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The occurrence of independent events at random in the plane, 

i.e. the formation of a planar point process, is discussed. Both 

homogeneous and nonhomogencous processes are considered.  A 

specific functional form for the parameter in a nonhomogencous 

planar Polsson process Is used to Illustrate the development of 

test and parameter estimation techniques. The problem finds 

application in the desriptlon of biological phenomena as well as 

in search and detection problems. 
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The occurrence of Indcpcndcn*., events at random In the 

plane, I.e. the formatlcn uf a planar point process, Is 

discussed. Both homoRcneouu and nonhor.occneous processes 

are concldcred. A specific functional forn for the parameter 

In a nonhomogeneous planar Polscon process is used to 

Illustrate the development of tett  and parameter estimation 

techniques. The problem finds appl?c?itlon In the description 

of biological phenomena as well as In search and detection 

problems. 
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I.  INTKODUCTION 

Many problems arising naturally In a physical sense are 

often so complex that the Identification and description of 

underlying mechanisms must use the tools of probability and 

statistics. Some of the reasons leading to the requirement 

of using these tools are: 

(i)  the data base may be so large or complex as ^o 

preclude identification of any driving mechanism 

without recourse to statistical analysis; 

(II) If identifiable, the mechanisms may be inherently 

probabilistic; or 

(III) if identifiable and deterministic, the governing 

law which the mechanisms obey may be unknown. 

This paper is concerned with the use of statistics in 

the identification and mathematical description of the spatial 

distribution of events (occurrences).  Included is the detec- 

tion and estimation of parameters which influence the 

description of this distribution. 

The area of concern here Is a departure from those sta- 

tistical methods which have been developed to detect the 

effect of varying a controlled segment of the underlying 

mechanism.  Among those methods would be the design of exper- 

iments, regression analysis, time series analysis, and 

analysis of variance. One goal of such analysis is to 

hopefully predict the advlsibllity of pursuing some course 

of action. 
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In the basic nodul of t:   -per, events are considered 

to occur with a Poisson distribution in the plane. This 

"is the natural model for the -xprossion that 'points are 

distributed at rnnden'," [F-sher, 1972, p. 1^1]. The bl- 

varlate Poisson proccrs will be defined and then developed 

through the use of partial differential-difference equations, 

a widely repeated procedure in the univariate case but 

neglected in the bivarlate case. 

Initially a homogeneous Poisson process will be assumed 

to control the underlying mechanisms.  Then trends will be 

Introduced by defining the Poisson parameter in such a way 

as to make it be spatially dependent.  This will be the basis 

for the definition of the nen-homogeneous Poisson process. 

Time inhomogeneity will not be considered. Thus, the data 

are assumed to be taken concurrently. I.e., the period of 

observation is short compared to any period of change of 

the parameters. 

Tests will be developed to distinguish between homogeneity 

and non-homogeneity and the method of maximum likelihood 

will be used to develop estimates of the parameter in the 

homogeneous case and parameters in the non-homogeneous case. 

In the latter case, conditional likelihood techniques will 

be utilized to develop tests and estimates. Throughout, 

testing and estimation procedures will be based on a single 

realization of the process which consists of the number of 

events observed and their spatial locations. 
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The problem of concern finds  application In the estima- 

tion of the density of trees  in a forest; here ont. might be 

concerned with estimating the potential yield of lumber from 

a given forest  area where inhomogeneities arise due to soil, 

weather patterns, topography and other physical reasons. 

Another application might be  in naval search and detec- 

tion problems.     For example,  one might be searching for a 

merchant  ship  in distress whose  location is not known exactly 

due to  failure of the ship's  communication equipment.     Here 

the  independence assumptions  of the planar Poisson process 

may be valid,  but not the assumption of homogeneity.     In- 

homogeneitles  of location occur because of preferred sea 

lanes  and physical characteristics  of the ocean and 

atmosphere. 
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II.     THE HOMOOENEOUS POISSQN PROCESS   IN THE PLANE  (HPPP) 

A.     GENERAL DEVELOPMENT 

Consider a stochastic process of events occurring In 

the plane  (I.e.,  a so-called point process) which is 

characterized by the assumptions 

I. There exists a finite positive constant  X > 0. 

II. For any integer k >_ 1 and any set of non-overlapping 

regions R,,*", Rk with areas  A,,'*'^. ,   (in the 

usual geometric sense),  the number of events occurring 

in any region i, denoted N(R.),  has a Poisson dis- 

tribution with parameter  XA.   which depends only on 

the area of the region.  A.,  and not its shape.     Thus, 

(XA.)  1exp(-XA ) 
prob  {N(Ri)  = n^  =  1    n   j i- .     (1) 

III. Further, N(R.), 1 = 1,2,'"jk, are mutually indepen- 

dent in that N(R1) is not affected by the occurrence 

of events in any other region or in any grouping of 

the regions, G, as long as R.flG = 0. Thus 

n. -XA. 
k (XA ) e 

prob{N(R, )=n., i-l/'.k}- n  ^-j  (2) 
11 i=l    "i1 

Definition 1; If a process obeys the above assumptions it is 

called a homogeneous planar Poisson process (HPPP). 

For reasons of arbitrary shape the above basic definitions 

will suffice. However, under certain geometrical assumptions, an 



equivalent definition for the HPPP can be achieved In a man- 

ner similar to the development of the unlvarlate Polsaon 

process through the use of partial differential-difference 

equations.     This is useful for the development of statisti- 

cal properties and will be very important in the development 

of the non-homogeneous process.    Such a development also 

provides another phenomenologlcal approach to the homogeneous 

Poisson process,  one which might arise through the struc- 

turing of a model for instance.    For illustrative purposes 

the following development will be accomplished using rectan- 

gular regions.    Note that the development  is very dependent 

on the geometry involved; hence developments with other 

geometries   (e.g.   circular regions)  must proceed somewhat 

differently. 

The underlying assumptions in the differential equation 

development will be 

II. There exists a finite positive constant  X > 0. 

III. For any region R* with incremental area AA, inde- 

pendent of the shape of the region except possibly 

as noted above 

(a) prob  {no event in R*}  » 1 - \Lk + o(AA), 

(b) prob  {one event in R*} *  XAA + o(AA), 

(c) prob  {more than one  event in R*} E o(AA), 

where "g(AA)  is o(AA)" means lim    &W- « 0, or 
AA-^O      ÖA 

specifically in rectangular regions the limit as  Ax 
e(AA) or Ay or both go to zero of rrT~   is zero. 

8 



III'. The occurrence of events in R* is independent 

+ of the occurrence of events in any region R 

where R*nR+ = ~. 
It wil l ·e s: own that I ', II and III' imply and are 

implied by I, II and III so that ;he two sets of assumptions 

are equivalent and hence the incremental assumptions give 

rise to a HPPP. Clearly I and I' are the same,as are III 

and III'. Also II implies II' since by '< 1) 

-'A6A 2 
(a) prob {N(R*) = 0} = e ,.. 1 - 'A6A + ~ (6A) 2 -

= 1 - 'A6x6y 
'A2 

6X 26y2 
+2 - ... 

= 1- 'A6A + o(6A), 

with the definition of o(6A) given above. Also 

(b) prob {N(R*) = 1} = 'A6Ae-'A6.A ,.. 'A6A(l - 'A6A + ... ) 
,.. 'A6A + o(6A) 

Clll ('A6A)i e-'A6A 
and (c) prob { (R*) > 2} = E 

" I 
""o(6A). - 1c:2 .... 

The problem remaining !n order to demonstrate equivalence 

between the two sets of assumptions is to show that II' 

i.mplies II. 

... 

Consider a region R bounded by the co-ordinate axes and 

lines x = X* andy = Y*, with area X*Y*. Now extend the 

9 
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sides to x = X^+Ax and y « Y*+Ay (see Figure 1). Consider 

the probability of n events occurring In the extended 

region, R' = R + R, + Rp + R^, where: 

(a) R has area X*Y«, 

(b) R. has area X^Ay, 

(c) R2 has area Y^Ax, 

(d) R^ has area AxAy; 

(a)-(d) imply R' has area X»Y« + X«Ay + Y«Ax + Ax.Ay. 

The assumptions I', 11', and III' imply 

prob {no event in R.} = 1 - XX*Ay + o(X*Ay), 

prob {one event in R^ = XX*Ay + o(X«Ay), (3) 

prob {more than one event in R. } = o(X*Ay); 

prob {no event in R2} = 1 - XY*Ax + o(Y*Ax5, 

prob {one event in R2} = XY*Ax + o(Y«Ax), (M 

prob {more than one event in R«} = o(Y*Ax); 

and 

prob  {no event  in R,} = 1 -  XAxAy + o(AxAy), 
prob  {one event  in R,} ■ XAxAy + o(AxAy), (5) 
prob  {more than one event in R-} « o(AxAy). 

Moreover,  statements   (3)i   (M,  and (5)  are Independent. 

It is noted that  the above equations may have two 

different interpretations.    For Instance  in  (3), prob{one 

event  in R,}  » X*Ay + o(X*Ay)  is  interpreted to mean one event 

in a two-dimensional  process with parameter X and area X*Ay. 

10 
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Kowcv. r, another interpretation would be to consider the  one- 

dlri'.r-.slonal^rrarglnal) process of events projected onto the 

v-axis,  in v/hich case the parameter is  XX* and the incremental 

interval has  length  Ay. 

For notational convenience,  let P (X*,Y*) denote the 

probability that n events occur in a region with area X*^^. 

'■'he differential-difference equations are written noting that 

n events may occur In an extended region by having n events 

in the unextended region and no events  in the extension, 

n-1 events In the unextended region and  one event  in the 

extension, etc.   Hence 

Pn(X»+Ax,Y«)  - Pn(X«,y«)   •  P0(Ax,Y'») 

+ Pn-1(X»,Y»)   •   P^Ax.Y*) 

♦ Pn-2(X«,Y«)   •  P2(Ax,Y»)  +   ... 

■  P  (X»,Y«)[l-XY«Axj  ♦ ?m  .(X-Y^CXY^x]  ♦  o(Y«Ax). n n-i 
(6) 

Similarly, 

Pn(X«.Y«,+Ay)  -  Pn(X»,Y«)[l-XX«Ay] r P^jCX« ,Y«)[XX«Ay3 ♦ 

♦ o(X«Ay), (7) 

and 

12 
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Pn(X»+AxlY*+Ay) - Pn(X«,Y«)[l-XY^x]C:->.XtrAy3Cl-XAxAy] 

+ P 1(X»,Y«)[XY«AxCl-XX«>Ay)(l"XAxAy) 

+ XX«Ay(l-XY,(Ax)(l-XA;<Ay) 

♦ XAxAy(l-XX«Ay)(l-XY*Ax)] 

+ Pn_2(X»,Y»)[XX*Ay • XY»Ax(l-XAxAy) 

+ XX«Ay(l-XY«Ax)XAxAy 

+ (l-XX,»Ay)XY»AxXAxAy] 

♦ Pn_3(X«,Y«)[X3X»Y«Ax2Ay2] (8) 

+ o(AxAy) + o(X»Ay) + o(Y«Ax). 

Interpreting the above equationr., the third tern on the 

right hand side of (8), for example, states that there can 

be n events In the extended region P.1 If there are n-2 

events In R and exactly one event In each of any two of the 

added regions. That Is, there can be two events In the 

added regions P.., R. and R- If one occurs In each of two 

regions and none occurs In the third region. I.e., one In 

R. , one In R^ and none In R,, etc. Collecting all terns of 

order o(AxAy), o(XvÄy) and o(Y"Ax), (8) reduces to 

13 
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Pn(x.+M,v.+Ay)^rn(x..Y.)U-xY..x-u.fi,-uxM+x2x.v.AXW] 

+ P     (K.|v.)[xY«w-2x?x»v«ix4ynx'iytxAicay] 
n-1 

,YMCX?X«Y«AxAy]+o(AxAy)+o(X^y) + o(Y»Äx).t8t) 

*  Pn-*(X' 

-Pn 
(X«lY»)[l-XY«Ax]+Pn-1(X»,Y»)[XY«Ax]+o(Y«&x) 

+ Pn(X»>Y»)[i-xx»Ay]+Pn-1(X»,y«)[XX»Ay]+o(X»Ay) 

- Pn(X»,Y*)-XPn(X»,Y»)AxAy+XPn_1(X»,Y«)AxAy 

♦  X2X»YnPn(X«,Y«)-2Pn-1(X»,Y»)+Pn_2(X«,Y«)]AxAy+o(AxAy). 

Fotlnc fi'on equations  (C-)  and (7)  that  the  first  three 

terno on the ripht-hand  side  of the above equation are 

P  (Xi4Ax,Y") and the next three are Pn(X#,Y,,+Ay)  and 

rewriting (8'), the result  Is 

Pn(X»+Ax,Y»+Ay)-?n(X« + Ax,Y«)+Pn(X»,Yi+Ay)-Pn(X«,Y«) 

-  XPn(X«,Y«)AxAy+XPn_1(X«,Y«)AxAy (8") 

♦ X2X»Y«[Pn(X«,Y«)-2Pn_1(X»,Y'')+Pn.2(X»,Y«]AxÄy 

♦ o(AxAy). 

The definition of the second partial derivative with 

respect to two variables Is 

1«» 



3yvax Ay^o'v AX-O Ax 

Hence, transpocinn ♦-he- flrnt vhrcc terns of oquallon (8") 

to the rlf.ht hand r.!do, dividing by AxAy and then taking 

the double limit results In 

A. a yxM^j ■ -xF (x«,Y»)+xr .(x'.Yn+x^^YMP (x»,y») 
Txäy n        n' n 

-2Pn-1(X»,Y«»)+Pn_2(X«,Y«)] (9) 

The solution to  (9^   i? p&rtlrtl dlffei-tritlal-dl rforence 

equation)  is cnslly shown to bo 

P (X«,Y«)  - K(XX*Y«)noxp(-XX«Y«)   ,    n -  ^,3,      (10a) 
n n! 

where K Is an arbitrary  cor.ütant.    Special  considerations 

are needed for n e  0,1  since  for these cases some of the 

terms In (8M) and  (9)  are not defined.    Rewriting (8") and 

(9) while concurrently eliminating the proper terms  leads to 

^..y.).    K(XX'Y')%.p(->X'Y.)   >     n  .  0>1>j(. .. (10b) 

Since P (X^Y11)  Is a probability statement and for any 

given region the number of events In that region must be 

some non-negative  Integer,  the constant K  Is seen to be unity. 

15 



'.IcTice  (10h)  1ü equivalent  to  (1) which wa^ to be proven. 

Thus  tho tv;c nets of acr-umptionc  Imply the came thir^.--, 

nancly that the number of events in a region hat:  r. pri .rcn 

distribution v;lth parameter proportional to tho  arc c   ©•" the 

reclon and independent  of Its shape and the number ; r;i 

position of events outside tho reclon.    Note that t.^c 

formulation excludes multiple events, I.e.,  the occu'f.ce 

of two or more events at any point or on any line  ; ölr.. '•: 

added region such as R.   In Flcure  1. 

Also a similar derivation will go through for c'vctlar 

regions uslnc polar co-ordinates, but there are d',:. _;■ r.c»-' 

In the special properties of the Polsson proceea  r..r  .'■ fineu 

through assunntlons  I,   II  and III In differently  shr 

regions.    These are discussed below.    The diffcrc < gs    ;._ 

tho specla I properties  of the non-homoceneous pi ft \.; !rr , r. 

processes as they vary with different c^onotr^os ■:__'._ 

et.sentlal eler.ont of the  analysis of points  (ever .6 

the plane. 

B.     TESTING DATA FOR HOMOGENEOUS PLANAK  POISGON  PrtOCKSS   {V.VV?) 

Given the occurrence and spatial location of n events  in 

a rectangular region of area X'Y*, consider the problem of 

determining whether or not these points occur as realisations 

of the HPPP.    Miles  [1970fp.89] has stated a consequence of 

definition 1 as 

Corollary.    Assume a rectangular region R.  with area A.. 

Given NCR.) ■ r. and 0  < A.   < », the n points are  independently 

and uniformly distributed  in R.. 

16 
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Proof: Let A. e X*Y* v.hcre R. 3 3 a rectangular region 

bounded by the coordinate- axoc, x ^ X* anc' y B Y*. Label 

the n given points In : ny convn'ont i.anncr, e.g., on the 

magnitude of the y-cemponent.  Lcl (x,y)/.N denote the 1 

labelled event. ConaJckT on :-.,crf:..ontal region with area 

dxdy which hac the pro-j- j-t;    ob {exactly one event In the 

Incremental region of ; •    . • : '- P1(dx>dy) « Xdxdy + o(dxdy). 

Consider now n Incro;, ..        ...-es QXj^dyj^, 1 « l,*''^, 

placed In R^^. Ignor^.r,'' ::.•'-.• :-V:.?,'ties of o(dx1dy1), assump- 

tions I, IT and III : :  ; •.'..rl ,ho Joint probability that 

the 1  event falls 'r. Ihr J-.c-.-ir.cntal rectangle, dXj^dy^^, 

1 " l,,,,,n, and exactly n cvcr...s occur altogether In X*Y* 

Is given by 

Xdx1dy1...Xd? •: i  {.XX«i«}. 

Restating In terms o: tK< äeuziiy  function, 

f(Cx,y)(1),...,(x}y)(r),n;X) « Xnexp{-XX«Y«}, 

where f{...} Is the Joint density of (x.y)/^, 1 « l,...,n, 

and the probability that ;h.e nun.bcr of events in X*Y,, is n. 

The exponential term in '.he above expressions Is an approx- 
n 

imatlon to exp{-(XX»Y« - Z    Xdx.dy,)}, I.e., represents 
1=1   1 1 

the probability of no events within the region XÄY« but 

outside the Incremental regions containing each event. 

By conditioning on the occurrence of n events in the 

region which are distributed Poisson with parameter XXiY*, 

17 
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f{(:c,y)(1),...(x,y)(n)l'i'AJ  '   (XX*Y»)ncxp(-X>:«»Y«) 
nl 

—Hi     . (U) 
(xn»)1 .n      ' 

which iis  the Joint distribution fox« n blvarlate uniform 

random variables ordered on one of the random variables as 

is  shewn  In Appendix A.     Note  also the Independence of the 

conditioned density  from the parameter X,  I.e.  the random 

variable  N is a sufficient  statistic  for X. 

Ac a consequence of the  above corollary,  it  is apparent 

that  If the points of the KPP?,  conditioned on the number 

of events observed to occur,  are in fact ordered with 

respect  to the increasinn magnitude of the y-component,  then 

no "information" is available  about the ordering of the x- 

components, I.e., each of the n!   orderlngs that can be 

induced on the x's by the orderlngs on the y's has probabi   Ity 

1/n!.     This is readily apparent since in the blvarlate unl   jrm 

case the two components were  Independently selected.     Henc   , 

if ^»V^u) Is determined by   ^^»y^i,^»  i«*«  the points are 

labelled by the ordered y-component, then 

prob(Xk - XU)) - 1       J.1.2 n 

where X,-x  is the J      X.   in magnitude, and 

prob{X1 ■ X(J), J»l,...,n; X2-X(k), k«l J-lJ+l,...n; 

...JXn-Xu))   -L. (12) 

18 



1 I    '■    ■ 
"«PW»"      

Hence If the x-components of the polntc orccred on the 

y-componenls exhibit any natural ordorln^ then the x- and 

y-components have not been Independently öeleciod and the 

observed process cannot  be a HPPP.    This will be the basis 

for many of the tests for a HP?? agalnüt a non-homofrenoous 

planar Polcson process to be discussed later. 

Lemma;     If the blvarlate process  is Polsson and the regions 

are rectancular, then the projections of the events onto 

the coordinate axes may be  shown to be unlvarlate Polsson. 

Proof:    Consider the occurrence of events In a rectancular 

region of area X*Y*.    Then by III the occurrence of an event 

in an  Incremental strip is  Independent of oil occurrences 

outside the strip.    Hence the projections onto the coordinate 

axes give rise to independent counts alonß the axes. 

P  (x.Y«)  -  (^x)nexp(-XY«x)   t    n . o.l,... 
n n! 0 < x < X» 

and 

Pn(X«ty) ■ Wy)"exP(..XX»y)   t    n.0|lj... 
n ^ 0 < y < Y« 

which gives the unlvarlate Polsson distributions with 

parameters XY* and XX* respectively. 

Note here the inherent dependence on the shape of the 

assumed regions. In using rectangular recions equal lengths 

In the marginals reflect equal areas in the blvarlate 

distribution. 
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If the regions were circular then vertical projections 

onto the axes would represent decreasing area as the dis- 

tance from th« origin increased.  Since the occurrence of 

events is assumed to be proportional to the area projected, 

an actual HPP? would Induce a non-honogeneous process on 

the marginals due to the distortion in the mapping. For 

clarification, refer to Figure 2. However, If the regions 

are circular then radial projections could be utilized so 

that the event occurring at (x0,y0) in Figure 2 is repre- 

sented in the x-marglnal by an event at Xp. To define 

equal area projections in this case the transformation 
2 

x •* x » x* Is made, in which case a unit Increase in x' 

defines the addition of a unit amount of area to the region. 

For example, if a unit area is generated by a circle of 

radius r ■ 1, then the area enclosed in the ring of 

1 1 r £ /2 is the unit area, as Is the area in the ring 

T*  i r 5. /^» ^^ In general, -/n 5. r <_ 7^+1 defines in 

polar coordinates a ring with unit area. 

Returning to the assumption of rectangular regions, 

three characteristics of the HPP? are now available which 

can be used as the basis for testing a sample for belonging 

to the HPPP description of events In a rectangular region R: 

(A) Independence of the x-ordering from the ordering 

on the y-components. 

(B) Unlvariate HPP (homogeneous Poisson process) in 

the x-marglnal and, conditionally on n events in R, a 
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Flcure 2. Vertical and radial projections of an 

event to form the marginal process. Shaded reßlc .s 

represent the deviations of projected areas arising 

from the rectangular projection of circular areas. 

Thus, the shaded regions Indicate the degree of 

non-homogeneity Induced by the mapping. 

+- -V 
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uniform dlstribullon of the distances to events. 

(C) Unlvarlatc HPP In the y-marglnal end, cotiditlonally 

on n events in R, a uniform distribution of the distance:' 

to events. 

Property (A) can be tested acainst general altornallvcJi 

uoine a rank correlation procedure (or Spearman's correla- 

tion, see Pearson and Hartley [1966, TaMe M]). Pro.»'.rlior. 

(B) and (C) can be tested by standard univariato methods 

as In Cox and Lewis [1966]. 

Note that In the above discussion the Interest ilc: in 

the nature of the process rather than in specifically 

descrlbinR the process. Thus the determination of the- 

parameter X of the Poisson process is not a current- ob.'w- 

tlve and it can be considered to be a "nuisance" pa"!*".',''.-r. 

Hence the conditioning argument above and the result.'..■" 

independence of the tests from the value of the parameter 

are Justifiable. 

Now let a. be the probability of a Type 1 error ffnov- 

ated in testing for randomness, aB be the corresponding 

probability in testing for HPPP in the x-ir.argiral, and ac 

likewise for the y-marglnal. Then the probability of not 

falsely rejecting the HPPP hypothesis due to the randomness 

test is 1 - a., etc. Hence the combined probability of not 

falsely rejecting HPPP is 1 - prob {type I error} or 

1 - P(I) - (1 - oA)(l - oB)(l - oc). 
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Therefore 

P(I)  - 1 -  (1 - aA)(l - aB)(l - oc) (13) 

is the probability of  Cnl'.tly rc^c'-fne a HPPP hypothesis. 

If through phy«fc:.l ccr.':io<*r •^ens one of the tests seems 

more or less slgnlficr.jit -j.un V..:- oheru, the analyst can 

choose the welchtlr.f.c  'o .'.'   .*•,.•  tnc physical properties. 

Otherwise the values  (and ■.;.•;   -'.r   .^sts) can be welchted 

equally.    This  need  for ir.c '■'.''tf .'.-.Ir.atlon of welchtlncs Is 

the Inherent disadvanlnrc of -   :  :Ul-level test. 

The  Individual tcstn jrrvc :•.«•"  r.tove will be briefly 

described.    For the rank cevel: ■ *c<:. teat, consider each 

x.   from (*iy)f*\ whlcl.  Ir  .:■-- rv-J on the y-cor.ponent.    Also 

consider the ordered TLL' 'crv-  ^ionr. the x axis, where 

x.  ■ X/.».    Then 
n - 

6  E (1  -  (J),)2 

1-1 
r8 - 1 -        n(n2 - 1) ' {W 

where (J)^^ is the poolilor of x^^ in the x-ordered sequence, 

is the rank correlation statistic. 

The exact dlstrltutlon for r_ can be approximated by 

fitting a distribution to its moments as discussed by 

Kendall and Stuart  [1951, p.1»??].    The exact distribution 

of r, is tabulated In Plcr.etrika Tables For Statisticians 

[1966, Table  M, p.23]  for observed values of n between *» 

and 10, and the  Introduction to these tables gives approx- 

imations  for 10 < n <  20 and for n > 20.    Per 10 < n < 20, 
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r cfin be treated as a product-moment correlation coefficient 
s 

betv;een normally distributed random variables. For n > 20, 

r fn-l is assumed to be unit normal. s ' 

In testing the marginal distribution for HPP, two 

separate tests are proposed. First, the uniform conditional 

test is used to test against trends in the data. As stated 

In Cox and Lewis [1966, p. 1531» "If the series has been 

observed for a fixed time t {length X*} and n events occur 

in (o,t ){(o,X*)}, then the uniform conditional test is * o 

based on the variables U,^ = T./t {= X/^/X*} (1=1,.. .n) 

conditionally on N.  being equal to n." The {brackets} are 
0 

supplied to relate the material in Cox and Lewis [1966] to 

this specific problem, and N  = n moans the number of 

occurrences observed is n. Note that in the conditioning • 

of the realizations the "nuisance" parameters XX* and XY* 

are eliminated. 

Secondly, a test based on the ordered inter-event spa - 

ings Is used to test Poisson against stationary event 

processes which may be non-Poisson. For this test, Durb:' I'S 

modifications of the uniform conditional test is used [Cox 

& Lewis, 1966, p. 155]. Referring to Figure 3, Durbin's 

modification describes a transformation from the random 

variable X to the random variable T and then to the random 

variable S. 

Let Tn+1 « X» - X(n). If the X(1), 1 » 1,2,...,n, 

describe the "times to events" in a Poisson process, then 

the T-, 1 ■ 1,2 n+1, are independent exponentially 
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Tl • x(l) 
T2 ' X(2) - X (1) 

Tl '  X(l) 
- X (i-1) 

^2 ^3 ^k 

Sl '  T(l) 
T(2) " T(l) 

Figure 3. The generation of the transformed variables 

S, from the original process X/.x. 

4 
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dlotrlbuled rnndom varlablr-n with parameter X.  If the 

T.'a are then ordered anrt the S.'s  are generated as shown, 

then the S 's arc Independent exponential random variables, 

where S. has the expectation l/((n+2-l)X). Also the trans- 
t 

formation S.  ■  (n*?-! ).S1 defines Independent  Identically 

distributed exponential random variables with parameter 
1       . 

X, and therefore X.   ■    E    S.   , 1 ■ l,2,...,n defines the 
1      J-l    J 

times to events in a Polsson process with parameter X, 

and U 
i  1  n t 

U m YW   % Si    I8 the statistic upon which a new 
1  Ä J-l J 

uniform conditional test is based. 

Both tests should be utilized as the uniform conditional 

test Is more powerful when testing for trends while Durbin's 

modification is relatively more powerful in testing acainst 

stationary event process alternatives.  However, these 

tests are not independent of each other and thus cannot 

be combined as in (13). 

As an alternative to the above procedure, the region 

of concern may be partitioned into several sub-regions and 

the number of events in each subreplon used as a basis for 
2 X    testing.    This method is discussed by Kendall and Stuart 

[1951, pp.   57^-5] who mention the problem of choosing the 

"right" partition,  adding "Whether a particular partition 

has statistical interest      pends on the purpose of the 

analysis".    Due to the underlying uniformity of the condi- 

tional distribution,  this problem reduces to the selection 

of the number of regions which are then used to  form equal 

area sub-regions. 
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Another alternative lo ihr hbov» leatlnr. proccdurv Is 

the evaluallofi of the ß&mple product-mom«?»»», correlallon 

coefriclcnt under the blvnrlaie unlforir. distribution. The 

procedure It. ■ilecuoneU by Kcwalsk! [197?], but unfortunrttely 

hlr. discussion does not addreon the blv&rlate uniform 

dlatrlbutlon. Kowalski makes two points very strongly: 

"Firstly, the distribution of r (the sample product-moment 

correlation coefficient under nor.-normal aosunptlons) may 

differ from Its normnl-t heory form and, secondly, we may be 

in a situation In which p Is a poor measure of association." 

Hence, If the exact distribution for r under the blvarlate 

unlforir. distribution wore known, then an exact test for the 

HPPr (clven the occurrence cf r: events) could be devised. 

Durbln [1970] has also proposed distance methods for 

testing blvarlate distributions. The process herein described 

Is well-suited to the methods Durbln uses since he first 

transforms the observations so that they occur uniformly 

on the unit square.  Hence the natural transformation 

x* ■ x/X* and y" = y/Y* avoids the problem of possible la k 

of uniqueness which Is the central objection to the use of 

distance methods. These methods allow the analyst to adopt 

Durbln's blvax ate analog of the Kolmogorov-Smlrnov tests. 

The advantage of this method is the elimination of diffi- 

culties concerning multi-level tests and partitioning 

tests. 
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The lento deacrlb<s4 in this section arc very general in 

nature, i.e. 

H : the proceoa is KPPP   is tented aRainst 

H.: the process is not HPPP. 

Hence the alternatives beinf, tested ar.alnst arc multitudinous, 

If it is desired to test a realization as beinc from a HPPP 

against a specific form of departure from HPPP, better tests 

may be defined based on the nature of the specific alterna- 

tive. For instance, one such departure could be non-honoge- 

nelty, i.e., where X is not considered to be constant but 

rather a function of location; this subject is considered 

in chapter III.  Another departure mlcht be in the nature 

of the process Itself.  For example, events may occur 

according to some fixed plan in which case the process is 

deterministic and thus non-Poiscon.  A process may develop 

In which the occurrence of an event prohibits the occurrence 

of another event for come Interval about itself, in which 

case events are not independent of other events and are 

thus non-Polsson. 

It must be remembered, however, that tests against 

specific alternatives may ignore some features that a more 

general test would detect and thus each individual specific 

test applies only to the specific form of departure being 

considered. 

Moreover, in all reasonable stationary alternatives, 

it does not seem possible to derive the likelihood function 
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of tht obBorvatlono. Ono thus cernot derive exact tests. 

For testo acalnst speciric alternaMveo based on distance 

methods, see Holgate [1972].  Tests based on spectra are 

discussed by Bartlett [l^]. 

C.  SIMULATING A HPPP 

Suppose one were concerned with searchlnc for submarines 

which are assumed to be dispersed In such a manner that the 

locations at any moment are generated by a HPPP. If one 

search procedure Is to be selected from r.any proposed search 

procedures, then a possible manner of comparing the effec- 

tiveness of the proposed procedures Is to utilize each pro- 

cedure against several simulnted »-'.-rcrslons.  In such a 

simulation, the only "variable" which would be of interest 

would be the procedures, sc all variables such as detection 

and classification parameters, facilities available, etc., 

would remain constant.  Another problem which might be 

considered would be the effect of the change of such param- 

eters on the search procedure selected (i.e., a sensitivity 

analysis of the procedure to assumed operating 

characteristics and facilities). 

By the Initial remarks of Section B above and the 

statement of equation (12), several methods of artificially 

generating realizations of a HPPP can be determined. These 

methods may then be utilized to simulate the HPPP. 

Assume that the parameter XX*Y* is given. To select 

the number N of events to be observed in the region with 
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area X^Y*,  generate a random number U distributed uniformly 

on [0,3].    Set N - n If 

l        -.—.  <    U    <      \    i|    "• 
1 lml (15) 

2 
The ouinmationn can br? evaluated using either x or Oamma 

IntccvU Tables [Cox and Lewis, 1966, p.?'»]: 

n-1 / xi^-w        9 
I    i^— - prob {X2n > 2y} 

• vn'1e"v 

Next, consider a random variable X distributed uniformly 

over C0,X*), denoted X ^ U(0,X*), and another independent 

random variable Y ^ U(0,Y*).  As realizations of each 

random variable arc generated, number them chronologically, 

i.e. In order of appearance.  Generating n (as determined 

above) such realisations of each random variable yields ? 

numbers: x,,...,x .y,,...,y . l    n l    n 

The final problem remaining is to select a scheme for 

mating the x- and y- realizations to form ordered pairs 

which will constitute the realization of the HPPP.  A few 

such schemes are enumerated: 

1. The sequence ^^»YI^IBI forms a HPPP. 

2. If the y. are ordered to form ^M^BT» then the 

sequence <(*A*y(i)}>  forms a HPPP. 
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3. Similarly, ^mtVi^ forms a HPFP. 

k.    Additionally, any random permutation of the x. In 2, 

the y. In 3 or either random variable in  1 can be uoed 

to form a HPPP. Thus <^)t
n+i.i»y(i)^

> forms a 11PPP, etc. 

The goal of the simulation and the purpoHe of cimulatlng 

the process as a part of the overall analysis umt-t now be 

considered. If during the simulation It Iß desired to 

generate Independent realizations of the process, th^n each 

iteration must Involve a selection of n, the drawing of 2n 

uniform varlates and the mating of the variates through some 

scheme such as those outlined in steps I-1» above. On the 

other hand, If it Is desired to utilize varlonce reduction 

techniques, then for any drawing of 2n ranucin varlates 

several schemes could be used for the mating process.  Here 

independence is lost Immediately and this loss must be 

balanced by some gain elsewhere in the analysis. 

D.  ESTIMATION AND TESTING FOR THE PARAMETER FROM A HOMOGENEOUS 
PLANAR POISSON PROCESS (HPPP) 

If the hypothesis that the process is HPPP with some 

unknown value of the parameter X is accepted, one might 

like to obtain a point estimate or confidence interval 

estimate for X, or to test that the process has some given 

parameter X-. Note that the parameter X, which was considered 

to be a nuisance parameter in the previous section where 

the structural aspects of the process per se were tested, 

now specifies the process completely. 
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Since, a» was seen In Section D, It la possible to 

set up the Joint probability density function of the 

observations in a HPPr', point estimation of X can be 

based on the mothod of r..'Axlr.uin likelihood. Note, however, 

that each observation consists of a single "look" at (or 

realization of) the process rather than n observations of 

a single randon variable. Since it is a stochastic process 

the observations arc not independent and identically dis- 

tributed.  Hence the usual Juctificatlons for maximum 

likelihood procedures are not valid; see Brown [1972] for 

extensions of maximum likelihood theory of estimation to 

realizations of a Polsson process. 

Usln^ the results of Rrown [1972], suppose that n HPPP 

events are observed to occur in a rcctancular region of 

area X«Y*.  From (11), for n >, 0, 

L - r((x,y)(1),...,(x,y)(n),n;X) « xV
XXiY*     (16) 

In L «= nlnX - XX«Y»,  (0 < X < ».) 

If n ^ 0, this function is -• at X » 0 and X ■ • and since 

j*     B T - X*Y*, the slope of the function decreases 

monotonically from » to -X*Y*.  Thus In L has a unique 

maximum at the point where -rr  » 0.  Setting this 

derivative equal to zero yields a unique maximum likelihood 

point estimate for X as 

* « fW§W*    (n i ^ (17) 
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where X Is unbiased (since F.(X) ■ m&j ■ X) and has variance 

X/X^Y*.  Note that as the observed area X^Y" becomes large, 

the variance of the estimate becomes small; thus, by 

Chebyshev's Inequality [Lampertl, 1966, p. 20] 

P{|X - X| > a} <.^p- »  (« > 0) 

and as X»Y» * •, 

P{|X - X| > a) * 0 

A 

for all positive a and hence X converges to X In probability. 

The latter statement Is equivalent to the acccrtlon that X 

Is a consistent estimator for X.  Also since the variance 

of X Is X/X«Y», X has an estimated variance X/X«Y» - n/U^Y*)2, 

and an estimated standard error of /n7xfY*. 

If n ■ 0, the above method is not applicable.  In thl 

case, it might be preferable to give a confidence Interva 

estimate for X. Specifically, a one-sided test alternative 

is used to generate a test for the assumed value X ,, using 

as an acceptance region only n ■ 0. Intuitively, X ,, will 

be small enough so that X 11X*Y» < 1 (I.e., the expected 

number of observed events is less than 1). The hypothesis 

to be tested is H«: X ■ X ,, vs. H.: X > X 11.  Defining 

a level of significance a from (16) by 

-X   XiY* 
prob{N - 0|X - Xnull} - 1 - a - e nul1   , 
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the hypothesla fL Is accepted at the level a. Conversely, 

for any given value of o, ^nuii 
may bo determined by 

" XnullX,,Yi ' 1" (1 " «) 

i    . - In (1 - a) Xnull "    X'V"    • 

where the X ,, thus determined Is the largest value of X null 

that the test will accept at the a level, given that n = 0. 

Returning to the case of n > 1, in order to test that 

the parameter of the process has some given value X0, assume 

that n events fron a HPPP are observed in a region of area 

X^Y*. The hypothesis to be tested is H-: X » X0 against 

the two-sided alternative H, : X ^ X0 although one-sided 

alternatives can also be considered. Since N is a random 

variable taking on all nonnegative Integer values with some 

positive probability for any X-, there Is always some 

possibility of an observed value of the random variable N 

(the observation being denoted n) falling outside any finite 

range of values. Thus a region (n~fn ) must be specified 

such that if N lies in the region the hypothesis H0 is 

accepted; otherwise the hypothesis is rejected. The level 

o of the test is the probability, given X « X0, that N 

falls outside the region (n^n ). 

Since the test has been defined to be two-sided, the 

level  is split Into upper and lower levels a and a~ 
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so that o ■ a + a'. The procedure must consider values of 

X < X0 as well as values of X > XQ. TO proceed, it Is 

necessary to define 

P+(n
+iX0) - P{N > n

+|X - XQ) - o+ (18) 

-  (XnX«Y«)
Je 0 

"  l + — n » 

and 

P_(n'iX0) - P{N < n"|X - XQ} » a' (19) 

n" (XnX«Y«)
Jexp(-X0X*Y*) 

S-o J' 

Thus, for a given a , an n may be determined such that the 

statement (18) Just holds.  Also, for a given a~, a n" may 

be determined such that (19) Just holds. 

The null hypothesis is accepted at the a level if the 

observed value of N falls between the two prescribed limits 

(n > n~), where prob{N ^ (n',n )} = ot. Note that as 

stated, the result is indeterminate since a, once given, 

leads to many values for a and a" = o - a which satisfy 

the given a. The manner of selecting a and o" must be 

stated. Arbitrarily it may be desirable to set a = a" = a/2, 

Asymptotically, this choice of a symmetric acceptance region 

is reasonable since as n increases, the distribution of N 
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lo approechlng the  (symmetric) normal distribution.    The 

choice of equal a    and o" may not be reasonable, however, 

for small  XQX*?* since the  Polsson distribution Is 

positively skewed. 
- + 

The statement prob{N i  (n",n )|X ■ X0) ■ o Is the result 

of the test of the hypothesis H0: X ■ X0 at a given, fixed 

level o.  It Is this result from which one must usually 

draw conclusions regarding specification of the process. 

If the information thus available, i.e. H0 is rejected 

or accepted at the pre-determlned o level, is deemed 

insufficient for the purposes of a decision maker (for 

example) then another possibility is that the post-analysis 

information ray to extended by determining for each obser- 

vation the exact a, a , at which the hypothesis would have 

been rejected.  The decision maker is then left with the 

problem of the determination of his own level of significance, 

possibly based on his intuitive grasp of the problem and 

its significance in a larger frame of reference. Once he 

has determined his preferred significance level, the hyp« :h- 

esis is rejected or accepted at the specified level by 

comparison with o . Thus the decision maker has gained 

some influence over the analysis but has had to pay with 

some time to reflect on the problem at hand. Alternatively, 

he can use o informally as a "goodness of fit" of the 

hypothesis. 

Using (18) and (19), the significance test is defined 

conventionally [Cox and Lewis, 1966, p. 30] to be: the 
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hypothesis ^ ■  ^0 would bt« uccrj.icü hi  thu level of olt'.nl- 

flcar»ce a In a two-sldcd ««qul-lQllod tent  IT ty.e otserved 

numbf" of events, n, 1c such    hnt n, when utied alternatively 

In (18) and  (19)  (I.e.,  Is assumed to be one or the other 

of the end-polr.ts of the acceptance region) , produr« j; o 

as a solution to 

P(n;X0)  -  ?mln{P4(n;X0),Pjn;X0))   - ac. (?0) 

Note that ench cbserved value of n eonerateo u new <i    for e 
any ascur.cd   X0, hence a    ■ a (r.,   XQ),     For example, 

P(3',>;20)  -   .0'.3C,  P(?0;?0) •   .7C?8 and Pd'^-.TO) •  . 3 Vv . 

It  can bo  nocr. thM   Un%  fixed  level pvccedir.-c  '..-. 

conputatlotuilly simpler,  since for a »peciflrd <.« ar.'.   X  ,  the 

interva?   (n",r. )  need only be computed once while in the 

latter procedure  a    must be recomputed following eu^h c 

observation of N. 

The  Invcrre of tho above apjroach which utilized the 

two-sided equl-talled test of slcniflcancc  for a pl'-'en 

value   X0 leads to the determination of confidence Interval 

eotlmates of X.     Given that n events aro observed.  It is 

required to determine some limits on the x-anr.e of X such that 
s 

the true parameter value  X1 lies within the stated limits 

with a probability 1 - a.    That is,  it is required to 

establish a  X~(N) and a X (N) such that 

P(X"(N)   <  X«   < X4(N)|N • n) - 1 - a. (21) 
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Uclng P{N < n|X -  X+} < 1 - o+ to define a X+ as the 

greatest  X such that equality Just holds and similarly 

using P{N i n|X ■  X"} ■ a" to define a  X" establishes the 

limits such that   (21) holds.    For a proof of this,  see 

Brownlee  [1965, r»   1?!].    Note that  for each realization 

of N, a new ordered pair (X",X  )  is defined so that the 

ordered pair Is a  function o:' a random variable and hence 

Is itself a random Interval.    The procedure only states 

that for  (1  - a)  x  lOOJf of the observations the true 

parameter X* will  lie within the  limits selected.    The 

limits for observed n from 0 to 50 arc tabulated  [Pearson 

and Hartley,   1966,  Table HC]. 

For a normal  upproxJ^ntion to the  confidence Interval, 

Cox and Lewis  [1966, p.   31] define the upper a point of the 

unit normal distribution as c   ,  and eivo the relationship 

N - XX«v» 
prob{-c.     < 2 1±~~ < c,   }  - 1 - a, 

la     (XX»Y»)1/2  *   ia 

the relationship being correct as  XX*Y* ■♦ ».    The confidence 

limits thus obtained are, to a second degree of approximation 

using a continuity correction and the estimate a(X)  ■ /n/X*Y*, 

For example,   if 50 events are observed from a HPPP, the 

exact  .05 confidence Interval is  37.11 <  XX*Y* < 65.92 
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■«^-'Tw«wfB!^^w»Tww,l"v,*prw-r-*,«wi^'^^ 

[Pearson and Hartley,  1966, Table 40] whereas the normal 

approximation gives  37.79 ± XX*y* < 66.07. 
2 There also exist  x    approximations  to the significance 

tests and confidence  Intervals  [Cox and Lewis,  1966, p.   33; 

Brownlee,  1965,  p.   173]. 

39 



III.     NON-HOMOGENEOUS  PLANAR POISSON PROCESüES   (NHPPP) 

A.     GENERAL DISCUSSION 

If the stochastic process described above Is generalized 

to allow the probabilistic structure of the event process 

to be dependent on the location of the events,  a non- 

homoeeneous planar process is evidenced.     In the  simplest 

such case a non-homogeneous planar Poisson process  (NHPPP) 

arises if,  in the definition of the Poisson process given 

above, assumption I  is modified to become 

I".    There exists a positive finite  function  X(x,y) > 0. 

Also note that  II is changed by the  fact that the number of 

events in any region is not only a function of the area 

of the region,  but  also depends on the location of that 

region within the universe under consideration.     Thus X 

is now expressed as  X ^   X(x,y), and assumption II becomes 

II".     prob{N(R1)  = n} 

ihi^)^ exp{-A(Ai)} 

nl 

where A(A.) *  a / X(x,y) dxdy  the symbol  ./    Implying the 
1        Ai Ai 

integral over an area and X(x,y)  is assumed to be continuous 

over R.   (with area A.)  so that the integral is valid. 

Assumption III remains unmodified,  i.e.  events occur 

independently of any other event or collection of events. 

Under the additional assumption that  X(x,y)  is continuous 

within the region of consideration, the Incremental 
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development of Chapter II may be extended to achieve a 

description of the NHPPP.     Additionally the  continuity 

assumption on X and the definition of the parameter In the 

process as an Integral over X eliminates the  difficulties 

of line discontinuities,   although there may be cases where 

this Is an Important  component of the problem.    This problem 

is not considered here. 

Referring back to Figure 1 In Section II-A,  consider 

specifically the Incremental strip defining region R,.    If 

the strip Is divided into n sub-regions of equal  area by 

taking n equal  Increments along the x direction each of 

length 6x,  then,  under the assumptions  on the behavior or 

X(x,y), the process  in the 1th sub-rcglon can be  approximated 

by a HPPP with parameter  X= X(x,y).  where   (x,y).   is an 

arbitrary point  in the 1th sub-region.     Specifically (and 

arbitrarily)    the lower  left point  is chosen for the 

succeeding discussion;  thus the parameter  for the  first 

sub-region has  parameter   X = X(0,Y*),     Continuing,  the 

probability statements  for occurrence of events become 

P1(x,y)  =   X(0,y*)<SxAy + o(6x,Ay)       0  <   x  <   6x, 

P1(x,y)  =   X(6x,Y»)6xAy + o(6x,Ay)     6x  <  x <  26x, 

P^x.y) =  X(J6x,Y»)6xAy + o(6x,Ay)       J^x <  x <  (J+l)6x, 

where J  = 0,1,... ,n-l,       Y» <_ y < Y*+Ay    and    n6x = X*. 



^^^^^^^^m^^^^^mmrmm*mmmvm 

Since the probability of more than one event in R, 

is o(X*Ay) the probability statements above are additive 

and 

n-1 
prob {one event in R, } = I  X(J6x,Y*)6xAy + o(X*Ay). 

In the limit as n -* », by the definition of an integral 

X« 
prob {one event in R, } » { / X(x,Y*)dx}Ay + o(X«&y). 

•L 0 

By similar argument, 

Y« 
prob  {one event  in R5} =  {  /    X(X*,y)dy}  Ax + o(Y«Ax) 

d 0 

and 

prob {one event in R^ * X(X'«,Y«)AxAy + o(AxAy). 

By comparison with equations (3), C1*) and (5) the above 

statements lead to definitions for average parameters for 

each of the regions R, , Rp and R^ as 

X* 
X1(X*,Y*) = p- / X(x,Y*)dx, 

X5(X*,Y*) = ,4 / X(X«,y)dy, (22) 
^        I  0 

and 

X3(X«,Y«) = X(X*,Y«). 
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Using those average parameters, the equations   (3),  CO 

and   (5) are generalised,  resulting In the  following 

statements: 

prob {one event  in 1^} " X1(X»},Y*)X*Ay + o(X»Ay), 

prob {one event  In R2} = X2(X«,Y«)Y*Ax + o(Y»Ax),   (23) 

and 

prob {one event In FU} = X-CX* »Y*)AxAy + o(AxAy). 

Using the result (22) as defining the parameter in each 

of the incremental areas in Figure 1, equations (6), (7) 

and (8") become 

P (X»+Ax,Y*) = P (X«,Y«)[l-r0Y*Ax]+P  , (X*,Y«)X0Y»Ax n n d n-i       c 
+  o(Y«Ax), (21) 

Pn(X*,Y«+Ay) = Pn(X*,Y*)[l-X1X«Ay]+Pn_1(X»,Y«)riX«Ay 

+ o(X*Ay), (25) 

and 

Pn(X*+Ax,Y«+Ay) = Pn(X«,Y»+Ay) + Pn(X»+Ax,Y*) - Pn(X*,Y«) 

- X3AxAy[Pn(X»,Y*) - Pn_1(X«,Y*]  (26) 

+ X1X2X»Y*AxAy[Pn(X*,Y*)-2Pn_1(X*,Y») 

+ Pn_2(X»,Y»)] 

+ otY^Ax) + o(X»Ay) + o(AxAy). 
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Rearranclng terms, dividing by AxAy and taking the 

double limit as Ax -^ 0 and Ay -♦ 0 yields 

32Pn(X»,Y*) 
^  = - X3[Pn(X*,Y*) - P^X'.W]      (27) 

+ X1X2X*YnPn(X»,Y*)-2Pn_1(X*,Y»)+Pn_2(X«,Y«)] 

which, together with the boundary condition that P is a 

probability statement, gives 

P (Y*  vn - (A(y*.y*))n exp{-A(X*,Y»)}, n = 0,1,... 
nlA ** ; "    n! (28) 

where 

X* Y* 
A(X*,Y*) = /  /  X(u,v) dudv. (29) 

0  0 

Thus, the number of events occurring in a region 

bounded by the coordinate axes, x = X* and y = Y* hao a 

Poisson distribution with mean given by A(X*>Y*).  The 

mean can be considered to reflect the cumulative effect of 

X(x,y) in the region of concern. 

If n events from a NHPPP are observed to occur in a 

rectangular region defined as usual with area X*Y*, and the 

events occur at (x,y),.N, 1 » l,...,n, the labelling done 

on the magnitude of the y-component, then the Joint density 

of the events and the probability that the number of events 

in X*Y* is n is given by 
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n 

J 
n X((x,y)(J))exp{-A(X«,Y»)}. (30) 

Note that (30) Is a direct generalization of (16). 

Hence the NHPPP can be described in a fashion similar 

to the HPPP, but the expressions have acquired increased 

complexity due to the necessity for the inclusion of 

integrals to define the parameters. The degree of added 

complexity is dependent upon the cnolce of the specific 

functional form for X(x,y).  The next section develops the 

expressions for one specific form. 

B.  A SPECIAL CASE 

To consider the location dependent type of process, 

a particular form for X(x>y) is chosen as 

X(x,y) = exp {ct+ ßx + yy + 5xy}. (31) 

Note that if ßx + yy + 6xy changes very little over the 

range of interest of x and y, then 

X(x>y) = (1 + ßx + yy + 6xy)exp{a}. (32) 

Other relationships may be used; however, they may cause 

necessary and untidy restrictions on the values which the 

constants a, ß, y and 6 may assume. In particular, X(x,y) 

must be greater than 0 and the bivariate exponential 
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polynomial  (31) ensures this with no restrictions  on the 

range of the parameters. 

Additionally,  algebraic manipulation of the form reveals 

that  the curves of \(x,y)  = c,  c a constant,  include  some 

interesting properties. 

1. If 6 = 0, then In  X(x,y)  = c  is a family of straight 

lines in the plane,  intersecting the x-axls at  an  angle 

6  " tan* (-3/Y).     In this  case a clock-wise rotation of 

the coordinate axes through an angle 6 would give an 

exponential  function of y  only. 

2. If 6 ^ 0,  then In  X(x,y)  = c describes a system of 

contour liner, which form a hyperbolic paraboloid with a 

saddlepolnt at   (-Y/<S>-3/6)   as is  illustrated in Figure  k. 

It may be helpful to Interpret the Figure in terms  of a 

section of forest which has been sampled.     The  line r 

describes a possible direction of steepest ascent   (DSA) 

which passes through or near the region being sampled. 

This DSA may not be a  topographic  feature but  rather a 

mathematical expression for a possible increase in density 

of trees along some line.     Obviously, there may exist a 

strong correlation between this mathematical DSA and  some 

topographic features.     Note here that along the DSA maximal 

values  for Mx,y)  are  found in the sense that  departing the 

DSA at right angles leads  to decreased values for  X(x,y), 

i.e.   decreases in the  forest density. 
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,  Contour Unas for XU.y) ' exp(o+6x+xy+5W). 

Note asymptotes and region being described 

(„atoned.) Here 6/Y ^ . *" ' *    and 

all coefficients are positive. 
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3. The exponential form can be extended with little con- 

ceptual difficulty, but possibly greatly increased mathe- 

matical difficulty, to describe a much wider range of 

possible circumstances. For instance, it is reasonable 

to assume that the DSA line will bend; hence terms such as 

2        2 ex y and ^xy and higher order may be included in the 

exponent. 

For the special form of (31)> the cumulative or integrated 

intensity function A(X*,Y*) is given by equation (29) and 

becomes 

^(X*»Y,I) g expU-ßyW ' ^Uv+W(|+Y*)}-Ei{(Y+6X*)|} 

(3:0 

- ET((ß+6Y»)|} + El^} , 

where ET (•) is the exponential integral and ET (•) = c + In (•) 
00 (   "i1 

+ l )''.   , where c = .577216 is a constant, as defined In 
i=l11 s 

Jahnke and Emde [1945, p. 2]. 

Tw.ti likelihood function for the NHPPP may be developed 

in a manner similar to that used in the discussion of the 

HPPP.  The discussion leading up to (16) is modified by the 

fact that the parameter is location dependent resulting in 

L = exp{-A(X«,Y»)} H X((x,y)m), (n > 1)     (31*) 
1=1       ^> 

»here  (x,y),.v  is a labelling of the coordinates of the n 

point events.    Thus, 
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n 
In L = -A(X«Y») + E In X((x,y)m) 

follows directly. For the special case of X(x,y) given by 

(31)» equation (3^) becomes 

n    n    n 
In L = -A(X»Y»)+ß E x.+Y E y.+6 E x.y.+na        (35) 

i=l ^    i»l ^^ i=l ^^ 1 

where ACX^Y*) is given by (33). 

The above Joint density, or likelihood, function pro- 

vides a functional form which may be manipulated to accom- 

plish the two principal concerns of the analysis o^ point 

processes: hypothesis testing and parameter estimation.  The 

obvious null hypothesis is H.: ß=y=6=0tin  which case 

the nonhomogeneous Poisson process is being tested for homo- 

geneity since a non-zero a yields a constant parameter 

X = exp(a) > 0. Should the above null hypothesis be rejected, 

then the analysis proceeds to develop estimates for the 

parameters ß, y and 6. This phase of the analysis may 

proceed differently depending on how many and which of the 

parameters were tested as being different from zero.  The 

complete, and most complicated, situation develops when all 

parameters are determined to be non-zero. Testing of 

parameters is the topic of Chapter IV while Chapter V 

discusses the estimation of parameters determined to be 

non-zero as a result of the testing procedure. 
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IV.  TESTING FOR NON-ZERO PARAMETERS 

A.  PRELIMINARIES 

It is desired to formulate a method for testing the 

data (I.e., the number of events and their locations) In 

order to determine which of the parameters In the model 

given by (35), specifically a, ß, y and 6 , are non-zero. 

Note that three assumptions are Inherent at the outset: 

first, that the NHPPP model Is valid; second, that the 

testing for homogeneity In Section II-B led to the rejec- 

tion of the hypothesis of homogeneity; and third, that the 

physical phenomena can be modelled by the NHPPP given by 

(31*) with the parameter X(x,y) given by (31). 

Testing the Polsson hypothesis per se when the function 

X(x,y) is not known is a compound problem which will not be 

considered here. It is analagous to the compound probler in 

regression analysis of testing both for an unknown regrej .ion 

function and for independent equal variance errors. 

■ From the third assumption, the likelihood function for 

the data is given by 

L = exp{-A(X»,Y»)Un exp{ßJ:x1 + yly±  + SZx^} , (36) 

where, for clarity in the future development, £ = exp{a}. 

Conditioning on the occurrence of n events, n ^ 1 and 

defining L{ (x,y)/^ ,... ,(x,y) ,v |n;X(x,y)} ■ L(n) leads to 
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( /   /   «xpteu ♦ YV ♦ 6uv) dudv)" 
0    0 

(37) 
where L(n)  la read "the likelihood function conditioned on 

the occurrence of n events."    Note that condltlonlnf. on 

the number of events observed has resulted In an expression 

which Is Independent of the parameter ^(or o), I.e. for 

given B, Y» and 6t n Is a sufficient statistic for a.    This 

is convenient because a here Is a "nuisance" parameter since 

the terms of interest are those which would Indicate non- 

homogeneity rather than the eatabllahment of the overall 

rate of occurrence.    Thus by uolnc the conditional likeli- 

hood a may be eliminated and the testing can proceed for 

non-r.ero ß, Y and 6.     In other words the  value of a should 

not influence the testing for non-homogeneity parameters. 

If n  ■» 0, certainly no departure from homogeneity could 

be evidenced and hence this case is covered by HITP;  ^ee 

II-B above.    Hence the case of Interest  is n >_ 1. 

Physically,  the model (35) gives rise to a parameter 

surface X(x,y) which has the properties: 

(a) 6^0;    y ¥ 0\    WO:    In X forms a hyperbolic 
paraboloid superimposed on 
a tilted plane,  i.e. some 
"warping" of the tilted 
plane is evidenced. 

(b) ß »< 0;    Y »* 0;    6 • 0:    In X forms a plane, tilted 
with respect to the x-y plane. 

(c) ß ■ Y ■ 0;    4 f' 0:    InX forms a hyperbolic 
paraboloid. 
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(d) B ■ Y " * " O'«        In X forms a plane parallel 
to the x-y plane, i.e. a 
HPPP Is evidenced. 

There are a number of possibilities for testing: 

(a) A test of 

H0: 6 = Y
,S
5
B
0 

against 

H,: at least one of the parameters 3, Y> 6 / 0 

is a test for non-homoßeneity which is more specific than 

those in Section II-B and is easily derived by likelihood 

ratio techniques. 

(b) The above test is not of great interest; generally the 

specilic non-zero parameter is desired rather than Just that 

at least one of the three is non-zero. This leads to the 

question of selecting the significant subset, a problem 

which is difficult and as yet is unresolved. 

(c) The simpler problem is to assume an ordering, i.e. that 

If ß « Y " 0» the process is homogeneous (5 is then assumed 

to be 0) and if B or Y IS non-zero but 6=0, then higher 

order terms are assumed to be zero. However, if the test 

Indicates non-zero ß or Y this may be due to an aliasing 

effect because of a non-zero 6. If further testing of 

6 » 0 against 6/0 reveals 6/0, then it may well be that 

the true situation is ß = Y ■ 0 but 6/0. The procedure 

to be followed will not discriminate this case. 
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The same aliasing effect occurs In testing of 6 = 0 

against 6/0 where (5 and y  are non-zero and It Is deslrab"1 

to perform this test without the effects of the non-zer^ 

B and y.    These are thus nuisance parameters, as was the 

case with a in testing ß and y.    For the present model (35), 

one can eliminate these parameters because It is seen from 

the exponential form (36) that for any 6, (n. Ex-, Ey.) 

Is a set of sufficient statistics for (a, ß, y).    Thus 

6 = 0 is tested with some function of Ex.y. given n, Ex. 

and Ey.. This statistic has a distribution Independent 

of the parameters a, ß, y. 

The reason for basing the conditional test on Ex.y, 

Is that this is (conditionally) a sufficient statistic 

for 6. 

B.  SPECIFIC TESTS 

Assuming that some ordering exists on the parameters  3 

discussed in possibility (c) above, tests are performed 

using the sufficient statistics (n, Zx^ Ey. , Ex^) to 

determine if any non-homogeneity is evidenced by the data 

(I.e., through the statistics). This testing is more 

specific in nature than the testing encountered in Section 

II-B above due to the selection of a particular model. 

The set of sufficient statistics arises from this choice of 

a specific model to use as an alternative to homogeneity. 
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The testing will assume the following sequence: 

(I) Condition on n and set 6 = 0. Test HQ^V: fj = y » 0 

against H./.v: & / 0 or y t 0.    Note that it would not be 

informative to test either ß or y as a separate entity since 

in the formulation of the model ß and y  are unique only up 

to an angle of rotation. That is, testing of E and y 

Jointly amounts to the detection of any tilt in In X(x,y) 

with respect to the x~y plane, regardless of the direction 

of the tilt. Failure to reject HQ/.X leads to the assumption 

of homogeneity due to the assumed ordering. 

(II) Rejection of HQ^X leads to testing of 

H0(ilV  6 = 0, -<»<ß<<» and -« < y < ^ 

against 

Hl(iiV  6 / 0; -« < ß < » and -oo < y < ». 

The test thus specifies y and ß as nuisance parameters. 

In this test it is necessary to first condition on n, Ex. 

and Ey. to eliminate the nuisance parameters. 

In (1), conditioning on n and setting 6=0 leads to 

(ßy)n n! exp{ßZx. + yEy.} 
L(n) i ±     . 

(exp{ßX} -l)n  (exp{yY} - l)n 

From this It is seen that the statistics  (Ex. ,Eyi) are 

(conditionally) Jointly sufficient statistics for ß and y. 
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Under HQ^^, 

Ex^n •> N(XV2,X»2/12n)    and    Zy^n ■* N(y V2 ,Y»2/12n) 

and the statistics are Independent  (see Section II-B).    Hence 

the expression 

Sx./n - XV2 2         Ey,/n - YV2 2 
(-i )    +  (     1    .  ) 
X»/ /l2n Y«/ /l2n 

2 
is asymptotically Xp* Rejection or acceptance of HQ/^ 

is based on the adherence of the calculated value of this 
p 

sum to the x distribution , i.e. H0 is accepted if this 

sum has sufficiently small values. Acceptance of HQ^X, 

as stated earlier, leads to assumption of HPPP; refer to 

Chapter II. 

Following the rejection of H.,.* it is necessary to 

proceed with testing of HQ/^.V. AS can be seen from an 

examination of (37), the complexity of the exact distribu- 

tion following another conditioning argument (i.e. on 

n, lx.  and Ey.) is prohibitive. However, for large sample 

sizes the conditional distribution can be approximated from 

the fact that Ex./n, ly^/n  and Ex^/n, conditioned on n, 

are Jointly normally distributed for large n. Thus the 

asymptotic distribution of Ex^y^/n, given n, Ex^/n and 

Ey^/n, can be found from normal theory multiple regression 

results. 
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Under the assumption that ß = Y B ^ " 0» the trlvarlate 

normal distribution which arises is characterized by a vector 

and a matrix. The vector (^0 of expected values and the 

variance-covariance matrix (l)  are civen by 

V? \      / y. 

and 
rX2/12n 0 X2Y/24n 

E -    | 0 Y2/12n        XY2/24n 

iX
2y/2^n XY2/2^n      7X2Y2/l4iln 

from which p-p = 0 and p,^ - ppo ss 0.65^65. 

In the model given above, 

H0(ii):   5 C 0J   -» < ß < oo;  »oo < Y < « 

is to be tested against 

Hl(ii): 6 ^ 0»  -» < ß < «j -• < Y < ». 

Since Jx.y^^ is a sufficient statistic for 6 when n, Ex^ 

and Ey, are given, the test can be based on Ex1y1. Its 

asymptotic (conditional) normal distribution has mean 

t 

y  and standard deviation o' given by 
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W.., - Nv - ^ p13 (E,ll/n " X/2) + 
"xy      "xy x 

and 

1 
2 2     ,7 

(1   -   P,,  -  Ppo   ) 0xy ,s 0xy  u " p13 ' M23 

Jx y./n - y' 
Thus under HQ/^N, —=—, ^^ Is distributed as a unit 

xy 
normal varlate and HQ/.-N IS accepted if this statistic has 

sufficiently small values.  Failure to reject H0/.4v would 

imply that the In X(x,y) plane is tilted with .respect to 

the x-y plane, but no "warping" is evidenced. 

The above development relies heavily on asymptotic 

assumptions. Small sample problems will be much more 

difficult to analyze. Any point in the above procedure which 

lead to rejection of any hypothesis would require the analysis 

to proceed with the estimation of the non-zero parameters. 

This is the subject of the next chapter. 
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V.  ESTIMATION OF PARAMETERS 

It Is desired to formulate a method for estimating the 

parameters a, ß» Y and 6 of the non-homogeneous planar 

Polsson model given in IV-A where it has been established 

that a non-homogeneous process Is evidenced by the data. 

Taking the logarithm of the conditional likelihood 

function (37) results in 

in L(n) - in n! + ßlx, + Y^ * "Vi 
+ n ln A' 

(38) 

where  A »A(X*>Y*)/C.     Point  estimation of  (a,  ß,  yt   6) 

by the methoc. of maximum likelihood uses the conditional 

likelihood function (38)  to develop the estimates.    See 

Section II-D for comments regarding use of maximum likelihood 

In this application.    The solution to the set of simultaneous 

equations 

Y»    X« 
Ix.  - -r    /      /    u expUu + YV + 6uv} dudv ■ 0 

1      A 0      0 

n      Y*    x* ^y* - T   ^      /    v exp{ßu + YV + 6uv} dudv - 0 (39) 
1      A 0      0 

Y«    X» j:x<y<  - T   f      /    uv exp{ßu + YV + 6uv} dudv ■ 0 , 

A A A 

if obtainable, provides the point estimates B, Y and *• 

Note that this approach neglects the homogeneous tern 
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during the estimation of the parameters giving rise to 

non-homogeneity.    The neglected parameter may be estimated 

last. 
A A A 

In order for the solution (ß, yt  6) to equations  (39) 

to describe a relative maximum to In Ljn, it is necessary 

and sufficient that the matrix of second partial derivatives 

U) be negative definite,  see Frisch [1966, p.  120].    In 

examining this matrix in the case of (38), it is helpful 

to define S(ulv) ■ exp (ßu + -yv + 6uv},    Then the  function 

s(u.v) - 5^. 

has the properties: 

(a) 8(u,v)  > 0 

Y»    X« 
(b) /     /    s(u,v) dudv ■ 1 

0      0 

(c) s(u,v) is continuous on [0 < u < X», 0 <_ v < Y*]. 

Hence s(u,v) is a probability density function [Gnedenko, 

1962, p. 171]. 

Hence the matrix £ can be shown to have diagonal 

elements such as 

Y« X» Y» X» 
o.. - - nC /  / u 8(u,v) dudv - ( /  / U8(u,v) dudv) ] 
11     0  0 0  0 

» - n Var U. 
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Continuing, the result Is (where W is defined to be the 

W » UV) 

r-n Var U -n Cov (U,V)   -n Cov (U.VT/ 

-n Cov (U,V)     -n Var V      -n Cov (V,W) 

rn Cov (U,W)     -n Cov (V,W)   -n Var W 

and £ is revealed to be a covariance matrix. Note that the 

condition for a relative maximum, i.e. Z negative definite, 

is Independent of the realizations. 

Now Z  » -nJE where Z  is the usual varlance-covariance 

matrix for a tri-varlate distribution. But J^ is positive 

semi-definite [Gnedenko, 1962, p. 212], hence -E is nccative 

semi-definite. That each of the principal minors has 

non-zero determinants remains to be shown. 

By the expressions given in Gnedenko [196C, p, 2121, 

the covariance matrix Z  can be seen to be a Hankel matrix 

[Gantmacher, !_, 1959, p. 338]. Hence if the rows of Z  are 
•to 

linearly independent,  then the determinant of !_ > 0.     But 

also Var U > 0 since U is a random variable and Var U Var V - 
2 

Cov (U,V) > 0 since the case of line discontinuities has 

been excluded (i.e., U cannot be a linear function of V). 

By the same reasoning, W is linearly Independent of U and 

V,    Hence all principal minors are greater than zero, hence 

I* is positive definite, hence E_ is negative definite. 
A A A 

Thus  (ß, Y» $) provides at least a relative maximum to 

In L|n. 
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If It were possible to determine that (ß, y, 5) provldea 

a global maximum to In L|n in the region of Interest, then 

conclusions as to uniqueness of the estimator could be 

drawn.  Unfortunately, global extrema are difficult to 

establish. Since the method of estimation used was maximum 

likelihood, the estimates are consistent. Questions of 

biasedness are unresolved. 

In order to solve the system of equations (39), it is 

necessary to determine initial values for the parameters as 

a starting point for an iterative procedure. The partial 

differentiation of InL (35) with respect to the parameters 

and setting these partials equal to zero results, after 

some algebraic manipulation, in 

n -A(X,Y) « 0 

v        ?a      YY(e(gW)X ,,)       eBX 
lH * i - T [      B+TY s—3    0 

ßÄ     ea    eßXre(Y+6X)Y -1)       eYY    l 

rx v    +  C&1L~)K+  .**  .. r(Blre
gX4^Y4gXY.e^Y cßX 11 "i^i +  ^-Lp-^+ i(ß+6Y)(Y+6X5lTLe •e      e       1J 

- 6XY[eßX+YY+6XY - 1] -  BXCeYY - 1] - YY[eßX - 1]} -0 

If It is assumed that the sum ßX + yY + 6XY is small 

(near zero) as well as the individual terms in the summation 

being small,  then the exponentials can be approximated by 
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exp(x) = 1 + x. x near zero. Using the first equation 

1„ system CO) to give the value for AC^.V). i.e. 

A(X..Y., . n. ana the linear approximation in the remaining 

terms gives the abbreviated system: 

Y ^ 0 

^i + I n 

BY+6 ÜJZl   ,   ,.     C2|l + ßöX^Y + YfiXY- 
1 6 

-62XY +  BYXY]    -     0 

The solution to {hi) provides the  Initial estimates for the 

parameters.    These estimates can then be used In (39)  or 

(ilO)  to search for sequentially closer and closer 

approximations In a mathematical programming approach. 

Following the determination of the estimates  ß,  y 
A A and 6,  ? can be determined from the  solution to the  firs 

equation in the set  (^0). 
The determination of confidence intervals and levels 

of slcnlficance is not considered. 
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VI.     CONCLUSIONS 

The procedures in Chapters III-B,  IV and V are dependent 

on the particular choice of parameter form; hov/ever, with 

different  forms the concept of a non-homogeneous planar 

Polsson process may be used to describe a wide variety of 

"randomly" occurring phenomena.     The choice of parameters 

which may be used Is limited only by assumption I, I.e. 

positIvlty.     One advantage of the method discussed herein 

over previously proposed schemes Is the  fact that the  ' 

specific  form used admits the possibility of a ridge or 

line of maximum density to be mathematically specified 

and estimated. 

Also there Is an attempt to describe the underlying 

process that caused the points to appear whore they did, 

as opposed to using,  for Instance, the arc within which 

the most events were observed as the point estimate for 

the direction of maximum Increase. 

Further efforts In this area Include a generalization 

Into four dimensions  (x,y,z,t)  In order that zoological 

as well as botanical densities may be studied.    Of especial 

Interest Is the estimation of densities of aquatic life 

and how the observed density fluctuates with season and 

with changes In environment.    The latter problem seems of 

prime Importance In evaluating the effects of antl-pollutlon 

programs on the fluid systems  In which plants and animals 

exist. 
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Another problem which is closely related to the above 

is that of Imperfect sampling and how the estimates are 

biased by sampling techniques. 

Chapters III, IV and V may be redefined In terms of 

data gathered within a circle about some fixed point, 

especially with consideration of the relative efficiency 

of this data form referred to by Matern [1960], 

/ 
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APPENDIX  A:    THE RIVAHI/.Tl-  UNIFORM PI.HTRUUJTIO!: 

Given a region R In E    of area A and the fact that the 

probability of occurrence of an event In any sub-region R. 

of area A.  within R la alr.ply A^/A, a blvarlate uniform 

distribution lo dcocrlbed.    For deflnltenesa assume the 

region R Is rectangular, so A ■ X^Y«.    Now 

Prob (X < x,Y < y) - -^- - Prob (X < x) Prob  (Y < y) 

for 0 ^ x <, X*,  0 ^ y <_ Y1, In which case It Is apparent 

that the ccordlnalc axes define Independently chosen 

unlvarlate random variables. 

Also,  the  density  function Is  Immediately 

f(x,y)  -  1/X»Y«        0 < x < X«,    0 < y < Y». 

From the density function the Joint density for n Indepen ent 

blvarlate uniform random variables Is 

f((x.y)1,....(x,y)n,n) - l/(X«Y»)n 

where  (Xjy)^ denotes the 1      pair of random variables 

selected.    Mow n pairs of random variables, or more simply 

n points In the plane, can only be ordered (without 
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replacement) in n! ways, independent of the orderlnr; process 

chosen. Hence, the Joint density function for n ordered 

blvarlate uniform random variables is 

f((x,y)(1),...,(x>y)(n),n) « nl/(X«Y*)n 

where  (Xjy)/.*   Is the i      point selected in the ordering 

scheme utilized. 

As a specific example, consider the n points to be 

labelled with respect to increasing magnitude of the y- 

component.    Then 

yk B y(k)    k = 1»'"»n      and      ^»^(k)  "  ^xk,y(k)^* 

If the x-components are also ordered, then the set of 

points P « ^x(4j»yMV> 1»'I * l,...,n) defines n points, 

of which n are known to-be "occupied," that is, to describe 

an event. For X/,x, there exists some J such that y/j\ 

gives the y-coordlnate value for the event which gave rise 

to X/,*. Similarly, for X/^N there are 

now n-1 J's remaining, one of which must correspond to the 

event giving rise to X/pv. Continuing to X/ x, there can 

only be one J left to be associated with the last x-value. 

Thus there are n! combinations of (x,y)/iN, 1 ■ l,...,n 

each having density of l/(X*Y*)n and so the ordered blvarlate 

uniform density is established as that stated above. 
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