation of pressure with deadrise angle, so that the trend may
be considered to be estahlished,

CONCLUSIONS

1. A method has been presented for the theoretical determination of
the free surface shape arising from the symmetrical penetration of the
surface of a perfect fluid by an infinite wedge-shaped body at censtant




velocity (normal to the initial undisturbed surface)

2. The actual surface shapes have been constructed for 20°%, 30°,
409, and 50° deadrise angles.

3. Since no restriction upon the wedge angle or slope of the free
surface was necessary tec this solution, the method may be used for even
greater deadrise angles when desirable.

4 In the process for constructing these surface shapes, the spray
thickness ratio appeared as the most critical dimension. The spray is
uniformly tapered from zero thickness at the tip to a maximum in the
spray root where it is related to the wetted half-width by the empirical
relationship §/c = (/7)2,

5. Distributions of the velocity, potential, and pressure along the

wedge surface were evaluated by the extension of the solution for the

! free surface shape These distributions are similar to those givei by the

earlier expanding-plate analysis (Reference 3) except that an accurate
description of the flow is now given in the spray-root region.

6 The total loads, obtained Ly the integration of the pressure
over the wetted width of the wedge, are given by the empirical relation-
chip

2

;?;;;753 =216 tanﬁ(g; - 1) )

which 1s 8% higher than Wagner®s approximation of the same form.
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APPENDIX I
SAMPLE CONSTRUCTION OF THE FREE SURFACE SHAPE

o Ll B L

This appendix presents the details of the ~omputations and drafting
methods employed in the construction of the free surface shape that meets
the conditions of continuity, similarity, and irrotationality. To obtain

greater clarity, not all of the construction lines are drawn and some of
the tables are abbreviated.

FIRST ESTIMATE OF THE SURFACE SHAPE

e

E
As noted in the body of the report, the free surface is built up of
spray and wave. The first estimate of the wave rise is given by Equation

(3). For this particular case, ¢ is taken as 10 inches for 8 = 40° and ’

|

{

!

—yyy

v

_2¢ tanB (=x - _ x . 1C
o (' arcsin — - 1) = 5.34 (10 arcsin ~— - 1)

n N C

déSYMMETRY

FIGURE I-~1

The spray tip, o’, is located by measuring along the wave and wedge
from z = 15 a distance s = x = 15. (At the distance xz =15; the .wave
slope is very swall so that o = x is a very close approximatiovin.} A spray
thickness r.tio, §/¢ = 0,055, was assumed.

b The addition of spray requires that the wave rise be reduced to

satisfy continuity of the flow. In order to keep a simple analytic form
for the wave at a distance, the value of 7, is reduced proportionately:

n, = @an,

R S PR P
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and the spray is blended into the reduced wave to form the spray-~root re-
gion,

FIGURE I-2

The spray tip is located more exactly by foilowing the curved sur-
face, and area B plus C is made to egual area 4 by varying the wave rise
n,/7, and to a small extent, by the spray-root curve. The area C beyond
x = 15 on the wave-rise curve may be obtained by the integral of Equation

(3):

x 15 x =15

3
Area C = 7, dz = a [‘ 7, dx (see Equation (4)).

w ©

APPLICATION OF SIMILARITY CONDITION

The estimated surface shape, as drawn above, is of the correct
length and encloses the proper fluid area. It is then necessary to apply
the test of Equation (17), using the assumed shape to determine the velo-
rity components (Figure 3). The actusl calculations for this particuler
case are given in Table I.

If the first approximation to the zurface shape is in error, the
values of » and € resulting from this graphical iategration will differ
from the assumed values. Then. the process is repeated, using the newly
calculated coordinates of the free surface uatil a close check is obtained
in Tablé 1 beiween the starting and final = and £.

ﬂﬂ
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APPLICATION OF CONDITION FOR IRROTATIONAL FLOW

The superposition of the potential flow duc to a doublet upon the
flow pattern determined by the free surface shape obtained above must
satisfy Equation (31) for irrotational flow. The quantities t¢ and
t {9¢/9n) for the trial surface shape are obtained by Equations (20) and
(15) as shown in Figure I-1 (resolving tU parallel and normal tothe sur-
face). The values of ¢y and 39¢,/Sn for the doublet are given by Fquations
(25) and (28) and are computed in Table II. The values of t¢ and t{9¢/en)
are cumputed in Table III.

From Figure I-1, the left-hand side of Equation (31) (multiplied by
t) may be evaluated. For the particular case of §/c = 0.055 for g8 =40°
(¢ = 10 inches), the value of t 2¢| at the doublet {with respect to the
doublet) is sld

o8|
t W . =sg - ¥, cosB = -6.18 .

Also. tV cosp = y, cosg = 4.09 and = 2.86 radians. Thus,

9 -(- .
I B Wu cosp = — 6.18) , 2 (4.09)(2.86)
E‘s d + :
+42.8

t

The right-hand side of Equation (31) is evaluated by computing the
values of [t8(24,/9n) - ¢, t(94/9n)] and integrating along the surface.
This is done in Table III, making use of the values of ¢; and 2¢;/n from
Table II. In this particular case, an approximately correct spray thick-
ness was chosen so that value of the integral

1s very cleose te the left-hand side value, 42,8

{n

In general, however, several spray thicknesses would be assumed and
the complete process carried out to this stage. Then plots of the left-
and right-hand sides of Equation (31) vs. &/c would determine by their
crossing the correct value of the spray thickness ratio.
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TABLE I

TABULAR INTEGBRATION FOR SURFACE SHAPE (EQUATION (17))
(8 = 40°, ¢ = 10 inches, & = 0.55 inches)

§ tv tv tv tu u tu
s 7 | tr -2 '—éAs 50s| 1 (-6 tu ) ?As E—;As £-4,
. s s s s s 5
STARY NE¥ START NE¥
15.8 ¢ 37 1.43 ] 0.0064 0.6247} 0.37
0.018
13,0 ¢ 0.56f 2.13] 0.0126 0.0427] 0.56 0 9.09] 6.0005 1] ']
) 0.018 0.001
12,90 6 72 3.2110.0224 0.0507] 0.713 0.01 0.26| 0.0018 0,001 0.012
0.014 0.0015
‘11.8 8,86 4.12 § 6.0312 0,0747 % €. 4% 0.03 0.50] 0.0038 06.0025] 0,029
8.0185 0.003v
11.0 1 62 5.45§ 0.0450 0.6932} 1.025 0.95 1.001 0 0083 0.0055] 0 060
.| §.0212 0.6544
18.56 121 7.01) 0.0624 h 0.1144}1 1.2} 0.11 1.881 65,0167 “10.0093) 0.105
» 00,0305 0.011¢6
1¢.2 1.48 9.87 | 0.0949 0.1450) 1.48 0.22 4.64 1 0.0446 0.02151} 0.219
0.0432 0.06276
9.8 1.85 j1.614 0.3210 0.18821 1.85 0.48 9.23 ] 6.06967 0.0A91] 6.431
0.9496 0.0508
94 224 §11.0710.1252 6.237812.24 9.94 13.60-4 8.1540 0.0999 ] 9.939
9.0502 0.0692
9.0 1 25%2130.16; ©.1255 0.2880 ] 2.59 1.52 15.4110.1903 0.16911} 1.521
9.064 0.1045
8.5 2.99 9 42§ 0.1303 0.3520} 2.99 2.33 16.401 90,2272 0.2736 § 2.325
0.0683 0.121
8.6 ! 3.36 9.16 0.1431 0.4201 1 3.36 3.16 15.68} ©.2605 0.3946 ) 3.165
9.161 0.3025
7.0 1 4 67 f 8.871 0.1810 0.5813 | 4.07 4.88 16.98 | 0.346 0,69711 4.88

o
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TABLE IX

COMPUTATION OF $q AND 3¢d/3n
(8 = 40° ¢ = 10 inches, 5 = Q.55 inches)

s Bo | Big | o %id b big % %‘}
3.0 6.90 6.98 169.0 166.0 8.0 17.5 0,063 0.002
5.0 £.93 5.10 165.5 159.0 11.5 24.5 0.121 0.010
7.0 2.9% 3.39 158.0 145,90 18.5 38.5 0.294 0.060
8.0 2.06 2,69 149.5 131.0 24.5 54.5 0.527 0.167
8.5 1.00 2.45 143.0 121.5 28.5§ 67.5 0.724 0.260
§.0 1.1¢6 2.34 132.5 109.5 30.5 ar. o 1,039 0.324
9.4 0,82 2.49 121.0 100.0 29.5 106.5 1.455 6.210
9.61 0.58 2.53 111.0 95.0 23.5 130.5 2.004 €.257
9.87 0.39 2.68 102,58 92.0 15.0 150.0 2.876 0.476

lo.07 0.20 2.86 96.5 20.0 .0 185.58 5.318 6,249
1o.27 0 3.06 90.0 90.0 0 180.0 0.3273 0

10.47 0.20 3.26 96.5 90.5 5.0 10.5 ~4.66} 0,671
10.67 6.39 3.45 99.5 91.0 5.5 16.5 -2.239 -0,137
10.87 0.59 3.65 192.5 92.0 19.0 20.90 -1.301 -0.148
11.0 .71 3.76 105.5 93.0 i1.9 23.0 ~1.091 -0.180
11.8 1.2} 4.21 112.5 96.5 11.0 21.5 -0.528 “f8,156
12.9 .70 4.65 116.0 99.5 12.0 28.5 -0.317 -0,099
13.0 2,69 5.53 121.0 104.5 11.5 28.0 -0.144 -0.054




TABLE II1I

EVALUATION OF EQUATION (31) ;
(8 - 40°, ¢ - 10 inches, 5 = 0.55 inches)

s v t@ -t 3f Dy ' td % # ,fﬁf r
t h - n |
|
2.0 16 28 128.7 5.14 0.063 0 602 0.256 0.324 :
5.0 14.38 91.24 5.1¢ 0.121 0.010 0.912 0.622
7.0 12 53 54.24 5.14 5.294 0 069 3 255 1.51)
8.0 11 63 35.89 5.2 e.5217 0 167 5.994 3 0:4 '
s 11.20 26.80 6 18 0.724 0 260 6 968 4474
9.0 10.82 18.13 7.40 1.039 0.32¢ 5.874 7 689 i
ﬁ 9 4 10 s6 11.990 8.90 1.455 6.210 2.499 12 95 f
9 67 1645 8 43 10.08 2 004 0.257 2 064 20 20 i
9.87 10.42 5. 54 10.98 2.876 0 <76 2545 31.58
10 @7 10 45 4,00 10.00 5 318 0 248 1069 52 18
10 27 10.55 2.98 8 9 0.3274 0 0 2 920s
10 ¢7 16.68 2.36 1.57 <4.661 -0 671 -1.584 -35 28
10 67 1982 1.81 6.17 -2.239 -¢,137 -0.248 -15.16
10 87 10.93 1.21 6.08 -1.381 -0.148 -0.179 - 8.39
}rp 11.08 1.19 5.40 -1.091 -0.186 <0 214 -5 391
1y s 11.58 0.83 4.10 -0.528 -0 15¢ -0.129 - 2 165
124 12 03 0.5¢ 2.20 -0.217 -0.099 -0 055 - 1.014
1.0 13 01 0.30 213 -0 144 -0 054 -9 916 - o 307
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FIGURE 2

SPRAY EDGE

. SYMMETRY
MOTION OF SPRAY
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i 1 /:/FREE SURFACE
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STILL WATER SURFACE

GENERAL SHAPE OF THE FREE SURFACE OF A FLUID
DUE TO PENETRATION BY A WEDGE
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FIGURE 3

DIAGRAMMATIC REPRESENTATION OF THE CONDITIONS FOR SIMILARITY
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FIGURE 4
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LOCATION OF DOUBLETS FOR IRROTATIONALITY CHECK
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FIGURE 6

CIGN CONVENTIONS FOR SURFAGE ELEMENTS AND VELOCITIES

FIGURE 7

POLAR COORDINATE SYSTEM FOR SOLUTION !
OF CAUCHY INTEGRAL EQUATION




FIGURE 8
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FIGURE 9c¢

SURFACE SHAPE

FOR 40° DEADRISE
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FIGURE 9d

SURFACE SHAPE FOR 50° DEADRISE
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FIGURE 10

YARIATION OF SPRAY THICKNESS WITH DEADRISE ANGLE
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FIGURE It
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SPRAY~ROOT ANALYSIS
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SUPERPOSITION OF SEVERAL SPRAY~ROOT SOLUTIONS
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FIGURE 16 i ( 30°
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PRESSURE DISTRIBUTIUN OVER THE Wepee |
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FIGURE 18 . l
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FIGURE 19

PRODUCT OF POTENTIAL AND NORMAL VELOGITY
ALONG THE FREE SURFACE
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