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I. Introduction

1t is proposed that the atmospheric structure coastant and the average

transverse wind velocity be determined remotely through line of slignt micro-
wave or optical scattering measurements [1]. The method will yield values
of the unknown at any pumber of points, alcng the path, between the source
and detector. This is opposed to previous wethods whers the atmospheric
parameters are predictel for only one or two points [2,3]. The method nas
application in the detection of clear air turbulence, the study of the basic
tmospheric turbulence properties and in the everyday measurement of comsmon
meteorological parame~ers. The measurement system is shown in Fig. 1. The
source which js located at the origin produces a wave propagation in the
x-direction. The beam can take the form of a plane, spherical or beam wave.
The detecting array is located at some distance L from the source. It con~
sists of a set of point receivers in a horizontal arvay, perpendicular to
the x-axis. The signal incident on the different array elements can be
correlated spatially or temporally to obtain the statistical properties =f
the scattered signal. In the general case, the statistics are expressed in
terms of the structure function, i.e.,

Do(F1,T2,t1,t2) = E{|£(1,11) - £(2,t2)|2) (1)
where T and t denote the spatial and temporal coordinates, and E denotes the
expected value and f is the random quantity. This function is useful in that
it is expressed only in terws of (;1-;2) and (t;-t,) when the atmosphere is
assumed to be locally stationary (locally homogeneous), the usual case. The
more common correlation function expressed as

Bf(;l-;z,tl-tz) = E{f(;l »t1) f*(;z,tz)} (2)
is also used. It is a function of (;1-;2) and {t}-t,), and is realted to the
structure function by Eq. (3) if the atmosphere is assumed to be strictly

stationary and the incident beam takes the form of a plane or spherical wave.

De(F1-T2,t1-2) = 2 B(0,0) = 2 B(¥)-Tp,t5-1p) . (3)
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The statistics of the scattered beam can be related to three basic

atmospheric parameters. They are the atmospheric structure constant, an(x),

the atmospheric turbulence spectrux, 3‘:‘0)(!), and .he average tramsverse wind

velocity, ¥(x). an is actually the square of the structure constant; however,
for convenience it is simply referred to as the structure coastant. an(x),
which represents the strength of turbulence along the path and V(x) are both
considered to be smoothly varying along the transmission path; they are the
quantities to be determined by the inversion method. 01(10)(:) is assumed to
take the form of the Kolmogorov spectrum; i.e.,

-11/73
Ql(‘o) =K / . (&)

This simple spectral form is requirad in order to obtain integral equations
in closed form. The turbulence parameters came about through the assumption

that the atmospheric index of refraction has a slight random variation about
its mean value. This can be expressed as

a(r,t) = 1 + ny(r,t) (5)

where n is the index of refraction with averagz one and n; the random variation.
It is assuwmed that

1] << 1. (6)

This and the "frozen-in" hypothesis are used in the derivation of the integral
equations that relate the atmospheric parameters to the beam parameters.

1I. Integral Equations

The relaticnship between the beax parameters and the atwmospheric parameters
for plane and spherical waves was originally developed by Tatarski [4] and
extended to include the case of an incident beam wave by Ishimaru [5]. Tke
method commences with the develcpment of the wave squation where the index of

refraction is in the form of Eq. (5). Rytov's method of small perturbations
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is used to separate the incident from the scattered field. The time dependence

of the index of refraction is removed through the "frozen-in" hypothesis, and
b the solution is obtarned by use of a spectral (>chnique. For the general case
of an incident beam wave, the correlation functions and the structure functioms
become
L -
= B A %
4 } = 320.033 | dnC2(n) | xdx {[J (xP) +J (<P")] [H]|2

B. n Y] ]

0 0 (7)

®
%3
33
=

* %
* JO(KQ)H * JO(KQ H'} 01(10)(:)

L -

D .
o A = 2 2 3 - 2
= D, } = 252 0.033 ] dn €, (n) J xdk {[Jo(lhimi) + J°(12Tixp ) - Jo(.cp)
! 0 0
2 (8)
E * .
E - 9P )] [H]2 £ {1 -3 (xQ)] 22 % [1 - Jo(xo"’n H 2) %7 (x)

where the upper sign is for amplitude data and the lower for phsse data.
The variables in £gs.(7) and (8) are

= 3 2 : 2
3 (yryd +iyy + Vy‘t) + (erd +iy.z ¢+ Vzr) (9)

Q? = (ryg + V&t)z + (yzy + V,1)2

Ya = Y1 - ¥2 ¥Ye= Y1t Y2
i p1 = (12 ¢ y22)3i p2 = (22 + 222);5I
f [H]2 = k2 exp(yi Ei—'—‘- x2) H2 = -k exp(iy kkﬂ x2)
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1-azL 4+ [(a;2 + a22) L - apn

Yr =
(1 - azL)? + (aL)?
a:(Ll-n)
Yi = - -
(1 - azL)* + (q;L)2
A 1
tﬁoz Ro

Vy and "’z are the components of the average wind veleccity, the y's amd z's
are the receiver coordinates, x is the atmospheric wave number, k is the
electromagnetic wave number, Ho is the radius of the transmitting aperture,
and Ro is the position of the beam focus.

)
if Qéo' (x), the atmospheric spectrum, is taken as in Eq. (4), the following
soteeral may be used:

7 ret4
¥ exp(-ax®) J (Bx) dx = ) Y A YT 8% (10)
o : p+1 V1T " 3
0 2a 2

where

Re(a) > © and Re(u) > -1,

Netice that while the equations do not satisfy the conditi n Re(u) > -1, the
integrands approach zero for small x. (7The phase correl .ion funct.om is an
exceptiun, and will not converge under this assumptiom.; Further cbservation
reveals that the integrand can be analytically continued to u = -3/3. After

completing the integration over the atmospheric spectrum the ccirelation and
structure functions become

»
[
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2
BA(;I,;z,T) = 0,033 k2x2r(-5/6)L Re f dx cnzt.x) {1Fy [-5/6 ;1; f‘ 1

L .5/8 Q2 L 5/6
-6, £ (1=x)] - 1Fy [~5/631; - —5——] [is § (1-x)] } (11)
4ié * {1-x)

b
«

ERs

1
DA(;x,;z,T) = 1.032 k2221 (~5/6)L Re [ dx € 2(x) {{,rli- 5/6315-
<
0 Fy

6;912

(l.x\

1

<

5.p.2 5/86
2 p2
* 1F11-5/6 515 - 71 ~ 21F1[-5/6 313 — 1} -85 5 (1-x3)

X {1-x) %i ¥ (1-x)

x1v

5/6

2 -
3 2{1 - F;{-5/6;1;- - it id is ¢ (1——x) -} (12)

L
4ié ? \1—)()

where the path length has been normalized to vary from 2ero to ome, and

1 + ialx

= —— 2
6 1+ial’ (12)

As can be seen from Eq. (11) and (12) the unknown structure coastant and
wind velocity are contained within integral equations; thus, the solution
calls for an inveraion procedure. Upon closer inspection it is seen that this
is a formidable tasic. Both unknowns are involved in the integral equatioms,
the structure constant, C , in a linear fashion and the wind velocity, V, in
a non-linear one. To sxmpllfy the equations it would be desirable to find

them in terms of one unknown or the other, and both in a linear form. This

can be done by noting that the wind velocity always occurs in conjunction with
the time delay variable, T; hence the structure constant can be found independ-
ent of the wind velocity by taking T to be zero. This results in a change in
only the P and Q variables in Eq. (3). They become P, and Q, respectively.

o




The linearization of the wind velocity is accomplished through a method proposed
by Shen [6]. First differentiate Eqs. (7) and (8) with respect to t. The equa-
tion is then linearized by eliminating the V(x) term from the kerncl. This is

done by equating t to zero; the result is a linear equatiom in an(x) vixj.

D
2= A @0 = 0,038 k2aEr (1/6) L (14)
S T=0
Re j an(x) Vix) - {lfl{—s-;2 ;‘-——--{1-:—)-] [- 5- X (1 &)] [Grrd + iéirc]
0
2 -1/6
F Rz —2——] 18 § (-] 1671}
4is (l—x)
where
rd = (YI - y2)3 + (21 - 22))2 (15)

= (y3 + y2)i + (z; + 22Xk

= i 2 i 2
P, (yryd + ;nviyc) + (erd + lYizc)

Q2 = (yyy)? + vy )?

While an(x) and V(x) cannot be obtained independently irn this case, the
wind velocity can be determined since an is already known from the previous
equations. In this derivative format, it is found that the correlation function

and the structure function are related in a very simple way, i.e.,

D, (1, P2,7)| = - 2 2= B,(F1,F2,7) . (16)
- T A -
=0 T=0

2
T
Thus, either one can be used in the solution for the wind velocity.

III. The Inversion Method

The equations describing the scatteriag of waves in the atmosphere, as
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derived in the last section, are found to take the form of a Frediolm integral

equation of the first kind. The general form of this integral equatiom is

8
gly) = I K(x,y) f(x) dx, a' Sy < 8'. (17)
a

g(y) is a known function or data, K(x,y) is the kernmel of the integral equation,
f(x) is the unknown and a, B, a', B* are fixed constants. The equation com be
solved analytically if the kernel is very simple or if it can be expressed as a
complete set of orthogonal functions. When the kernel is more complicated the
use of numerical methceds is usually necessary, and the moment method is commonly
employed. This wmethod is developed by expanding the integral equation into N

simultaneous equations in N unknowns, and contracting into matrix form, as shown.

g = Af (18)
where g [g(yi)] (19)
£= [f(xi)]
and A= {H(xi) K(xiﬁyi)]

where the braces enclose tirz elements of the g, £, and A matrices. W(xi) is a
weighting fuzction dependent upon the quadrature expansion of the integral.
iIn subsequent steps ¥{X.) will not be shown sipce 1t can be carried with the

4

kernel., The xi's 2ngd yi's are discrete values in the range
alx. S8 (20)
and

' S ‘A S B,

i
b
x
£
¥
T

The solution of Eq. (18) can be easiiy obtained by numerically inverting the A

matrix; however, it is soon discovered that the results are highly unstable,

€ AR R M

and do not represent the unkncwn by any stretch of the imagination. The problems

gy

arise from the errors associated with the data and those introduced in the quad-

rature expansion and the inversion process. This can be described mathematically

e TR T A
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by the following uniqueness argument. Suppose that two sets of data, g; and g,

correspond tc two sets of unknowns, f; and f;, where f; = £} + W sin (wx). In

§ integral equation form

| ;

: gily) = I K(x,y) f3(x) dx (21)
a

5

*‘ and

B 8

& ga(y) = f K(x,y) fa(x) dx = I K(x,y) [£f3(x) + W sin(wx)] dx . 122)
. «

2

Equation (22) can be expanded to

& 8 8

g2(y) = f Kix,y) £;(x) dx + f K(x,y) W sin(ux) dx (23)
c a

or

2 8

3 g2(y) = g1(y) + I K(x,y) W sin(wx) dx . (24)

a

For any constant W, w can be chosen large enough go that the integrai of the
kernel and the rapidly varying sine term average to an arbitrarily small constant,
" or

g2(y’ = g1ly) + € . (25)

Thus, for two sets of data that vary by only some small experiwental error, the
values of the unknowns can differ by W sin(wx), a highly oscillatorv function
of great magnitude. This indicates that the solutions of the Fredholm integral
equation of the first kind are not unique when experimental errors are taken
into account.

To compensate for this problem ocne must account for the errors in the data
and the unknown. This can be doue by modifving Eq. (18), i.e.,

g+te=Af+ &) (26)

€ can be considered the experimental error in the data and §{ the resultant errors
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in the unknown. It is sometines convenient to denote g + € and £ + § as

g=gte (27)

f=f+¢. (28)

-
Za
oy
e

g is the data actually used in the determination of the unknown since the true

data and its error are inseparable. By the same token, £ represents the soiu-
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tion that is obtained from the inversion process. Of course it is desired that

7R

f approach f as closely as possible and this conditior is attained by minimizing
E.

g ey oy D X
FRATAEE RIS R

The minimization of § is accomplished by noting that the A matrix in Eg.(26)

is a linear operator; hence its inverse mw.,t also be linear, and

= £f+E=B(g+¢) (29)

or

E=-f+B(g+e) (30)

The B matrix is an unknown, linear perator that is to be Jdetermined by the
minimization of §. Multiplying the vector § bv its transpose, a square matrix
is obtained of the form

£1 & g1 82 v Ry

g2 &1 €2 E2 ¢ ¢ & &N \
. . . ' (31)
i

Ex &1 En €2 *° ¢ &y &N

3

Through the minimization of the diagonal terms, the B can be found, the solution
amounts to a minimum squared error method. This is analogous to results obtained
by Franklin and cthers [7,8]. (Previously, a deterministic approach had been taken
by many people [9,10,11,12,13],) This specific forx of the solution is found
cenvenient in the later determinction of the wind wvelocity. Expanding Eq. (390)

as indicated above, an eguation in terms of square matrices is obtained.

P

TR —A




i
4
:
oy
3}

U SRR RN AR R R UL i

RN

JORS EA N

i

21
1

AT RS

2 a8

==L, - a.n!n;t" <w~h}-&'¢t¢.w&f‘—’l%~*_,§ﬁsk%‘ﬂsrg e

ic

el = ££7 - £(8g)T - (Bg)E’ - £(Be)T - (Be)E

(32)
+ (Bg)(3e)T + (Be)(Bg)T + (Bg)(Bg)T + (Be)(Be)®
with diagonal terms
€8, = £,£, - 2f, é B;, & - 2f; £ iKEx
(33)

+2)B.g ] Bye, + 2 - X Big8 * 1 BiEy 1 B¢, .
k 3 k L

To minimize this equation, it is differentiated with respect to each element
of the B matrix, an’ obtaining

9%

3 C 0= 0- 28 ) Sog - 26 ) b
in X k

+2 Z 8,08k Z B €, + 2 Z Bk Z 84n€q (34)
+2)6 g | B..g, +2)6 ¢ ) B¢
E kn®k £ “i1By F ka'k & Cit%e

5kn is a matrix with all terms zergaexcept the k, nth which is one. Notice
that all equetions developed from abl 2 with i # m are zero. Since both i and

n range from one to N, a set of N x N simultaneous equitions are cbtained for
the solution of the B matrix. Doing the summations over the delta functions
Eq. (34) becomes

0= -fg - fe +gnZB.e +eZBlkgk gngBuglfenEBizsl (35)
which can be ccntracted back into matrix form to obtain

9= -ng - fel + BgeT + BegT + ngT + Beel. (36)

This equation relates the B matrix to the unknown, the data, zad the error in
the data. Since it is desired to find B in terms of the statistics of these
quantities it is necessary to take an expected value to obtain equatioes in
terss of the covariances matricies.




B e R A T 0 e A PR e A TN T R s

e R R

11

0= -ng - Rf€ + B(Rgs + Reg + Rgg + Ree) (37)
_ T

B _, = E(aB8") (38)

aB

To further simplify Eq. (37) the propagation thecrem is used (i.e., if a = AB

- T - T . .
then R __ ARBBA and RBa R3BA ) obtaining

0--RfA—R +B(ARf+RA+ARfA +R). (39)

Finally one solves for B and subsitutes back into Eq. (29) with the result:

=
s

e

: r T T T -1 =
- £z (RgA +R,) (AR A" + AR+ R_A +R )1E, (40)

This is identical to the form presented by Franklin. In practical situaticas

the unknown is iIndependent of the data error, requiring

E R. =R _.=0 (41)

i fe ef

w2 T - T T -1 =
g f = RffA (ARffA + Rte) g (42)

which is the usual form of the inversion equation. As a special case assume

that the errors in the system are zero. This implies REe =0, E + f, and g+ £3

resulting in
f=alg, (u43)

the original integral equation when no errors are present.
The predicted accuracy of the inversion method camn be found by taking the
expected value of Eq. (32). By using the matrix propagation theorem and com-

bining terms, the following is obfained.

T -1
Rt__£ - (RffA +R )( fA +R +R€fa +ARf€) (ARff+ Ref) (u4)

REE is the covariance matrix of the error term; the other terms have been defined
previously. The RMS error of the predicted value of the unknown is then

darier v .




i2

He TR I® = iglgin* : (43)

Another method for error evaluation has been provided by Franklin. 4 is
defined as

Hell
A [if + £]| _ normalized error in the unknown (46)
Hell normalized error in the data
lle + ¢l

where ||h|| is the norm of h. If delta is on the order of one then the error
generated in the umknown, by the inversion method, is about the same as the

error in the data. Clearly, if delta is large, then the unknown errvir is much
greater than the data error and the inversion method is not satisfactory. Since
the norm is simply a number, Eq. (46) can be modified to

L L+ el .
T TiEvel] “n

s = LE
e
This relation can be simplified with the equationms

AF + E) (48)

g+ €
and

F+c

B(g + €). (49)

If it is assumed that the error in the unknown is strictly due to the errors in

the data, then the second equation will reduce to

E = Be {50)

for no input. In this case Eq.(47) becomes

- UBejt LJAGE + &)
A= le “TTf_*—-gT‘l.l. {51)

For the worst casz
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By use of the Schwartz inequality, i.e.,
Hoall . Lall [laf] {aal]
S = Al = max ; (53)
Matl =~ raqr - HAll =il
Eq.(51) can be simplified further. The final form is

= |{ali 1isl]. (%)

By defining Ae and Af to be the average error in the data and unknown respectively

and using the definition of 4, Eq.(45), it can be seen that

= [lal]l 1i8l] ae . (55)

These equations lead to the solutions of the atmospheric structure constant at

several points along the path. An estimate of the error in the solution is also

obtained.
When the solution of the wind velocity is desired Eq. (14) must be solved.

Unlike the previous case, the unknown wind velocity is associated with another
Consequently, the solutiza of the equation

variable, the structure constant.
Since Cn- is known from the

will not yield the wind velocity profiles directly.
previous developments it should be possible to evaluate the wind velocity itself.

It was found that the mest accurate method of solution was to associate C.n2 with
the kernel matrix obtaining

g' = A'V (56)

where g¢' is the derivative data, V is the unknown and A' contains the kernel,

the weighting function and the structure constant, i.e.,
- 2 '
A' = [W(xj) <, (yj) X (pi,xj)]. (57)

In the implementation of the solution it is again necessary to acount for the

erro’s in the data and the unknown; thus,

e e e

————gE
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g +¢€' = A (V+ ), (58)

where €' is the error in the derivatives and { the errors in the wind velocity.
It should also be remembered that the value of an used in the kermel is not
exact but contains some error; this implizs that the A matrix is actually of
the form

L - 2 v ot ’
(H(xj) is contained in the K' term.)

While this presents more complications it is assumed that the solution is in

terus of a linear operator, thus
V+7=B"(g"+¢e'). (60)

The coefficient matrix, B', is found by minimizing {, thereby obtaining

T T

vg'' = B'g'g"r + Be'e'". (61)

The procedure is identical to the last section where the errors in g are assumed
to be independent of V. With the proper substitutions g can be eliminated

obtaining an equation of the form

T, T T

wiar? = prarwwiarT 4 preter (62)
with substitution of Eq.(59) one obtaine the following:
WIICCZ, + £5) K17 = BUI(CR, + E.) KL W ez, + £) K ]T + B'ete'T.  (63)
nj 37 i3 nj 3 nj

The expected value can now be taken with the reasonable assumption that ¢, the

error in the structure constant is independent of the wind velocity.

Rpylc2. kgt s vatz(cj)xile = B'[C2. K!.] RyvlCo; 2. Kis

nj 1) nj 1ij
1 ] [ ] T
+B [c2. Ki'] valz(; ) Kij] + B'[E(gj) Ky 1 va[cg Kij (64)

' ' T T
+ B'R., ., + BIEL(EKE) W (5K ']
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It can be shown that E(Ej) = 0 if the expected value of the error in the
structure function is zero. It is alsc¢ assumed that the errors in the structure
constant are related only to the errors in the structure function. With this
and with simplification of the last term in Eq. (64) the equation becomes
) 2 i1 T = B'(C2 K 2 x1 7 t . ' T t 65
, va(c .K.. B (cnﬁxij) RV?(Cquij) + B (REE) (K RyyK )+ B Rt‘e' (65)
where the dot denotes the matrix operation defined by

) i,j = 1,2, e+, N. (66)

Solving for B' and -ubstituting into Eq. (60) V can be found

=0

V= Ryy(CR.ki.) [(cz Kis) RyylGisKis) !

This expression is similar to that derived by Franklin's method. The present

: inversion method introduces an additional term to account for the errors in an.
The preceding solution gives the best mean squared estimate of the unknown

structure constant and average transverse wind velocity. The solutions are

derendent upon the input data, the correlation and structure functions of the

scattered beam that propagates through: the medium to be remotely sensed. The

solutions are also dependent upon the statistics of the unknowns and the error.

These are represented by the covariance matricies R._. and Ree‘ It is next nec-

ff
essay to determine the form of these matricies.

IY¥., Statistical Quantities

In the developwent of the unknown covariance matricies it is convenient

%o represent the unkrnown functions in terms of a random Fourier series.

N

£(x) = £+ ] b [a cos(nmx) + a! sin(anx)] (68)
n=o

SOERE O AR & o g g
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where f is the mean value of £(x), the b 's are fixed constants relating the
magnitude of the variatioms to the mean value, a, and an' are independent
random coefficients with zero mean and variance one giving the necessary
variability to the unknown, and N limits the rate at which the fluctuations
occur. The function also has the advantage of being easily generated in com-
puter simulation schemes.

To find the covariance matrix one employes Eq. (38) obtaining

S RO S SR AN S St PR A et R i T B ig e AU UL A S b M by Yo g 43

N
= £2 2 . o
Rff £2 + Z bn cos m(:\i xj) (69)
nso
where
E(anan) = sSm (70)
and
E(an) =0 (71)

as stated previously. The f and bn coefficients are chosen from experience and
certain realizability conditions, the specifics of which be given in the next

L3

; section.

4

The covariance matricies of the error terms are developed with the assump-

i R

tion that the ei's are incependent of each other yielding

= (q 2
Ree (ce 515)' (72)

The covariance matrix of the error in the derivative function is developed in

a slightly more generai way. Since

158t g (73)

the derivative is represented by
88; Bk T Bix . Siek T ik

= 4+ > (7‘0)
ax; Xiek T Fiex Fiax T Rk

thus, ei corresponds to the last term of Eq. (74); i.e.,

€. - €.
e! = ;&-ﬂ(—?—;& . (75)
1tk i~k
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The covariance matrix of the derivative error becomes

2
[+ ]
= & __ -
Rerer = 27 (2855 = 8 iok? Siok,iek) (75)

wn:re h represents the increment between the xi's, the i and j subscripts
represent the i;jth matrix element. The k represents the increment over which
the derivatives of the data are taken. If k is taken very small the errors in
the structure functions will produce very large errors in the derivative data.
If k is too large the numerical derivatives will not represent the slope of the
functicn. k is finally chosen as a compromise value that best fits the partic-
ular numerical solution.

V. Numerical Evaluation

The numerical evaluation of the theory is accomplished through both a com-
puter simulation and the evaluation of experimental results, For convenience,
the parameters chosen are modeled after an operational system under the direc-
tion of A. T. Waterman at Stanford University. Tlie system consists of a trams-
mitter located on the east side of San Francisco Bay at an elevation of 300
meters. To implement the theory, the transmitter is assumed to be located at
the origin of a coordinate system with the beam propagating along the x-axis.
The beam shape approximates that of a spherical wave. A cross section of the
transmission path is shown in Fig. 2. It is 28 km in length, traversing Samn
Francisco Bay, with the terminus un the west side of the bay at an elevatiom
of 120 meters. The transmission path is perpendicular to the longitudinal axis
of the bay, thus it is likely that amny wind will blow transverse to the path
of the beam. The wavelength of the incideat beam is 8.6 mm; the transmitting
antenna is a 1.5 m diameter paraboloid with a 0.4 degree beam. Using these
conditions one can find & in the beam wave equation. It is found to be 4.86 x
10-3. This determines the point at which tre incident wave makes the tramsition
from a plane wave to a spherical wave; it is about 206 meters ‘rom the transmitier.
Since the path is 28 km in length, it is seem that the incident field behaves as
a spherical wave over virtually the entire path. The receiving system consists
of an array of eight point receivers located near the axis of the beam. The

Lo o RN vy e e

array is perpendicuiar to the path and positicned horizontally above the ground,

(it o e

B T R s
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with element spacings of 400 wavelengtbs. See Fig. 3. If the first element
is assumed to be on the x-axis, the kernel of Eq. (11) takes the form

K(x,p) = %2 0.033 k2 T(-5/6) L

2 5/6
Re 1F1{-5'5 3 13 —F——1 {-5; § (1-x)}
)

L
4y x (x 77)
-2 5/6
- {-5/6 51 ;-——%————} fis -,I(i (1-x)}
48 2 (1-x)
where
P2 = 02 = § 0.086 * 400 (j-1) j = 1,2, +*< 8
L = 28 x 103 78)

@ = 4.86 x 10-3

k = 2%x/0.086

j corresponds to the position of the jth element in the receiving array. The
kernel was evaluated numerically to an accuracy of 8 decimal places. Both
ascending and asymptotic series are used to evaluate the hypergeometric func-
tion, the choice depending upon the magnitude of the argument.

After evaluation of the kerael, the atmospheric structure constant, an,

can be determined from the matrix equation
= 2
{BA(pi)] = {A(pi,xj)l [Cn (xj)] (79)

through use of the statistical inversion method. The A matrix is the combina-
ticn of the kernel and the weighting function. It will be shown that when this
inversion procedure is used, the predicted errors in the unknown are about ten
times the error in the data. This is referred to as the sensitivity of the
inversion method. For comparison, it would be interesting to know the sensitivity
if a standard matrix inversion were used to determine an. This can be found
through the product of the matrix norms, as in Eq. (55). In this case, the B
matrix is simply A~l, since in the standard matrix inversion, it is assumed that
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£f=4A1g. (80)

The result of the computation is ||A|] |]a~!]l = 7.u% x 101! indicating that
for a one percent data error, the error in the unknown will be on the order of

1011 percent. This certainly leaves some doubt as to the existence of any method

that could counteract such large instabilities. Consequently, to confirm the
E: usefulness of the inversion method, a computer simulation was implemented.
- To reasonably evaluate the inversion method, the true value of the unknown

' structure constant must be known at many points. This true value was geunerated

AT

through the use of an equation similar to Eq. (68); i.e.,

ENS

A

: 1
3 an(x) = 10714 + 0.4 x 1073* § [a, cos(nwx) + a sin(nwx)] (81)
F azo

where x, the normalized path length, varies from zero to one. The a, and aé
are computer generated, Gaussian random numbevrs with zero mean and variance one.
B The 10-1* represents a typical average value of an as derived from atmospheric
y experiments, After an is generated at eighteen equispaced points along the
path, the true data, BA(D), is calculated by matrix methods from Eq. (79). To

model the errors that are inherently present in any real measurement device, the

o (A R PR
TR P

data are perturbed by adding @ certain amount of error to them. The magnitude

of the error is defined as the standard deviation of the error deviated by the

(AN Ex g, PR \n! N
e R AT R

peak of the correlation curve. It should be evident that the errors between 0.1

and 1.0 percent would be typical in experimental cases; this leads to errors on

s
RNy

118410

k- the order of tens of percents in the tail of the curve. The perturbed data,
which approximates the true data, are used in the inversion method to obtain a
prediction for an; this prediction is ?enoted by Enz. The accuracy of the pre-~
diction is found by comparing an with an. The cowputer simulation scheme is
diagramed in Fig. 4. An example of the results of the simulation, for the a-.uos-
pheric structure constant is shown in Figs. 5 and 6. The errors involved in each
case are indicated in the figures. For data errors between 0.1 and 1.0 percent
the structure constant is predicted quite accurately. Even for large errors in
the correiation function, the points denoted by the squares, the predicted value

of the structw 2 constant corresponds to the mean value of the true curve.
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The sensitivity of the inversion can be represented in another way &5 shown

in Fig. 7. The average perient error in the unknown is plctted versus the aver-

age percent error in the data. Three curves are showm: &) the error as pre-

dicted by the product of the matrix norms, b) the errors as predicted by the

covariance matrix of Rhn’ and c) the actual errors as derived from the coemputer

simulation. When the data error is between 0.1 and 1.0 percent, the unknown

error lies between 1.0 and 10.0 for the worst case (highest curve). This is a
remarkable improvement over the errors generated by the standard matrix inver-

sion method, as indicated earlier in this section. An interesting feature occurs

for the larger data errors; the unknown errors seem to be limiting. This indi-
cates that the even for large data errors, the statistical inversion method is

useful for predicting the average value of the unknown.

The structure constant can be found from data other than the correlation

function; namely, the amplitude and phase structure functions. In tneory, the
oh

phase correlation finction could also be used; however, due to the foreguing

form of the Kolmugorov spectrum, it does not converge. An errcr analysis has

been done for data in the form of the amplitude and phase structure functions.
Figure 8 shows the results, comparing them with the correlation function case.
It is found that the unknown errors predicted in the case of the amplitude

structure function are slightly higher than those from the correlation function

expansion. On the other hand, the error produced by the phase data is much too

large to be of any use.

The other parameter to be measured through the inversion process is the

average transverse wind velocity. To evaluate the accuracy of the inversion,

an error analysis similar to that of the last section was studied. Since the

three methods of error prediction (matrix norm, covariance matrix, and computer

simulation} have been shown to agree quite well, only one will be used to eval-

uate the wind velocity equations. The simplest of the three is the procedure

employing the product of the matrix norms. The norm of the A matrix is cobtained

from the derivative form o¢f the kernel matrix; the norm of the B matrix is cal-

culated from Eq. (67). Since this equation is rather complicated, it is sim-

plified by assuming an censtant with zero error. The results of the error
analysis are shown in Fig. 9.

Curves are shown for both amplitude and phase
data.

The errors predicted for the amplitude data are quite low; those pre-
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dicted in tiie case of the ghase are quite high. This reinforces the conclusion

that the phase data zve not suitable for the inversion method.

Data obtained from an exveriment conducted by J. C. Harp [14] at the
Stanford Electronics Laboratories wili now be evaluated to predict the wind
velocity and structure constant, at several points between the transmitter and
the receiver. The data consists of a set of correlation curves. To adapt them
to the praoblem one cobserves the value of t:e correlation function and its deriv-
ative at the point t=0. In Harp's paper iata points are found for seven receiver
separations. These data are interpolated and shown in Figs. 40 and 11. Notice
that the correlation curves are normalized to one. This being the case, it is
impossible to determine the average value of the structure constant in the two
cases to be studied. This iimits one to examining the shape and relative magni-
tudes of the structure constant along the path. The average value of the wind
velocity is not lost through the normalization process. Tc dencrmalize the
correlation curves, the peak of each is assumed to have a typical value of 1.0
x 10-2, The other parameters necessary for the inversion are the statistics of
the unknowns and the assumed values for the average data error. The covariance

matricies modeling the structure constant and the wind velocity are shown below.

10
SCC = 10-28 {1.0 + (0.04)2 uZocos[na(xi—xj)]} (82)
6
Syy = 25{1.0 + (0.2)2 } cos [nx(x;-x;)1} (83)

n=1

The average value of an is assumed to be 10~1%; the (0.04)2 in Ec. (82) is
developed from the constraint that an is greater than or equal to zero. The
average value of the wind velocity was taken to be zero, since its direction
can vary; its standard deviation was taken as 5 meters/sec. The magnitude of
the error in the correlation function was taken to be 5 percent; this is re~~on-
able considering the amount of incerpolation that is necessary.

Using tiie above parameters, the atmospheric structure constant was evaiuated
using £q. (42). The resuits are shown in Figs. (12a) and (13a). Equation {67)

was used to determine the average transverse wind velocity. These resuits are
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shown in Figs. (12b) and (13t). The structure constant curves can be inter-
preted physically by obsexwving the topography over which tue turbulence was
formed. A cross section of the tramsmissicn system was shown in Fig. (2).

It represents San Francisco Bay bordered on both sides by hills. If a wind
were blowing up or down the bay, = velocity gradient would be formed from the
difference in the velocity in the center of the bay and the smaller velocity
that would occur near the hills. This gives rise to higher turbulence near
the sides of the valley than in the center. At the same time, the turbulence

very near the sides weould be reduced because the larger eddies could not exist

at that location. These facts are reflected in the curves represerting the

’ ': structure constants. The curves alsoc compare reasonably well with the results
) E developed by Harp. The siructure constant as determined by Harp was found at

7 three points along the path: near the tramsmitter, in the center, and near the

receiver. The curves were assumed to-be constant in these regions. As can be

iyl 4 e
L

Y

e,

»

seen, the minimums and maxisums of the structure constant curves, as derived

it

ber that, due to the normalization of the correlation curves, the plots cannot

i

be compared in absclute magnitude.

iy

&,
j Lttt

7 'A from the inversion method agrse with those obtained by Harp. One should remem-
The wind velocity, as predicted by the statistical inversion method, camn
3 be closely compared with that found by Harp. The velocity curves are not
affected by the normalization of the correlation function, and the curves pre-
sented reflect both the general shape and the absuvlute magnitude of the wind
velocity. Before a comparison of the curves, it shuuld be rentioned that Hap's
wind velocity data were inferred by predicting the velocity at only two points
near the ends of the path, and assuming a smooth variatiom between the two
values. Thus, the velocity plots will not necessarily compare near the center
of the path. As seen by inspection of Figs. (12b) and (13b), the velocity plots
are in a very close agreement. Variations do occur near the center of the propa-
g7 ion path, and in some cases at other points; however, Harp's curves seem to
indicate the average value that would be obtained from the more general statis-

ticel inversion curves.

|
1




)’?‘WJW S s A\ (=22 <
T e e R e B e T TY
AT TR P A = =

VI. Conclusion

The value of the statistical inversion method for predicting the atmos-
pheric structur2 constant and the average transverse wind velocity at several
points along the path has been demonstrated by computer simulstion and by
2pplication to date take: under normal atwospheric conditions. In both cases
it was found that the predicted vaiue of the anknown was within ten percent
of the true vaiuve for reasonable data errors. It was also deterwmined that for
iarger errors the predinted solutions correspond to the average value of the
true curve., In o2dition, the error amalysis has shown that the use of ampli-
tude data in the inversion method leads to solutions that are ten times more
accurate than those obtained from phase fluctuation data. On this basis, phase
data are deemed inappropridte for use in the inversion method. From these
results it can be concluded that the statistical inversion method has great
potential in the remote determinétion of two atmospheric parameters, the struc-

ture ccastant and the average transverse wind velocity.
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B Figure 1 Plan view of the measurement system.

é Figure 1 Cross section view of propagation path.

% Figure 3 Plan view of tiie receiving array.

g Figure & Pictorical diagram of the computer simulation.
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Figure 10 Correlation function for calculating the structure constant.
' Figure 11 Derivative of the correlation functiom for calculating the wind
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Figure 12a Plot of the structure constant versus distance - case one.
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Figure 12b P ot of the wind velocity versus distance - case ome.
Figure 13a Plot of the structure constant versus distance - case two.

I Figure 13b Plot of the wind velocity versus distance - case two.
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