
AD-760 805

REMOTE DETERMINATION OF THE PROFILES
OF THE ATMOSPHERIC STRUCTURE CONSTANTS
AND WIND VELOCITY ALONG A LINE-OF-SIGHT
PATH BY A STATISTICAL INVERSION PROCEDURE

J. Michael Heneghan, et al

Washington University

Prepared for:

Air Force Cambridge Research Laboratories

January 1973

DISTRIBUTED BY:

National TeChia " Iu..... " Somin
U. S DEPARTUEDT OF COMMERCE
5285 Port Royal Road, Spdngfield Va. 22151



AFCRL-TR-73-0136 TECHNICAL REPORT 157

Remote Determination of the Profiles of
the Atmospheric Structure Constants and Wind Velocity

Along a Line-of-Sight Path by a Statistical h;iersion Procedure
by

0 J. Michael Heneghan and Akira lsh'iinarj

0 Department of Electrical Engineering

College of Engineering
Universily of Washington

Seattle, Washington 98195

Contract No. F19628-72-C-063
Project No. 8682
Task No. 868202

Work Unit No. 86820201 D DC\,
Scientific Report No. 1 -- -,

January 1973 PP

Koichi Mono B
Mcrowave Physics Laboratory

Approved for public release; distribution unlimite-&

NATIONAL TECHNICAL

INFORMATION SERVICE

Prepared for

Air Force Cambridge Research Laboratories
Air Force Systems Command

United States Air Force
Bedford, Massachusetts 01730



t

ITSThst~ ~ -e A.ILa.: ____

(-'xi

S 
BYi

311, EI
03

04 ITAIK

Qualfie reuesorsmayobtin aditona coiesfro th DefnseDocmenatin C nte
All thes shuldappy totheNatonalTecnica InormtionSerice



Unclassified

DOCUMENT CONTROL DWrA - R & D

University of Washingiton
Dept. of Electrical Engineering
Seattle, Washington 98195

3 I REPOR T TV!t.V

REMOTE DETEPRINATION OF THE PROFILES OF T-E ATMOSPHERIC STR.CTURE CONSTANTS AND
WIND VELOCITY ALONG A LINE-OF-SIGHT FATH BY A STATISTICAL INVERSION PROCDURE

ScientificE interim
5° AU T4ORLSI (.FirSt nMms. =-Wdo I!njial. :sig Ae )

J. Michael Heneghan
Akira ishizaru

REPO T &TOE 1-.. T0A.. NO. OF PAES 7ink. NO OF REFS

january 1973 114
|e CONTRACT OR GRANI NO IIL ORIGINA'C-S RLPORT .UIA•D"FRIS

F 19(626)-72-C-0063F 1(62)-7-C-063Technical Report No. 157
Project, Task, Work Units Nos.

8682-02-01 Scientific Report No. 1

DoD Element 62101F t. NoOp OS) fr"l O•h,2It t, S*- -C-

d DoD Subelement 688682 1FCRL-TR-73-0136
10- DISTRIBUTION STATEMENT

A - Approved for public release; distribution unlimited.

I1. SUPPL.EMENTARY NOTES 112. SPONSORING MILITARY ACTIViTY

Air ?orce Cambridge Research Laboratories(LZ
TECHOTHER IL. G. Hanscom Field !

CBedford, Massachusetts 01730
13l. ABSTRAC T

A method is developed for remotely determin'ng the average transverse
wind velocity and the atmospheric sVftrct,--e constant (strength of turbulence)
at N points along a line-of-sight path. The technique avoids the basic
instability problem that was encountered in pre~vious work, limiting the cal-
culations to one or two points. inmear integral equations relate the data,
the amplitude correlation function and the amplitude and phase structure
functions, with the unknown structure constant and wind velocity. The stand-
ard inversion method leads to large variations in the unknown for small data
errors; thus, the problem is ill posed. To counteract this, a statistical
inversion procedure is developed that is dependent upon a priori knowledge of
the statistics of the unknowns. The error in the final solution can also be
predicted by computer simulation. For example, with an input error of one
percent, the RMS error in the unknown will be on the order of ten percent.
This is an increase in accuracy of ten orders of magnitude over the standard
inverse moment method.

/

DD ,o,1473 Unclassified
Security alassification



KEY ROD IWTt aOL. W T RO L T T

wind velocity I
atmospheric structure constant

Kýill-posed problem i
rvwote determinaticn

stistical inve-rs;on procedwe

S• Unclassified

SSecurity Clazzificotion



TABLE OF CONTENTS

I. Introduction .. * * . '. - * &. .. 1

H. Integral Equatioms . . . . . . . . . . . . . 2

Ii. Tne Inversion Method * . . .. .. . .. . . 6

IV. Statistical Quantities . . .V . *. . . . 15

V. Numericai Evaluation . . . . . . . . . .. . 17

VI. Conclusioa . . . . . . . . . . . . . . . 23

References . . . . . . . . . . . . . . . 24

List of Figures . . . . . . . . . . . . . . 25

Il

aii



I. Introduction

It is proposed that the atmospheric structure constant and the average

transverse wind velocity be determined remotely through liue of slight micro-

wave or optical scattering measurements [1]. The method will yield values

of the unknown at any zumber of points, along the path, between the source

and detector. This is opposed to previous methods wbere the atmospheric

parameters are predicted for only one or two points [2,3]. The method has

application in the detection of clear air turbulence, the study of the basic

atmospheric turbulence properties and in the everyday measurement of coon

oeteorological parame-.ers. The measurement system is shown in Fig. 1. The

source which is located at the origin produces a wave propagation iL the

x-direction. The beam can take the form of a plane, spherical or beam wave.

The detecting array is located at some distance L from the source. It con-

sists of a set of point receivers in a horizontal array, perpendicular to

the x-axis. The signal incident on the different array elements can be

correlated spatially or temporally to obtain the statistical properties :,f

the scattered signal. In the general case, the statistics are expressed in

terms of the structure function, i.e.,

412.Df(r1r,;lt, ,2) E{ f(r 1 ,t0) - f(*zt 2 ) j} (1)

where r and t denote the spatial and temporal coordinates, and E denotes the

expected value and f is the random quantity. This function is useful in that

it is expressed only in terws of (1-r2) and (tl-t 2 ) when the atmosphere is

assumed to be locally stationary (locally homogeneous), the usual case. The

more common correlation function expressed as

Bf(rl-2,t -t 2 ) = Eff( 1 ,t 1 ) f*(}2 ,t 2 )1 (2)

is also used. It is a function of (61-42) and (tl-t2 ), and is realted to the

structure function by Eq. (3) if the atMOSDhere is assumed to be strictly

stationary and the incident beam takes the form of a plane or spherical wave.

Df(rl-r2,tl-t2) = 2 Bf(O,O) - 2 Bf(l1-r2,tl-t2) . (3)
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The statistics of the scattered beam can be related to three basic

atmospheric parameters. They are the atmospheric structure constant, C n2 ( X),

the atmospheric turbulence spectrum, 4() (K, .be average transverse windnwn

velocity, V(x). C 2 is actually the square of the structure const3nt; however,n
for convenience it is simply referred to as the structure constant. Cn2 (x),

which represents the strength of turbulence along the path and V(x) are both

considered to be smoothly varying along the transmission path; they are the

quantities to be determined by the inversion method. (K) is assumed to
n

take the form of the Kolmogorov spectrum; i.e.,

*(0) -11/3()S= -K /
n

This simple spectral form is required in order to obtain integral equations

in closed form. The turbulence parameters cm about through the assumption

that the atmospheric index of refraction has a slight random variation about

its mean value. This can be expressed as

n(r,t) = I + nj(r,t)(5

where n is the index of refraction with average one and n1 the random variation.

It is assumed that

Inui << 1 (6)

This and the "frozen-in" hypothesis are ,sed in the derivation of the integral

equations that relate the atmospheric paameters to the beam parameters.

II. Integral Equations

The relationship between the beat parameters and the atmospheric parameters

for plane and spherical waves was originally developed by Tatarski [1] and

extended to include the case of an incident beam wave by Ishimaru [5]. The

method commences with the development of the wave equation where the index of

refraction is in the fcarm of Eq. (5). Rytov's method of small perturbations
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is used to separate the incident from the scattered f5eld. The time dependence

of the index of refraction is removed through the "frozen-in" hypothesis, and

the solution is obtained by luse of a spectral -- chnique. For the general case

of an incident beam wave, the correlation functions and the structure functions

- jbecome

B2 = 120.033 dn C 2 (rn) JcdK Idoi(KP) + J (cP•) H1 2

it0 0 (7)

±J (vQ)H ± J(*Q)H~ ,(0) (1)

o o n7

0 0 [
0 0 (8)

-o(KP*) IH12 -+ [1 - jo(ICQ)] 112 -- 1:1 - jo( *)]H21 V'(

where the upper sign is for amplitude data and the lower for phase data.

The variables in fqs.(7) and (8) are

P = (¥ryd + 'iiyc + V y 02 + (y r Zd + i i Zc" + Vzp)2 (9)

Q2= Vt) 2 + (yzd + Vt)2

Yd = y- Y2 Yc = y + Y2

zd = z z2 zc ZI .+ z2

P= (Y1 2 + Y2 2 ) P2 = (z 1
2 + Z2 2)k

H112 = k 2 exp(yi . K2 ) 1 H2 =-k exp(iy ifl K
2 )

mk



S+ +a 1I+iQL = r +¥i

1 - 12-,+ [(+a 2 - a2
2 ) L - a2zn

r(1 -a 2 L) 2 + (alL)2

C'.(L-T)
Yi = - (1 - a2L)2 + (aL)2

0 2-rw W 2o
0

V and V are the ccmponents of the average wind velocity, the y's and z's• y z
are the receiver coordinates, i is the atmospheric wave number, k is the
electromagnetic wave number, W is the radius of the transmitting aperture,

0

and R is the position of the beam focus.
(o

If 0 (oc), the atmospheric spectrum, is taken as in Eq. (4), the following
n

integral may be used:

at - r, +_12
Icy exp(-a,.") J (8) d,: -= 2 IF2 1+; (10)

f0 PA __4

0 2a 2

where

PRe(C) > 0 and Re(u) > -1.

Notice that while the equations do not satisfy the conditi ,n Re(i) > -1, the

integrands approach zero for small- . (The phase correl .ionr funct.'-m is an

exception. and will not convevge under this assumption.; Further c.bservation

reveals that the integrand can be analytically ontiniied to u = -8/3. After

- Icompleting the integration over the atmospheric spectrUM the ccr relation and

structwra functions become
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B A (ri, .,T) = 0.033 k2i 2 1'(-5/6)L Re dx Cn2(x) {1FI J-5/6 ;11; 41 -.
0~ %x [-5 6; 1; (l-x)
0

L J-5Q2L 5/6

4i6 it (l-x)

D6;p 6 2
A-- 2~ JX 2 [i([x56;*DA(rIr,•) =.033 k %2r(-5/6)L Re dx Cn(X) FI[-5/6 - ]

0 "1-x)

F1 2-b/6 1; L 2 2 1F 1I[-5/6;1" " } 1 P.2 5/6

L1- Q2 L
(I-X) 46 (1-x)

211 - iFi[-5/6; 1 Q2 - }i6 5, (12)

where the path length has been normalized to vary from zero to one, and

6 = 1 + io .
(13)

1 + iaL"

As can be seen from Eq. (11) and (12) the unknown structure coastant and

wind velocity are contained within integral equations; thus, the solution

calls for- an inveraion procedure. Upon closer inspection it is seen that this

is a formidable tas.k. Both unknowns are involved in the integral equations,

the structure constant, C ,2 , in a linear fashion and the wind velocity, V, in

a non-linear one. To simplify the equations it would be desirable to find

them in terms of one unknown or the other, and both in a linear foim. This

can be done by noting that the wind velocity always occurs in conjunction with

the time delay variable, "r; hence the structure constant can be found independ-

ent of the wind velocity by taking T to be zero. This results in a change in

only the P and Q variables in Eq. (9). They become P and Q respectively.

0 0
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The linearization of the wind -,elocity is accomplished through a method przoposed

by Shen [6]. First differentiate Eqs. (7) and (8) with respect to i. The equa-

tion is then linearized by eliminating the V(x) term from the kerzznel. This is

Sdone by equating -r to zero; the result is a linear equation in C 2 (x) V(x).

Dn

- s (rIr9,;) = 0.033 k,2r (1/6) L (14)

45P ]() [-6j • lxj [6r + i6~imc]I 24 11 (xX Id . C.-x
o i k

S-2 1/6
+ lrc; 4i6(i (1-x 6k(-x)] f~rdil

k

where

rd = (Y1 - Yz)j + (z 1 - z 2 )k (15)

rc = (y 1 + y2 )j + (zI + z2 )k

Po2 (YrYd + iYiYc)2 + (Yzd + iizc) 2

Qo2 = (yyd)2 + (yyC)2

While C 2 (x) and V(x) cannot be obtained independently in this case, the

wind velocity can be determined since C 2 is already known from the previous
n

equations. In this derivative format, it is found that the correlation function

and the structure function are related in a very simple way, i.e.,

I

3TD~lr,)I= TB,(rl,r2,•) ITO(16)

Ths either oecnbe used in the solution for the wind velocity.

III. The Inversion Method

The equations describing the scattering of waves in the atmosphere, as
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derived in the last section, are found to take the form of a Fredholm integral

equation of the first kind. The general form of this integral equation is

8
gy - K(x,y) f(x) dx, a' ' y 8'.(17)

(y)17

g(y) is a known function or data, K(x,y) is the kernel of the integral equation,

f(x) is the unknown and a, 8, a', 8' are fixed constants. The equation czn be

solved analytically if the kernel is very simple or if it can be expressed as a

complete set of orthogonal functions. When the kernel is more complicated the

use of numerical methods is usually necessary, and the moment method is commonly

employed. This method is developed by expanding the integral equation into N

simultaneous equations in N unknowns, and contracting into matrix form, as shown.

g = Af (18)

where g = [g(yi)] (19)

f = [f(xi)]

and A = [W(x.) K(x. ,yi)]111

where the braces enclose tile elements of the g, f, and A matrices. W(xi) is a

weighting firct3 on dependent upon the quadrature expansion of the integral.

in subsequent steps W(xý wi)ll not be shwnm since it can be carried with the

kermrel. '-'be xi's and yi's are discrete values in the range

11

aL X. 8(20)

and

• a' < Yi <•

The solution of Eq. (18) can be easily obtained by numerically inverting the A

matrix; however, it is soon discovered that the results are highly unstable,

and do not represent the unknown by any stretch of the imagination. The problems

arise from the errors associated with the data and those introduced in the quad-

rature expansion and the inversion process. This can be described mathematically

- - -2-'
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by the following uniqueness argument. Suppose that two sets of data, gj and g 2 ,

correspond to two sets of unknowns, f, and f 2 , where f 2 = f, + V sin (Wx). In

integral equation form

B

g1 (y) = f K(x,y) fl(x) dx (21)

a

and
B B

g2 (y) f K(x,y) f 2 (x) dx = K(xy) [fl(x) + W sin(wx)] dx .%22)

a a

Equation (22) can be expanded to

B a

g2 (y) f K(x,y) fl(x) dx + f K(x,y) sin(wx) dx (23)
a a

or

g2 (Y) = g1 (Y) + f K(x,y) W sin(wx) dx .(24)

a

For any constant W, w can be chosen large enough so that the integrp.1 of the

kernel and the rapidly varying sine term average to an arbitrarily small constant,

or

g2 (Y) = g1(Y) + -. (25)

.Thus, for two sets of data that vary by only some small experimental error, the

values of the unknowns can differ by W sin(wx), a highly oscillatc~y function

of great magnitude. This irdicates that the solutions of the Fredholm integral

equation of the first kind are not unique when experimental errors are taken

into account.

To compensate for this problem one must account for the errors in the data

and the unknown. This can be done by modifying Eq. (18), i.e.,

g + C = A(f + C). (26)

S c can be considered the experimental error in the data and t the resultant errors

I .. .
I:. . •= m wm=



9

in the unknown. It is sometimes convenient to denote g + e and f + F as

Sg + C (27)

f + - . (28)

Sis the data actually used in the determination of the unknown since the true

data and its error are inseparable. By the same token, f represents the soiu--

tion that is obtained from the inversion process. Of course it is desired that

Sapproach f as closely as possible and this condition is attained by minimizing

The minimization of C is accomplished by Doting that the A matrix in Eq.(26)

is a linear operator; hence its inverse m,:.t also be linear, and

f + = B(g + E) (29)

or

= -f + B(g + 0). (30)

The B matrix is an unknown, linear oýperator that is to be determined by the

minimization of C. Multiplying the vector bv its transpose, a square matrix

is obtained of the form

' •2 •1 El 12 4 N \

"(31)

jThrough the minimization of the diagonal terms, the B can be foamd, the solution

amounts to a minimum squared error method. This is analogous to results obtained

by Franklin and others [7,8]. (Previously, a deterministic approach had been taken

k by many people [9,10,11,12,13].) This specific form of the solution is found

convenient in the later determination of the wind velocity. Expanding Eq. (30)

as indicated above, an equation in tersi of square matrices is obtained.

_• ,I
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T - T -B) Me - T (~T
ffT f(Bg) (g)f. f(B)T - (&)f (32)

+ (Bg)(Be) T + (BO)(Bg) T + (Bg)(Bg) T + (Be)(Be:)T

with diagonal teims

Sk k (33)

k I k L k L

To minimize this equation, it is differentiated with respect to each element

of the B matrix, B am obtaining

- --- 0 = 0- 2f.,1 6 2f. 1 6Ck

+ 2k1 6kngk I Bi£cL + 2 k1 B ikg •6 n C (34)

Eq.((31beo4)

+ 2 - 1 6ka I BiTg + 2 + 'kne I BiTc. •

k L k L

6 is a matrix with all terms zero except the k, nth which is one. Noticekn
that all eqeticais developed from -id w ith i are zero. Since both i and

n range from one to N, a set of N x N simultaneous equations are obtained for

the solution of the B matrix. Doing the summations over the delta functions

Eq. (34) becomes

which can be contracted back into matrix form to obtain

0-= fg T- feT + Bgc T +Beg T+ Bgg T+ Bee T (36)

This equation relates the B matrix to the unknown, the data, ead the error in

the data. Since it is desired to find B in terms of the statistics of these

quantities it is necessar~y to take an expected value to obtain equatices in

terms of the covariances matricies.
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0 -Rf -Rf + B(R e+ R Eg +R 9 +R c) (37)

Bas = E(ao T) (38)

To further simplify Eq. (37) the propagation theorem is used (i.e., if Q = AS

then Ra = AK ,AT and Rc = R,,AT) obtaining

0 =-RffT Rfe + MA f + RfAT + A T + ( d39)

Finally one solves for B and subsitutes back into Eq. (29) with the result:

f(RffAT + Rf) (ARffT +-ARf+ iRfAT +R EC~ (40)

This is identical to the form presented by Franklin. In practical situations

the unknown is independent of the data error, requiring

Rf = f = 0 (41)

!Cand
f =RffA T(AJAT +~ R J 1 g (42)

which is the usual form of the inversion equation. As a special case assume

that the errors in the iystem are zero. This implies R = 0, f -e f, and g + g;

resulting in

f = A-1 g (43)

the original integral equation when no errors are present.

The predicted accuracy of the inversion method can be found by taking the

expected value of Eq. (32). By using the matrix propagation theorem and com-

bining terms, the following is obl ained.

R is the cova:i:nce matrix of t he e: or term; the other terms have been defined

S~previously. The RMS error" of the predicted value of the unknown is then

is he

S. . . . . . . . . . m i a mIm m m m - m J . . . .
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H ii Tr(R~) -[ (145)

Another method for error evaluation has been provided by Franklin. A is

defined as

II~II

A= if + &i normalized error in the unknown

Hell1 normalized error in the data

Ig + ell

where lihll is the norm of h. If delta is on the order of one then the error
generated in the unknown, by the inversion method, is about the same as the

error in the data. Clearly, if delta is large, then the unknown errr is much

greater than the data error and the inversion method is not satisfactory. Since

the norm is simply a number, Eq. (46) can be modified to

•, _ • i lig + ell 4•

A:J.L.LL jg~c ~(147)!He11 Ilf + &il

This relation can be simplified with the equations

g + c = A(f +) (48)

and

f + E = B(g + E). (49)

If it is assumed that the error in the unknown is strictly due to the errors in

the data, then the second equation will reduce to

B= E (50)

for no input. In this case Eq.(47) becomes

i " = • i i^JJ(f + I)11 sl

F the w case
S~For the worst cas
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jjcj 11~ l (52)SA =max max I

By use of the Schwartz inequality, i.e.,

f -Q= -^i{ ma I ti 1 Ii" (53)

Eq.(51) can be simplifi.d further. The final form is

By defining AE and At to be the average error in the data and unknown respectively

and using the definition of A, Eq.(46), it can be seen that

"A& = ilA Ii il B l A E . ( 55)

These equations lead to the solutions of the atmospheric structure constant at

several points along the path. An estimate of the error in the solution is also

obtained.

When the solution of the wind velocity is desired Eq. (14) must be solved.

Unlike the previous case, the unknown wind velocity is associated with another
variable, the structure constant. Consequently, the soluti z of the equation

will not yield the wind velocity profiles directly. Since C 2 is known from the
Sn

previous developments it should be possible to evaluate the wind velocity itself.

It was found that the most accurate method of solution was to associate Cn2 with

the kernel matrix obtaining

- A'V (56)

where g' is the derivative data, V is the unknown and A' contains the kernel,

the weighting function and the structure constant, i.e.,

A' = [W(x.) C 2 (y.) K'(P-,x-)1. (57)

J n I 1

r In the implementation of the solution it is again necessary to acount for the

errTo's in the data and the unknown; thus,



i g' + e' = A'(V + •), (58)

where e' is the error in the derivatives and 4 the errors in the wind velocity.

It should also be remembered that the value of Cn2 used in the kernel is not

exact but contains some error; this implias that the A matrix is actually of

the form

A' = [(C 2j + &.) K!.] . (59)
n j 13

(W(x.) is contained in the Kt term.)

While this presents more complications it is aseumed that the solution is in

terms of a linear operator, thus

V + B• B(gl + ct) . (60)

The coefficient matrix, B', is found by minimizing 4, thereby obtaining

VgtT = BIg ggT + Be:eT (61)

The procedure is identical to the last section where the errors in g are assumed

to be independent of V. With the proper substitutions g can be eliminated

obtaining an equation of the form

WTAT = BIAIWTA'T + B'ElcT (62)

with substitution of Eq.(59) one obtains the following:

WT[c 2 + K!) I!.]l = Bl'[(C 2 . + .) K!.] W [( + K! + BI)'.. (63)

The expected value can now be taken with the reasonable assumption that c, the

error in the structure constant is independent of the wind velocity.

T)
RWC.K!.j [ R E(& A!]IT =BI[JC& K!.I L..[C' K!.]

+ B'[& K!.] [E( .) RV'ITK + B'[•E() K! (64)

+ BIR , + BE[(4 K!) w T(4 K!)T]
cle) J), 1

------
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It can be shown that E(&.) = 0 if the exrected value of the error in the

structure function is zero. It is also assumed that the errors in the structure

constant are related only to the errors in the structure function. With this

and with siuplification of the last term in Eq. (64) the equation becomes

2 , )T ,B(C2 K!) 2 T (
Tvv(CjKij = i( iK!.) + B•(R. (KRvvKT +B'R, (65)

nU] 1] E

where the dot denotes the matrix operation defined by

i • 8= (a.. 8..) i,j = 1,2, --- , N. (66)

Solving for B' and iubstituting into Eq. (60) V can be found

RV Vv(C2.K.) T [(C2.K!.)T
fl)j fl)1) n~i)i

+ (F (* RVT + R 17-D(pi'r) (67)
T IT=O

This expression is similar to that derived by Franklin's method. The present

inversion method introduces an additional term to account for the errors in C 2
n

The preceding solution gives the best mean squared estimate of the unknown

structure constant and average transverse wind velocity. The solutions are

dependent upon the input data, the correlation and structure functions of the
scattered beam that propagates throug'- the medium to be remotely sensed. The

solutions are also dependent upon the statistics of the unknowns and the error.
These are represented by the covariance matricies Rff and R . It is next n*c-
essary to determine the form of these matricies.

IV. Statistical Quantities

In the development of the unknown covariance matricies it is convenient

to represent the unkr.own functions in terms of a random Fourier series.

N
f(x) + I b [a cos(nix) + a' sin(ax)] (68)

Sn=o

I II ~ i i i I I III I I II II I ii il I I -
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where f is the mean value of f(x), the b 's are fixed constants relating then
magnitude of the variations to the mean value, an and a ' are independent

random coefficients with zero mean and variance one giving the necessary

variability to the unknown, and N limits the rate at which the fluctuations

occur. The function also has the advantage of being easily generated in coW-

puter simulation schemes.

To find the covariance matrix one employes Eq. (38) obtaining

N
Rff j2 + I b2 cos ni(xi -x.) (69)

n=o

where

E(a a) = (70)
and

E(a) = 0 (71)

as stated previously. The f and bn coefficients are chosen from experience and

certain realizability conditions, the specifics of which be given in the next

section.

The covariance matricies of the error terms are developed with the assump-

tion that the Ei's are independent of each other yielding

R (oa 6.). (72)

The covariance matrix of the error in the derivative function is developed in

a slightly more general way. Since

i= gi . (73)

the derivative is represented by

Ag - i+k - Ci-k
'gi gi+k '-i-k iAk i')-k

thus, c! corresponds to the last term of Eq. (74); i.e.,

= i+k - i-k
i.' k (75)S• Xi+k • i-k
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The covariance matrix of the derivative error becomes

R (26.. - 6tki-k! 6 i- (76)

Swn.-re h represents the increment between the x.'s, the i and j subscripts

represent the i;ijth matrix element. The k represents the increment over which

the derivatives of the data are taken. If k is taken very small the errors in

the structure functions will produce very large errors in the derivative data.

If k is too large the numerical derivatives will not represent the slope of the

functic-, k is finally chosen as a compromise value that best fits the partic-

ular numerical solution.

V. Numerical Evaluation

The numerical evaluation of the theory is accomplished through both a com-

puter simulation and the evaluation of experimental results. For convenience,

the parameters chosen are modeled after an operational syste% under the direc-

tion of A. T. Waterman at Stanford University. The system consists of a trans-

mitter located on the east side of San Francisco Bay at an elevation of 300

meters. To implement the theory, the transmitter is assumed to be located at

the origin of a coordinate system with the bean propagating along the x-axis.
The beam shape approximates that of a spherical wave. A cross section of the

transmission path is shown in Fig. 2. It is 28 km in length, traversing San

Francisco Bay, with the terminus a the west side of the bay at an elevation

of 120 meters. The transmission path is perpendicular to the longitudinal axis

of the bay, thus it is likely that any wind will blow transverse to the path
of the beam. The wavelength of the incident beam is 8.6 mm; the transmitting

antenna is a 1.5 m diameter paraboloid with a 0.4 degree beam. Using these
conditions one can find a in the beam wave equation. It is found to be 4.86 x

10- 3 . This determines the point at which t.e incident wave makes the transition

from a plane wave to a spherical wave; it is about 206 meters "frm the transmitter.

Since the path is 28 km in length, it is seen that the incident field behaves as

a spherical wave over virtually the entire path. The receiving system consists

of an array of eight point receivers located near the axis of the beam. The

array is perpendicular to the path and positioned horizontally above the ground,
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with element spacings of 400 wavelengtts. See Fig. 3. If the first elem.nt

is assumed to be on the x-axis, the kcrnel of Eq. (11) takes the form

K(x,p) =2 0.033 k2 r(-5/6) L

Re jF1 {-5 15 1 p2 S L (1-x) 15/6

4i k-(ix (77/)

iF1-L/ (l 45/
- :r{-s/ ; 1; L(i-x)

where

p2 0 2 =6 0.086 •400 (j-1) j =1,2, -- 8

L =28 x 103(78)

= 4.86 x 10-3

k = 2w/0.086

j corresponds to the position of the jth element in the receiving array. The

kernel was evaluated numerically to an accuracy of 8 decimal places. Both

ascending and asymptotic series are used to evaluate the hypergeometric func-

tion, the choice depending upon the magnitude of the argument.

After evaluation of the kernel, the atmospheric structure constant, Cn2 ,

can be determined from the watrix equation

[BA(pi)] = FA(pi.x.)P [Cn2 (xI)1 (79)

through use of the statistical inversion method. The A matrix is the combina-

tion of the keimel and the weighting function. It w I U be shown that when this

inversion procedure is used, the predicted errors in the unknown are about ten

times the error in the data. This is referred to as -the sensitivity of the

inversion method. For comparison, it would be interesting to know the sensitivity

if a standard matrix inversion were used to determine C 2. This can be foundn
through the product of the matrix norms, as in Eq. (55). In this case, the B

matrix is simply A71 , since in the standard matrix inversion, it is assumed that

1C

I2
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f = g. (80)

The result of the computation is llAII IIA-111 = 7.4 x 1011 indicating that

for a one percent data error, the error in the unknown will be on the order of
1011 percent. This certainly leaves some doubt as to the existence of any method

that could counteract such large instabilities. Consequently, to confirm the

usefulness of the inversion method, a computer simulation was implemented.

To reasonably evaluate the inversion method, the true value of the unknown

structure constant must be known at many points. This true value was generated

through the uae of an equation similar to Eq. (68); i.e.,

1
C 2 (x) = 10-14 + 0.4 x I0-14 1 [an cos(nwx) + an' sin(nix)] (81)

n=o

where x, the normalized path length, varies from zero to one. The a and a'
n n

are computer generated, Gaussian random numbers with zero mean and variance one.

The 10-14 represents a typical average value of C n2 as derived from atmospheric

experiments. After Cn2 is generated at eighteen equispaced points along the

path, the true data, BA(p), is calculated by matrix methods from Eq. (79). To

model the errors that are inherently present in any real measurement device, the

data are perturbed by adding e certain amount of error to them. The magnitude

of the error is defined as the standard deviation of the error deviated by the

peak of the correlation curve. It should be evident that the errors between 0.1

and 1.0 percent would be typical in experimental cases; this leads to errors on

the order of tens of percents in the tail of the curve. The perturbed data,
which approximates the true data, are used in the inversion method to obtain a

prediction for Cn2 ; this prediction is denoted by Cn2 . The accuracy of the pre-

diction is found by comparing C 2 with C 2. The computer simulation scheme isn n
diagramed in Fig. 4. An example of the results of the simulation, for the a.'os-

pheric structure constant is shown in Figs. 5 and 6. The errors involved in each

case are indicated in the figures. For data errors between 0.1 and 1.0 percent

the structure constant is predicted quite accurately. Even for large errors in

the corre.L..ition function, the points denoted by the squares, the predicted value

of the structute constant corresponds to the mean value of the true curve.

I{
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The sensitivity of the inversion can be represented in another way a. shown

in Fig. 7. The average perc.ent error in the unknown is plotteci versus the aver-

age percent error in the data. Three curves are shosm: a) the error as pre-

dicted by the product of the matrix norms, b) the errors as predicted by the

Scovariance matrix of Rn, and c) the actual errors as derived from the computer

simulation. When the data error is between 0.1 and 1.0 percent, the unknown

error lies between 1.0 and 10.0 for the worst case (highest curve). This is a

remarkable improvement over the errors generated by the standard matrix inver-

sion method, as indicated earlier in this section. An interesting feature occurs

for the larger data errors; the unknown errors seem to be limiting. This indi-

cates that the even for large data errors, the statistical inversion method is

useful for t),edicting the average value of the unknown.

The structure constant can be found from data other than the correlation

function; namely, the amplitude and phase structure functions. In theory, the

phase correlation function could also be used; however, due to the foregoing

form of the Kolm.gorov spectrum, it does not converge. An error analysis has

been done for data in the form of the amplitude and phase structure functions.

Figure 8 shows the results, comparing them with the correlation function case.

It is found 'hat the unknown errors prdicted in the case of the amplitude

structure function are slightly higher than those from the correlation function

expansion. On the other hand, the error produced by the phase data is much too

large to be of any use.

The other parameter to be measured through the inversion process is the

average transverse wind velocity. To evaluate the accuracy of the inversion,

an error analysis similar to that of the last section was studied. Since the

three methods of error prediction (matrix norm, covariance matrix, and computer

simulation) have been shown to agree quite well, only one will be used to eval-

uate the wind velocity equations. The simplest of the three is the procedure

employing the product of the matrix norms. The norm of the A matrix is obtained

from the der-vative form of the kernel matrix; the norm of the B matrix is cal-

culated from Eq. (67). Since this equation is rather complicated, it is sim-

plified by assuming Cn2 constant with zero error. The restilts of the error

analysis are shown in Fig. 9. Curves are shown for both amplitude and phase

data. The errors predicted for the abplitude data are quite low; those pre-
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dicted in the case of t•h fhase are quite high. This reinforces the conclusion

that the phase data are not 6uitable fo, the inversion method.

Data obtained from an exoeriment conducted by J. C. Harp [14] at the

Stanford Electronics Laboratories will now be evaluated to predict the wind

velocity and structure constant, at se-'eral points between the transmitter and

the receiver. The data consists of a set of correlation curves. To adapt them

to the problem one observes the value of t-.e correlation function and its deriv-Sative at the point t=0. In Harp's paper lata points are found for seven receiver

separations. These data are interpolated and shown in Figs. AO and 11. Notice

that the correlation curves are normalized to one. This being the case, it is

impossible to determine the average value of the structure constant in the two

cases to be studied. This limits one to examining the shape and relative magni-

tudes of the structure constant along the path. The average value of the wind

velocity is not lost through the normalization process. Tc denormalize the

correlation curves, the peak of each is assumed to have a typical value of 1.0
x 10-2. The other parameters necessary for the inversion are the statistics of

the unknowns and the assumed values for the average data error. The covariance

matricies modeling the structure constant and the wind velocity are shown below.

10
S cc = 10-28 {1.0 + (0.04)2 1 cos[ns(xi-x.)]} (82)

n=o

6
S = 25{1.0 + (0.1)2 1 cos[nv(x.-xj)]} (83)

n=1

The average value of C 2 is assumed to be 10-1; the (0.04)2 in E-. (82) isS~n-
developed from the constraint that C 2 is greater than or equal to zero. TheS~n
average value of the wind velocity was taken to be zero, since its direction

can vary; its standard deviation was taken as 5 meters/sec. The magnitude of

the error in the correlation function was taken to be 5 percent; this is re-.-uon-

able considering the amount of in,:erpolation that is necessary.

Using the above parameters, the atmospheric structure constant was evaluated

using Eq. (42). The results are shown in Figs. (12a) and (13a). Equation (67)
was used to determine the average transverse wind velocity. These results ar
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shown in Figs. (12b) and (13b). The structure constant curves can be inter-

preted physically by observing the topography over which tiae turbulence was

formed. A crcoss section of the transmissicn system was shown in Fig. (2).

It represents San Francisco Bay bordered on both sides by hills. If a wind

were blowing up or down the bay, a velocity gradient would be formed from the

difference in the velocity in the center of the bay and the smaller velocity

that would occur near the hills. This gives rise to highaer turbulence near

the sides of the valley than in the center. At the same time, the turbulence

very near the sides wculd be reduced because the larger eddies could not exist

at that location. These facts are reflected in the curves representing the

structure constants. The curves also compare reasonably well with the results

developed by Harp, The s•ructure constant as determined by Harp was found at

three points along the path: near the transmitter, in the center, and near the

-eceiver. The curves were assumed to- be constant in these regions. As can be

seen, the minimums and maximums of the structure constant curves, as derived

- from the inversion method agree with those obtained by Harp. One should remem-

ber that, due to the normalization of the correlation curves, the plots cannot

be compared in absolute magnitude.

The wind velocity, as predicted by the statistical inversion method, can

be closely compared with that found by Harp. The velocity curves are not

affected by the normalization of the correlation function, and the curves pre-

sented reflect both the general shape and the absolute magnitude of the wind

velocity. Before a comparison of the curves, it shuuld be tcntioned that Harp's

wind velocity data were inferred by predicting the velocity at only two points

- near the ends of the path, and assuming a smooth variation between the two

values. Thus, the velocity plots will not necessarily compare near the center

of the path. As seen by inspection of Figs. (12b) and (13b), the velocity plots

are in a very close agreement. Variations do occur near the center of the propa-

gr ion path, and in some cases at other points; however, Harp's curves seem to

indicate the average value that would be obtained from the more general statis-

tical inversion curves.
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VI. Conclusion

The value of the statistical inversion method for predicting the atmos-

pheric structura constant and the average transverse wind velocity at several

points along the path has been demonstrated by couputer simulation and by

S.pplication to data -take 1 under normal atmospheric conditions. In both cases

P it was found that the predicted value of the unknown was within ten percent

of the true value for reasonable data errors. It was also determined that for
larcger errors the piredirted solutions correspond to the average value of the

true curve. in addition, the error analysis has shown that the use of ampli-

tude data in the inversion method leads to solutions that are t-en times more

accurate than -chose obtained from phase fluctuation data. On this basis, phase

data are deemed inappropriate for use in the inversion nethod. From these

results it can be concluded that the statistical inversion method has great

potential in the remote determinztion of two atmospheric parameters, the struc-

ture crnstant and the average transverse wind velocity.

I
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