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ABSTRACT

The occurrence of indcpendent events at random in the
plane, i.e. the formaticn »f a planar point process, is
discussed. Both homogecneous and nonncrmogcneous processes
are concidecred. A specific functional form for the parameter
in a nonhomogeneous planar Polsson prccess is used to
1llustrate the development of ¢ect and parameter estimation
techniques. The problem finds arrlfcation in the description
of bilological phenomena as well as In search and detection

problems.
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I. INTRODUCTION

Many problems arising naturally in a physical serise are
often so ccmplex that the identification and description of
underlying mechanisms must use the tocls of probab 1ty and
statistics. Some of the reasons leading to the recquircment
of using these tools are:

(1) the data base may be so large or complex &s %o
preclude identification of any driving mechanism
without recourse to statistical analysls;

(11) 1if identifiable, the mechanisms méy be inherently
probabilistic; or

(114) 4if identifiable and deterministic, thc governing
law which the mechanisms obey nay be unknown.

This paper 1s concerned with the use of statistics in

the identification and mathematical description ol the spatlal
distribution of events (occurrences). Included is the detec-
tion and estimation of parameters which influence the
description of this distribution.

The area of concern here 1s a departure from those sta-
tistical methods which have been developed to detect the
effect of varylng a controlled segment of the underlying
mechanism. Among those methods would be the design of exper-
iments, regression analysis, time series analysis, and
analysls of variance. One goal of such analysis is to

hopefully predict the advisibility of pursuing some course

of actlon.
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In the basic model of i sper, events are considered
to occur with a Polsson dicstribution in the plane. This
"{s the natural model for the ..pression that 'points are
distributed at randen'," {(¥F.sher, 1972, p. 141]. The bi-
variate Polsson procecs will bc defined and then developed
through the use of partlal cifferential-difference equations,
a widely repeated procedure ir the univariate case but
neglected in the bivariate cacse.

Initially a homogeneous Polsson process will be assumed
to control the underlying mechanisms. Then trends will be
introduced by defining the Poisson parameter in such a way
as to make it be spatially dependent. This will be the basis
for the definiticn of the non-homogeneous Polsson process.,
Time inhomogecneity wili not be considered. Thus, the data
are assumed to be taken concurrently, i1.e., the period of
observation 1is short compared to any period of change of
the parameters.

Tests will be developed to distinguish between homogeneity
and non-homogeneify and the method of maximum likelihood
will be used to develop estimates of the parameter in the
homogeneous case and parameters in the non-homogeneous case.
In the latter case, conditional likelihood techniques will
be utilized to develop tests and estimates. Throughout,
testing and estimation prccedures will be based on a single
realization of the process which consists of the number of

events observed and theilr spatial locatilons.



The problem of concern finds application in the estima-~
tion of the density of trees in a forest; herec onc might be
concerncd with estimating the potential yleld of lumber from
& given forest arca where inhomogeneitles arise due to soil,
weather patterns, topography and other physical reasons.

Another application might be in naval search and detec-
tion problems. For example, one might be searching for a
merchant ship in distress whose location 1s not known exactly
due to fallure of the ship's communication equipment. Here
the independence assumptlons of the planarr Polisson process
may be valld, but not the assumption of homogeneity. In-
homogeneities of location occur because of preferred sea
lanes and physical characteristics of the ocean and

atmosphere,



II. THE HOMOGENEQUS POISSON PROCESS IN THE PLANE (HPPP)

A. GENERAL DEVELOPMENT
Consider a stochastic process of events occurring in
the plane (i.e., a so-called point process) vwhich is
characterized by the assumptions
I. There exists a finite positive constant A > 0,
II. For any integer k > 1 and any set of non-overlapping
regions Rl,’°', Ry with areas Al,"',Ak, (in the
usual geometric sense), the number of events occurring
in any region 1, denoted N(Ri), has a Polsson dis-
tribution with parameter AAi which depgnds only on

the area of the regilon, Ai’ and not its shape. Thus,

ny
- (AAi) exp(-kAi)

i nil

(1)

_prob {N(Ri)

III. Further, N(Ri), 1=1,2,""",k, are mutually indepen-
dent in that N(Ri) is not affected by the occurrence
of events in any other region or in any groupling of
the reglons, G, as long as RJﬂG = @, Thus

n, -AA

k (AAi) 1e 1

prob{N(R, )=n,, 1i=1,""°,k}= I (2)
T ny!

Definitlion 1: 1If a process obeys the above assumptions it is

called a homogeneous planar Poisson process (HPPP).

For reasons of arbitrary shape the above basic definitions

will suffice. However, under certaln geometrical assumptions, an

IR e



equivalent definition for the HPPP can bte¢ achieved in a man-
ner similar to the development of the univariaste Polisson
process through the use of partial differential-diffeierce
equations. This 1s useful for the develcpmecat of statisti-
cal.properties and will be very important in the development
of the non-homogeneous process. Such a development alsc
provides another phenomenological approach to the homogeneous
Poisson process, one which might arise through the struc-
turing of a model for instance. For 1llustrative purposes
the following development will be accomplished using rectan-
gular regions. Note that the development is very dependent
on the geometry involved; hence developments with other
geometries (e.g. circular regilons) must proceed somewhat
differently.

The underlying assumptions in the differential equation

development will be |

I'. There exists a finite positive constant A > 0.

II'. For any reglon R* with incremental area AA, inde-
péndent of the shape of the region except possibly
as noted above
(a) nprob {no event in R*} = 1 - AAA + o(AA),

(b) prob {one event in R¥*} = XAA + o(4A),

(c) prob {more than one event in R*} = o(AA),
where "g(AA) is o(AA)" means zigo EL%%l = 0, or
specifically in rectangular regions the limit as Ax

or Ay or both go to zero of Aiﬁg) is zero.




III'. The occurrence of events in R* is independent

of the occurrence of events in any region R+
where R*¥MRY = g,

It will be shown that I', II' and III' imply and are
implied by I, IT a2nd III so that the two sets of assumptions
are equivalent and hence the incremental assumptions give
rise to a HPPP. Clearly I and I' are the same,as are III
and III'. Also II implies II' since by (1)

2
A 2

2

(a) prob {N(R¥) = 0} = e-XAA

= 1 - AAA + o(AA),

with the definition of o(AA) given above. Also

-AAA

(b) probo {N{(R¥) = 1} = )AAAe = MA(Ll = MAA + ...)

= AAA + o(ARA)

and (c) prob {N(R¥) > 2} =
i=2

~-AAA
= o(AA).

(an)t e
T

The problem remaining in order to demonstrate equivalence
between the two sets of assumptions is to show that II'
implies II.

Consider a region R bcunded by the co-ordinate axes and

lines x = X* and y = Y¥, with area X*Y*, Now extend the
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sides to x = X*+Ax and y = Y*+Ay (see Figure 1). Consider

the probablility of n events occurring in thc extended

region, R' = R + R, + R2 + R3, where:

1
(a) R has area X*Y*,

(b) R, has area X*®Ay,

1
(¢) R, has area Y*ax,

(d) R3 has area AxAy;

(a)=-(d) imply R' has area X®Y¥ + X¥Ay + Y¥Ax + axAv.

The assumptions I', II', and III' imply

prob {no event in Rl} = 1 - AX¥Ay + o(X*ay),
prob {one event in R;} = AX*ay + o(X*ay),
prob {more than one event in R;} = o(X*ay);

prob {no event in R2} = 1 - AY*Ax + o(Y*ax),
prob {one event in RZ} = AY¥Ax + o(Y*Ax),
prob {more than one event in R2} = o(Y¥*Ax);

and
prob {no event in R,} = 1 - AAxAy + o(A4xay),

prob {onc event in §3} = \AxAy + o(AxAy),
prob {more than one event in R3} = o(AxAy).

Moreover, statements (3), (4), and (5) are independent.

It 1s noted that the above equations may have two

different interpretations. For instance in (3), prob{one

T e S

event in Rl} = X*¥Ay + o(X*4dy) is interpreted to mean one event

in & two-dimensional process with parameter A and area X%*ay.

10



Y*+Ay J_...'
Rl A v oy
¥ ro e y O e
)
: !
i
R e

Figure 1. The incremental increzse of a
{ rectangular region.

11



s 0 T ) A Il oty S i o 0 s b g i R STTSITIN

*Y'

Haower+», another interpretation would be to consider the one-
é¢r=u.naional(rarginal) process of events projected onto the
v=axiy, in vhich case the parameter is AX* and the incremental
:nterval has length Ay.

For notational convenience, let Pn(x*,Y*)denote the
probability that n events occur in a region with area X¥*Y*,
“ne differential-difference #quations are written noting that
n events may occur in an extended region by having n events
in the unextcnded region and no events in the extension,

n-1 events in the unextended region and one event in the

cxtension, etec. Hence
Pn(xi+hx,Y') = Pn(X',Y') . Po(Ax,Y')
+ Pn_l(X',Y') . Pl(Ax,Y“)

+ P, (X%,Y%) « Po(8x,Y%) 4 ...

n-2(

= P (X9,Y9)[1-2Y%8x] ¢+ P, (X*Y¥)[AY®8x] + o(¥*sx).
(63

Similarly,
Pn(x',Y'+Ay) = Pn(x',v')tl-xx'Ay] + Pn_l(X',Y')[XX'Ay] +
+ o(X%ay), (7)

and

12
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Pn(X“+Ax,Y*+Ay) = P (X¥,Y")[1-av*ax]2-2Y¥ sy I(1-Aaxay]

+ P (XEY®)[ay*az(1-AX4ay) (1-2Axey)

+ AX¥Ay(1-AY¥Ax) (1-ApAxay)

+ AAxAy(1-AX*ay)(1l-AY*Ax)]
+ P (X%, Y®)[Ax*ay . AY¥Ax(1-2axay)

+ AX*Ay(1-AY¥Ax)AAxAy

+ (1-AX¥*ay)aY*axraxay]

# yw 3yuyupay2ay?

+ Pn_3(x SYR)[AXRY®AXx“AY©]) (8)
+ o(AxAy) + o(X*ay) + o(Y¥*aAx).

Interpreting the above equetions, the third term on the
right hand side of (8), for example, states that there can
be n events in the extended region R' if there are n-2
events in R and exactly one event !{n cach of any two of the
added recgions. That is, there can be two events in the
added regions Rl’ RZ and R3 if one occurs in each of two
regions and none occurs in the third region, i.e., one in

Rl’ one in R2 and none in R3, etc. Collecting all terms of

order o(8xAy), o(X®Ay) and o(Y'ax), (8) reduces to

13
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Pn(x*+Ax,Y*+Ay>sPn(x~,Y*)[1-x¥*ax-xx*Ay-xAxAy+x2x'Y'AxAy]

+ Pn_l(X*,Y*)[XY'Ax—zx”x*Y*AxAy+xx*Ay+xAxAy]

+ Pn_z(xi,Yl)[xleYleAy]+o(AxAy)+o(xlAy)+o(yqu).(8

- Pn(X',Y')[l-xY*Ax]+Pn_1(X',Y')[xY'Ax]+o(Y'Ax)
+ Pn(X',Y“)[1—kX“Ay]+Pn_1(X',Y“)[AX*Ay]+o(X“Ay)
- Pn(x',Y*)-xPn(x“,Y')AxAy+xPn_1(X',Y')AxAy
+ xzx'Y'[Pn(X',Y')-2P"-1(X',Y')+Pn_2(X',Y')]AxAy+o(AxAy).
Moting from cquations (¢) and (7) that the first three
terms on the right-hand side of the above cquation are

Pn(x'iAx,Y') and the next thrce are Pn(X',Y'+Ay) and

rewriting (8'), the result is

Pn(X'#Ax,Y'+Ay)'?n(X'+Ax,Y')+Pn(X',Y'+Ay)—?n(X',Y')

xPn(x',Y')AxAy+xPn_1(x',Y')AkA§ (8")

2
! ¢\ X'Y'[Pn(X',Y')-ZPn_l(X',Y')+Pn_2(X',Y']AxAy

+

o(axay).

The definition of the second partial derivative with

L IR S

respect to two variables is

14
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e ay+0"7 £x+0 X

W0 Ay Ly )= )
- 1im .(x*Azai) FOx,y2y
bx+0

Hence, transpocing the first three terms of cquation (8")

to the right hand s!de, dividing by AxAy and then taking
the double limit recuits in

2 ) #* |
3 P (XN M) o aF (X#, Y0P (X0, YO 4AXNYRIP (XN, ¥¥)
ox9y n n- n

2P _ (X%, YR)+R L (X*,Y4)] (9)

The solution to (9) (o partial differential-=difference

cquation) !s casily shown to be

P (X",Y%) = K(AX*Y® ) Poxp(-2X*Y#) | n = 2,3,°°°° (10a)
nt

where K !s an arbitrary constant. Special considerations
are neccded for n = 0,1 since for these cases some of the
terms in (8") and (9) are not defined. Rewriting (8") and
(9) whilec concurrently eliminating the proper terms leads to

n
Pn(Xl’Y') - K(xX'Y')n?xp(')‘X'Y.) . n s 0,1,2’...(10b)

Since ?n(X',Y') is a probability statement and for any
given region the number of events in that region must be

some non-negative integer, the constant K 1s seen to be unity.

15



Jdence (10b) 1:¢ equivalent to (1) which was to be proven,
Thus the twe sets of ascumptions imply the scame Lnir..,
nancly that the number of events in a reglon hac o Periron
distribution with paramcter proportional to the arc. e” thc
region and independent of its shape and the number i
position of ecvents outside the reglion. Note that +he

formulation excludes multiple events, l.e., the oeccu:.rarce

e s

-

of two or morc events at any point or on any line : ;
added region such as Rl in Figure 1,

Also 4 similar derivation will go through for «’::vlar
regiiors using polar co-ordinates, but therc are d.:. _:- rce-
in the special properties of the Polsson process <o . fined
through assurptions I, IT and III in differently si:

regions. These are discussed below. The differc-ces .

the speclal properties of the non-homogeneous plint i [ac i

processes a5 they vary with different geonctiries

eussential elerent of the analysis of points (ever:.s

the plane.

B. TESTING DATA FOR HOMOGENEOUS PLANAR POISCON FPrOCHES (HPEP)
Given the occurrence and spatial location of n events in

a rectangular region of area X*Y*, consider the problem of

determining whether or not these points occur as realizations

of the HPPP. Miles [1970,p.89] has stated a consequence of

definition 1 as

Corollary. Assume a rectangular reglon Ri with area Ai'

Given N(Ri) = and 0 < A, < ®, the n points are indepcndently

i

and unifornly distributed in Ri'

16



Proof: Let Ay = X#Y#* v herc Ri !3 a rectangular reglon

bounded by the coordinute axes, x = X* and y = Y¥, Label
the n given puints in tny convent~oitl ranner, c.g., on the
magnitude of the y-ccmponent. 1ot (x,y)(j) denote the 1O

labelled event. Consicer an Inerceh.oental region with area

dxdy which hac the prop o4 - ol {exactly one event in the
incremental region of - AR Pl(dx,dy) = Adxdy + o(dxdy).
Consider now n incre. .. T Ril@s dxidyi, i=1,"*",n, '
placed in R,. Ignorirs : -« :ni27tles of o(dxidyi), assump-
tions I, IT and III :: =+ -..20 .he joint probability that

the ith event falls ’» the 'acromental rectangle, dxidyi,

1 =1,'++,n, and exacily rn ovcn.8 oceur altogether in X*y#
is given by
R i SRS I
deldyl...kdr S R Y 4.2 Ui,

Restating in tecrus o: the ge:.C2ly function,
f{(x,y)(l),.-.,(Z,U)(n),n;X} = Xnexp{-AX'Y‘},

where f{...} s the loint density of (x,y)(i), R S T
and the probablility tra:t che number of events in X*Y* is n.

The exponential term In “he above expressions is an approx-
n

-

imation to exp{-(AX*Y¥ - ‘:1 xaxidyi)}, i.e., represents
the probability of no events within the region X*Y¥* but
outside the incremental regions containing each event.

By conditioning on the occurrence of n events in the

region which are d!stributed Poisson with parameter AX*Y¥,

17




, o« Alexp(=)x*¥®)

(AX*Y#) lexp (~AX*YH)
nl!

f((x,y)(l),...(x,y)(n)!n;x , n 21

= -—_ﬂl——— : (11)

(xry#)"

which is the Joint distribution for n bivariate uniform
random variables ordered on one of the random variables as
;5 shown in Appendix A. Note also the independence of the
conditioned density from the parameter A, 1.e. the random
variable N is a sufficient statistlc for A.

As a consequence of the above corollary, it is apparent
that 3 the points of the HPP?, conditioned on the number
of events observid to occur, are in fact ordcred with
respect to the increasing magnitude of the y-component, then
no "information" 1s available about the ordering of the x-
components, 1.e., each of the n! orderings that can be
ijnduced on the x's by the orderings on the y's has probabi ity
1/n!. This is readily apparent since in the bivariate uni orm
case the two components were independently selected. Henc ,
ir (x,y)(k) is determined by (xk,y(k)), i.e. the points are
labelled by the ordered y-component, then

1

prob(xk = X(J)} ™ i J = 1,2,00:,N

where x(J) is the Jth Xk in magnitude, and

prob{x1 = X(J), J=1,...,0} X2-X(k), k=l ooy d=1,J%1,...05

(12)

21~

ve o} Xn = X(l)}

18
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Hence i the x-components of the polnts ordcred on the
y~-components exhibit any natural ordering then the x- and
y-components have not been independently seiccied and the
observed process cannot be a HPPP., This will be¢ the basis
for many of the tests for a HPPP against ¢ non-homogenecous

planar Poicson process to be discussed later,

Lemma: If the blvariate process ic Polsson and the regions
are rectangular, then the projections of the events onto

the coordinate axes may be shown to be univariate Poisson.

Proof: Consider the occurrence of events in a rectangular
region of arez X*Y*, Then by III the cccurrence of an event
in an incremental strip is indeperdent of all occurrences
outside the strip. Hence the projections onto the coordinate

axes glve rise to independent counts along the axes.

%y )0 e
P (x,¥¥) = (AY ")nf"p( AYEx)  he0,1,...
0 < x < Xt*
and
#y)R AX®
P (x*,y) = {2 Y)n‘;’ﬂ’( AX8y) . h . 0,1,...
R R

which gives the univariate Poisson distributicns with
parameters AY* and AX* respectively.

Note here the inherent dependence on the shape of the
assumed regions. In using rectangular regions equal lengths
in the marginals reflect equal areas in the bivariate

distributior.

19
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If the reglons were circular then vertical projections
onto the axes would represent decrcasing area as the dis-
tance from the origin increased. Since thc ocecurrecnce of
events is assumed to be proportional to the area projected,
an actual HPPP would induce a non--homogeneous preocess on
the harginals due to the distortion in the mapping. For
clarificaticen, refer to Figure 2. However, if the regions
are circular then radial projections could be utilized so
that the event occurring at (xo,yo) in Figure 2 i1s repre-
sented in the x-marginal by an event at X To define
equal area projections in this case the transformation
X -+ x2 = x' is made, in which case a unit increase in x'
defines the additlon of a unit amount of arca to the region.
For example, if a unit area 1s generated by a circle of
radius r = 1, then the area enclosed in the ring of
1 é r < 42 is the unit area, as is the area in the ring
Y2 <r <3, etc. In general, 41 < r < i+l defires in
polar coordinates a ring with unit area.

Returning to the assumptiorn of rectangular reglons,
three characteristics of the HPP? are now available which
can be used as the basis for testing a sample for telonging
to the HPPP description of events in a rectangular region R:

(A) 1Independence of the x-ordering from the ordering
on the y-components.

(B) Univariate HPP (homogeneous Poisson process) in

the x-margiral and, conditiocnally on n events in R, a

20
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Figure 2. Vertical and radlal projections of an
event to form the marginal process. Shaded regic .s
represent the deviations of projected areas arising

from the rectangular projection of circular areas.

Thus, the shaded regions indicate the degree of

non-homogeneity induced by the mapping.
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uniform distribution of the distances to events,

(C) Univariate HPP in the y-marginzl cnd, conciticnally
on n events in R, a uniform distribution of the distance:
to events.

Property (A) can be tested against general alternativcs
using a rank correlation procedure (or Spearman's courrecla-
tion, see Pearson and Hartley [1966, Ta%le 44]). Pro,. »tlien
(B) and (C) can be tested by standard univariate methode

as in Cox and Lewis [1966].

Note that in the above discussion the intercst iie: In
the nature of the process rather than in specifically
describing the process. Thus the determination of the
parameter X of the Poisson process is not a current cb/: -
tive and it can be considered to be a "nulsance" pacutenor.
Hence the conditioning argument above and the rosult!..-
independence of the tests from the value of the puarareter
are Justifiable.

Now let a, be the probabllity of a Type I error genor-

A
ated in testing for randomness, ag be the correspording
probability in testing for HPPP in the x-margiral, and as
likewise for the y-marginal. Then the probability of not
falsely rejecting the HPPP hypothesis due to the randomness
test is 1 -~ Gps etc. Hence the combined probability of not

falsely rejecting HPPP is 1 - prob {type I error} or

l - P(I) = (1 - aA)(l - aB)(l - ac).
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Therefore

PCI) = 1 = (1 -a,)0 - ag)(l - a) (13)

is the probability of Zalacly roliet!ng a YPPP hypothesis.
If through phys!ec:l caorclarr “dens one of the tests seema
more or less significnnt viun Ll o.hers, the analyst can
choose the weightinge o o = 7 . the physical properties.
Otherwise the values (and ..+ " ‘.~ ~o~gt3) can be weighted
equally. This nrecd .. tne artec~dnation of welghtings is
the inherent disadvantsre ¢© ¢ ruliti-level test.
The individual %tests ;o ne” stove will be briefly
described. For the rark ccirclr fon test, censider each
Xy from (x,y)(i) whicl, {r :Zorod on the ye-cormponent., Also
consider the ordered roed’ ‘c... 2iong the x axls, where

xi = X(J)n Then

o 2
i=] -

) ?

(14)

-

8 n(n?==i

where (J)1 is the posiiior cf X i, the x-ordered sequence,
is the rank correlaticn statistic.

The exact distritution for r_ can be approximated by

s
fitting a distribution to its morents as discussed by

Kendall and Stuart [1951, p.U77]. The exact distribution

of re is tabulated !n Ricretrika Tables For Statisticians
(1966, Table 4&, p.23) for otserved values of n between U
and 10, and the !ntroduction to these tatles gives approx-

imations for 10 < n < 20 and for n > 20. Fcr 10 < n < 20,
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rg can be treated as a product-moment correlation coefficient
between normally distributed random variables. For n > 20,
ry y;:f is assumed to be unit normal.

In testing the marginal distribution for HPP, two
scparate tests are proposed. First, the uniform conditional
test 1s used to test against trends in the data. As stated
in Cox and Lewis [1966, p. 153], "If the series has been
observed for a fixed time to {length X*} and n events occur
in (o,to){(o,X*)}, then the uniform conditional test is
based on the variables U(i) = Ti/to {= X(i)/x*}(i=1,...n)

conditionally on N, being equal to n." The {brackets} are

t

0
supplied to relate the material in Cox and Lewis [1966] to
this specific protlem, and Nt = n mcans the number of

o

occurrences chserved is n. Note that 1n the conditioning -
of the realizations the "nuisance" parameters AX* and AY*
are eliminated. .

Secondly, a test based on the ordered inter-event spa -
Ings 1s used to test Poisson against stationary event
processes which may be non-Polsson. For thils test, Durb i's
modifications of the uniform conditional test is used [Cox
& Lewis, 1966, p. 155]. Referring to Figure 3, Durbin's
modification describes a transformation from the random
variable X to the random variable T and then to the random
varlable S.

Let Tn+1 = X% . x(n). If the x(i), d'® 1,25, iy hy
describe the "times to events" in a Poisson process, then

the T,, 1 = 1,2,...,n+l, are independent expcrentially

i’.
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Flgure 3. The generation of the transformed variables

S1 from the original process X(i).
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distridbuted random variables with parameter A. If the
Ti's are then ordered and the Si's arc generated as shown,

then the 31'8 arc independent exponential random variublee,

where S, has the cxpectation 1/((n+2-1)1). Also the trans-

i
'
formation S1 - (n+2-1)s1 defines independent identically

disfributcd exponential random variables with parameter

i,
A, and thereforc x; = I SJ »y 1 =1,2,...,n defines the
J=1

times to events in a Poisson process with parameter ),
and U; = %7 glsj is the statistic upon which a new
uniform conditional test i3 based.

Both tests should be utilized as the uniform conditional
test is more powerful when testing for trends while Durbin's
modification 1is relatively more powerful In testing against
stationary event process alternatives. However, these
tests are not independent of each other and thus cannot
be combined as in (13).

As an alternative to the above procedure, the region
of concern may be partitioned into several sub-reglons and
the number of events 1in each subreglion used as a basls for
x2 testing. This method 1is discussed by Kendall and Stuart
[1951, pp. 574~5] who mention the problem of choosing the
"right" partition, adding "Whether a particular partition
has statistical interest vends on the purpose of the
analysis". Due to the underlying uniformity of the condi-
tional distribution, this problem reduces to the selection

of the number of regilons which are then used to form equal

area sub-reglons.
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Another alternative to the adbove testing procedure is
the cvaluation of the rumple product-rmoment correlation
coefficient under the bivariate uniform distribution. The
procedure it !lecunscd by RHowalek! (1972], but unfortunntely
his dizcussion does not address the biveriute uniform
distribution. lFowalski makee two points very strongly:
"Firstly, the distribution of 1 (the sample product-moment
correlation coefficicent under non-normal assumptions) may
differ from its normal-theory form and, sccondly, wc may be
in a situation in which p is & poor measure of association."
Hence, 1f the exact distribution for r under the bivariate
unifornm distribution were known, then an cxact test for the
HPPP (given the occurrcrnec c¢f n cvents) could be devised.

Durbin [1970] has also proposed distunce methods for
testing bivariate distritutions. The process herein descrited
is well-sulted to the methods Durbin uses since he first
transforms the observatlions so that they occur uniformly
on the unit square. Hence the natural transformat.on
x' = x/X* and y° = y/Y¥ avoids the problem of possible la k
of uniqueness which is the central objection to the use of
distance methods. These methods allow the analyst to adopt
Durbin's biva: ate analog of the Kolmogorov~Smirnov tests.
The advantage of this methed is the elimination of diffi-
culties concerning multi-level tests and partitioning

tests.
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The tents desncribed in this section arc very general in

nature, {.c.

H : the process is FPPP is tented against
H

the process i{s not HPPP,

Hence the alternatives beling tested apgainst are multitudinous.
If 1t 18 desired to test a rcalization as being from a HPPP
against a cpecific form of departure from lIPPP, better tests
may be defined bascd on the nature of the specific alterna-
tive. For instance, one such departure could be non-homoge-
neity, 1.e., wherc X 1s not considered to be constant but
rather a function of location; this subject is considered

in chaptcer III. Another departure might be 1h the nature
of the process 1tself. For example, events may occur
according to some fixed plan in which case the process 1is
deterministic and thus non-Polisson. A process may develop
in which the occurrence of an event prohibits the occurrence
of another event for some interval about itself, in which
case events are nbt independent of other events and are

thus non-Poisson.

It musf be remembered, however, that tests aga;nst
specific alternatives may ignore some features that a more
general test would detect and thus each individual specific
test applies only to the specific form of departure being
considered.

Moreover, in all reasonable stationary alternatives,

it does not seem possible to derive the likelihood function
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of the obscervations. One thus cernot derive exact tests,
For tests against specific alternutives bascd on distance
methods, see Holgate [1972). Tests based on spectra are

discussed by Bartlett (19064],

C. SIMULATING A HPPP

Suppose one were concernes vith gearching for submarines
which are assumed to be dispersed f{n such a manner that the
locations at any moment are generated by a HPPP, If one
search procedure 1s to be selecied fron rany proposed search
procecdures, then a possible menner of comparing the effec-~
tiveness of the proposed procedures is to utilize each pro-
cedurc against several csinuicted u'oprersions. In such a
simulation, the only "variuable'" which would be of interest
would be the procedures, sc al.i variavles such as detection
and classification parameters, facilities avallable, ete.,
would remain constant. Ancther problem which might be
considered would be the e€ffect o the change of such param-
eters on the search procedure ceiected (i.e., a sensitivity
analysis of the procedure to assumed operating
characteristics and facilities).

By the initial remarks of Section B above and the
statement of equation (12), several methods of artificlally
generating realizations of a HPPP can be determined. These
methods may then be utilized to simulate the HPPP.

Assume that the parameter AX*Y* is given. To select

the number N of events to be observed in the region with

29
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arca X*Y*, renerate a random number U distributed uniformly

on [0,3]., Set N = n 1if

=L (iX“Y')iexp(-AX'Y“) <

X
4 11

N xsye)dexp(-axays)
(15)

u <

The suinmations can be evaluated using either X2 or Gamma

Integ ol Tablee [Cox and Lewis, 1966, p.24]:

n-1 1 -y
@le® | 2
§ T probdb {in > 2y}
© n-l -v
- 1 rehyr ev

Nozt, consider a random variable X distributed uniformly
ovcr {(0,Y*), denoted X ~ U(O,X*), and another indepcndent
randem variable Y ~ U(0,Y*). As realizations of each
random variable are generated, number them chronologically,
i.e. in order of appearance. Generating n (as determinecd
above) such realizations of each random variable rields ¢
numbers: xl,...,xn,yl,...,yn.

The final problem remaining 1s to select a scheme for
mating the x- and y- realizations to form ordered pairs
which will constitute the realization of the HPPP. A few

such schemes are enumerated:

n
1. The sequence <(x1’y1)>i=l forms a HPPP.
n
2. If the y, are ordered to form <y(J)>J=1’ then the
sequence <(xi,y(i))> forms a HPPP,
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3. Similarly, <(x(1).y1)> forms a HPPP,
4, Additionally, any random permutation of the Xy in 2,
the Yy in 3 or either random variable in 1 can be used
to form a HPPP. Thus <(xn+1_1.y(1))> forms a HPPP, etc.
The goal of the simulation and the purpose of cimulating
the process as a part of the overall analysis nust nou te
considered. If during the simulation it ig desired vo
generate indcpendent rcalizations of the process, then cach
iteration must involve a selection of n, the drawing of 2n
uniform variates and the mating of the variates through some
scheme such as those outlined in steps l-U above. On the
other hand, if it is desired to utilize variance reduction
techniques, then for any drawing of 2n ranacn Qariates
several schemes could be used for the mating process. Here
independence is lost immediately and this losc must oe
balanced by some gain elsewhere in the analysis.
D. ESTIMATION AND TESTING FOR THE PARAMETER FROM A HOMOGENFOUS3
PLANAR POISSON PROCESS (HPPP)
If the hypotheéis that the process i1s HPPP with some
unknown value of the parameter X is accepted, one might
like to obtain a point estimate or confidence interval
estimate for A, or to test that the process has some given
parameter XO' Note that the parameter A, which was considered
to be a nuisance parameter in the previous section where
the structural aspects of the process per se were tested,

now specifies the process completely.
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Since, as was seen in Section B, it 1g possible to
set up the Joint probubillity density function of the
observations irn 4 HPPP, point estimation of ) can be
based on the mrthod of maximum likelihood. Note, however,
that each cobservation consists of a single "look" at (or
realization of) the process rather than n observations of
a singlc random varleble. Since it is a stochastic process
the observations are not indcpendent and identically dis-
tributed. Hence the usual Juctifications for maximum
likelihood procedures are not valid; see Brown [1972] for
extengions cof maximum likelihond theory of estimation to
realizations of a Polsson process.

Using the results of Brown [1972]), suppose that n HPPP
events are observed to occur in a rectangular region of
area X*Y*, From (11), for n > 0,

L o= £000GY) (qyree e (5,9) gy onsad = AT MO (16)
In L = nln) - AX*¥V¥, (0 < A < =)

If n¥ 0, this function is -» at X = 0 and A = » and since

%xlg—& = % - X*Y¥*  the slope of the function decreases

monotonically from = to -X*Y*, Thus ln L has a unique

d In L
ar

maximum at the point where 3 = 0, Setting this

derivative equal to zero yilelds a unique maximum likelihood

point estimate for X as

2 n

A= TXTES (n >1) : (17)
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where A 18 unblagsed (sincc F()) = Eée% = 1) and has variance
A/X%Y®, DNote that as the obscrved arca X*Y* becomes large,
the variance of the estimate becomes gmall; thus, by

Chebyshev's Inequality [Lamperti, 1966, p. 20]
P(I; - 2| >8) < !f;.i , (a > 0)
and as X*Y® 4 o,
P(IA - A] 28) + 0
for all positive a and hence ; converges to ) in probability.

The latter statement is équivalent to the assertion that A

is a consistent estimater for A. Also since the variance

of A 1c A/X%YH, ) has an cstimated variance A/X*Y# = n/(X'Y')z,

and an estimated standard crror of #n/X*#y¥,

If n = 0, the above method i1s not applicable. 1In thi
case, it might be preferable to give a confidence interva
estimate for A. Spccifically, a one-sided test alternative
is used to generate a test for the assumed value Anull using
as an acceptance region only n = 0, Intuitively, Anull will
be small enough so that xnullx.Y* <1 (i.e., the expected
number of observed events is less than 1). The hypothesis

to be tested is HO: A=) vs. le A > xnull‘ Defining

null
a level of significance a from (16) by

-2 XHy#
= v = - null
prob{N = 0|2 Ay} =l-a=e 3
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the hypothesis li. is accepted at the icvel a. Conversely,

0
for any glven value of a, Anull may be determined by

-2 X*Y* = 1n (1 - a)

null

- In(l - a
null * _X"Yf—l'

where the xnull thus determined is the largest value of A

A

that the test will accept at the a level, given that n = 0,
Returning to the case of r. > 1, in order to test that

the parameter of the process has some given value A,, assume

0
that n events from a HPPP are observed in a region of area
X*Y®*_,  The hypothesis to be tested is Ho: A= XO against

the two-sided alternative le A ¥ xo although one-sided
alternatives can also be considered. Since N is a random
variable taking on all nonnegative integer values with some
positive probability for any AO’ there 1s always some
possibility of an observed value of the random variable N
(the observation béing denoted n) falling outside any finite
range of values. Thus a region (n',n+) must be specified
such that 1f N lies in the region the hypothesis Ho is
accepted; otherwise the hypothesis 1s rejected. The level

a of the test 1s the probability, given A = ) that N

o’
falls outside the region (n~,n’).
Since the test has been defined to be two-sided, the

level is split into upper and lower levels a+ and o
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8o that a = a+ + a . The procedure must consider values of
A< Ao as well as values of ) > Ao. To proceed, it is

necessary to define

P,(n*;x,) = PON > n¥[a = a5} = ot (18)
| A XWYH
® (AOX*Y*)Je L
) an+ J! -
and
P_(n"505) = PN ¢ n"|x = A5} = a7 (19)
n- (AOX*Y*)Jexp(-AOX*Y*)
= JEO J! .

Thus, for a given a+, an n+ may be determined such that the
statement (18) just holds. Also, for a given a , a n~ may
be determined such that (195 Just holds.

The null hypothesls 1is accepted at the a level 1If the
observed value of N falls between the two prescribed limits
(n* > n-),.where prob{N ¢ (n-,n+)} = a, Note that as
stated, the result 1s indeterminate since a, once given,
leads to many values for a+ and ¢~ = a - a+ which satisfy

the given a. The manner of selecting a+ and a  must be

stated. Arbitrarily 1t may btedesirable to set a+ =a = a/2. .

Asymptotically, this cholce of a symmetric acceptance reglon

is reasonable since as n increases, the distribution of N
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is approaching the (symmetric) normal distribution. The
choice of equal a+ and o  may not be reasonable, however,
for small AOX“Y* since the Polsson distribution is
positively skeved.

The statement prob{N ¢ (n-,n+)|A = Ab] = a 18 the result
of the test of the hypothesis No: A= Ao at a given, fixed
level a. 1t 1is this result from which one must usually
draw conclusions regarding specification of the process.

If the information thus available, 1.e. Ho is rejected
or accepted at the pre-determined o level, 1s deemed
insufficient for the purposes of a decision maker (for
example) ther. another possiblility is that the post-analysis
information may te exterided by deternmining for each obser-
vation the exact «a, Aqs at which the hypothesis would have
been rejectecd. The decision maker is then left with the
problem of the determination of his own level of significance,
possibly based on his intuitive grasp of the problem and
its significance in a larger frame of reference. Once he
has determined his preferred significance level, the hypc :h-
esls is rejected or accepted at the specified level by
comparison with Qg Thus the decision maker has gained
some influence over the analysis but has had to pay with
some time to reflect on the problem at hand. Alternatively,
he can use ¢ informally as a "goodness of fit" of the
hypothesis.

Using (18) and (19), the significance test is defined

conventionally [Cox and Lewis, 1966, p. 30] to be: the
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hypothesis A = 10 would be accepled at the level of signi-
ficance a In a two=-sided cqui=tailed test L the observed
number of cvents, n, is such hat n, when used alternntively
in (18) and (19) (1.e¢., i assumed to be onc or the oiler

of the end-points of the acceptance region), produceg LN

as u solution to
P(n;xo) " 2m1n(P‘(n;xo),P_(n;Ao)) " ay- (20)

Note that cach cbserved value of n generates ¢ new o for
any ascumcd A\g» hence a, = uc(n, Ao). For cxample,
P(30;20) = ,0436C, P(20;20) = ,7628 and P(1%;20) = .)2357.

It cun be seen thit the fixcd level procedure o
computationally simpler, since fer a specifled o« urdd ;u’ the
interva!? (n',n‘) need only be cormputed once while irn the
latter procedure a_ must be recompuled following cuch

e
observation of !.

The inverce of the above approaci which utilized Lthe
two-sided equi-taliled teet of significance for a given
value xo leads to the determination of confidence interval

estimates of A. Given that n events are observed, it 1is

required to determine some limits on the range of A such that

the truec paramecter value A% lies within the stated limits
with a probablility 1 - a. That is, it is required to
establish a A~(M) and a A*(N) such that

POAT(N) < A% <A*(W)|N = n) = 1 - a. (21)
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Ueing PAN < n|x = 2*) <1 - oa* to define a A* as the
greatest ) such that cquality Just holds and similarly
using P(N < n|A = 17} = a” to define a A~ establishes the
limits such that (21} holds. For a proof of this, see
Brownlee [1965, p. 121]. Note that for each realization
of N, a new ordered pair (27,2%) 1s defined so that the
ordered pair 1s a function ¢ a random varlable and hence
is itsclf a random interval. The procedure only states
that for {1 - a) x 100% of the observations the true
parameter A* will lic within the limits selected. The
limits for observed n from 0 to 50 arc tabulated [Pearson
and Hartley, 1966, Table U4C].

For a normal approx!iration to the confidence interval,
Cox and Lewis [190€, p. 31] define the upper a point of the

unit normal cdistribution as €yt and give the relationship

- AXFVH
probi-c;, « L=MEr <o)} =1 - q,
50 (x#y#)T e
the relationship being correct as AX*Y* +» «», The confidence
limits thus obtained arec, to a second degree of approximation
using a continuity correction and the estimate o(1) = VE7X*Y*,

2
n+ §c1a i °1a7gj

2 2

For example, i1f 50 events are observed from a HPPP, the

exact .05 confidence interval is 37.11 < AX*Y* < 65.92
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[Pearson and Hartley, 1966, Table 40] wherecas the normal

approximation gives 37.79 < AX¥Y* < 66.07.

There also exist x2 approximations to the significance

tests and confidence intervals [Cox and Lewis, 1966, p. 33;

Brownlee, 1965, p. 173].
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ITI. NON-HOMOGENEOUS PLANAR POISSON PROCESSES (NHPPP)

A. GENERAL DISCUSSION

If the stochastic process described above 1s generalized
to allow the probabilistic structure of the event process
to be dependent on the location of the events, a non-
homogeneous planar process 1s evidenced. In the simplest
such case a non-homogeneous planar Polsson process (NHPPP)
arises if, in the definition of the Polsson process glven
above, assumption I 1is modified to become

I". There exists a positive finite function A(x,y) > O.
Also note that II is changed by the fact that the number of
events in any resion is not only a function of the area
of the region, but also depends on the locatlion of that
region within the universe under consideration. Thus A
is now expressed as X = A(x,y), and assumption II becomes

DA prob{N(Ri) = n}

i} {A(Ai)}n exp{-A(Ai)}

n!

where.A(Ai) = Aif A(x,y) dxdy the symbol A{ implying the
integral over an area and A(x,y) 1s assumed to be continuous
over R, (with area Ai) so that the integral is valid.
Assumption III remains unmodified, i.e. events occur
independently of any other event or collection of events.
Under the additional assumption that A(x,y) 1is continuous

within the region of consideration, the incremental

4o
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development of Chapter II may be extended to achieve a
description of the NHPPP. Additionally the continulty
assumption on A and the definition of the parameter in the
process as an integral over A eliminates thé‘difficulties
of line discontinuities, although there may be cases where
thié is an important component of the problem. This problem
is not consldered here.

Referring back to Figure 1 in Section II-A, consider
specifically the incremental strip defining regilon Rl. If
the strip 1s divided into n sub-regions of equal area by
taking n equal increments along the x direction each of
length 6x, then, under the assumptlons on the behavior or

A(x,y), the process in the ith sub-region can be approximated

by a HPPP with parameter A’ A(x,y)i where (x,y)i is an
arbitrary point in the ith sub-region. Specifically (and
arbitrarily) the lower left point is chosen for the
succeeding discussion; thué the parameter for the first

sub-region has parameter X = A(0,Y¥)., Continuing, the

probability statements for occurrence of events become

Pl(x,y) = A(0,Y¥)éxAy + o(8x,Ay) 0 < x < 6x,
Pl(x,y) = A(8x,Y¥)8xAy + o(6x,4y) 6x < x < 26x,
Pl(x,y) = A(JEx,Y¥)6xAy + o(8x,8y) Jéx < x < (J+1)6x,

where J = 0,1,...,n-1, Y* <y < Y¥+Ay and néx = X%,
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Since the probability of more than one event in Rl
i1s o(X*Ay) the probability statements above are additive

and

n-1
prob {one event in Rl} = L AMJox,Y¥*)éxAy + o(X*ay).
J=0

In the limit as n + «, by the definition of an integral

X*
prob {one event in Rl} = {of A(x,Y¥)dx}ay + o(X*ay).
By similar argument,
y*
prob {one event in R2} = {of A(X¥,y)dy} ax + o(Y¥*ax)

and

"

prob {one event in R3} A(X*®,Y¥)AxAy + o(AxAy).

By compariscn with equations (3), (4) and (5) the above
statements lead to definitions for average parameters for

each of the regions Rl, R2 and R3 as

X *
Tl(x*,Y*) = %7 S oA(x,Y¥)dx,
0
y T
XZ(X*,Y*) =g /J A(X*,y)dy, - (22)
0
and
X3(x*,Y*) = A(X¥%,Y%).
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Using these average parameters, the equations (3), (4)
and (5) are generaliced, resulting in the following

statements:

prob {one event in RI} Ti(x*,Y*)X*Ay + o(X*ay),

prob {one event in R,} = X, (X*,Y¥)Y*Ax + o(¥¥ax), (23)

and

prob {one event in R3} T3(X*,Y*)AxAy + o(AxAy).

Using the result (22) as defiﬁing the parameter in each
of the incremental areas in Figure 1, equations (6), (7)

and (8") become

¥ ¥ (Y% V¥ YR'Z ¥ VY)Y VY
Pn(X +Ax,Y ) Pn\X ' 4 Y[1 A2Y Ax]+Pn_l(X B § )A2Y Ax

+ o(Y*ax), (24)

P (X¥,Y*+ay)

¥ V# % x# ¥ V)Y Y¥
Pn(X i, y[1 Alk Ay]+Pn_l(X oL )AlX Ay
o(X*ay), (25)

-+

and

P (X¥+Ax,Y*+Ay) = P_(X¥,Y%+dy) + B (X¥+Ax,Y*) - P_(X¥,Y¥)

X3AxAy[Pn(x*,Y*) - P X* y*®] (26)

1

T X*Y* ¥ oy#)o * v
+ Xlx2x Y AxAy[Pn(X ,Y¥) 2Pn_l(x ,Y%)

+

P _o(X¥*,¥%)]

+ o(Y¥Ax) + o(X*Ay) + o(AxAy).
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Rearranging terms, dividing by Axdy and taking the
double 1limit as Ax + 0 and Ay -+ 0 ylelds

32Pn(X*,Y*)
axXay

= - WgLP (X%, ¥%) = B (X¥,¥9)] (27)

+ XX

T e NGRS O S G LI N

vhich, together with the boundary condition that Pn is a

probabllity statement, gilves

(ACX*,Y*$))D exp{-A(X*,Y*)}, n = 0,1,...

Pn(x*’y*) = n! (28)
where
X¥ Y
Ax*,y®y = ¢ 1 A(u,v) dudv. (29)
0 0

’

Thus, the number of events occurring in a reglon
bounded by the coordinate axes, x = X¥ and y = Y* ha< a
Poisson distribution with mean given by A(X¥,Y*). The
mean can be considered to reflect the cumulative effect of
A(x,y) in the region of concern.

If n events from a NHPPP are observed to occur in a
rectangular region defined as usual with area X*Y¥*, and the
events occur at (x,y)(i), i=1,...,n, the labeiling done
on the magnitude of the y-component, then the joint density
of the events and the probabillity that the number of events

in X*¥Y* i{s n is given by
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?I Mx,¥) (5y)exp (=A(X*,Y¥*) }. (30)
J=1
Note that (30) is a direct generalization of (16).

Hence the NHPPP can be described in a fashion similar
to the HPPP, but the expressiohs have acquired 1increased
complexity due to the necessity for the inclusion of
integrals to define the parameters. The degree of added
complexity 1s dependent upon the cnoice of the specific
functional form for A(x,y). The next section develops the

expressions for one specific form.

B. A SPECIAL CASE
To consider the location dependent type of process,

a particular form for A(x,y) is chosen as
A(x,y) = exp {a+ Bx + yy + 8xy}l. (31)

Note that if Bx + yy + 8xy changes very little over the

range of interest of x and y, then
Alx,y) = (1 + Bx + Yy + 8xylexp{al. (32)

Other relationships may be used; however, they may cause
necessary and untidy restrictions on the values which the
constants a, B, vy and § may assume. In particular, A(x,y)

must be greater than 0 and the bivarlate exponential
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polynomial (31) ensures this with no restrilctions on the
range of the parameters.

Additionally, algebraic manipulation of the form reveals
that the curves of A(x,y) = ¢, ¢ a constant, include some

interesting properties.

1. If § = 0, then 1In A(x,y) = ¢ is a family of straight
lines in the plane, intersecting the x-axls at an angle

8 = tan'l(-e/y). In this case a clock-wise rotation of
the coordinate axes through an angle 6 would give an
exponentlal function of y only.

2. If § # 0, then In A(x,y) = ¢ describes a system of
contour lincs which form a hyperbolic parabolold with a
saddlepoint at (-y/8§,-8/8) as 1s 1llustrated in Figure 4.
It may be helpful to interpret the Figure in terms of a
section of forest which has been sampled. The line r
describes a possible direction of stecpest ascent (DSA)
which passes through or near the region belng sampled.

This DSA may not be a topographlc feature but rather a
mathematical expression for a possible increase in density
of trees along some line. Obviously, there may exist a
strong correlation between this mathematical DSA and some
topographic features. Note here that along the DSA maximal
values for X(x,y) are found in the sense that departing the
DSA at right angles leads to decreased values for A(x,y),

i.e. decreases 1n the forest density.
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Ax,y) = exp{a+6x+yy+6xy}.

Figure U. Contour lines for

Note asymptotes and reglon being described
(hatched.) Here g/y =2 , B/6 = 4 and

all coefficients are positive.



3. The exponential form can be extended with little con-
ceptual difficulty, but possibly greatly increased mathe-
matical difficulty, to describe a much wider range of
possible circumstances. For instance, 1t 1s reasonable
to assume that the DSA line will bend; hence terms such as
ex2y and gxy2 and higher order may be included In the
exponent.

For the special form of (31), the cumulative or integrated

intensity function A(X*,Y*¥) is given by equation (29)and

becomes
Aoxx,ywy = SELLIS o BT ((reoxn) (Grv) 1T (Crrox) )

(35)
- ET{(p+sy*)§} + ET(EY},
where ET (:) is the exponential integral and EI(:) = ¢ + 1n (+)
+ ; é%l; , where ¢ = 577216 is a constant, as defined in
Ja%;ie and Emde [1945, p. 2].
Tre likelihoéd function for the NHPPP may be developed
in a manner similar to that used in the discussion of the

HPPP. The discussion leading up to (16) is modified by the

fact that the parameter is location dependent resultling in

n
L = exp-AKE,YD ) T A3 ), (n 2 1) (34)
i=1

v here (x,y)(i) is a labelling of the coordinates of the n

point events. Thus,
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n
In L = -ACX¥T*) + £ 1n M((x,¥)4))
1=1

follows directly. For the special case of A(x,y) given by
(31), equation (34) becomes

n n n
In L = —A(X¥Y#)+g I X, +Y £y 48 I x,¥,4na (35)
i=1 i=1 i=1

where A(X*Y¥) 1s given by (33).

The above Joint density, or likelihood, function pro-
vides a functional form which may be manipulated to accom-
plish the two principal concerns of the analysis cf point
processcs: hypothesis testing and parameter estimation. The
obvious null hypothesis 1is HO: B=+vy=46=0, in which case
the nonhomogencous Poisson process 18 being tested for homo-
genelty since a non-zero o ylelds a constant parameter
A = exp(a) > 0. Should thé above null hypothesis be rejected,
then the analysis proceeds to develop estimates for the
parameters B, Y and 8. This phase of the analysis may
proceed differently depending on how many and which of the
parameters were tested as belng different from zero. The
complete, and most complicated, situation develops when all
parameters are determined to be non-zero. Testing of
parameters 1s the topic of Chapter IV while Chapter V
discusses the estimation of parameters determined to be

non-zero as a result of the testing procedure.
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IV. TESTING FOR NON-ZERO PARAMETERS

A. PRELIMINARIES

It is desired to formulate a method for testing the
data (i.e., the number of events and their locationes) in
ordef to determine which of the parameters in the model
given by (35), specifically a, R, Y and '§, are non-zero.
Note that three assumptions are inhérent at the outset:
first, that the NHPPP model is valid; second, that the
testing for homogeneity in Section 1II-B led to the rejec-
tion of the hypothesis of homogenelty; and third, that the
physical phenomena can pe modelled by the NHPPP giveh by
(34) with the parameter A(x,y) given by (31).

Testing the Poisson hypothesis-ggg se when the function
A(x,y) is not known is a compound problem which will not be
considered here. It is analagous to the compound probler in
regression analysis of testing both for an unknown regres .ion
function and for independent equal varliance errors.

~” From the third assumption, the 1likelihood function for

the data 1s given by
L = exp{-A(X*,Y*)}¢" exp{BIx, + yIy, + §Ix;y,} , (36)
where, for clarity in the future development, £ = exp{al.

Conditioning on the occurrence of n events, n > 1 and

defining L{(x,y)(l),...,(x,y)(n)ln;k(x,y)} = L(n) leads to
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L n! oxp{BIx, ¢ vIy, + 8Ix,y,)

L(n) * SoobTMenY ® — VX -
( 7/ J exp(Bu + yv + 8uv) dudv)
0

0
(37)
where L(i1) 18 read "the likelihood function conditioned on

the occurrence of n cvents.”" Note that conditioning on
the number of events observed has resulted in an expression
which is independent of the parameter f(or a), i.e. for
given 8, v, and &, n is a sufficient statistic for a. This
is convenient becauce a here is a "nuisance" parameter since
the terms of Interest are thosc which would indicate non-
homogeneity rather than the establishment of the overall
rate of occurrence. Thus by using the condit;onal likeli-
hood a may be eliminated and the testing can proceed for
non-zero B, vy and §. In other words the value of a should
not influence the testing for non-homogeneity parameters.
If » = 0, certainly no departure from homogencity could
be evidenced and hence this case is covercd by HPPP: see
II-B above. Hence the case of interest is n > 1.
Physically, the model (35) gives risc to a parameter
surface A(x,y) which has the properties:
(a) BP¥O; Yyv¥ O; &§¢#¥ 0: 1n A forms a hyperbolic
paraboloid superimposed on
a tilted plane, i.ec. some
"warping"” of the tilted

plane is evidenced.

(b) B¥0; Yy¥O; 8§=0: 1n A forms a plane, tilted
with respect to the x-y plane.

(c) B=y=0; & ¥ 0: 1ln ) forms a hyperbclic
paraboloid.
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(d) g =y = § = 0: ln A forms a plane parallel
to the x-y plane, l.e. a
HPPP 18 evidenced.

There are a number of possibilitles for testing:

(a) A test of

HO: g=y=¢§=0

against

Hl: at least one of the parameters B, vy, § # 0

is a test for non-homogeneity which is more specific than
tﬁose in Section II-B and is easily derived by likelihood
ratio techniques.

(b) The above test 1s not of great interest; generally the
specltic non~zero parameter is desired rather than just that
at least one of the three is non-zero. This leads to the
question of selecting the significant subset, a problem
which is difficult and as yet is unresolved.

(¢) The simpler problem is to assume an ordering, i.e. that
if 8 = y =0, the process is homogeneous (8§ 1s then assumed
to be 0) and if B or vy is non-zero but 6§ = 0, then higher
order terms are assumed to be zero. However, 1f the test
indicates non-zero 8 or y this may be due to an aliasing
effect because of a non-zero §. If further testing of

§ = 0 against § ¥ 0 reveals § # 0, then it may well be that
the true situation is B =y = 0 but § # 0. The procedure

to be followed will not discriminate thils case.
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The same aliasing effect occurs in testing of § = 0
against § ¥ 0 where B and y are non-zero and 1t is desirad’
to perform this test without the effects of the non-zer
B and y. These are thus nulsance parameters, as was the
case with o in testing B and y. For the present model (35),
one can eliminate these parameters because 1t 1is seen from
the exponential form (36) that for any &, (n, IX, s Zyi)
is a set of sufficient statistics for (a, B, Y). Thus
6 = 0 is tested with some function of inyi given n, in
and Zyi. This statistic has a distribution independent
of the parameters a, 8, Y.

The reason for basing the conditional test on Xxiyi

is that this is (conditibnally) a sufficient statistic

for §.

B. SPECIFIC TESTS

-

Assuming that some ordering exists on the parameters s
discussed in possibility (c) above, tests are performed
using the sufficient statistics (n, Ly, zyi, inyi) to
determine if any non-homogenelty 1s evidenced by the data
(i.e., through the statistics). This testing is more
specific in nature than the testing encountered in Section
II-B above due to the selection of a particular model.

The set of sufficient statistics arises from this choice of

a specific model to use as an alternative to homogenelty.
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The testing will assume the followlng sequence:
(1) Condition on n and set § = 0., Test Ho(i): B=vy=0
against ”1(1)’ B#0ory# 0. Note that it would not be
informative to test either B or y as a separate entity since
in the formulation of the model 8 and y are unique only up
to an angle of rotation. That 1s, testing of £ and y
Jointly amounts to the detection of any tilt in 1n Xx(x,y)
with respect to the x-y plane, regardless of the direction
of the tilt. Fallure to reject Ho(i) leads to the assumptilon
of homogenelty due to the assumed ordering.

(11) Rejection of Ho(i) leads to testing of

Ho(p1)? 6 =0y = < B <= and == < Yy < =
against
Hl(ii): § ¥ 0; -» < B <®® and == <y < o,

The test thus specifiles y and 8 as nulsance parameters.
In this test it 1s necessary to first condition on n, in
and Zyi to eliminate the nuisance parameters.

In (1), conditioning on n and setting 6§ = 0 leads to

(8Y)" n! exp{BIx, + yIy,}
(exp(8X} -1)" (exp{y¥} - 1)*

L(n) =

From this it 1s seen that the statistics (in,Zyi) are
(conditionally) Jointly sufficient statistics for 8 and y.
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Under HO(i)’

Ix,/n » N(X*/2,X*2/12n) and Ly, /n -+ N(Y*/2,Y%°/12n)

and the statistics are independent (see Section II-B). Hence
the expression
zxi/n - X¥%/2 2 Iy, /n - Y¥/2 2

I
X%/ /12n Y*/ ¥12n

is asymptotically xg. Rejection or acceptance of Ho(i)
is based on the adherence of the calculated value of this
sum to the x2 distribution , 1i.e. HO is accepted if this
sum has sufficiently small values. Acceptance of Ho(i)’
as stated earlier, leads to assumption of HPPP; refer to

Chapter II.

Following the rejection of H ) it 1s necessary to

0(1
proceed with testing of Ho(ii)‘ As can be seen from an
examination of (37), the complexity of the exact distribu-
tion following another conditioning argument (l.e. on

n, Xxi and Eyi) is prohibitive. However, for large sample
sizes the conditional distribution can be approximated from
the fact that zxi/n, Zyi/n and inyi/n, conditioned on n,
are jointly normally distributed for large n. Thus the
asymptotic distribution of inyi/n, given n, in/n and

Zyi/n, can be found from normal theory multiple regression

results.
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Under the assumption that g = y = § = 0, the trivariate
normal distribution which arlses 1s characterized by a vector
and a matrix. The vector (u) of expected values and the

variance-covariance matrix (L) are given by
\

I{? My
2 =
p= |Y/ My
XY/l Uy
and
x2/12n 0 X2y /2kn
1= |o Y?/12n xv2/24n
X2y/2hn XY2/2un  7x°¥2/1bl4n

from which Pyp = 0 and Py3 ¥ Pp3 = 0.65465,

In the model given above,

Hogsq)? 6 =05 -=<B<w —wcycm

is to be tested agalnst

Hl(ii): § ¥0; —»<f <wy; -o<y< o,
Since inyi is a sufficient statistic for § when n, in
and Zy1 are given, the test can be based on zxiyi. Its

asymptotic (conditional) normal distridbution has mean

My

and standard deviation oéy given by
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and

1
' 2 2 3
Oy = Oxy 37 P13 7 P23 > .

Ix,y,/n = Mg

i ﬁ. Xy 45 distributed as & unit
Xy

normal variate and “0(11) is accepted if this statistic has

Thus under Ho(ii)’

sufficiently small values. Failure to reject ”0(11) would
imply that the 1n A(x,y) plane 1is tilted with respect to
the x-y plane, but no "warping" 1s evidenced.

The above development relies heavily on asymptotic
assumptions. Small sample problems will be much more
difficult to analyze. Any point in the above procedure vhich
lead to rejection of any hypothesls would require the analysis
to proceed with the estimation of the non-zero parameters.

This is the subject of the next chapter.
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V. ESTIMATION OF PARAMETERS

It is desired to formulate a method for estimating the
parameters o, g, y and § of the non-homogeneous planar
Poisson model glven in 1V-A where it has peen established
that a non-homogeneous process 18 evidenced by the data.

Taking the logarithm of the conditional 1ikelihood

function (37) results in
in L(n) = ln n! + BIXy + YLy, + 8IxyYy +nln A, (38)

where A = A(X*,Y*)/g. Point estimation of (a, B, Y, §)
by the methoc of maximum 1ikelihood uses the conditional
14kelihood function (38) to develop the estimates. See
Section II-D for comments regarding use of maximum 1i1kelihood
in this application. The solution to the set of simultaneous
equations

y# R

f f uexp{Bu + yv + §uv} dudv = 0
0 0

™
»
]
>3

Yy X
of f v exp{Bu + yv + suv} dudv = 0 (39)
0

ESE

Zyi -

ys Xx#
f [ uvexp{fu+ yvt guv} dudv = 0,
0 0

Pl

Ixy¥y -

if obtainable, provides the point estimates B, y and 8.

Note that this approach neglects the homogeneous term
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during the estimation of the parameters giving rise to
non-homogeneity. The neglected paramecter may be estimated
last.

In order for the solution (8, ;, 8) to equations (39)
to describe a relative maximum to 1ln L|n, it is necessary
and sufficient that the matrix of second partial derivatives
(£) be negative definite, see Frisch [1966, p. 120]. In
examining this matrix in the case of (38), it is helpful
to define S(u,v) = exp {Bu + yv + duv}. Then the function

s(u’v) ] .S_(%lll

has the properties:
(a) s(u,v) 20
yd X+
(b) S J s(u,v) dudv =1
o 0

(¢) s(u,v) is continuous on [0 < u < X¥, 0 < v < Y*],

Hence s(u,v) is a probability density function [Gnedenko,
1962, p. 171].
Hence the matrix I can be shown to have dlagonal
elements such as
y® Xxs y® x#

/ uzs(u,v) dudv - ( / [/ us(u,v) dudv)
0 0 0

o,, = =n/
0

11

= - n Var U.
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Continuiry, the result is (where W is defined to be the

W= UV)
-n Var U -n Cov (U,V) -n Cov (U,W)
L= -n Cov (U,V) -n Var V -n Cov (V,W)
-n Cov (U,W) -n Cov (V,W) -n Var W

and I is revealed to be a covariance matrix. Note that the
condition for a relative maximum, 1l.e. I negative definite,
is independent of the realizations.

Now i = -n3§ where i 1s the usual varlance-covariance
matrix for a tri-variate distribution. But i is positive
semi-definite [Gnedenko, 1962, p. 212], hencc'-i is negative
semi-definite, That each of the principal minors has
non-zero decterminants remains to be shown.

By the expressions given in Gnedenko [1966, p. 212],
the covariance matrix i can be seen to be a Hankel matrix
(Gantmacher, 1, 1959, p. 338]. Hence i1f the rows of i are
linearly independént, then the determinant of i > 0. But
also Var U > 0 since U is a random variable and Var U Var V -
Covz(U,V) > 0 since the case of line discontinuities has
been excluded (1.e., U cannot be a linear function of V).
By the same reasoning, W is linearly independent of U and
V. Hence all principal minors are greater than zero, hence
i 1s positive definite, hence I 1s negative definite.

Thus (8, ;, 8) provides at least a relative maximum to

in L|n.
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If 1t were possible to determine that (g. ;, 3) provides
& global maximum to 1ln L|n in the region of interest, then
conclusions as to uniqueness of the estimator could be
drawn. Unfortunately, global extrema are difficult to
establish. Since the method of c¢stimation used was maximum
likelihood, the estimates are consistent., Questions of
biasedness are unresolved.

In order to solve the system of equations (39), it is
necessary to determine initial values for the paramecters as
a starting point for an iterative procedure. The partial
differentiation of 1nL (35) with respect to the parameters
and setting these partials equal to zero results, after

some algebraic manipulation, In

n -A(X,Y) = ()

.0 eyY(e(B+6Y)X “1) efX
£x1+§--6—[ B3y - 3 ]‘0

e BYX, (y+6X)Y _ YY
zyi A %A- %_ (e (ey+6X 1) _ e 8-1 ]=0 (40)

. Bytd e? BX+YY+6XY _yY _BX
sxyyy + R+ by (e -e¥"-e""1]

- oxy[eBXHYYHXY 99 _ gxreY - 1] - yy[eB¥ - 13} =0

If it 1s assumed that the sum BX + yY + 6XY is small
(near zero) as well as the individual terms in the summation

being small, then the exponentlials can be approximated by
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Using the first equation

exp{x} & 1 + x, X near zero.
give the value for A(X* Y¥),
r approximation in the remaining

4n system (40) to i.e.

A(X*,Y*) = n, and the linea

terms gives the abbreviated system:

Zx1+¥-n = 0

= 0 (b41)

2y1 + % n

By+6 (1+a) 28 2 2
Ixy¥y * “YTG n - FTEFET) YFOX) [ZL + 86X°Y + vOXY

_52xy + ByXy)l = O

jution to (41) provides the initial estimates for the

The sO
ese estimates can then pe used in (39) cr

parameters. Th

(40) to search for sequentially closer and closer

proximations in a mathematical programming approach.

ap
imates B, Y

Foilowing the jdetermination of the est

and 8§, £ can be determined from the solution to the firs

equation in the set (L0).
The determination of confidence intervals and levels

of significance js not considered.
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VI. CONCLUSIONS

The procedures in Chapters III-B, IV and V are dependent

on the particular choice of parameter form; however, with
different forms the concept of a non-homogeneous planar
Polsson process may be used to describe a wide variety of
"randomly" occurring phenomena. The choice of parameters
which may be used is limited only by assumption I, i.e.
positivity. One advantage of the method discussed hereln
over previously proposed schemes 1s the fact that the °
specific form used admits the possibility of a ridge or
line of maximum density to be mathematically §pecified
and estimated.

Also there 1s an attempt to describe thc underlying
process that caused the points to appear where they did,
as opposed to using, for instance, the arc within which
the most events were observed as the point estimate for
the direction of maximum increase.

Further efforts in this area include a generalization

into four dimensions (x,y,z,t) in order that zoological

as well as botanical densitles may be studied. Of especial

interest is the estimation of densities of aquatic life
and how the observed density fluctuates with season and

with changes in environment. The latter problem seems of

prime importance in evaluating the effects of anti-pollution

programs on the fluid systems in which plants and animals

exist.
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elated to the above

Another problem which is closely r
is that of imperfect sampling and how the estimates are

blased by sampling techniques.
Chapters III, IV and V may be redefined in terms of
xed point,

datg'gathered within a circle about some fi
ally with consideration of the relative efficicency

especi
of this data form referred to by Matern [1960].

64



APPENDIY A: THE RIVAKRI/TE LNIFORL DISTRILUTION

0iven a region R In 52 of area A ond the fact that the
probability of occurrence of an event in any sub-region R1
of area A1 within R is sirply Ai/A, a bivariate uniform
distribution is described, For definiteness assume the

region R 1s rectangular, so A = X*y®, Now

Prob (X ¢ x,Y < ¥) * _%l: = Prob (X < x) Prob (Y < y)
x#y
for 0 < x £ X%, 0 <y < Yy*, in which case it is apparent
that the ccordinate axes define {ndepcndently chosen
univariate randon variables.

Also, the density function is immcdiately

£(x,y) = 1/X%y¢ 0<x <X, 0 <y < Y.

From the density function the joint density for n {ndepen ent

bivariate uniforn random veriables is
£C(x,¥) se e s (¥ on) = 1/(x%y")"
where (x,y)1 denotes the 1th pair of random variables

selected. MNow n pairs of random variables, or more simply

n points in the plane, can only be ordered (without
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replacement) in n! ways, independent of the ordering process

chosen. Hence, the joint density function for n ordered

bivariate uniform random variables is

FCCGY) (1yseees (X,9) pyon) = nt/(X*YE)T

th

where (x,y)(i) is the 1" point selected in the ordering

scheme utilized.

As a specific example, consider the n points to be
labelled with respect to increasing magnitude of the y-

component. Then
Y = Y(k) k=1l,...,n and (x,y)(k) = (xk,y(k)).

If the x-components are also ordered, then the set of

2 points,

points P = ((x(i),y(J))} 1, =1,...,n) defines n
of which n are known to.be "occupied," that i1s, to describe
an event. For x(l), there exists some J such that y(J)
gives the y—coordinate value for the event which gave rise
to x(l). Similarly, for x(2) there are

now n-1 J's remaining, one of which must correspond to the
event giving rise to x(2). Continuing to x(n), there can
only be one J left to be associated with the last x-value.
Thus there are n! combinations of (x,y)(i), S ol Sreiy

each having density of 1/(X*Y")? and so the ordered bivariate

uniform density is established as that stated above.
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