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FOREWORD 

This is the Final Report on the work performed under Naval Air Systems 

Command Contract N00019-72-0221, entitled "Micromechanics Failure Cri¬ 

teria for Composites". The report is for the period of 3 April 1972 to 

7 May 1973. The principal investigator for this study was L. B. Greszczuk. 

The program was monitored by Mr. M. Stander, Naval Air Systems Command, 

Department of the Navy, Washington, D. C. 



ABSTRACT 

Theoretical and experimental studies are presented of.the micromechanics 

failure criteria for the transverse tensile and shear "strengths of composites. 

Parameters accounted for in the failure theories include: fiber properties, 

matrix properties, fiber content, void content, volume fraction of ineffective 

fibers, internal triaxial stresses due to fibers and voids, and the interaction 

of stresses from fibers and voids. Equations are developed for predicting 

the influence of voids on elastic properties and internal stresses in solids 

containing voids. The voids are assumed to be cylindrical and arranged in a 

square array. Pertinent expressions are given for the Young's moduli, shear 

moduli, and Poisson's ratios of solids with voids. Approximate expressions 

are also presented for the internal stresses in solids containing voids. The 

theoretical results on the influence of voids on internal stresses and mechani¬ 

cal properties are verified experimentally using photoelastic models. Exist¬ 

ing theory is used to predict the internal triaxial stresses in fiber-reinforced 

composites. Moreover, using superposition, the interaction of internal stress 

concentrations due to fibers and voids is established theoretically and verified 

experimentally using photoelastic models. Test models are also employed to 

establish the strength of the material as influenced by porosity and matrix 

ductility. The results on fiber-void stress interaction and on the strength of 

brittle/ductile solids in combination with modified Hencky Von Mises Distor¬ 

tion Energy Criteria are used in formulating failure theories for composites 

subjected to transverse and shear loading. Test data from actual composites 

are used for final verification of the failure theories. Types of composites fab¬ 

ricated and tested in transverse tension and interlaminar shear include: glass 

epoxy, glass phenolic, graphite epoxy, graphite phenolic, and boron epoxy. 

The predicted transverse tensile strength of composites shows fair correla¬ 

tion with test data. For the composites subjected to shear loading, good 

correlation is obtained only between theory and test data obtained from tor¬ 

sion tests; the shear strength data obtained from the short-beam shear tests 

shows poor correlation with the theoretical prediction. Preliminary conclu¬ 

sions and recommendations are made on parameters influencing the transverse 

and shear strengths of composites and on how to improve these properties. 

Preceding page blank 
« 



CONTENTS 

Section 1 

Section 2 

INTERNAL STRESSES IN FIBER- 
REINFORCED COMPOSITES 

1. 1 Internai Stresses in Composites 
Subjected to Transverse Loading 

1.2 Internal Stresses in Composites 
Subjected to Inplane Shear Loading 

1.3 Test-Theory Comparison of 
Internal Stresses in Composite 
Models Subjected to Transverse 
Loading 

EFFECTIVE ELASTIC PROPERTIES OF 
SOLIDS CONTAINING VOIDS 

2. 1 Young's Moduli of a Solid Con¬ 
taining Cylindrical Voids 

2. 2 Shear Moduli of a Solid Con¬ 
taining Cylindrical Voids 

2. 3 Poisson's Ratios oí a Solid Con¬ 
taining Cylindrical Voids 

2 4 Experimental Studies on the 
Influence of Voids on the Young's 
Modulus of a Solid 

Section 3 

Section 4 

INTERNAL STRESSES IN SOLIDS 
CONTAINING VOIDS 

3 1 Theoretical Prediction of 
Internal Stresses from Trans¬ 
verse Loading 

3.2 Experimental Studies on Internal 
Stresses from Transverse Load¬ 
ing and Test-Theory Comparison 

3.3 Interi Stresses from Axial and 
Shear Loading 

STRESS INTERACTION FROM FIBERS 
AND VOIDS 

4. 1 Theoretical Studies on Fiber-Void 
Stress Interaction under Transver 
Loading 

vii 

Preceding pege Week 



4.2 Experimental Studies on Fiber- 
Void Stress Interaction under 
Transverse Loading and Test- 
Theory Compa rison 

4. 3 Theoretical Studies on Fiber- 
Void Stress Interaction under 
Shear Loading 

4. 4 Influence of Unbonded Fibers on 
Stress Concentrations in Com¬ 
posites Subjected to Transverse, 
Shear, or Asial Loading 

Section 5 FAILURE CRITERIA FOR POROUS 
SOLIDS AND FOR COMPOSITES 
CONTAINING FIBERS, MATRIX, 
VOIDS, AND INEFFECTIVE FIBERS 

5. 1 Strength of Brittle and Ductile 
Matrix as Influenced by Voids 

5. 2 Transverse Tensile Strength 
of Composites 

5. 3 Shear Strength of Composites 

Section 6 FABRICATION AND TESTING OF ACTUAL 
COMPOSITES FOR VERIFICATION OF 
FAILURE THEORIES 

6. 1 Matrix Materials and Their 
Properties 

6. 2 Fiber Materials and Their 
Properties 

6. 3 Fabrication of Composite 
Specimens 

6.4 Transverse Tensile Strength 
Data for Composites 

6. 5 Interlaminar Shear Strength 
Data for Composites 

Section 7 COMPARISON OF MEASURED TRANS¬ 
VERSE TENSILE AND INTERLAMINAR 

. SHEAR STRENGTH WITH MICRO¬ 
MECHANICS FAILURE THEORY 
PREDICTIONS 

7. 1 Test-Theory Comparison of the 
Transverse Tensile Strength of 
Composites 

7.2 Test-Theory Comparison of the 
Interlaminar Shear Strength of 
Composites 

48 

55 

55 

59 

59 

66 
70 

75 

75 

76 

76 

83 

90 

91 

91 

95 



Sections CONCLUSIONS AND RECOMMENDATIONS III 

Section 9 REFERENCES 115 

Appendix A STRESSES AND DEFORMATIONS OF 
POROUS SO UDS 119 

Appendix B TEST DATA FOR PHOTOELASTIC 
TEST SPECIMENS 127 

Appendix C NUMERICAL EXAMPLES ON USE OF 
MICROMECHANICS FAILURE CRITERIA 
TO PREDICT THE TRANSVERSE TENSILE 
STRENGTH AND TNTERLAMINAR SHEAR 
STRENGTH OF COMPOSITES 133 

Appendix D TEST DATA FOR RESIN CASTINGS AND 
FOR TRANSVERSE TENSILE AND INTER¬ 
LAMINAR SHEAR STRENGTH OF ACTUAL 
COMPOSITES 139 

ix 



ILLUSTRATIONS 

Figure Title 

1 General Study Approach 

2 Mathematical Model for Investigating Interfiber Stresses 
in Composites 

3 Internal Interfiber Stress Distribution in Composites 
Subjected to Transverse Loading 

4 Influence of Fiber Content on the Internal Interfiber Stress 
Distribution in Composites Subjected to Transvers*- Loading 

5 Transverse Young's Modulus of Composites as a Function 
of Properties of Constituents and Fiber Content 

6 Interfiber Stress Distribution in Composites Subjected to 
Shear Loading 

7 Photoelastic Test Specimen and Test-Theory Comparison 
of Internal Stresses in Composite Models 

8 Mathematical Model for Determining Influence of Voids on 
Effective Elastic Properties of the Matrix 

9 Young's Moduli of Solid Containing Cylindrical Voids 

10 Shear Moduli of Solid Containing Cylindrical Voids 

11 Poisson's Ratios of Solid Containing Cylindrical Voids 

12 

13 

14 

15 

16 

17 

18 

Test Specimens for Determining the Influence of Voids on 
Young's Modulus and Tensile Strength of Brittle M«iterial 
(Homalite 100) 

Typical Stress-Strain Curves for Homalite 100 

Influence of Void Content on Young's Modulus of a Solid 

Mathematical Model for Determining Internal Stresses Due 
to Transverse Loading 

Internal Maximum Stresses in Solids Containing Cylindrical 
Voids and Subjected to Transverse Loading 

Secondary Stresses in Solids Containing Cylindrical Voids 
and Subjected to Transverse Loading 

Porous Solid Subjected to Biaxial Loading 

Preceding page blank 
xi 



19 Stress Concentrations in a Porous Solid Subjected to Biaxial 
Loading (Biaxial Stress Ratio of 1:1) 

20 Stress Concentrations in a Porous Solid Subjected to Biaxial 
Loading (Biaxial Stress Ratio of 2:1) 

21 Photoelastic Test Specimen for Determining Internal Stresses 
in a Solid with Cylindrical Voids 

22 Photoelastic Fringe Pattern in Plates with Various Contents 
of Cylindrical Voids (Load P = 1, 220. 1 lb) 

23 Overall View of the Photoelastic Fringe Pattern in Plates 
with Cylindrical Voids (Load P = 1, 220. 1 lb) 

24 Test-Theory Comparison of Internal Stresses at Locations A 
and B 

25 Test-Theory Comparison of Internal Stresses at Location C 

2b Test-Theory Comparison of Internal Stresses at Locations D 
and E 

27 Internal Stresses in Porous Solids Subjected to Loads in the 
Direction of Cylindrical Void Axis 

28 Maximum Internal Shear Stresses in Solids Containing 
Cylindrical Voids 

29 Idealized Model Composite Containing Fibers, Voids, and 
Matrix 

30 Interaction of Stress Concentrations from Fibers and Voids 
in a Composite Subjected to Transverse Loading 

31 Photoelastic Test Specimen for Determining Stress Interac¬ 
tion from Fibers and Voids 

32 Photoelastic Test Setup for Determining Stress Interaction 
from Fibers and Voids 

33 Photoelastic Fringe Pattern in Specimen 1 (kv = 1.01%, 
kf = 40. 07%) 

34 Photoelastic Fringe Pattern in Specimen 2 (kv = 1. 37%, 
kf = 54. 54%) 

35 Interfiber Load Transfer in a Composite Containing Fibers, 
Voids, and Matrix 

36 Interaction of Stresses from Fibers and Voids 

37 Interaction of Stress Concentrations from Fibers and Voids 
in a Composite Subjected to Shear Loading 

32 

33 

34 

36 

37 

38 

39 

40 

41 

43 

46 

47 

49 

50 

51 

54 

56 

57 

xii 



4S

4f.

*^.9toelastic Fringe Patterns Due to Residual Strestea In 
Specimens with Various Void Contents

Typical Tensile Specimens with Voids. Sp«-cimen (a) Con­
tains Residual Stresses; Specimen (b) is Free of Residual 
St resses

Test-Theory Comparison of Tensile Strength of Brittle 
Matrix CotUnining Cylindrical Voids Arranged in .Square 
Array

Test-Theory Comparison of Tensile Strength of Ductile 
Material Containing Cylindrical Voids Arranged in 
Square Array

Influence of Porosity on Tensile Strength of Ductile and 
Brittle Materials

Typical Theoretical Results for the Transverse Tensile 
Strength of Composites as Influenced by Porosity, Matrix 
Ductility, and Resin Strength

Typical Theoretical Results for the Shear Strength of 
Composites as Influenced by Porosity, Constituent 
Properties, Fiber Content, and Resin Shear Strength

Typical Stress-Strain Curve for Cast Epoxy 1004 Rer-n

Typical Stress-Strain Curve for Cast SC 1008 Phenolic 
Resin

Typical Stress-Strain Curve for Cast and Post-Cured 
SC 1008 Phenolic Resin

Test-Theory Comparison of Transverse Young's Modulus 
of Composites Made with S-Glass Fibers

Test-Theory Comparison of Transverse Young's Motiulus 
of Composites Made with Graphite Fibers

Test-Theory Comparison of the Transverse Tensile 
Strength of Composite's Made with Cilass Fibers

Test-Theory Comparison of Transverse Tensile Strength 
of Composites Made with Graphite Fibers

Test-Theory Comparison of the Transverse Tensile Strength 
of Composites Made with S-Glass Fibers and Different Resins

Test-Theory Comparison of Shear Strength of Composites 
Made with Glass Fibers

93

96



57

58

A-1

A-i

Test-Theory Comparisor of Shear Strength of Composites 
Made with Graphite Fibers

Test-Theory Comparison of Shear Strength of Gla«s- and 
Graphite-Fiber-Rcinforced Composites

Assumed and Actual Stresses Acting on the Failure Plane in 
the Short-Beam Shear Test

Influence of Combined Loading on Shear Strength

Comparison of Predicted Shear Strength with Test Data 
C%tained from Solid Rod Torsion Test

Solid Containing a Square Array of Cylindrical Voids

Plate with a Single Hole



TABLES 

Table 

1 Normalized Interfiber Stresses in Composites Subjected to 
Transverse Loading 

2 Normalized Interfiber Shear Stresses in Unidirectional 
Composites 

3 Properties of Homalite 100 

4 Mechanical Properties on Tensile Specimens Containing 

Voids 

5 Test-Theory Correlation of Fiber-Void Stress Interaction 

6 Average Properties of Resins 

7 Influence of Strain Gages on the Tensile Strength of Resin 

8 Reinforcing Fibers and Their Properties 

9 Processing Variables in Composite Panel Fabrication 

10 Average Properties of Glass Epoxy and Glass Phenolic 
Composites 

11 Average Properties of Graphite Epoxy and Graphite 
Phenolic Composites 

12 Average Properties or Boron Epoxy Composites 

Page 

5 

9 

21 

23 

53 

77 

78 

82 

84 

86 

87 

88 

13 Ineffective Fiber Contents for Composites Made with Glass 
and Graphite Fibers 

14 Properties of Shell EPON 828/1031 MNA/BDMA Epoxy 
Resin 

B-l Strains and Stress Concentrations in a Perforated Plate 
with (R/f) = 0.252 (kv = 4. 94%) 

B-2 Strains and Stress Concentrations in a Perforated Plate 
with (R/l) = 0. 358 (kv = 10. 07%) 

B-3 Strains and Stress Concentrations in a Perforated Plate 
with (R/l) = 0. 437 (kv = 15. 0%) 

B-4 Strains and Stress Concentrations in a Perforated Plate 
with (R/l) = 0. 505 (kv = 20. 0%) 

B-5 Strains and Stress Concentrations in a Perforated Plate 
with (R/l) = 0. 619 (ky = 30. 1%) 

102 

109 

129 

130 

130 

131 

131 

XV 



B-6 Experimental Results on Internal Stresses in a Composite 
Model Consisting of Fibers, Voids, and Matrix 

D-l Test Data for 1004 Epoxy and SC1008 Phenolic 

D-2 Test Data for Glass Epoxy Composites 

D-3 Test Data for Glass Phenolic Composites 

D-4 Test Data for Graphite Epoxy and Graphite Phenolic 
Composites 

D-5 Test Data for Boron Epoxy Composites 

132 

141 

142 

143 

144 

145 

xvi 



NOMENCLATURE 

External stresses acting on a fiber-reinforced 
composite 

External stresses acting on a porous solid 

Internal stresses in the matrix of a fiber- 
reinforced composite or in the matrix of a 
porous solid 

Difference between principal stresses 

Stresses in a porous solid subjected to biaxial 
loading 

Internal stresses in a solid containing fibers, 
voids, and matrix 

Load 

Triaxial stress concentrations in the matrix of a 
fiber-reinforced composite 

Stress concentrations at locations n in a solid 
with voids 

Stress concentrations due to voids in the matrix 
of a fiber-reinforced composite (K* , K* , K* = 
f(\*)) xn yn zr 

Stress concentrations due to fibers evaluated for 
Ef/Ep, where E^ is the effective Young's modulus 
of resin with voids. 

Tensile strength of material or resin 

Ultimate compressive strength of resin 

Shear strength of resin 

Transverse tensile and shear strengths, respec¬ 
tively, of composites containing fibers, matrix, 
voids, and ineffective fibers 

Young's moduli of solids containing cylindrical 
voids 

Shear moduli of solids containing cylindrical voids 
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Poisson's ratios of solids containing cylindrical 
voids 

Young's modulus of fibers 

Young's modulus of resin 

Shear modulus of fibers 

Shear modulus of resin 

Poisson's ratio of fibers 

Poisson's ratio of resin 

Transverse Young's modulus of composite 

Fiber radius or void radius 

Fiber or void spacing 

R/Í = (Nondimensional void spacing) 

Nondimensional void spacing in a composite 
(see Equation 29). 

Volume fraction of cylindrical voids in a solid 
k = tt\2 /4 

V 

Void content in a fiber-reinforced composite 

Apparent fiber volume fraction of composite 
( Equation 4 3) 

True fiber volume fraction of composite 
(Equation 48) 

Apparent volume fraction of ineffective fibers 
in a composite 

True volume fraction of ineffective fibers in a 
composite 

See Equation 19 

Same as £ except evaluated for X.* rather than \ 

Cartesian coordinates 

Denotes fiber direction 

Denotes transverse direction (normal to L 
direction) 

xviii 



INTRODUCTION 

The ability to design reliably with advanced composites has been hampered 

by a lack of experimentally verified micromechanics failure criteria for 

predicting the strength of composites from the properties of the constituents 

and the composite's microstructure. Because such criteria are not available, 

extensive testing must now be performed to generate the mechanical proper¬ 

ties data for composites. Lowest test values are generally selected for 

design allowables, which frequently leads to overdesign and weight penalties. 

Due to the high degree of scatter in test data, the generation of reliable 

design allowables requires an extensive amount of testing, which is both time 

consuming and expensive. Although the "make it" and "break it" approach 

sufficed up to now, the present emphasis on cost effectiveness, increased 

reliability, and improved performance of composites points out the need for 

micromechanics failure criteria. 

The theoretical and experimental studies presented in this report are oriented 

towards this objective, that is, formulation of micromechanics failure cri¬ 

teria for predicting the transverse and shear strengths of composites from 

the properties of constituents - fibers and matrix - and the composite's 

microstructure. The general study approach employed in the formulation of 

a micromechanics failure theory is summarized in Figure 1 for the case of 

composites subjected to transverse loading. A similar approach is used to 

formulate a shear strength failure theory for composites. 

1 
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Section 1 

INTERNAL STRESSES IN FIBER-REINFORCED COMPOSITES 

In accordance with the general study approach presented in Figure 1, the 

first step in the development of the micromechanics failure criteria for 

composites subjected to transverse and shear loading involves the determina¬ 

tion of internal stresses in composites consisting of fibers and matrix. These 

internal stresses were determined using an existing approximate theory pre¬ 

sented in Reference 1. Reference 1 contains an approximate solution for the 

internal triaxial stresses in composites consisting of a matrix reinforced by 

circular fibers arranged in a square array. Solutions are given therein for 

the principal elastic constants of unidirectional composites and for the inter¬ 

nal stresses in composites subjected to axial loading (in the fiber direction), 

transverse loading (normal to the fiber direction), and inplane shear loading. 

The accuracy of the solutions presented in Reference 1 has been verified by 

comparing the results with results obtained from the closed-form rigorous 

elasticity solutions (Reference 2), results obtained from numerical computer 

solutions based on rigorous elasticity theory (References 3, 4, and 5), and 

experimental results obtained from photoelastic models (see Subsection 1. 3). 

1. 1 INTERNAL STRESSES IN COMPOSITES SUBJECTED TO TRANSVERSE 
LOADING 

The mathematical model used in Reference 1 for investigating the internal 

triaxial stresses in a composite subjected to transverse loading is shown in 

Figure 2. 

CR84 

REPEATING 
ELEMENT 

Figure 2. Mathematical Model for Investigating Interfiber Stresses in Composites 

3 



Numerical results, based on the theory of Reference 1, are presented in 

Table 1 and in Figures 3 and 4. Table 1 shows the triaxial stress concen¬ 

trations in composites consisting of various combinations of fiber and matrix 

materials. The variables are the Young's moduli of the fibers and the matrix, 

and the fiber volume fraction. The triaxial stresses shown in Table 1 are at 

a point of maximum stress concentration. Figure 3 shows the distribution of 

triaxial stresses midway between the fibers for composites subjected to trans¬ 

verse loading. The results presented there are for composites with different 

ratios and containing 55 percent reinforcement by volume. Figure 4 

shows the stress distribution with Ef/Er = 100 and containing various amounts 

of reinforcement. Inasmuch as determining the volume fraction of ineffective 

fibers (see Section 7) requires that the theoretical values of the transverse 

Young's modulus of composite must be known, the latter have been calculated 

from the results given in Reference 1 and are shown in Figure 5. 

1. 2 INTERNAL STRESSES IN COMPOSITES SUBJECTED TO INPLANE 
SHEAR LOADING 

For a composite, such as that shown in Figure 2, subjected to inplane shear 

st ress Tj the interfiber shear stress concentrations calculated from theory 

given in Reference 1 are presented in Table 2. As in the previous section, 

the stress concentrations are given for composites made of fibers and resins 

having different shear moduli and containing various amounts of fiber rein¬ 

forcement. Typical shear stress distribution on the boundary of a repeating 

element is shown in Figure 6. The variable in Figure 6 is the fiber- to-mat rix 

shear modulus ratio. 

1. 3 TEST-THEORY COMPARISON OF INTERNAL STRESSES IN COMPOSITE 
MODELS SUBJECTED TO TRANSVERSE LOADING 

The theoretical results presented in Subsection 1. 1 have been partially veri¬ 

fied with test data from photoelastic composite models (Reference 1). For 

completeness, the test-theory comparison reported in Reference 1 is pre¬ 

sented here. The photoclastic models consisted of plates containing nine 

circular aluminum inclusions arranged in a square array and embedded in 

4290 Hysol epoxy resin. Volume fractions of the inclusions ranged from 

k = ->0. 2 percent to k=65 percent. Each plate with inclusions was subjected to 

tensile stresses along its principal axis. Two-dimensional photoelastic oblique 

incidence technique was used to measure the stresses across the sections of 

4 
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Figure 4. Influence of Fiber Content on the Internal Interfiber Stress Distribution in Composites 

Subjected to Transverse Loading 
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Et «= TRANSVERSE YOUNG'S MODW.US OF COMPOSITE 

E «= YOUNG’: MODULUS OF MATRIX 
r 

Ef = YOUNG'S MODULUS OF FIBERS 

V = POISSON'S RATIO OF MATRIX 
r 
vf = 0.2 (ASSUMED POISSON'S RATIO OF FIBERS) 

kf * FIBER CONTENT BY VOLUME 

—r- 
70 30 

—T- 

40 
—r- 
50 60 

(*) 

Figure 5. Transverse Young’s Modulus of Composites as a Function of Properties of 

Constituents and Fiber Content 
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Table 2. 

NORMALIZED INTERFlRER SHEAR STRESSES IN 
UNIDIRECTIONAL COMPOSITES 

Gt 

kf 40% kf 55% kf = 70% kf= 75% kr= 78% 

tm Tm tm 
T m tm Tm tM Tm m tM T m 

G r rLT tlt tlt tlt tlt tLT tLT tLT rLT 

F 

-4
 

r
 

H
 

S. 6¾ 

11.27 

22. S 

45. 0 

112. 5 

225.0 

450.0 

1127.0 

1.44 

1. 54 

1. 60 

1. 63 

1. 65 

1.66 

1.66 

1. 67 

0. 69 

0. 63 

0. 60 

0. 58 

0. 57 

0. 57 

0. 57 

0. 57 

1.48 

l. 63 

1.74 

1.80 

1.84 

1.85 

1.86 

1.87 

0. 55 

0.47 

0.42 

0.40 

0. 39 

0. 38 

0. 38 

0. 38 

1. 54 

1.81 

2.06 

2. 25 

2.41 

2.47 

2.51 

2. 53 

0.42 

0. 32 

0.25 

0. 22 

0. 20 

0. 19 

0. 18 

0. 18 

1. 57 

1.92 

2. 31 

2.70 

3. 10 

3. 29 

3.41 

3.48 

0. 38 

0. 26 

0. 19 

0. 15 

0. 13 

0. 12 

0. 11 

0. 11 

1. 60 

2.02 

2. 58 

3. 31 

4. 49 

5.40 

6. 19 

6.89 

0. 35 

0. 23 

0. 16 

0. 11 

0.07 

0. 06 

0.05 

0.04 

r - Maximum shear stress (at 
M Point "A") 

T - Shear stress (at Point 
m 

Tj^j. - Remotely applied shear stress 

Gj. - Shear mouulus of fiber 

G - Shear modulus of resin 
r 

k - Fiber volume fraction 

symmetry, midway between the inclusions. Figure 7 shows the photoelastic 

model, photoelastic frinue pattern in the model subjected to tensile loading, 

and the test-theory comparison of the interfiber stresses in models with 

inclusion contents of kj=50. ¿ percent and kj.= 65 percent. The stress-state 

(n ) in a two-dimensional model has been shown to be an accurate represen» 
X 

tation for the corresponding internal stress in a three-dimensional composite 

Reference I. 
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Section 2 

EFFECTIVE ELASTIC PROPERTIES OF SOLIDS CONTAINING VOIDS 

Microscopic observations of actual composites show that the voids within the 

matrix of such composites are primarily of cylindrical, or nearly cylindrical 

shape. To establish how such voids influence the deformations and strength 

of composites necessitated that a theory be developed for predicting the 

approximate elastic properties and stress concentrations in solids contain¬ 

ing voids. The influence of voids on effective elastic properties of the 

matrix is presented here, while Section 3 gives the theoretical and experi¬ 

mental results on stress concentrations caused by voids. 

The mathematical model selected for establishing approximately the influence 

of voids on elastic properties of the matrix is shown in Figure 8. The voids 

are assumed to be cylindrical in shape and arranged in a square array. 

CR84 
2 

Figure 8. Mathematical Model for Determining Influence of Voids on Effective Elastic Properties of the Matrix 

2. 1 YOUNG'S MODULI OF A SOLID CONTAINING CYLINDRICAL VOIDS 

The derivation of Young's modulus in Direction 1 is given in Appendix A. 

The final approximate expression for Ej is 

E 
E (1) 

Preceding pege Meek 
13 



where E is the Young's modulus of the void-free solid, 

* = R/f 

and R and i are defined in Figure 8. The term X. is related to volume fraction 

of voids, k^, by the following 

X. = (2) 

or conversely, 

k 
V 4 (3) 

For a square array of voids, the Young's modulus associated with Direction 2 

is given by Equation 1, that is Ej = E^. The Young's modulus in Direction 3 

can readily be obtained from the law of mixtures and is 

Ej = (1 -J».2) E (4) 

The variation of Ej and E^ as a function of X. is shown in Figure 9. 

2. 2 SHEAR MODULI OF A SOLID CONTAINING CYLINDRICAL VOIDS 

The approximate expression for the shear modulus associated with Direc¬ 

tion 1-3 can be obtained by using the same approach as was used to deter¬ 

mine Ej. The expression for is 

'13 

to 
tan -1 il + \ 

\l l-\ 
+ 1- \ - 

(3) 

It is noted here that for the void array shown in Figure 8 

G13 S G23 

14 
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Figure 9. Young's Moduli of Solid Containing Cylindrical Voids 
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lhe shear modiuus associated with Direction 1-2 can be obtained from 

curves given in References 2 and 6 or from the following approximate 

expression 

12 
G( 1 f V) 

tan 
1-f ^ 

(6) 

l + w(l-| *¿)] 

where, in addition to previously defined terms, G and v are the shear modu 

lus and Poisson's ratio, respectively, of a void-free material. Equation 6 

gives identical results to those given in Reference 2 in the region \ < 0. 65, 

which is the region of interest. The variation of Gj ^ and G , as a function 

of X is shown in Figure 10. 

2. 3 POISSON'S RATIOS OF A SOLID CONTAINING CYLINDRICAL VOIDS 

As a first approximation, the Poisson's ratio ^j can be obtained from the 

law of mixtures and is 

i Ih' i oisson's ratio ^ can be evaluated numerically from the results given 

in section >, or obtained from Reference 2. Figure 1 1 shows the variation of 

Poisson's ratios as a function of void spacing. The remaining Poisson's 

ratios, v¿y can be obtained from Maxwell's Reciprocity Theorem. 

2. 4 EX PERIMENT A], STUDIES ON THE INFLUENCE OF VOIDS ON THE 
YOUNG'S MODULUS OF A SOLID 

To establish the influence of voids on the transverse Young's modulus Ej of a 

solid, test specimens shown in Figure 12 Wv. re fabricated and tested in ten¬ 

sion. Similar type of specimens were used, as described in Section 5, to 

determine the influence of voids on the tensile strength of a material. The 

material used in the preparation of these specimens was Homalite 100, which 

exhibits brittle behavior in tension, as shown in Figure 12. Additional test 

data for Homalite 100 is shown in Table 3. The results shown in Figure 13 

and in 1 able 3 were obtained from conventional dog-bone tensile specimen 

similar to those shown in Figure 12. To ensure the accuracy of the test dala, 

16 
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Figure 10. Shear Moduli of Solid Containing Cylindrical Voids 
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Figure 13. Typical Stress-Strain Curves for Homalite 100
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two different methods were employed to measure the tensile strains used in 

calculating the Young's moduli of the specimens shown in Figure 12: Light¬ 

weight Instron extensometer and strain gages. The extensometer was 

mounted on the flat side of the specimen, with the extensometer's knife edges 

located approximately midway between the two adjacent rows of holes. In 

addition to the above method several specimens were also instrumented with 

two 0.75-inch-long strain gages mounted on each side of the tensile coupon 

(shown by x's in Figure 12). The nominal void contents in the tensile coupons 

ranged from 10 to 50 percent. Table 4 contains the description of the various 

specimens as well as the experimental results for the Young's moduli and 

tensile strength of specimens with various void contents. The specimens 

with a letter R in the specimen designation contained residual stresses pro¬ 

duced during drilling of the holes, as shown in Figures 38 and 39 of Section 5. 

By modifying the drill feed rates and using coolants it was possible to pro¬ 

duce specimens with holes that were free of residual stresses, as also shown 

in Section 5. All the specimens without the letter R in the specimen designa¬ 

tion were free of any residual stresses. 

Figure 14 compares the measured Young's moduli of specimens with voids 

with the theoretical results predicted from Equation 1. It is noted here that 

residual stresses are not expected to influence Young's modulus in the 

elastic range, therefore all the test data from Table 4 are plotted in Fig¬ 

ure 14. The test-theory correlation shown in Figure 14 establishes the 

accuracy of Equation 1. 

Although it would be desirable to verify experimentally the other properties 

of solids with voids (E3, G^, G^, v^, v^), no such tests were planned 

for the present program. 
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2) T.S denotes failure In the test section In specimens without any residual 

stresses; R.S denotes that specimens contained residual stress (see Flg.Sf) 
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Section 3 

INTERNAL STRESSES IN SOLIDS CONTAINING VOIDS 

In accordance with the general study approach shown in Figure 1, the next 

step in formulating the micromechanics failure theory was to determine the 

internal stresses caused by voids. The pertinent results for this problem 

are presented herein and employed in Section 6 to study the interaction of 

stress concentration from fibers and voids, and in Section 5 in failure 

theory formulation. 

3. 1 THEORETICAL PREDICTION OF INTERNAL STRESSES FROM 
TRANSVERSE LOADING 

The model used in determining the stresses due to transverse loading is 

shown in Figure 15. As before, the voids are assumed to be cylindrical in 

shape and arranged in a square array. A detailed derivation of the approxi¬ 

mate expression for internal stresses at various locations is given in 

Appendix A: only the final equations are summarized here. The final 

CRS4 

r 21 
CYLINDRICAL 

VOID 

o''Q;CM- 

O O'O 

■MATRIX 

Figura 16. Mathematical Modal for Oatarmining Internal Streuet Duc to Transverse Loading 
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expressions for stress concentrations at locations A, B, C, D, and E 

shown in Figure 15 are: 

K xA _ 
xA a 

2 4 
2 + X* + 3\ 

2 - X2 - X4 
(8) 

K yA 
là. = 

2 4 
3(X - X ) 
-T— 

2 - X - X 
(9) 

K xB _ _6 
xB (T 2 - X 2 - X4 

(10) 

K yB (T 
là = (H) 

K = i(2 + X2-|x4)l 
xC <T j 2 

(12) 

K yC 
= >(.x^|x4)4 (13) 

K 
xD 

xD (T 
= (i-^) (2 - 5XZ + 3X4)^ (14) 

26 



where 

The theoretical stress concentrations at various locations are plotted in 
Figures 1 6 and 17. 

In actual composites containing fibers, voids, and matrix, the matrix, in 

which the voids are assumed to be located, is under triaxial stresses when 

the composite is subjected to transverse loading (see Table 1). For the 

case of a porous matrix subjected to externally applied triaxial stresses, 

the internal stresses can be obtained by superposition. As a first approxi- 

mation it is assumed here that the transverse stresses caused by exter¬ 

nally applied axial stresses* along the cylindrical void axis are small, 

which reduces the problem to that of determining the internal stresses in 

The axial stresses due to axial loading are considered in Subsection 3. 3. 

27 
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Figure 16. Internal Maximum Stresses ir Solids Containing Cylindrical Voids and Subjected to Transverse Loading 
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Figure 17. Secondary Stresses in Solids Containing Cylindrical Voids and Subjected to Transverse Loading 
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a porous solid under an externally applied biaxial loading (Figure 13). 

The internal biaxial stresses at the points of interest (A, B, C, D, and E) 

can be obtained by superposition: 

‘’’xA 

cf A 
yA 

axB 

«V 

TyB 

^xC 

^yC 

^xD 

‘"yD 

^xE 

^yE 

K a «r, + K o’, xA 1 yD 2 

K a (T, + K ^ (T, 
yA 1 xD 2 

KxB W'Z 

K (r +K 
xC 1 yC 2 

V'l 4 K*c"2 

K „ a + K A o-, 
xD 1 yA 2 

Kr.<r,+KA<r9 yD 1 xA 2 

K „ tr + K „0-, 
yE ) xB 2 

(20) 

where the K terms are given in Equations (8) through (17). The above 

equations can be used to predict the internal stresses in porous solids sub¬ 

jected to any combination of externally applied biaxial stresses. Fig¬ 

ures 19 and 20 show some typical results. The results shown in Figure 19 

are for a porous solid subjected to a 1:1 biaxial stress ratio, while those 

shown in Figure 20 are for a porous solid subjected to a 2:1 biaxial stress 

ratio. 
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3. ¿ EXPERIMENTAL STUDIES ON INTERNAL STRESSES FROM 
TRANSVERSE LOADING AND TEST-THEORY COMPARISON 

To verify the theoretically predicted stress concentrations caused by vo:ds, 

photoelastic test specimens were fabricated and tested in tension. Figure 21 

and its accompanying table show the geometry of the photoelastic test 

specimens. j.he test variable in various specimens was the void content, as 

is readily apparent from Figure 21. The photoelastic test specimens were 

made from Homalite 100, To ensure that the holes were stress free after 

machining, the holes were drilled using an end mill and WD40 as a coolant, 

which was fed continuously onto the end mill during drilling. This technique 

produced holes that were free of any residual stresses, as shown later in 

Section 5. In addition to the use of photoelasticity to measure the internal 

stresses and the differences between the principal stresses in plates with 

various void contents, the plates were instrumented with strain gages, the 

data from which were also used to obtain the stresses at various locations. 

The photoelastic test specimens were subjected to a tensile dead-weight load 

of 1, 220, 10 lb, and fringe orders were obtained under the said loading. 
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Specimen 
Configuration 

21 
(In.) 

R 
(In.) 

X-R/l 
k* 
V 

(%) 

Test Technique 

1 

2 

3 

4 

5 

1.586 

1.586 

1.586 

1.586 

1.586 

0.200 

0.284 

0.346 

0.400 

0.490 

0.252 

0.358 

0.437 

0.505 
0.618 

5 

10 

15 

20 

30 

Photoelasticity 

and Strain Gages 

* Nominal 
Figure 21. Photoelastic Test Specimen for Determining Internal Stresses in a Solid with Cylindrical Voids 
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Typical fringe patterns around the holes in four of the specimen configurations 

are shown in Figures 22 and 23. In addition, to the fringe patterns, these 

figures also show the location of the strain gages. Figure 22 shows the 

close-up view of the fringe pattern around the central holes, while Fig¬ 

ure 23 shows the fringe patterns around all 16 holes in specimens with two 

different void contents. 

The experimentally obtained stress concentrations in plates with various 

volume fractions of voids are presented in Tables B-l through 13-5 of 

Appendix B. Biaxial strains and biaxial stress concentrations are given at 

five points within the perforated plate, as shown in Table B-l, and also at 

a point away from the holes, Point O. Tables B-l through B-5 also show 

the differences between the principal stresses at various locations, as 

obtained by strain gages and by photoelasticity. Except for Point D, where 

the stresses and strains were extremely small and difficult to measure, the 

principal stress differences obtained by the two test techniques at Locations 

A, B, C, E, and O show good correlation. Most of the results obtained by 

the two test methods agree within 5 percent. 

The test-theory comparison of the internal stress concentrations in plates 

with voids is shown in Figures 24, 25, and 26. The theoretical stress con¬ 

centrations at various locations were calculated from Equations 8 

through 1 7. 

3. 3 INTERNAL STRESSES FROM AXIAL AND SHEAR LOADING 

In a composite containing fibers, matrix, and cylindrical voids aligned with 

the fiber direction, the stresses in the matrix in the direction of the void 

axis will generally be quite small if such a composite is subjected to exter¬ 

nal stresses in the direction of the fibers. The latter can readily be estab¬ 

lished using the law of mixtures. In view of the above, only an approximate 

equation is sought here for the stresses in a matrix containing cylindrical 

voids and subjected to externally applied stresses in the direction-of-void 

axis (see Figure 27). Applying the law of mixtures to the latter problem 

yields the following approximate expression for the stresses in a matrix 

% = (1 - V *3 = *3 (21) 
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Figure 27. Internai Stresses in Porous Solids Subjected to Loads in the Direction of Cylindrical Void Axis 
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or 

K ^ where K _ 
zC zC 

2 
) 

where, as shown in Figure 27, a ^ is the remotely applied stress in the 

direction of void axis and cr is the stress in the matrix. The variation of 
z 

a as a function of \ is shown also in Ficure 27. 
z 

If a solid containing cylindrical voids is subjected to shear loading, as 

shown in the diagram in Figure 28, the maximum internal shear stresses in 

the matrix can lie obtained from the following approximate expression 

T 
xz (¿¿) 

o r 

Txz _ K _ _1 
ti3 ~ xzA T7* 

(22) 

which follows readily from the elementary considerations presented in 

Appendix A. The variation of r /t, , as a function of \ is shown in Figure 28. 
' r xz 1 3 
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Section 4 

STRESS INTERACTION FROM FIBERS AND VOIDS 

If the internal triaxial stresses in a void-free fiber-reinforced composite 

subjected to transverse loading, aT (see Table 1 of Section 1), and the 

triaxial stress concentrations due to voids (Equations 20) are known, the 

stress concentrations in a composite containing fibers and voids can be 

obtained by superposition. 

4. 1 THEORETICAL STUDIES ON FIBER-VOID STRESS INTERACTION 
UNDER TRANSVERSE LOADING 

For an idealized composite model (shown in Figure 29), the stresses, 

including fiber-void stress interaction, at the points of interest (A, B, C, D, 

and E) can be obtained by superposition, and are 

a 
xA 

yB 0 

> 
(23) 

yD 

xE 
0 

yE 

Preceding pege Meek 
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Figura 29. Idealized Model Composite Containing Fibers, Voids, and Matrix 

where u is the applied transverse stress, K and K are given in Table 1 
i x y 

of Section 1 and are a function of constituent properties, and fiber volume 

fraction and -- ^yA’ ^yB "" are 8^verl Equations 8 

through 17. The terms Kx and correspond to Ex/E£ where E^: is the 

Young's modulus of a matrix containing voids. In obtaining Equations 23, 

it was assumed that the matrix stresses o- and a due to the fiber-induced 
x . y . matrix stress in the direction of cylindrical void axis are negligible. With 

this assumption the stress in the matrix normal to the plane of Figure 29 is 

<r * = K K _ o- 
z z zC T 

(24) 

where K is given in Table 1 of Section 1 and is given by Equation 21. 

Equations 23 and 24 give the triaxial stresses in the matrix of a composite 

consisting of fibers, cylindrical voids, and resin, and include the interaction 

of stress concentrations from fibers and voids. Typical results on the inter¬ 

action of stress concentrations from fibers and voids are shown in Figure 30. 
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4.2 EXPERIMENTAL STUDIES ON FIBER-VOID STRESS INTERACTION 
UNDER TRANSVERSE LOADING AND TEST-THEORY COMPARISON 

To establish the validity of the theory for determining the interaction of 

stresses from fibers and voids, large composite models were fabricated 

and tested in transverse tension. The test specimens consisted of a 

Homalite 100 matrix, aluminum disks to simulate fibers, and cylindrical 

voids. 

Figure 31 and its accompanying table show the geometry of the test speci¬ 

mens for determining the interaction of stress concentrations from fibers 

and voids. Figure 32 shows the test setup for photoelastic measurement of 

stress interaction, while Figures 33 and 34 show photoelastic fringe patterns 

in the two specimens containing matrix, fibers, and voids. 

As before (see Subsection 3.2), the photoelastic models were loaded in ten¬ 

sion using dead weights. The load corresponding to the fringe patterns 

shown in Figures 33 and 34 was 871.5 lb. The stresses were measured at 

locations shown in Figure 31. The test results on the fiber-void stress inter¬ 

action are presented in Table B-6 of Appendix B. Stresses at Locations a 

and e were measured as a cross-check for experimental errors. The stress 

concentration at Location a (single hole located away from inclusion or 

doubler) should be 3(r At Location e (in the matrix material) the stress 

should be equal to the applied stress, that is = or .. From the results 

shown in Table B-6 it is seen that the stresses at locations a and e are 

approximately what they should be. 

The experimentally obtained maximum stress concentrations in composite 

models containing fibers, voids, and matrix were compared with theoretical 

predictions. The test-theory comparison is shown in Table 5. Table 5 con¬ 

tains test data and two sets of theoretical results: (1) theoretical results for 

the problem of fiber-void stress interaction for the case when there are 

multiple voids between the fibers (see Figure 29) and (2) theoretical results 

for the case when there is a single void between adjacent fibers (Figure 31). 
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Figure 32. Photoelastic Test Setup for Determining Stress Interaction from Fibers and Voids

B.

The solution for Case 1 was obtaineri using the approach given in 

Subsection 4. 1. The solution for Case 2 was obtained as follows:

A. The effective Ytjung's modulus of matrix between adjacent fibers 
and its variation in direction y was rletermined by reducing in 

proportion to the area occupied by the void.

The load transfer between the adjacent fibers was calculated using 

the reduced Young's modulus of the mafix and equations given in 
the Appentlix of Reference 1. The results of these calculations are 

shown in Figure 5 5.

Since stress, S, acting at a distance beyond y = 3r does not 
influence the stresses at y - r (see Figure .\-2 and Reference 7) an 
average effective load acting on the element of matrix with void 
was calculated by numerically integrating betw^een -2r to +2r 
measured from the edge of the hole (or from y = +3r to y - -r from 

the center of the hole),

D. The average load "F^ was then used in the equations of .Appendix A 
to calculate the stress at the edge of the void located midway 

between the fibers.

C.
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The results presented in Table 5 and in Table B-6 of Appendix B show the 

importance of the fiber-void stress interaction effects. The stress con¬ 

centrations due to this interaction are significantly higher than the stress 

concentration due to fibers or voids alone. The importance of the fiber- 

void stress interaction is further illustrated in Figure 36. 

4. 3 THEORETICAL STUDIES ON FIBER-VOID STRESS INTERACTION 
UNDER SHEAR LOADING 

If a composite consisting of fibers, voids, and matrix is subjected to 

in-plane shear stress r^, the maximum stress in the matrix is 

approximately 

T# 
xz 

S K K * T, xz xzA LT (25) 

where is the shear stress concentration due to fibers (given in Table 2 

of Section 1) and Kx^A is the shear stress concentration due to voids (given 

by Equation 22). Figure 37 shows typical results on the fiber-void stress 

interaction in composites subjected to inplane shear loading. The accuracy 

of the results shown in Figure 37 has not yet been verified experimentally. 

4.4 INFLUENCE OF UNBONDED FIBERS ON STRESS CONCENTRATIONS 
IN COMPOSITES SUBJECTED TO TRANSVERSE, SHEAR, OR AXIAL 
LOADING 

If the composite contains unbonded fibers in addition to voids and fibers that 

are bonded to the matrix, the stress concentrations due to unbonded fibers 

can, as a first approximation, be assumed to be the same as the stress con¬ 

centrations due to cylindrical voids. « Thus for a volume fraction of unbonded 

fillers « k.j, the resultant stresses in the matrix can be obtained from the 

equations given up to now, if one sets k.f = k^. For a composite containing 

cylindrical voids and unbonded fibers in the amounts of k and k.„ respec- 

lively, the internal stresses due to both can be obtained by replacing k 

with kv£> ♦ kjj in the equations that were presented. 

This ■•■sumption is partially justified by the results presented in 
Reference 8. 
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Section 5 

FAILURE CRITERIA FOR POROUS SOLIDS AND FOR COMPOSITES 
CONTAINING FIBERS, MATRIX, VOIDS, 

AND INEFFECTIVE FIBERS 

Prior to formulation of failure theories for composites subjected to trans¬ 

verse and shear loading, studies were conducted on the failure modes of 

brittle and ductile matrix materials. The results of these studies were then 

used to formulate the failure theories for composites. 

5. 1 STRENGTH OF BRITTLE AND DUCTILE MATRIX AS INFLUENCED 
BY VOIDS 

To establish the failure of a brittle matrix as influenced by porosity, speci¬ 

mens of the type shown in Figure 12 were fabricated and tested in tension. 

These specimens were made of Homalite 100, which exhibits nearly linear 

stress-strain behavior to failure (Figure 13). 

Initially, the specimens were prepared by drilling holes (of predetermined 

size and spacing) in the specimens, without taking any special precautions 

for eliminating residual stresses. After the specimens had been prepared, 

examination of them under polarized light revealed the presence of residual 

stresses, as shown in Figure 38. Since the residual stresses are expected 

to influence the strength of the matrix, appropriate modifications were made 

in the hole drilling procedure to eliminate them. It was found that by using 

a carbide drill and drilling at a slow rate, while continuously dousing the end 

of the drill with WD40 as a coolant, resulted in test specimens that were free 

of any residual stresses, as shown in Figure 39. The figure shows two speci 

mens of identical geometry and identical hole pattern. The holes in the speci 

men on the left side of the figure were prepared by conventional drilling, 

while those in the specimen on the right were prepared as described above 

(using an end mill and WD40). Both specimens were photographed under 

polarized light. It is clearly seen that the specimen on the right in Figure 39 

is free of residual stresses. 
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The test data tor the tensile streniiths ot brittle matrix specimens with vari¬ 

ous void contents are shown in Table 4, while Table 3 shows the tensile 

strength data tor Homalite 100 tensile coupons without any voids. 

The test-theory comparison of the tensile strength of a brittle matrix con¬ 

taining voids is shown in Figure 40. The theoretical curve was based on a 

maximum stress criterion. The expression for the failure stress follows 

from Equation 10 and is 

(26) 

where k is the volume fraction of voids, <ro is the strength of the void-free 

matrix, Vand cr is the strength of the porous solid. Good agreement is shown 

to exist between test data and the results predicted by Equation (26.), especially 

in the region of practical interest (ky S 30 percent, which corresponds to void 

contents in actual composites of < 10 percent). 

Although no tests were performed on the influence of porosity on the tensile 

strength of a ductile matrix, test data on the above were found in Reference 8. 

The experimental results given in Reference 8 are for the tensile strength of 

aluminum plates with square arrays of circular holes. The aluminum plate 

models were similar to the models made of Homalite 100 and shown in Fig¬ 

ure 12. The test data as well as the theoretical prediction of the tensile 

strength of ductile material are shown in Figure 41. The theoretical curve 

was obtained from the following elementary equation 

M1- (27) 

where a is the tensile strength of the solid with voids, aQ is the ultimate 

tensile strength of the void-free solid, and ky is the volume fraction of voids. 

Each data point shown in Figure 41 is an average of two tests. Equation 27 

applies to materials exhibiting elastic-plastic behavior. The normalized ten¬ 

sile strength of brittle and ductile materials as influenced by porosity is 

shown in Figure 42, where it can be seen that for materials with low void 

contents, ductility of the matrix has a significant influence on its strength. 
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Figur* 40. Tesl Theory Comparison of Tensile Strength of Brittle Matrix Containing Cylindrical 
Voids Arranged in Square Array 
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Figur* 41. T**t-Th*ory Comparison of Ttnsile Strength of Ductile Material Containing Cylindrical 

Voids Arranged in Square Array __ 
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5. 2 TRANSVERSE TENSILE STRENGTH OF COMPOSITES 

The results presented above have been incorporated in the equations for 

predicting the transverse tensile strength of composites. For the case of a 

composite made with a brittle matrix and containing voids and unbounded 

fibers, the equation for transverse strength of such a composite is 

a 
K K* 

yr y 
K 

xr 
K* 

X 

(28) 

where r is the tensile strength of the resin, <r* is the tensile strength of the 

composite, and K* and K* are the stress concentration factors due to fibers, 
X y 

and can be obtained from Table 1. These factors are evaluated for E./E* 
f r 

where E* is the Young's modulus of the resin containing voids, and is given 

in Figure 9. 

The two remaining terms, K and K 
xr y r 

due to voids, and can be obtained from 

by substituting X.* for X where 

are the stress concentration factors 

Equations 10 and 17, respectively, 

X* = (29) 

and 

kvc = void content in a composite 

k.j = volume fraction of unbonded or ineffective fibers 

kj = total volume fraction of fibers in a composite 

The term X* essentially gives the nondimensional void and/or ineffective 

fiber spacing in a porous resin reinforced with fibers, whereas X gives the 

nondimensional void spacing in a matrix that does not contain any fibers. 

In deriving Equation 28 it was assumed that the composite contained at least 

one critical void. !n view of this assumption 

r 



if kvc, k.^ and k^ are set equal to zero. 

Since the matrix materials used in actual composites do exhibit some ductility 

(see Figures 45, 46, and 47 of Section 6), a failure criterion was also formu¬ 

lated for the transverse strength of composites made with a non-brittle 

matrix. Here use is made of the Hencky-von Mises distortion energy cri¬ 

terion to account for interaction of triaxial stresses in the matrix of a com¬ 

posite subjected to transverse loading. Even though the latter criterion 

actually predicts yield stresses rather than strength, it can be modified and 

used to predict failure of many materials as discussed in Reference 19. For 

an isotropic solid subjected to triaxial stresses the Hencky-von Mises cri¬ 

terion is (Reference 20) 

(ffff +<r<r +ffo ) 
\ x z X y y z/ (30) 

where a , a , and a are the triaxial stresses acting on the solid, and F is X y z 
the yield stress, or the uniaxial tensile strength of the material if Equation 

30 is used to predict failure. The criterion as siven by Equation 30 is not 

directly applicable for predicting the strength of filamentary composites sub¬ 

jected to transverse loading, since such composites are orthotropic. The 

problem of material orthotropy can be resolved by applying the criterion to 

the internal triaxial stresses in the matrix, which result when a composite 

is subjected to transverse loading. Using this approach, the following equa¬ 

tion is obtained for predicting the transverse tensile strength of composites 

*T "r KÎDKÎ)2+ (KÏDKJ+KÎAKÎ)2 

+ (KîrKî)2- |(*ÎAKîtKÎDKî) (KïnK; 

(31) 

f K*. K*) + K* K* (R*aK* + K* K*) 
yA x/ zr z V xA x yD yf 

K* K^K^K* + K*K* 
z r z \ xD y yA x 

-1/2 
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where <r r is the uniaxial tensile strength of the matrix, ia the tranaverae 

concentrations due to fibers, and the remaining terms are the aireas con¬ 

centrations due to voids and ineffective fibers. The values of K , K*, and 
• V 

K# can be obtained from Table 1. The asterisk (^) used in these terms 
z 

denotes that they have to be evaluated for where E£ ta the Young's 

modulus of the matrix containing voids. The remaining terms ^yp* ^i)' 

K^, and K*r) can be obtained from equations given in Section i, modified 

according to Equation 29. The final expressions for these terms are 

■ -pr? 02) 

1 06) 

where \ * is given by Equation 29 and is a function of void content, fiber 

volume fraction, and volume fraction of unbonded or ineffective fillers. The 

term can lie obtained from Equation 19 by substituting X X o in the latter 

equation. Inasmuch as the tensile failure of a non-brittle material containing 

voids and subjected to transverse loading was found to lie governed by the 

maximum average stress acting on the iigament of matrix between two 

adjacent voids (see Figure 41 and Equation 27), use was therefore made of 

Equation Î2 for the transverse stress concentration due to voids rather than 

of Equations 8 or 10, which give the stresses at the void boundary and midway 

between the voids. Equation )2 can be obtained from consideration of force 

Average stress at the point where the width of the matrix between two 
adjacent voids is minimum. The average stress at that point is maximum. 



equilibrium *1 lhe (»lint of inlereat, or by inteitr«tin|t « given by 

Equation A- 10, between the Hmltt y ■ R and y ■ I, and dividing the reault 

l»V <1- R ). 

Having the expreftaione for 'he various terms appearing in Equation II, ihe 

latter can tie used to predict the Iran* verse tensile strength of fiber- 

reinforced composites containing fibers, voids, and unbonded or ineffective 

fibers. If the composite contains no voids or ineffective filters, it can be 

readily shown that 

K 117) X 

K* ■ 
Y 

K 
y 

K* ■ K 

and Equation II reduces to 

which is the transverse tensile strength of the composite with no voids or 

unbonded fibers. The terms K , K , and K given in the above equation can 

lie obtained directly from Table I. If the material contains only voids and 

no fibers, then 



and Equation 11 reduce* to 

or 

Since 

and 

>n -/> 

- X4 

1X2(1 - X) 

77 X2 

Equation 40 is identical to Equation ¿7. 

(19) 

(40) 

Typical result* for the tranaverae tenaile atrength of compoaitea made with 

brittle and ductile matrix materiala are ahown In Figure 41. Theae reaulta 

were calculated from Equationa ¿8 and II. An example of applying Equa¬ 

tion 11 to predict the tranaverae tenaile atrength of compoaitea ia given in 

Appendix €. 

S. 1 SIIEAK STRENGTH OF COMPOSITES 

An approach aimilar to that preaented in the prevloua section was employed to 

predict the shear atrength of compoaitea from the properties of their con¬ 

stituent* and the composite’s ndcrestructure. The equation for the shear 

atrength of a composite ia 

(41) 

n> 
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where r is the shear strength of the matrix and K* is the shear stress 
r X* 

concentration due to fibers, and can be obtained from Table 2. 

Kx% 

As before, the asterisk (¢) denotes that K*^ has to be evaluated for Gf/G<, 

where G* is the effective shear modulus of the matrix with voids, and is 

given in Figure 10. The term K* A appearing in Equation 41 is the shear 

stress concentration due to Voids or unbonded fibers, and can be obtained 

by combining Equations ¿¿ and 29 

(42) 

Typical results for the predicted shear strength of composites are shown in 

Figure 44. 
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Section 6 

FABRICATION AND TESTING OF ACTUAL COMPOSITES FOR 
VERIFICATION OF FAILURE THEORIES 

To establish the accuracy of the failure theories for predicting the transverse 

and shear strength of composites, 24 unidirectional composite panels were 

fabricated, and appropriate test specimens were prepared from the various 

panels. Three different types of fibers and two different resins were employed 

in fabricating the panels: S-glass fibers, Modmor II graphite fibers, boron 

fibers, 1004 epoxy resin, and SC 1008 phenolic resin. In addition to the above, 

resin castings were prepared and tested to characterise the matrix materials, 

6. 1 MATRIX MATERIALS AND THEIR PROPERTIES 

The matrix materials were characterised for specific gravity, ultimate tensile 

strength, Young's modulus, Poisson's ratio, and ultimate strain to failure. 

Moreover, stress-strain curves were obtained for the two resin systems, 

1004 epoxy resin and SC1008 phenolic resin. The test specimens were pre¬ 

pared from resin castings. The 1004 epoxy resin casting was prepared by 

stacking layers of resin film (■ 3 inch wide by 0.005 inch thick) in a mold, 

pulling the vacuum on the mold with resin, and heating the mold at 2 degrees 

per minute to 350°F. The resin was cured for 2 hours at 350CF. Dog-bone¬ 

shaped tensile coupons with provisions for pin loading were then machined 

from the resin casting. Inasmuch as specimen preparation and detailed 

characterisation of SC1008 phenolic was not planned in this program, SC1008 

resin castings available from some previous work performed at MDAC were 

used for making the test specimens. In addition to dog-bone-shaped tensile 

The casting was made by placing the resin in a mold, slowly raising the 
temperature from 70°F to -300°F over a 7-day period, curing the resin at 
-300°F for 3 hours, and cooling the casting in the oven over 1.5-day period. 
This cure cycle was found necessary to obtain void-free resin castings. 
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specimens, specimens with square cross sections were also prepared for 

measuring the resin shear strength. Moreover, several of the specimens 

made with SC 1008 resin were post-cured at 350°F for 4 hours to establish the 

influence of post-curing on the resin properties. 

The measured properties of the two resins are given in Table D-l of Appen¬ 

dix D and summarised in Table 6. Both strain gages and a lightweight Instron 

extensometer were used to determine the Young's moduli of the resins. The 

Young's moduli obtained with strain gages were somewhat higher than those 

obtained with the Instron extensometer. The strain gages were found to 

have a significant influence on the tensile strength of resins. The tensile 

strength of specimens instrumented with strain gages was found to be * 34 to 

52 percent lower than the tensile strength of specimens without strain gages. 

Table 7 shows the influence of strain gages on the tensile strength of resin, 

and on the tensile strength of Homalitc 100. It is noted here that all the 

specimens for which data are presented failed in the test section. 

Typical stress-strain curves for the 1004 epoxy resin, SC1008 phenolic resin, 

and post-cured SC 1008 phenolic resin are shown in Figures 45, 46, and 47. 

6.2 FIBER MATERIALS AND THEIR PROPERTIES 

Three types of reinforcing fibers were used to make the composites: S-glass 

fibers, Modmor H graphite fibers, and boron fibers. No tests were con¬ 

ducted on the properties of the fibers, so these were obtained from the lit¬ 

erature, primarily from Reference 10. The fibers and their properties 
are summarised in Table 8. 

6.3 FABRICATION OF COMPOSITE SPECIMENS 

In order to verify the failure criteria, unidirectional composite specimens 

were prepared from various combinations of fibers and resins. The various 

specimens were made from flat panels having unidirectional fiber orientation. 

Both filament winding and prepregs were used to make the panels. The 

composites made of S-glass and 1004 epoxy resin were made by winding 

filaments of glass rovings onto a mandrel covered with a thin film of 1004 

epoxy, taking the resultant prepreg off the mandrel, cutting it up into squares 

* 8 inch by 8 inch, and stacking these squares in a mold. The assembly was 

7« 
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then cured as described later. Composite panels were also made from pre- 

pregs purchased from Narmco Whittaker and U.S, Polymeric. These 

included: 

A. Modmor II fibers in 1004 epoxy resin 

B. Boron fibers in 1004 epoxy resin 

C. S-glass fibers in SC1008 phenolic resin 

D. Modmor II graphite fibers in SC 1008 phenolic resin. 

The boron prepregs contained 104-glass scrim cloth. 

To achieve various fiber and void contents, processing parameters were 

varied. The processing parameters employed in fabricating the various 

composite panels are presented in Table 9. The nominal size of the various 

panels was 6 inch by 6 inch by 0. 10 inch. After the panels were made, the 

top and bottom surfaces of each panel were ground to remove any resin-rich 

areas. Following the surface grinding, three transverse tension and three 

interlaminar shear specimens were machined from each panel. 

6.4 TRANSVERSE TENSILE STRENGTH DATA FOR COMPOSITES 

The approximate dimensions of the transverse tension specimens were 

=0. 10 inch by 0.75 inch by 4.0 inch. Two transverse tension specimens 

from each panel were straight-sided, while the third specimen was a dog-bone 

shape. Transverse tension strength and Young's modulus were measured 

from the transverse tension specimens. The Young's modulus was measured 

using a lightweight Instron extensometer. 

The transverse tension strength test data for various composites are presented 

in Tables D-2, D-3, D-4 and D-5 of Appendix D, whereas Tables 10, 11, and 

12 show the average values. In addition to performing the transverse tension 

tests, determinations were made of the specific gravity, fiber content, and 

void content of all composite specimens. The specific gravity of the various 

specimens was determined by gravimetric technique and also from the mea¬ 

sured dimensions and weights of each specimen. The fiber and resin weight 

fractions in the various specimens were determined by the following 

techniques : 
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A. Using resin burnout for glass epoxy and glass phenolic composites. 

B. Using hot nitric acid digestion for graphite epoxy and graphite 

phenolic composites. 

C. Using hot sulphuric acid digestion for boron epoxy composites. 

The composite samples used in resin and fiber content determinations came 

from transverse tension specimens after the latter were tested. To ensure 

that the acids did not attack either the graphite fibers or the boron fibers, 

uncoated graphite and boron fibers were placed in beakers of acid and exposed 

to the same environment as the composite test specimens on which the acid 

digestion tests were being performed. No appreciable weight loss due to 

exposure of fibers to acid was found in either type of fiber. The fiber weight 

loss was less than 0.5 percent. 

Following the determination of the specific gravity of composites, and the 

weight fractions of fibers and resin in each composite, the apparent and true 

fiber volume fractions and void contents were determined rom the following 

equations. 

Apparent fiber volume fraction k^. 

1 

Wr pf 
1 + --^ w, p 

f ' r 

Void content k 
vc 

k = 1 
VC 

'm 

P-£^_ + p 
w pf rr 

r rf 
1 + w. p 

f r 

True fiber volume fraction, k^., 

*£ = ('-kvc) kf 

(43) 

(44) 

(45) 
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where 

wr = weight fraction of resin 

Wj. = weight fraction of fibers 

Pr = density of resin 

Pj. = density of fibers 

Pm = measured density of composite 

The results for kp kp and kvc are also presented in Tables D-2, D-3, D-4, 

and D-5 of Appendix D, as well as Tables 10, 11, and 12 in this section. 

6.5 INTERLAMINAR SHEAR STRENGTH DATA FOR COMPOSITES 

The approximate dimensions of the interlaminar shear specimens were 

0. 10 inch by 0.375 inch by 1.0 inch. The span-to-thickness ratio for inter¬ 

laminar shear specimens was kept 4:1. Only the interlaminar shear strength 

was measured from these tests. Quarter-inch diameter pins were used for 

supports and for applying the load. Several of the specimens were also tested 

using an 0. 125-inch-diameter loading pin. No trend was found as a result of 

using different size pins. The interlaminar shear strength data are also 

shown in Tables D-2, D-3, D-4, and D-5 of Appendix D, as well as in 

Tables 10, 11, and 12 in this section. The latter three tables show the 

average test results. 
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Section 7 

COMPARISON OF MEASURED TRANSVERSE TENSILE AND 
INTERLAMINAR SHEAR STRENGTH WITH MICRO¬ 

MECHANICS FAILURE THEORY PREDICTIONS 

To establish the validity of the micromechanics failure criteria for transverse 

and shear strength of composites, the test data presented in Section 6 was 

compared with the theoretical predictions based on equations of Section 5. 

7. 1 TEST-THEORY COMPARISON OF THE TRANSVERSE TENSILE 
STRENGTH OF COMPOSITES 

Inasmuch as the transverse strength of composites is a function of the volume 

fraction of ineffective fibers, k.f, (see Equations 29 to 36) the volume fraction 

of such fibers had to be estimated before test-theory comparison of the trans¬ 

verse strength could be made. This was done by plotting the theoretical and 

experimental results for the transverse Young's modulus of the composites, 

and postulating that any difference between the two sets of results in due to 

voids and ineffective fibers Reference 14. Figures 48 and 49 show such plots 

for composites made with glass and graphite fibers. Moreover, examples 

arc shown there on how the apparent volume fractions of ineffective fibers 

were estimated. By plotting ET versus kf rather than kf, the influence of 

porosity on ET was subtracted. Therefore, in accordance with the above 

hypothesis, the difference between kf, corresponding to the theoretical value 

of E^,, and kj. corresponding to the experimental value of E^, is the apparent 

volume fraction of the ineffective fibers, k.f. For any given data point, the 

true volume fraction of ineffective fibers, is equal to 

hr = Kc) hr (47) 

where k is the void content of a given specimen, from which the experimental 

E was measured. The estimated ineffective fiber volume fractions for the 

specimens made with glass and graphite fibers, as well as other pertinent data. 
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CR84 

O O TEST DATA FOR GLASS/EPOXY 

□ □ TEST DATA FOR GLASS/PHENOLIC 

- THEORY [1], BASED ON THE FOLLOWING 
AVERAGE PROPERTIES OF CONSTITUENTS: 

Ef « 12.4 X 106 PSI 

Figure 48. Test-Theory Comparison of Transverse Young's Modulus of Composites Made with S-Glass Fibers 
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O O TEST DATA FOR GRAPHITE/EPOXY 

Figure 49. Test Theory Comparison of Transverse Young’s Modulus of Composites Made with Graphite Fibers 
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are presented in Table 13. Using the data given in Table 13 and the equations 

of Section 5, theoretical predictions were made of the transverse tensile 

strength of the composites. Figures 50 and 51 show the test-theory com¬ 

parison, as well as the constituent properties and other data that were used 

to obtain the theoretical curves. The failure theory described in Section 5 is 

based on the assumption that the fibers are isotropic, therefore the deter¬ 

mination of predicted strength of composites made with glass fibers was 

straightforward, since such fibers are generally assumed to be isotropic. 

The above assumption does not, however, apply to composites made with 

graphite fibers, inasmuch these fibers are strongly orthotropic, as shown in 

the previous section. The influence of fiber orthotropy was accounted for 

approximately by assuming that the internal stresses in the matrix of the 

composite are governed by directions x and y, and by in direction 

z, that is 

Except for the above modification, the theoretical curve shown in Figure 51 

was determined in the same way as the curve shown in Figure 50. Each test 

point shown in Figures 50 and 5 1 is an average of three tests (see Tables 10, 

11, and 12 and Tables D-2, D-3, and D-4 of Appendix D). 

Except for one test point in Figure 51, the test-theory correlation is fairly 

good. The fact that some of the test data are higher than the theoretically 

predicted values could be attributed to: 

A. Experimental errors. 

B. Errors in the void, resin, and fiber content determinations. 

C. The properties of the in situ resin in composites may be different 

than those measured from resin castings 

D. Assumptions made in the theory formulation. Residual stresses, void 

shape, size, and distribution, fiber array and fiber-matrix interface 

may influence 

E. Processing parameters that were employed may influence matrix 

properties and thereby 

»4 



The correlation of measured and predicted «trength properties using data 

corresponding to each specimen Is also expected to yield Improvements in 

test-theory agreement. As noted in Figures 50 and 51. the theoretical curves 

shown in these figures are based on average kf corresponding to all com¬ 

posites for which data arc shown therein. Items A through E, and other items 

involving theory refinement will be investigated in the future. 

Further test-theory comparison of the transverse tensile strength oi com¬ 

posites is presented in Figure 52. The test data shown there are from 

Figure 50 and from the literature (References 14 and 151. The composites 

for which test data was found were made from different resins than those used 

in the present program, therefore the transverse tensile strength of compos¬ 

ites. Oj, was normalized with respect to tensile strength of various resins. 

No test-theory comparison is presented herein for the transverse tensile 

strength of boron epoxy composites. The reason for this is that the failure 

theory applies to composites containing fibers, matrix, voids, and ineffective 

fibers, whereas the boron composites contained 104-glass scrim cloth in 

addition to the above variables. Therefore, the theory as presented in Sec¬ 

tion 6 is not applicable to such composites. The failure theory can, however, 

be extended to such composites if the influence of scrim cloth on internal 

stresses due to fibers, voids, and ineffective fibers is established. No 

attempt was made to do this in the present program. 

7 2 TEST-THEORY COMPARISON OF THE INTERLAMINAR SHEAR 
STRENGTH OF COMPOSITES 

The test-theory comparison of the interlaminar shear strength of composites 

made with S-glass fibers and graphite fibers and two different resin systems 

is shown in Figures 5Î and 54. The test data from Section 6 is compared 

therein with the theoretical results predicted by Equation 41. In calculating 

the theoretical results shown there, it was assumed that the fiber contents, 

void contents, and the volume fractions of ineffective fibers in the inter¬ 

laminar shear specimens were the same as in the transverse tension specimens 
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G 0 TEST DATA FOR GLASS/EPOXY 
(EACH DATA POINT IS AVERAGE OF 3 TESTS) 

Figure 50. Test Theory Comperiion of the Transwerte Tensile Strength of Composites Made with Glass Fibers 
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O O TEST DATA FOR GRAPHITE/EPOXY 

□ 0 TEST DATA FOR GRAPHITE/PHENOLIC 
(EACH DATA POINT IS AVERAGE OF 3 TESTS) 

THEORY (EQN. 31) BASED ON THE FOLLOWING 
PROPERTIES OF CONSTITUENTS: 

EfT 3 1.6 X 10° PSI 

EfL « 40 X 10° PSI 

0.548 X 10° PSI 

“ 0.2 

11.92 X 10J PSI 

kvc 4 ~k1f 

k1f) 

0.55 (AVERAGE FOR ALL COMPOSITES 
FOR WHICH DATA ARE SHOWN). 

THEORY (EQN. 31) 

2 

0 OJO 0.20 0.30 0.40 0.50 

B 
Figure 51. Test-Theory Comparison of Transverse Tensile Strength of Composites Made with Graphite Fibers 
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O®® TEST DATA 

Figure 52. Test Theory Comparison of the Transverse Tensile Strength of Composites Made with S-Glass 
Fibers and Different Resins 
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CR84 

• 8 r 

0 0 □□ TEST DATA FROM SHORT-BEAM SHEAR TESTS. 

0 TEST DATA FOR GLASS/EPOXY 

TEST DATA FOR GLASS/PHENOLIC 

THEORY (EQ. 41) 

THEORY (EQ. 41) ASSUMING STRESS 
CONCENTRATIONS DUE TO FIBERS ARE 
RELIEVED BY INELASTIC BEHAVIOR OF 

1). MATRIX UNDER SHEAR LOADING ■ 

THEORETICAL CURVES BASED ON THE 
FOLLOWING PROPERTIES OF CONSTITUENTS 

i ASSUMED THE SAME AS FOR] 
'TRANSVERSE TENSION ; 

1 (kf-k|f) (SPECIMENS. 

THEORY (EQ. 41 WITH Kxz = II 

Figure 53. Test - Theory Comparison of Shear Strength of Composites Made with Glass Fibers 
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Figure 54. Test-Theory Comparison of Shear Strength of Composites Made with Graphite Fibers 

100 



(see Table 13). Moreover, since the shear strength of the resins was not 

measured experimentally, the latter was estimated from the following 

equation 

T 
r 

S 

<r a tr_£i_ 

kr)2 - Kr) kcr)l 
1/2 

(48) 

where is the shear strength of the resin, o^r is the tensile strenght of 

the resin, and is the compressive strength of the resin. Equation 48 was 

derived by resolving the shear stress acting on an element of resin into ten¬ 

sile and compressive stresses, and applying a Norris-type failure criterion 

(Reference 9) to predict failure (Reference 16). In doing this, the difference 

between tensile and compressive strength of resins was taken into account. 

The compressive strength of most resins is -30 ksi, while the tensile strength 

of the resins investigated in this program was »12 ksi; therefore, with these 

values Equation 48 gives:': 

t = 19.4 ksi r 

The latter value is in general agreement with results reported in Reference 17. 

From the results shown in Figures 53 and 54 it is apparent that the shear 

strength of the composites predicted by Equation 41 (solid curves) gives values 

significantly lower than those of the test data. Several factors could be 

responsible for this, mainly: 

A. Inelastic deformations of resins under shear loading. 

B. The fact that volume fractions of ineffective fibers in the short beam 

shear specimens may be lower than those found in the transverse 

tension specimens becaxise the maximum shear stress acts over a 

much shorter gage length. 

C. Non-applicability of the short beam shear test to determination of 

the shear strength of composites. 

See the end of this section for further discussion on the validity of 
Equation 48. 
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D. Experimental errors. For example, the fiber, resin, and void 

contents in the short beam shear specimens may have been different 

than the values given in Table 13, which were used to obtain the 

theoretical curves. 

Because resins generally exhibit inelastic behavior under shear loading, one 

would expect relief of stress concentrations due to fibers. The dashed curves 

shown in Figures 53 and 54 were calculated on this basis, that is assuming 

that K|: —1 due to inelastic deformation of resin under shear loading. By 
xz 

making this assumption, a better correlation is obtained between test and 

theory. 

Inasmuch as the gage length in the short-beam shear test is much smaller 

than the gage length in the transverse tension test, it is reasonable to expect 

that the ineffective fibers would not influence the short-beam shear strength 

as significantly, if at all, as they would the transverse tension strength. By 

assuming no influence of k.j. on TLrp, the results shown in Figure 55 were 

obtained. In calculating the dashed curve shown therein it was also assumed 

that the matrix undergoes inelastic deformations under shear loading, that 

is K;: --1. The final equation for the shear strength of composites resulting 
xz 

from application of the above-stated assumptions to Equation 41 becomes 

(49) 

As to item (C) given above, it has been shown in Reference 18 and other refer 

enees that the shear strength obtained from the short-beam shear tests is 

generally higher than the shear strength obtained from the pure torsion tests. 

A simple explanation for this (Reference 16) seems to be that in the short- 

beam shear test the material located in the failure area is not under pure 

shear loading, as is assumed, but rather under combined loading (shear and 

compression), as shown in Figure 56. The compression component of the 

load comes from the load P applied to the beam. The compression stress 
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varies from a maximum at the point on the top surface of the beam, where the 

load is applied to zero at the bottom surface of the beam. The inQuence of 

combined loading on the apparent shear strength is shown in Figure 57 

(Reierence 16). It is seen there that under certain conditions the apparent 

shear strength obtained from the short-beam shear test can be almost twice 

as high as the true shear strength of the material. 

Although no torsion tests were performed on composites, shear strength data 

obtained from such tests on graphite epoxy composites was found in the lit¬ 

erature (Reference 19). Figure 58 shows the comparison of these results 

with the theoretically predicted shear strength. 

The composites for which shear strength data are shown in Figure 58 were 

made of Thornel 40 graphite fibers and 828/1031 MNA/BDMA resin. The 

shear strength of these composites was obtained from torsion tests on solid 

rods. Although no void contents were given for individual specimens, it is 

shown in Reference 17 that the void contents varied from *0 percent to ~4 per¬ 

cent. Consequently the predicted curve shown in Figure 58 was based on an 

average void content of 2 percent. Since sufficient data were not given in 

Reference 17 for estimating k.f, the k.f was estimated from the data given in 

Table 13. The average void and ineffective fiber contents for graphite epoxy 

composites shown in Table 13 were kvc=3.06 percent and h.f*9.5 percent. 

From the above data the k.f corresponding to k =2 percent was estimated to 

be 6.2 percent. 

The elastic and mechanical properties of the 828/1031 epoxy resin were found 

in References 15 and 17, and are shown in Table 14. Neither reference gives 

a complete set of mechanical properties data. However, the combined data 

from the two references was found to be sufficient for estimating t:£_. It is 

of interest to compare here the measured shear strength of the resin with the 

resin shear strength estimated by Equation 48. Substitution of <^=9.6 ksi, 

a =58.5 ksi in Equation 48 gives 
cr 

T = 14.6 ksi 
r 
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o o TEST DATA OBTAINED FROM SOLIO TOD TORSION 
° TEST ON GRAPHITE/EPOXY COMPOSITES [19] 

FIBER MATERIAL: AS RECEIVED THORNEL 40 

MATRIX MATERIAL: 828/1031 MNA/BOMA 
EPOXY RESIN 

-THEORY (EQN. 41) BASED ON THE FOLLOWING 
PROPERTIES: 

Gf « 1.2 X 106 PSI 

Gr » 0.238 X 106 PSI 

T « 13.6 X 103 PSI 
r 

k * 2¾ vc 
kif - 6.2¾ 

Rf * VARIABLE 

.THEORY 
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whereas if ? is taken as equal to the yield stress cr 
Equation 48 gives 

(o- =<r =20.75 ksi) then cr yr 

Tr = 15.7 ksi 

as compared to the measured shear strength of the resin 

T = 13.6 ksi. 
r 

From the above results, it can be concluded that Equation 48 gives a reason¬ 

able estimate for the shear strength of resin. 

The test-theory correlation shown in Figure 58 is quite good as compared to 

that shown in Figures 53 or 54. The improved correlation further fortifies 

the argument regarding the non-applicability of the short-beam shear test to 

determination of the true shear strength of composites. 

Future studies of the items discussed above are planned to refine the failure 

criterion for composites subjected to shear loading. 
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Section 8 

CONCLUSIONS AND RECOMMENDATIONS 

Based on the work performed to date, the following conclusions and 

recommendations are made: 

• The micromechanics failure criterion for transverse tensile strength 

of composites was found to show fair correlation with test data from 

actual composites. Further theory refinement appears to be desir¬ 

able, Specific items which need further investigation are: verifica¬ 

tion of secondary assumptions made in the failure theory formulation; 

influence of void size, shape, and distribution; inelastic matrix 

effects; and influence of residual stresses. 

• The micromechanics failure criterion for shear strength of compos¬ 

ites was found to show fair correlation with test data (given in lit¬ 

erature) obtained from solid-rod torsion tests. The test-theory 

correlations using the data from short-beam shear tests were found 

to be poor, although the predicted shear strengths were conservative. 

Torsional testing of composites and of the matrix materials is 

required before the validity of the theory can be assessed. The 

influence of items discussed in Item A on the shear strength of com¬ 

posites needs additional investigation. 

• The transverse tensile and shear strengths of composites were found 

to be influenced by the fiber properties, matrix properties, fiber 

content, void content, and volume fraction of ineffective fibers. To 

apply the failure theories to composites made with anisotropic 

graphite fibers, estimates had to be made of the anisotropic prop¬ 

erties of such fibers and of the internal stresses in composites made 

with such fibers. Attempts should be made to measure these prop¬ 

erties. Moreover, the failure criteria presented in this report should 

be extended to account for the influence of fiber anisotropy on the 

transverse tensile and shear strengths of composites. 

• Experimental studies employing model composites were found to be 

an invaluable tool in verifying the various steps leading to the for¬ 

mulation of a micromechanics theory for the transverse tensile 

strength of composites. Similar types of experiments would be 

desirable for verifying the various steps employed in the formulation 
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of micromechanics failure criteria for the shear strength of 

composites . 

Approximate theory for tensile strength of ductile and brittle mate¬ 

rials containing voids was found to show good correlation with test 

data. The influence of matrix ductility on shear strength needs to be 

determined experimentally. 

For composites containing low void contents (kvc < 5 percent), 

matrix ductility was found to have a significant influence on the trans¬ 

verse tensile strength of composites (Figure 42). For such com¬ 

posites (low kvc) the matrix ductility was found to have a more sig¬ 

nificant influence on the transverse strength of composites than did 

the parameters of the third item of this section. 

Interaction of stress concentration from fibers and voids was found 

to be one of the key parameters influencing the transverse tensile and 

shear strength of composites. Consideration of stress concentrations 

due to fibers alone or voids alone was found inadequate in predicting 

the strength of composites. 

Use of strain gages on resin tensile specimens was found to reduce 

their tensile strengths as much as 52 percent as compared to the 

tensile strengths of resins without any strain gages. 

Some preliminary conclusions as to how the constituent properties influence 

the transverse tensile and shear strength of composites, and recommendations 

for improving these properties are as follows: 

• For void-free composites the transverse tensile strength, 

decreases with increasing Ef/Er ratio and with increasing kf. The 

transverse tensile strength can be increased by decreasing kf, 

increasing cr or increasing E (from Equation 38). r r 
• Both the transverse tensile strength, and the shear strength, 

decrease with increasing void content k^ . The void content T', , -- ^ VC 

k can be reduced by using appropriate processing techniques (see 
vc 

Table 9 for example). Reducing k_ by using high pressure vc 
during processing is not considered the best approach since by 

increasing the pressure, the fiber content, kf, increases, which in 

turn decreases tr^ and t;£t (see the previous item and Figures 44 

and 58). Perhaps the prepregs should have higher resin contents, 
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than they have now, to avoid high k^.'s. Once composites with low 

void-contents, say kvc £ 1 percent, have been achieved, further 

increases in tr*, and can be obtained by using resins exhibiting 

ductility under tensile loading. Increased matrix ductility can be 

achieved through using new resin formulations or by modifying the 

cure cycles of the existing resins. (Extending the cure cycle over a 

longer period of time was shown in Subsection 6. 1 and Figure 46 to 

yield relatively ductile materials.) 

Finally, the transverse and shear strengths of composites can be 

increased by decreasing the volume fraction of ineffective fibers, 

k.p The latter is expected to be a function of the fiber-matrix inter¬ 

face. Establishing what are the optimum properties of the interface 

to minimize k.^. and thereby maximize <r*, and -rj^ would require 

indepth theoretical study of the problem. 
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APPENDIX A 

STRESSES AND DEFORMATIONS OF POROUS SOLIDS 

Microscopic observations of composites performed at MDAC, NRL, and by 

other investigators indicate that the voids within the matrix are nearly 

circular in cross section and are elongated. It is reasonable therefore to 

idealize the voi<jls as cylindrical in shape. The influence of such voids and 

stresses and deformations of the matrix can be established as shown herein. 

A. 1 EFFECTIVE YOUNG'S MODULUS OF A SOLID CONTAINING A SQUARE 
ARRAY OF CYLINDRICAL VOIDS 

For a solid containing cylindrical voids arranged in a square array (Fig¬ 

ure A-l), the average stress at any point x, such as at section A-A, is 

a x 
(A -1 ) 

in the region 0 £ x - R and 

(T x *1 
(A -2) 

in the region R < x < i, where the various terms are defined in Figure A-l. 

The average strain, at any point x is then 

€ 
X 

(A -3) 

Since <x is a function of x, therefore the strain over the width 2£ of the 

repeating element is 

Preceding page blank 
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Figure A-1. Solid Containing a Square Array of Cylindrical Voids 

Combining Equations A-1, A-2, A-3, and A-4, and integrating over the 

indicated limits gives 

t 
1 

tan 
-i ynx 

yr T-X (A -5) 

where 

(A -6) 

and k is the volume fraction of voids. The effective Young's modulus E. of 
V 

a solid containing cylindrical voids is then simply 

E 
1 

(A -7) 

The effective Young's modulus in Direction 2 is also equal to Ep 
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A. 2 INTERNAL STRESSES IN POROUS SOLIDS DUE TO TRANSVERSE 
NORMAL LOADING 

If a solid containing a square array of cylindrical voids is subjected to 

normal loading (Figure A-l), stress concentrations will occur due to the 

presence of voids. To obtain these stress concentrations and the stress 

distribution within the repeating element bounded by boundaries ab, bd, dc, 

and ca (Figure A-l), advantage can be taken of the symmetry conditions, 

which require that the boundaries of the deformed repeating element remain 

parallel to the boundaries of the undeformed repeating element. The latter 

requirement essentially imposes a condition that the external boundaries of 

the repeating element undergo uniform strains at x = ±Éand at y - ±L The 

second condition that needs to be satisfied is that the radial and shear 

stresses vanish at the boundary of the void, that is at 

R = /x2 + y2 (x, y < R) 

Both conditions can be satisfied if we seek a solution in the form 

<r 
x (fiHV'i (A -8) 

where fj and Í2 are the still unknown functions, one of which, fsatisfies 

the conditions at the void boundary, and the other, satisfies the condi¬ 

tions at the external boundary (x=£) of the repeating element. The function 

f1 can be determined from the results for a plate with a single hole. For 

this problem (Figure A-2), the three stress components due to remotely 

applied stress S are (Reference 7) 
CR84 
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s 
2 

cos 26 
a 
r 

1 - + 

<r 
re 

sin 26 

(A -9) 

These stresses can be expressed in terms of Cartesian coordinates by means 

of the following equations: 

^ = <rr cos20 + <re sin2e - <rr0 sin 26 

= (rr sin2e + o-g cos26 + ar0 sin 26 

= 4 sin 26 + ^re cos 26 xy ¿ r o 1 « 

sin 6 

cos 6 

sin 26 

cos 26 

X 

2 2 
X +y 

2 2 
= _x ~y_ 

x^ +y^ 

(a) 

(b) 

(c) 

(d) 

(e) 

(A -10) 

(A -11 ) 

(A-12) 

(A-13) 

r 



Combining Equations A-9, A-10, A-ll, A-12, and A-13 gives 

2x4+2v4+4x2v2-R2x2+R2v2 , 4R2x2(3y2-x2) , 3R4(x4+y4-6x2V: 
—+ — 

(A-14) 

<r = 
„2. 2 2v .„2 2.2, 
L,4X.,-j ) + 4J: y (y -3^ , 2X 2.2 , 2' 2,3 

(x +y ) (x +y ) 

2 2, 2 , 2. _„4,, 2 2 4 4. y (y -3x ) , 3R (6x y -y -x ) 
2 2.3 ' +- 2 ¿,4- / 2X (x +y ) 

xy 
S 
I 

2R2xy 8R2xy(x2-y2) 12R4xy(x2-y2) 
+-; 27 2.¾-77 2.4 

(x +y ) (x^+y6) , 7" 2.4 
(x +y ) 

(A-15) 

(A -16) 

Thus for the loading shown in Figure A-2, if f^ is taken as 

fl = 1 

, 4,, 4,. 2 2 D; Zx +2y +4x y -R 
. , Z, 2.2 

(x +y ) 

2 2 d2 2, d2 2 -- -R x +R y 
+ 

.„2 2,, 4R x (3y 
¿ S 3 

(x2+y r 

•x ) + 3R (x +y 
i 2, 2.4 
(x +y ) 

(A-17) 

the conditions at the void boundary will be satisfied. To satisfy the uniform 

strain condition at x=i, requires that be made proportional to the trans¬ 

verse stiffness Ex of the repeating element at any point y (Reference 1). The 

approximate expression for f^ can be taken as 

f 2 

in the region 0 £ y í R and 

(A-18) 

(A-19) 
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in the region R s y < ( where E, is given by Equation A-7. The final expression 

for ax now becomes (at 0 < y < r) 

The stress a at two points of interest (y=0, x-f and y=l, x=i) are 

, (i-X) (2-5X2+3X4) at y=0. x-f (A-21) 
X 2 

a = ~ (2+X2 --|x4) at y=x=É 
X 2 ^ r- j 

(A-22) 

The approximate expression for the stress (ry can be obtained in a similar 

way and is: 

<r = 

4,, 2 2 4 4. 
3R^(6x y -y -X.) 

/ 2X 2.4 (x +y ) 

rW) t <«2ry,;*Z> 
(xSy2) (xVy) (A -23) 

Again the stresses ay at the two points of interest are 

= ^ (1-X) (X2 X4) ^ at x=i, y=0 (A -24) 

%-T i (. K2 +1^4) r at x=y=f 
(A -25) 
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To obtain the stress distribution at the points where the stresses are maximum 

(at Section x=0 in Figure A-l) it is sufficient to consider fj at x=0. From 

Equation A-17, at x=0 

f 
1 

1 =7 
(A-26) 

The stress a* at that section will be of the form 

(T 
X 

(A -27) 

where k is a constant evaluated from force equilibrium considerations. The 

condition of equilibrium at x=0, R s y if requires that 

dy (A -28) 

where <»j is the remotely applied stress. 

Combining Equations A-26 and A-28, evaluating the Integral and solving for k 

gives 

while combination of Equations A-29, A-27, and A-26 gives 

9 
X 

(A -30) 
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Similarly, the stress <r^ at x=0 is 

3 o’. 
1 .y y 

R 

r (A-31) 

The stresses at the two points of interest x=0, y=R, and x-0, y=i are: 

At x=0, y=R 

At x = 0, y=f 

6 a. 

2-X2.K4 

<r = 0 

y 

(T 
X 

2+)i2+3X4\ 

T77F/ 

a 
y 

O’ 

1 

(A-32) 

(A -33 ) 

(A-34) 
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Table B-1 

STRAINS AND STRESS CONCENTRATIONS IN A PERFORATED 
PLATE WITH (R//) = 0. 252 (kv = 4.94%) 

Location 

Strain Gage Data 

* V 
-ir(i) p l 

• j (2) 

Photoelasticity 
Data 

^-<2) 

O 

A 

B 

C 

D 

E 

0. 9908 

1.099 

1.295 

0.8004 

■ 0. 3088 

• 0.2496 

■0. 5435 

■ 0. 2248 

1.028 

1. 179 

(2.983)(3) 

1.287 

0. 841 

(0. 00) 

0. 044 

0. 157 

(0.00) 

-0. 105 

0.064 

(-0.953) 

0.984 

1.022 

1.392 

0. 777 

1. 038 

1. 123 

2. 983 

1. 380 

0. 869 

0. 953 

(1) Stresses and strain evaluated at an applied load P = 1220, 10 lb which 
corresponds to applied stress <Xj = 743. 0 psi. 

(2) p-q denotes difference between principal stresses, p being the maximum 
stress, q being the minimum. 

(3) Numbers in parenthesis were obtained by photoelasticity. 
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Table B-2 

STRAINS AND STRESS CONCENTRATIONS IN A PERFORATED 
PLATE WITH (R/í) = 0. 358 (kv = 10.07%) 

Location 

Strain Gage Data 
Photoelasticity 

Data 

* X «V 
P 

°x 

'1 

h. 
ffl 

£13.(2) 
°1 

£ia<2) 
°i 

O 

A 

B 

C 

D 

E 

1.062 

1. 198 

1.497 

0. 5829 

-0. 3188 

-0. 1533 

-0.7042 

-0. 1188 

1. 107 

1. 333 

(3. 237)(3) 

1.457 

0. 631 

(0.00) 

0. 062 

0. 310 

(0.00) 

-0.210 

0.099 

(-0.869) 

1. 045 

1. 023 

1.667 

0. 532 

1. 035 

1. 109 

3. 237 

1. 559 

0. 623 

0. 869 

Table B-3 

STRAINS AND STRESS CONCENTRATIONS IN A PERFORATED 
PLATE WITH (R / Í) = 0. 437 (kv = 15. 0%) 

Location 

O 

A 

B 

C 

D 

E 

Strain Gage Data 

(D 

1.080 

1. 359 

1. 705 

0. 3977 

• 0. 3188 

-0. 1087 

-0. 8425 

-0.0050 

1. 128 

1. 539 

(3. 148)(3) 

1. 643 

0. 461 

(0.00) 

_L 
ffl 

0. 069 

0.428 

(0.00) 

-0. 286 

0. 156 

(-0. 720) 

^13.(2) 
al 

1.059 

1. 111 

1. 929 

0. 305 

Photoelasticity 
Data 

£13.(2) 
ffl 

1. 034 

1. 199 

3. 148 

1. 844 

0. 285 

0. 720 

(1), (2), (3) See footnotes under Table B-1 
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Table B-4 

STRAINS AND STRESS CONCENTRATIONS IN A PERFORATED 
PLATE WITH (R/f) = 0. 505 (kv = 20. 0%) 

Location 

Strain Gage Data 
Photoelasticity 

Data 

‘x (11 
p 

(T 
X 

<T 

_X 
ffl 

p-q 
(2) 

p-q 

P (1) '1 
_ \ W 
rl 'i ' ’ 

O 

A 

B 

C 

D 

E 

1. 072 -0. 3559 1. 104 0. 022 1. 082 1. 019 

1. 544 -0. 1185 1. 750 0. 492 1. 258 1. 259 

- - (3. 447) (0. 00) - 3. 447 

1. 880 -0. 9982 1. 783 -0. 396 2. 179 2. 068 

0.2026 -0. 0345 0. 222 0. 042 0. 180 0. 135 

- - (0.00) (-0. 615 - 0. 615 

Table B-5 

STRAINS AND STRESS CONCENTRATIONS IN A PERFORATED 
PLATE WITH (R/n = 0. 619 (ky = 30. 1%) 

Location 

Strain Gage Data 
Photoelasticity 

Data 

-ÿ-O) P 

<T 
X 

'1 
_1)L 
*1 

p-q 

V2’ 
p-q 
—(2> 

O 

A 

B 

C 

D 

E 

1. 025 -0. 3682 1. 044 -0. 011 1. 055 1. 080 

2. 070 -0. 2126 2. 325 0. 596 1. 729 1. 753 

- - (3. 688) (0. 00) - 3. 688 

2. 164 -1. 193 2. 034 -0. 507 2. 541 2. 563 

-0. 0520 0. 1036 -0. 018 0. 099 0. 117 0. 135 

- - (0. 00) (-0. 599) - 0. 599 

(1), (2), (3) See footnotes under Table B-l. 
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TABLE B-6 

experimental results on internal stresses in a composite 
model consisting of fibers, voids and matrix 
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APPENDIX C 

NUMERICAL EXAMPLES ON USE OF MICROMECHANICS FAILURE 
CRITERIA TO PREDICT THE TRANSVERSE TENSILE 

STRENGTH AND INTERLAMINAR SHEAR STRENGTH OF COMPOSITES 
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EXAMPLE 1 - TRANSVERSE TENSILE STRENGTH OF COMPOSITE 

Given: Composite consisting of S-glass fibers and 1004 epoxy resin. The 

fiber content is k., = 55%, void content k = 2%, ineffective fiber 
II VC 

content, k.^ = 0. 

The properties of constituents are: 

Ee = 12. 4 X 10^ psi (Young's modulus of fibers) 
I £ 

E = 0. 537 X 10 psi (Young's modulus of resin) 

Vj = 0. 22 (Poisson's ratio of fibers) 

V, = 0, 347 (Poisson's ratio of resin) 
r 3 

o- = 11. 95 X 10 psi (tensile strength of resin) 
r 3 Tr = 15 X 10 psi (shear strength of resin) 

The first step is to determine X.*. Using Equation (29) 

X* = 0. 238 

Now from Figure 9 or Equation (1) the E^/g, ratio corresponding to \* = 0. 23 

is 

El/E “ °-92 

or the reduced Young's modulus of resin containing voids is 

E* = (0. 92)(E ) = 494 X 10 psi 
r r 

The stress concentrations due to fibers, K*, K* and K^: corresponding to X y z 

Ef/E* = 25. 1 and kf = 55% 
f r f 

are obtained from Table 1 by extrapolation. They are: 

K* » 1. 746 
X 

K* = 0. 908 
y 

K:': * 0. 908 
z 

Preceding page blank 
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The stress concentrations due to voids, K£A> K*D, K£D> K^A and are 

obtained from Equations (32), (33), (34), (35) and (36)«. These are 

1. 313 K 
xA 

0. 022 K yD 
0. 715 

xD 

0. 084 
YA 

1. 047 K zr 

gives 

8, 440 psi 
T 

which is the predicted transverse tensile strength of composite. 

EXAMPLE 2. SHEAR STRENGTH OF COMPOSITE 

Assuming the same properties of composite as in the first example, \ is 

still the same as before, that is 

\* = 0. 238 

From Equation (5) or Figure 10, the G^/G ratio corresponding to \* is 

G 

the reduced shear modulus of the resin containing voids is or 

G* = (0. 95)(G) = 0. 194 X 106 psi 
r r 

: K : K«^, and K*A can also be obtained from Figures 16 and 17. 
yD’ xD' 
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where was calculated from the usual relationship 

'r = 2(1 + w ) 
r 

The shear stress concentration due to fibers, K* corresponding to xz 

25. 5 and k, = 55% 
G# i r 

is obtained from Table 2 and is 

K* = 1. 748 
xz 

The term is evaluated from Equation (42) and is 

K* . = 1.31 
xzA 

Substitution for K" , K* . and r in Equation (41) gives 
XZ XZ Y 

= 6, 550 psi 

which is the predicted shear strength of composite. 
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APPENDIX D 

TEST DATA FOR RESIN CASTINGS AND FOR TRANSVERSE TENSILE 
AND INTERLAMINAR SHEAR STRENGTH OF ACTUAL COMPOSITES 

Preceding page Meek 
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