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ABSTRACT

This is the final rcport of a two-year activity involving a theoretical and
experimental investigation of non-destructive wave propagation resulting from the
impact of steel spheres on a Yule marble block, including a determination of its
static and dynemic mechanical properties. The basic system was modeled as a
transversely isotropic half-space with the axis of elastic symmetry lying in the
fres surface loaded by means of a specified normal force of variable shape and
duration. This simulates the experimental conditions where a large block of
Yule marble is loaded by metallic bars in intimete contact that are subjected
to longitudinal impact of steel spheres with the input monitored by a sandwiched
crystal arrangement. Calibrated crystal transducer packages that were developed
as part of the program have been embedded at various points of two Yule marble
tlocks and have provided records of the transient stresses and wave velocities
st both interior and surface positions.

A solution of the mathematical model has been accomplished using integral
transform methods that make use of an inversion procedure in the complex plane
involving a Cagniard-de Hoop patii. An important part of the manipulation involves
the evaluation of the roots of this path from a sextic algebraic equation that
breaks down into a quartic and & quadratic facter. Formulations for the dis-
placements, strains and stresses within the entire domain resulting from the
application of a point load on the surface of the half-space representing a Heaviside
function of time have been obtained, characterizing a basic solution of the
problem, The determination of these parameters for an actual impact situation

is accomplished by convolving the measured input for eacli case with the basic

solution. A computer program has been developed that has yielded numerical
results for the predicted strees histories at selected stations corresponding to

certain experimentally-determined inputs.
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A finite element program corresponding to the integral transform analysis
has also been developed. The init‘-l application of this program was the prediction
of the field variables in a block of limestone, representing an essentially
isotropic material, and a comparison of these with corresponding experimental
data obtained by means of internal transducer packages under loading conditions
similar to those described above; excellent correlation was obtained, The program
was extended to the transversely isotropic case; satisfactory correspondence
was found to prevail between the predictions both of the integral transform and the
finite element solution with recorded test information. However, better correlation
with the data existed with the finite element technique close in, and with the
integral transform solution at more distant stations. The elastic constants
employed in these evaluations were deduced from wave speed data in different
directions involving the actual specimen and an optimization procedure subject
to constraints based on presumed positive values of these parameters,

The macroscopic properties of the marble were obtained both by petrographic
and mechanical methods. The axls of transverse isotropy was ascertained by
means of crystallography; the material exhibited an average crystal size of 0.5 wmm.
The five constants describing the presumed purely elastic behavior were obtained
for quasi-static uniaxial compression; creep tests on specimens oriented both
parallel end perpendicular to the symmetry axis indicated little viscoelastic
behavior at low stress levels, but dominance of this effect near fracture. Com-
pressive quasi-static stress-strain curves to fracture were obtained at rates
from 10-6 to 10-2 per second for the two directions of interest, and numerous
tensile quasi-static curves were slso secured. Hopkinson-bar experiments on rods
cut from three different directions yieldecl the values of the dynamic constants
for both tensile and compressive low stress levels, amounting to about twice
the corresponding quasi-static values, “ompressive and tensile fracture stresses

parallel and perpendicular to the axis of symmetry were obtained from split
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Hopkinson-bar specimens possessing a special contour at rates of 10 per second,
The totality of the tests conducted indicated that the material behaves in a
very complicated ranner even at low stress levels and that the use of appropriate

material constants is crucially dependent on both stress level and loading

history.
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INTRODUCTION

This report represents tie final annual technical report under contract
H0220021 between the U.S. Bureau of Mines and the University of California on
the subject entitled "Wave Propagation in Anisotropic Rocks", representing the
culmination of a two-year effort., The current contract period, criginally
destined to expire February 22, 1973, has been extended to June 30, 1973 in
order to permit the proper correlation of the various aspects of the program and
suitable documentation of these phases. The body of the report will delineate
the objectives, methodvlogy and principal results of each of these subdivisions
of the investigation and their overall connection; the details of the individual
efforts are recorded in appendices which are self-contained,

The scope of the program was detailed in Proposuls identified as UCB-Eng 3154,
dated August 19, 1970, and UCB-Eng 3286, dated April 26, 1971, and submitted on
behalf of the University of California, Berkeley, by Werner Goldsmith as
Principal Investigator; it is also spelled out in Article I of the subject
contract, Briefly, the investigation can be divided into the following categories:

(a) Theoretical Examination of the Propagation of Body Waves in a Transversely
Isotropic Elastic Solid resulting from an Impact on the Free Surface
by means of

(1) Integral Transform Techniques
(2) Finite Element Methods;

(b) Experimental Examination of the w;ve Processes corresponding to (a) and
the Measurement of Stress Histories at various Selected Positions in the
Interior or near and at the Sucface resulting from Projectile Impact on
a Loading Bar in intimate Contact with a large Block of Yule Marble
simulating a Half-space;

(c) Determination of Mechanical Properties of Yule Marble under Static and

Dynemic Loading of variously-oriented Specimens.

T ——
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Many of the results obtained have been reported previously in References (1) and
(2).

The following personnel have had a major share of the responsibility of the

execution of the various tasks: (i) Mr. S. L. 3uh who pursued the integral
transform solution and produced a coeputer vrogram that yields the field variables
at any position for any predetermined input, (ii) Messrs. M. ¥atona and G. Dasggupta
who succzssively aided in the development of a finite element prograa for the
subject problem that hes been successfully applied for the evaluation of the
desired parameters both for an isotropic end a transversely isotropic half-space
loaded by a point force of arbitrary time variation, (iii) Mr. K. Krishnasoorthy
who was respongsible for the design, develoyment, testing, calibration, installation
and use of the transducers and their packaging thet have yielded stress histories
within and on the surface of limestone and Yule marble blocks under impact loading
from steel spheres, and who also obtained the data and devised the technique for
the specification of the dynamic elastic constants pertaining to the actual test
sample, and (iv) Mr. S. Howe who conducted the crystallographic, petrographic and
mechanical tests that delineated the geometric and static and dynamic material
properties of the Yule marble. These students are utilizing the results of the
investigation as the content of their masters theses and doctoral dissertations.
Werner Goldsmith, Professor of Applied Mechanics, Department of Mechanical
Engineering and Jerome L. Saclaman, Professor of Engineering Science, Departeent

of Civil Engineering, have jointly supervised the program from its inception to

its conclusion and are responsible for its conduct. In addition, the project has

received noticable technical assistance from Mr. R. Yenner in the Fortran programming,

from Mr. E. Lin in specimen preparation, froa Mr. Tom Jonee in instrusentation
development, from Mr. G. Wilcox in general laboratory assistarce, ané from

Mr. R. M. Hamilton of the Glassblowing Shop of the Department of Electrical

Engineering in the fabrication of the transducers. The expert assistance of

‘__________._——_
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Professor R. L. Taylor of the Department of Civil Engineering in the development
of the finite element program is gratefully acknowledged.

The objectives of the program have been substantially fulfilled with the
possible exception of certain aspects of fracture initiation and propagation,

It was originally anticipated that this portion of the work would require a period
in excess of the two years that represented the life of the contract. ¥hen advice
was received that a continuation of the support was not to be expected, it was
decicded, with the consent of the Technical Monitor, not to initiste such an
investigation since it would have to Le abandoned before successful techniques
could be adequately developed, On the other hand, a host of information not
specifically contained in the contract has been obtzined as a byproduct of the
research, This includes information on surface waves obtained experimentally,

and the definition (and, in a manner of speaking, the resolution) of difficulties
associated with an analytical investigation of surface wai'es produced by ispact

on transversely isotropic half-spaces,

The results obtained represent not only a significant advancement of the field
of vave propagation in elastic, anisotropic media, but should have considerable
applicability to the interpretation of signals that might be employed by trans-
mitters in rapid tunneling or excavation situations to send the character of the
rock formations ahead of the boring device, and also should be of uti{lity for parallel
circumstances in the field of geophysical prospecting., The transducer paci.age
developed and its successful application for the measurement of internal transient

stresses could find wvidespread employment in a multitude of fields involving basic

research, design and development, testing and production of large-scale components
wvith potential problems due to local stress concentrations or overloads. Finally,
the techniques e=ployed for the property determination of the rock caployed here

are individually not new, but the totality of the various tests has not been

previously brought to bear on a single natural rock to ascertain its behavior pattemn.
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It had been the intention of the research team to suggest the continuation

of the effort for the purpose of extending the results to a variety of natural
rocks. With very little effort, the finite element program developed could be
adapted to an orthotropic material such as Rarre granite, which occurs widely
in the field. With further sodifications, it should be possible to include the
effects of fault zones or other discontinuities in the program, ond to incorporate
the effects of reflections fros bounding surfaces. This aspect of a continuing
investigation might lead to the identification of apecific discontinuities in
rock strata, a subject believed to be o' vast \nterest. It was further hoped to
attack a nev phaze of {mportance in rock resoval, namely a fundamental study of
the comminution process. Some very preliminary experiments in this direction
appeared to indicate potential for a successful pursult of this objective. Such
investigations will now have to be relegated to the future, and if initiated

at all, will be sponsored and monitored by different agencies, although the

g™oup having primary interest in these dowains is the U,.5. Bureau of Mines.

TECHNICAL ACCOMPLISIDENTS

(a) Theoretical Examination of the Propagation of Body Waves in a Transversely
Isotropic Elastic Solid resulting from a Normal Impact on the Free Surface,
The governing equations for the physical problem involve the constitutive
relations, the equations of motion and compatibility, and suitable initial and
boundary conditions. For a generally anisotropic half-space subject to a nommal,

concentrated time-dependent load, the constitutive equations are given by

1 " “1xs%s " } °ukz(‘$.,; y “z,k) (1)

vhere “1 iz the displacement vector, ciJ and c.“ are the stress and strain tensors,

respectively, and ciJkl iz the fourth-order tensor defining the elastic constants

that must satisfy tymetry relations
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As usual, a comma denotes differentiation with respect to the succeeding variable
(s) and a summation convention applies to repeated indices for the spatial
variables., For small displacements in a homogeneous medium, the equation of

motion in the absence of body forces is

19k Y0 T P e )

in a Cartesian coordinate system with p as the mass density and t as time. For
a free surface defined by the plane X, = 0, the boundary conditions prescribed

is given by

Seitep Ry e alle, PB=: L B lb ey, 2 (4)

vhere 613 is the Kronecker delta, f<t> is the arbitrary preselected force history,

and 6<xl,x3>-is the two-dimensional Dirac delta function. The radiation condition

at infinity is also invoked, and initial quiescence is presumed. Unfortunately,

a solution of the general problem, while well posed, is probably beyond the state

of the art and of computational aids at the present time by purely analytical

means, although its evaluation by purely numerical techniques appears quite feasible.
However, the stipulation of a transversely isotropic medium as a speciel

case simplifies the problem sufficiently so as to permit a solution essentially

in closed form by means of integral transform methods. It should be emphasized

that this situation is considerably more complicated than the quasi-isotropic case

(3)

treated by Kraut where the axls of elastic symmetry is perpendicular to the

free surface; in the present case this axis lies in the surface of the half space.
A theoretical and experimental investigation for such a situation had been
undertaken previously for the particular purpose of examining surface wave

(8)(5)

motion

The experiments yielded surface wave group velocity, group slowness,




amplitude and attenuation curves for the Yule marble. The slowness curves were

compared to corresponding analytical phase and group slowness predictions using

both static and dynamic constants determined in that study, with reasonable

correspondence. The present program addrcsses itself to the much more difficult
} problem of the analysis of body wave propagation.

The stress-displacement equations for the solid under consideration are

given by
O3 % %1 "M,1 * 12 V2,2 T C13 Y3,3
05 o= 1S 1 R IINHAC T U5 oIS R g
03q = cyq (u.l’1 + u2’2) + Cas u3’3 i
: 5
O3 = ) (Mg 5 + u2,3)
oy3 = Cyy (Vg1 + ¥y 3)
S .
opp =3 ey = epp)uy 5+ “2,1)
employing standard contracted notation il with m,n = 1,...,6 instead of the
four-index notation employed in Eq. (1). The equations of motion for this case
reduce to
Sl S e M) B () = eplup oy + g 37 = Wy 4
() = epluy oy + Gy Uy 19 + €y Up op *+ C3Up 33 ¥ €y Ug 55 = Up gy, (6)
C’-l' u1’31 + Cu u2’32 + C3 u3’11 + C3 u3’22 + C5 \13’33 = u3’tt

where five new independent constants have been introduced using the abbreviations

cl = cll/p 5 S5 E%(cll : 012)/9 H c3 = C)_m/ﬂ 9 e, = (Cl3 + Chh)/p 3 cs = C33/p (7)

Equations (6) togeth:r with the initial and boundary conditions previously cited
constitute the boundary value problem to be solved for the wave propagation problem

in a transversely isotropic half-space due to arbitrary surface loading.,

T N

B T T TR e 3 T T —



-

(i) Integral Transform Technique

The governing relations for the problem were subjected to a one-sided Laplace
transform and a double Fourier transform as described in Refs. (1) and (5). This
leads to a system of three second-order coupled ordinary differential equations.
A sclution assumed in the form of an exponential decaying with direction X5 leads
to a homogeneous system of algebraic equations in terms of the coefficients of the
twice transformed displacement. The conditions for a non-trivial evaluation of
this system yields a sextic algebraic equation that decomposes into the product
of a biquadratic and a ouadratic factor which define the slcwness surfaces of the
medium, These surfaces constitute the reciprocal vectors of the phase velocity
for the material, consisting, in general, of three surfaces for a transversely

(5)(6)(7)

isotropic material The method described is the solution of an eigenvalue

problem which provides botlh the eigenvalues and the associated eigenvectors that
are ipso facto the coefficients of the transformed displacement components.,

Use of the transformed boundary conditions eliminates the unknown arbitrary
constants and provides the displacement in the transform space; the Fourier
inversion theorem permits the restatement of the displacement components solely
in the Laplace transform space. Inversion of this expression into the real time
domain is expedited by use of a spherical polar coordinate system R, ?% ¢, with
3 as the meridional and ¢ as the azimuthal angle for the xl-x3 plane and the use
of complex variables for employment of a method of solution due to Cagnlard and

(8)(9)

de Hoop This transformation yields a path in the complex plane whose

intersection with the real axis defines the slowness surfaces of the medium and
represents an absolutely necessary condition for the solution of the problem,

A major pcrtion of the numerical effort was concerned with this subsection of the
analysis and its evaluation provided somc imporuant physical insight into the

possible behavior patterns of the substance characterized by different polar

angles. Upon employment of this procedure, the time-transformeda solution cculd {
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be inverted into the real plane by inspection, and the displacement field for
the entire half-space was readily programmed, A corresponding procedure was adopted
for the delineation of the strain and stress variables, utilizing an initial ana-
lytical definition for these quantlties rrom derivatives of the displacement
components rather than utilizing & numerical differentiation from the evaluated
displacement solutions, The nwmerical Procedure was effected by calculating

a solution for a "basic" input consisting of a Heaviszide step function and thea
convolving a realistic input with this golution, Both a sine-squared input,
considered to be a reasonable representation of sphere impact loading on a
half-space, as well as actually measured pressure-time inputs were convolved with
the basic solution to provide the history of the field variables for the actual
physical situation that was to be analyzed,

An attempt was also made to evaluate the field veriables on the free surface
of the mediwm by taking the limitinz conditions o7 the solution for the case when
the angle of the ray along which these parameters were to be obtained approached
90 degrees relative to the normal to the 1iée surfuce. Here, the Cagniard-de Hoop
path collapses to the real axisz which contains a Rayieigh pole. Since the path
of integration must be deformed to exclude this singularity, the resulting detour
around this pole no longer corresponds to real time and the contributions from the
Rayleigh pole must be evaluated scparately; this requirement introduced serious
numerical difficulties as it yielded rapid and extreme oscillations into the
golution of the basic problem so that the numerical results were significantly
suspect. GSirnce the solutions within the free surface were thus no® amenable to
treatment by the method indicated, resuls for s o) stations were deduced by
considering rays at very small angles, of the order of 0.1 degrees from the free
surface direction where the nurerical solution exhibited regular behavior, although
pPortraying its tendency town~ds singular behavior with a 1izinishing value of this

angle.
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Details of this portion of the investigation are Presented in Appendix A.
A comprehensive description of this work and its background will also be fund
in the doctoral dissertation by S. L. Suh presented to the Graduate Divieion

of the University of California, Berkeley, in 1973,

(11) Pinite Element Technique

A finite element computer code, FEAP-T1, developed at the University of
Celifornia has been adapted and extended for application to the present problenm.
It is a research-oriented finite elemcat assembly program with a selection
library of twenty elements, extensive input-output utility routines and automatic
error checking. Tne present formulation includes the construction of a
three-dimensional element, associated time integration schemes suitable for use
in a wvave propagation problem, which are represented by an important subroutine
entitled EXPICT, a printer plot subroutine, DYNPLT, for the visualization of stress
evolution, and options to utilize either analytically specified input functions
or tabular information denoting the value of the impulsive load at each time
stop.

The dynamic formulation of the finite element method as derived from Lagrange's
Central Principle was indicated in Ref. 1. The resultan’ set of coupled linear

differential equations, given by

) (6) + (X {8} = {£) (8)

where (M] is the diagonal mass matrix, (K] is the global stiffness matrix, (@)

is the nodal displacement vector for the entire domain, {5} is the nodal

acceleration vector, and (f} is the loading vector. The solution is executed by

a step-by-step forward integration method known as Xewmark's Beta method., The

technique was initially applied to some test cases, but has since been employed

for the evaluation of the stress field in an isotropic half-space, as modeled by ¢

a limestone block, where comparis.a with experimental information is available,

i _‘______‘____—~




and has finally been applied to the evaluation of the corresponding transversely

isotropic case as repregented by sphere impact on the Yule parble block.

A report constituting a User's Manual for the use of the FEAP-T72 progras
as applied to wave propagaticn proble=s, with gseveral sample situations eva)uated,
was previously furninhcd(lo). An updated version of the program is included with
this final report as Appendix B, This document differs from Ref. (10) primarily
{n some of the modifications providing for greater efficiency of execution, the
{nclusion of a provision for determination and use of a critical time step to
avoid instabilities in the solution, and greater flexibility in the input-output
arrangesents of the program. The results from the vrogram are presented along

wvith corresponding information from the integral transform solution and from the

experimental phase of the lnycltigntlon.

(b) Experimental Examination of Wave Processes in Blocks of Katural Rock

The experimental determination of stress histories in the interior of rock
blocks of sufficiently large dimensions to simulate half-spaces during the time
of interest were conducted on a 15" x 15" x 11}" block of Bedford limestone and a
oL* x 24" x 10" block of Yule marble. In addition, measurements very close to the
free surface were performed on another Yule marble block of the same dimencion; the
axis of elastic symmetry was located in the free surface so that a noreal load on the
system paralleled an axis of a truly transversely isotroplc half-space, The blocks
were loaded by shooting 3/16" end 4" dinmeter steel balls fro= an air gun at
velocities of about 20 ft/zec against the plane end of a 1/8" diameter, or,
occasionally, a ¢" dinmeter alurinum loading bar, about 15" long, in intimate normal
contact *o the free surface of the specimens, The input pulse to the block was
=eagured with a 1/8" or a 4" diameter X-cut quartz crystal sandwiched between the
loading bar and the block.

The deveicpment of approvriate transducers designed to measure the stress

histories in the block interiors, their construction, calibration, inscrtion and
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fastening reprecented a major experimental effort as detailed in Heferences (1)

and (2), After many different devices had been tested, an optimal arrangeasent
vas produced consisting of a 1/8" diameter magnesiua bar, vith a length of
about 10 in, at the front of which a 1/16" diemeter x 0,020" thick PzT-k crystal
vas ssadviched between another 1/16" long disk of magnesius of 1/8" diameter,
The crystal was surrounded, but separated physically from an annular glass wvasher
used as a spacer; the trensducer leads were brought out through a slot in the
magnesium bar. Voltage amplification was exployed for stress measuresent; the
output was photographed on dual-beas oscillopes whose response was flat to 3
mega liz. The transducer Package exhibited a g§0od acoustic {mpedance match relative
to that of both the limestone and the Yule mardle blocks, thus minimizing reflection
problems as the result of internal mismatch. The rock blocks were cored to the
desired depth in directions perpendicular to their surfaces using a 1/8" diameter
drill; the installations of the transducers was accomplished by using a mixture
of aluminum oxide and epoxy adhesive as the bonding agent,

All crystal transducers were individually calibrated prior to installation
by the use of a split Hopkinson bar arrangement composed of magnesium with strain
gages mounted on the bars furnishing ¢ direct comparison with the crystal output,
Each transducer was externally calibrated using a split Hopkinson bar. In addition,
a comparison of in situ response in rock bars of the transduce with records from
strain on the surface of these bars provided a relationship between the two
piezoelectric constants obtained by these two types of measurements. This ratio
is employed to compute a stress factor that converts measured voltage to the
actual stress extant at the transducer station,

Aprendix C which provides more detail on this phase of the investigation
Presents scheratics of the locations of the traneducer packages in the limestone

and in the two marble blocks., The results of representative tests are shown in

Figs. 1-U together with the measured input; these data are also compared to the




enalytical or numerical predictions shown, with the degree of agreement varying

from excellent, in most instances, to unsatisfactory in a few cases. Excellent
correspondence between the measured values and both tlhLe integral transform and
finite element calculations was uniformly obtained for the isotropic limestone
block which, analytically had to be regarded as a slightly unisotropic material.
For Yule marlle, results near the source were found to be very well predicted by
the finite element method, whercas farther into the medium, the integral transform
procedure yielded a much better shape for the first portioﬁ of the stress history,
although deviating significantly from measured values after one cycle, The finite
element technique yielded an oscillatory pattern for the normal stress in the
direction perpendicular to the free surface at positions just below and close
to the load, but not on the other rays in the half-space, This behavior may be
due to an inherent characteristic of the procedure stemming from displacement
boundary corditions along this ray and/or noise introduced into the input by the
discretization. It is not a priori obvious whether other failures to produce an
acceptable degree of correlation are the result of numerical or analytical difficulties,
such as convergence problems, experimental vagaries, or a combin;tion of these causes,
On the whole, considering the difficulties involved in all these processes,
the predictions are very reasonable, agreeing qualitatively almost everywhere
and quantitetively i the majority of instances with an acceptable degree of
error, One of the problems involved in tris comparison is the lack of precise
knowledge of the elastic constants (which were obtained by the best available
procedure described above) at the various ttations, i.e. a possible degree of local
inhomogeneity and/or anisotropy. It is also possible that the presumed elastic
model must be modified to account for dissipative effects, rarticularly in view
)T the aberrant behavior of the material exhibited by a variety of static and
dynamic tess as describved in the sequel that does not conform to any published

version of a

‘'simple"” substance,




The impact tests on the Yule marble blocks also furnished 46 measurements

of wave arrival times at various stations that were employed to devise a procedure
of determining the five dynamic elastic constants required to be specified by the
theory. The procedure involved the use of the phase velocity equation and devising
an objective function by a weighted least-square method and a minimizing procedure

with certain embedded constraints determined by the positive definiteness of the

elastic stiffness matrix that yielded values of pCy to pc5 ranging from 11,2 x lO6psi

to 2,52 x lO6 psi. These values were intermediate between those used in previous
dynamic analyses for Yiule marble(u)(S) and those obtained independently during the

present investigation rrom a separate slab of the material,

(c) Determination of Static and Dynamic Mechanical Properties of Yule Marble

The macroscopic mechanical properties of Yule marble were obtained both under
static and dynamic conditions in an attempt to completely characterize its cor-
stitutive behavior that is required both for an interpretation of test results
and the application of analytical techniques, Yule marble was chosen as the
basic substance for the present investigation because (2) numerous tests indicated
that it was macroscopically homogeneous (with respect to typical wave length
produced by impact) and transversely isotropic, (b) it was available in sufficiently
large blocks without discontinuities to satisfy the requirements for a physical
model in the present tests, (c) it had been previously examined on a number of
occasions so that some correlative information, particularly in the geologic and
petrographic domain, was available for comparison, and (d) it had been previously
utilized for a study of surface wave phenomena under the direction of the Principal
Investigator(u).

All specimens were obtained from g separate marble slab obtained commercially,
The specific gravity was ascertained to be 2.81, with average crystal sizes ranging

from 0,2 mm to 0.7 mm. It was originally assumed that the axis of transverse
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isotropy was coincident with the average normal of the bedding planes which are

A

visually evident from grey bands of opaque mineral running through the slab,
Although these planes are sometimes warped and are not completely parallel through

the rock mass, their average normal was found to be relatively constant and was

b

located in the largest plane of the slab. From thin secfzons taken from planes
Perpendicular to the bedding normal (and thus orthogonal to the assumed axis of
transverse isotropy, or Z-direction) the orientation of each of 100 calcite
crystals was obtained spectroscopically and the results supported both the
hypothesis of transverse.isotropy and its direction as properly being perpendicular
to the bedding planes.

Static uniaxial compression specimens with a diameter of 1.05 in, and lengths of
l-% in, and 2 in, for the X and the Y, Z directions, respectively, were tested in
an Instron machine at rates ranging from lO'6 to 10'2 per second; strain was
determined from 1/8" foil gages mounted in Pairs on each specimen at the opposite
end of a diameter and connected so as to eliminate flexural components. The
results appeared to be independent of strain rate within this domain; however, the
curves were uniformly concave upward near the origin, nearly straight in the middle
third of the stress range, and concave downward in che upper third, the data in
the Z-direction indicating a higher failure level than for specimens in the other
two directions. These tests were also employed to obtain Young's modulus and
Poisson's ratio in the directions along and perpendicular to the axis of elastic
symmetry and the shear modulus in any plane perpendicular to the plane of isotropy;
these were obtained on the Tth cycle of a 0-1200 psi-0 loading. The results from
these as well as from the dynamic tests are presented in Table 1. It was necessary
to avoid a so-called first-cycle effect which yielded appreciable hysteresis;

subsequent loading along the same path yielded essentially reversible deformations.

..__.___.._——-—M
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Quasi-static tensile tests at rates ranging from 10"8 to 10“3 per second

were run in the Instron tester for various sample directions and with various
specimen configurations, including a modification of a special contour previously
utilized in tests on bone specimens(ll)(le). Difficulties were experienced when
uniform specimens were cemented to aluminum holding pieces placed in the grips

of the tester by failure occurring through such bonds; stress-strain curves ob-

R Sl il

tained here may be in error due to the higher section where the gages are located
and any apparent strain-rate sensitivity may be largely a property of the glue
rather than that of the specimen proper. Z-direction special contour specimens
were tested; as in other cases, the fracture stress was a function of the
distance of the strain gage from the break, but the fracture strain in all cases

was about 0,025 percent,

| Y- and Z-direction specimens were subjected to both compressive and tensile

creep tests in order to determine the approximate stress levels at which visco-
elastic effects begin to dominate the material behavior. Compressive specimens
were loaded to failure in approximately 700 psi increments at a rate of 700 psi/sec
using an MTS testing machine in the constant load mcde, whereas tensile specimens
were loaded by weights as well as by an Instron mrchine, witﬁ loading rates for

the latter operation limited to 30 psi/sec; these were not tested to failure.

No significant creep was observed in any of the cases except in the vicinity of
the failure point (6,900 and 10,000 psi for the compressive Y- and Z- specimens,

respectively).

Hopkinson bars composed of three sections of rods initially 6" x 3/4", of
the same orientation and glued together were supplied with aluminum endcaps to
prevent local shattering under the impact of %" diameter steel balls dropped from

a height of 22,5 in, Longitudinal and transverse gages monitored the pulses so

Produced and measured wave speeds were employed to yield the dynamic elastic

p HA..______.‘.__-—_
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constants equivalent to those determined from static tension and compression
tests, shown also {n Table 1, by means of a one-dimensional analysis. The
latter type of hypothesis is validated by the ratio of bar radius to pulse
length of 0.06 in the present case.

Split Hopkinson bar tests were performed on contoured Y- and 2-direction

| specimen 2-4" long by 3/4" in diameter both in tension and compression, The

samples were sandwiched between aluminum loading and recording bars all of which
featured strain gage pairs connected to eliminate flexural components. A bending
suppressor devised by Lewis(lz) was employc? to minimize unwanted flexural
transients. Pulses were produced by the impact of ﬁ" diameter cylindrical
steel projectiles with a 30° conical tip; bullets producing compressive faflures

had a shaft length of 2-% in., while those inducing tensile fracture had a

—

cylindrical section only 1 in. long. Pulses of 200 microsec duration with a
nearly linear rise were produced, involving a relatively constent strain rate.

The test analysis was performed bised on the hypotheses of one-dimensional

Stress distribution, neglect of lateral inertia and shear, small clastic strains,
an egquivalent cylinder for the test specimen with diameter equal to that at

the gage section, and the lack of effect of initial compressive wave passage on the
tensile characteristics of the sample. The dynamic constants obtained from this
series of tests are also presented in Tebdle 1, Details of this phase of the work
are given in Appendix D. There, Table L provides a comparison of the values of

the elastic parameters cl,...,c5 defined by Eqs, (D-7) obtained here and in

the previous 1nvcstigation(h)(5).

The preserce of an initial non-linear range of the stresgs-sirain curves
followed by a secondary, nearly linear region may explain the anomaly reported in
previous tests of lower values of "dynamic" constants than those of corresponding
static parameters, This will be the case '® the strain level for the former is

consideradbly lower than for the latter. The rock exanined does not conform to

‘*._______.———_
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& presently accepted three-dimensional ( or even one-dimensional) constitutive

relation. Initial elastic constants are valid only for small strains; tensile and

compregssive woduli differ both statically and dynamically, and the material exhibits

a first-cycle effect. The rock is not completely brittle, but exhibits some small

time-dependent plastic or viscous regions, and hysteresis accompanies unloading

from any stress level beyond the initial domain. Thus the material must currently

be characterized by a set of experimental date rather the . by an analytical

formulation.
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| APPENDIX A

Section I. Introduction

The subject treated in this investigation is concerned with wave propagation
in a homogeneous, transversely isotropic, linearly elastic half-space produced
by a normal concentrated time-dependent load applied to the free surface of the
medium which contains the axis of elastic symmetry. This problem is known as
Lamb's problem in an anisotropic half-space and it can be physically modelled
by normal. impact on a sufficiently large block of a transversely isotropic
{ material such as Yule marble.

Lamb's problem for an isotropic elastic half-space has been investigated

(1’2’3’h’5’6’7’8)

extensively and the wave processes in such & body are by now

well understood. However, relatively few results have been obtained relating
to wave propagation in anisotropic solids. An excellent summary of this topic

(9)

has been presented by Musgrave who provided not only a classification of
anisotropic media in terms of crystal symmetry but also discussed general features
of the wave propagation in anisotropic substances in terms of three characteristic
surfaces, that is, the velocity, slowness and wave surface. Lord Kelvin(lo)

first introduced these surfaces in the course of formulating the laws of dynamics
in elastic anisotropic media, The velocity surface is formed by all the radius
vectors passing through a source, which is the origin of the space, each having a
length proportional to the phase velocity permissible in its ‘direction; the
slowness surface is the inverse of the velocity surface with respect to a unit
sphere, and the wave surface represents a surface of equal phase of waves at the
time t = 1 that started at the origin at time t = O, i.e., it is the shape of a
wave front as it propagates outward from a point source, determined at the

particular time t = 1. Musgrave also described wave processes in considerable

detail for solids with specific symmetry such as hexagonal, cubic and trigonal

as well as the lattice dynamics of crystals. Comprehensive references up to 1970

may be found in this volume,

- et _.__.__.‘__.—-—-M
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(1)

Recently Burridge executed a surface wave analysis for a generally
anisotropic elastic half-space. He demonstrated that if a surface wave can exist
in any particular direction, there will then exist a fan containing this

| direction along any one of whose rays such waves may propagate. This result was

demonstrated by a reducio ad absurdum argument which shows that in the contrary

case, a solution may be constructed to the equation of motion which is inconsistent
with the principle of conservation of energy. This conclusion generalized a
result by Buchwald(lz) and corrected a suggestion of Synge(l3) that, in general,
undamped surface waves may only be propagated in discrete directions. In another
article(lu), Burridge presented a solution for wave propagation in a generally
anisotropic half-space due to a line source, employing a Fourier-Laplace transform

and a Cagniard-de Hoop transformation(ls’l6’l7’18)

that facilitates the inversion
of the transforned function into the real time domain. It was shown that in
srite of the possibility of certain branch points lying in a complex plane, the
Cagniard-de Hoop transformation may be carried out irrespective of the orientation
of the free surface or type of anisotropy. Numerical results of the surface
waves for cubic copper were obtained in the form of theoretical seismograms. He
also derived a solution to Lamb's problem in an anisotropic medium by integrating
responses of line sources on the free surface over the unit circle.

Buchwaldug) found the displacements due to surface waves radiating from
& given harmonic source in terms of double Fourier integrals in transversely
isotropic materials., He considered both the quasi-isotropic and anisotropic
cases, which correspond to the axis of elastic symmetry of the medium being
normal and parallel to the free surface, respectively; the slowness curve in the
quasi-isotropic case was a circle and the wave curve a concentric cirele. The
anisotropic case exhibited more complicated behavior. !He uced a method developed

by Lighthill(20) tc estimate asymptotically the multidiumensional Fourier integrals

. ._,_______._——-“




and obtained all the geometrical properties of the waves, as well as asymptotic
expressions for the wave amplitudes in terms of the distance from the source.

Kraut(z;’za) investigated a plane strain problem of pulse propagation
resulting from a surface line load in a quasi-isotropic medium, a much simpler
situation than for the truly transversely isotropic case. This appeared to be the
first attempt of utilizing the Cagniard-de Hoop transformation in the solution of
wave propagation problem in an anisotropic half-space. He discussed in full detail
the physical significance of the Cagniard-de Hoop transformation in conjunction
with the slowness and wave curves of the solid.

Cameron and Eason(23) discussed a problem involving a source which is suddenly
epplied at a point on the axis of elastic symmetry of an infinite transversely
isotropic elastic solid. They obtained numerical values of the displacements
for the quasi-isotropic case, Ryan(ah) presented a solution to Lamb's problem
for a transversely isotropic half-space. A Heaviside point load was directed
along an axis of material symmetry which was taken as normal to the free surface

so that the problem reduced to the quasi-isotropic case. Following Kraut(21),

a
Cagniard-de Hoop transformation was employed which yielded a single finite integral
for the displacement field, that was, however, evaluated numerically only for

points on the surface, Ricketts(zs) and Ricketts and Goldsmith(ze) have attempted

to solve the problem posed in this thesis, i.e., Lamb's problem for a transversely
isotropic half-spacé with the axis of elastic symmetry located in the free surface.
Although they did not obtain a solution for the displacement field in a form

amenable for a numerical evaluation, the problem was formulated in a manner permitting
its present utilization with only minor changes. Experimental Jata such as

group velocity, group slowness and attenuation characteristics of the amplitude

were also obtalned for the surface waves produced by the normal impact of a

spherical steel ball on the free plane of the half-space modelled by a large

Yule marble block.

= 44.4______._.—_—#
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i Section 2. Statément and Solution of the Problem

2.1 Statement of the P: ~hlem.

| The problem will first be discussed for a general anisotropic medium and then

&
|

be specialized for a transversely isotropic substance.
The anisotropic half-space is represented by a ¢artesian coordinate system

(xl,xe,x3) as shown in Fig. 1 with the free surface defined by x, = O and the

2
direction of X, positive toward the interior, Although the problem is formulated
in a Cartesian system, cylindrical and spherical coordinate systems, indicated
by (r,'é,xz) and (R,'é,(p), respectively, are also introduced in the development

of the final solution. The anisotropic elastic half-space is assumed to be homo-

geneous and is governed by the generalized Hooke's law

Gi'j(i,t) = ci,jkL ekL (?_(,t) (1,j,k,z = 132,3) (A2°l-l)

and the linearly elastic strain-displacement relation

=3 s
sij(i,t) SR (ui,j(?ﬁﬁt) + u,j,i(i,t)) (Az.l C)

Here, x is the position vector, t is time, and ui(g,t), oij(g,t) and eij(g,t)
are the Qartesian components of the displacement vector, and the stress and strain

tensor, respectively. Also, cijkz is the fourth-order tensor of the elastic

constants that satisfy the symmetry relations

“i1ikg T jikg T i T Skt (A2.1-3)

if a strain energy exists. Then among the 81 quantities , only 21 are

M %k
independent for the most general anisotropic elastic medium. Throughout the

following discussion, the usual tensor notation and summation convention on

cpatial variables are employed. A comma indicetes partial differentiation with respect

A‘__,_________._-—_d
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to the subsequent variable{s). In an elastic medium obeying relations (A2.1-1),

(A2.1-2) and (A2.1-3), the displacement equation of motion in the absence of body

forces is given by

ci,jkz uk,l,:j (ﬁ,t) =9p ui,tt('}ﬁ,t) (A2'l'u)
where p is the mass density. A concentrated load with an arbitrary time history

is considered to be applied on the free surface at X = 0., The boundary condition

then becomes

12kg "k, ¢ (xl,O,x3t) X & Fi(t)a(xl,x3) (A2.1-5)

on %, = 0, where 6(xl,x3) is the two-dimensional Dirac Jelta function and

Fi(t) are the components of the arbitrary force with Fi(t) =0 for t <0. The

radiation condition at infinity is also invoked so that
|iﬁfm[ui(£,t),ui,j(z,t),etc.] =0 , (A2.1-6)

Finally, the medium is assumed to be at rest initially; thus the initial condition

is represented by

[ui(x,O),ui t(x,o)] =0 fort =0 , (A2.1-7)
= 0

As can be seen friom the boundary condition (A2.1-5), the force applied on
the boundary need not be confined to the case of a normal impact on the free
surface Xy = 0 since it can exhibit other components in the formuiation and
in the formal solution; however, numerical results have been. obtained here only
for the case of normal impact, i.e., whenF,(t) :—:F3(t) ®0n a.ndFe(t) # 0.

The problem posed above may be solved formally in exact form in a single
finite integral by using a Cagniard-de Hoop transformation(lu). However, in view

of the complexity involved in the computer programming for the case of general
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enisotropy, attention is here restricted to a transversely i{sotropic half-space

with the axis of elastic symmetry, chosen as the x_-axis, located in the free

3
surface. The symmetry of the medium permits a factorization of the characteristic
equation of the system; this feature saves computing time in the numerical evaluation
of field quantities from the formal solution obtained. Moreover, due to the

choice of the direction of the applied force Fe(t), waich {s normal to the free
surface that contains the axic of clastic symmetry the solution is obtained for

a truly transversely isotropic medium rather than for the quasi-isotropic

case, Out of 21 elastic constants necessary to descridbe the properties of a

general anisotropic medium, only five independent non-zero values are required for

the present case. Therefore, the stress-dicplacement relations, from Eqs. (A2.1-1)

and (A2.1-2),are reduced to

b R C e T Ml T 9 Tl 1 1
e T %10t fa%s ¥ Yl
‘a3 ‘18,2 T Mag'e.e * "ss%s.s

(A2.1-8)
%3 = Cuplip 3 + ug )

%3 = °uu(“1,3 Y] “3,1)

9p = Hey, - °12)(“1,2 v “2,1)

where the standard contracted notation ol with M,N = 1,2,...6 has been employed
instead of a fourth-order tnesor reprasentation cidkt(27)' The displacement

equations of motion ‘A2,1-L) reduce to

%0 * % M,22 * O3 Yy g3 * (o)) Yo,21" b "3,31 * M1

(ey-ep) uy o)+ ep uy g3+ €) Uy o5+ 0y 2,33 Cu V3,32 * %o ¢




| 1,30 % V2,32 % %3 Y300 33,20 C5 Uy 33 7 Uy g (R2:1-9)

vhere five nev independent velocity constants have been defined by

cl - c11/° ’ °2 - Q(cll'cm)/ﬂ ’ C3 - CM‘/D
(A2,1-10)
€, " (013 + Cw,)/b ’ CS - 033/3

For the transversely isotropic medium, the boundary conditions (A2.1-5) reduce

to
Pl(t)
°2(u1,2 . u2,1) .- ) (x],xJ)
Pz(t)
(c1 . 2c2)ul'1 N :2’2)0 (e - c3)u3 3 - b(xl,x3)
(t
c3(u3'2 . u2'3) - - -%—- 6(x1,x3) (A2.1-11) 1
on x, = 0.

2.2 Formal Solution.,

In viev of the initial conditions (A2.1-7), the boundary conditions (A2.1-11),
and the radiation condition (A2.1-6), an appropriate method of solution for the
system of second order, linear partial differential equations (A2.1-9) governing the

response of transversely isotropic media is reprerented by suceezsive employment of

the Laplace and doudble Fourier transforms

v . 4

o) e [ R0 ar, pe) - g [ F (e)e™as (A2.2-1)
c B |
l

- e “is(a, 5, )

Hoyray) = ] Fxpxgde B2 33 gy ae, 4
g (m.2-2) ‘l
|

R = ) iﬂ(alx14a3X3
F(xl,x3) - (?:-)‘.5 :[1 ?(01.03)0 dulda3
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vhere 8 is the laplace transform parameter, Br is the Bromwich contour in the
right-half of the s-plane and { = /-1, oy and o, are real Fourier transform
paraseters, and a sceling factor s {s introduced in the set (A2.2-2) for
convenience in later cosputations, P. ad F represent laplace and Fourier
transformed quantities of the function P, respectively, The necessary transfcm
and inversion theorems are discussed in detail in Ref., (28).

Applying these transforms to (A2.1-9) in conjunction with initial conditions

(A2,1-7) and the radiation c nditions (A2.1-6), the system of ordinary differential
equations in x2

2 2 o i i
fc?D -8 (°1°§ + c,ag - T)]u1 -(cl-c2 .gaLDG: - ¢ 310363 «0

.(cl-rz)iaa D“l * [c 7 - s hé“l . c3a§ + 1)) G: - '.‘hioqsl)u; =0

2 ~» ~ ; 2 2
=8 opa - cpisa M+ (oD% - s%(caf 4 e, &,

P
4 4 k| u(

(A2,2-3)

{e obtained where D = a—:- "

The similarily transforzed boundary conditions cf A2.1-11) are obtained as

P (a\

C [D‘J OIOQIU?] © --T
F._(s)

¢ « B .’- ] “n ("- ,~. L——.
( y “c2)1=°1u; c,Du, «+ (e, 1)153‘-1 .

Fi(s)
3(Pu - ila ,) - - -?r- (A2.2-4)

which are »gain a system of ordinary differentin vaatd (1 % .
A soluticn of Fgs. (A2.2-3) for § s sought in the ¢
~° * -s)‘xl

'1’ % L . (A2.2'S)
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Substitution of (A2.2-5) into (A2.2-3) leads to a characteristic equation in

Az in the partially factored form(25)

Q(k,al,o/3) = [eA' - MI[(e ! - M)(c3x' - N)+ ch_o/g)\'] =0  (A2.2-6)

where
A= ()\2 = 01?_) ’
M = (C3 3 + l) ] (A2.2-7)
N = (c50§ +1) .,

(A2.2-6) represents the slowness surface of the medium, The linear factor
in )A' defines a separable sheet of this surface sssociated with a true transverse
mode of displacement, while the quadratic factor in )A' is associated with coupled
quasi-longitudinal and quasi-transverse modes of displacements.

The bounded solution of (A2.2-3) satisfying radiation condition (A2.1-6) for

large X, is found to be

3 -sxsz
L = T Uge , Re(kj) >0 (A2,2-8)

where Re denotes the real part of the quantities indicated, and the Aj are

defined by
)\i = M/c ’
2 2.2
e,N + ¢ M b a2 a +[(c N +cM-c), o) - be.e MN]2
1 493 .
3,3 = [ R ] (£2.2-9)

£818 3
Only three of the nine Ukj are independent and they can be determined from
the three boundary conditions (A2,2-4) on X, = 0. In terms of these three
independent de, say, Ulj = Rj, the solution (A2.2-8) may be expanded as




-SA X ShX -SA,X
o 172 2 372
ul = Rle' + R2e R3e )

o -SA. X =8 A X A -8 A.X
G* =1i —l R.e e -1 Eg R.e ka e - i 3 R.e 32

-M =S \sX, c 3 -M S\ X
il = 1*2 totetie. Re 3¢ (A2.2-10)
3 L 1% 2 co g 3

Upon substitution of Egqs. (A2.2-10) in the boundary conditions, Eqs. (A2.2-L4),

the following system of algebraic equations for the three unknowns Ri is obtained

*
)\?_4-0{?_ Fl(s)
R + 2MRA + 23R
X Yo * ARy = 5o g
B.R. + B.R. + B.R. = ig!fgﬁ—l
I e
*
Ao a, F_(s)
2 2 2, g 1031113
o) xR, + *1’\2( ~ )R N 13( ~ 3)RB S T (A2.2-11)
where Bl = 2c2al
Bj = clxj + QCEQE -(ch-c3)bj; USRS
bJ=(c)\' M)/e), 5 d = 2,3

and the \' and M are delined by Eq.(A2.2-7). Solving the system (A2.2-11) and

rearranging the result, Ri may be put in the matrix form

R = Diij (A2.2-12)
where
1 2 2
SIS e s s e T
Do, = io {2 A0 (a5 + b, )- 2) Ao + b.))
120 N e RS Mol AL a SRa ko Ratoa i By
A os @
L Rl .
Dl3 = % {2)\23:J 2A3Pﬂ}
i 2 2

Deq = *dl{()\ il dl)?q(dj + b )- 2)3& o,




———

Ao ke + a?
23 ~ 3 3 )‘1
e 2 2

1 2
3¢, {Bll1*2(°3 a0 By as}

L 22
D32 = ig (2A2 Ny - 2 + b )(k + o )}
XlaiQB ki + a§
D33 = { : B, - 2le2} (A2,2-13)
‘3 1
*
) (s) 1Fo(8)  gF 2 (s) e
=1 , F_ == A2,2-1
T Do T2 Do T3 p D
with the determinant of the coefficients of R, in Egs. (A2.2-11) given by
e
N 2% 2N
D, = B B, B3
22 2 2
o ay klkg(o3+b2) klks(a3+b3) (A2,.2-15)

Upon substituting Eq. (A2.2-12) into the system (A2,2-10), the displacement

field in transformed space can be expressed in a matrix form as

1 - o -
ru ( :0'3:s:x ) Rl R2 R3 [ e s‘)‘l 2
o = Ml * A 53 -8AX
u, (o s0m,83%,) |= = -i =R -i = R, -1 R e 272
IV s )‘l 1 o o 3
c -M -M
u3( 19058 5% ) 0 clzea R2 cl)\3 3 e-s)\3x2
2N 4% 4% % i
Al (A2,2-16)

A
The writing of the uy in this fashion reflects the fact that they can be represented
in terms of the sums of contributions from different components of the input
force F (t). As an example, the first column D,, of D, 13 will comprise the

contributions to Ei arising from the X, -component F ( ) of the force Fi(t)
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Similarly D , and D . will comprise the contributions to G’l' fros ?;(-) and
&
F3(s) » respectively,
After obtaining the Laplace-Fourier trancformed 1t:tion G’ the application

of the Fourler inversion formula given by expression (A2.2-2) ylelds the laplace-

transformed displacement as

u;(zt,.s) - ﬁ- U V;J(“1'°'3) Qayr05055x)d0yday (h2,2-17)
n -= :

vhere V;J is the square matrix of the right-hand term in Eq. (A2.2-16) and

( -
o - es[l @ %, + a3x3) MX,
’

sli(alxl > agx,)- )‘2",‘

¢
s{i(ey%x, + ay%.)- A.X.)

l Q= e S - £ (A2.2-18)
The integrals in (A2,2-17) converge because Rc()\J) >0. It ie 5011l necessary to
invert the Laplace-transformed soluticn into the real time domain, It is sufficient
for the following calculations to asswse that the aplace trans{.rm parameter {is
real. and positive, Then, Lerch's thoorcn(ag) guarantces the existence and

uniqueness of “1(5»”'

2.3 Transformation of the Formal Solution.

Eq. (A2.2-17) together with Eqs. (A2.2-13) and (A2.2-15) mprise the
Laplace-transformed displacement under arbitrar: lmpact load; however, its form
is not convenlent for {nversion. By a sequence of transformations and
contour integrations, the integrals appearing in Fas. (A2, -17) %L1l be converted
into a fcrm that allows the inversion of the Laplace-trunsformed solution by
inspection, In this way, the exact inversion of each u: {11 be accomplished

as the sum of a single finite integral and «lgebralc exgyiessions that are suitable

. _______.._—-—_
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for numerical evaluation. For these purposes, two transformations are executed
on the variables (xl,x3) and (al,a3).
First, a plane polar coordinate system on the free surface of the half-space

is i{ntroduced, given by

~ ~

xl-rcose " x3-r31n6

(0gr<e , 0sB<2on) . (A2,3-1)
Also, let
al‘wCOBG, 03-u81n6

(w<w<e , -2<057) (A2.3-2)

and let @ = -ip so that dalda3 = -pdpd@ , considering now p as a complex

variable, Then, from the above transformations,

18(ayx; + oyx;) = spr cos(6 - @) (A2.3-3)

so that Q

y in BEq. (2.2-18) becomes

s(pr cos(® - 6)- Ao

Q(r,Bx,;P,8,8) = e (A2.3-)

Using the above result, the Laplace-transformed displacement (A2,2-17) may now

be written as

n
. s e ] ~ '
ui(Z") ol ;é' E de JB vla(r) e)QJ(r’G’XZ’p’ ets)dp (A2'3'5)
5 by

vhere v;J(p,e) is defined by substisuticn of Eq. (2.3-2) in \';J(al,a3).
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2.4 The Cagniard-de Hoop Transformation and Inversion of the Laplace-

Transformed Displacements,

As indicated earlier, inversion of the Laplace-transform will be accomplished
by inspection of the solution after first performing another transformation that
will be discussed here. This procedure essentially involves the rewriting of

Eq. (A2.3-5) in a form that yields the Laplace transform of A 3 by

-
J'e'StViJ(z,t;p,e,s)dt = u;(i,s) ; (A2.4-1)
o]

As can be seen from Eq. (A2.2-1), which defines the Laplace transform pair,

this is formally accomplished by three pairs of conformal transformations

Re[pr cos(6-g)+ xjxel =t,

Infpr cos(8-6)+ AX,] = 0, (J = 1,2,3) (A2.4-2)

where t is positive and real. The above equations define the Cagniard-de Hoop
transformation which is utilized in a2 contour integration to obtain the inversion
of the Laplace transformed solution,

Substitution of the expression for A, from Eq. (A2.2-9) into Eq. (A2.L4-2)

yields the Cagniard-de Hoop path for *1 in explicit form as

Al c - 2
pi{coseqp cosa(e-e)+(cosae + Eé s"nge)sinogp]-pngT cose cos(e-e)}-{72- iicM] =0
2 2

(A2.4-3)

Similarly, the Cagnlard-de Hoop paths for X2 5 are obtained from the expression
9.

h 7o 4% - c =
Py,3* A6 O)p; o+ B(nBe, 007, o + C(7, 80,81, , + E(1,B0,6) = 0 (A2.h-L)

tere, a transformation for the cpace variablec was Introduced, given by

1 X

il 12 -1 "7
I3 o
Iy
/

n
- <m’-§t

=
i
"~
+
e
-
e
]
c*

'3<2




2

where

A= - -E- [er cos3<p cos3(’5-e)+ TP cos ¢ cos(’é'-e)sin‘?q;] .

} B = % [672cose¢ cose(z;e)+ 72P sin2¢ - sin2¢ cose¢ cose(zie)el- sinh¢ Jl,
2 3 > . e =
C = -5 [217cos ¢ cos(8-6)- 7 cos ¢ sin“g cos(6-0)e,] ,
E = % [-rh - 72 sin2¢ e, + sinh¢ hl] ’
c
Z = coshe + (2-ml)sin26 cosee + Ez sinhe y
1 -

2 2
J = el cos @ + fl sin"g,

P=2. m, sinee o

2 2
m,= hl(2clc3 - ¢C5 - cy + ch) :

%5
e,= hl(cl + c3) ¥
£,= hl(c3 + c5) X

hy = l/(clc3) 1 (A2,4-5)

Eq. (A2,4-3) is quadratic in p with real coefficients which can be easily solved
and will yield either two real or a pair of complex conjugate roots. Eq. (A2.4-L4)
is quartic in p with real coefficients and will yield 4 real, or 2 real and one
Pair of complex conjugate or 2 pairs of complex conjugate roots, These will be
found numerically as discussed in the sequel,

Following Kraut(22) for the construction of the Riemann surfaces of p to
establish the analyticity of A, = xj(p) and introducing the Cagniard-de Hoop

J
transformation discussed above, the Laplace transformed displacement, Eq., (A2.3-5),

can be written as




8 dp
3 Vim0, ke (3:1,2,3)  (A2.4-6)

where t j are the arrival times of the body wave fronts given by the double points
of the paths. This relation is written in the desired form for an inversion
of the Laplace tra iform and inspection yields immediately the solution in the

time domain as

T + 3
at) = - 2 oo [ rel 2 vyt tn o, Dt n(ees,)  (a2.0e7)

Here ?, is that function of T and x defined in Egs. (A2.4-3) and (A2.4-U4), and

- ot t - -+
Viq = Dll(p,e,t )Fl(t ') + D, ¥ 2(t -t') + 1)13 3(t 45
Vi, = Dy l(t -t') + D22 2(t-t ) + D23 3(t SR s
Vg = D3y l(t-t ) + D32F2(t-t') + D33F.3(t-t‘) R
lal
Vor=-7Vn » Vp=-t ;IVlE‘ ’
A
A\, B
R N 0 gl =
c. A -M c. A =M
A 1t v v = X v (A2.4-8)

J b
32 chala?) 12 33 ch“l°’3 13
where the superposed dot represents differentiation with respect to time,
A fundemental solution is defined as the displacement field of the solid

due to a Heaviside point load H(t). Eq. (A2.4=7) can be then used to obtain

the fundamental solution as follows

u dp,
u};(gs,t) = - —1}1-2— E de {Re[ v . —d 1} H(t- tJ (A2.4-9)
7

2n R

where




=Dy, (p,8) + Dy,(p,6) + Dy (p,6) ,

'_l

Dp1(Ps8) + D 5(p,8) + Dya(p,0) ,

N

"
N
"

and similar expressions for ng and ng are obtained from Eqs, (A2.4-8) upon
replacing vij by V?J for 1 = 2,3 and § = 1,2,3, When Fi(t) is replaced by the

Dirac delta function §(t), then Green's function for the system is obtained as

uy (x tHE=R= -—- F dae {bt Re[ z v i]} H(t-t ) (A2.4-10)

Nz 1j By Tar

It is to be noticed that since Green's function, Eq. (A2.4-10), involves a time
differentiation which generally yields poor results in numerical procedures,

Eq. (A2.4-9) constitutes a better representation for the numerical evaluation

of field quantities.

2.5 Displacement due to a Normal Impact Force on the Free Surface,

Since considerable effort and expense are involved in a numerical evaluation
of the field quantities such as displacements and stresses, only responses due to
a normal force will be considered. Thus taking Fa(t) = F3(t) = 0 in the above
formulations, a solution is obtained for the case of normal impact. This problem,
which is Lamb's problem for a transversely isotropic medium, is considerably
simpler than that for an arbitrarily directed input force. Furthermore, such a
numerical evaluation was compared with corresponding results for an isotropic
medium and also with data that was ohbtained from laboratory experiments on a
suitable model, If F,(t) is chosen as F(t) and Fq(t) =F3(t) =0 in Eq. (A2.1-11),

the boundary conditions become

il o4 _A_____;__.—M
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ul’2 + u2’l =0

(cl-202)ul’l toguy ot (ch-c?’)u?”3 = - E%El a(xl,x3)

U3 ot Uy 3= 0 (A2.5-1)
on x, = 0.

Thus, all terms in Eq. (A2.4-7) which are multiplied by either Fl(t) or F3(t)

must vanish. The displacerent for the normal impact force is obtained as

J t 3 dp
u (xt) = - —5— [% ae([ F(e-t')Rel T W, (x,t,5" 50, 0p, —dlas' JH(t-t,)
N 2rFeR Yn % j=1 1 U J
--2- d (A2.5'2)
where
il
wlj = DT AJ 3y 3 = 1,2,3
3
i . T
w21=>\1D0A1 s Woy = 5 Ay 53 =2,3
N °n
ib
W3l=0 ’w3d=@i-Avj’d—2’3’
N
where
SE RSl i (BRI
2 2
A, = k3[kl(°3 - b3)+ 2aib3] 3
e )
Ay = - *2“\1(0'3 e 2a;b,]
bJ = (cl)\['j - M)/c)4 s 4 = 2,3
2
By =20 ,
By = o)A} + 2ep0) - (cy-ci)b, , § = 2,3 (A2.5-3)
and

DON = AlBl + A2B2 + A3B3 .
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xj, Aﬂ and M are defined in Egs. (A2.2-7) and (A2.2-9), fThe subscript N
1s used to represent the fact that quantities discussed here are derived for a
normal impact force, Py are again given by Eqs. (A2,4-3) and (A2.4-4) gince

these are related only to the characteristic equation of the medium considered,

The fundamental solution similar to Eq. (A2.h-9) for this case can te written

as
g
3 dp
H i
uy (x,t) = - d6Re[ = W  (x,t;p,0)p, —LIH(t-t ) (A2.5-4)
1y 21120RE jop 18 3 dr 3
2
for F(t) = H(t) and the Green's function corresponding to Eq. (A2.4-10) is
: e el &5
) = - Ede e (Rel 2 Wy (eotip, 00py 1} H(tty)  (a2uses)

for F(t) = s(t).

The integrand of Eq. (A2.5-4) is similar to that of the line source problem

obtained by Kraut(zl). It can be considered as the sum of responses generated

by e continuous spectrum of line sources spread angularly on the free surface

through the impact point(lh).

2.6 The Rayleigh Wave.

As the normal distance from the plane boundary into the medium goes to zero,
Eq. (A2.4-2) becomes

pr cos(§ - @) = ¢ (A2.6-1)
50 that the Cagniard-de Hoop path runs along the real axis of the right-hand half

of the complex p-plane. The bresence of a simple pole Ph on the real axis,

known as the Rayleigh pole(ll’lz’lg), requires an indentation of the path of

o

segration to avoid this singularity, Thus, when X, = 0, the points on a small
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semi-circular indentation about the pole no longer correspord to real time,
Therefore, the contribution to the time-transformed displacement field arising
from the semi-circular indentation must be cvaluated separately, then inverted
into the time domain and added to the displacement fleld arising {rom integration
along the Cagniard-de Hoop path. As an example, wheu F(¢) = H(t) the contribution

from the Rayleigh pole is given by

*H (x -1

npole

3 = 2 )
u ae{(ni)" Res[ T W (r,e;p,e)n"pr cos(e-e] }
8 ja1 1 PPy

(A2.6-2)

»y0,x ’3) =
1 3 2n o

P8 P ™

in the transformed space wherc¢ Res denotes residue of the indicated quantities

at the given location of p. Inversion to real time yiclds

n
53 3
H o & -—i—. +8 . = c I
ui“pogzl,C,xyt) e _E!de[Rc [Jflwid(r"é'pe)] 8(r-p on(e-e)l]p_pn
2
L T B 6
= - ST {RQS[JflwiJr’e’pR’ e)] |pR‘1n(‘é_e°)| (Azo '3)

Lo
= ~ > L ..1 _R- S o~

vhere T = pch.,(e-eo) and @ = @ - cos (pR) « The factor pnsln(e-eo) is

introduced in Eq, (A2.6-3) since the Dirac delta Zunction involved is an

implicit function of 9(30). The displacement ficlu at a station on the free

surface due to a unit normal impact force H(t) is thus

G ) H o 0 ) 1 ( o= ) H('r-'rR) I
u Xy,0,x_,t) = u, (x,,0,x.,t) + g==— Im{Res{ Z W , (r,8p,,¢ ~
Asurface 3 iy 173 enpr 1 4 " |rRun(e-eo)|
(A206'u)

where the first term on the right-hand side represents contridutions due to dbody

wave disturbances while the second term arises from the Uayleigh yole,
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Seetion 3, MNumerical Procedures

3.1 Introduction.

Displacesent fields such as given by Eq. (A2.4-7) obtained in the previous chap-
ter are generally expressed in terms of complicated algebraie funetions of x,p and t
and are in‘ractable analytically. Therefore, the fundamental solution, Eq. (A2.5-k)
the displacement field of the medium under a leaviside normal impact, has been
programmed for evaluation by a digital computer. The Green's function (A2.5-5)
may also be used for such an cvaluation that will exhibit the basic character
of the response of the medium; however, it involves the time differentiation
{ndicated in Eq. (A2.5-5) vhich must be carried out numerically; as a
eonsequence, this procedure often leads to unsatisfactory results.

In most practical problems, physical input foreces are not realized in a
Dirac delta function form and the desired solution is a combination of several
fun~tions of which the Green's funetion is only one. For an exazple, if F(t)
is the actual input force of the problem and -&- [u': (xyt)] s the Green's
funetion from Eqs. (A2.5-4) and (A2.5-5), the displzcemt. field due to F(t)

is then
uy (x,t) = F(t)o %(u’fn(z.t)l . ul:ﬂ(g.t) ® #(t) (A3.1-1)

vhere the symbol ® denotes a convolution produet in time, Eq. (A3.1-1) is
fdentical to Eq. (A2.5-2). Thus, the fundamental solution, Eq. (A2.5-4), can
be used for evaluation to avoid the numerical differentiation involved in the
Green's funetion, Fq. (A2.5-5). Numerical differentiation of the imput function

is needed in this case; however, this operation is simpler and generally ylelds

pore accurate results than that indicated above,




3.2 Camputer Progras.

The casputer program developed calculates 1) the fundamental displacement
field given by Eq. (A2.9-k), 11) the components of *he fundamental strain and
stress, 111) the actual displacemente, strains and stresces btained by the
convolution integral, Eq. (A3.1-1) for a given input £(t).

In order to compute the fundazental disyplacement, 14 subroutines are
used of vhich two are very important, One of these is a routine vhich finds
roots of the quartic algebraic equaticn (A2,.h-k), Thies routine uses Bairstow's
lchm(y‘) wvhich i{s general enough to solve any even degree algebraic equation
80 that this routine may be used to find rocts of the sextic equation arieing
in the for= of the characteristic equation of a generally anisotropic medium.
The method provides a corresponding number of quadratic factors of the given
even degree polynomial by an {teration scheme. Fast and accurate convergence
requires & quite good initia! approx!maticn and this {s obtained easily from a
few trial and error te‘hniques, Ancther routin: of lmportance computes the
complex quantities Hu {n Eq. (A2.5-4), These two routines “uke most of the

computer time necessary to zolve the problea.

3.3 FEKesults,

Several getr of numerical results which are considered t be representative
of *he solution obtained are shown in the following.
(1) Three componente of the fundamental displacemen:s at various locations
ere ghoxm in Figs. 2, 3 and 4,
(1)  These displacements convolved with
(a) an tnput force given by Kt) « ..m"(i-ﬁ’), where + 18 the duration
of the laput pulte are sdown {n Fle b y G, 7 and 8, and
(b) *he stresces yroduced by the Luput force cbzorved from experiments are
shown in Figs.l, 2, 5, 4 of the =a!: repor: and Appendix G,

{{1) slowness and wave curves are show: in Fies, 9, 10, 11, 12 and 13,

A_.______._.__——ﬂ



Section 4., Discussion and Conclusions

4.1 Introduction,

It appears that the soluticn presented here is the first available for
Lamb's problem in three dimensions involving a truly transversely isotropic medium,
A three-dimensional formulation is introduced in the course of the solution and
the problem is solved using a modified Cagniard method. This procedure may be
used to solve the same type of problem formally for any anisotropic, elastic
medium even though it may take a substantial amount of computer time for evaluation,
Burridge(lh) suggested essentially the same form of the solution to Lamb's problem
as presented here in three dimensions for & generally anisotropic medium; however,
he used a two-dimensional result to construct the solution for the three-dimen-
sional space and he Presented only numerical results for two-dimensional solutions
on the free surface for e cubic crystal, Ricketts(es) Presented a formal solution
for the same problem investigated here but he was not able to obtain any
numerical results since the solution he suggested includes an integral operation
whose limit is, in general, not finite,

Since the solution obtained here is in the form of quadratures, it must be
evaluated numerically, However, the evaluation of Eq. (A2.b-7) for cases other
than a normal impact is beyond the scope of the present study, Numerical results
for the responses of the solid due to a pure shear load might be of interest to
geophysiciets in relation to earthquake phenomena; these could be obtained with

& certain modification of the program developed here.

4.2 Comparison of Analytical Results for Body Waves in an Isotropic Medium.

One type of investigation to check the validity of the numerical results was
carried out by comparing the present fundamental solution to torresponding values

obtained by Pekeris and Lipson(h) and Shibuya and Nakahara(3l) for the isotropic

s e S



half-space. To carry out such an analysis, it should be recalled that the solution
and the computer program developed in this investigation apply to a transversely
isotropic solid which exhibits three distinct sheets of the slowness surface
except for a finite number of singular points, which are the brench points in the
) complex p-plane., Thus, it was not possible to use the program to obtain responses
for a truly isotropic solid in which two sheets of the slowness surface corresponding
to shear waves coalesce, resulting in a singular surface. Instead, a set of
elastic constants for a slightly transversely isotropic solid derived from a
set of elastic constants for an isotropic sciid was employed in the computational
routine. A case where p = £ was selected so that A\ = G with )\ and G as the Lamé
constants and u as Poisson's ratio. Veloclty constants ¢y and c3 defined in

Eq. (A2.1-9) were obtained from the relations

e = (MED)

ey = G/p (Ak.1-1)
while s C) and c5 were chosen by means of small perturbations involving cy
and c. to reslize slight anisotropy. In the computations, a 2 percent transverse

3
anisotropy was employed using the values

cg = cl(l - .02) ,
c, = c3(l - .02),
e, = (ey-e)(@ - .2 . (A4.1-2) ‘

. 6
The slowness curves resulting from the above constants using A = G = 2,0 x 107psi and
p=2.0x lO"h are shown in Fig. 12 , which indicate the presence of anisotropy

so that the present computer program can be used. As shown in Fig. 14, the results I

from the present investigation fall between those of References (4) end (31). Since

)y .

Pekeris and Lipson obtained an exact solution in terms of elementary functions,
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it appears that the present investigation does yield a better approximation than

that of Shibuya aha Nakahara who obtained their solution by a direct numerical

inversion of the Laplace-transformed problem. It should be noted that the

response in the interior of an isotropic half-space obtained from the solution of

Pexeris; and Lipson were determined here from those responses on the surface due to a

buried point sourcé @iven in Ref. (4)) by use of a dynamical reciprocal theorem(27).
The only analytical results pertaining to the fundamental stress, even for

an isotropic solid, are to be found in Shibuya and Nakahara's paper. Using the

elastic constants cited above for the nearly isotropic solid, normal components

of the fundamental stress, °gg(§’t)’ were computed and plotted together with the

data of Ref, (31) in Fig. 15. Although the agreement is reasonable, the results

from the present investigation appeﬁr to provide a more realistic solution for

the earlier part of the pulse. This is so because ug(g,t) displays B virtual

discontinuity at v = 1 in Fig. 15 and °g2(§’t) is proportional to —— s0 that

X
2
the fundamental stress must be nearly like a Dirac Jdelta function,

4,3 Comparison of the Analytical Results with the Finite Element Method

and Experimental Data.

The convolution integral indicated in Eq. (A2.5-2) has been evaluated to
obtain the actual stresses resulting from a realistic input force F{t). The
values obtained have been compared both with the results obtained from the finite
element technique and with experimental data.

The experiments utilized a limestone block to model an isctropic half-space
and a Yule marble block for a transversely isotropic semi-infinite solid. Details
of the experimental investigation are presented in Ref. (32), which also includes
the procedure of determining the dynamic elastic constants of Yule marble utilized

in the computation, The constants were obtained from the body and surface wave




measurements on the two blocks used in the experimental work. The static constants
’ determined by Rickctts(QS) were based on data from a small specimen cut from one
of the cormers of one of the Yule marble blocks. The elastic congtants for
limestone were also taken from the data Rickests obtained. These threc sets
of constants are listed in Table 1.
Experimental and/or analytical difficulties that could account for the
disagreement between predicted and measured values (when extant) include

(1) Discrepencies in the properties of the actual blocks and those assumed

———

in the mathematical model., The rock samples erployed exhibited local

differences in properties and inhomogenicties and evidenced deviations

from elastic behavior. The Yule marble manifestcd some small changes
in the direction of the axis of elastic syrmetry within the block.

(11) Errors in experimental measurements involved in determining the elastic
constants and the axis of clastic symmetry.

(111) Experimental errors involved in the stress measurements which are

discussed in Ref. (32),

(1iv)  Numerical errors ir the computation of the field quantities due to
round-off or truncations built into various library routines used.

(v) The distributional character of the solution which requires integration
over 2n radians introducing a numerical approximation that involves an
error of order (Ah)3 for approximate quadrature based on Cimpson's rule,
4h being the integration step.

(vi) Approximations involved in numerical differentiation of the !nput data J
that bringe ir an error of order of (&) for a forward difference scheme.

(vi1) The difference in the finite area of application of the sctual loed and |
the point leoad assumed as the input in the anaivsis; the latter introduces ‘
¢ significant contribution to the recponses from <he higher coigponente of

the frequency spectrum of the Dirac-delta function input,

I T ————




Some representative comparisons among the three types of results are shown
in Appendix C, The agreement generally appears to be quite good., However, the
analytiecal solution obtained nearer to the impact point, about 1.8" awvay, yielded
higher stresses than obtained by either experimental or numerieal means; this is
mainly aceounted for by diserepency indicated in (vii) above. Generally, the
agreements in the first part of the pulse are very good at locations farther
avay, about 5", from the point source where contributions from the higher
frequenecy components become negligible. The analysis generally yields a lower
amplitude than experimental data; this diserepancy may originate from experimental
error that is described in detail in Ref. (32). Phase shifts between analytie and
experimental solutions are also observed vhich may be explained by the difficulty
in determining the exaet rise time from the experiment and ecertain numerieal
errors resulting from the iterative scheme that is introduced to solve the
discriminantal equation of the quartie equation (2,4-4)., The solution of this equation
is the arrival times of the body waves. Analytical results near the free surface
with an angle @ less than 1° yield small spurious oscillations before the
arrival of the surface wave; this is due to the round-off error resulting from
such an operation as handling extremely large and small numbers simultaneously in

the eomputer as Gakenheimer and chnau(33)

pointed out for the isotropic ecase.
Numerieal differentiation of the measured input foree appears to introduce certain

errors in the computation of the actual stresses from the stress eonvolution

integral. This i3 expeeted sinee the order of magnitude of the time derivative {

of the input foree is 106~ 108 1bs/see, and a slight error in the measurement of

the oscillogran ean produce a signifiecant change in the caleulated stress history.

The influenee of modified inputs in the amplitude and phase, as discussed in the J

following paragraph, ean be seen from Fig. 16. 1
The computations based on a hypothetieal input foree given by

2 mt
Fit) = {gosin thes 8<t < t', (vhere I, is the peak of the measured force and '
I B
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t' is twice the actual rise time) is shown in Fig. 17, and is in good correspondence
with those results where the actual input is used in the calculations of the

stress. However, the analytical expression for the input yields a slightly

broader stress pulse than that computed from the measured values, The best
agreement wi'n the ~xperiment was obtained when a symmetric pulse was used in

the computation where the entire rise portion of the pulse was identical to that
measured but where the rest of the pulse was artificially changed to consist of

a mirror imege of the rise. However, if the input pulse ia already close to a
syrretric shape, the improvement is, in general, not great relative to those
calculations where the actual force history iz used.

As shown in Fig. 2 of the main report, numerical results using the finite
element technique were found to be in better correspondence with the data for
receiver point: nearer to the source. This would be expected sinee the load is
inevitably spreal over a finite area in the finite element method and thus the
yoint source effect is substantially eliminated. Such a loading is required by
the actual physical situation arising in the experimente, However, at distant
stations a complete time history could not be obtained by the finite element method
for a sufficient length of time to provide a meaningful comparison; this is
mainly due to the limitations of the e mputer capucity and the time required

for computation,

4.4 Surface waves,

A computer program was written which evaluates surface results civen by

EQ. (2.6-b); however, an unstable oscillatory resul® was obtalned due to round -of f

errors., Thus, the evaluation of the field quantitles on the surface at R 0

was not pursued any further in this investigation.




-

Since the displacement must be continuous in the half-space, the field
quantities computed on a ray at a shallow angle from the surface should yield a
reasonable approximation for th-ise right on the surface. The displacement
fields and the comparison of the calculated components of stresses near the
surface with the experimental results are shown in Fig. 4 of the main report

and Appendix C, where good agreement is indicated,
L,5 Conclusirus,

A solution to the wave propagation problem in a transversely isotropic half-
space under arbitrary concentrated normal loading on the free surface has been
Presented within the scope of the linear theory of elasticity, A mixed Laplace and
two-dimensional Fourier transform and a modified Cagniard-de Hoop technique
were employed to solve the Problem; it should be pointed out that this particular
method can be used to solve similar three-dimensional problems ina solid possessing
any type of anisotropy. The solution obtained in this manner may be considered
as the sum of responses due to line sources spread uniformly over O to 2n radians
on the free surface all of which are Passing through the loading point. Therefore,
the solutions to a line source input of any orientations located in the surface
can be obtained easily from the present formulation of the three-dimensional solution,

A computer program which evaluates responses of displacement, stress and
strain due both to a Heaviside and to an actual force input was developed for
normal loading., The numerical results for a fundamental displacement and stress
obtained from a set of elastic constants for a nearly isotropic solid exhibited
good correspondence with the known analytical results for a corresponding isotropic
solid. For both an isotropic and a transversely isotropic medium, the solution
from the program provided good agreement with experimental data for the first

Part of the pulse for stations distant from the impact point, although the

L _______;_.——_ﬂ
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remaining part of the pulse predicted lower amplitudes than the data. Predictions
at stations neurer to the source were generally not as satisfactory due to the
contributions from higher frequency components arising from the singularity of
the point load used in the analytical model that does not actually correspond
to the experiment. The responses on the surface of the half-space may be obtained
approximately by computing them along a ray near the surface with a shallow
angle, even though an exact evaluation was not realized in this investigation.
The responses along a ray in the direction of the load may not be computed from
the present program due to a gingularity arising from the transverse isotropy
of the medium; however, this is not a serious limitation since the responses along
this ray may again be computer approximately as descrioed in the above. Also,
the program can be used to approximately evaluate the responses of an isotropic
medium with reasonable accuracy by introducing nearly isotropic elastic constants.
The mathematical model employed generally predicted the responses of the Yule
marble block tested under a normal point load reasonably well in spite of
discrepencies in modeling of the type discussed in section L.3.

A computer program for the solution due to a tangential load on the surface

may be developed utilizing the formulations presented here without much difficulty.
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Table 1. Velocity Constants
Cl 02 ﬁ P
re1e25) | 3.8 x 1010 | 1,28 x 10 | 705 x 20" 1 .30 x 100 | 2.713
:s:i-;le[y] L,525 x 101 | 1.50 x 100 | 1,30 x 1 1030 | 2,36 « 1089 | 2.66
et N [T .93 x 10'° 2,2k

Velocity Constants :
Specific Gravity

€y 1n2/sec2

PPy gr/em’
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Aggendix B

Users Manual and Fortran Listing for the Finite

Element Method Applied to Wave Propagation

Analysis in Isotropic and Anisotropic Media

This document replaces and supplements the Users

Manual submitted previously (Reference 10 of Main Report).
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SUSBJUTINE ®ANYAL

4 ER INSTAUCTIONS AND [NPUT FORMATS FOP FEAP-T) esocscssscccs

INTTE ELEMENT AnALYS]S Ra0GRANM

4 FEAPT) IS A CENERAL [0 CINITE (EILFMENT TAINALYSIES 1P)POGRAM
«HICH FURNISHES TR THE UCER ®ESH INPUT/OUTPUT, ELEWENT ASSEMELY
AND STLUTINN OF EQUATIONS ILINEAR, 1MPLEICIT AND EapLICIT TIME
DEPENIINT, NONLINEARE, PRESCPIBED GENERALIZED NODAL FOKCES,
PRESCHINE ) HO0AL A%D FLUMFNT OATA, ANOD DUTAUT OF THE
AENEPALIZED OISPLACEMENTS AND FOACES. ELEMENT MATAICES FOP Two
AND TrBEF NIMENSIONAL LINEA® ELASTICETY, SHELLS, PLATES, ANO
S1ELD TLAPLACE FQUATINNL PROBLENS APF AvAILASLE. ALTERNAT]VELY
USERS WAY §JRPLY Tui[® OwN ELESENT LIAPARY AY PeOVIDING A

UMRNUTINE CALLED FLMINN, weFRT NN IS & TwD DIGLT NUMSER
IIENTIEYING THE ELFWFNT SUSADUIINE. EACH ELEMENT SUBROUTINE
MAS AT LEAST #NUR AASIC FUNCTEIDNS WM(CH ARE OFEL INEATED oY A
SWiTCHING PARAMETED, T5w IN THE SURPOUTINE.

ELITNNI“:"A.NUI'-NU‘-NElanLleﬁl'vNSIlV.NVECv"C'vOﬂvU'lvlv
TR FoFNRCELESTIF ULVET T, 15W)

N 1S ELEMENT MuMaFe,

wh ]S THE MATER[AL NUMHER,

NOI® [S SPATIAL DISENSIONs 142,08 3,

NOF 1S NUMAER OF DEGREES OF fREEDUM PER NODE,
NEL 15 THE NUMAER OF EXTERNAL NOOES PER ELEMENT
NELT |5 OTMENSTON OF FLEMENT PROPERTY ARRAY,
NSTS S THE S12E OF THE ELEMENT STIFFNESS.
wWSU2Zv IS THE SIZE OF UTILITY VECTORS.

NVEC |S THE NUMBER OF UTILITY VECTORS.

MCT IS A PRINTER LINE COUNTER.

oM [$ A CARAMETES #OR MATERLAL 10ENTIFICATION.
DLLe1) §S MATERIAL PAOPERTY MATAIX [63 CELLSI.
XYZINDIMy|) A4E NDOAL COORDINATES.

L. INEL I+ ) ARE ELEMENT PROPEATIES, NOOES, ETC.
+ ND'y 1) ARE NOOAL GENERALIZED FORCES.
FPCEINSTE.2T IS ELEMENT FORCE VECYOR TO BE
CUMPUTED, COLUMN 2 1S LUMPED MASS
ESTIFINSTF,NSTF) 1S ELEMENT MATARIX TO BE
COmFUTENS

VECTIN'[ZVe11 AME PRESCAIBLD NODAL OR ELEMENT
QUANTIT, &S, TEMPLRATURES EfCe

UINDF, IF S SOLUTION VECTOAR.

1SW 15 SV ITCHING PARAMETER,

1SWs o & MATERIAL CHARACTYERIZATIONS®
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EACH DATA SEGMENY [S PREDEDED AY A CARD WHICH IDENTIFIES THE
TYPE NF DATA AND L1¥ITS DN THE AMOUNT OF OA1A WHECH IMMEDIATELY
£OLLNWS THE CARD, EXCFPY AS NDTED THE NDATA SEGMENTS MAY APPEAR
I% ANY ORDER, THE INENTITY CA®RDS MAY ALSO ALD THE USER IN
INTEG@PPETTING THF INPUT NDATA CARDS. AS SUPPLIED THERE ARE
TWENTY-FIVE DIFFERENT DATA [DENTIFICATION CARDSe THESE ARE

co T 1012 INENTITYIPESTRICTIONS)

FEARTY START D EACH WRDBLEM [MUST PRECEDE ALL DTHER
DAYAY,

TITLE CHANGE NUTPUT PAGE HEADINGS

PEMARK COMMENTS ON QUTeyYT

MATER| MATERJAL CHA®ACTERIZATION.

NODAL NOOAL CARDS

0L AR SNLAP CONVERSION. IPPECEDE BY NODAL,GENERA, DR
ALACK )

FLEMEN ELEMENT CONNECTION CARDS.

GENERA GINEPATE NDDES IN A LINEAR PATH 8Y ANY INCREMNT

ALILK GEMEPATE ALL MESH DATA (BOTH NDDAL AND ELEMENT)

FOR A 2,INA IINIMENSIONAL REGION WHUSE ROUNDARY
MAY AF DECFINED 6Y 41B)OR H1201COLLOCATED POINTS

BOUNDA ROUNDARY COE PRESCAIPTION [PRECEDE AY NDDAL OP
GENERATE OR BLOCKR)

VEC TOP PRESCRIRED NODAL OP ELEMENT OATA [PRECEUE BY
NODAL OF POLAR AND ELEMEN)

FNRCE NODAL GENEWALIZED FORCES 1PRECEOE BY NODAL OR
GFMFRA OR BLACK),

ALOADS SURSALE LOADINGS ISAME AS EORCE).

ELOADS FLEMFNT LOAOINGS ISA¥F AS FURCET.

MESH CHECK CONSISTENCY UF MESH ONLY (SAME AS SOLVEL

eLar PLOT MISH (SAME AS SOLVET

INITLA INITIAL CONDILION PRESCAIPTION FNR DYNAMIC
ANAL YS[S [PRECENE BY NOODAL, GEN:=®A DR BLDCK)

SDLVE COMPLETE FORMULATTON AND SOLUTION FRI® ELEMENTS

[PRECFNE MY WMATEPR|,NONDAL N2 GENERA, AND ELEMEN
OR PRECFOE RY MALER] AND BLOCX T

RESILY USE PREVINUS PaDBLEM DESCRIPTION 4ITH NEw LOAD
ONLY {9RECEDE RY SOLVE AND Ncw LOADING CARDS).,

(2 184 DYNAMIC SOLUTION BY EX®LICIY INTEGRATIUN, 1SAME
AL SO YE)

InpPLIC 1¥PLICTT INTESRAT{ON DF DYNAM|C PROBLEMS
(RUFCENE BY SAME DATA AS FO® SJLVE)D

V141,08 QUAST-STATIC LINSAR VISCIELASTI INTESRAT [ON
[oRECEDF AY SAME DATA AS FOR SOLVE)

FOURILE FOYRIER rowe(STT{ON 1SAME AS 50LVED

anoyp ACCUMJLATE FOURTER SCLUTION [AFTER FOURIE)

stTop MNAWAL FX|T [4USY FOLLOW ALL DJafa)

aNa e aatataatatataratatatatatakalakaRaRakaka et a ko Mo R o Wu Mo R N Ra Ko R Nl e R R R e K o R R B e e e R ]

Y alatslakaiatsiaratataiatatalatalalatalatalakabalakalaRa Rl RaRol o NN o No ko We N No Hal e NaXaNo Kookl

I8ued, ®o
15uey, oo
Itwes, oo
1508, oo
1fwep, oo
CTIng® [Sw

CHECK ELEMEN) +08 POSITIVE AnEd @
ELESENT STIFFNESS CONRUTATIONGe
ELESENT SIRESSES AND PAINTGYTSS
ELENFNT LOAD CO®PUTATION
NONLINEAP GENEAALEZED *#OaCES

wAY BE USED FOP SPECIAL PuURPOSES,

USERS CAN GENEPPTE SUPFACE LOADINGS BY PROVINDING SLONM
SURROUTINES TWHEPE NN IS A TwD OIGII NUMBEP BETWEEN O1 AND 05T
THPT SPECIFY TWE LOAD POUTINE. TWE SUBRQUIINE IS ACCESSED oY
THE CALL TO

SLONNINDI W NOF ¢NOP (NPOES, [PPFS, PR, XY, FSI

WHEPE IN ADOLITION TO OUANTIVIES OEFINEC ad0VE

FOR ELMTNN,

NOP 1S THE OIMENSION OF LOADED SURFACE

NPAFS 1S NUMEFP OF LOAOED NOOES (®ax ©)

FCUB] ARE NOOE NUMBERS OF LUADEQ NDJIES,

P (8] ARE LOAD VALUES AT CORMESPONDING IPHES
NODES.

FS1648) APE THE COMPUTED GENCRALIZED INUDALT
FORCES FOP EACH DEGPEE OF FPEEDOW AT EACH
1PPES NOOE.

"EE SECTION Tal FOR DATA [NPUT DETAILS.

INTEGPATION TABLE IS ACCESSED AY THE CALL
CALL INTEGLILIMoNCLoNOIM,LINT,STUMT

STUWI&4M) INTEGRATION POINTS AND WELGHITS,
*eNOTE®® M MUST RE SET EXPLICITLY ANOD AE LAALIR
THAN OR EQUAL 10 LINT,
LINT = RFTURNS Wi TH NUMHER [NTEGRATICN POINTS,
NCL = O RETURNS GAUSS ®OINTS AND WEIGHTS IN
STuw.
LiM o | 30 5 IS NUMBER OF GAUSS POUINTS/D1w
FCTION,
NC1 o 1 RETUPNS A SPECLAL 3-0 GAUSS § OxkMULA,
SET LIM s 1 FOR & T, CYBIC ACCURACY
SET LIM s 2 FOR [& PTe OUINTIC ACLURACY,
NC1 = 2 PRETURNS TRIAMGULAR INTEGRATION FORMULA
SEY LIM o | FOR | PT, LINEAP ACCJURACY.
SEY LIM s 2 FOR 3 PT, QUADRATIC ACCURALY,
SET L1M o 3 FOR 7 PY, QUARTIC &ACCuRaCy,

1.) OATA TYPE IOENTIFICATION CARDS 115, INs12406),
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®SONQTE®®e EACH 1DENTIFIER IS PUNCHED STARTING IN COL T 1LEFT
JUSTIFLIEDE,

EXCESS CARDS MAY EXIST BETWEEN EACH SECTION NDF NATA, MOWrvVEk,
THE OAYTA TO BE USED MUST IMMEODIATELY FOLLOm THE TYPE CARD A%D
MUST BE IN PROPER ORDER, NO PARTICULA® DRDER yb THL Tvee
CARDS |S NECESSARY EXCEST THAT THE FEAPTI CARD MJSI ALWAYS O¢
THE FIAST CARD IN EACH SET DF DATA, AND YESTRICTIONS 4uSl 3
OBSERVED.

2.) PROBLEN INITIATION ANO CONTROL CARDS

CARD 1. 16X,124A6]

coL 7 1012
COoL 13 70 78

MUST CONTAIN WORD FEAPTI
OUTPUT PAGE HEADER

CART 2. 11541%y346)

coL 1 105
oL 7 10 12
coL 13 10 19
coL 19 13 26

NO[M ~ SRATIAL DIMENS[ON OF PRZALEM 1] To 4)
NAMES TO 8E PRINTFD AS QUIPUT HEADERY 1
CODRDINATES = [f BLANK SET TIT 1,2, AS NEFDED.

CARD 3. {ISs1Xe0AL)

coL | vo S NOF ~ NUMRER DE UNKNOWNS ®ER NODE ([ T0 &)

coL 7 1012 NAMES TN RE PRINTED AS DJTPUT niADERS Db THE

coL 13 1D 18 GENERALIZED OISPLACEMENTS AND FDACES - IF

sssssecs BLANK SET TO Ly2e3sks5yt AS NELESSARY

CoL 37 Y0 &2

CARD &, 1615,5F10.01

coL 1105 NEN - MAX[MUM NUMBER N+ HODES CONNECTELD T AN

ELESENT (] TO 200,

NERTHA = INCPEASES ELFMENT MATRIX S[7E FaiM

NOFONEN TO NDFENEN ¢ NEYTHA

LREC - COMPUTE GENFRALIZED FORCE CHELX [F

NOMZERD 1FDR TIWE [MVARTANT AMALYSIS OALY)

MAAN - MAX[MUM EXPECTED SANOWICTH, OSFAULT 195

SET T0 [00. USED AS A% ER&I? CMECK T} DREVYENT

AUNNING WITH AN DRVINUS EPRO&,

coL 21 10 25 [BUF -~ WUFFER SIZt FOP SIORAGE OF HISLuRY
EEFEC. 5 IN TIME NDEPFNDEN]D ANALYSIS, NEFAULT 1§
IRUF 15201720

COL 26 10 30 NC1 - USEP INTEGEP COnSTANT

£oL 3 1D 40 CNHL - USER OEFHINED CONSTANT

oL &l TO 50 CON2 - USEP CEFINEO CONSTANT

CoL 6 1010
coL (1 Yo 15

coL is YO 20




vaGt

COL 51 Y0 &9 CONIEN) - USEte OEFINFO CONSTANT
0L &8 D 70 CANIEIL - USER OES INEQ CONSTANT
M TL 70 8 CCNIIY) = USE® DEF INED CONSTANT

2e1) OWE@gose St COMBENTS ON QUTPUT, 1&a,)248)
SURSEGUENT CaeDs

N 110 12 ®ySY CONTAIN oFwaRx
coL 1y 0 10 STATEMTNTS TG BE OUTPUT o USE AS ManNY REMAAK
CaenS AS PESIREC. INSEST BEFORE ANY TYRE CanQ.

2:.2) VITLE CHANGE ON OUTAUT Sax,i248)

oL Y 10 12 nySY CONVAIN TITLE
CoL 13 T0 Ya NEW TITLE OESCRIRTOR

2.%) EXECUTION TEAMINATION §aX,44)

oL 7 v0 10 ®UST CONTAIN STOR, INSERT AFTER LAST PROPLEW,

Je) MATEOLAL CHARACTI®IZATION §15,10,1246)

oL 1 Y0 S NUMMAT - NUMBER OF OIFFERENT MATERIAL CHARACT-
FO[Z2ATIDNS TO FOLLOW.
coL 7 T0 g2 MUST COMTAIN wORQ wMaTER]

THE FOLLOWING CA®OS 4RE SUPPLIED FOR EACH MATERIAL TO BE CHARAC
TERLZED (MUST UF EXACTLY WUMMAT SETS OF CAROSI

CARD [,) ELEMENT SFLECTOR CARD (1S5y1X4A5 11461

oL 1 10 s MATFERJAL NUMBER 11 TO NUMMAT)

CoL T %0 (1 FLMNN = WHERE NN IS NUMBER OF ELEMENT CLASS 101
T0 30) Y0 WHICH THE CHARACTERIZATION BELONGS.

coL 12 ramn ALPUANUMER |C INFORMATION TQ 8E OUTPUT,

CARD 2.1, EVTC. ®® USER OEFINED FOR EACH ELEMENT TYPE PROVIOEOQ.
4«.) NODAL CAROS (19.1%,461

coL 11 s NUMND - NUMBER OF NOOAL -_INTS
(2 [ S £ B ¥ ST CONTAIN NODAL

SUBSEOUENT CARDS  LAST NONAL CARD WMUST NOT BE GENERATEO.
115,119,3%10.0)

oL 110 5 NOOF NUWRFR
coL 1 L IF | DISPLACEMENT 1% SPECIFIEQ

PAGE ?

I8Ct1l .E0. 0. FORCE SPECIFIED.

[RCUI) 4GTs Oy DISPLACEMENT SPECIFIEQ, NO
INTEAVENING GENERATION,

I3CUI) oLT. Oy QISPLACEMENTY SPECIFIEQ,
GENERATE BETWEEN MISSING NOOES IN ALGESRAIC
INCREMENTS OF Nx,

* TERMINATE WITH A BLANX CAROD,

4«31 POLAR DR CYLINDRICAL COOROINATE CONVERSION TO CARTESIAN
COORDINATES (6% ,A¢)

coL 1 to 12 MUST CUNTALIN POLAR ILEFT JUSTIFIED)
CARDY 1. 13(545%,2F10.0}

L TR § I Ao B ) N1, INCREMENT ADDED (ALGEBRAICALLYI, NI TO N2
oL 1™ s Nlo FIRST NQOE TO BF CONVERTEOD

£aL » Y0 10 N2, LAST NOOE TO HE CONVERTED

CiL 2l ro 30 X0e OFIGIN OF POLAK Xx-COORDINATE

CoL 31 0 40 ¥0, OPIGIN QF POLAR Y-COOROINALE

Se) ELEMENT CARNS L15,1X,A8}

oL 110 9 NUMEL - NUMBER OF ELEMENTS
caL 7 10 12 MUST CONTAIN ELEMEN

SUBSEQUENT CARDYS (415,201372014)
Ca9g 1.

0L 110 % ELEMENT NUMBER

CoL & TO 10 MATERLAL NUMBER

CoL 11 10 18 NUSRER NF SUBSEQUENT ELEMENTS USING SAME
STIFFNESS MATRIR ® SAVES KECOMPUTAT[ON OF
SIMILAR MATRICES. ELEMENT NMUST &LSO HAVE
SAME ELEMENT FORCE VECTOR ® [F THESE ARE
IN THE STIFFNESS SURRGUTINE o

€OL 16 YO 20 PRINT ELFMENT MATRIX (F NONZERD.

CIL 2t 1n 23 [XDU1) ELEMENT [NCREMENT ARRAY ON NODE 1.

COL 24 1O 28 LXDE2) @ [F NOT INPUT IS SET AUTOMATICALLY
ug 10

COL 78 1O 80 Ix0¢201t FOR SERENDIPITY ELEMENTS & SEE KEPORT

CARD 2,

Al 119 & KNOOE

oL 5 10 8 NOOE 7

oL e 10 12 NONE 4 UKENELT. 1)} a@Ray
CONTINUE IN [64 FORMAT T0N & MAX[MUM

Xalal

OAOAANTOOAAAOCNNANAANAAITOANANNOORNOAYANOOOOANON

B RN R el N N N N e e R R R N N R Nl R N N ey R N N N N e X aNaYatatakakaXatataXaXatataatarakal

coL 1s L 1F 2 OLSPLACEmFNT IS SRECIFIED
coL 17 1 IF % OJSALACLMFNT IS SPECLITIEQ
coL 1e 1 IF & OISALACEmENT JS SPECI®E0
ca 19 1 IF & O(SPLACEmENT (S SPECIFTFO
oL 20 1 1F & OL<PLACEmENT |5 SPECIFIED
cou 21 o 0 T CONCO(NATE VALUE

CCL 31 7D 40 2 COOPOTMATE VALUF ® AS AEQUINEOD

COL &1 TO 50 3 COOMOIMATE VALUE

NODAL CARGS MYST BE [N DROER, MISSING NOOES ARE INTERPILATEO
LInEaOLY FROM INAYT NOOES. 1% SUCCFFOING CARDS Wave [UENTICAL
BOUNCARY CNOES, TWIS ANUNDARY COOE wiLL BE ASSIGNED 1O ThE INTEA-
VENING NODES. IMN ALL OTHER CASES IWME BOUNOARY CNOE [$ SET TO (ERO
OTERMINATE DN NOOE NUMNG DR A ALANK CARQ®

4o 11 NON SEQUENTIAL NOOAL GENERATOR OPTIOM. 51S.T4,86)

coL Lt Y0 5 NUMARER OF NOOAL POINTS
(<) (U A Lo ) MUST CONTAIN GENERSA

SUBSEQUFNT CAROS 1215.110,3F10.0)

coL 170 S NOOE -NUMBER

coL & YO 10 NOOF -NUMBER- I NCREMENT wrilCH WiLL BE SUCESSIVELY
AO0EC TO NOOE-NUMBER UNTIL SuM [S GRELATEH ThaN
NOOE -WUMBER ON FOLLOWING CAMD (ALGEBRAIC).

coL 15 10 20 8NUNCARY CODE, SAMI AS [NPUT FOR NOOAL.
If SUCCEEOING CAROS HAVE [OENTICAL BOUNJAKY
CCOESy TWIS BROUNOARY COOE wILL BE ASSIGNED T°
THE INTERVENIMNG NODES. IM ALL OTHER CASES Tnc
AOUNOARY COOE (S SET TO ZERO.

coL 21 10 30 | COCPOINATE VALUE o

CoL 31 YO &0 2 COOPOINATE VALUE o AS REQUIKED o

coL & 10 50 3 COOROINATE VALUE o

CTERMINATE WITH BLANK CARQD o

4.21 BOUNOARY COOE PATCH-UP OPTION. 16X,A6)
oL & V0 12 MYST CONTAIN AOUNOA
SUBSEQUENT CAROS, 1815)

oL 170 5 Ne NOOE NUMBER TQ HAVE REDEFINFD BOUNDARY (CNE,

oL & Y0 1o MKy GENERATOR INCREMENY TO 3€ AODEQ ALGEBRAL
CALLY TO Ny UNTIL SUM EXCEEDS (®aX OR WIiN) In
N OF THE FOLLOWING CARO,

coL 1! Y0 IS 18CET)y (1®142..4NOF} CQDE FOR SPECLIFYING FOACE

€oL 16 70 20 DR OISPLACEMENT BOUNGARY CONDIET [ONS,

COL  .0o
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caL 77 10 8o NOOE 20

NOOES MUST BE NUMBEREQ ARDUND ELEMENT BY RIGHT HANO SCAcrw Kull,
ELEMENT CAROS MUST BE LN OROER, MISSING ELEMENIS ARE GEN-WATEQ HY
INCREMENTING NOJES.

LASY ELEMENT CARO MUST NOT BE GENERATED,
¢ TERMINATE ©N ELEMENT NUMEL OR & BLANK CARD

Sell BLOCK GENERATOR, GENERATES ALL MESH NATAL 16X, AL}

coL 110 5 NUMBED QF NODAL POINTS TD RE GENERATEU,
coL 7 Yo 12 MUST CONTAIN BLOCK

SUBSEQUENT CARQS 11015/615/010%¢3F10,01)
CARD 1.

caL 110 5 NN, NUMBER OF POINTS REQUIKED YO DEFINT
BOUNOAPY DF REGIUN. EQK 2-01M., NNew UR §,
FOR 3-N[M,y NN» B OR 20.

CoL & 10 IO NUMBER NF ELEMENTS IN R-DIRECTION,

CaL 11 70 15 NUMBEP OF ELEMENTS IN S-OIRECTION.

caL 16 10 20 NUMBFR OF ELEMENTS IN T-OIRECT)ON,

coL 21 10 25 INITIAL NOOE NUMBER, DEfAULI = 1.

caL 26 Y0 30 INITIAL ELEMENT WUMBER, JEFAULL = 1,

coL 31 10 35 MATERTAL WUMBER OVER WFGIUN, OEFAULY = |

CaL 36 10 40 BOUNOAPY COOE SKIP, A NON-ZERO ENTRY wi,.L DM(T
SETTING ALL INTERIOR BOUNDARY CQOES Ta ZFa0.

COL &1 10 45 IRFUSE - REUSE ELEMENT STIFFNESS (PTILN - USFY
FACH FLEMENT STIFFNESS [REUSE TIMES AEFOKE
GFNERATING A NEW ELEMENT STIFENESS MATRla,

COL 46 10 SO ELEMENT STIFFNESS-PRINT, A NON-2ER0 ENTHY wlil
CAUSE PPINT-0OUT NF FIRST ELEMENT,

€oL 51 10 55 IMSH - [F NONIERG SUPPRESSES PP INT OF NIOLS.

COL 56 YO &0 TELM - [F NONZERQ SUPPRESSES WRINT OF ELTMLNTS,

CARD 2. 1BOUNDARY COODE AS OEFINED IN NODAL CaROD.}

coL 1 10 10 BOUNDARY CODE QVER FACE =R,
coL 11 70 20 BOUNGARY CCNE OVER FALE oA,
CoL 21 T0 30 BOUNCARY CQOE OVER FACE -S.
COL &1 10 SO ACUNOARY COOE OVEW® FACE S,
COL 41 Tn S0 BOUNDARY COOE OVER FACE -T.
€OL 51 10 &0 ANUNDAKY COOE OVER FACE 71,

CARO 3, (REPEAYT NN TIwES,]

Cou 11 To 20 1-CONROINATE IF ADUNOARY-DEFLHING-PUINT,
€20 21 10 30 2-CONRDINATE OF BOUNOARY=-DEFINLSG-PINT,
CoL 3 10 42 3-COORDINATE OF SNUNOARY-DEF INING=PO(NT.
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NOTFe BLOCa GENERATFS MlY & PT, QUAORILATENALS OR 8 PT, BRICKS.

(NPIT OF CARDS 3,1 FOLLOW O®DER RULES F0R ELEMENT JNPUT 1SEE S.)
B-S-T AGE LOCAL COORDINATES, T.Fo 1-1 oLEe RySyT oLE. 1. )

WHERE & [S OIRECTED FACW NODE | YO 2, S IS IN PLANE 0F FIRST

TH®EE NIDESy AND T 1S WORMAL TO A-5 PLANE,

6ol VECTOR CARDS, T.E. USER QEFINEO INPUT TI15,1x,A61

oL 110 8 NVEC, NUMAER OF OIFFERENT VECTORS IT mMaAxX|
coL T 1012 MUST CONTAIN VECTDA

SUASEQUENT CARDS
CAAD Je T21%)

oL 1710 S NSIZVe VECTOR LENGTH,COMMON TO ALL NVEC VECTORS
oL 6 TO 10 IPICX, CPVED PARAMETER,

T1PICH o O, VECTORS ASSOCILATED WITH NJOES
IPICK o 1y VECTORS ASSOCIATEQ wilTH DEG.FREEQOM
IPICx o 2, VECTORS ASSOCIATED WITH ELEMENTS
CARD 2, 16X, 2A61 REPFAT NVEC TIMES
coL 1 10 I8 OESCRIPTIVE TITLE FO4 VECTOR

CARD 3. 121%,TF10.01

CoL 1 70 5 POSITION NUMBFP OF VECTOR ELEMENT, 1 TO NSIIV
coL 11 10 20 VECTPR FLEMENT VALUF OF VECTOR 1
oL & 70 10 GFNEPATUR [NCREMENT

coL 21 10 30
[ |

VECTOR ELEMENT VALUE OF VECTOR 2
AS REDUIRED FOR NVEC VECTORS

LINEAR INTERPOLATION |$ PEPFORMED ON ALL VECTORS BETWEEN
NOt-CONSECUTIVE POSTTION NUMSERS SPECIFIED IN COL 1 TO 5 IF
INCREMENT IS NONZERD.

1F UESCRIPTIVE FITLES OF ALL VECTORS ARE BLANK CARDS,PRINTING
OF THE VECTOP VALUFS IS SUPRESSED.

¢ TERMINATE ON BLANK CARQ ¢
&o.1) INITIAL CONOTTIONS FOR TIME OEPENQENT ANALYS(S.

oL L T h NILO, NMUMBER OF INITIAL CONDITION VECTORS
coL T TD 12 MUST CONTAIN INITIA

SJBSEDUENT CARDS
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coL 51 10 55
oL % 10 58
ZAL 59 TN 461
COL .ae

INCEND, INCREMENT VALUE AOUED 1O IPRESIN) TO
IOENTIFY NODE NUMBERS OF A GENERATED SEDUENCE.
ITOENTIFY FPOM 2 TD 8 AS REOUIRED)

CARQ 2, (Bf10.0}
coL 1 10 8D

LOAD AT NODES GIVEN ON PREVIDUS CARD @
MUST CNRRESPONO IN SEDUENCE TD THE NODE NUMBERS

7.21 ELEMENT LOAD CAROS [15:1XeA8 )

L 1 10 s NLO, NUMBEP OF ELEMENT LOAD CARDS.
oLt rolt MUST CONTAIN ELDAOS

SYRSELUENT CARDS T1541%,A5,14415,6F10.0)

oL L1005 TELy INITIAL ELEMENT OF A GENERATED SEQUENCE.

coL 7 1911 EYM{NN), ALPHA-NUMERTC NAME OF ELEMENT
SUBPOUYINE WHERE ELEMENT LDAOS ARE COMPUTEO.
USED AS CHECK TD INSURE 1ELy ET.I ARE PROPER
ELEMENTS,

L 12 1C 1S INCy, INCPEMENT NUMBEP IN A GENERATED SEDUENCE,
(DEFAULT o 1),

toL 16 YD 28 JEL, TERAMINAL ELEMENT NUMBER IN A GENERATEO

SEQUFNLE, 1F JEL o Oy ONLY TEL IS COUNTED.

USE? OEFINED VALUES FOR OETERMINING RDOY LOAOS

IN THE 1Sw=5 S0ORTINON OF ELMINN),

€L 21 10 8O

NITE, USER WUST PROVINE COMPUTATION OF LOAOS [N ELMTNN,
pa S TPANSFERED TO SUBROUTINE ELMTNN IN THE U VECTOR,
WHEN TSW =55, ONLY.

7.3) PIOPORTIONAL LOADS FNR TIME OEPENDENT ANALYSIS
TRANSFER TN THIS OPTION OCCURS ONLY Fre TIME ANALYSES.
ONE CAPO FOR EACH PRCPORTIONAL LOAD PEDUIRED

oL 1105 PROPNETIONAL LOAD TYPE, 1,2 OR 1

oL 6 TN 10 K, TAHLE CONSTANT

caL 11 Te 20 TMIN, SWALLEST TIME LDADING S vaLID
oL 21 T N TMAX, LARGEST TTME LOADING IS vALIO
COL 31 T0 &) AR

caL 41 TO 50 Al

L 51 11 60 A2

9L &1 Y0 70 Al

caoL 71 TO BO [

P aXaTatatakatatatatatatatatatatalakatatatatatatataratakalatalata o N o N o N oo R o Ra N R N R N e NN a NaXa el
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CARD 1. [6Xy2A61 REPEAT NICO TIMES

cL 770 18 OFSCRIPYIVE TITLE EOR [NITIAL CONOITIUNS
CARD 2, 1215,TF10.0)
coL i S POSITION NUMBER, AS IN VECTOR CARQS FOR IPICKe]
coL 6 .0 10 GENERATOR [NCREMENT
coL 11 10 20 INITIAL CONDITION 1
coL 21 10 30 INITIAL CONDITION 2

COL ecovvoee

AS REQUIRED FOR NICD INITIAL CONOITIONS

INTERPOLATION BETWMEEN INPUT VALUES AS DESCRIBED IN VECTOR INPUT,
#0068 NOTE seos [F MISSING THE INITLAL CONODITIONS ARE SET ZERO

T.) FORCE CAROS [15,1X.A6)

coL

110 5
coL T 1012

LAST NODE TO WHICH A FORCE IS TO BE SPECIFIEOD
MUST CONTAIN FORCE

SUBSEQUENT CARDS [15:5%,6F10.0)

THE FOLLOWING VALUES ARE EACH INTERPRETTED AS FORCES IF THE
CORRESPONDING BOUNDARV COOE IS A O #ZERN® ANO AS A OlSPLACEMENT

1F THE

coL
coL
coL
coL
coL
coL
coL

Tel) SURFACE LOAD

coL

CORRESPONDING BOUNDARY CODE IS 1 sONEe,

110 5
coL 11012

NOOE TO WHICH FORCE QP DISPLACEMENT TS APPLIED

VALUE OF 1 FORCE/QISPLACEMENT

VALUE OF 2 FORCE/DISPLACEMENT A5 @
VALUE OF 3 FORCE/OISPLACEMENT ¢ REQUIRED *
VALUE OF & FORCE/DISPLACEMENT

VALUE CF 5 EORCE/OISPLACEMENT

VALUF OF 6 FORCE/OISPLACEMENT

CARDS [1541X,A8)

NUMBER OF LDADED FACE CARDS
MUST CONTAIN BLOAOS

CARD 1, [I5¢1X9A5, (4,815,813

coL
coL

coL
coL

coL
coL

LOAD TYPE J.

1
?

12

16
21

see

TC
10

T0

10
T0

5 OTMENSION OF LOADING SURFACE, 11 OR 21,
1 SLOINN) ¢ ALPHA-NUMERIC NAME OF SURFACE LOADING
SUBROUTINF INN IS BETWEEN I AND S5}
15 NRT,NUMBER OF ADOITIONAL ELEMENT LOAD
SURFACES TO BE GENEPAT:D FPOM CURRENT MOOIL.
20 IPRESIN) 4 NODE NUMBERS OEFINING LOADING SURFALE
2% 0F CURRENT ELEMENT.
[TOENTIFY FROM 2 TO B AS REQUIREOI
PAGE 12
T = TIME

PROP = AD & A1OT ¢ A20T8T ¢ AJSTeI6T o AGaTO[eTol

LOAD TYPE 2.

PAOP = ADO[ISINTAT®T))esK ¢ A2¢ICOSIAZOT)0ex o 45

LOAD TYPE 3,

PROP = USER OEFINED FUNCTION FROM SUBROUTINE EXPRLDIVKIP,T)

“ONOTE®+ PROPORTIONAL LOAOS CAN 8F ACCUMULATED FRCM OLFFERENT
TYPES AT THE SAME TImME.

8.) INITIATION OF TIME [NOEPENDENT SOLUTION 115+1X,4¢t1

coL

roL
coL

1 10 &

T 1012

T 10 12

10UT, QUTPUT CONTROL CDOE,

TOUT LED. Dy ALL STPFSSES AND DISP, PRINTED
I10UT oNFe Do SELECTEO PRINTOUT, MORE DATA [NPUT
SEE SECTION 9 FOR DATA PREPARATION,

MUST CONTAIN SOLVE INOICATES ALL JATA INPUTe
COMPLETE FORMULATION ANO SILJUTTUN OF EQUATIONS,
MUST CONTAIN PRESOLV YO DATAIN SUBSE JUENT
SOLUTIONS WHERE BOUNDAPY CODES DO NOT LHANGF
AND ALL PRESCRIBED OISPLACEMENTS ARE !ERD,

B.1) INITIATION OF OYNAMIC SCLUTICN BY EXPLICIT INTEGPATION.

coL

coL

110 &

T 10 12

TOUT, QUTPUT CONTROL FOR OLSPLACEMENT AND
STPESS PRINTOUT, SEE SECT., 9 FOR DATA [NPUT,
IF TOUT oNE, O, THE SPATIAL CONTROL wala
CAMES AT THE END OF THE QYNAMIC SEGMENT,
MUST CONTAIN EXPLIC

SUBSEQOUENT CAROS [215,2F10.0,219%)

coL
coL
coL
coL
coL
coL
oL

coL

NUMBER OF TIME STEPS

PRINT INTERVAL

TI®E INCREMENT

NELMARK DELTA-OAMPING TERM (CAMMA el

NUMRER OF TIME EVOLUTION STRESS PLNTS.

NPANP, NUMBER OF PROPDATIONAL LUADS T9) HE INPUY
NFORC, LAST NNDE DN wHlLu & FOKCE IS CraNGLLD
DURINTG EACH TIME STEP,

KKK, SYABILITY CHECK CVEARINE »e CAUTION uSE
ONLY WHEN A BETTER ESTIMaTE (F ThE STAOLE TInE
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STEP 1S AVAILABLE THAN CAN BE RERFORMEO BY COOE
KKK ZERO, USES INTERNAL STABILITY CHECK.
KK NONZERO, OISREGARDS STABILITY CHECK.

SUBSEQUENT CARDS 1315) NNE FOP EACH STPESS PLOT.

oL 170 S ELEMENT NUMBER CONTAINING STRESS TO BE PLOTTEO.

¢iL & T0 10 LOCAL COOROINATE POINT COOE, 1 TO 7, AS
PATTERNTO AFTER, COL Il TO COL 17, IN SOLVE,

coL 11 70 15 STRESS COMPONENT COOE, I TO & FOR SIGMAIL,J1,
ToEav S1GMALLy1)m], SIGMATL,2)=2y S1GMALL,31=3,
SIGMATI242) = &y S1GMALI2,31 = S5y S1GMALI3,31 = &,

IFINPROP.NE.OLl READ PROPORTIONAL LOAD CAROS, SEE SECT. 7,3

IF{NFORC .NE.OLl READ FOPCE CARDS AT EACH TIME STEP. IF OUTPUT IS
LIMLTED BY TOUT NONZEAO. THE FIRST FORCE CARO SET PRECEOES
OUTPUT CAROS ANO THE PEMAINOEA FOLLOW THE QUTPUT CAROS NO BLANK
CARDS MAY BE USEQ BETWEEN SETS OF CAROS OTHER THAN THE USUAL
BLANK TERMINATOR CARO FOP FORCE INPUT CAROS.

IF1I0UT.NE.O! DATA FOR SPATIAL PRINTOUT CONTROLs SEE SECT.%.

SPECIAL COMMENTS FOP OYNAMIC CPTION

{1) ONLY COLUMNS | TO 60 ARE AVAILABLE FOR PAGE HEAOING.

121 MAXIMUM ADVANTAGE OF ELEMENT REUSE CPTION SHOULO BE TAKEN.

t3) INL11AL CONOITIONS FOR OISPLACEMENT ANO VELOCITY VECTORS,

AS WELL AS STORAGE FOR ACCELERATION VECTOR, MAY BE MAOE

THROUGH INPUT OFf AN INTT1AL CONOITION CARD SET, WITHOUT

SPECIFIED INITIAL CONOITIONS THEY ARE AUTOMATICALLY SET ZERO.

SPAT1AL LOADING IS INPUT THROUGH FORCE OR BOUNOARY

PRESSIRE CARDS. ALL L0AOS VARY PROPORTIONALY WITH TIME

(51 EXTREME CAUTION PN PRDER OF OATA CAROS MUST BE OASERVEO. NI
EXTRA CARQDS ARE REPMITTFO ANO STRICT COUNTS ARE OBSERVEO
£XCEPT FOR THE NUMBER OF FORCE CARCS USED IN EACH TIME STEP.

14

3.21 INITIATIDN OF IMPLICIT T(ME INTEGRATIONS (15,1Xs4A61

coL 110 5 NSEQ, NUMBER OF TIME SEQUENCES

coL 7 1012 MUST CONTAIN VISCOE FOR LINEAR VISCOELASTIC
0UASI-S1ATIC PROBLEMS 10NE INITIAL CONOITION
NNLY MUST RE USED)

coL 7 1012 MUST CONTALN IMPLIC FOR OYNAMIC IMPLICIT
INTEGRATION. (THREE (NITIAL CONDITIONS ARE
REDUIRED, MORE CAN BL SPECIFIED WITHOUT ERROR)

SURSEOVENT CARDSs ONF SET FOR EACH TIME SEQUENCE

PAGE 15

SUPPESSED AY NON-ZERO ENTRIES AS FOLLOWS,
«Ge

oL 1l SUPKFSS PRINT AT LOCAL POINT 1, 1 0, Oy O}
coL 12 CUPPESS PRINT AT LOCAL POINT 2, 1-1, O, 0)
coL 1 SUPRESS PAINT AT LOCAL POINY 3, ( 1, Oy O}
oL 1e SUPRESS PRINT AT LOUCAL POINT 4y 1 O¢-le O)
coL 1S SUPRESS PRINT AT LNCAL POINT 5, 1 Oy 1, Ol
oL 16 SUPPESS PRINT AY LOCAL POINT 6, ( Oy 0e-1)
[ [N SUPPESS PAINT AT LOCAL POINT 7, 1 0Oy Oy 11

SURSEQUENT CARDS 12151 SKIP [F NUMSTR » 0

coL 1 10 5 ELEMENT NUMBER TO AE PRINTEO.

L ¢ T0 10 WIGHFR ELEMENT NUMBER OF A GENERATED SEQUENCE,
IF 7ERD ONLY FIASY ELEMENT IS COUNTEL.

coL 11 ro s INCREMENT TO GENERATCR, OEFAULT = 1
ess REPEAT UNTIL,NUMSTR CARDS HAVE BEEN REAQ

e T AT TN R R A NI T R DTN DA R R R R A A Rl A L L)

PETUAN
END

B-4

LGl ittt et a Nl N R N N R N N N N N N N e N N N R N N N a R Y e Ko Na R N Na Ra ol al
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CARO 1. (FI10.0481542F10.01

coL 17010 OT, TIME INCREMENT INONZERO FOR IMALIC1

coL 11 10 15 NTS, NUMBER OF TIME STEPS IN SEQUENCE

coL 16 7O 20 INT, PRINT INTERVAL 10EFAULT I}

coL 21 10 25 NNT, FIRST NODE PRINTEOD

coL 26 10 30 NNE, LAST NOOE RRINTEO

coL 31 TO 35 NET. FIRST ELEMENT STRESS TO BE PRINTED

COL 38 TO 40 NEF, LAST ELEMENT STRESS TO 3E PRINTEOD

COL 41 TO 45 NPROP, NUMBER OF PROPORTIONAL LOAOS IN SEQUENCE

COL 48 TO 50 NFORCy LAST NOOE FOR GENERALIZEOQ FORCES TO BE
INPUT FOR EACH 1IME IN SEQUENCE ISEE SECT.?7.
FOR OATA PREPAPATION FORMATS)

COL S1 TO &0 BETAs NEWMARK INTEGRATION PARAMETER [IMPLIC]

CcoL 61 TO 70 OEL = GAMMA - 0.5, NEWMARK INTEGRATION
PARAMETER (IMPLIC)

CARO 2. (215,7F10.01
ONE FOR EACH NPROP, SEE SECT.7.3 FOR OATA RREPARATION

SUBSEQUENT CAROS FOR EACH TIME STEP IN THE SEQUENCE

FORCE CAROS. SEE SECTION 7., FOR OATA PRERARATION FORMATS.

9.} OUTPUT CONTROL FOR LIMITEQ PRINTS

OTSPLACEMENT OUTPUT CONTROLs IF [OUT .NE. Oy

CARO 1. 115}
coL 110 5 NUMDIS - NUMBER OF OISPLACEMENT PRINT CaRDS
SUBSEOUENT CARDS (215) SKIP [F NUMO(S = D

coL 170 5 NOOAL NUMBER TO BE OUTPUT,

coL & 10 10 HIGHER NOOE NUMBER OF A GENERATED SEQUENCE,
1F ZEPO JUST FIRST NOOE IS COUNTEOD.

coL 11 7O 15 INCREMENT TO GENERATOR, OEFAULT = |
¢¢¢ REPEAY UNTIL,NUMOIS CARDS HAVE BEEN READ

STRESS OUTPUT CONTROL. IF 10OUT .NE. O.

CARD 1o (15¢5Xa711)

coL 110 5 NUMSTR = NUMBER OF STPESS OUTPUT CARDS
coL i1 710 17 NSIGI7) - PRINT PATTERN WITHIN AN ELEMENT,
LOCAL ROINTS OF EACH ELEMENT CAN BE

PAGE 1¢&

PROGRAM FEAPT31INPUT=101+0UTPUT PUNCH=L01,PUNCHA 101, TAPE j2el 0l
Xy TAPE4uPUNCH,TAPESE INPUT,TAPEGOUTPUTTAPET, TAPES, TAPEG, TAPELD,
X TAPELLsYAPEL3,TAPEL14y TAPEBBuPUNCHR )

4
Ceees FINITE ELEMENT ASSEMBLY PROGRAM & STORAGE ALLOCATION

COMMON 0T (60001

Céees [S20T MUST COINCIOE WITH $12E OF ArRAv OT

1SI0T = 6000

4
Cooos REASONABLE MAXIMUM AAND WIOTH
c

MBANO » 100

CALL FELMT(OT,IS20T,MBANOL
sTop

ENO




e o

e

}0
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SUBROUTINE FELMTIOT,.1S70T,MRANO)
MAIN ASSEMBLY PHOGRAM ANO STORAGE ALLOCATION FOR VARTABLES

REAL LaBL

LDSICAL CHECK,FLAGGNPL

DEMENSION  CONWDI24) o FLAGIT), TITLEL)2) o IYME(T) DTIISIOT) RE(21
COMMON /TAPES/ 1TP5,1TP6

CIMMON/FORTER/NEESQLIXNGF 1o F24F34F4

COMMDN/GAUS/ LIM,SGAUSSIG, 51 4WGAUSSTSy5)

COMMON/ZLABELSZ LARLIG) s XHEOI3) ¢ XHoFHED) &) oFH,UHED(6) yUH RHED (6} 4 RH
4 SAWORD1, AWORO2 o AWNKD3, HFAOT12) ySTART,CEASE, IPGyNSTR,WORD130)

COMMONZSHAP/ XJAC, SHAPET4,201,5G(3,43(,5K13,3),X13,201,L011201
COMMON/TUTLES/ XTTL(3),UTTLIG)
COMMON/VALUES/ NC1,CONL,CON2,CONIL3)

COMMINZDYNAMO/ T{ME WNSLIGIT ) yNTyNSTEP, DS yNUMPLT,NEDATAI20,31,NPRyNPL
0ATA CONWD/EHMATER L, 6HNODAL o 6HPOLAR , 6HELEMEN, 6HSOLVE o+ 6HRESOLV,
£ HHRDUNDA, 6UFORCE 4 6HALOADS ) 6HELOAOS)6HVECTOR ) 6HMESH 4 6HPLOT
£ GHEDURIE, GHREMARK y 6HINTT 1A 6HGENERA 6HT1 TLE ,6HBLOCK 4 6HEXPLIC,
X 6HAQDU® J6HVISCOE.GHIMPLIC,6HNEWTON/

OATA RE/Z4HNDT ,4H /v BLANK/6H /
DATA NFLAGYNLIST/T 267 M1 M2 M3 oM M5,M6oMB/TOT/,1TAI/

IN(TYATE SEARCH FO® START OF PROBLEM
REAQ{ITP5,1000) CC,HEAD
CCaHEAD(L)

JFICC.EQ.START) 6D TD 24D
1FICL.ED.6HFEAPT3] GD TN 240
1FICC.ED.CEASE] RETURN

G0 1 100

CONTINUE

00 122 121412

HEAD(1)sTITLELL)

READ(ITPS5,1000( CCoTITLE

NOIM = CC

N 150 | = L,NDIM

cL o= TITLELTL

XHEDU)) = CC

1FICC.ED.BLANK [ XHEOI11 = XTTL(L)
CONTINUE

READIITP9,1000( CCoT(TLE

NDF o CC

0 152 1 = 1.NDF

cC = TITLEOY )

[FIGGLEQ.BLANK) €CC = UTTLILL
FHEDIIL = CC

UHEDII) = CC

RUEDILIL = CC

NUMEL = D

READ{1TPS5,1001) NENJNEXTRA,)JREC,MBAN, 1BUF/NC1,CONICON2,CON3
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WRITEL(FPE, 2003) (TITLE(I1,)=24021
6G 10 12%

on 136 = 2,12

HEATGIYE = TUTLECLL

60 TN 125

TNPUT THE MATERIAL CHARACTERTZATIONS.

!
1FIFLAGILIT 50 TO 215
FLASU) (=4 TAUE.
IFI1.LE.O) GO T 700
NIJNMAT = |
Ml o MDD
82 2 MD s NUMWAT
MD = MO ¢ 64SNUMMAT
{FIM2,6T.1SZ0T) GO 19 710
BLL MESH{ )y NUMNP o NUMEL, NUMMAT ,NOTM , NDF \ NENoNEL 1,
C 0Ty DT{MLY, OT(421,0T{83(,DTIM4[,DTIMS),0T(MS}
1FCLI9GLLE.Q) 60 T2 10D
[ (0] Vl) lz

INPUT THF NCTIAL LDCATIONS AND BOUNDARY CONDITION COOES.

1FAFLAGI21) GO TN 225
FLAGLZ2) e, TRUF,

[Ft).LE.N) O TD 70D
HUMNP = |

M} s MO

M4 s MDDt NUMNP

M5 = MG 0 ND[MONUMNP

MD o M5 ¢ NDFeNUUNP
[FIMD,GT.1S201) GO 10 1O
JEELNDTFLAGIIL) 46 s M

CONT{hUE

THICCLED«CONWDILS)) GO T 227
J =2

YFICC.EQ.CONMDENTYY J = &

63 T2 215

151 T FLAGI21) GD 7O T30

CALL. CONVERTINUMNP  HDIM,DT{44))

no 10 125

CONTINUE

CALL RRIGENTNUMNP, NUMEL yNDIMyNDF ¢NENoNEL) o OT1M3 1,071 M4 ), 0TIHMS ),
x 01146))

IFLIPGLLEL 01 GD TO TDS

LFLLHOT P LAGEYTY  ®D = M0 0 NELL1ONUMEL

VOAGEAL o JTRAUL,

YFAMOATL 82011 6 0 T

PAGE LR

1F{MBAN.LELDI MBAN = MBAND
1512 = 15207

107 = 15201/2

HICO = O

NVEC = D

NPL e« ,TRUE,

NUMPLT = O

NT = 1|

Ceoao INITCALISE TYME AND CLOCK

12

-

Coves

125
126

C
Coone

127

Ceceo

Covcs

228

Conns
C

230

Coons
¢
245

247
250

Cevoe
[

Covee

255

CALL TICTOC(TYME,O)
00 121 1=1,7
TYME{I} = 0.0

NELI = NEN ¢ 2
REWINO 12

NTERM = O

D0 10 1+1,NFLAG
FLAGIT ) a, FALSE.

STORAGE 1S SET FOP A NSTF X NSTF ELEMENT MATRIX AND FORCE VECTOR
MAX{MUM SIZE FOR NSTF 1S 120, THIS 1S CUNTROLED 8Y D(MENSION ON LD

NSTF = NOFONEN + NEXTRA

M3 = 20NSTF + 1

MO = NSTFOINSTF+2) ¢ 1

1FIMO (GT. 10Tl GO Y0 T10

1PG=1

1FTIBUFLLE.O) 1BUF = 1520T/20

IFTTREC.NE.D) TREC = 1

WRITEL1TP6,2000) HEAD1PGNOTMyNOFyNEN,NSTF REITRECY 1[4 MuAN, IBUF,

X NC1,CON1,CON2,CON2

1PG = IPG + 1
TF(NOIMeGTo 3. 0RNOFGT o6 ORLNEN.GT.20) GO TO 720

SEARCH THE L1ST OF NAMES FOR A TRANSFER AQORESS
REAQILTP5,1000) CC.TITLE
ce

1=

CCuTITLE(L)

00 126 J = LoNLIST
1F(CC.EQ.CON®OLJ)( GO TO 127
CONTINUE

1FICC.EQ.START) GO TO 120
1FICC.EQ. 6HFEAPTI) GO TD 120
TFICCLEQ.CEASE) RETURN

GO TO 125

NAME SIMAT yNOO¢POLELE 9SOL yRES9BCSsFORyBLOVELDWVEC, MESyPLUy FOUREM
GO T0(210,220+22642309200+1270,228+2600250+2551245,200,200,2004131,

X 34542209133,220,200+20042009200,200) +J

1CO,GENsTIToBLOyEXPoAQD VIS ¢ IMPyNEWT
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60 TO 125

BOUNOARY COOE OVERMRITE
1F1NOT.FLAGI2}) GO TO 730
CALL BCOQES(NUMNP,OT(M3))
GO TO 125

INPUT THE ELEMENT CONNECTION ARRAY,

J w3

1F1FLAGI3)) GO TO 215
FLAGI3) =, TRUE.
IF11.LE.0) GO TO 70Q
NUMEL =

N6 = MO

MO = MO ¢ NELI®NUMEL
60 10 215

INPUT THE VECTORS OF PRESCRIBEQ VALUE.

TFI.NOT.FLAGI2() GO TO 730
1F(1.LE.0) GO TO 700
1FUFLAGI&}) 60 TO 247

FLAGI4) » ,TRUE,
REAOIITPS,1001) NSIZV,1P1CK
NVEC = 1

MB = MO

MA = M8 ¢ NS(ZVel

MO = WA

VE{MO#2¢1,GT,15ZDT) GO T7 T10
CALL VECIN (NUMNP, NUMFL,NOFyNSTZV, 1P (CKyNVEC,DTIMA},OT{MD) )
1E(1PG,LE.0) GO TO 100

G0 10 125

CONTINUE

1F((.LELD) GO TO 125

INPUT BDUNOARY LOAOS

CALL BLOAODSET NUMNP o NDIM NOF,OT1IM3),01(Me},DTI45)1
180196 +LE., 01 60 TO 705
60 Tn 125

INPUT ELEMENT LOAOS

JF{l1.LE. DI GO TR 125

CALL ELOADSUT o NDIM NNF o NENGNELL W NSTE JNOTEV NVEC, DT ML, 0T 1421,
L OT(MIL,DTEME] ,DT(MEN2OT(MS) DT DTIM?),NTIMALI

1¥LIP6 JLE. D) GD TO 705

GO ™™ 125



s

210

INFUT THE [N)°TAL CONDITIONS

VIPLAGIGD ) GO TD Y47

FLAGIN) o TRUE,

NILO = 1

NS ICD » NOF oNUMNP

wf, o MO

NG o WG o NICDONSICO

o e MY

JFINOL20[,GT,.IS2DT) 60 TC NID
CaLLl JELIN INUMNP, NUPEL (NOF (NSICOoLoNICD,OTINC) 4 DTIMG))
1F0)P1.LE.0) GO 1O 100

G0 ¥ )28

o START THE SOLUTICN (" #[BST LDADING CASE

JFTFLAGIST) 60 TQ 401

Cukixs, TAUE,

CELL TICTDCITYNE,))

00 123 Je)y)

19 1oNDToFLAGI )T) CHEf e, " LSF,

CONTINUE

18 (NUT,CHMECK) GO TD TO?

NTM » D

1F ICCINE.CONADI22) .ANO.CCLNELCONWDI23)) GO TO SIS
o SET UP VISCOELASTIC/NONLINEAR SDLUTICN CALL

HIM o ]

NSEQ =

10

1S12 o IS2NT - [8UF

100 » )st2/2

IFINICD.NELD) GU TO H1%

wHITEL1TP6,2938)

NICO ]

IFICC.EQ.CONWDI2Y) ) NICDe s

NSICD o NIF ONUNNP

M, » “y

“0 o MD ¢ NICOONSICO

JFLND,LGT.tSIL) GD TD 710

07 510 ) « HG,%0

DIC4) o Qo

MY o MD

N7 s MO

1FLIOT.GELMT) 47 o INT o )

Yy = M7

101 » 107 » 1

M) » M7 « NDFONUMNP

(FINO,GT.I802) GD T2 710

A o ND-)
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LiHTAY o DTINT)
w7 = MTA
LA Ch) ¢ S0 3
My LA o NDEGEMAXBAN
Mx ox MU o NUMNPONDS
Mo g ¢ NDET
(N1 o NDEGOWAXHAN o ]
FLAGIS) @ JTRUE,
YEINTE, EQat) GO TO 520
CALL FORMST (NUMNP  NUSEL s NUMMA T NO) Mo NDF ¢ NENJNEL L MB, DT 0T IM: ),
S OTEMZ),DTIN) 0TI %4) ,0TEINS),0TIM6), 0T, 0T {M9),0T(M7),OTINB),
X OTU(MU) ¢ DTULALNSTFIBLK NVEC NST2V,)MAXRAN,JREC/NOEG)
CALL TICTNCITYNE,3]
(FUIPG oLE. O) GN TO 705

.
-
x
.

Lo FORM THE GLOBAL STUFFNESS AND STLVE USING GAUSS ELIMINATION

LALL SOLVEQINUMNP,NUMEL NDF s )D), %0, MAXBAN, ITA,NSTF o) SIAINEQBIBLK
DVELAD,OTEMS],OTIHY),DTIMT) 0T, 0T{MG )4 OTIMK) \NOEG)

AML TICTOCITYNE &)
G0 10 420

OYNANIL SOLYUTION BY ExPLICIT INTEGRATION

1FINICD oFEe 3) GD TN 418

WHITEL)TI6,203B)

HICD o 3

SSICD o NDF NUMNP

uG = MO

“D = MD + NICDeNSICD

IFI%0 .GF. (S20T) GD ¥D 710

DO 41T JeuG,.M0

DTiJ) « 0.0

mC = ™5 » NSICD

D o WC v NSICD

« - up

MF s ME ¢ NSTF

w) o 2eNSTF ¢ MF

(FEM) JGT, [520T) GO TO 710

CALL FXPLCT (NUMNP NUMEL NUSMAT(ND )My NDF ¢ NEN NEL Lo NSTF  NVEC NSL2V,y
A DUIMLYoDT{%2),D7(%3),DTIMA),0TIMS)9OTIM6),0TIMTIZOTIL)01INTD,
X OTIMB)OT{MG) +NTIMC) ,IT)MD)4DT{ME) 4 OT)F ), TYME, [DUT,NSICD)
no tn 125

{outr «

CALL T(CTOCUTYME, ()

es FORM THE NEW LNAD AND DN A RESOLUTION ONLY

CALL RESVEQINUMNPNOF ,#T -1, MAXBAN, ) S28NEQB, JBLK¢OTILAIJDTIMS),
X OT(MUD o DTI8G) o DECNT),NTIMX) o NDF SNUNNP )

Conne

Ceave
¢

108

Conne

Cocoe

40%
Coonn

Covee

CHMECK THME MESH FOR CONSISTENCY DF INPUT DAYA

CALL NESHORINUMNP  NUNEL ¢ NUNKA ToNO LMy NOF o NENJREL ) o LUT ,10) ¢ MO, NA XS AN
e OToDTIM)) OTIM2T40TINI) (DT )ING}DOTING) ¢ DTINTI 1S TAsNEQY, 18LK \NDEG)
MK = 1Dl - NEQ®

PLOT THL MESH FOA TwO DINENSIONAL TOPOLDGIES.

tour = ¢

1F)1 oNEs D) WMITEL1TP6,2039)

1F)ICCL.EQ.CONVDINILY
1 CALL PLDTMSHINUMNP (NUMFL o NOL M¢NENJNEL) (DTIMA ), 0TIMA) 1)
CALL TICTDC)ITYME,21

1F1CC.EQ.CONWD) 24)) NSEQs]

1F1CCEQ.CONWDI 24)) GO TD 920

1FICC .EQ. CONWD'20)) GO TO 4)5

1FIMARBAN,GY.MBAN) GO TD 740

JFICC .EQ. CONWDID2) DA, CC .EQ. CONWDILN) GO TD 129
JF)1°G .LE, Ol GO TO 705

[FICCNELCONWDLDI®)) GD TO 405

FOURIEX COMPOSITION

READIITPS5,10021 JoF)oF24FI,Fh
WRITGI1TPS,2002) HEADGIPG,JsF1F2,F3,Fb
1PG = )G ¢ |

NTERM = NTERM ol

NFINTERM) = 4

XN = )

FORM THE STIFFNESS FOR THE ELEMENIS
1FIFLAGIS)) GD TD 410
LA = |

J = [MAKBANG))ONDEG ¢ NOFONUMNP®)L o NTM)
JF115)2-J.LT.MTA) GO TO 410

DNCDRE SDLUTION [$ POSSIBLE
WRITENITPS, 200 )

NEQB = NDEG

18LK = 0

CHECK TO SEE 1F [DEST [S TD BE MOVEOD uP
J = NUMNPONDF-1

CooeoSAVE FORCE VECTOR FOX NONLINEAR SOLUTION

408

420
[+

LLELLTS]

REWIND 9
WRITE(I)IOT (1), )eM5, M)
JFIMT.EQ.M7A) GD TD 409
0D 408 K = 1,4y
DYIM7AeK) = DT[MT¢K)
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CALL 7)CTDCITYME,5)
WRITELI2)IDTIN) ¢NeM7,MB)

Coeseo COMPUTE AND DUTPUT THE NDOAL DISPLACEMENTS AND ELEMENT STHESSES
4

211

JFUIREC.GT.0.ANO.18LK,.EQ.0) REWIND 7

CALL DISTRSINUMNP ¢ NUMEL o NUMMAT ¢ NO (M, NOF ¢ NENoNELLyNSTF NVEL NSTZV,
X DTIML)oDTIM2),DT(MI),OT{M&) ,OTIN5) (0T ®6),DTIMUL,OT,DT (WAL, 0T (MO
Ky 10UT o IREC, [BLK)

CALL TICTOCETYME &)

JFLIBLK.GT.0) REWIND 7

(FIIBLK.GT.0) READITIIOTI1) o) o), N8}

=

WPITELITP6,2030) TVYME

0D 271 N =1, 7

TYME(N) = 0.0

Coses INPUT THE FDRCE VECTORS DN NDOES (RESEY TD 2ERD AUTOMATICALLY
Cesee AFTER EACH PROBLEM SOLUTION DR RESDLUTICNI,
4

26C

CONTINUE

JFU.NOT.FLAG(2)) GD YD 730
CALL RESET) T NUMNP(NOF,DT{NS))
GD TD 125

Caoes TIME INTEGRATION SUBRDUTINE FOR OYNAMIC AND VISCOELASYIC SOLUDIDNS

520

530

IF(FLAGIT)) GD TD 540

FLAGLT) = ,TRUE.

) = MO o+ NSICO - 1
TFLL.GT.(S)2) GD TN T10

00 530 J = MO,y)

0TtJ) = 0.

JFLTBLK.EQ.0) GD TD 540

MU = MO ¢ NSICD
1FIMUNSICO,GT.)S12) GO TO 71D

540 1F)ICC.EQ.CONWD(22),NR,CC.EQ.CONNDL23})

X CALL TSDLVE INUMNP, NUMEL s NUNMAT NOTM NOF (NENGNEL T o NSTF (NVEC,
1 NSIZVNICOGNSICO s [ALKy [SZAINEQBMAXBAN NOEG, 100 4MB,y 1 3UF 01,
2 OTE(ML),DTIM2) 4DTIMI) (OT(MA),0T(N5),0T)861,DTINTI,0TIMB),
3 OToOTIMI) DT IML) 4 DTILAD(OTIMO) 4 DTUNK) ,OTL1S12010,0TEMGIDITNY),
L} NSEQ.TYNE)

TIFLCCoEQaCDNWOL28))
XCALL NEWTDN ( NUMNP ¢ NUNEL, NUMMAT s NO LMy NDF o NENGNEL Ty NSTFoONVEC NSEZV,
LUBLK o [SZAYNEQB,MAXBANGNDEG, 101 M8, 1BUF OT,DTI4]),0FT(M2),0Vm31,
20T )M& ) DT (M%) yDT{ME),OT{%T),DT(%3) DT, OTI{MII,DT(H),011LA),DTLYO),
IOTUMX) 4DFCCESIZ#1)4OTINU) (NSEQ, TYME)

) = 0

GD TD 260

Cooos PRDGRAM EXECLYDN TYME ARRAY,REFFRENCE SURRDUTINE CLOCK
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105 wM)TE(1TP6,2030) TYME
G) 10 100

? WRITELITV 6, 20330 (FLAGIJ) 1 Jol 8}
60 '3 100

TU0 WRILELLTPL20340 CC
G 13 100

710 MRITELITP6,2035) MO ISIZ.CC
6N 13 100

720 WRLITELLITP642036) NOIMNOF (NEN
G0 10 100

130 WRITELLITP6,20371 CC
G0 TO )00

5 MRITE(ITPO,2030)
G0 T0 100

0  WRLYELITP6,2032) MAXBAN
GO 10 100

wo o FORMATS

00 FORMAT [FS5,0,1X,1246)

31 FORMATLI6)S5,5F10.0)

32 FOPMAT(1%,5X,4F10.00

00 FORMATLIH1.)2A6430K4HPAGE, 147777
X/19X,32H FINITE ELEMENT ANALYSIS PROGRAM///13Xe 2212H &) //

X DING2H ¢, 18,34H OIMENSIONAL PRNOBLEM L)

X 13Ke2H &, 18,34H DEGRAEES CF FREEOOM PER NOOE .0/

X 13X¢2H 418, 34H NOOES CONNECTED TO EACH ELEMENTY #//

X 13IX42H ®,19,34H ELEMENT STIFENESS SIZE ¢ ¢ & & ¢//13X,2212H ¢}//
X 13N, 2H 64BXe34H A GENEPALIZEQ FORCE CHECK HAS e /!

X JIXe2H ®4 9N AAy ) AHREEN REQUESTEQ 14X, 1He//

X 13X, 2H 8, 18)34H 1S MAXIMUN PERM)SS1BLE HALFBAND ¢ //

X 13X, 2H ¢, 18,34H WORO RUFFER AREA RESERVED FOR H ¢//)3X,2212H ¢)//
X LIKe2H ©,08X,) 8H CONSTANT NClwe- ag) 8y TXy1H0 7/

X 13Xy 2H 048X, 19H CONSTANT )ocvwe 21 E) 204y 4H /!

X 13X, 2H ©,BX,18H CONSTANT 2--
X 13Xy 2H ©,8%, [AH CONSTANT 3ee
X 13K, 2H €9 8Xs1BH CONSTANT 4e-
A LING2H ®,8X, 198 CONSTANT §ece-c 20E)12,4¢44H

)2 FORMATUIH] ) 285430X4HPAGE 167/

Xy ITHFOURLER CNEFFICLIENTS FOR HARMONIC NO. o 147/

10X, 25HRAOTAL COEFFICIENT o E}2.47/7

10X, 25HTANGENTIAL COEFFICIENT o E)2,4//

10X, 25HAKIAL COEFFICIENT o El2.477

10X, 25HTHERMAL COEFFICIENT o EN244/7 )

03 FORMATI/20X,1146)

030 FORMAT [IH1,21Xy12HELAPSEQ TIME/Z/710X, 25HINPUT PROPERTIES ANO WESH
+F104 37100, 25HCHECK AND PLOT INPUT DATAF10.3710X,1 4HFORM STIFFNESS
2F2143710X,21MSOLUTION OF FOUATIONSF)4,3710)423HRESOLUTION OF EQUA
+TIONS 1 E1243/710%0 L4HOUTPUT ANSWERSF2103 /10X 10HTOTAL TIME,F25,3 1

31 FNRMAT(// S5X,16HIN-CORF SOLUTION 1

= 0,E)2.404H o/}
50E)2.4,4H ./

¢’/
®//13%,2212H &)/

> X W = M
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BLOCK DATA

PEAL LABL

NGLCAL NPRyNPL
tggluNtnvvlﬂollI*EnN\lGl7l.NY'NSYEP.OY'NUHPL?.NEOA‘A[IO'!)oNPRvNPL
COMMAN/GAUSZ LTIMy SGAUSSIS.S)eWGAUSSISeS5)

CNMMIN/LABELS/ lA%lel'lNFO(!l.XN.FMEO(b)'FN'UNED(GD'Uu.lN50(6)'lN
X .AuOWDl.AHO"OZ.AUUQO!.NEAOIlZle!AlY.CElSE'lPG'NSYR'NORO(!Oi
CAMMONZSHAP / XJAC, SHA *E14 0201 ¢5G13¢31,SK(3¢31,X13,200,L00120)
COMMANZTITLES/ XTTL! 3)eUTTLIED

COMMON /TAPES/ 1TP5,17P6

COMMON/VTAPEZ TTP)3,1TP14,1TPRO,1TPUR

DATA SHAPE/Z8000.0/,START,CEASE/GHFEARPT3,6HSTOP

NATA NOQDISNEL“OX.SNEL"OZv5NELN03.5NELI06'5NELN05'5NELH06'5NELN071
X ENELHOR.5NELH09'5HELH10.E"ELHll.E"ELH)2.5NELH)lyENELNlQ'!uELHlSv
l'5NFLH16-5NELH17.5“EL“lR'SNELNIQ.SNELHZO.SMELHI).5NELHZI'SNELNZJ.
X EHFLNZG.5MELH25.5NELH26v5NELH27.SMELﬁZB.ENELHIQoﬁnttﬂlol

DATA SGAUSS/S58040-+57735027,.57735027,300, 4=, 77459667404 ¢.T7459667
© .2'0..-.ublllb!).-.)399nl06..11998!06..861)361).0..-.906!7985'
€ ~e53R66931,4.0,s5386£931).70617985/

0ATA uGAuSS/S‘Z-.S‘A...5555‘556.-888888891.55555556.2'0-..16785685
L nz‘.bSZI«ﬁlS..36105635.0...23691689..h7862861'-50888889..51861861
€ 1.236926R09/

DATA LABLCULL/BH 1112, /

DATA XTTL/6H 146H 2i16H 3/¢ XH/6M ORD. /

DATA UTTL/6H 1e6H 2,6H 3,6H A, 6H Se6H 6/
OATA FH,RH,JIi/6H FORCE.&6H FORCE.6H 0)SPL/

DATA AWORDLsaWDRUZ/BH  F13.4y4BH 6EL3.4)/¢AWORDI/EH F) 2,24/

NATA LTRS,[TP6 /5:6/ o+ NSIG/Te0/, TIME/Q.,0/¢NUMPLT +NPRyNPL/0y 0.1/
DATA ITPL3,1TPY&/L3, 164/

ENO

2032
2033

2234
20139

«03¢

2037
2038

2039

non

PRGE 20

FOYMAY 12TWOBANOWIOTH FXCEEQEO, MRANOe|S)

FORMATISSHOALL INFORMATION FOR THIS PROBLEM HAS NOT OFEN PROVIDED/
X JSHOMRTER)AL CAROS o L2/

X L19HONJDAL CARDS v L2/

X 1YHOELEMENT CAROS s L27)

FORMAT LYK A6, ) 6H TYPE CARD ERAOR/)

FORMAT (20HOREQUINED STORRGE o IT/20HOAVAILABLE STORAGE » 17/

X 29HDSTORAGE EXCEEDEO DUAING ,A6/)

FOAMAT{20HOINPUT SIZE ERADR, 04 NOIN » 18,84, NOF o 15,
C  OHy, NEL o 1%}

FORMAT (IOHORYTEMPT YO INPUT ,R6,20¥ BEFORE NODAL POINTS )
FORMAT(5X, 9BHOONON-FATAL ERRDA®S INITIAL OVNAMIC VECTORS HAVE NOT
X BEEN INPUT ®eINITIAL CONDITION ASSUMED ZEROD )

FORMAT {AJHOREQUEST WADE FOR LINITED AMOUNT DF QUTPUT,

X +294 ADDITIONAL DAYA REQUINED/IX)

ENO
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SUBROUTINE TICTOCITYNE, 11
SUBROUTINE TO TIME PROGRAM SEGMENTS AS MEASURE DF EFFICIENCY

OIMENSION TVME(TI

IF (1 oLE., 0) GO TO 100
CALL SECONDITII

TYME (1} » T1 - T0

TYMEIT] o TYME(T) « TYME(D)
10 » T1

RETURN

100 CALL SECONOITO)

RETURN
END




PAGE 29

SUARIUTINE INTEGLILIMINCLINOTMyL INT,STUN)D

AEAL

LABL

OIMENSION STRLLT 31 TTATLT (30 oUTRLIT (31 MTRLL?¢30eSTUNIAL)
DLMENSION SIN(TI,TIRITI,UINLTI MAI2) oSR12),WCH2005C12)
COMMON/ZGAUS? LE2,SOAUSSLSe5) s WGAUSSID5)

COMMON/LABELSZ LABLLED S XHINLI Y1 XHVFHEDN& ) oFHIUHEDI 6] oUH I RHED LS ) o AW
X oANORDL s AWORD2,AMOROV, HEADL121¢STARToCEASE IPGNS TR \WORD) 301

QATA
C
OATa
C
OATA
[
DATA
OAlA

<
DATA
(4

STAT/0033333333,600.0005¢0.000454400.050433333333,0,05971507,
200,47014208,0,T9742699,2°0.1012065%1/
TTRI/0.33333333,880.002°0.5¢0.004%0,0¢0.33333333,0.47014208,
005971587, 0,4T014206,04101206%1,0.,79742699,0,10120851/
UTATZ0,3333333),600,0¢0,0029045¢480.040,33333333,200,4T004206
19742699/
MTR1/7Te]1.0,700.33333333, 0300.13239415,390.129593910/
SIA,TIN UIRZY.00290.0040100¢0c0dee0ee2%la9=los=1s00ee0eolarls
s =les=lesle/
WASBeNCSCALo333333,0.80642659341.000,7958224284000
0.33518005%1040,0. 750786911/

scon INTEGRATION TAALE CONSTRUCTION
1FINCLoLT.01 NCL = O
1FINC1.GT.21 NCL = 2

NC o

NCY 0 )

GU 10 1240424402490 ¢NC

e NC1
1 11 =
1EEL
1FIL
LIv)
15N

e 0, GAUSS INTEGRATION
0

TMelTo2) LIM o 2
1M,GT.51 ()M o 5

e LIM
DIM,ED.2) LIM3 o 1

0) 243 1 o 1,LIMY

uu e
WY e

SGAUSSI L, LIN)
WGAUSS (T LIM

(FINDIMNE,2) GO TN 242

(VU]
WU
42 CONT

=1.0
1.0
(NUE

00 243 J o 1,LIM

TY o
WY .
01 2
11 «

SHAUSSLIWLIM)
WGAUSS (UL IHI oWy
43 K o J4LIM

11 + |

STUSIT,I11 o SGAUSSIK,LIML
STUNI2411) o TT
STUMI3IL) =« UU

STUW(as L) o WGAUSSIKeLIM)OUT
43 CONTINUE

LINT o 11

GD TO 248
sses NC) o |, [RONS INTEGRATION

44 1FIN

D14 NE, 3,0R.LIM.EQ.L) GO TO 241
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SUARNMUT (NE MESHIMC o NUMNP, NUME Ly NUMMAT ¢ NOLMyNOF o NEL o NEL L
X DT TYPE,D, (CO0XYLeFylY)
v9es INPUT DF MESH ANO MATER1AL PRNPERTIES
COMMON /TAPES/ LTPS,1TPs
REAL LABL
DIMENS(ON TYPEE11,002420,11,1C0011) ¢ XYZINDIMeL)oFINOFs1
X IXINELLo1141X0DU201,0X(31,1XP120),XMORDI1L)
COMMON/GAUS/ LIMySGAUSS (5451 ¢ MGAUSST5,5]
COMMDN/LABELS/ LABLUG] ) XHED T3 )4 XH, FHED 161 ¢FH,UHED(6) yUH¢RHEDV6) ) RH
x .A“DROI.A“Uﬂol.l“ﬂ“blu“ilﬂllZl-STIRY.CEASE'DPGvNSYIleROISOI
COMMON/ SHAR / XJAC ¢ SHAPET4 200 ¢5G(343).5K131300X034200,0L011201
COMUON/VALUES/ NCLoCONT,CON2,CONILS)
OATA BLANK/BHBLANK /
G0 1011424342144

1 CONTINUE
uy o p
00 3100 1 = 1,NUMHAT
MET & MIT =) &

IFLMCT,GT.01 GO TO 1O
WRITE(LTPE, 20011 HEAD, PG NUMMAT

14
uer

« (05 ¢
. &

CONTLINUE
READLLTPS,10021 M,NH, XUORD
IFIM,GT NJMMAT ,OR,M,LE,OL GO TO YOI
TYPE[M) « O™
WRITELITPH, 20021 DM.M, XWDRO
00 280 ) *1,3
00 280 « o 1,21
2h0 DlJeKeM1le0.0

L]
00 290 4 = 1430
LFIOM. 0. MORO(JIL GO TO 400
290 CONTIHNJE
fu.os ERAROR (C EX(T ON LOOP 290
301 WRITEL]TPA,20321M,0H

106

¢ 0

PETURN

400 CALL ELMLIBIN,M +NOLM (NDF yNEL ¢NEL 1 yNSTF o NSHZVNVECIMCT DM, Dy XYy
K IX,FoFORCEGESTIF Uy VECT 1)

30 CONTINUF
AETURN

? CONTINUE

4
“avee SET
C

AYZLLN) TD BLANKS

00 20 N ¢ LINUSNP
XYZU]4N) o ALANK
0N 20 1 o 1.NDF

LINT ¢ &

LFILIMGGPL2) LINT = L4

8S = SeiLinl

AW = wBILINML

00 266 ) = 17

)2 o 201

11« 12 =1

1F11.NE.4) GO 10 249

8% = SCILIM)

8w » WCILINL
245 CONTINUE

STuMi1411)

STuWllel2)

STUML2411) TIRLE)ORS

STUML 2,0 2} =STUMI 24101

s SINL11e0S
.
.
.
STUMLB,11) = UIR)LIGBS
.
.
.

~STuMtle L)

STuwll.12} =STUMl 30100
STurla il L]
246 STUWIGL2)
GN TO 248
Coo0e NC1 » 2, TRIANGULAR CDORDINATE (NTEGRATION
249 LINT = |
LFILIN,GT.3) LIN = 3
TFLLIMLEQ.2) LINT = 3
1FILINGGE3) LINT o T
00 247 1 = 1,LINT

STUMILsTL o STRLLLLLIM)

STUMI291) > TTRILL,LIN)

STUWIY L) = UTRLLT,LLINML
267 STUMLALT) = WTATLLLIN)
240 CONTINUE

RETURN

ENOD
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20 FILyN) = 0,0
Cacse START FILLING DATA
4

N @
NXP ¢ O
21 NP = N
VFLMC.EQ.2.AND.N.GENUMNP) GO TN 30
NX = NXP
REAQUITPS,1006) NoNXPyI.0X
TFINGLELD.ORNGTo NUMNP) GO TD 3D
IE(MC.EQa2) NXP = |
1CO01INY = |
00 286 L=1.NOIM
26 XYL(I4N) = OX{)1
IF1INX.ED.OL GO TO 21
IF ((N-NP)®NX,GE.Q) GO TO 2%
NX = = NX
MRITEILTPA,20331 NPoN
?5 CONTINUE

Ceees GENERATE THE NONES RFTWFEN NP AND N (N INTERVALS OF KX

LX = LIABSIN-NPL ¢ TARSINX) - 11/13RSINX)
00 22 1 = 14NOIM

22 OX1)) » IXYZIL(N) =~ XYZMDoNPID/LX

2) NP = NP & NX
IFINX.GTe0.ANOJNP GE.N) GO TO 21
LFINXLT.0.ANOJNP.LE.NI GO TO 21
00 24 1 = 14NDIM

26 XYZULGNP) o XYZLIZNP-NXL » DXIIL
1CODINP) « O
1FIICODINP~NX),ED. ICOOINLY JCODINP] = LCOGINYD
60 70 23

Coose CHECX 1F ALL OATA HAS REEN INPUT QR GENERATED AND PRINT QUIPUT
C

0 CALL PRYMSHI] ¢NUMNPNDIM, 1C00.XYL)
RETURN
Cooes [NPUT ELEMENT CONNFCTINN ARRRY
3 uct = 0
NSIDE e(NEL®I)/NDIMes2
NeQ
MAP = O
Ceooe SET UP INCREMENT ARRAY If NOT INPUT NEF CARDS
6o ™ 1y
130 00 151 L = 1JNEL
151 (x0IL) o 1xP(LI
1F1IXDUTINESD) 6O TN 187
0N 150 L o 1sNEL




T S T S e —_—

e

"

134
140

«?

58

110

32%

20
10

“aGt 1)

1%0(LL » NSIOE

Al o 4ONSILOE ¢ 1

N2 o BONSJOE - &

1FIN2.GLNELL GO TO 19

an 152 L ¢ NLIN2

1xoiLl = 1

Nl o 2oNSIOQE

N3 o NL ¢ 2 - NSIOE

N& = N1 ¢ N?

00 196 L ¢ N3NIL

110lLL o |

1X0(L * NIl o 1

IFIN2.GT.NELT GD 10 1%

1X04L ¢ N2) o |

LADIL 9 N&) o ]

CONTINUE

CONTEINUE

VEAQUTTPL,1003) WoWA 1N, 1P, IXR
(FIM,LE, 0y RETURN
READCLTPS,, 060 (IXAToMIToloNEL]

(FINJEQLOL 1 o ® = |
(RINELLMI = MA ¢ 10¢1F ¢ 100010
l =1

00 133 11 = loNEL
(FIIRUTUoMILEQ.OL GO TD 134
wl ¢ K] ¢ 1

CONY INUE

LFIX].GT.NEL) GO TO 140

00 138 11 o K1yNEL

1xPL111 = 0

NeNel

uCT o WmCT - 1

JFIMCTLGT 01 GO TO 142
WRITEC( TP, 20011 HEAD, 1PGINUMEL Ly Bal NELL
196G = (PG ¢ 1

uCT s 50

CONLINUE

1£(M,LE.NT GO (0 170

00 158 L = 14NEL

IRILGND o (XILGN=1T & 1ROIL}
IRINELLoNL o WAP

CONTINUE

x s 0

D0 340 T1eloNEL
JELIKEULGN)oEOeO) GO TO 141

00 325 JUs{ToNEL

TtFOXEI1IN) cED.0) GO TO 340
KKaTABSTIX) L1 NT-1RLJLNIT #
JFIKLLE.KX) KaxK

CONTINUE
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SUBROUTINE RAKGENI NUMNPy NUMEL JNDIMNOF o NEL JNEL1 ¢ 1C004XYZyFyIRT
REAL LAHL

DIMEHSION (CONI1)oRYZINDIMy 1) o IRUNEL T o1} o FINOF, LT

oMM /TAPES/ LTP5y (PR

COMMON/LARELS/ LABLUAT XHEOII Lo XHoFHEOUGT «FH UHEDTET UMy RHEDLG) o RH
¥ .Aunnnl.AHDROZ|AIn=nl.“FAn(IZ)'SYART'CEASE.IFG.NSYvaOIOI!OI
£OMMON/SHAP/ RJAC, SHAPE(4¢20) +SGI3¢314SKI3431,X(3,200,0001201

GENERATLON OF NODAL COORDINATES ANO BOUNDARY COOES FOR BRICK SHAPE
REGCIONS USING ELEMENY SHAPE FUNCTIONS ¢ ¢ ¢

INPUT THE REGINN PROPERTIES

WEAOL)TPS, 10001 NNoNR (NS NT (N1 oNC,HA ¢NBC o IREUSE , IPRINTo EMSH 1ELN
READITTPS,1001) Tle12413¢14405016

READLITPS,1002) (UR(Todlslo103T9dmloNNT

1FINS,LE.0) NS=l

[FINR,LELO) NRel

1FINT.LE.O) NTs)

JFIN}GLE. O NI = 1

(FINELLF.D) NF o ]

YE(MALLE.Ql MA o 1

WRITE)NITPE, 20008 MEAD,LPGNRyNSNT & |NE,NA

WRITECTTP642)0000 11442,130 14915016, IXHEOU 11y XHybe(NOINL

N0 (D N = ) NN
WRITEQ(TPA, 20000 (XLLWNIo T2y, 'DIND
LET THE CONTROL CONSTANTS

NSIDE s (NNell/NDIMes?2
OR o 2,/FLOATINR}

DS = 2./FLDATINS)

OT » 2./FLOATINTI

NR s NR ¢ )

NS & NS o 1

NT o NT ¢+ )
TFINDIM,EQ.2) NT o 1
NRS o NRONS

NE 5 NRSONT ¢ Nl -
(FINF,GT,NUMNP) GO TP 400
JEINSCL.NE.OT 51 TD 30

SET THE ANUNOARY CONOITION CNDOES TO ZERQ

00 20 1 = NUJNF
00 15 J = 1,NDF

FlJ.l) = 0.0
1contl) = 0
LONTINUE

N = N)

340
181

165

e

Cosee
1002
1003
1004
1006
20018

2002
200%
2011

[4
Cosee
2031
2032
20%

Coves

40

Cocne

100
200
300

320
360

RAGE 36

CONTENUE

wAPs WOOIIXINELD (NI,101

AR s LXINFLL4NIZ100

1P o NODUIRINELI4NT,1000/10

MRITE(1T28,2009) NyMARG ARy 1P LINLLINTBoToNELT %
18(M=-N) 185,180,140

WRITELLTPR, 20311 N

NAP o NA

LFINUNELGGT4NT GO TO 130

RETURN

FORMATS

FORMAT LIS, U, A5, L1AG1

FORNAT (415420131

FORMAT20081

FORMAT(215,110,6F10.0)
FORMAT(AHL 9 12400 30X 4HPAGE o 147785 10M MATER(ALSY/
X 20H MALFRLAL PROPERTIES //1X)

FORMAT (X, AS, L0y SHMATERTAL +15,5X,L1AG/ 1IN
FORMATE251S1

FORMAT (1ML o 1246, JOXK&HPAGE, L47715,94 ELEMENTS//

X 20M ELMT NATL ARE PRNT 3, 2AWNOOES CONNECTEO TO ELEMENT/
X 20 NO. NO. USES 21X, 2002H &4 1241He})

ERROR NESSAGES o

FORMAT (24M0 ELENENT CARQ ERROR, Nel5)

FORMAT(26MOMATERIAL CARD ERROR, N = 132Ky 8H,TYPE o 4A5/)
FORMAT (

XSX, SGHOONON-FATAL ERRONS® INCREMENT FOR GENERATION BETWEEN NOOES,
X 15,04 ANOs1S,3TH IS NF INCORRECT SIGN ¢ SIGN LHANGEO/1X)

ENOD
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HE o NE - 1

T s -1.0

00 300 K = 1,NT

§ = ~1,0

00 200 J = 1,NS

"=~ 1.0

00 100 1 o 1,NR

CALL ARICK2(RySoToNOIM NNoNSIOEL
CONPUTE THE NQOAL COCROINATES OF THE N -TH NOUE
00 SO L = 1,4NOIN

cC = 0,
00 40 N = 1NN
CC = CC ¢ SHAPE(&/NIOXIT LMt

XYZAIL4NT o CC

SET THE SURFACE BOUNOARY CONOITIONS 1O PRESCRIHEOQ CONO)TI0NS

IFUT.EQe1 ) LCOODINE = 1COOIN) ¢ J1
IF{1.EQ.NR) (COOIN) = ICOO(NT & 12
1F1J.EQel ) 1COOIN) = T1CNOINY ¢ 1)
1F{J.EQ.NST 1COOLN} o 1COOINT + 14
(FIXLEQal 1 (COOINI = 1COOINL + 15
(FIK.EOCNTT 1CO0OINT = 1COOINT + 16
N =N+

IF (K JEQ.NT .ANOs K.NE.1) GO TO 100

1FL1.FO.NR OR, J.EQ. NS) GO TO 100

ME o ME ¢ 1|

IXENELL ¢NET = mA

IX(14MEL o N - 1

Ini2,NEl o N

IX{3,ME] = N + NR

IX(eyMET = N ¢ NR - |

1E(NOIM.EQ. 21 GO 1O 100

(R{SyME]l o« N ¢+ NRS ~1

IX(64MET o N ¢ NRS

IXUT4ME) = N ¢ NRS & NR

IX{84ME) = N ¢ NRS ¢ NR -]

R = R ¢ OR

S =85+ 05

Te 1+ 01

TFUIREUSE .EQ0. OI GO TO 360
o ((REUSE - 11100 ¢+ ma

J

00 320 1 = NE,ME,IREUSE

(XINELL 1T o 4

JFVIPRINT (NE. OJIRUINELUGNE) o ININFLIZNE) ¢ 10
IFCINSHIEQeO) CALL PRTIMSHINT 4NF(NOIM,1CO0,2Y2)
(FUTELNGEQ.O) CALL PRTELMINE ME(NELNEL), LX)
(F(ME,GT.NUMELL NUMEL = Mf




B-/¢

i vage 1?7 RAGE 38
SETURN SUBROUTINE PRTELMINE, MT NEL,NELL,IX)
We (TECIYPO,20%)) REAL LASL
AN OTMENSTION TRINELL.TL
FETURN COMMON /TAPES/ [TPS,1TPe
O TGRuATI161Y) COMMONZLAAELS/ LAALLA)  NNIN)I 1o RHFHEDIO) JFHUHEOI ) oUn, RHTD)R ) AN
) RMAT(6I10) X oANIROLoAMOAD2 ¢ AWOROI HEADI 12D STARTICEASE, IPGoNSTR,WORD(DO)
2 FOR%ATI 10X, 3+ 10,01 uCY = 0
0 FORMAT{IHL, 12464300, 8HPAGE, 14//71TH NOOE GENERATIONS// 00 300 N = NE,NE
POXy 254NUNAER OF @-)NCRENENTS 1 187 ° uCT o MCT - |
‘ 10K, 29HNUMAER OF S=INCREMENTS o157 1FINCT,GT.0) GO TO 100
107, 2%4NUNKER OF T-INCREMINTS 157 WACTECTTRG,2011) HEAO IPGME,TTolel NEL)
x JOR, 25%F IRST NONES NUMRER o492 IRG » §PG o 1
X 10X 29HF (RST ELEMENT NUMBER o187 ueY « 50
X 1OR,29MELEMENT MATERIAL NUMBER 4 (%7 1K) 107 CONIgNUE
100 tHANAT) e
’ 10K, 254, -FACE BOUNDARY COOE 1107 MA « MODIIKINELTN)10)
10m,2542-FACE BNUNOAPY CODE 1107 (R e IXKINELTINIZ100
X 10K, 25H3-CACE BOUNDARY COOE o110/ 1P o MOOUTRINELLINE,100(/10
| A 10Kk, 25H4~FACE 80UNDAPY COOE 1107 00 140 11 = 1.NEL
¥ 10N, 2545-FACE BOUNDARY CODE 110/ TFLIR(31,N10€0.0) GO D 150
X 10X, 25MA-FACE SOUNOAPY CODE W110775%4,3)248)) 00 139 J1 = T1l.NEL
J1 FOMMATISK,1P3E]1Q.1) TFTIRIJIWNDLEQ.O0) GO TO 140
10 FORMAT(SR,4TH ooFATAL ERROR®e INSUFFICIENT STORAGE FOR NOOES) KK o [ABS)(KCTLONI=IRTILINDD ¢ 1
ENOD IFIKLLY.KK) K = K&

133 CONTINUE
140  CONTINUE
150 WRITECTTRG6,200%¢ NoMAL IR IPTIRETND o (ol NELD oK
300 CONTINUE
RETUAN
2005 FORMATI2518)
2011 FORMAT(1H1¢12A6,30KAHPAGE, 14//71549H ELEMENTS//
X 20H ELMT MATL RE PANT 93X 26HNOOES CONNECTED 10 ELEMENT/

X 20H NO. NO. USES 1K 20 2H 8,024 1H0))
ENO
PAGE 39 PAGE 40
SUBROUTINE PRTMSHINT o NUSND, ND (M, [C00,RY2) SUBROUTTNE PRYMATIHFAQ, IPG)NELM NSTF ESTIF,FURCE,LDWNT)
REAL LASL COMMON /TAPES/ LTPS,1TP6
OI®MENSTON 1€C00(1) s KYZ(ND[%, 1) DIMENSTON ESTIFINT (NT),FORCEINT)LOINT) HEAD(L2)
COMMNN /TAPES/ [TR5,1TP6 MBLK = (NSTF+#23)/24
COMMON/LABELS/ LABLIG), XHEDU3 )i RHoFHED(6) 4 FHyUHEDI6) ¢UHsRHEQ (6 ) o RH NBLK = (NSTF ¢ B)/9
X 5 A4IR0L, AWNRO2, AMOROISHEAD(1 2) 4 START,CEASE, IPGINSTR(WOROL30) Nl = |
DATA ALANK/GHBLANK / 00 200 NN = ] NBLK
MCT = 0 N2 = Nl + B
00 33 N s Nl NUsNP TFIN2.GT NSTF) N2 s NSTF
(T » WCT - ) Ml =1
1HIMNCT.GTL00 GO TN 31 00 100 MN = ],MBLK
WRITELTTIP6,2010) HEAD, IPGyNUMNP, IXHEO() ) s XHo )1 NO(N) M2 = Ml ¢+ 23
(PG = 1PG v ) (F{M2.GT.NSTF) M2 = NSTF
uLY = 50 WRITELITP6,2000) HEADIPGINELMsJ)JoN1IN2)
LEIXYZELoN) EQ.BLANK) GUL TO 32 1PG = (PG ¢ |
WRITE(LTPA,2006) Ny1CONIN) 4 (XYZUT)N) s TulsNDIN) 0D 50 1 = N1.,M2
GO 10 33 80 WRITE(ITP6,2002) ToLDIDIWLESTIFCT ) 0dni aN2)
42 wRITE(LTP6,2000) N 100 M1 = M2 ¢ ]

CONT INUE WRITE([TP6, 20010 (FORCELJI)oJaNL N2!
RETURN 200 Nl = N2 ¢ 1

06 FORMATI2INZ2,7F13,.61 RETURN

7 FORMAT(112,5%,31H4AS NOT SEEN INPUT OR GENERATED ) 2000 FORMAT{IHl,1246430K, 4HPAGE, (47 /75, THELEMENT 115,71 MATRIX//

NG FOPMATCLIHL 1246, 30X 4HPAGE, 14//(5:13H NOOAL POINTS// X 2X, THROW/COL 4 3X,9T12)
X 1ZH NDDAL POINT,6X,6H88,Ce®y TULX4246)) 2001 FORMAT{/3R,SHFOPCE,4X,1P9E12.3)
END 2002 FORMAT{/)443H LOW1%,1P9E12.3)

ENO




paut o1

SUBPOUTINE RS SETUN,MINNE NOF F |

Canmgh FTAPES/ 1TPS,1TP8

SEaL LAML

DIMEYSION FINDF L)

CONNON/LANELS? LABLTS), XHEDLITo Ry PHEDER) JFHOUNTDL 8D o UM RHED IS ) AN

3 .l-;ﬂbl.llOID!leD'D!'“llDll!l.SYlll.t(lS!vl’GvNSll'UdlDl!ol

*50

v
v

MCY o D

(FtN, 61,03 GO 1D 200

DO 100 § o L NUNND

0D 100 J o (,NOP

$1J,1)0.0

JFINGEQ.D) RETURN

N e =N

CDONT)INUE

SEAD) ) TP, 10001 Jo )P Lo d)o1°) \NOF)

“CY o MCY - 1

(FIMCTLGT,0t GD Tn 250

wR) TE 1796420001 WEAD 19GyNUNNP, (FUED) LTy FHy To 14NDFT
196G = 310G ¢ 1

%7 s .

WR)TEL)TPS, 2001) JoUE 1400 Ue) NOFT

151 JoGESNUNND{ AETURN

JFLJ.GELN) RETURN

6D Y0 200

FORMAT (15,45, TF1D.0t
FDnHlY!lNlplllo.)Dl.bNPAGE.(QIIIS.l!“ NOOAL FORCES//

X 124 NOOAL POINT,TI1X,246))

ol

0

FDAMAT()1249E13.4)
END

PAGE 43

SUBRNUT IKE EL"LlBlN'NI'NDIK.NOFvNEL'NEleNS'F'NSIIV.NVEC'ICI'DN'D.
4 XVZyIXoF FORCEJESTIF UyVECT, 15M!

vEAL LadL

CDMMON/LABELS/ LIBLIQI'INEOl3I'leFNEDl6I.FN'UNElel'UN'RNEle)vﬁN
x .AuORDl.AlDROZ.AlURDJ.NElDIlZl'START'CElSE'IPG'NSIR'IDRDl!DI

ELEMENT LIBRARV FOR FEAPT2

1Sw » | FOR MATER{AL CHARACTERIZATION

1SW o 2 FOR CHECK NN MESM

(SW s 3 FOR ELEMENT STIFFNESS FORMULAT (DN

1SW = & FNR ELEMENT OUTOUTS

15w o 5 FOR ELEMENT LOAO/VECTOR COMRUTATIONS
1SW = 6 FOR NON-LINEAR LNAD VECTDR COMPUTAT)ONS

on 56 J = 1,30

1F{DM,£Q.WORO}J1) GO TO 57

CONT{NUE

[ I ] |I.2v2.§y5'6'7.019-lOyllvllyl).lQ.I5.lb'l7'18vl9'20'2l'221
X 23,269250260270208,29430) ¢

AL ELNTOIlN.ﬂl.NOl“.NﬂFvNEL'NELl'NSIF.NSIZV.NVEC'QCI'ONvD'lVZ'
X (XgF FOFCEESTIF U, VECT,15W)

G0 10 99

CaLL ELNYOZIN'NA.NOIN'NUF.NEL'NELl'NSTF.NSllV'NVEC'NCT'DNvO.lVl'
X IX,FFORCEESTIF U VECTo)SHW)

60 TN 9

calL ELNYO)|N|!lvN0|N.NOF.NELvNELlvNSTFvNSllV'NVEC'NCTvDN'O.lVlv
X TxoF FORCE,ESTIF Uy VECTo15W)

GO 10 99

CaLL EL"YDHIN.“!.NUIN:NDF'NEL.NELlqNSTF.NSlZV'NVEC.NCT'DN.O.IVI.
X 1XoF oFORCEsESTIF U, VECT, ISWL

60 YD 99

CaLtL FLMYDElN.NAvNDl“.NDF.NEL'NELl'NSTF'NSllV'NVECv“CT.ON'O'!Vl'
X IXoFoFORCEESTLF o1, VECT ) SW)

60 TN 99

CALL ELHYD&IN.NA.NDI“.NOFvNEL'NELI'NSTF.NSllV'NVECvNCT.ON'O.KVl.
X [KoF FORCEZESTIF U VECT,1SW)

GD TN 99

CALL ELNYDTlN.ﬂl.NﬁlN.NOF.NFL.NELI.NS‘F.NSllV.NVEC.“CT.DN.D.IVZ.
X 1K, FoFDRCE G ESTIF Uy VEC T2 SWI

G0 0 99

CALL ELHIO!IN.*I'NOIM.NHF.NEL.NEL!.NSTF.NS([V.NVEC;NC‘.DN.O.!VM
X (g FoFNRCESESTIF U VEC T, (SWIL

cD 10 99

catL EL“ID?IN.NA.NOIM.ND‘.NEl.NELl.NSYF:NS)IV.NVEC:NCT.DN.D.IVI.
X UKol (FORCE,ESTIF U/ VECT,15u1

6N 10 99

CALL EL‘YlOlN.ﬂlvNDIM'an.NELvNELl.NST"NSIIV.NVEC'NCY.DN'D.KVI.
¥ 1XoF FDRCE,ESTIF U)VECT,15W)

GO TD 99

PAGE 42

FUNCTION PROPLOD Ty NI

OUNENSION TARLEI®,3 4TL.013)

CONNNN ZTAPESZ 1TP%,[T08

DATA TLAR/Z(DMPOLYNDNIAL » TONPERIDOIC » TOMUSER 1MPYT/

)7 i{N,FD.D) GN TO 200
Covne INPUT TARLE

NTERNS o N

AEADITITPS,1000) (TTABLECL o ddoRel O o0l NI

WAITE)1TPe, 20011

0D 100 J « 14N

" e TABLEILWJIT

1FIA,LT,), DR, R.GCTe31 GO TO 700

L e TABLE) 2,41
100  WRLITE)1TP6,20001 TUABIR T Lo ATABLEIT 1 J1e 103 W)

RE TURN
200 PaDALO - O,
Coese INTERPOLATE TME TABLE

00 300 J = JyNTEANS

TNIN = TABLE) D, J)

TMAX o TABLEIA,J)

TF)TL LY. TMIM.DR,ToGT,THAXT GO TD 300

X » TABLE(L.Jd)

u) TD 1201,202,20%) R
201 TT « 1.0

0D 211 &t = 5,9

PROSLD = PADPLD o TABLELL,J)0TY
211 VT e TrOY

63 10 300
202 n = TABLE)24J)

IFEK.EQ.0) X =

PROPLD = PADPLD o TABLEI®,JI ¢VABLEIS,JI®)SINITABLEI6,J10T D e0K

X o TABLE)T,J19)1COSITABLEIR J)oTT) 00K

G0 TO 300
203  CALL EXPALD)IPRDP, Vo TABLE) 24N))

PRDPLD « PRDP
300 CONTINUE

RETURN
T00 WA)TE))ITPS,2030) K

)19G = O

nETURN
1000 FORNAT) 2F3,0,TF)1040)
2000 FORMAT(2X,A)D,13,TELS,S)
2001 FORMAY(//5X,234PROPORTIONAL LDAD TABLE//

X 3X,GHTYPE LOADoSH EXP, 5% IHMIN. TUMESXyIHUAX . TINE,3X,

X 2UAD, L2 2MA) o 12Xy 2HAZ 12X, 2HAD, 12X, 2HAG/L XY
20%0 ::;ﬂlvlsou PROPOAT)DONAL LOAD INPUT TABLE ERRDR. INPUT TVRE e,)571

OAGE 46

1 CALL ELMTILIN,MA ND{M NDF ¢NEL ¢NELL JNSTF NS T ANVEC I MCT M, Ny AV T
X 1My FyFORCE ESTIF, U, VECTo15M1
GO TO 99
12 CALL EL“Yl!lNlevND(N'NDF.NEL.NELI'NSYF'NSlleNVE:.NC‘.DN-DvlVl'
X )XoFoFDRCE(ESTIFoUVECT,15MW)
GD TD 99
13 CALL EL“TI!|N.NA'NDIN.NDF.NEL.NELl.NSYF.NSIIV.NVEC.KCY.DH-D.lVZ.
X 1%y FyFORCEGESTIF U VECT,)5W)
GD TD 99
14 CALL ELNTlhleNl.NDlN.NDF'NEL'NELI.NSIF.NSIZV.NVEC.HCY.DH,D.lVl.
X 1% FoFORCE ESTIF Uy VECT,I5W)
GD TO 99
13 CALL ELNT[S)N.NI'NDIN'NDF.NELvNELl'NSIF.NSIIV.NVEC.MCY'OK.O.lVl.
X )Xy FyFORCEGESTIFoU VECTI5W)
GO TO0 99
16 CaLL ELiTlO)N'Nl'ND)N'NDF.NEL'NELI.NSYF.NSIlV.NVEC.ﬂCY.DK.O.XVlv
% (KyFyFORCE,ESTIF U, VECT,15W)
GO 70 99
(R CALL EL“‘[TlN'ﬂl.NDl“.NDF'NEL'NELI'NS‘F.NSIleNVEC.ﬂCY.DN.D.lVl.
X X FyFDRCEJESTIF Uy VECT,1SW{
GO 10 99
18 CALL ELHTlBIN'NAvNDIN'NDF'NELvNELlvNS'F.NSlleNVEC-KClvON.DvXVL.
X 1X+FoFORCE(ESTIF U, VECT, ISW)
G0 10 99
19 CALL ELNYlO)N.ﬂl.NUlN.ND"NEL'NELI'NSTF.NSIlV.NVEC.KCY.Dﬂ.D.!Vl.
X IX F o FORCE,ESTEF Uy VECT,) SH)
GD TD 99
20 CALL ELN'ZDIN'NA'NDINvNDF.NEL.NELIQNSYF.NSI[V.“VEC.KCY.D‘.D.XVI.
X IKoFoFORCEJESTIFo U VECTISM)
GD TD 99
21 CALL ELNTZl)NvﬂA'NDIN.NDF.NEL'NELI'NSTF.NSIIV|NVECvﬂCY.O“.O.lVl.
X IXyFoFORCE\ESTIF U VECT,ISMI
GD 10 99
22 CALL ELN'ZZlN.Nl'NDl“'NDFvNELvNELl.NSTF'NSllV.NVEC.KCT.DH.O.lVIu
X {KoF oFORCEZESTVIF Uy VECT,15W)
GD TN 99
23 CALL ELKIZ)INle.NDlI.ND"NEL'NELl.NSYF;NSIIV.NVEC.KCT.OH.D.(VI.
%X IX,FyFORCE,ESTIF U, VECT, {SW}
GO TO 99
24 CALL ELNYZCIN'“l'ND(N'NOFvNELvNEL).NS‘F.NSIIV.NVEC.QCT.OK.O.IVI.
%X IKeFyFORCE,ESTIF W VECT,)SH)
D TN 99
23 CALL ELKYZS)N.NA.NO)N.ND(,NELvNELl'NSTF.NﬁllV.NVEC.NCY.D‘.O.!VZ.
X IX,F,FORCE,ESTIF,UyVECT, ISW1
GD TN 99
26 CALL Elﬂ126)N.ﬂl.N0lN.NDFvNEL.NELI.NSIF.NSIIV-NVEC.ﬂc‘.O*uﬂlelv
X 1Xs € FDRCE(ESTIF Uy VECTo15M)
GO TN 99
21 CALL ELK'ZTlN.ﬂlvND)ﬂ.NDF.NEL'NELI|NSIF.NSIIV.NVEC.ﬂCY.OH.?.lVlv
K TXoF yFORCE(ESTIF 0y VECT, ) SMI




Bia
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G0 T0 99
CALL ELMTZRIN,MAINOI® NOF ¢ NELINELLINSTE (NS TV NVEC, MCT10M0002YV L,

POINF b ORCEGESTIF VU, VECT, ISWI]

a0 10 99
29 ;llL ELMT29 (NGMALNOIMoNOF (NEL oNFLLONSTF o NSTZVONVEC I MCT4 0N, 00XV,

€ 1R FyFORCE ESTIF AT VECT, 1801

G0 T0 99
119 Call ELMTIDINGMA,NDTM NDF GNEL NILLNSIE NSIZVINVEC,RCT, 04000 VT,

% DN FoFOACEESTIF,U,VECT,18W1
(1} PETURN

PAGE o6

SUANOUTINE MESHCRT NUMNG, NUMEL s MUNNAL (NOTM, NDF ¢ NEL o NEL 1, 107 101
a nv.-Q.DV.1v-t.o.|coo.-vt.|l.xotsr.lSlA.Ntau.lnu-:Notc; v
PEAL LAAL
10175;;:?? TYPET1040163,100XVZINOLINGY 1, 0RINELL11,10ESTANDF 1)

,
COMMON/LARELS/ LABLTGToEMEOLD 1) XMy FHEDIG) o FHUHEDTS ) yUN, RHEO 10D, AH
lca::g:?:a::gl:i;:uglg:ETEAotlzl.srllt.cslstnltc.nsll:uaao(!ul ;

o 3N $020108G830 3145010, 81,413,2

COMMON /TAPES/ 1TP3,170¢ i ey Ml el
OATA BLANK/GHMANK 2

101 « 107 o 1

ENO Cosee SET UP TME DESTINATION VECTOR

b 150

120
140

160

NDEG = 0

DO 160 N o 1 ,NUNNP

1C = 1C0DINI

1L = 100000

00 120 1 = 1,NOF
IDESTIIoND o O
IF11C.LT.IL1 GO 79 S0
1C = 1C - 1L
TFL1C.GT.1L1 GO TO 100
GO To 120

NUEG = NOEG o |
10ESTIL4NI » NOEG

IL = 1t/710

CONTINUE

MCT o O

00 160 N o 1 NUWNP

MCT o MCT - )
1FINCT.GT401 GO TO 160
T o 50
WRITEILTP6420331 HEADI1PGyLUHEOTL 14101 NOFI
1PG » 1PG o |
WRITELT1TP6420001 No11OESTI14N) 101 ,NOFI

Coose COMPUTE THE BANOMIOTH O'F THE MESH

170
180
190

3

PAGE &7

M3 e M3 ¢ ]
MBL = M3 + 2
NEOH = [OT/MBI
1F{  NEOB,GT.NNEG) NEOS = NOEG
IBLK = (NDEGYNEOB - 1)/NEOB
WRITE((TP6,2031) HEAO,1PGyNOEG,MBy NEOB, 1BLK
1PG = 1PG o |
15ZA = NEQB®{MB+1)
(®eve CHECK MESH FOR CONSISTENCY OF OATA
00 S0 N = 1,NUMEL
MA = MOOUIXENEL NI, 10)
(FOMA,GT ,NUMMAT ,OR . MA LE.O) GO TO 40
OM & TYPE(MA)
FLAG = 1,0
00 205 Tsl,NEL
K s (X(14N)
1E1K o GT o NUMNE ,0R K, LT,0) GO TO 40
1F(K.EQ.0) GO 10 205 30
NEN = |
TF( XYZ(1,K) JNE. BLANK) GO T 195 40
FLAG = =1,
WRITE((TP6,20341K,N
(PG = 0
60 10 205
199  CONTINUE
00 200 J = 1,NOlw
200 XUJo11 & XYZ{J4K1
705 CONTINUE
IF(FLAG oGT4 0,01
X CALL ELMLIBIN,MAGND(Y,NOF ) NENNELTINSTF NS IZVINVEC 4NCT,0M,0,XVZ,
X INGF FORCEESTLF Uy VECT,2)
60 LF{0%.GT40,0) GO T0 SO
40 WRITE((TP6,20301 NyMayOM, L1XEJoNLsJ®T4NEL)
106 = 0
50 CONTINUE
IFL(RG «GT. O1 WRCTE((TP6,20321
RETURN
2000 HORMAT(110,5X,6161
2030 FORMAT(IMOELEMENT, 15,104, WATERIAL,1510Hs JACOBLIANEN244/
x 9H 1K ARRAY,20(51
2031 FORMATIIHL, 1288,30X,4HPAGE, 14//71TH EOUATION SUMMARY//
X 5, 21HNUMBER OF EQUATIONS ®,16//5Ks 21HNAKIMUN HALFBAND U Y2
X 5X.2IHEQUATIONS RER BLOCK =, 1647
X 5y 21HNUMSER DF BLOCKS o (674X, 2BLIHOT /77 11X)
2032 FORMAT(SX.46HND ERRORS DFTECTEN DURING A CHECK 0OF THE WESH )
2033 FORMAT(IML.12A6,30%,4HPAGE, 1477194 OESTINATIUN VECTOR//
K 6y §HNOOE ¢ 2X IHODF 16461,
2034 +ORMATI2IM ®SFATAL ERROR®SNOOE, Ihs 34H NOT INPUT BUT S JSEU IN E
ALEMENT, 16 }
END

LI

00 190 N = 1,NUNEL

LI ]

NN = 0

00 170 1 » 1,NEL

K o 1X114N1

1FIX.E0.01 GO VD 180

00 170 J = 1,NOF

1C = 10E8TL ok
1F11C.GCT.MM1 MN = |C

1F11C +E0. 01 GO TD 170
1F11C.LTANNJORSNNLEQ.O1 NN = IC
CONTINUE

1F (MM-NN.GT .MB]1 MB = MM-NN
CONTINUE

PAGE o8

SUBROUTINE CKARIKENOIM,NEN, FLAGL

Ef:goNl?“l’l XJAC, SHAPEL®420145G0343),5K83,3),X(3,20),L0(120)
" s

NSIOE = (NEN'11/NO1N®®2

L=

1F(NOIM.EQ.2) L = 2

$S = 1.0

00 30 1 = L,2

CALL BRICKZIUUVTT 4SS 4NOIMyNENINSI0E]
LFIXJAC,LE.0.01 GO 70 40

CONTINUE

RETURN

FLAG ® XJAC

RETURN

ENO




= i LML e e, G L

00

1h0

&0

L
LY

5

(X ]

220

230
249

500

"AGT A%

SUNA0UT INE 0|\ll$(~u-N'.~u-EL.Nu-ﬂl!.uolﬂoun'.~EN.NEL|.usrs.uvgc.
t NSI!V.I'*'.D.lCO)-lVl-I-II-U-‘GlC'oISTl'vVEC'cIOJTc'\ICcIHLKI
= kAL LaAL
LOCICAL NPRGNAL . NDIPRNT

(RENSION lvul(ll.nl!.zl.ll.l’nolll.lV:lNO(u.ll-lA(NELl-li.U|\l.
' »nnrslnsl'l.!svttlu!tv.nstl).SIUu|A.ll.vscv(~S|lv.NVE:)
o BUL1eSTATIO) JASTATCE) OLABIST

)y JTARES/ 1UR5,170¢
CONMON/LARELS/ LAnL(A|.lnvnl)l.xn.rneotbl.rn.unEOI6i.uw.lncu(6|.nn
2 .A-onnl.Auclnz.Au1los.utAD(lzl.SIAlT.CEAs!.l’&chTI.UOID(lol
[QWON/SHAP/ lIAC.\NA!EIA.ZOI-SGI!'!)'Sll!'!)-X(lv!Ol.LO(!l)l
cnnunN/ovan0/r|nE.N\|n(1l.ut.us'Eu.ov.uunOLl.NEDA'A|zo.Jl.unl.N-L
DATA BLANK/EMALANG 7o ALNKE/GH JohLABIL)Z4MTL2 07, SK1P/4M LR/

1FINT LGT,1) GO 71 190

SET LAREL STATEMENY FOR OAINT auts
NER s NOIM o NOF ¢ NOF

{ o2

D 180 J = 1WNDIM
LABLUT) = AwONOL
aLasil) ¢ SKIP
1ol ol

LABLEG) = AWORO2
PLARIT) + AWORD2

DIRLACEMENT PO INTOUT CODING

00 40 J =l NUMNP

1cnntd) = (OUY

(ELI0UT (7. 01 GO TO &5
PEND(ITPS, 20501 NuUWD1S
1FUNUMOTS oEQ. O) GO TO &9

DN &2 J o 1/NUMOLS
REAQTITRS,2060) 1STAAT,IEND.INC
IFLINC.LELO) INC o 1

16 (1ENO.GTaNUMNPT TEND = NUMNP
On &f 1 = ISTART,LEND,TNC
1C0011) » O

IFUIEND.GT.0) (CONILENDT ¢ O

STRESS PRINTOUT CODING

NL2 = NENe(

DO 46 JoloNUMEL

IXINL2,J0 = 10UT

(FI10UT 4EQ. 91 GO TP 190
REAQTILTOG,2N501 NUMSTA(NSIG
IF(NUMSTA ,EQe 01 GO 1O 190

00 48 J ¢ LoNUMSTR
READI(TPS,2060) ISTART,LFNO,INC

DAGE 51

CONTINUE

v« LOTE)

[Fis,LE,O1 GO TC 230

“IKL = RIKI o TEMP

CONTINUE

IF(NRR (ANO. NRL) GO 10 500

NSTR ® 2ONDIM ¢ |

CALL EL"L(R(Nu*l'NOT“'NO"NEL.NELl.NSTF.NSIZV.NVEC.NCT.ON'O.IVZ.
X (G F FORCEGESTIF UZVECT, 41

CONTINUE

Cesss QUTPUT SOLUTION AT NOOAL POINTS

«00

«0l

250

60

MCT s O

N0 4001 N = | NUMND

IFCL1C00INY JNE. O) 50 TD 401

N3 = NDFeIN - ()

MLT 3 WY -

IFIMCT 51,00 60 1N 400

LIRS BRT]

IFINFPO.GT.O1 MCT = 25
IF{TRFC.EN. 0. ORNFPDLGT )
XNRITE(17PEy 20000 MEAD TIME o IRG [XHED (T XH 1ut NOIMD,

TUHEDI 1), UM Ia(,NOF T

X
VF[TREC.GTa0,ANOSHFROLGT,9) WRITEITTPA,2001) (BLNKG s BLNKGy 1a (,NOIM

L o LRHEOLETJRH, I3 14 NDF)

TFIIREC.GT. N ANDJNFPO,LES 91
YRITELITPE,2000) HEAD T AME 4 IPGo (XMEOUT o XHo 15 (4 NOT M)
A TUMEOTT14UMs L1 NOF 1, (RHEOLE D RHy 12, NOF)

1°G = IPG ¢ |
lFl!Vlll'NI.NE.BLINK.ANO.|lﬂEC.G'.O.lND.NFPO.LE.Qll
X MRUTELTITPGLABL) Ny (XYZUUGNI oIl NOIMI,LUIND ¢ 1) ¢ InCyNOF)
X W IRENIOT T, 131 4NOFL

LFAXYZU1 NI NEoBLANK, AND, {TREC.EO.00DR.NFPOLGT D )T

X WROTETUTRE  LABLE Nyl XY2ZUIGN) oI5 CoNOIMTLo[UINS ¢ 11,121y NOF)
lfll'll(-Nl.NE.BLANK.AND-Ilﬂ!C.GT.O.lNO.NFPD.GY.9|l

X WRITE(ITRu,RLAB) [RINIeI T, {al NOF)

CONTINUE

(FIIREC.£3.01 GO TO 300

RNOAM = 0.0

00 250 K = (4NOF

STATIK) o 0.0

ASTATIKL = 0.0

00 260 N = 1 NUMNP

N3 = NDFe(N-1)

00 260 ¥ = lNOF

PNOBY = RNORM + RINIsK(SUINIOK(

STATEK) = STAT(N] o RENIex]

ASTATIR) o ASTATIK] o ABSIWINYex()

Ceeer [YTPUT STATICS CMECK

WRITETITPL, 20021 HFAD,IPG
(PG = 1PG ¢ 1

*AGE %0

IFLINC.LESO) (NG = |
TP CIEND,CToIMEL) YFND o NUMEL
00 AT 1 o ISTAAT,1END INC

(3 T4INL241) ¢ O

Iy 15 CIIND WGl .0}

190  CONTINUF
IFCINEC.ET0) KO TO 211
NOEG o NOF® NUWNP
0N 210 | = L4NOEG

210 RE1' * 0.0

211 CON  WUE

.

IVINL 2, LENOD = U

COMPUTE REACTINNS FOR CMECK
TLAR s 0o
NOPRNT « NPX
00 900 N = | oNUNEL
NPL =« ,TAUE,
NRQ s NOPANT
IFLININL2oNT oNE. O) NOR s ,TRUE,
1F(NUNPLT .£Q. O) GO TO 50
00 35 lal NumpLT
35 IF (NEOATALT,1) +EQs N) NOL o  FALSEs
50 CONTINUE
IFLIREC.GY.0) REAOLT) ESTIF
MA = MOOLIXINELLoNI,10L
OM = TYPE(MAL
IFIONGNE.TLABY K35 ~ O
TLAB = O
L0
00 L0 1 s LoNEN
% o 1XELNIL
N3 s NOFeIK-LI
00 212 4 = LoNOF
Lal sl
LOIL) = N3 ¢ J
IFIX.E0.0) LOIL) o O
212 CONTINUE
1FIK,E0.0) GO TO 110
NEL = |
00 100 J = LoNOINM
100 XtJoll = XY2(JoKI
110 CONTINUE
1FIIREC.EN.0) GO TD 240
NST s NOFONEL
00 230 | o 1,NST
TEMR = 0,0
00 220 J = 14NST
L= Loty |
1FIL.LE.O) GO 1O 220
TEMR « TEMP ¢ ESTIF(L,J100IL)

PAGE 52

00 310 X = 1,NDF
300 WRITECTITRG,2003) K,STATIK) ASTATIK)
WRITELLITP6, 20041 RNORM
300 IFIIBLK.EQ.0) RETURN
REWING 7
REAQLTL
RETURN
2000 FORMAT{LIH112A60E13.5020X 4HPAGE 147/5% 4 12HNNOAL VALUES//
X (2H NOOAL POINT,9(1IXs246))
200C FORMAT(I2X,901X, 246101
2002 FORMAT((H( 12469 30X &HRAGE, 147/5X, IBHREACTINON SUM CHECK//
X TX)3HNOF o BXeSHSUM Ry3X, 1OHSUM ABSIR) /T
2003 FORMATITI(O0,2E13.4)
2004 FORMAT{/7/5X¢ L4HENERGY NNAM o ,E20,(01
2050 FORMATII5,5%X,710)
2060 FORMATI3151
ENO

COMPUTE ELEMENT VARTABLES ® ® STAESS ANO STAAIN COMPUCATIONS ETC.



PAGE %)

SURKOUTINE ERPLCTINUBNG, NUNEL o NUMMAT JNOJ M (NDF (NEL)NEL® s NSTE NVEL
FONSIIVGTYPELO, 1CO0 RYZoFy IRy ASS FORCE ESTIF)VECT)UsU0 0DV WU, YV,
. TYME, [DUT,NOEG)

enee VAPLICIT TIME oNTFGAATICY OF THME UNOAMPED EQUATIONS OF MOTTON
cese MOBIFICATION )) o¢ way 1972
4

REAL =ASS
LOGITAL NPR,NPL,IAEUSEIACTFLG

OTMENSION TYPEL1D-00392)s L1 TCODITTRIZINTINGLL E( 1T, IRINELL,T),

X MASSUL) FORCEINSTFo2) ESTIFINSTF NSTR) TYMELT) L) 1)4UDI1),U00IT ),
X uutlrvvied

COMMON/OYNAMO /T (ME NSTGIT)oNT NSTEP, OT, MUMPLT 1 E0ATA) 20, 31, NEX,NPL
COMMON /TAPES/ (T73,) TP

COMMON/SHAP/ X JAC) SHAPEN 49200, SGI 330 oSKI3:30,K(3,20),L00120¢
COMMON/LABELSZ LABLIS) o XHED (3 Ly XN FHEDIOT JFH)UHEO) 0} yUHIRHEL 1S )4 RH
X o AWORDLy AWOADN2AWOKDIHEAOIT2)y START,CEASE, I1PG,NSTR,WORO(20)

DATA TWORD1,TWAR02/ &HESAEAL, &M TINEe /

(9

Geooo INPUT THF NUMBER TF TIME STEPS, PRINY INTERVAL, TIME INCKEMENT,
ceee NEWMARK OAMPING TERM, AND PA(NT SUPRESSEA CODE FOXK EXPLI!Z!T

Coeee INTEGAATION (BETA = O) .

[4

REAO()TPS,7000) NSTEPNPKT,0T,DEL)NUNPLTNPROP,NFOC ;KKK
(FANPKT, ®,0) NPAT = ]
Coave OUTPUT Th INPUT OATA
G
WRITE(ITP&y.NO0T MEADIPGNSTEPyNPRT,OF ¢OEL .  UNPLT yNPROP,) NFORC
IFINFORC.GT.0.ANOJNPPCPGT.0) WRITE)TTZ6,4001)
TFIRXX,EQ.0) WRITE]ITPL,2002)
IFIRKK NE.Ol WRITE!TITPA,2003)
1PG = 1PG ¢ 1
1EWIND 7
TFINUNALY LE. 0) GO TO 40
REWINO 8
WRITE()TPG, 2005)
00 35 Nel,NUNGLY
READL)TOS, 10061 (NEOATAINyI)oIsly%t
15 wRITELITPS, 20061 Ny INEOATAIN, T)otiels3)
40 CONTINUE

c
Couves SET TH™ CONSTANTS AND INITIALTIE
4
012 = QTeDT/2,
GPD = |,5 ¢ DELI®OT
GMD = (.5 - DELIODT
HEADII1) = TWDADI
HEADL121 = TwORDJ2
NSTEP o NSTEP 1]
PAGE 55
63 LFINSX P .GT, D) GO 1O &0

HSXIP o IXINELI'N)ZIOD ¢ 1

MAHCOTIXINEL LoND, 10T

OM « TYPE(MA)

N0 66 1 s 14NSTF

FORFELL it = 0.0

TURCE(L,2) = 0.0

U0 k& J s LNSTF

té FSTIF(l+d) = 0,0

LALL ELMLIDUIN,MANOI™ NDF ) NEL ¢NELL +NSTFINVECINSTZVyNMCY,DNy0,KY2Z,
X (Xe® JFORCESESTIF U VECT, 21

WRITELTL ESTYLF

J=MODLIXINELTWNT,1000/10

IF(J oGV, O CALL PRYMATIHEAO,IPGINJNSTF,ESTIF,FORCEIL112)4LOyNSTF)

Coces COMPUTE AN ESTIMAYF YO THE LARGESYT FREOUENCY IN TYHE NESH

DTIMAX = D,
oD K5 | = [,M
[FIFURCEL142).£0.0.01 WRITENITP6,4000) Nyt
IFIFORCEIT,21.EQ.0.0) GO TO &5
SUM = 0,
00 66 J = 1,4

(X3 SUM = SUM ¢ ABSIESTIF(L,J))
SUM ¢ SUMZARSIFORCEN], 1)
IFLSUM.GY . DTYAX) OTMAX = SUM
CONTINUE

&0 NSKIP o NSK[P = |

DN D 1 o I,™

Joe LD
70 MASSEJ) = MASS(J) » FOACE(T,2)
40 CONTINUE

Caece MAXIMUM TIME STEP EST(MATE

C
DYMAX e 2,/SQRYIOTMAX]
WRITELITP6,2001) OFM™AX
IFIRKK FQ, 0. AND,OTHMAX,LT,NT) RETURN
WRITELITPS,2010) (HEADIT),1ul,10),(PG
1PG = IPG v |
HCY = 5D
CALL TICTDC(TYME, 21
C
Cocas LOOP THAQUGH FOR EACH TIME POINT, STARTING WITW TIME = 0.0
¢

+alt « 140

TFINPRDP . GT.0) FACT « PROPLDITIME,NPRDP)
N0 700 NT o [,NSTEP

IFINPROP,GT. D! FACT « PRCPLOLTIME*DT,01

B.r#

50

LN WaXatal

S4

56
57
58

Conee

61

62
59

Caee
4

Coese

93

Coone

PAGE 94

TINE « 0,

13 = 0.0

T4 » 0.0

15 ¢ 0.0

IREUSE o FALSE,

00 S0 N = [,NOEG

MASSIN) = 0.0

07 55 1 « 1,NSTF

Lol = 0

TEINUNBLT (GTo ©' CALL PLIEKOIN)NoNyNyMASS)NASS, MASS,MASS)
TFVININELLs 1) /100, GEa NUNEL=T) TREUSEs ,TAUE,

COMRINE BOUNDAAY CONDITIONS INTO A SINGLE VECIOR, E,
FIN) .GT. 8IG IMPLIES OTSPLACEMENY 8C,
EIN) .LE. 8IG TAPLIES FOKCE 6C.

81G = Fil)

S12 = FiL1)

00 54 Nw2,NDEG

CC s F(N)

TFICC oLYe ST12) ST2 = CC
IFICC .GV, BIG) AIG » CC
CONTINUE

SIL » 81G-SIL o1,

Js O

00 58 N =), NUNNP

1C = 1CO0IN)

1L = 100000

00 $7 Isl,NOF

TENIC .LT. IL) GO YO 57
(C = JC-1L

IF(IC .GT. L) GO YO %6
Flied) = Fl.¢J) ¢ ST2
IL s 1L/10

J s J ¢ NOF

COMPUTE GLOBAL MASS NATRIK

NSKIP s O

0N 80 N =), NUNEL
N0

DO 59 J sl NEL

K s IXIJyN)

IFIX LE. O) GO YO &3
KK = (K=1)®NOF

00 61 =1, ,NDIN
K(Ted) » XY2UT4K)
00 62 1 = 1,NOF
LO(MeT) » KKel

N = W + NDF

PAGE 956

IFINFORC4GTo0) CALL RESET)-NFORC ,NUNNP, NDF,F)
COMPUTE ANO PRINT NON-2ERD LOADING FOR EACH T(ME POINT

WRITEIITP&,2015) T

MCY = NCT-6

00 90 N=1,NOEG

IFL FIN) .GY. B)G) GO TN 90

UOOIN) = FINISFACT

(F(UODIN) .EO. 0.0) GO YO 90

NOOE = (N-T)/NDF ¢ )

NF = N - NDF®(NOOE-1)

NCT = NCT - )

IFINCY ,GT, O) GO TO 88
WRITE)1TP6,2010) JHEAOIIL,Iw1,101,1PG
IPG » IPG o |

uCT = 50

WRITE(1TP&, 2020)NODE, FHEO INF) ,UODIN)
CONTINUE

OUTPUT THE DISPLACEMENTS AND STRESSES AT PRINT INTERVALS

NPR = ,TRUE,.

IFLINT/NPRT)ONPRY .EO. NTI NPR =  FALSE.

NPL s ,TRUE,

(FINUMPLT oGT, O) NPL = ,FALSE.

IFINPR ,AND. NPL) GO TOQ 03

CALL TICTNCITYME,4)

Te o T4 o TYNE[4)

CALL OISTRSINUMNP, NUMEL s NUMMAT ,NOTM, NDF s NEL o NEL 1 ,NSTF NVEC,N EG
X TYPELO,1COD I XVZyFyIRoUFORCE,ESTIF,U0,I0UT,0,01 ' hote
WRITE(17P6,2010) (HEAO(T),1%1,100,1PG

1PG = 1PG v )

NCT = 50

CALL TICTOC(TYME,SI

TS5 = 15 ¢ TYME(S)

CONTINUE

GET THE CURRENT ACCELEKATION MY EQUILIBRIUM EQUATION.

NSKIP = D

REWIND T

DD 400 N = [,KUMEL

IFLIREUSEL GO TO 98

IFINSKIP .GY, DI GO TD 9%

CALL TICTOC(TYME, &) ‘
Ta s T4 & TYMEL4L

NSK(P o [X(NEL1,N)Z10D ¢ |

READLT) ESTIF




B.is”

PAGE  O7 EECEMS
PLDT AS R RED
v ST R TR ‘c:.... LDT AS REQUIRED,
13 ¢ T3 o TYME(3) 56D  CONTINUE
v 4 .
9: :s-tl; = NSKIP - 1 Cesos UPDATE THE SOLUTION FOR THE NEXT TIME STEP
9 - 4
ACTFLG = TRUE, UCN) = UIN) o OTSUON ¢ OT20UDON
| N0 92 J = 1.NEL SDD  UOIN) = UON ¢ GPOSUDON
; K s IX(JoN} TIME » TIME ¢ OT
IFIK.LE.D) GO TO 9¢ 700 CONTINUE
KK = IX-11®NDF c
' 00 91 1 = 1,NOF 4

CC s UlKKel)

CALL TICTOCITYME 441
IE(CCNE-0.01 ACTFLG « SFALSES Ta s Ta s TYNEIG)
oIV . 11 s NSTEP
| 91 LOIMeT) = KKel IFINUMPLT oNEe O1 CALL PLOTGO (NUMEL /NOIMsNELy11,UyUDsUDD+FORCE)
22 Ms M e NOF CALL TICTOCITYME,8)
. TE(ACTFLG) GO TO 400 WRITE(ITP6,203D) TYMEIL)oTYMEIZ) T3, T4y TS, TYNEIL), TYMEIT)
RETURN
Cuees ACCUNULATE THE MATRIX PROOUCT OF ESTIF®WU ; i
Cesse COMPUTE (MASSOUQD = F « ESTIFOUY ) Cenes FORMATS
C (4
94 00 250 1 = I4M 100D FORMATI215,2F1D.04415)
83 ;og.J Lo 1006 FORMATI3IS)
e 1y 3 1010 FDRMATIF10.0)
200 CC o CC ¢ ESTIFITod)0LULY) 2000 FORMATIIM1s12A6,30Ks4HPAGE,14/7/726H EXPLICIT TINE INTEGRATION //
K = LOIII X SX,25HNUMBER OF TIMF STEPS “y 15/
250 UODIK) = yDDIK) - CC X SXy25HPRINT INTERVAL =15/
:oo CONTINUE X SXy2SHTIME INCREMENT -1E12.4/
r X SX,2SHNEWMARK DELTA OAMPING =, E12.4/
Coese GET THE ACCELFTATIONS AND VELOCITIES AT THE NT TINE STEP X SX.25HNUMBER OF STRESS PLOTS <—i18 7
4 X 35Xy 25HNUMBER PROPORTIONAL LOADS,15/
00 = 0.0 X SXy2SHLARGEST FORCE NOOE ~¢1571K)
TFINT.GT.1) DO = G40 2001 FORMAT{SX,3DHMAXINUN TIME STE® ESTIMATE IS , 1PE12.5/)
DD 500 N s 1,NDEG 20D2 FORMAT(S5X,231HSTABILITY CHECK OESIRED/1X)
CC = F(NI ; 2003 FORMATISXy26HSTABILITY CHECK OVERRIOOEN/1X)
. IFICCLLLELBIG) GO TO 55 2005 FORAATI4K, SOM DESCRIPFIDN DF STRESS EVOLUTION PLDTS TD RE MADE. /
: X5XoI10H PLOT NOs SX¢BH ELEMENT(7X,9H XYZ-CODEs&X,9H S(G-COOE /)
Ceess MODIFY FOR PRESCRIAED OISPLACEMENTS 2006 FORMAT{4ITK. 1503X))
t — 2010 FORMATIIMI10A8+42Xy4HPAGE s 14)
UIN) ¢ CC = 2015 FORMATI//44H NON-ZERD LOAOING FORCES FOR TIME INTERVAL = I3 //
UON = D, X 5Xy5H NOOE 5%, 12HDEG. FREEONM,SX,6HFORCE /)
uroNy s 0. 2020 FORMATISXI5,5X¢A6s11%sE13.5)
ge s ggN": 33?»«» 2030 FORMATIIHD 61Xy 12HELAPSED TIME ///

\ X SDX, 25HINPUT PROPERTIES ANO MESH F10.3/
;322;-”2%:“: X 50X, 23HFORM LUMPED MASS VECTOR F12,3/
y X 50X, 2SHELEMENT STIFENESS TIME £10.3 /
xrunus.ue.o.g) UNOY s UDON/ XMASS X 50X, 1BHEXPLICIT ALGORTTHM F17.3 /
UDN s UDN ¢ DD®UQOON X 50X, 25HOUTPUT STRES ANO OISPL. F1D.3 /
X

C Py
Ceoss CURPENT VELDCITY AND ACCELERATION HAVE BEEN OETERMINED, PRINT DR 50Xy L13HPLOTTING TIP : F22.3 /

PAGE 39 PAGE 60
X DHTDTAL TIME F25.3 ) SUBROUTINE PACKOIOs1+C115C12,C334M)
4«D0D szgn;Y:h#HD"NhINING“ THE STABILITY CHECK FOR ELEMENT,15,54H MAY DIMENSION DI3,211
XNOT BE MEANINGFUL, THE MASS FDR DEGREE OF FREEOOM, 15, 8H IS ZERO) GO TO 12919293:294)41
4DD1 FORMAT(BSHO#®WAPNINGS® BOTH THE PROPORTIONAL LOAOING ANO FORCE ARE 291 CONTINU
X BEING PESEY ON EACH TIME STEP) Ol 1, 1.M) = C11
END Ol 1, 2sM) = Cl2
Ol 24 2,M) = Cl1
00 2, 1+M) = C12
0l 3, 3,M) = 4,00C33
RETURN

293 CONTINUE
0l{ly 9,M) = Cl2
012415,M) = C12
DI3,184M) = C11
29¢  CONTINUE

0(ly 14M) s C11
Olly S,M) = Cl2
011,104M) = C33
D{1,16,M) = €23
D(2y 24M) = C33
Dl2y &4yM) = C33
D{2+114M) s C11
0(2,17+M) = C33
0(3, 34M) = C32
0(3, TyM) s €33
D(3y12,M) = C33
Di3y14,M) = C33
PETURN

ENO




B./¢

PAGL 62
PAGE 61

' SURRQUTINT RRICE2{R S, ToNOTW, ML ¢NSTOM )
SURROUTINE TICTOC)ITYWF, 1) OINENSTON NITT21oN2(T2ToN31T120oNODECT2),3208D102)483000012)4550 04
- NIMENSTON COLAT3L
SUBROUTINE O TIME PROGRAM SEGHiXTS AS MEASUPE OF EFFICIENCY CORRON/SHAR/ KIAC, SHARE(®4200 0561303145013 bhoal 44 201400} 1200
OATA NONE/Z24490e80Sel0, 00 002000010, 18,207
NIMENSION TYME(B) OATA Nl'l..qlt?c‘l).'c‘tltZt;ozl oN272030 20001000l 0l020302002
(1 JLE. G0 10 100 o3
il ((’: 1 LIRS TS TETS TEXS TR YIRS TS ¥
GLipoe ll 10 “eSe=a%s 430 % oSe o8 %08/

T - . . . . ade o - .
;::g(::l..nnsul o TYME(TL
T0 = 11
PETURN
CALL SECONOD(TOL
RETUPN L 1
END 1T INSIOE.EQaI1 GO 1O 110

ay e 12

t=3

10

(S50
Cesoo FORM MIDSIOF SHAPE FUNCTIONS

00 100 Lelyl2

N = NODEILL

= NIILL

J e N2IL)

K = N3ILL

$J e $20P0(L1
} SL * S3DRO(L1

"0 e [, -SS1Il0e2

SP e 0,8 ¢ SJOSS(J]
f TP o 0.5 ¢ SLOSSIKI
; SHAPEII\N) = -2,005S(110sPorp
"
l

SHAPE(J4N) o Sy0
SHAPEIR,N) = SL®
a 100 SHAPE(4,N) = RPOSPOTP
Cooo0 FOPM CORNER SHAPE FUNCTIONS
110 SJ = -0.8

00 200 1 e 54R
RP = .5 ¢ S20RD([ ek
SP o .S ¢ S30R0t(1les
] TP o .5 ¢ SJo1
SHAPE(L.L ¢ K1 = S20PD([1eSPeTe
| . SHAPEL2oL o K1 @ RPeS30PD(IleTP
SHAPEI34L ¢ K} = RPOSPeSy
SHAPEL 4.l ¢ K1 = RPOSPOTP
200 L s +L)
K = Kl
250 SJ = 0.9
TFINSIOE.EQ.11 GD YO 340
Ceoee CORRECT BASIC COANEP FUNCTIONS BY PROPORTIONS OF MIOSTOE FUNCTIINS

PAGE 43 fasEol
s SUBROUT (NE SLDO3(NOTM,NDF 4NOP JNPRES 4 IPRES PR, X2 ,FS)
NE OIMENSTON lPR!SlGl.PR)leFS(b.G

N0 350 [ = (48,42
DD 300 J = 1,4
SHAPE(J () = SHAPE(J,()1-0.500 SHAPE(J1¢1)oSHAPETJyK1eSHAPE(JyL }1

COMMON/GAUS/ L TMySGAUSSES4514WGAUSS(S,S)

COMMON/SHAP/ XJAC, SHAPE(44201+8G1343)¢5K13,3),X(3,20)4L01120)
NSIOE = NPRES = |

! 1 LIM o NSIOE o 1
300 SHAPELJ: (4121=SHAPE LS4 1412)-0, 541 SHAPELI 141304 SHAPE L4, Ko 121 T R i B Y A P S R
0ORe 0D 404 JJ = 1,LIM
L6 Qo0 oh TT = SGAUSS(JJ,L1M1

Ceves FORM THE JACDATAN NETERMANANT

WY = WGAUSSIJJ,L INL

380 00 370 1 s (3 CALL BRICKZITY,-1.0-1.,NOI4,NPRES, NS 10F)
00 370 4 = 1,3 W © 0o
RR = 040
o o e 3l - e
0D 400 J = 1,ND1M RR @ RR ¢ SHAPE(&,1)0K(1,11
¢ 402 PN = PN » PR{TTOSHAPEIA, 1)
00 490 K « 1,NEL i fod el
400 SKUCyJ) = SK{Lsd) + SHAPE(J K)®KITK) e
JFINOIM.EQ.2) SKI3,3) = 1,0 +NPRES
RR = SHAPE(4,1)0PN
SGI1,1) = SKI2,2085K(3,3) - SK(2,3)95K(3,2) 00 408 J=1,2"
SGU2421 o SKEL,1)8SK(3,3) = SKU1y3)85K{3, 11
SGU343) s SKI1,1)95K(2,2) = SK{1,2)@5K{2,1) :g: :g;:;;ae' FSE41) ¢ SGL2,J10RR
SGUL42) = =SKI1,2)05K(343) & SK((,3)9SK(3,2) LoNTIN
SGU143) = SKI142)95K(2,3) = SK{1y3105K(2,21 ik
SGU2y0) o =SKI2,1105K(3,3) o SKI2,3)05K{3,11
$50293) = =$K11,1005K82,3) & SKU2,()eSK(1,3
S6U341) = SKI241105K(3,2) - SK12,2195K(3,1}
SG(3,2) » =SKU1,1005K13,21 o SK{1,2)05K{3,1)
XJAC < 0.0
00 #20 I = (,ND(m
£0D  XJAC = XJAC o SG(I,118SKE1,1)
00 400 JleNEL
DO 710 1 = 1,NDIM
TEMP « 0.
0N 700 K o 1,NOIM
700 TEMP = TEMP ¢ SGUK, [19SHAPEIK,J1
710 CoLut() = TEue
00 800 1s1,NDTW
200 SHAPE(1,J) = COLM(()
RETURN
END
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RAGE 69

SURRDUTLINE ELMTLI3(N,MAJNDIMyNNFyNEL)NELLyNSTFoNSTZV,NVEC ,MCT,0M,D,
CXYL DX FyFORCE,ESTIF,UyVECT, [SH}

DIMENSTON DEG3 1) o XYZINDIMy 1) o IXENELLo1} s FINDF,114FDRCE(NSTF 21,
K COTIFINSTF ¢NSTF) ,VECTINSTIZV,NVECT,U{1)

DIMENSION Vi3,20) s XXE3 ), S1ETL,5207),S3071
GWEOS(O) SIGIE) s TABLELI) yTAB2E11)SHEDE3,3),THED(&),0VI3,3)

Ko STURLL 2T, D0(342014€T(3,201,EE(6),CO16:61

REAL LABL

LUGICAL NRRyNRL NORPNT
CO¥MON/OYNAMD/TEME yNSTGET7 ) NTyNSTEP, DT NUMPLT yNEDA {A 120, 3) yNPRyNRL
COMMON/LABELS/ LABLUG) 4 XHED(3) o XHyFHEOL6) sFH UHEDI6) ¢UH JRHED 16 )4 RH
X s AWDRD1, AWdDRO2¢ AWDRDI HEAD(12) 4 START 4CEASESIPGyNSTR ,WORO( 301
COMMON/ SHAR / XJAC o SHARE(4420045613430,5K13,21,X03,201,L0(1201
CDMMON/TAPES/ (TRS,1TRG
COMMON/VALUES/ NC1,CDN1yCDN2,CON3(31
DATA S1/ Doy=ley luy Ouy Oes Doy Ou/
OATA S2/ Dy Do =les ley Oy Do/

I OATA §3/ Doy Qo Ous Ous Oup=ley 14/

; OATA TABLIL1,TAB2(1)/BHIIHOLIT 48H ( 8X /,SWOROD/1H)/

CATA SHED/6H KX~y 6H E¥-96H  XI-,&H XY=-46H ¥¥=46H Yi-,

X 6H X1-16H ¥2-46H 1=/

DATA FWORD, EWO 0¢ XWORD/BH OPF 1243, 8H,1PE12.3,8H 412X /

OATA SH,EH) BLLAK/OHSTRESS ¢6HSTRAIN 6K /9 YWDRO/ZBHyAS 17 /

T1F(1SH.GTa4) GD TO 400

NS(DE =(NEL®1I/NOIMee2

GD TD (1424304),15w

INRUT MATERIAL PRDPERTIES

S . B ol

= D(13,MA) (S MASS OENSITY FDR OYNAMIC OPTION
1 READIITPS,10001 (D{(4MA)y]1n1,13)
WRITE(ITP6,20001 (O{I,NA),111,13)
RETURN
2 CALL CKBR{XKINOIM,NEL,OMI
RETURN
3 LIM = NSIOE
NCl = 1

JEINDI#,EQe2) LIM a LIM ¢ 1

(FINOIM.ED.2) NC1 = O

CALL INTEGL(LL114NC] 4 NDIM,LINT,STUW)
Cesss SET UR MATERIAL PRORERT(FS

RO = DI13,MA)

CALL MDOULT{N,MANVEC,VECT,0,0D,CT,NOTM)

L1 =D

L =D

DD 24 XK a 1,NOF

00 22 LL = KK,NDF

00 20 1 = 1,NOM

L=+

—

PAGE Tl

ESTIF{{+J) a EST(FL(4J) ¢ ESTIFLJ,1)
190 ESTI#{Jy1) = ESTIF(1,J1
RE TURN
4 NL = [NDIMS{NDIMe¢11)/2
COND = 45,7ATANI . 172,
Ceses SET P (OCAL COCROINATES AND OISPLACEMENTS
CALL MDDULE {NyMA,NVEC,VECT,04V,CO,NOIM)
DB 210 J = 1,NEL
X = [X[IyN)
K1 = NDFe(x-1}
0D 2iD L = 1,NDF
z210 ViL,J) = UtLex])
DD 350 Il = 1,NEYR
NORRNT = NSIGITI(T ¢ NPR
NRL = |
TF{HUMRLY (LF. A} 6N TO 230
D7 220 NP a 1 4NUMRLT
{FINEDATAINP,1) .NE., N} GO TN 220
JFINENATA{N® 42} JEDs 111 NPL = O
220 CONY INUE
230 IF(PL AND, NJIPRNT) GD ID 38D
R a S1{11)
S e S21011)
T o= S3L0Y
1F{ND(™.£Q2,2) T = -1.0
CALL BRICK2{R,S,ToND)MyNFLyNSIDE)
Ceewm FORM DISPLACEMENT GRADIFNTS
00 ¢%0 1 = 1,NOF
DD 50 J ¢ 14NOIY4
TEMR = 0,
D0 240 X a 1,NEL
240 TEMR a TEMP o SHAPE(J,KI®V{l,x]
2%0 OVElsd) = TFMR/KJIAC
DD 260 [ = 1,NDIM
ax{l) = 0.
DO 260 J = 14NFL
260 XX()) w XX{ID & XU0,J)0S4APE(4,J1
Ceess FORM STRESS =~ STRAINS
x s 0
TEMR = 0O,
0D 270 { » LlyNDF
TEMP w TEMP » OVl 1)
0D 270 4 = I,NDF
K+ X 9]
$IGEKY = 0,0
210 EPSIK) = 0.5¢{0VILI,4J) « OVIILI))
EE(L1sEPSIY)
EE(2)sEPS(3}
EELL)*2,%E0512)
TFINDIM.EQe2 I GO 10 275

Coses

100
110

120
130

140

150
160

170
180
(R 11 ]

218

280
285%

288

Coons

290

[ 11 1]

3o0

3lo

PAGE 70

Ll = L1 ¢ 1

00 20 J = 1,4NOIM

CTEJeL) = DOTJ,LLE

Ll = L1 ¢« 3 - NOF

Ll = L1 » 38(3 - NOF)

FORM ST(FFNESS AT EACH INTEGRATION POINT
00 180 I1 = 1.L(NT

STUWIL,11)

TT = STUN{2,111

UU = STuW{ 3,111

WU » STUW{4,111 .
CALL BRICK2{SS,TT4UUsNOTM,NEL4NSTOE)
OVOL = WU/XJAC

COMPUTE A LUMPED MASS MATRIX

11 = 0

00 110 I=1,NEL

TEMP = RO®SHAPE (&4, 110XJACOWY

00 100 KK =1,NDIM

FORCE{114KKs21 = FORCE(TI®KK,21 + TEMP
11 = 11 + NOF

Ll =D

0D 170 KK = 1,NDF

00 170 LL = KK,NOF

11 » KK

00 160 1 = 1,4NEL

Jl e L1

00 130 J = 14NOIM

Jl = g1 4}

TEMP = D,

00 120 K = 1,NOTM

TEMR = TEMP ¢ SHAPEIK,11¢CT(K,Jy1)
SIGIJT a TEMPSOVOL

Le)

TFIKKLEQeLLI L » 1

Jl = LL & NOFs{_ - 1}

00 150 J = L,NEL

TENP a D,

00 14D K = 1,NDIM

TEMP = TEMP ¢ STGIKI®SHAPEIK,J]
ESTIF{11,J11 » ESTIFITL,J11 ¢ TEMR
J1 = J1 ¢ NOF

11 = 11 ¢ NOF

L1l = L1 + NDIM

CONT INUE

CONTINUE

CONSTRUCT SYMMETRIC PARY OF MATRIX
LL s NSTF - 1

00 190 1 = 1,LL

Kol s+l

00 190 J = KyNSTF

w
w
a

PAGE 712

EE(21=EPSL4]

EE(3)eEPS(O]

EE(4)n2,0EP ST 3T
EE(SIs2.05P5(51]

00 285 Is1,K

Kls]

IFIT.EQ.K) Klap

CON=D.0

on 280 Jal,x

Llsy

IF{J.EQuK] L1ag
CONSCON+COIK1,L1T®EE(LLT
S1G{11aCDN

CONaSIGIK]

SIGIK)=SIGI2)

S1G{21=CON

IFINOIM.ED.2) GO TO 288
CON=S(GU 3L

SIGI3)aS(Glal

SIGLa)=SIGLGT

SIGI61aCON

CONTINUE

CONPUTE INVARIANTS FOR TWO D RROBLEMS
IFINOIM.NE.2} GO TN 290

CON = 1,0

FINV &« (SIG(1I & S(Gt311/72.0
SOIF e (S1G(1) - SIGI3))/2.0
CRAD = SQRTISDIF®SN(F o SIGLI218S1G(2))
SIGI&L & (FINV ¢ CRADI®CON
SIGIS) = (FINV - CRAD)SCON
S1G(&6) = D,O

IFLSDIF.NEJDs) STGI6T o CONLOATAN2(SIGE2},SD(F)
CONTINUVE

MCT = MCT - 1

TFIMCT.GY,0) GO TO 330

SET UP HEADS FODR PRINTOUTS
12

00 300 Jal,NDIM

TABL(1) = FWOROD

TAB2111 = KkunNRO

I a1+

0D 310 J = 146
TAAL(I1 = EwNAD
1482(11 » EWURD
1 =1+
TAB1(1) = SWORD
TAB2UI1 = SWORD
TAB2(2)  YWDRD

X e+0
00 320 1 = 14NOF

|
{J
;
|
|




PAGE T3

00 320 J » [4NOF
K= K ¢ ]
320 THEDIKR) = SHED([,4J)
TFINDPRNT) 61 TO 340 c
WREITE([TPG,2002) HEAD,TIME, [PGy (XHEDIT)yXHy 1u L, NDIM),
X CTHED(T) . SHa 131 gNL)
WRIFFIITPE,2D01) (ALANK,RLANK, T= 14 ND (M) 9 LTHED (T ) 4EH,yIu]l4NL)
TF(NDIM ,EQ, 2° WRITE(1TP&,3DDD)
IPG = (PG ¢ ]
MCT = 19
3130 TFENDI °NT} 6O TO 34D
WRITEL."PHyTARL) Ne (XX{T)sI=1,ND(M), SIG
WRITE(T 26, TAR2) OMyMA, (EPS(T),1=1,NL)
340 IFINPL} 4D TD 35D
CALL PLDATAINUMEL NDTIMyNy TT4THEDy XXy SIGyFDRCE)
35D CONTINUE
RETURN
DD 176 = 0
RETURN
Ceoee FDRMAT STATEMENTS
100D FDRMAT(6FID.D/TF1ID. D)
2DDD FDRMAT{/SX, 14HELASTIC MDOULT //13X4HC-1190%X4eHC-12,8X4HC-1""y
1 BX&HC-22,BX4HC~23, AX4HL -3 yBX4HG=32+8X4HG-134BXGHG~12,
2 775Xy 1PIE) 2,47/ 13X4HA=) 1+ AXGHR-22,8X4HR~33 ¢ SXTHDENSTITY//5%. 1P4EL2
3 Jal/)
20D1 FORMAT(BXy9(2A8))
2002 FORMAT(IHL, 12860E13,592DX)4HPAGE, 157 /75Xy JAHELEMENT STRESSES//
1 1Xs THELEMENT, 91 2A6))
20DD  FORMAT( 72Xy BHLI-STRESS, 4Ky BHZ-STRESS ) TXy SHANGLE )
END

w

20

2

-

PAGE 74

SURRDUTINT MONUL L (NyMA,NVEC, VECT,D400,C,NDIM)
J(MENSIDN D63, 1}
DUMENSION CU6,11,00(3,1)
INITIALTZE

DO 15 It=l,6
DO 15 Ji=(l,6
ClItydJieD,
DD 2D 11=1,3
DN 2D Jy=l,18
00tETyddieD,
CC=D(1,Mh)
CllyltaCC
nD{1s1)=CC
CCaDI2,MA)
Clle20eCC
DD(1,5)2C
CC=D(3,MA)
Cll,3)aCC
OD(149}sCC
CC=0(4,MA}
Cl2,2)aCC
DD(2,11)aCC
CC=D(54MA)
Cl2y3)aCC
DD(2¢15)tC
CCuD(6yMA)
Ci3,3)aCC
DD(3418)eCC
CCeD(7,4A)
Cléy4)aCC
OD(343)=CC
DD(3,47)=CC
DD(1,16)=CC
CCaDIB MA)
Ct545)aCC
00(3,412)eCC
DD(3414)eCC
DD(2417)aCC
CCaD(9,MA)

CC=D(9,MA)

CCaDI9,MA}

Closb) e
DD(242)sCC
OD(2y4)eCC
00(1,10}=CC

0D 25 I1=1,6

0D 25 Jyel, 1l
CllTodaI=Clad,t )
RETURN
END
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Section T

Scope and Objectives

I.1 Scope of the Experimental Investigation,

The purpose o the experimental work descrited in *he sequel was to design
and develop piezoelectric crystal transducers for the detection and recording
of stress waves in rocks and to apply them to the experimental study of wave
Propagation processes in a model enisotropic half-space., A large Yule marble
block served as this model and it was loaded by the normal impact of a gphere,
Both body wave and surface wave measurements were made to study the pulse
propagation phenomena in the model which represented a transversely isotropic
material with its axis of elastic symmetry located in any plane parallel to the
free surface. The experimental results were compared vith both an analytical
and a numerical solution, obtained from an integral transform procedure and a
finite element method respectively, that yielded the arrival t\mes and numerical
values of dynamic stresses with the aid of a computer. In comparing the results,
it was assumed that (a) the block was homogeneous and elartic and (b) at
sufficient distances from the contact area of the input crystal, which was sandwiched
between the free surface of the block and a loading bar, the response of the block
was essentially the same as the resultant effect due to a concentrated force of
arbitrary time variation. However, the finite element method could circumvent
the second hypothesis as it allowed the distribution of the input force over the
contact area. The dynamic elastic properties of the material of Yule marble
were obtained experimentally as they needed to be included in the theoretical
techniques to obtain thé numerical results,

The integral transform method is the subject of Appendix A. The details of
the finite element procedure are given in a technical report(l) and Appendix B.

The methods initially employed and the numerical values of the static and dynamic

Ai________.__.__#
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elastic properties of Yule marble specimens so obtainel are given in Appendix D

and Ref., (2). Two sets of values of the properties were obtained, one from samples
taken from one of the two blocks utilized in the present investigation and the other
from a slab of Yule marble secur:d separately for this purpose, The slab and

the two blocks were not secured from the same source and ayvarently were quite
dissimilar as suggested by some significant cdifferences in their dynamic elastic
constants (Table 4 of Appendix D). Hence another set of dynamic elastic constants
was obtained from the wave arrival time measurements for the actual blocks based

on the procedure adopted in Ref. (2). The details are given in Section VII,

I.2 Objectives of the Experimental YWork.

The overall objectives of the present investigatiin were the experimental
determination of the wave arrival times and stress histories in the interior and
very near the surface of a block of Yule marble due to 1rormal impact of a sphere,
and the comparison ¢f such data wilh corresponding theoretical predictions. This
test configuration models a transversely isotropic elastic half-space subjected to
n concentrated time-dependent normal force on the free surface. The task involved
the achievement of the following subsidiary objectives:

(1) The design and development of transducers using piezoelectric crystal
elements,

(11) The development of an embedding technique which was compatible with
the transducer design.

(111) The calibration of the tranzducer and the correlation with the in situ
calibration in rock bars,

(iv) The construction of a large number of trensducers,

(v) The generation and measurement of the input pulse using a crystal
transducer sandwiched between the free surface of the model half-space

and n loading bar,
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(viY  The drilling of long narrow holes in a rock block and the installation
of the transducers using a suitable bonding agent,

(vii) The detection and recording of hody waves and the determination of arrival

Y Sy Cp TR S SR ———

times and s‘ress histories in an isotropic half-spece modeled by a
15" x 15" x 113" Bedford limestone block,

(viii) The correlation of the data obtained in the model isotropic half-space
with corresponding theoretical results, thus testing the satisfactory
nature of the embedding technique,

(ix) The verification of the in situ calibratjon procedure by the above
correlation.

(x) The detection and recording of body waves in un anisotropic half-space
modeled by a Yule marble block and the measurement of their arrival
times and stress histories at specific locations in the interior of
the block,

(x1)  The detection and recording of surface waves in the anisotropic half-
space modeled by a second Yule marble block and the measurement of their
arrival times and stress histories at specific locations near the surface
of the block.

The present experimental, investigation was undertaken essentially as a
continuation of the previous surface-wave study of Ref. (2). However, the use
of the plezoelectric crystal transducers instead of the semi-conductor strain
gages employed in Ref. (2) considerably facilitated the measurement techniques.
In particular, the highly sensitive P2T crystals not only allowed the delineation
of a normal transient stress compcnent in a specific direction at a Predetermined
location of the interior of the rock, but also permitted the use of a low stress
level input pulse on the free surface of the rock. This in turn enabled the
meastrement of the input pulse by means of an x-cut quartz crystal sandwizhed between

the rock surface and a loading bar. The utilization of a low stress level input

_ _‘________—-—-M




pulse prevented the occurrance of local damage at the impact location. The
experimentally determined input pulse was used in the two theoretical techniques
to obtain numerical results of wave arrival times and stress histories,

The two blocks of Yule marble measuring 20" x 20" x 10" were mined at
Yule, Colorado and the Bedford limestone block was from Bedford, Indiana,
The blocks were supplied by the U, S. Bureau of Mines, Twin Cities Mining Research
Center, Minneapolis, Minnesota. One of the Yule marble blocks, which was previously
used for the surface wave studies(e), was employed for the present body wave

measurements and the other was utilized for the present surface wave experiments,

Section II

Design, Development and Calibration of the

Piezoelectric Transducers

The different stages of the deve'opment of the transducer and of a compatible
embedding te.nnique are described in this section. The calibration procedure of

the transducers is also presented.

II.1 Design and Development of the Transducer.

The purpose of the development work was to design a transducer which could
be embedded in a rock model and used to detect and record a stress component of a
pulse in a given direction at a certain location in the medium and to develop
simultaneously an embedding technique compatible with the transducer design.
Initially, a number of experiments were conducted to establish satisfactory
techniques of measurement of one-dimensional pulse propagation with pliezoelectric
x-cut quartz crystals used in a compression mode. Later on, the more sensitive
PZT crystals were employed for similar measurements before establishing a final
transducer design using the PZT crystals as the transducer elements. The crystal
axes for the compression mode x-cut quartz and P2T crystals are shown in Fig. 1

and the correspcnding piezoecleciric constants are listed in Table 1. The equivalent

__-__~__..___——~
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electric circuit of a piezoelectric crystal used in the compression mode is

described in Ref. (3). Such a crystal may be represented as a charge generator

and the potential difference between its faces ig given by
ng—
t
where q is the charge generated and Ct is the capacitunce of the crystal, 1If

(c-1)

the external capacitance of the circuit is Cs which includes the capacitances

L of the connecting wires, connectors and the input capacitance of the connecting

| device, then

C,+C (c-2)
In the case of the x-cut quartz crystal or a ceramic crystal used in the

longitudinal compression mode, the piezoelectric relations reduce to

q=q-A'd (’:'3)
)

where o is thc uniformly distributed longitudinal stress, A is the area of the

crystal, and d is the appropriate piezoelectric constant. Eqs. (2) and (3) may

be combined to give

v(ct+cs) ve |
e (c-k)
A d

vhere d = d11 for an x-cut quartz crystal and

d = d33 for a piezoelectric cerami: crystal, used in the compression mode.

The crystals were utlized to record longitudinal pulse propagation in

bars using the established technique of a split Hopkinson bar arrangement(h).
Two procedures of recording the output from an x-cut quartz crystal, which was
sandwiched between two aluminum bars of the same diameter as the crystal and

subjected to longitudinal impact, were employed, namely a voltage amplification

metliod and a charge amplification method. Comparison of the data obtained from

the two methods with the corresponding strain gage pulse shape indicated that the
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low frequency response with charge amplification was superior. In the case of
PZT ceramic crystals, the voltage amplification method reproduced the longitudinal
pulse propagation with good fidelity, indicating a much better low frequency
reponse of the PZT crystals than that of x-cut quartz crystals withcut an,
additional shunt capacitance.

Preliminary experiments with circular x-cut quartz crystals, 1/8" dia.

x 1/32" thick, embedded in rock bars indicated that such crystals may be used
effectively for the detection of longitudinal pulse propagation(u). Initial
experiments were performed in rock bars of about 3/L" in diameter sutjected to
central longitudinal impact with a crystal completely embedded at one section
of the bar. This involved the attachment of lead wires to the crystals using
Flectrobond #2016 adhesive manufactured by Adhesive Engineering Company. A bar
about 18" long was cut into two and a hole 3/16" in diameter and 3/16" deep was
drilled on one end of one of the segments in the center. A diamet al groove
was sliced across the hole to accommodate the lead wires; the hole was then
filled with a mixture of epoxy and rock powder and the :rystal was embedded in
this composite. The other segment was then bonded to the first to produce a
single test specimen with an internal transducer.

Strain gages were mounted on the opposite ends of a bar diameter at a pouition
about 3" from the crystal position, These gages were incorporated in a potentio-
metric circuit and were coupled in series to eliminate any antisymmetric components
of the transients from the records. A 3" diameter steel ball was dropped from a
height of h% feet onto the end face of the vertically held bar and the resulting
Pulse was detected by both the strain gage and the crystal and recorded on an
oscilloscope. A comparison of the crystal response with the corresponding signal
from the surface strain gages showed a distortion in the former. A second experiment
with an x-cut quartz crystal totally embedded in another bar indicated that even

though such crystals effectively detect the stress pulse propagation, the crystal

diy __-______._‘—_M
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signal consistently showed similar distortion. This wes successfully eliminated

by the removal of the lateral constraint on the crystal by surrounding the crystal
with a rubber ringfh)In consequence, it was concluded that the coupling between

the polerization in the x-direction, which coincided with the longitudinal directicn
of the bar, and the stress on the lateral side of the crystal influenced the
response of a totally embedded crystal.

This effect was confirmed when two identical x-cut quartz crystals were
embedded in the same rock bar, One crystal was totally embedded and the other
was laterally unconstrained by surrounding tiie crystal with an annular rubber
ring. The response of the former again exhibited a distortion in the reco:ded
pulse shape as compared to the corresponding response of the latter and the
signal from the strain gages. The totally embedded crystal also recorded a
lower amplitude, Therefore, to measure a truly one-dimensional stress, a
tiensducer which could be embedded in a rock bar and yet would retain the freedom
of the crystal element from lateral constraint had to be devised,

In orier to achieve such a design, it was deemed necessary to mount the
crystal in a housing which would Prevent any bonding material used in the embedment
process {rom surrounding the crystal itself. In principle, the housing consisted
of two metal end pieces separated by a glass washer, of the same thickness as the
crystal, with the crystal encased in the arrangement, The freedom of the crystal
from lateral constraint was achieved by maintaining a small air gap, about 0.002"
wide, between the outside diameter of the circular crystal and the inside diameter
of the glass washer. Lead wires attached to the metal end pieces completed the
transducer assembly., The calibration of such a transducer using a circular x-cut
quartz crystal, 1/8" dia. x 1/32" thick, as the transducer elemen: was guccessfully
accomplished by the split Hopkinson bar technique(u). However, an alternative
embedding procedure to the one originally envisaged prevailed, requiring a simple

redesign of the transducer as explained below.
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In the development of a suitable embedding technique, the preliminary
experiments were conducted with rock bars cored from a slab of Yule marble.
The following alternatives were considered: (a) The lead wire arrangement of
the transducer assembly described above was modified(h) to permit ready insertion
in a relatively deep cored hole of the same diameter as the transducer in a rock
bar, A 3" deep hole was core-drilled coaxially in a 9" long bar and the trans-
ducer vas inserted and anchored at the base of the hole using a mixture of rock
yowder and epoxy as the bonding agent. The hole was then filled with the same
mixture of rock powder and epoxy after extracting the wire leads out of the
hole. (b) The same procrdure as described in (a) was followed except that the
filler material used was a mixture of aluminum oxide and epoxy. Based on the fact
that Yule marble has an acoustic impedance higher than that of epoxy and lower
than that of aluminum oxide (Table 2), it was thought that such a mixture
in appropriate proportions would provide a better impedance match with the
Yule marble than the mixture of rock powder and epoxy. (c) A metal bar, whose
acoustic impedance matched that of Yule marble with the crystal assembly mounted
on one end was considered since such a bar could be inserted easily into a deep
hole., Since magnesium has an acoustic impedance closely matching the average
acoustic impedance of the Yule marble material (Table 2), a transducer assembly
was constructed using a 3/16" diameter bar of magnesium as shuwn in Fig. 2.
Experiments with rock bars and a sandstone block indicated that the embedding of
the transducers would be considerably facilitated with such a design. Hence a
final transducer design in the form of a magnesium bar with the crystal element
attached at one end was adopted. The ciystal was again encased in a glass washer
and a metal end piece arrangement, A lead wire was attached to the metal end
plece and extracted out through a groove machined along the length of the bar

and a second lead wire was attached direc iy to the bar (Fig., 2).
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II.2 Choice of the Piezoelectric Crystal Element,

An examination of the Piezoelectric constants of quartz and ceramic crystals,
shown in Table 1 indicates that when these crystals are used {n a compression mode
a truly one-dimensional stress measurement is obtained. Now if such a crystal
were to be embedded within a rock medium, it would ve subjected to a complex stress
field in any general three-dimensional stress wave propagation situation. It 1is
then not possible to delineate the stresses at a location of the medium completely
with one compression mode crystal. However, if the crystal properly measured the
stress in one direction it would give useful information concerning such a
component at this position. In some cases, such as for an axisymmetric state of
stress, several crystals may be suitably located to take advantage of this symmetry
80 that more information may be obtained regarding the state of stress for a given
Pulse at a point in the medium without repeating the test.

To obtain the stress along the axis of an embedded compression mode
crystal, the following conditions must be met: (1) The crystal must be free fiom
any lateral stress; (11) The charge generated across the crystal must be dependent
only on the normal stress on the crystal, i.e., there cannot be any coupling
between the face shear stress which is the shear component of the stress vector
acting on the crystal face and the polarization in the compression mode; and
(111) The crystal must be embedded in a manner so that it responds to both com-
pression and tension.

The first condition was met by the design of the transducer. In the case of
x-cut quartz crystals, the cross coupling between the face shear and the polarization
in the x-direction is revealed by the non-zero piezoelectric stress constant dlh’
wvhich is one of the two independent constants relating\the electric charge to the

stress tensor in this type of crystal material(S). In general, the electric charge

density or polarization and the stress are -elated by(S).

’ ___________‘___—_a



where the subscript i takes the values 1,2,3 and the subscript j takes the

values of 1,2,...,0. With reference to Fig. 1, the x,y,z axes correspond to
the subscripts 1,2,3 and the yz, xz and xy planes correspond to the subscripts
L,5,6 respectively. Thus the ypolarization in the x-direction or l-direction for

an x-cut quartz crystal is given by

By modyaly +dig8p + dyiay,
vhere d12 = -dn and the other constants vanish (Table 1). The effect of the
second term was eliminated by the design of the transducer based on the assumption
that there were no end effects due to the encasement of the crystal between the
metal end piece and the bar. However, the non-zero constant dlh’ precludes the
use of x-cut quartz crystals for a truly uniaxial stress measurement in a
complex stress field. Now for ceramic crystals, the compression mode direction

is the z-direction. Again referring to Fig. 1, the polarization in the z-direction

or 3-direction for a ceramic crystal in the compression mode is given by

Q3 = d3101 + d3202 + d330’3

where d31 " d32, and the other constants vanish (Table 2), The effect of the
first two terms is eliminated by the design of the transducer and hence the
second condition cited abuve was met by the choice of PZT ceramic crystals as
the transducer elements. The construction of the transducer and embedment with
a strong bonding agent ensured that the crystal would respond to both compression
and tension.

Three types of ceramic crystals were used as the transducer elements, namely
PzT-U, PZT-5a and PZT-5H. Table 1 lists the various crystals used in the course

of the vresent investigation including their properties, dimensions, the name and

address of the supplier and where they were utilized.

______.___._—M
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II.3 Construction and Assembly of the Transducers.

The initial development work was performed with P2T-5a crystals, 1/8" dia.
x 1/32" thick. A number of 3/16" dia. transducers were constructed to the design
shown in Fig. 1. Similar transducers utilizing circular PzT-5H crystals, 1/8" dia,.
x 1/32" thick were also fabricated. In the eventual measurements on the Yule
marble blocks, PZT-4 crystals 1/16" dia. x 0.020" thick were used and the transducer
diameter was 1/8" (Fig. 3) but the design was essentially the same as for the

3/16" dia. transducer.

A special procedure was devised to mount a large number of transducers

s i R . mEeda. B o . B

converiently, which enabl  precision assembly. However, uniformity in assembly
could not he achieved due to a number of factors such as the thickness of the
epoxy adhesives, small variations in the thickness of the crystals and variations

[ in the thickness of the glass washers. Hence the transducers had to be ralibrated
individually,

Ik Development of a Split Hopkinson Bar Arrangement for Calibration.

In order to utilize the crystal transducers for internal dynamic stress
measurements, a suitable calibration procedure had to be devised. 1Initial

calibration attempts with an earlier design of the transducer, using an x-cut

quartz crystal as the transducer element were qQuite successful(h). The split
Hopkinson bar technique used in these experiments indicated that a piezoelectric

constant could be established for the transducer assembly as opposed to the

corresponding constant of the crystal itself (Fig.4), A comparison of the signals from

the surface strain gages, located both before and after the transducer, with the
crystal response showed that (i) It was possible to detect and record longitudinal |
Pulse propagation using the crystal transducer with good fidelity based on signals ‘
from the strain geges; (ii) Neither the transducer nor the epoxy joints between

the transducer and the aluminum split Hopkinson bars caused any significant
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reflections of the pulse at the transducer station, as is indicated by the

identical signals obtained from both the strain gage stations, and (iii) The
small air gap of about 0;002" between the crystal and the surrounding glass
washer did not cause reflections of the pulse. In view of the small thickness
of the crystal, namely 1/32", compared to the length of the pulse employed in
these experiments (about 8 in.), these results confirmed the hypothesis that the
introduction of such a discontinuity would not interrupt the wave propagation
process(6). This conclusion was also significaent in relation to the subsequent
use of the transducers for internal measurements,

The technique of calibrating the transducer by comparing its response with
a corresponding strain gage sigral was also used for the final transducer design,
The transducer in the form of a magnesium bar with the crystal assembly at one
end made up one-half of the split Hopkinson bar arrangement (Fig. 5). The second
half consisted of another magnesium bar of the same diameter. The two bars
were attached together with an epoxy adhesive. Initiél experiments were again
successful in the sense that the correspondence between the crystal response and
signal from the strain gages was very good and a pilezoelectric constant could be
established for the transducer assembly, However, since the crystal housing j
was in the middle of the split Hopkinson bar arrangement, the transducer could
not be disengaged from the second half of the composite bar without breaking the
rather fragile glass washer and end-piece assembly. Hence.the bars were repositioned
as shown in Fig., 6 to allow a simple removal of the transducer after calibration. ‘

By breaking the epoxy Joimt between the free end of the transducer bar and the

second half of the split Hopkinson bar, the transducer could be disengaged easily.
Two more magnesium bars were utilized, one in front of the transducer and the

other at the far end of the arrangement and were held firmly against their

respective contact faces with a thin layer of wax. The purpose of the former was
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to avoid striking the crystal assembly directly and the latter served as a momentum
trap to prevent the tension pulse reflected from the far end from damaging the

crystal assembly unit. The same physical arrangement was used for calibrating

both the 3/16" dia, and 1/8" dia. transducers.

II.5 External Calibration of the Transducers,

The external calibrgtion Procedure for the transducers described in this
section holds for both the 3/16" dia. and the 1/8" dia. transducers, For
illustrating the procedure, a 3/16" dia. transducer using a PZT-5H crystal
is chosen, |

The experimental arrangement for the calibration of the transducers is shown
in Fig. 6. The four bars are designated as the loading bar, the transducer bar,
the strain gage bar and the momentum trap. The construction of the transducer
ensured that the ends were smooth and square. The end faces of the other bars
were previously machined for good cuatact at the Joints, The transducer bar was
Placed in position and its free end was attached to the strain gage bar with
Scotch-Weld 1838 B/A structural epoxy adhesive manufactired by 3M Company, St. Paul,
Minn.. The epoxy adhesive was allowed to cure, To accelerate the curing process,
heat was applied with a blow lamp; a temperature of about 150°F was attained and
the epoxy hardened in about 1 hour. The other bars were assembled as shown in
Fig. 6.

Since previous experiments indicated that there would be no reflection of a
relatively long pulse at the epoxy joint, only one strain gage station was
employed for comparison with the crystal response. This strain gage station,
about 4" from the epoxy joint, consisted of a pair of SR-4 strain gages type
FAE-12.12S9L manufactured by BLH Electronics, Inc., Mass. bonded with EPY-150
cement, The strain gages, each exhibiting a gage factor of 2,03 i 1% and a

resistance of 120 ohms + 0.2%, were incorporated in a potentiometer circuit

_________;._.—_d



C-1k

and were coupled in series to eliminate the antisymmetric components of a pulse. The
total capacitance of the crystal circuit was measured by means of an Impedance
Bridge type 1650-A manufactured by General Radio Company.

The crystal response was measured by the voltage amplification method., The
PZT crystals employed in the transducers were highly sensitive, capable of
producing voltages in excess of the maximum that could be recorded on the oscillo-
scope, thus requiring the use of a 100X attenuator before the output from the
crystal could be so recorded, For example. the d33 constant of PZT-5H crystals
from Table 1 is 2638 pc/Lb while the d11 conetant for x-cut quartz crystals is
10.2 pc/Lb, Hence, in comparison with the volteges of about 2.0 V obtained
with x-cut quartz crystals in the experiments wiih the earlier design of the
tranaducer, voltages of the order of 400 V may be expected with the PZT crystal
transducers, However, even lower impact velocities of about 20-30 ft./sec. were
actually sufficient to obtain the necessary comparison with the corresponding
rulse from the strain gage station. A Tektronix type 565 dual beam oscilloscope
was employed to record both the strain gage signal and the crystal output on the
seme oscillogram. The channel measuriig the crystal response with a band width
of de to 300 ko was carefully calibrated using the amplitude calibrator.

The pulse was initiated by shooting a 3/16" diameter steel ball from an air
gun longitudinally and centrally against the impact end of the loading bar. The
oscilloscope was triggered using the amplified output from another crystal attached
firmly to the side of the loading bar with some adhesive tape and the various
pulse shapes were then recorded photographically, The strain gages were calibrated
by the dynamic shunting of external resistances into the potentiometer circuit
and recording the corresponding deflections of the trace(3). With the aid of a
simple experiment involving longitudinal pulse propagation in a 3/16" diameter

magnesium bar, the dynamic modulus of magnesium was determined., A value of
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6.32 x 106 Pei was obtained which compared well with the static modulus of
6.5 x 1o§ psi(7).

With the aid of Eq. (C-L), the measured total capacitance of the transducer
circuit including the input capacitance of the attenuator, the area of the trans-
ducer face (not the area of the crystal face), the peak voltage output from the
crystal and the peak stress, the piezoelectric constant for the transducer was
evaluated. This gave an equivalent constant for the transducer as explained in

Fig. 4, This constant obtained by such an external calibration was designated
by the symbol K.

II.6 In Situ Galibration.

Body wave measurements in a limestone block(e), indicated that the external
calibration grocedure alone was insufficient to obtain stresses from internal
measurements. Such a conclusion was reached after embedded measurements in the
limestone block using wax as the bonding agent did not -orrelate with the
corresponding results obtained by the finite element method, The measurements
apparently failed to give satisfactory results because:

(1) The transducers were not calibrated individually. It was originally
assumed on the basis of calibrating two transducers externally that
the external calibration constant would be nearly the same for all
transducers using the same type of crystal element. However, it was
later found that the external calibration constants depended on the
tolerance of the individual elements making up the crystal units and
varied considerably from one transducer to another;

(11) The wax used as the bonding agent proved ineffective for transmitting
tensile stresses, and;

(111) A calibration procedure was not established to correlate the external

calibration constant with an in situ calibration.

g ____.____.._——M
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Hence additional experiments were performed to devise a suitable method
for in situ calibration in rock bars, Tests on limestone rock bars with embedded
transducers using wax as the bonding agent again indicated an inconsistency between
the transducer response and the surface strain gage signal. The trangducer output
varied depending upon the contact inside the hole between the transducer face and
the material of the rock., Since an epoxy type of joint had proven to be effective
in a number of earlier applications, such as the external calibration of the
transducer, & mixture of aluminum oxide and epoxy was considered a more suitable
bonding agent between the transducer and the rock material, Similar experiments
with limestone rock bars with embedded transducers and surface strain gages
showed that the correspondence between the embedded crystal response and the
signal from the strain gages was more consistent when a mixture of aluminum oxide
and epoxy was used as the bonding agent.

TI.7 Correlation of the External Calibration with In Situ Calidbration
In Rock Bars,

A limestone bar with a diameter of about 3/&" and a length of 15" was chosen
for the in situ cdlibration because the dynamic mismatch between limestone and
magnesium was found to be less than 5% as shown in Table 1. An experiment was
executed to measure the longitudinal stress pulse propagation in the bar using a
transducer in the embedded state, A comparison of the transducer rcspohse with
surface strain gages was expected to give an in situ calitration constant for the
transducer, say Kl. The objective was to correlate this constant with that obtained
by external calibration.

A 3/16" diameter transducer 10" long (Fig. 2) was constructed using e 1/8" dia.
x 1/32" thick PZT-5a crystal. A 3/16" diameter hole about 8" deep from one end was
core-drilled coaxially in the limestone bar. The drilling was performed with a
diamond drill supplied by Keen Kut Products, Burlingene, California. The trans-

ducer was calibrated externally and the constant K was established. The transducer
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was then inserted in the hole, using a mixture of epoxy Aadhesive and aluminum
oxide as the bonding agent, thus securely anchoring the crystal assembly end of
the transducer at the bottom of the hole., A pair of SR-U semiconductor strain
gages were mounted at the same section of the rock bar as the crystal station.
The strain gages were of the type SPB 3-12-12 manufactured by BLH Electronics
Inc., Mass. and EPY-150 epoxy cement was used for bonding the gages to the rock
bar. The gages were mounted on the opposite ends of a diameter of the bar and
coupled in series to eliminate antisymmetri: effects and incorporated in a
potentiometer circuit, The experimental arrangement is shown in fi{g. 7. A
thin layer of Electrobond #2016 conducting epoxy adhesive manufactured by
Adhesive Engineering Company was applied to the impact end and a lead wire

was taken off the epoxy. The epoxy layer was polished to a smooth surface.

The surface was then smeared with some conducting epoxy without the hardener.

The rock bar was subjected to central longitudinal impact through an L/8"
diameter aluminum loading bar with 1/8" dia. x 1/32" thick x-cut quartz crystal
sandwiched between the loading bar and the rock bar. Again, a thin layer o¢
conducting epoxy without the hardener was applied to the contact faces of the
crystal and the loading bar. A second lead wire was attached to the loading
bar close to the crystal. This crystal station was utilized to measure the input
pulse with the aid of a charge amplifier. The Pulse was generated by shooting the
impact end of the loading bar with a 3/16" dia. steel ball from in air gun at a
velocity of about 20 ft/sec. The input pulse and the signal from the calibrated
strain gages were recorded on a dual-beam oscilloscope and the embedded crystal
response was recorded on another oscilloscope,

The input pulse mensurement obtained by charge amplification was effectively
a force-time record. A comparison of the input pulse and the strain-time record,
using the area of the cross section of the limestone bar and a value of 5,0 x 106 psi

for the dynamic eolastic modulus of limestone, showed good correspondence., This
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indicated that the input measurement by means of an x-cut quartz crystal loaded
through a loading bar was correct.

The experiment was repeated using voltage amplification for the measurement
of the input pulse and similar agreement as above between the strair pulse and the
force-time record proved that either method of input measurement was reliable.
The capacitance of the transducer circuit was measured and the input capacitance
of the oscilloscope was added to give the total capacitance of the circuit. With
the aid of Eq, (C-4) the stress-time record was established from the transducer
response for both experiments. A comparison of the peak stress from the stress-
time record and the peak strain from the surface strain gage data using the same
value of the dynamic elastic modulus of limestone enabled the establishment of
an in situ calibration constant for the transducer, It was found that this

constant Kl was related to the external calibration constant K by

K
1

EST

vhere a is the area of the crystal face and A is the area of the transducer face.
Similar experiments involving a second limestone bar with an embedded transducer
wvhich was previously calibrated externally and surface strain gages yielded the
same correlation,

Since it was obviously not practical to establish a correlation between the
external calibration constant and the in situ calibration constant for each
transducer, the above correlation was accepted to hold for all transducers., Thus,
each transducer was calibrated externally and individual constants, K, were
established and subsequent internal measurements were expected to yield values

for stresses using this constant K and the above correlation.
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i Section IIT

Body Wave Propagation In An

r Isotropic Rock Model

IITI.1 ' Introduction.

The method of the measurement of body wave propagation in a model isotropic
half-space, represented by a Bedford limestone block, 15" x 15" x 113", generated
by sphere impact perpendicular to the free surface is described in this section.
These experiments were preceded by body wave measurements with the same block |
as described in Ref. (B). The earlier experiments failed to give satisfactory
results for the reasons given in II,6 and the lack of agreement between the
experimental results and the theoretical predictions prompted a reappraisal of
the calibration procedure and the bonding technique (cf. II.6 and II.7). The
main purpose of the experiments described in this section was to test the validity
of the correlation between the external calibration and the in situ calibration
in rock bars established in Section II and to confirm the satisfactory nature of
the bonding technique., In order to meet these objectives it was necessary:

(1) To establish the necessary technique for drilling long holes of small
diameter, with diamond core drills, in a block of rock material,

(i1) To install externally calibrated transducers in the holes using a
suitable bonding agent.

(111) To devise a method of generation and measurement of the input pulse
using a spherical steel ball as the striker,

(1v) To detect and record body wave propageticn and obtain arrival times.

(v) To obtain stress histories in particular directions at certain locations

in the rock medium by using the correlation between the in situ calibration

end the external calibration established in Sectien II,

,




(vi) To compare the experimentally obtained stress-time records with the

corresponding theoretical results obtained by the integral transform
analysis and the finite element method and hence to verify the cali-
bration procedure,

(vii) To confirm the satisfactory nature of the embedding technique, and
finally;

(viii) To establish the experimental techniques that would be used later for
the study of the wave propagation processes in the model anisotropic

half-space,

III.2 1Installation of the Transducers.

The limestone block was drilled using a 3/16" dia. x 10" long core drill

on a press especially adapted to provide a continuous supply of water. ihe

(8)

transducers previously embedded with wax vere removed., In the process of
removal, the crystal assembly ends of two of the transducers broke off inside
their respective holes. These ends were removed by drilling them out with an
extended 3/16" dia. flat bottomed fluted drill driven by a hand-operated power
drill. The deep holes were cleaned by pouring acetone down the holes and
inserting the long fluted drill inside the holes and rotating by hand until there
was no trace of metal filings or wet rock powder in the flutes when the drill was
removed,

A total of four transducers with 3/1 " dia, magnesium bars utilizing circular |

PZT-5 crystals were constructed (Fig. 2); two of the transducers utilized PZT-5a

crystals and two featured PZT-SH crystals as the transducer elements, Each
transducer was about 10" long and was externally calibrated with constants given
in Table 3., The transducers were cleaned with acetone to remove any traces of
grease from previous machining operations. The hole depths in the rock were

carefully measured and the corresponding lengths were marked on the transducers.

= _______-_———M
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A mixture of aluminum oxide and €poxy was prepared heated with a blow lamp to |
make it flow more easily, and smeared on the transducers, A liberal coating

was applied so that the crystal assembly end of the transducer had a 1/16"

thick layer of the bonding agent around it, The transducers were then installed

in their respective positions. The secure anchoring of the crystal assembly

ends at the bottom of the holes was insured by observing that the previously
provided markers on the transducer bars maintained a certain predetermined distance
from the rock surface. The transducers were lightly pushed into position. Heat

was applied to the rock by means of a blow lamp. A temperature of about lSOoF |

B e . . o

was attained on the rock surface., The bonding agent was allowed to cure for
about one day. Low noise cables, each about 3'-0" long with BNC connectors at
their ends were attached to the transducer leads. The transducer locations are

indicated in Fig. 8, During the calibration of the transducers, the polarity

of each transducer was also determined.

III.3 Generation and Measurement of Input Pulse.

A stress pulse of low magnitude such as One generated by tapping the
free surface of the block was sufficient to detect pulse propagation with the
embedded transducers. Such a pulse was recorded by connecting one of the transducers

to a type 549, Tektronix storage oscilloscope and triggering the scope internally.

All the embedded transducers were tested this way to make sure they were functioning

properly, It was clear that a sufficiently strong impact could be achieved by

shooting a 3/16" dia. steel ball with an air gun at a low velocity but it was

restricted to such a stress level that the impact through a 1/8" diameter loading

bar, as described in II.7, on a 1/8" dia., x-cut sandwiched quartz erystal, Fig. 9, }
did not break the sensor. The input was measured by means of charge amplification 1
using & Kistler S/N 477 unit, A charge sensitivity of 10,2 x 10712 coulombs/1b 1

was used; this was the value obtained in the course of the present investigation '
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as described in Ref. (L), The oscilloscopes were triggered by means of the amplified

output of another crystal attached to the loading bar about 4" ahead of the input
crystal,

IIT.4 Measurcment of Body Wave Propagation,

The experimental arrangement employed is shown in Fig. 9. The limestone
block was set up on a table which could be adjusted in three mutually perpendicular
directions by means of cross slides, each provided with a screvwed spindle and a
handle, The block‘was aligned with the aid of a precision level and a triangle
8o that the loading bar was Perpendicular to the free surface. The capacitances
of the transducers and the respective cables and connectors were measured by means
of the impedance bridge cited in II.5. The total capacitance of each transducer
circuit was obtained by adding the input capacitance of the oscilloscope plug-in
unit to the measured capacitance, The voltage amplification method was’;mployed
to record the response of each of the embedded crystals,

The limestone block was adjusted by means of the three perpendicular motions
of t'.« table for aligning the chosen impact position on the rock face with the
loading bar., The motion of the table parallel to the gun was used to keep the
input crystal sandwiched firmly between the free surface of the rock ané this bar,
At each impact location the rock surface was prepared in the manner described
in T1I.7 so as to attach a lead wire for measuring the input pulse but still allowing
the crystal to have a good flat contact with the free surface of the rock, The
second lead wire was again attached to the aluminum loading bar close to the
crystal station,

The input pulse, generated by shooting a 3/16" dia. steel ball with an air
gun, and the internal measuremenis. called the outputs, were recorded on Tektronix

type 565 dual beam oscilloscopes. A number of measurements were taken for

A‘___________.____.d
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different impact loactions. For each such position the experiment was repeated

to check reproducibility, The magnitude of the input pulse was varied by changing
the velocity of the ball by means of different air reservoir Pressures. In Table 3
& summary of the impact locations, measured stresses and appropriate scale factors
for the various records are given, Each station sensed the normal stress elong

the crystal axis, i.e, in the direction of the transducer bar, For example,
referring to Fig, 8, stations 1 and 4 measured %, and stations 2 and 3 measured

axxo

No attempt was made to determine the impact velocities. Since the input
Pulse was observed directly and such a method of measurement was found to be
reliable as described in II.7, it was not deemed necessary to ascertain the velocities
of impact and rebound and to verify the input impulse by determining the change of
momentum, At higher impact velocities, this procedure could not be employed since
breakage of the crystal would occur; in this event, the sensor could be replaced
by a set of strain gages mounted ‘on the loading bar that would delineate the input
as the difference between the records of the initial and the first reflected
Pulse passage.

A detailed discussion of the results is given in Section VIII. 1t is only
mentioned here that the data agreed well with the theoretical values for arrival
times and stress histories as depicted in Fig, 1 of the main report and Figs. in
to 12 (see Table 3), indicating that the calibration procedure was valid and the

embedding technique was satisfactory, The bonding agent also broved effective

and the experimental techniques developed provided a reliable means of detecting
and recording body waves,
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Section IV

} Body Wave Propagation In An

Anisotropic Rock Model

IV.1 Direction of the Axis of Elastic Symmetry.

The main objective of the present experimental investigation was the study
of body wave propagation in an anisotropic half-space modeled by a 20" x 20" x 10"
block of Yule marble that represented a transversely isotropic half-space with the
axis of elastic symmetry in a plane parallel to the 20" x 20" free surface. 1In
a previous surface wave investigation(z)(g) involvirg the same block the axis
of elastic symmetry was located by crystallographic analysis of a thin sample
prepared from a trapezoidal piece of material cut from one corner of the block.
However, in Ref. (9) the authors expressed some uncertainty about the actual
direction of the axis of elastic symmetry (AES). 1In the course of the present
work, another attempt was made to determine the direction of the AES. Another
crystallographic analysis did not locate this direction with any more accuracy,
but the discolorations in the block due to impurities indicated that the AES
might be located about 150 from the one previously determined, as sketched in |
Figs. 13 and 14, However, the body wave measurements were expected to give
additional evidence through wave arrival times to substantiate the direction of 1

the AES.

IV.2 Determination of Transducer Locations.

With the AES located as shown in Fig. 13, the transducer locations had to be J
determined so that (i) The transducers may be utilized to detect and record body
wave propagation due to the impact of a sphere on the free surface of the block |
without interference by reflections from the boundaries; (ii) The distances of the

transducers from the impact position were such that the signal to noise ratio would
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allow the detection of the transients initiated on the free surface by shooting
3/16" diameter or 1/L" diameter stecl balls from an air gun at velocities which
would not break the input crystal; (iii) The various observation poiﬁts in the
interior of the block would yield wave arrival ‘imes along a number of rays
oriented at different directions to the AES; (iv) The transducers would yield
representative stress histories, each transduce:r measuring the stress in a
specific direction at the observation point relative to the impact location,
and (v) Advantage was taken of the symmetry of the block in locating the
transducers so as to obtain stresses in different directions but effectively

at the same location relative to the impact position.

The signal to noise ratios from the previous experiments on the limes®one
block and a comparison of the sensitivities of the 3/16" diameter transducers
employing 1/8" diemeter PZT-5 crystals used in these experiments with the
sensitivities of the 1/8" diameter transducers employing 1/16" diameter
PZT-4 crystals for measurements in the Yule marble block indicated that the
transducers could be located up to about 5" from the impact position. The transducers
were required to detect the body waves produced by the impact of a sphere on the
free surface achieved by shooting a 3/16" diameter ball at velocities comparable
to those employed in the limestone block experiments without either significant
noise or without breaking the 1/8" diameter crystal that monitored the input. A
drop test of a 1/4" diameter steel sphere from a height of about 4 feet on the top
of a sandstone block with a transducer held against the side of the target indicated
the capability of transducers to detect pulses of the level described above.
Eventually 1/4" diasmeter x 0.1" thick x-cut quartz crystals were also used for the
measurement of the input pulse that were capable of withstanding higher input
stress levels and hence offered better conditions of measurement, In fact, the
transition from the 3/16" diameter to 1/8" diameter transducers was made after

taking into «ccount the above considerations. There was no further need to determine
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an acceptable signal level for the Present experiments.

The center of the surface, designated Po in Fig. 15, was chosen as the
principal impact location. The Pulse length obtained in the limestone block
experiments ranged from 30 to 40 pusec and was expected to be about the same for
the marble. This block was 10" deep and previous experiments on the specimen
indicated that the fastest wave speed corresponded to about 5 usec/in in the
direction of the depth. It was thus estimated that the first passage of the
pulse could be recorded up to a distance of 5" from the impact location without
interference due to reflections from the boundaries. Thus the size of the block,
the transducer sensitivity, the length of the pulse, the velocity of impact, the
requirements of the input measurements and the fact that the response was
required at a sufficiently large distance away from the impact position (so that

it could ve considered essentially as the response due to g concentrated load of

arbitrary time variation as was assumed in the integral transform method (Appendix A))

all had to be considered in determining the positions of the transducers,

The locations of the transducers should be such as to display all the
distinctive features of the wave propagation phenomena as suggested by theoretical
predictions. Originally, significant differences in the slowness surface from
the corresponding isotropic case were expected on the basis of the dynamic elastic
constants cited in Ref. (9) that resulted in a tripartition of wave surface; the
initial selection for the transducer Positions reflected these characteristics.
However, the present body wave measurements resulted both in a relocation of the
axis of elastic symmetry, as shown in Fig, 14, as well as in new dynamic elastic
constant3s, as described in Section VITI, that did not predict a wave surface
partition. Hence, the exact locations of the transducers no longer needed to
correspond to any particular behavior of the wave propagation Phenomena except
that they were conveniently located to yield the wave arrival times and stress

histories which could be compared with corresponding theoretical predictions,
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The transducer locations are shown in Figs. 16 to 2l. Impact positions

other than the center of the free surface were algo employed, Primarily to obtain
information on body waves detected by transducers located nearer to the impact
Position., Such data were called the near field response of the block while the
data obtained by central impact were termed the far field response., The near
field data were obtained primarily for comparison with corresponding results
obtained by the finite element method which was not rarticularly suitable for

faY .field comparison due to excessive computing time required to Secure numerical

results,

IV.3 Transducers Employed.

Transducers in the form of 1/8" dia. magnesium bars with the crystal assembly
on one end, as shown in Fig. 3, employing PzT-L4 crystals as the transducer
element were used for the body wave measurements, Care was taken in the
assembly of the transducers to Preserve the outside dimension of 0,126 + 0,001",
which was the diameter of the bar, especially near the crystal end. The transducers
were identified and externally calibrated using the procedure described in Section
II. Linearity of response, repeatability and reproducibility were established.
The polarity of individual transducers was also determined. A total of 18
transducers were selected for the body wave measurements, The correlation with
the in situ calibration in rock bars and subsequent verification of this by the

measurements in the limestone block Provided a means of obtaining individual

stress factors for the transducers (see Table 3),

IV.L Preparation of the Yule Marble Block,

The general technique of drilling the Yule marble block was the same as that

employed for drilling the limestone block, described in Section III. Previous

experience with slabs and rock bars showed thaet long holes of small diameter could .

be drilled straight and smooth in Yule marble fabric with diamond core drilils, 1

‘____.__.._—M




c-28

The drills employed were 1/8" in diameter (0.128" 4 0.001") purchased from
Keen-Kut‘Products, Burlingeme, California.

The block was marked for drilling with depths of the holes carefully noted.
Pilot holes were made with an electric hand drill to facilitate the starting of
the core drill, During these operations, care was taken to keep the center of
the drill free from any clogged-up or powdered material so that a profuse supply
of water was constantly kept flowing down its center. The operations of drilling,
finishing of the holes by means of a 0.128" dia. flat bottomed extended fluted
drill end subsequent clearing of the holes to remove excess powdered rock material
were performed as described in Section III. Straight holes with smooth sides of
the required diameter were obtained. It was noticed that there was no significant
drift of the core drill even in the drilling of the deeper holes; the maximum
depth was about 83", as checked by inserting a 1/8" dia. bar in the holes and
verifying that the extended bar was normal to the rock surface. A total of 18
holes of various depths were drilled, 6 from each of three sidesoof the block.
The three directions corresponded with the X,Y,Z axes defined in Fig. 1b.

The previously calibrated transducers were installed in the holes following
the same procedure as described in III.3., A mixture of aluminum oxide and epoxy
was again used as the bonding agent. Similar precautions as described in III.3
were taken to make sure that the crystal assembly ends of the transducers vere

securely anchored at the bottom of the holes. Heat was applied to the rock by

means of two infrared heat lamps and the bonding agent was allowed to cure for
o day. As before, Endevco 1ow-noise cables about 5'-0" long were soldered to the

transducer leads and the ends of the cables were provided with BNC connectors.

IV.5 Becdy Wave Propagation Measurements.

The experimental arrangement for the Yule marble tests was similar to that

shown in Fig. 9. The block was arranged on the table employed previously for the

e ’ '
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limestone block., Tt was found convenient to fix the loading arrangement which

was attached to the gun and move the block so that the loading bvar always remained
Perpendicular to the free surface once it was so adjusted. The vame method of
input generution ang measurement by charge amplification as used on previous
occasions was again employed. ‘This time since circular x-cut quartz crystals

1/8" diameter or 1/4" diameter were utilized, a loading bar of the same diameter
a8 the crystal was used to transmit the pulse,

Three Tektronix type 565 dual beam oscilloscopes were employed for recording
the outputs from three embedded transducers for each impact. The input was
recorded simultaneously on the three oscilloscopes along with the respective
outputs so that the wave arrival times could be directly obtained for each
transducer location,

Most of the data were obtained by central impact on the free surface
designated P° in Fig. 15 although other impact,loéations, Pl’Pé""’ Fig. 15,
were also used, For detecting and recording the body waves by some of the
more distant transducers at asymmetrical stations, an input pulse with a higher
stress level was required, However, this would have broken the 1/8" diemeter
crystal and damaged the rock surface at the impact location; thus, it was found
expedient to use a 1/4" diameter x 0.1" thick x-cut quartz crystal for the
nonsymmetrical impact locations, The smaller crystal was adequate for measuring

the lower stress level input pulse from central impact. Both 3/16" diameter and

1/4" diameter steel balls were used; the latter produced an increase of about

10 psecs in the pulse length, With the unsymmetrical impact Ppositions, some of the

transducers were about 1-3/4" from the impact locations., The responses from

these transducers were recorded to obtain the near field response of the block,

In addition to the above body wave measurements, transducers at special
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to the AFES as determined prcviously(g). These measurements were made primarily
to compere the wave speeds along a number of directions parallel to the initially
determined and the relocated AES so as to yield additional evidence regarding the
exact location of the AES,

The capacitance of each transduce. circuit was measured before and after
taking the data and the average value of the two measurements plus the input
capacitance of the oscilloscope plug-in unit was taken ~c the approximate true
capacitance of the circuit, Usually a difference of + 29 was observed in the two
measurements. The external calibration constantc or the transducers, the total
transducer circuit capacitances for the body wave measurements and the corresponding

stress factors are listed in Table L, The various runs are described in Table 53 and 5b.

§g'tion \'i

surface Wave Propagation In

The Anisotropic Rock

V.1 Anisotropic Model for Surface Waves.

A second Yule marble block of the same dimensions as the one employed for
body wnve measurements and with the axis of elastic symmetry also located in a
plane parallel to the 20" x 20" free surface, was used to study surface wave
phenomena, The direction of the AES was determined from the discoloration
pattern on the various sides of the block. The crystallographic analysis of a
specimen prepared from sample material cut off from one corner of the previous
block indicated that the discoloration lines, which were approximately parallel
on any one face of the block, correspond to the foliation plane, i.e. to a
plane verpendicular to the AES, The average directional properties of these
lines on all sides of *the block indicated that the foliation plane was perpendicular

‘s the free surface., From these observati.as, it appeared that the determination

- A__.______‘—-M
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of the direction of the AES as a line Perpendicular to the average direction of

the discolorations on the free surface was valiq, In the same manner, the AES

of the second block was located as a line Perpendicular to the discolorations on

the fiee surface; the overall Pattern of these lines again suggested that the

foliation plane was Perpendicular to the free surface. In Fig. 22, the AES of

the second block and the coordinate system chosen are shown,

V.2 Objectives,

The objectives of the surface wave Propagation investigation were:

(1) To embed suitably modified transducers just below the free surface to
measure the dynamic radial and circumferential stresses at given
locations due to normal sphere impact;

(11)  To obtain arrival times, and;

(111) To compare the experimental data with corresponding theoretical

results,

The general experimental techniques and the methods of measurement developed

in the course of body wave measurements were still applicable, However, the trans-

ducers had to be modified after individual external calibration for embedment just

below the free surface,

V.3 Transducer Modification,

In order to measure stresses Just below the surface, it was intended to drill

small slots on the surface of the block and embed transducers in the slots,

The design of these transducers was essentially the same as the earlier
nnc(h) which wags superseded except that magnesium end Pieces replaced the aluminum
end pieces employed previously, However, instead of constructing transducers

in this manner, the following procedure was adopted. The transducer in the form

of a 1/8" diameter magnesium bar, with a 1/16" dia. x 0.020" thick P2T-U4 crystal

" _‘_____________.__4
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element, was assembled leaving out the lead wires. Two 1/64" dia. and 1/16"
deep holes were drilled, one in the bar and one in the end piece and wire leads
were attached in the holes with Electrobond #2016 conducting epoxy adhesive,

The transducer was then externally calibrated. The magnesium bar was now cut off
in a lathe. Thus, a transducer was obtained as required that had already been
calibrated. Such a procedure was adopted because the transducer in the form of

a bar could be calibrated and disengaged easily from the split Hopkinson bar
arrangement as explained in II.4, while a similar separation after calibration

of the final form of the transducer would have presented some difficulties in

that respect.

V.4 Location and Installation of Transducers.

The AES of the Yule marble block was marked on the free surface. The
transducer locations were chosen to measure the radiai and circumferential
stresses as shown in Fig, 22, To measure the radial stress, the crystal
compression mode direction must coincide with a radial line and to measure the
circumferential stress, it must be perpendicular to a radial line as shown in
Fig. 23.

From the center of the free surface a circle of 5" radius was drawn.
Diametral lines were marked off every 150 from the AES, Locations were chosen

on either end of the 10" diameters, one end of the diameter for the radial stress

and the other end for the circumferential stress measurement. l

1

To embed the transducers just below the free surface, small holes with dimen- }

sions of 1/4" x 1/4" x 1/8" were milled with a 3/32" dia. end mill. A total of J

14 glots were made including two on the AES and two on a perpendicular axis |

that represented the direction of the foliation plane. The slots were 1/8" - ’ ‘
deep identical to the diameter of the transducer so that the average stress

measured corresponded approximately to the stress at a point 1/16" below the surface.

____.______—_—M
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The slots were cleaned with acetone and allowed to dry. The transducers were
embedded in the slots using a mixture of aluminum oxide and epoxy as the bonding

agent and low noise cables were a.tached to the exposed lead wires.

V.5 Surface Wave Propagation Measurements,

The experimental arrangement was similar to that. shown in Fig. 9. The
input measurement and the loading bar arrangement was similar to the system used
previously., A 1/4" dia, aluminum loading bar and a circular x-cut quartz crystal
1/4" dia. x 0,1" thick were used. The input pulse was initiated by shooting a
l/h" dia., steel ball with an alr gun. A central impact location was chosen with
all the transducers located at a 5" radius from the impact position. Two
Tektronix type 565 dual beam uscilloscopes were utilized to record simultaneously
the outputs from two transducers located on elther end of a diametral line.
Since the diametral line represented a ray at a certain angle to the AES, both
lying in the plane of the free surface, the two transducers effectively measured
the propagation of the pulse at the same point relative to the impact location,
The input was also simultaneously recorded on the same dual beam oscilloscopes.
The other techniques of measurement utilized for the body wave measurements were
again employed. The external calibration constants of the transducers employed
are listed in Table 6, which includes the total transducer circuit capacitances
and the corresponding stress factors for internal measurements., The various runs

are described in Table 7.
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Section VI

Summary of the Experimental Investigation

VI.1 Stress Factors from External Calibration Constants,

Tne various stress factors are listed in Tables 3, 4 and 6 corresponding to

a 1 volt output from the transducers, i,e,,if the gain level for a measurement

was 5 mv/div, the stress/div was (5 x 1073 x stress factor) psi,

VI.2 Body Wave Measurements in the Isotropic Model.

The details of the input and output measurements for the body wave tests

in limestone are given in Table 3. The corresponding figures depicting the input

and output data are also listed. The dynamic elastic properties of limestone

employed in the two theoretical analyses were(lo)

5.0 x lO6 psi
Poisson's ratio, u = 0,29

0.0805 lb/in3

Young's modulus, E

Density

s P

VI.3 Body Wave Measurements in the Yule Marble Block,

The body wave measurements in the Yule marble block are described in Tables 5(a)

and 5(b). The dynamic elastic properties of Yule marble are listed in Table 4,

Appendix D, The procedure of determining the properties from the body wave and

surface wave measurements on the Yule marble blocks is included in Section VII,

VI.4 sSurface Wave Measurements in the Yule Marble Block,

The surface wave measurements are described in Table 7 which includes the

details of input and output measurements and a 1list of the corresponding figures,
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Section VIT

Determination of Dynamic Elastic

Properties Fram Arrival Times

VII.1 Dynamic Elastic Constants of Yule Marble,

In the course of Previous theoretical and experimental investigations of
surface waves produced by the normal impact of a sphere on a half-space
modeled by one of the Yule marble blocks(e) which was again used in the present
investigation, the theory was:developed for linearly elastic constitutive behavior
of the material. The dynamic values of the elastic constants were determined
from the measurements of wave speeds along specific directions in the block.
In addition, the static and dynamic properties of the material were also determined
from samples of the material cut from the block by means of standard procedures,
However, in the more extensive experimental investigation described in Appendix D,
the dynamic elastic of Yule marble were again obtained from samples of a slab
secured from another source, Since the two sets of values appeared to differ
in some respects (Table 4, Appendix D) a procedure was devised to determine
the constants by utilizing the actual body wave and surface wave measurements
from the two blocks of Yule marble. The procedure of determining the constants
was based on formulating a Programming problem for the minimization of a function
of an arbitrary number of variables, A least square approximation method was
applied to devise an objective function using the velocity equation for the
propagation of elastic waves in a transversely isotropic medium(ll) Rosenbrock's

12
method( )of functional optimization was used for the minimization,

VII.2 Elastic Stiffness Matrix and Velocity Equation,

The coefficients of the generalized Hooke's law are also referred to as elastic

stiffnesses, Their matrix, which reduces to a 6 x 6 symmetric matrix due to the

_/_A______‘________-___.d
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symmetry of the stress and strain tensors, the constitutive law, and a positive
definite energy function may be shown to have the following non-zero elastic

stiffnesses for a transversely isotropic material(ll)

€11 = ©220%33
%8713 = 28
Cul = Ss5

ce6 = 3(c1y-cy5)

(c-6)

A set of five independent constants completely specifies the elastic behavior

of the solid.
If the source of the disturbance is chosen as the origin of an orthogonal

coordinate system (xl,xz,x3), where the x3-axis coincides with the axis of elastic

symmetry, the equation for the phase velocity of elastic waves has the form(ll)
tH - 2(1-n%)e]{#2-[(2-n%)a + n?h]H + n°(1-n2)(ah-a2)} = O (C-7)
Here
e AR
ik (Sl TR L
d = 013 + chh (C-e)
h = 033 - chh

H= o] V2 L chh

p i8 the density of the material, v is the phase velocity and n is the direction

cosine of a radius vector from the origin with respect to the ~_-axis, The

3

equation gives the phase velocity as a function of orlentation of a certain

direction with respect to the axis of elastic symmetry and constitutes a sextic

:
in v that has three real roots, *
€
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With the aid of Eq. (C-7), the geometrical features of the velocity and
slowness surfaces for a rarticular set of elastic constants can be studied,
However, the present discussion is concerned only with the following concepts(ll?

(1) With the source of the disturbance of the medium chosen as the origin,
the velocity surface is formed by all the radius vectors passing
through the origin, each having a length proportional to the phase
velocity permissible in its direction. Thus, Eq. (C-7) represents
three sheets of the velocity surface; the first factor is associated

with a true transverse displacement expressed by

H - 3(1-n®)c = 0 (c-9)

and the second factor is a quadratic in H and represents the other
two sheets of the velocity surface which cannot be separately

factored. The latter may also be written as

(H-mea)(H-nah) - mPn%a? 0
where 1-n2 =m
(11) In view of the elastic symmetry of the block and the chosen coordinate

system, the orientation of a given direction is completely determined

by one direction cosine with respect to the axis of elastic symmetry
s

(x

3 |
(111) The first factor of Eq. (C-7) is associated with a pure shear velocity

but the second factor is neither associated with a pure shear velocity

nor a pure longitudinal velocity except in specific directions, namely,

along the coordinate axes,

5 (c-10)
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VII.3 Velocities from Experimental Measurements.

With the embedded transducers, the detection and recording of wave propagation
Processes in the two Yule marble blocks furnished the wave arrival times at wvarious
locations situated in different directions relative to the impact points, From
these arrival times and the distances of the transducers from the various impact
positions, wave speeds in different directions were calculated, These do not
truly represent p-wave phase velocities even though they were calculated from the
first arrival of the wave because the wave propagation undergoes considerable
refraction(llz However, since the maximum difference in the p-wave velocities
along the x3-axis and X; or x, axis was about 20%, it was assumed that the
experimental wave speeds may be considered as the approximate p-wave velocities.

The coordinate axes are directions along which exact p-wave velocities
would be obtained. Both the body wave and the surface wave measurements
furnished information regarding the approximate p-wave velocities in a number
of directions relative to the axis of elastic symmetry (x3-a.xis). In addition,
an examination of the surface wave records indicated that the Rayleigh wave
velocity was approximately 65% of the corresponding p-wave speed in any given
direction. Since the Rayleigh wave speed differs but little from the shear

wave speed, it was assumed that the latter also bears approximately the same

relationship to the p-wave velocity along any particular direction (see VII.8(V)).

VII.4 Determination of ¢, end ¢33 from p-Wave Tests(6).

The constants 1 and 033 are each associated with the p-wave speeds along
the AES and in the isotropic plene normal to this axis, The fact that these

two extremal p-wave speeds are each associated with s distinet elastic constant

may be seen by putting n = 0 and n = 1 in Eq. (C-10).




M s e b T oaom

C-39

n=0 : pv° = 1 (c-11)

n=1: pv° = C33 (c-12)

This will not occur in Eq. (C-7) because the first factor is associated with a
true transverse displacement. Thus, 1 and 033 were ohtained directly from
the measured p-wave speeds. The directions of the AES (x3) and the normal to
the AES (either x, or x2) exhibited purely longitudinal wave velocities of
162,030 in/sec and 210,000 in/sec,respectively. Hence the elastic constants
c); end cyg were found to be 6.5 x lO6 and 12.0 x 106 psi.

The density of Yule marble was determined by measuring the dimensions of
conveniently shaped samples of the material (the samples were taken from the slab
and not from the two blocks but this inconsistency was ignored) and weighing
the samples on a precision balance, Tt is to be noted that the values of the two

constants lie in between the corresponding values cited previously. A total of

40 values of the DP-wave speeds were obtained for as many independent directions

with respect to the AES.

VII.5 Requirements Imposed by the Positive Definite Form of the Strain Energy.

In Ref. (13), it was shown that the necessary and sufficient condition for
the quadratic form of the strain energy to be vositive definite for the particular

case of a transversely isotropic material implies that

1 >0 563320, ¢ >0, ¢)) >cy,

(c-13)
le., +¢c..) c..>c = Ciy * C., >cC 2
vkl 1z 33 13T 2] 33 13

ol

It is to be noted that there is no restriction that 012 and cl3 should be

positive.

L




VII.6 Formulation for Determining the Elastic Constants.

The objective function formed as a sum of the squared deviations
m

_ 1 2y 72y 2y, 2 2 2/, 2 42412
R = 151 (Hi-a(l-ni )e) {Hi [(1 n Ja + n, h]Hi +ny (1 ny ) (ah-a%)}

2
where Hi =0 Vi = chh (C-llf')

The elastic constants were chosen as the variables xk(k=l,...5) with
X) =Cyps X, = c33, x3 = Chls X = Cqp and xs = 013; a sixth variable Xg was
chosen to represent the ratio of an approximate p-wave velocity to an approximate
shear wave velocity in the same given direction, The minimization of the
objective function B(xd), J=1,...,6 subject to the constraints specified by
inequalities (C-13) was expected to yield the optimum values of xJ. Since
previously measured values of the elastic constants as well as the two values
of cll and c33 obtained from the present tests were available, the inequality
constraints were reduced to a set of equality constraints, the extreme admissible
values still satisfying the inequalities (C-13)., The set of initial values re-
qQuired were then chosen so as to include the two values of 13 and c33 already
established and other data for o9 c13 and )y lying between the corresponding

values of the two sets of constants obtained previously.

VII.7 Minimization Technique.

The minimization of the objective function was performed by means of a computer
program that was divided into two parts., The first part served to control the
program, to compute the velocities and to calculate the objective function using
the initial values of the variables as specified above, The second part involved
the minimization using a standard library subroutine, CLIMBS.. The
latter was constructed based on a method devised in Ref.(12), The main program

calls the minimization subroutine CLIMBS which in turn repeatedly calls the

A__M
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subroutine to compute the value of the objective function for any values for the x..

The search for optimal xJ was terminated by a predetermined convergence criterion,
The minimization of the objective function was performed in a number of steps.
At each step the initial values and constraints were appropriately altered. The

various steps were chosen to put the emphasis of optimization on particular

variables representing the elastic constants at each stage by either suppressing
some variables or constraining them over a limited range,

Step 1: Since there was no restriction on the sign of o and c13, these constants
were allowed to take on negative values. The variable x6 was omitted and the
function R was minimized over the whole range of observations. The initial
values of xi(isl,...,S) were chosen to satisfy the reduced equality constraints.
The upper and lower limits of the variables were chosen to include the previously
obtained values for the elastic constants.

Step 2: The same procedure was used as in Step 1 except that o and c13 were
also constrained to be positive.

Step 3: The first factor of Eq. (C-7) was removed from the velocity equation
since it represents a truly transverse displacement and the approximate p-wave

speeds were ﬁgain employed to minimize the modified objective function

2

R, = 1;1 {Hiz-[(l-niz)a + 0" . h]Hi + niz(l-niz)(ah-dz)]z (c-15)

Step Lb: The factor Xg was introduced as a constant by multiplying all the

velocities by 0.65 and using these approximate shear wave velocities instead

of the approximate p-wave velocities., The objective function was taken as R.

Step 5: The factor Xz was introduced as a variable with upper and lower limits

of 0.7 and 0.6 and the objective was again taken as R.

Step 6: The factor Xg was introduced as a variable with the same limits as above

but this time the objective function was Rl'

‘._____‘____——M
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The various initial values, constraints on the variables and the final
values are listed in Table 8 where each step of the minimization procedure is

identified. The final values of the constants were as follows:

¢y = 11.22 x lO6 psi
c33 = 7,25 x 106 psi
6
Cy, = 333 x 10 psi (Cc-16)
Cip = 3.82 x lO6 psi

o)}

c13 = 2,52 x 10° psi
VII.8 Remarks,

The method of estimating the dynamic elastic constants, employed to establish

values of 00 c13 and Cpy makes certain approximations regarding the p-wave
velocities in different directions. However, it has furnished some interesting
information in the course of the minimization Procedure which appears to substan-
tiate that the values were representative of the material, namely, |
(1) The values of c,, and Ca3 remained reasonably constant at each step.
(11) The introduction of the varisble X; established with certainty that
1o and c13 were positive,
(111) The final results were in the range of values obtained previously
as listed in Table 4, Appendix D,

(iv) A reasonable value of C,p Was obtained by introducing the shear factor

Xg. It was noted in Ref, (9) that the same factor could not be obtained
from the p-wave tests using Eq. (C-7).




Section VIIT

Discussion

VIII.1 General Outline

In this section the following matters are considered:

(1) A discussion of the information obtained from the experimental results:

(11) The comparison of the experimental results with the corresponding
theoretical Predictions; and
(111)

R B e e ol Bl _ameeden DL .

A critical discussion of the method of detecting and recording wave
Propagation phenomena with embedded transducers in the light of the

| above comparison.

Withe the input crystals and an embedded transducer, the detection and re-

cording of wave propagation Processes in a rock model furnished the following
information:
(a) The history of the stress component in the direction of the transzducer
bar which coincided with the crystal axis in compression mode,
(v) The wave arrival time, determined directly from the time difference of

the two records obtained on a dual-beam oscilloscope by simultaneous

triggering of the two traces as shown, for example, in Fig. 1o0.
(c) The input pulse or the force history of the impulse on the free surface
of the model half-space which could be used directly to obtain the

corresponding theoretical results with the aid of the computer programs

of Appendices A and B,

VIII.2 Body Wave Measurements in the Isotropic Model.

(1) Experimental Results,

Records were obtained from three of the four transducers embedded in the

limestone block. With reference to Fig, 8, body wave measurements were recorded

_‘_________‘.__——*
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with transducers 2, 3 and 4, Transducer U detected 0,, and transducers 2 and 3

detected O’ Fig. 1 of the main report and Figs. 10 to 12 show the input

and output measurements; the corresponding impact locations and the stresses measured
are also indicated. The data were not extensive since the main objective of the
experiments was primarily to verify the calibration proczdure of the transducers,

It is recalled, the latter was establighed by comparing the external calibration
constant with the in situ calibration in rock bars, and the stress factors of

the transducers listed in Table 3 were based on this correlation. Hence a

comparison of the experimental stress-time records with the corresponding

theoretical results was mainly expected to substantiate generally the reliability

of the experimental techniques as well as the validity of the theoreticul solutions.

(11) Comparison with Theoretical Results,

Both the finite element technique and the integral transform analysis
were chosen for comparison with the experimental data from the limestone block;
however, the integral transform approach could not be applied directly to the
case of an isotropic solid as the solution became degenerate. Consequently, a
small degree of trancsverse isotropy was introduced by the judicious choice of
the dynamic elastic constants so that the analytical solution could virtually be
considered as the response of an isotropic half-space subjected to normal point
force history of arbitrary shape., Accordingly, the dynamic elastic properties
wvere chosen to correspond to those of the Bedford limestone block used in the {
experiments and are listed in Section VI.L. The experimental input pulse was ‘
digitized and a table of values cof the impulsive force on the free surface at

each time step was obtained. A step of l/b usec was chosen for this process that

was considered optimal for accurccy of the numerical computations and the computer
time required. With this input rulse, the stress histories and arrival times were

obtained corresponding to tnose measured by the embedded transducers, In Fig.1l
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of the main report and Fig. 11 results from the integral transform solution are
superposed on the experimental stress histories.

The finite element computer procgram was devised to solve a similar boundary
value problem, However, here the isotropic and anisotropic media could be
considered independently, Thus, using the dynamic elastic properties of
limestone cited above and the experimental input pulse in the form of tabulated
values at convenient time intervals, the stress histories and wave arrival times
corresponding to the experimentel measurements were obtained., These finite
element predictions are superposed on the previous results in Fig. 1 of the
main report and Figs. 10 to 12. The Previously-stated conclusion that the
experimental techniques employed provide a reliable means of detecting and
recording body waves inside a rock is thus substantiated by the satisfactory
agreement of both the stress levels and the arrival times,

Couments on the Wave Propagation Phenomena.

Even though the data obtained on the limestone block were not extensive,
the results reveal a number of ideas associated with the theory of body wave
propagation in an isotropic half-gpace,

(a) p-Wave Velocity.

The wave velocity calculated on the basis of the first signal arrival
corresponds to the p-wave speed in an isotropic medium since it is the fastest of
the two possible wave speeds; ylelding an average value of 170,000 in/sec. This
compares well to that obtained from the material constants used in the theoretical
solutions, namely, 174,000 1n/sec and the corresponding rod wave velocity of
141,400 1n/lec(1u).

(b) Precursor to the Main Pulse.

In the stress history depicted in Fig. 1 of the main text, the precursor to

the major effect of the pulse also corresponds to the first arrival of the p-wave,




It clearly shows a shape similar to that Predicted by theory. The second peak is
mainly the effect of the shear wave., A comparison of the arrival times of the
two pulses gives a reasonable estimate of the ratio of the shear wave speed to
the p-wave speed namely about 0.65.

(c) Attenuation of the Pulse.

The Ot stress histories shown in Figs., 11 and 12 indicate the degree of
attenuation along a hso ray at distances of 2.83" and 4.3" from the impact location.
Both the theoretical and the experimental results showed that the attenuation in the
tensile stress was significantly less than the corresponding attenuation in the
compressive stresses which appears to be due to the dispersion of the pulse,

The peak compressive stress in the x~-direction (okx in Fig. 9) decreased as r'l‘5
where r was the distance of the observation roint from the impact location. The
Peek tensile stress in the same direction did not attenuate according to the

same law,

(d) First Passage of the Pulse and Reflectiorfs from the Boundaries.

The first passage of the Pulse was recorded for a sufficient length of time
before the reflections from the boundaries distorted the data., 1In Fig. 1 of the
main text it is estimated that the reflections arrived at about 65 usec after
the initiation of the pulse on the free surface which means that the theoretical
solution was not compared with the experimental stress history for the complete
passage of the first pulse. This was necessarily so in the case of the finite
element method because of the finite size of the block chosen to represent the
isotropic half-space as well as the computstion time required for obtaining the
transient. However, the integral transform solution predicted a more rapid decay
of the transient. This indicates that there might have been some reflections

at the rock/transducer bar interfaces.
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The less rapid decay of the measured transient indicates a bossible source

i of errors in the lmeasurements, namely the scattering of the wave and the

additional dispersion of the Pulse due to the Presence of the transducers, Since

the pulse length employed for the input, about 40 usec, was long compared to the
discontinuities introduced by the embedment of transducers, it was expected that
these errors would be small; of the same order as encountered in the one-dimensional

experiments of II.7. Both in Fig. 1 of the main text and Fig, 10, the large
oscillations irmediately after the first cycle were not caused by reflections
from the boundaries of the block, the first arrival of which is indicated in the
respective figures, The theoretical solution by the finite element method does

predict such oscillations of the stress even though the integral transform method
Predicts a more rapid decay.

obvious,

It is noted that the finite element method invariably assumes some
smearing of the input impulse., 1In any case, the reflections from the boundarieg

of the block arrived before the measured transient decayed completely,

VIII.3 Body Wave Measurements in the Anisotropic Model,

(1) Experimental Results,

The information obtained from the experimental results was Similar to that
described in VIII,2, The size of the block and the length of the input pulse
insured the observation of the first passage of the pulse for sufficient lengths
of time at various locations, The experimental data with PB as the impact
location, Fig. 15, corresponding to observation Points about 5 to 5% inches from

the impact position were termed far fielg response. The data obtained with
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Pl’ P2, P3, Ph as the impact locations, Fig. 15, from the transducers which were
r about 1.8 inches and 3.4 inches from these locations were chosen to represent

the near field response. These data were compared with corresponding theoretical
predictions of arrival times and stress histories.

In order to discern the information obtained experimentally, the stress
histories depicted in Figs. 29, 30 and 3] are described in some detail. These
three transient normal stress components were obtained for the same impact.,

The input pulse was also recorded simultaneously as shown in the respective
figures. With reference to Fig. 19, transducer Yh detected cyy and with reference
to Fig. 21, transducer Zh detected Oy These two stress histories are shown in
Fig. 30 and Fig. 31 respectively. In view of the symmetry of the block these

two records give the stress histories at the same location, namely (5",%5 ,13")
corresponding to the cylindrical coordinate system shown in Fig. 14, Along with
these two stress histories a Oy record was obtained at a second location,

(5",§E ,14") as shown in Fig. 29. The corresponding stress transient was of the
shape and of the same order of magnitude as the c&y stress of Fig. 30. This is
another indication of the previously mentioned finding that the new set of dynamic
elastic constants obtained in Section VII did not predict significant differences in
the slowness surface from the corresponding isotropic case. The other stress
transients described in Table 6 show the same pattern in the similarity between the
Oy stress at (R,Sl,z) and g stress at (R,QZ,Z).

Other experimental results yielded arrival times and stress histories which
were not all compared with corresponding theoretical results. However, all arrival
times obtained were utilized to determine approximate p-wave speeds in various
directions and, in conjunction with similar results obtained from surface wave
investigation, were used in devising a procedure for estimating the dynamic elastic

stiffness matrix of the material as described in Secticn VII, In particular, the
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P-wave speed along the AES was obtained as 162,000 in/sec and the p-wave speed

along the AES determined in Ref. (2) was obtained as 171,000 in/sec. This

additional evidence, namely the lower p-wave speed along the relocated AES,

Fig. 1k, reasonably confirmed its actual direction,

The mathematical theory of propagation of elastic waves in a transversely
isotropic medium, with the particular dynamic elastic constants of Yule marble,
Predicts that the p-wave speed along the AES is the lowest while that normal to
the AES is the highest. An average value obtained for the latter was 210,000
in/sec which was computed from both the body wave and the surface wave measure-
ments. In the former, a ray normal to the free surface with a transducer located
in line with the impact position was utilized whereas in the latter case, a
radial stress measurement along the axis of foliation Plane was utilized. The

fact that such data as well as those along the AES Yield the exact p-wave speeds

has also been used in Ref. (9). However, since the Present experimental investigation

utilized a more reliable method of determining wave arrival times, it is believed
that the previously obtained values of 203,000 in/sec and 237,000 in/sec(g) are
too high;compared with the speeds of 162,000 in/sec and 210,000 in/sec obtained
in the present work. This is attributed to the possible specific experimental
error in Ref. (9) caused by the late triggering of the oscilloscope by the output
from an accelorometer Placed near the impant roint and the estimation of the wave
arrival time as that corresponding to the length of trace before the first arrival
of the wave at the observation point as recorded on the oscillogram,

(11) Comparison with Theoretical Results,

(a) Near Field Response.

A typical comparison of the near field response with the corresponding
theoretical results is depicted in Fig, 2 of the main report, which shows that
the stresses obtained by the integral transform analysis were much higher than the

corresponding measured stresses and those obtained by the finite element method.
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In general, the finite element method predicted stress histories that were in
closer agreement with the experimental transients than the integral transform analysis
for observation points which were in such close proximity to the impact location.
In the finite element method, since the near field experimental data were obtained
by using a 1/4" dia, input crystal, the input force was approximated as a uniformly
distributed impulse over a circular area of l/h in. diameter, Hence, it appears
that poorer agreement obtained with the integral transform method was due to the
approximation involved in assuming that the response of the block was effectively
due to a concentrated time-dependent load; indicating that such an assumption
is valid only for observation points which are located at relatively larger
distances from the impact pecsition,
Therefore, it was considered inappropriate to compare the experimental data
rnore in detail with the corresponding integral transform results for the near field
response of the block and such a comparison was made only for the far field, On the
other hand, a menningful comparison with the finite element method results could
be achieved only with the near field data in view of the constraints imposed
regarding the size of the block, the size of the mesh, the time interval chosen and
the computation time required. Thus, the rest of the comparison of the near field
results with the finite element method is depicted in Figs., 2L to 28, 1In Figs. 24
to 26, the transducers were located about 1.8" from the inpact position as well
as in Fig, 2 of the main text discussed above. In figs. 27 and 28 the transducers {
were situated in a ray normal to the free surface in line with, and at a distance
of 3-3/8" from the impact location. For such locations, i.e. for observation
points vertirally below the normal load on the horizontal free surface, the finite i
element method solution was closer in agreement with the experiment in the case of ’
a stress component normal to the z-direction, Fig. 28, than in the case of a {
1

stress component in the z-direction, Fig, 27. This discrepancy is consistent

_-_______—-—M
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with similar disagreement between the integral transform analysis and experiment
discussed below in relation to the far field response of the block.

(b) Far Field Response.

The comparison of the exp:rimental data was effected only with the
corresponding integral transform results as depicted in Figs., 29 to 35, reasonable
agreement prevails for the stress levels, However, the exact shape of the predicted
transient appears to be susceptible to numerical errors especially in the digiti-
zation of the experimentally-determined input pulse and subsequent numerical
differentiation. In most cases, the input pulse was somewhat asymmetric and the
disagreement between experiment and theory appeared to be more marked where such
asymmetry was more pronounced., The actual input frequently closely resembled the
shape of a single sine-squared pulse with a duration twice that of the rise time;
consequently, such a boundary condition with an amplitude equal to the measured
peak force was also used in the stress computation. Another alternative used for
the numerical input consisted of a symmetrical loading with the rising portion
mirrored about the peak force. A comparison of a number of stress histories
with the corresponding theoretical results using the three possible input shapes
showed that except for some improvement in isolated cases with the last input
pulse shape, there was little difference in the agreement with the experimental
results, Hence, the actual pulse has been used for comparison in the sequel,

As in the case of the limestone block, the analysis predicted a more
rapid decay of the pulse than was observed. Since the first passage of the pulse
could be recorded for sufficient lengths of time without distortion due to
reflections from the boundaries of the block, the oscillations observed in the
transient were again in disagreement with the integral transform predictions as

shown in Fig. 30. In Fig. 3 of the main text, a comparison of the far field response

with corresponding predictions of both the theoretical techniques was shown to
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i1lustrate the comparison with the integral transform analysis as described above
as well as the inability to obtain satisfactory results with the finite element
method at such a distant observation point for the reasons stated in VIII.3 (i1)(a).
The comparison of the experimental results with the integral transform

analysis was not entirely conclusive regarding the accuracy of the measurements,
especially those involving the S, stress history as shown in Fig. 34, Here, the
second peak in the measured transient appears to be due to the reflection of the
pulse as it propagated through the embedded transducer by virtue of an impedance
mismatch., Similar anamoly was observed in the comparison of the s transient

with the analysis at other locations such as shown in Fig. 35.

VIII.I Surface Wave Propagation Measurements in the Anisotropic Model.

(1) Experimental Results.

Since the transducers were approximately 5" away from the impact location,
the measured transients could again be compared only with the corresponding
integral transform results. A total of 6 complete sets of data were obtained,
each set consisting of the radial and circumferential stress histories, effectively
at the same location relative to the impact location. Out of the 7 pairs of
transducers, stress histories were recorded with 6 pairs; only the circumferential
stress history was recorded at location %

At any location such as (R ’93,)’ Fig. 22, the radial stress transient
distinctly exhibits the p-wave and Rayleigh wave effects as shown in Fig. 4 of
the main report. The shear wave effect was not clearly distinguishable, The
tangential stress histories as depicted for example in Fig. 37 did not record the
effect of the p-wave. The tangential stress was of the same order of megnitude
at (31’91) and (R3,33) but was negligibly small at (R7, 87) (foliation plane).
This latter effect appears to be due to the absence of quasi-Rayleigh effects at

a location such as (R7,e7), the quasi-Rayleigh wave being one which exhibits a

A L S W
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transverse component of motion in the plane of the free surface. Such a component

seems to exist up to 15o from the direction of the foliation Plane, These stress
histories were obtained at about 1/16" below the free surface and even if the
attenuation of the Rayleigh wave were large, these stress components may be

considered as representative of the surface wave effects,

(11) Comparison with Theoretical Results,

The experimental results were compared with corresponding theoretical

Predictions of the integral transform method as shown in Fig. 4 of the main

s = L e, et R L G

report and Figs, 36 and 37. The first two diagrams show the comparison of two

| typical radial stress histories while the third shows the comparison of a
tangential stress history. The good agreement indicates that the theoretical
model agrees remarkably well with experiment, However, the integral transform
method did not predict the diminution of the transverse effect due to the
Rayleigh wave as the direction approaches the direction of the foliation Pplane.
It is not clear whether the failure of the analysis to predict such a phenomenon
was due to numerical errors and also whether the observed absence of the quasi-
Rayleigh waves may have been due to experimental vagaries. This discrepancy

was left unresolved and is not shown in the figures,

VIII.5 Determination of Dynamic Elastic Constants from Body Wave and Surface

Wave Measurements,

The values determined in Section VII lie between those obtained previously
(Teble 4, Appendix D), Thus, it appears that such a method may be ‘applied
in general to other rock materials, The actual values may be improved by adding
other refinements to the technique such as weighing the various data obtained
experimentally and a more general program may be written. Some other features could

be built into the brogram such as automatically reverting from one function to

e ik e S
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another, and approximetion procedures other than least square methods may be used
Zor part or all of the functions which may be also changed as required as the
minimization progresses.

It is noted that it is possible to obtain the dynamic elastic stiffness
constants cll’ c33, chh and c13 from the phase velocity equation cited in
Section VII directly using the approximate p-wave speeds obtained for a number of
directions. Such a procedure was adopted in Ref. (9). However, the fifth constant
¢y, cannot be obtained by using p-wave tests(9>. The same procedure failed to

give satisfactory results in the course of the present investigation and hence

the method of Section VII was devised.

VIII.6 Stress Wave Measurements with Embedded Transducers,

The results show that the PZT ceramic crystal transducers are suitable for
detecting and recordirg body wave Pulse propagation in rocks. The choice of
magnesium as the material for the transducer bar was originally made on the basis
of average value of the acoustic impedance of Yule marble, However, it appears
that the anisotropy of the Yule marble block employed was such that the use of
another material such as aluminum would have been more appropriate in some directions
such as the z-axis in Fig, 14, The embedding technique was quite effective even
if there is some uncertainty about entrapped air bubbles between the transducer bar
and the rock., To achieve intimate contact between the crystal unit and the rock
and in order that the calibration should apply and that the same calibration may
be used for all transducers to obtain internal stress uniformity of embedmeut is
required, with crystal assembly unit completely embedded in the rock with an epoxy
and aluminum oxide mixture surrounding the unit,

The voltage amplification was employed for recording the embedded transducer
response since the initial testing of the PZT crystals by this method in a split

Horkinson tar gave good correspondence of the pulse shapes between the crystal
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and the strain gage records. The general techniques of the experimental measurements

provided a reliable means of detecting and recording waves in the interior and near

the surface of the rock.
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TOTAL
’
TRANSDUCER COORDINATES | EXTERNAL | TRAMSDUCER STRESS
LOCATION (R,0, 2) CALIBRATIY| CIRZUIT ¢ | FACTOR
(Fig. 14) [FacToR K |pPACITANCE C.2%,,
C-pF K n
x1 (s"”,n/2,13") 110 966 2850
Y, (5",n/3,14" 81 1097 4421
t z (5”,41/3,13") 981 652 54,17
P X, 4",n/2,3 33" 82,45 1165 4605
|
YE (4",7/3,3 38")| 149 777 1754
2, (4",4n8,3 38" | 158 718 962
X, (134", 1/4,5") 94,7 977 3364
Y, (134",7/3,5") 314,8 847 845
Z3 (134" 41/3,5") 243,2 557 747
X, (5",3n/4,14") 251,7 446 578
Yq (5",n/12,13") 376.9 677 586
24 (5",13n/12,13" 170,6 907 1734
Ys (4",m2,338") 169,46 1287 2475
zZ, g«", 13M2,338") | 134.3 963 2337
X (1 34", 3r4, 5") 149,.4 959 2092
Yg I(l ¥4", n12,5") 177 1107 2038
2g '(1 ¥4",13m2,8)] 1181 1107 3055

1 3/16" pia. .. s.F.: o/k x 256 /n

TABLE L,
AND STRESS
IN YULE

EXTERNAL CALIBRATION FACTORS
FACTORS FOR TRANSDUCERS USED
MARBLE BODY WAVE MEASUREMENTS,

M_AA_—_‘—_‘—M
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Impact| Input Qutput
Loca-| Scale
Run tion Factor [ Obscer- Stress
No, Fig. | Lb/div,|vation| Pig.| Measured| Gain [Stress/
15 Point No, mv/div S%‘{
24 |
z, : L 0.2 v| 10,84
0 e 29
i | p 100 |2, |27 | o 2 19,2
z.3 t OZZ = =
41 P 200 %G 3
2 Y4 REggRT OYY 0.1 58,60
Y, | 251 o 10 |44.22
s | r, 200 A XY
28 5 <6
Y2 UYY 10 16,13
55 P‘ 200 24 26 'czz | 50 86,7

t FIG. 3 MAIN REPORT - FAR FIELD.

TABLE 5(a)BODY WAVE MEASUREMENTS
YULE MARBLE BLOCK 1 -
NEAR FIELD,
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)‘ 1PACT |inpur ouTPUT
RUN | Loca- [scarze . .
No. | Tron |racronr Sf;fg., FIG. f:;ars'(s”su GAIN srn:fs/
FIG. 15fu/atv, [ 200 | Ko, 210 B
x, | -- Oy 1 2,85
3 P, 50 v, |- oy 0.5 | 2.21
2, - oy 20 1,084
) (- Oyy 0.2 | o0.921
7 P, 50 v, | - Oy 0.5 | 0.897
2z, | -- o,, 1 0.962
x, | 32 ) 0.5 | 1.682
10 P, 50 e L) Oyy 5 1,225
I
z, |3 o, 2 1,493
x, | 29 O 10 5.78
20
51 P | 200 v, | 30 Oy 10 5.86
24 31 OZZ 5 8,67
v, | -- Oy 0.5 | 1.238
16 | P 50
z5 -- °zz 1 2,337
N o 0.5 | 1.046
18 P, 50
%0 =t Oy 2 4,076
z. | 35 o, 2 6.11

TABLE 5(b) - BODY WAVE MEASUREMENTS
YULE MARBLE BLOCK 1 - FAR FIELD.

" . 4*,____‘__._—_#
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Total
Transducer] Coordinatecs External :::";‘:l;: Stress
Location (R,9,2) Calibration it B Factor
(Pig. 22 | (Fig.22) Pactor K |gcitanan] C 256 )
_nc/1h %-pi' | LN
R (s",n/2,1/16") 29,05 315 3534
0, (5",3n/2,1/16")| 39,97 192 1566
R, (5",51/12,1/6")] 169,5 314 603,8
02 (5",17/12 16| 22,14 172 2532
Ry (" ,n/3,1/16") 19,44 333 5583
6, (5",4n/3,1/16")] 58,24 224 1254
Ry (5",n/4,1/16") 53,18 333 2041
N (5",3/4,1/16")] 38,64 199 1679
Ry (5",n/6,1/16") 44,05 320 3590
05 (5",776,1/16")] 25.84 207 2611
" " Did not (
Ry (5",n/12,1/16")| 52,95 ERRS) e 1
|
0 (5",13w/12,118")| 27,93 155 1809
|
|
R, (s",0,1/16") 84.41 330 1274 ‘
6, (", n, 1/16") 45,69 171 1220

TABLE 6,

EXTERNAL CALIBRATION FACTORS AND

STRESS FACTORS FOR TRANSDUCERS USED IN SURFACFK

WAVE MEASUREMENTS,

,_______._____JM
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| ,

L Input Output
| Impact] Scale. > '
Run | Loca~- | Factor| ovser- Fig., Stress [ Gain| Stress/
No, tion | Lb/div] vation No, | lKeasured | mv/ div,
Fig, 22 Point div pst
Rl Lie ORR 2 7.068
3 Center 100
81 N oee 1 1,566
R SF (o 20 12,076
6 Center 100 . RR
62 == %e 1 2,532
R e 1 583
3 Eé%g %’Rr 8
7 Center 100
b2
93 37 %0 1 1,254
11 Center 100 94 Oy 089 2 3,358
12 t 100 iz
Center R4 ORR 5 10,21
\}3 Center 100 R5 -—- ORR 5 17,95
14 |Center 100 65 -- Oee 1 2,611
16 Center 100 P,, -- ORR 10 12,74
18 Center 100 66 == 069 2 3.618
f R, 36 %R 5 6.37
20 Center 50 {
97 -- an 1 1,220 |
|
i i
TABLE 7, DETAILS OF INPUT AND OUTPUT FOR . J

SURFACE WAVE MEASUREMENTS ON YULE MARBLE BEOCK
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:
i

Crystal

Compression Mode:

sa— Q=o-0d=Fd=C:V

e Piezoelectric constant d= ——-C;_.V

L
|

\oreo of cross-section of circular crystal d

Transducer

/ gir gap
L

i
SR A, Compression Mode :
:__: :ﬂ' Force= oA = F
/| e Q=FK=C-V
1 f E - Equivalent C.V
Sk piezoelectric} K= =
constant

\areg of cross-section of transducer A

“area of cross-section of crystal @

Notes: (i) Air gap is neglected
(ii) For same C, o, K=%-d

if force is distributed uniformly

(i) Since transducer construction is not ideal
K varies with individuc! transcucer

(iv) K is determined by external calibration in
split Hopkinson bar

FIG. 4
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A AES of Ref. [3]

40°
= »y
Foliation plane normal
/ /10 the free surface
viz. Xy plane
FIG. 13
Relocated
‘x AES Xy "
~—10"—~
' 55°
E— - —
y /4
Relocated
foliation
lane
A

YULE MARBLE BLOCK |, FOR BODY WAVES
FIG. 14
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OF YULE MARBLE
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DETERMINATION OF STATIC AND DYNAMIC MECHANICAL
PROPERTIES OF YULE MARBLE

I. Introduction

The application of any scientific or technological procedure to a material
requires a precise knowledge of its response to both static and dynamic loading,
whether for the purpose of understanding the phenomenological processes produced
as the result of the application of forces, whether for the purpose of predicting
events, or whether for the purpose of design and construction. In the case of
rock, such information is vital in the areas of drilling and excavation, the analysis
of foundations for the support of surface structures, and geophysical prospecting,
to mention but a few, Large quantities of mechanical data have been collected
about a variety of rocks in the past, but, to the author's knowledge, there has
not been a concentration of tests on a single material by one investigator for
the purpose of ascertaining the strength characteristics of this substance by a
variety of techniques. This portion of the report details such efforts as applied
to Colorado Yule marble, the material employed in the parallel theoretical and
experimental investigations concerning wave propagation produced by surface impact
on large blocks of this material that simulate a half-space.

Yule marble was chosen as the test material for a variety of reasons: (a) Tne
rock has been the subject of extensive previous geological and petrographic examina-
tions(l)(z)(3)*, including the effects of strailn rate at high temperatures and
confining pressures(h) and the nature of fabric changes under large hvdrostatic
pressures(S)-(s); (b) The fabric is macroscopically homogeneous (with respect to

wave lengths of interest) and nearly transversely isotropic with a well-defined

crystal structure(6)(8), and it can be secured in large sample sizes without faults

& Numbers in superiors indicate References listed at the end of the text.

s Eetmm— NS J
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or cracks. Thus, it is an ideal substance to be experimentally employed for the
verification of wave propagation analyses utilizing transverse isotropy; and

(c) Previous(g)(lo) and concurrent surface and body wave studies were executed
with the aid of two 24" x 24" x 10" blocks of this material furnished by the

U. S. Bureau of Mines, Minneapo}is. The investigations of Refs. (9) ar1 (10)

required the determination of some of the properties of the marble; however,

g —————

Some anomalies were observed that the present more detailed examination resolved.

It should be mentioned that all the previous dynamic tests with the

exception of the measurement of transit times of one of the two blocks (which

were eventually utilized for the calculation of the elastic constants of the

ﬁ material) were rerformed on randomly obtained specimens. The samples utilized

in the present investigation were all derived from a 5' x 2' x 13" slab obtained

from the Clervi Marble Company of San Francisco, California, Differences in the

data cited here and that obtained from other previous and concurrent tests may

thus, at least in part, be attributable to natural differences in composition

and/or structure of the raw material (since no qQuality control could be exercised),
The general objectives of the Present investigation consisted of the deter-

mination of the axis of symmetry and the mechanical properties of the marble, including

fracture Properties, as a function of strain rate; the effects of tem—erature,

confining pressure, Porosity, water content and similar parameters were not
considered. Specifically, the location of the axis of transverse isotropy of the

slab was obtain:d by crystallographic techniques; the five constants characterizing

a transversely isotropic elastic material were obtained in t>nsion and compression
and under static and dynamic loading; the influence of strain rate and specimen

orientation on the modulus and unconfined strength of tensile and compressive

specimens was examined; and the nonlinear and/or anelastic behavior of the rock was

characterized, Standard testing equipment was employed to secure the quasi-static
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mechanical properties, while Hopkinson and split Hopkinson-bar procedures (cf. 11, 12)

were utilized to derive the corresponding dynamic information. A considerable

amount of developmental work was required to select specimen shapes that rermitted

fabrication without brittle failure occurring during the manufacturing process. In

many cases, the test technique was verified by the use of aluminum specimens whose

known Properties could be checked against experimental results.

II. Physical and Geometrical Characteristics.

Yule marble has been described by Thill(3) as a pure calcite marble with
specific gravity of about 2.70 and grain sizes ranging from 0.3 mm to 0.5 mm
with an average of 0.4 mm for the sphierical specimen examined ultrasonically,
Knopf(6) observed a porosity of about 0,15 Percent and called the crystalline
calcite grains to be medium-sized ellipsoidal grains whose short axes are oriented
Predominantly normal to the marble "grain". Tt has been shown(6)(8) that Yule
marble displays a distinct pattern of preferred orientation of calcite optic
axes. A 1000-point-count modal analysis indicated that the marble comprised about
99 percent calcite and 1 percent accessory minerals, notably biotite, epidote,
magnetite and muscovite by volume.

The present 5' x 2' x 14" test slab exhibited bedding planes as evidenced by
the presence of grey bands of Opaque mineral throughout the specimen. Although
not totally uniform, the average normal to these planes is relatively constant and
is located in the largest Plane of the slab; this will be termed the Z-direction.
The specific gravity of the material was found to be 2.81 with crystal sizes
ranging from 0.2 mm to 0,7 mm and a mean of 0.5 mm. All test samples were cut
from this slab and are identified by two letters followed by a single or two-digit

number. The first letter shows the general coring location as indicated in Fig. 1

the second denotes the direction of coring for the sample, while the numbers identify

a more initial position of the specimen in the slab.
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The {nitial assumption of coincidence of the axis of transverse {sotropy
vith the Z-axis, the average rormal to the tedding planes, vas verified by preparing
& thin section cut from the slad (Pig. 1) perpendicular to the Z-direction end
exaaining the orientation of each of 100 calcite crystalas of the epecizen., This
vas sccomplished by recording the inciination of the uaiversal ztage incorporsted
in the crystaliographic microscope thet was required to produce the (nterference
pattern of a crystal whose optical axis is yerpendicular to a fixed d!nc'.loa(u).
O1ly those crystals with opt. O axis angles less than §O° vith the bedding rormal
could be detected due to (ns® rument lizitations; however, 91 percent of the
crystals vere located wihin the observation region, Considersticn of the viaidle
domain, represented by thet portion of the surface cf » henisphere enclosed Ly ..
50° cone vith the apex at the origin, indicates that the reatio of this area to
that of the hemisphere is adou® 0.30. Consequently, a jurely random crystal
orientation such as found in the cage of an {sotropic material would {ndicate thet
70 percent of the observed crysials (rather than 9 percent as found here) should be
outside the zone of possible crystallographic exsmiration. The highly ant 2nropic
nature of this material {s thus estadlished.

‘e location of the crystal axes wae found %20 be quite eylindrically symetric
vith respect to the Z-axis, the ini%{a) assumplion concerning the colnzidence of the
bedding plane normal wvith the axis of transverse lsotropy sppeared %o be substantiated,
This conclusion i{s dased on the Rypothesis that the ¢.etridution of optical properties
is directly correlative with the orientation of macroscopic mechanical properiies
and that other rock characteristics, such as, for exasgile, the orlentation of
cracks either alsc confirms this reeult or <lse s &0 effect of second order. This
trend i{s strongly supported by evidence tnat velccity risotroples obtalned by

ultrasonic measurement techiniques on Yule marble coincide wish cryetallograghic

anisotropies corresponding to - transversely {aotrople u'.crhl(”.
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III. Quasi-Static Tests.

a) Compression.

Ten uniaxial compressive test specimens with a diameter of 1,05 in. vere cored
in each of tha three principal directions using an oil-cooled diamond bit mounted
on a specially converted milling machine. Nocinal lengths of the samples were 2 ia.
for the Y- and Z-directions, while the alab thickness limited that in the X-direction
to l} in. The specimens vere ground flat with an abrasive diamond vheel with a
maximum difference of 0,0015 in. in the dimensions of the axis and two generators
90° apart. In spite of extreme care in the fabrication process, theres is a possi-
bility of the disturbance of the fabric relative to its virgin state, although
it is expected that any such damage vill have only secondary effects on the
mechanical response of the samples.

BLH FAE-12-12S9L epuxy-backed strain gages with a length of 1/8", a resistance
of 120 ohms and a gage factor of 2,01 were mounted longitudinally with EPY-150
epoxy at the two ends of the midsection diameter of each specimen; for the G-series
of sarples (cored normal to the X-direction), a pair of transverse gages vere
additionslly mounted in a similar manner near the specimen center. All gages
were wired in series to eliminate any flexural components end were incorporated in
an AC-excited bridge circuit; they were calibrated with the aid of shunting a
known resistance across each gage pair. The compressive force applied through
bearing plates by means of a 0-20,000 1b, capacity Inatron testing machine vas
determined by a calibrated load cell, Both a variuble time base strip chart
recorder and a dual-trace oscilloscope were employed to recurd the strain ané load
histories. The arrangement was checked out by the determination cf the known elastic
constants for a 7075 aluminum test specimen,

Two specimens from each direction wsre tested to fracture at each of five

strain rates ranging from ¢ = ].O'6 to 1()'2 yper second, yleliling the results shown
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in Figs. 2, 3, and U for the highest and lowest rate in each instance; apparently,
rate effects are small or negligible in this domain, The curves characteristically
exhlbit three regions: an iritial concave upward shape with an original tangent
modulus El Up to about one-third of the failure stress, followed by a linear

region with slope E2 in the amiddle third of the stress range, followed by a
concave-dowvnward portion Up to maximum strers O which is always larger than
fallure stress O The average values for each of the three directions X, Y,

and Z vere 5.6, 6.6 and 2.6 x 1o6 pei for E, and 8.9, 8.1 and 5.8 x 106 psi for

!2 over the entire quasi-static range; there was far less variation between
specimens for the linear modulus E2 than for El, where errors in its determination
vere estimated at 20 percent, the extremal values for the latter oocurring

in the X-direction at a rate of 0.9 x 10°2 per second and amounting to 6.9 and

b x 10»6 pei, respectively, for the two specimens, The strain rates quoted

vere assumed to be uniform up to the value of (2/3)05, but their values at fracture
sometices were consideradbly greater than this average.

In the region near fracture, strain recorded by the gages no longer is an
accurate measurement of average cross-section.l specimen strain-e¢., Almost without
exception, fracture paths initiate at the corners of the specimen and travel
diegcnally through along one failure plane. In the Xand Y directions, these
planes were invariably orient~d such that their normal lay in the Plane defined
by the axis of the ¢ylinder and a point lying in the Z-direction. Gages mounted
such that this plane of failure traveled through them produced larger strain
readings than those located awvay from the fracture path. This conclusion was
reached after mounting four gages at 90° intervals at the midsection of both Y-
and Z-direction specimens and comparing the stress-strain curves derived from the
two orthogonal gage Pairs as shown in Fig. 5. Gages on specimens in the X-direction

vere unintentionally located so that they were as far ag Possible from the fracture
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Path while thosge on specimens in the Y-direction were bositioned sych that the

fracture path always passed through the gages, Thus, the apparent difference

in material Properties near failure -- X-direction specimens appearing brittle,

while Y-direction samples exhibiting a region of large strains and low modulus --

is explained by the difference in gage location with res

assumption of one-dimensionality breaks down in the prefailure region,

Specinons in the Z

The maximum stress in the X-direction varied from about 8340 to 9koo Psi over

the strain-rate range of about 10-° to 8 x 1073 with maximum strains ranging

from 982 to 1300 x 10'6; the corresponding values for the Y-direction were 7600

to 9300 psi for strains of about 3300 to 2100 x 10-6 and values for the Z-direction

of % = 105350 to 16,500 psi at strains of 3070 to U750 x 10'6, respectively, The

failure stress increased weakly

isotropy,

by
6. 3 (o~ )=t o €. = a./2G'
Xx E ‘“xx"Woyy/- T o0, yz = Cyz
<& . o - ' D-1
Y% °F (°&y uokx) E" 9% 2z = okz/2G \Bat)
a
" 1 e X (L4y)
22 = " g (okx+°&y)+ E' %2 2% 2G E Ixy
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contain five elastic constants: E, p and E', p' denote Young's modulus and

Poisson's ratio in the Plane of isotropy X-Y and rarallel to the axis of transverse

isotropy, 2, respectively, The fifth constant G' is the shear modulus in any plane

Perpendicular to the plane of isotropy. Four elastic constants can be obtained with

the aid of Eqs. (D-1) by measuring axial load and longitudinal and transverse

strain in uniaxial specimens oriented parallel to the Y and Z-axes, while G' can

be determined from values of these quantities in a specimen cut parallel to a
line MS? counterclockwise from the Z-axis in the X-Y plane. Transformation of

both stress and strain tensors Yield the relation

ohso
2( ‘usoL- eusOT)

G' =

(D-2)
where subscripts L and T refer to longitudinal and transverse strain, respectively,

and 45° refers to the specimen orientation.

These constants were evaluated from specimens 1.05" x 2" long cut along the

Y, 2 and 45° directions as indicated by the G-series in Fig. 1.
first

The samples were
loaded from O to 1200 psi and then unloaded at about 100 psi/sec for seven

cycles in the Instron machine and then loaded and unloaded to 6000 psi at a rate

of about 300 psi/sec for three edditional cycles. Typical results are shown in

Fig. 6 , 7 , and 8 ., The material exhibits a "first cycle" effect as shown in

Fig. 8 : a permanent deformation accompanies each virgin stress level, but upon

subsequent loading to this level, there is hysteresis, but no appreciable permanent

set. The ratio of transverse to longitudinal strain was found to be non-linear

(or ﬁérhaps bilinear) for both Y- and Z-dir:ction specimen. In order to avoid the

Problems of non-linearity and first cycle variations, the elastic constants were

determined from the seventh 0-1200 psi loading cycle as

6 6 6
E, = L7 x 10”7 psi; b = 0.13; Ei = 2,3 x 10" psi; “i = 0,05; Gi = 1,4 x 10" psi




b) Tensile Tests

After two initially-selected specimen geometries proved to be unsatisfactory,

0.768-in, diameter rods were cored from the Y, Z and 45° directions with the aid

of a converted water-cooled gravity drill press and cut to lengths of approximately

5-3/4% in. by a diamond saw. Two 3/h-in. diameter x 1% in, threaded aluminum

endcaps were glued flat to the specimens with Scotchweld Structural Adhesgive

and wrapped with transparent tape so that their diameter approached that of the

rock cores,

In order to estimate the magnitude of the bending stresses that are invariably

extant to some extent in any tensile specimen during testing, three gages were

mounted at 120° intervals around the midsection of & sample yielding readings of

6> & and e3. A simple analysis(lh) shows that the pure tensile strain € the

angle between the neutral axis and the gage reading € namely eo’ and the peak

bending stress o, are given by

Ale-¢,]

1 I

R Tl s g e o -
(¢-¢,) o=
I k. 1

% = Tsin Qo

With a value of E = 7 x 106 Psi, the ratio of the outer fiber bending stress to

average tensile stress wes about 15 percent for a specimen loasded about two-thirds

to fracture,

Four specimens each from the Y- and Z-directions, supplied with two diametrically

opposed strain gages at the rock midsection were loaded to fracture at various

strain rates with results as shown in Figs. 9 and 10; all of the Y-direction samples

broke at the glue Joint, whereas two of the four Z-direction specimens broke near

the gages. The data presented wre most likely in error since (a) the measured

strein is probably smaller than that at the interface where failure generally

occurred, (b)

the fracture stress is underestimated since a stress concentration

. T TP Tl nwmhh e .
R —— - i el
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apparently exists at the interface, and (c) the apparent increase in fracture

stress with strain rate may be partly due to the property of the glue rather
than that of the rock.
In order to overcome these deficiencies, an initial attempt was made to
Produce a special contour previously employed for fracture investigations of bone(15)
that had been photoelastically and anelytically shown to yield a nearly uniform

(16)

stress distribution across the section » but the production of the geometry
proved to be very time-consuming and, further, most often resuited in specimen
failure during fabrication. A contoured specimen geometry was then machined from
& 3/4-in, diameter cylinder with a length of 2-7/16", consisting of a central
15/16" long reduced section exhibiting a uniform 3/8" long region with a diameter
of % in, vhere a pair of gages was attached, and end fillets of &-in. radius

that did not break in the manufacturing process. Contouring by means of sandpaper
applied to a rotating workpiece yielded an ellipsoidal section exhibiting a
distinct "grain" and requiring the use of a powertool to fabricate a cylirdrical
test specimen. It was subsequently determined analytically that a 3/h-in. radius
fillet would have been more satisfactory by significantly reducing stress concen-
trations in the region of the section change.

Table 1 presents the results of the quasi-static tensile tests both for the
3/h-in. diameter by 6" long and special contour specimens, including two special
samples represented by the last two ent»ies that were examined at comparable strain
rates to provide a direct comparison of the effect of a change in the test section
geometry on mechanical properties. Here a much lower total fracture strain was
noted for the contoured specimens, although the maximum stress o, for the two cases
agreed closely. The gages were found to te located at the maximum possible

distance from the fracture path and thus yield different results as explained in

conjunction with Fig. 5. Fig. 11 shows the stress-strain curves for three contoured

Z-direction samples. While there appears to be an increase with strain rate of
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initial modulus El for the Y-direction, this does not appear to be the case along

the axis of transverse isotropy.

IV, Crecp Tests.

Creep tests were performed on both tensile and compressive specimens in
order to determine the approximate stress levels where viscoelastic effects begin
to dominate the material behavior. Instrumented compression specimens fabricated
as described previously were loaded in approximately 700 psi increments at a rate
of 700 psi/sec by an MTS testing machine in the constant load mode. Each level
was maintained for 100 sec, after which the next load increment was applied; the
strain gage output was continuously monitored. The results are shown in Figs. 12
and 13 for the Y- and Z-directions, respectively. An additional creep test on a
Z-direction sample involving a load of 3600 psi applied for 15 minutes yielded
less than 20  in/in of creep strain. It is evident from these data that there
is no significant creep except in the vicinity of failure which appears to Le
brought about by this flow.

Rock specimens equipped with aluminum endcaps as employed in the quasi-static
tensile tests were rupidly loaded to a constant stress level of up to 230 psi by
the attachment of weights to the lower loading chain of the Instron machine. The
constant strain response for loads applied up to 10 minutes indicated the absence
of noticeable viscoelastic effects in this range. Buployment of higher stress levels
required the use of the Instron machine in a constant load capacity; however, this
mode of operation limited loading rates to about 30 psi/sec so that only the last
part of the creep curves were obtained, Here, too, with stress levels up to 650 psi,

no significant viscoelastic behavior was observed either in the Y- or Z-direction,
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V. Dynamic Tests,

a) Hopkinson-Bar Experiments.

One Y- and one Z-direction Hopkinson bar, samples JZ and IY, respectively,
were fabricated by gluing together three appropriately oriented 3/h-in. dismeter
rods 6" long, similar to those employed in the tension tests, and were supplied
with two sets of diametrically opposed longitudinal gages mounted on the central
section about 4-13/16" apart as well as with one transverse vair immediately
adjacent to the far‘hest longitudinal transducer set. Another specimen, Mi5,
but 5-3/L4" long was cored at 45° in the Y-Z plane with identical bedding to IY
and instrumented with a single pair of longitudinal and transverse gages, the
former being located 2-5/16" from the rock impact end. All specimens were pre-
faced by 3/k-in, diameter x 4" aluminum end caps attacired with wax to prevent
local fracturing, They were held vertically in an arrangement pPermitting loading
by the impact of a %-in. diameter steel ball dropped from a height of 22% in,
through an aligning tube onto the aluminum cap., The strain yulses detected by
the gages were recorded simultaneously by a 565 dual-beam Tektronix oscilloscope
whose amplifier had a bandpass flat to 3 megshertz using a potentiometric circuit
that permitted gage calibration by observation of the effect of inclusion of
known shunt resistors in the loop. Triggering of the device was achieved from
the signal generated by a piezoelectric crystal taped to the side of the specimen,
Peak arrival times were used to calculate both rod wave velocities s and the
ratio of transverse to longitudinal strains for both compressive and tensile
Pulses, the latter being generated by reflection at the distal bar end. Wave
speed determination for specimen M5 required the use of both incident and
reflected pulses,

A uniaxial elastic analysis without correction factors was employed to evaluate

the dynamic elastic constants. Since minimum pulse lengths of 6 inches prevailed

throughout the tests, yielding a bar radius to wavelength of about 0.06, geometric
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dispersion will be minima1(17) and this theory should accurately describe the

phenomenon. This was substantiated by the virtual congruence of the strain pulses

at the two gage stations., Again assuming transverse isotropy, the constants

were determined from the relastions

E. =pc 2 Py = f! for the rod in the Y-direction
d o} d eL
e
Bl =pec’ J by = for the rod in the Z-direction (D-b)
euso(cou /p)a L
B 2 for the rod at 45° to Y-z (MYs)

2le,.0 - €,c0)
usL hsg

where p is the mass density and the subscript 45° refers to data from bar ML5,
It should be noted that the results are not affected at all or negligibly by the
presence of glue Joints due to the manner of construction of the specimens. The
results of these tests are summarized in Table 2.

b) Split Hopkinson-Bar Experiments.

The split Hopkinson-bar tests(le) were performed not only for the purpose of
obtaining the dynamic elastic constants of the material by an alternative technique,
but also to examine the strength characteristics of the substance at loading rates
higher than those produced in the quasi-static experiments., The sample examined
consisted of the contoured specimen employed for the quasi-static tensile tests;
its size is large compared to that usually employed in this type of test, but it
was believed that this geometry represented the minimum distance necessary to preve:t
the alteration of macroscopic mechanical properties due to the fabrication process.
The shape exhibited the edvantages of known boundary conditions on the end faces of
the contoured region that is integral with the larger diameter rock cylinder and
consequent elimination of any frictional effects, the use of identical geometries
for both tensile and compressive tests and comparison with quasi-static results fer
the same geometry, and the localization of the maximum stress in the vicinity of

the strain gage location at the contour center apprc .imatir, the achievement of
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the goel of simultaneous stress and strain measurement at the same position,
Concomitant disadvantages include the difficulties of specimen fabrication and
the problem of accurate determination of the stress history for short pulses
and/or anelastic material properties. However, since the ratio of specimen length
to wavelength is less than 1/8 and the material is nearly elastic/brittle, the
cecond objection is mitigated.

Fig. 14 presents the configuration of the split Hopkinson bar tests;(ls) a
compressive and essentially one-dimensional pulse of about 200 psec duration
produced by the impact of %-in. diameter 30° cylindro-conical hardened steel
projectile fired from a pneumatic propulsion device travels through an elastic
eluminum loading bar to the specimen which passes the major portion of the wave
onto the succeeding output or record bar where the transmitted stress history
1s recorded by a pair of coupled longitudinal strain gages. The strain history
is monitored by a pair of gages at the center of the contoured section. An
important feature of these waveforms is the neerly linear wavefront that yields
& relatively constant strain rate. Tensile Pulses were produced with the aid of
& somewhat shorter projectile by Permitting the initial transient to reflect at the
distal end of the unit and reversing the role of the loading and recording bars,
with the stress histories deduced from strain outputs on the loading bar. The
transient recording and triggering arrangement has been previously described.

Each specimen was cemented between the loading and recording bars by means
of Scotchweld Structural Adhesive; the entire unit was carefully aligned both in
a horizontal position and coaxially with the centerline of the gun to minimize
the introduction of bending., Two other steps were taken to reduce flexurasl effects:
& bending suppressor consisting of a 1" 0.D. x 6" long section of acrylic tubing
1/8" thick, which was successfully employed in previous Hopkinson bar experiments(IS),
was slip-fit over the léading bar hé in. from the specimen, and the length of the

loading bar was chosen as 5 feet to reduce any interference by the much more slowly




travelling flexural components with the primary longitudinal pulse in the test

section,

The stress history at the center of the gage section was deduced from the
strain gage outputs on the aluminum bar with the aid of uniaxial elastic wave
propagation theory. The assumptions present in such an analysis include the
uniform distribution of stress across the section and the neglect of lateral inertia
and shear as well as the hypothesis of plane sections, the elastic behavior of the
specimen and small values of the measured strain, the equivalence of s system
composed of a uniform cylindrical rod of the sare length and constant minimum
diameter for the c~ntoured specimen actually utilized, and the absence of an
effect of an initial compressive wave on the tensile properties of the sample,

The equivalent system hypothesized here actually represents an extremsl case
since the discontinuity actually present is not as severe. The other assumptions

are either reasonable or have been deliberately satisfied by the choice of the

experimental conditions.

’

/
Based on the above considerations, the stress’ at the center of the test

specimen g<t> can be evaluated from measured data by means of the relation

Aa "‘r 28. :
ot>= = E ¢ <> [‘c-(2c # === (p-5)
r Or (o]

where A is the cross-section area, t is time, Lr is the specimen length, ‘a is

the distance of the record gage from the rock-aluminum interface, and subscripts

r and a refer to rock and aluninum, respectively. The most serious error in the
broper application of Eq, (D-5) results from even small inacruracies in the time lag
td between stress and strain readings and not in the analytical model of the process,
Utilizing the relations developed for one-dimensional wave propagation in bars

with discontinuities(ls), the abrupt change in geometry involved providing the

equivalent system for the use of Eq. (D-5) yields a stress-strain curve with only
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a 5 percent higher modulus and maximum stress, albeit with noticeable hysteresis
relative to the correct results produced for an infinite ratio of wavelength to
specimen length(*).

A total of nine contoured specimen from the Y- and Z-direction were tested in
tension or compression by means of the split Hopkinson bar technique, Typical
results are shown in Figs. 15, 16, 17 and 18, where d represents the eccentricity

of the striking projectile. A summary of the tests is presented in Table e

VI. Discussion and Conclusions.

The accuracy of the assignment of the Z-direction as the axis of transverse
isotropy as shown in Fig, 1 is supported by optical observation of “ne preferred
orientation of calcite crystals, by visual examination of the slab bedding planes,
by the "grain" of the rock experienced when specially-contoured tensile and split
Hopkinson bar specimens were fabricated, by the maximum strength anisotropy observed
experimentally, and by the anisotropy of initial and secondary moduli associated
with the static stress-strain curves obtained. If maximum compressive stress
transverse isotropy is to coincide with the Z-axis, the maximum compressive stress
in the X- and Y-directions should be identical. Using the formula suggested
by Obert et al (19) to correct for the short column length used in the X-direction
specimens,

o= °b(°'8 + %7%) (D-6)

where ¢ = o, at L/D = 1, L is the specimen length and D is the specimen diameter,
X-direction specimens exhibit compressive strengths approximately 5% higher than
Y-direction specimens, However, Z-direction specimens have ccmoressive strengths
from 384 to 77% higher, depending on strain rate. From the data of Section IIIa,
the initial modulus E1 and secondary wmodulus E2 show the same anisotropy; thus,

the orientation of the axis of transverse isotropy for the slab is well established.

The determination of the five elastic constants from quasi-static compression

*
cf, Thesis by S, P. Howe
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tests was hampered by the fact that the material exhibited a hysteresis loop
even at low stress levels. Another serious problem was Presented by the existence
of ar. apparent "first cycle" effect such as shown in Fig. 8. At stresses below
300 psi, this effect could be neglected permitting the calculation of "elastic
constants"; however, the extremely low strain at this level prevented the deter-
mination of accurate value. results, It is tempting to ignore the initial non-
linear region of the stress-strain curve and consider only elastic constants based
on the region —%»to E;é - This concept suffers from two deficiences: the region
1s only one third the stress range of the material and the gen;ralized Poisson's

c

ratio |, and u' are not constant in this region, In the range -§E-to fracture, the

instantaneous tangent modulus decreases as stress increases. Since the creep tests

2

rerformed indicated a strong time dependence at stresses higher than -;h y any

hope of the existence of a linear elastic constitutive equation in that region

vanishea,

The stress-strain curves from quasi-static tension tests, such as Figs. 9-and
10, were linear only at very low stress levels, In constrast to the compression
tests, the instantaneous tangent modulus continued here to decrease with increasing
stress. The values of El in tension agree closely with those of Ea in compression

while the magnitudes of Ei in tension 1ie between those of Ei and E% in compression,

In the range of quasistatic strain rates employed, 10~/ to 10”2 per second, the
general shape of the stress-strain curves did not change, Although maximum stress
increases with increased strain rate, there seems to ve virtually no rate effect
on the initial or tangent modulus in this domain, A comparison between compressive
and tensile static and dynamic moduli is Presented in Table 1 of the main report,

The dynamic data is generally higher than corresponding static values; this effect
1s greater in compression than tension, and greater in the Y- than in the Z-direction,

Values obtained using Hopkinson or split Hopkinson bars are similar in spite of the

difference in the strain regions over which the moduli were computed,
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|' Rlckcttsw)(m) obtained the \tatic elastic constants for one of the sarble
blocks employed in the present va’e propagation tests by cutting out small wedges
from one edge and subjecting the samples to compressive testes in an Instron
machine at the rate of 0.01 in/min. The specimens were chosen slong directions
believed tc be principal axes; however, the orientation deviates by about 15°

! from the axis of elastic symmetry selected in tie present tests. MNe alsc obtained

four corresponding dynamic constants for the saae block by p-vave velocity
measurements in different directions; the £ifth constant could not dbe obtained
vithout an actual szhear vave measurement which was not executed. Consequently,
this quantity was scaled upvarde from its static value by the average increase of
the other constants under dyuamic conditions. These constanis are compared in
Table & with the resulte frum t™s vave velocity meas:rement utilizing the embedded
crystals that also involve the same block as well as the coapressive Mopkinscn
bar data of the present investigation for the initial (or tangent) modulus, It
should be emphasized tha: the latter data were obtained from a different parent
block and are based on the values given in Table 1 of the main part. The con-
version of the modull E, E', G' and Foisscn retios , and p' to the stiffness
coefficients cu {s accomplished by means of the nlsuom(9)

1 _E 1
cll'“ﬂ’F;];ch'“m’T%];

' = P -
Gty o B e e s os e b () ()

The values of the clastic constants obtained in ‘he l'opkinson bar tests

(p-7)

vith specimens cored from the mardle slad are generally comevtiat higher thai. those
derived from the interial velocitly mescurements of the marble block, but lower
than the corresponding data obtained by R!cko'.‘..n“o). It is delieved that there
may be a cystematic error in Lha wave speed data due to an inadllity to account

for elriiit delay in the triggering o. the initial signal in these e:periments,
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yielding a shorter transit time and, consequently, a higher value of the elastic

constant. It is also clear that it might be possidle to obtain values of the
dynamic constants lower than presumably corresponding static values if the former
are based on values of the initial tangent modulus » whereas the latter are
calculated from the slope of the middle third of the compressive stress-strain
curve., Comparison between any constants should alvays be executed at
approximately the same strain level and strain rate and in the same mode of
loading. A comparison of the moduli and Poisson ratios obtained in the present
sequence of tests is presented in Table 1 of the main body of the report; dynamic
constants uniformly exhibited higher values than the corresponding static
magnitudes,

The variation of compressive and tensile strength as a function of strain
rate is presented in Figs. 19 and 20, respectively. Increased maximum compressive
stress with increased strain rate is more pronounced along the axis of transy :1se
isotropy while this trend is reversed in tension. These results reinforce an
intuitive feeling for Yule marble as a material extremely weak in tension, particularly
when tengsile forces act Perpendicular to the bedding planes.

The creep tests Performed, although of a ypreliminary nature, provide
additional insight into the mechanical response of the material. The test results
imply that Yule marble cannot be treated as a brittle 80lid even at ambient
temperatures and pressures. It appears that time effects become important to
material response at stresses near i;'-‘- for compresegive loading. It must be
emphasized that these tests poipt to the presence of some time dependence and the
importance of this effect at stresses above 23& in a small range of Quasi-static

strain rates rather than an attempt to formulate a complete constitutive equation

for the material, Tensile tests also indicate little time dependence at low

stress levels but a definite time-dependence near failure.
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In conclusion, it may be stated that the characteristics of this particular
rock, homogeneous and of low order anisotropy as it is, present major problems
relative to an attempt to formulate & three-dimensional constitutive equation,
Initial elastic constants are valid only for extremely small strains., Tensile
and compressive moduli differ. The material exhibits a "first cycle" effect.
The rock is not brittle but rather has Some cmall time-dependent plastic region,
Although the general shape of stress-strain curves both along the axis of elastic
symmetry and perpendicular to it are of a characteristic shape and show little
time dependence at quasi-static strain rates, hysteresis accompanies unloading
at any stress level above the small region where the initial elastic constants
are vali’/, Dynamic elastic constantg are higher than corresponding static
values. In the dynamic range of strain rates, tensile and compressive elastic
constants differ significantly, As a result, Yule marble is "characterized"
by a set of experimental data rather than an analytical formulation and does

not conform to any published constitutive equation cited in the literature to

date,
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Quasistatic Tensile Stress-Strain Curves for Y-Direction Samples
Quasistatic Tensile Stress-Strain Curves for Z-Direction Samples

Quasistatic Tensile Stress-Strain Curves Using the Contoured Specimen
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Y-Direction Compression Creep Test Results

Z-Pirection Compression Creep Test Results

Split Hopkinson Bar Geometry

Stress-Strain Histories from a Split Hopkinson Test on Specimen LY-12-1

Stress-Strain Histories from a Split Hopkinson Test on Specimen JZ-9-2 4
Stress-Strain Histories from a Split Hopkinson Test on Specimen Ly-12-2 |

Stress-Strain Histories from a Split Hopkinson Test on Specimen Jz-11-2

Effect of Strain Rate on Maximum Compressive Stress
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Effect of Strain Rate on Maximum Tensile Stress
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TABLE 1: QUASI STATIC TENSILE TEST RESULTS

¢ ) ﬁm;l El . 326 °h3 <, Ofa xk

SPECIMEN  GEMETRY  sec sec X0~ x10 10 pin/in 10 inches
psi psi psi psi

Iv-1 6"x3/u" 2.8x10% - g7 . 62 120 - 2.3
IY-2 . 5.8X107, - 7.8 - 1.0 250 - 2-3/4
LY-5 g : 24.91(10_5 - 9.6 - 33 270 - 2-3/4
LY-6 " 1.0x10 - 11.0 - 1.2 180 - 2-3/4
Fz-1 » Lo’ - 4 34 100 - 2.3/
Fz-3 % bx10”7. - - - Bh] - - -
KZ-13 1 1-7x10_5 - 2-3 - .2‘2 Sl&O - 1/2
Kz-1k " 24.2x1o_3 - 3.2 - .50 570 - 3/8
Kz-15 : 1.0x10 - 3.2 - .55  Loo - 2-3/8
F2-3-1 5.0 2.2x10:$ - 4.8 - 49 280 - 0
JZ-10-1 " 1.5X10 , - 3.8 - 25 250 - 0
JZ-10-2 L 1.3X10 - b2 - b 260 - 1/4
Ef-3 2"x1.9_§"D 8.6x1o:§’ 2.hx1o:25‘ 6.3 8.3 7.6 3290+ 7.4 -
LY-11-1 s.C. 1.1X10 © L,0x10™” 10.5 *g.} 8.0 865 6.6 -

*
x is the distance of fracture path from gage.

pa—

**S.C. Special contour specimen

m S A




TABLE 2: AVERAGE VALUES OF HOPKINSON BAR TEST RESULTS

Rod

MODE Wave Dy%mic Approximate Strain
Tens, Velocity Elastic Level, pin/in
Comp, ¢,»10°in/sec Constant

210 + 5 11.6t0.7x106pli

205 + 5 E, = 10.840.6x105ps1 55
140 + 2 By = 4.940.2x105p81 145
112 + 4 By = 3.240.4x10°ps1 80
152 + 2 6y = 4.3+0.30Pps1 120
—_— My = 0.29 + 0,01 75
- Wy = 0.24.+ 0,03 8o
- Wy = 0.13 + 0,01 150
Sikdse “('1 = 0.09 + 0.01 95
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TABLE 3: SPLIT HOPKINSON BAR RESULTS

SCECIMEN MODE E . - ¢
Tens. 106p: i sec™? 103p: i ulm n
cm.

LY-13-1 c 10 11 13 3000"

LY-12-1 c 10 13 14 3800"

* L ]

JZ-9.2 c 6.7 29 23 5500

JZ-9-1 c 6.7 ko 26 8500

JZ-11-1 c 7.3 ks 25 T700

LY-13-2 T 13.0 B 1.8 700

LY-12-2 T 9.5 1 1.8 770

@&

J2-12-1 T 2.8 16 97 1200

J2-11-2 T b, 10 83" 650"

* vt
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