AD-760 696

an way show the second states and show the second

INORGANIC HALOGEN OXIDIZER RESEARCH

Karl O. Christe, et al

Rocketdyne

Prepared for: Office of Naval Research

31 May 1973

DISTRIBUTED BY:

National Technical Information Service U. S. DEPARTMENT OF COMMERCE 5285 Port Royal Road, Springfield Va. 22151

Reproduced by NATIONAL TECHNICAL INFORMATION SERVICE US Department of Commerce Springfield VA 22151

205

many in the

Rocketdyne North American Rockwell

DOCUMEN S contractes discupanced rule of the tracket	IT CONTROL DATA - F	C&D South real shear the	weat report in the others					
ROCKETDYNE DIVISION		UNCI	ASSIFIED					
ROCKWELL INTERNATIONAL CORPORATION 6633 Caloga Avenue, Canoga Park, Ca	lifornia 91304	27. 1.4.13 51						
ANNUAL REPORT, INORGANIC HALOGEN O	XIDIZER RESEARCH							
Annual Report (1 April 1972 through	, h 31 March 1973)							
K. O. Christe, C. J. Schack, R. D. E. C. Curtis, and D. Pilipovich	Wilson,							
NEPONT CALE 31 May 1973	TR TOTAL NO	OF PAGES	73, NO OF REFS 28					
• CONTRACT OF GRANT NO NOOD14-70-C-0294	98 C RIGINATO	R-9262	9£ P(\$)					
,	ot. OTHER REP This report)	ORT NO(5) (Any a	hor numbers that arey be exaigned					
Reproduction in whole or in part : of the United States Government,	is permitted for a	any purpose						
NUPPLEMENTARY HOTES	12 PONSCHING MILITARY ACTIVITY							
	Office Power 1	Office of Naval Research Power Branch						
Synthesis of novel CTF ₃ O ₂ was scalad up and its phy properties were computed. Its complex formation with CTF ₂ O ₂ ⁺ AsF ₆ , were synthesized.	sical properties were deteined to the strong Lewis acids was	rmined. Force co studied and two	enstants and thermodynamic new saits, $C1F_2O_2^{+}BF_4^{-1}$ as					
The CIF5-OF2 photolysis yielded no CIF5O and the for the synthesis of CIF from CI2 and CIF3 were de	e BrF5-OF2 system proc termined.	luced no BrF ₃ O (or BrF ₅ 0. Reaction paramet					
Reactions of PtF ₆ with OF ₂ , O ₃ , DrF ₅ , CtF ₃ O, Cs ⁺ C using $O_2^+AsF_6^-$ as the oxidizing agent on (CF ₃) ₂ NC	C1F4OT, CF3NO, were st D1	udied. Synthesis	of (CF3)2NO ⁺ was studied b					
A systematic study of low-temperature ozonization re $CIONO_2$, and $CIOSO_2F$.	pactions was performed in	volving C10C10	3, BrOC 103, C 102, BrOSO2					
From C_6F_5I or C_6F_5Br and $C10C10_3$, novel compo	unds, $C_6F_5I(OCIO_3)_2$ ar	id (0 ₃ C10) ₂ C ₆ F	5C1, were obtained.					
Efforts were made to synthesize Br_2O_7 and I_2O_7 by isolation of Br_2O_7 and I_2O_7 was not possible owing t	reaction of perhalate salts to complexing with the st	with SO3. For sering materials	the BrO_4^- and IO_4^- salts the					
Covalent fluorosulfates are useful for chemical synthe and selenium fluorides.	eses and a number of react	tion systems were	studied involving iodine, sub					
A novel synthesis of NF4 ⁺ saits was discovered emploin this way. This study suggests that F2 in the present PtF_{6} .	oying uv photolysis. The lice of a strong Lawis acid	PtF6 [®] , AsF6 [®] , a has an oxid ¹ zing	nd BF4 [—] salts were prepared power comparable to that of					
A number of structural studies were conducted. Amo trifluoroacetates of iogine, SF4, SF4O, and C12O6.	ong the compounds studie	d wrre CIF ₄ +, d	F_4^+ , F_4^+ , and SF_5O^- salts					

ŗ

57 L - 1 - 1 - 1 - 1

And a second second

UNCLASSIFIED

and the second finite in the second second

Security Classification

14	KŽY NORDS	LIN	LINK #			L 11	, y C
			**	ROLE	# T	HOLT	W T
]			
1.	Synthesis						
2.	Novel Oxidizers						
3.	Perchlorates						
4.	Fluorination				}		
5.	Halogen Fluorides						
6.	Infrared and Raman Spectra						
7.	X-Ray Powder Patterns						
8.	nmr Spectra						
			[
			ĺ				
				ļ			
						ł	
						ł	
				1	Í		
الدين الدين مي العالم الع المعالم العالم							
	1 - (),	UNCLASSIFIED					
	,	Security Classification					

10.0

A REAL PROPERTY AND

17 4 4 M TO

	Rocketdyne Division Rockwell International
	6633 Conoga Avenue Cenuga Parki California (31304
	R-9262
	ANNUAL REPORT INORGANIC HALOGEN OXIDIZER RESEARCH
	(1 April 1972 through 3í March 1973)
	Contract N00014-70-C-0294 G.O. 09263 DDC
	Office of Naval Research Power Branch Code 429
	PREPARED BY
	K.O. Christe, C.J. Schack, R.D. Wilson, E.C. Curtas, and D. Pilipovich Env purpose of the U
Distributio	APPROVED BY States Government.
e.	Propellants, Explosives, and Ingredients
NO. OF PAGES	Propellants, Explosives, and Ingredients Advanced Programs 208 & iv REVISIONS DATE 31 May

i.

CONTENTS

A MARKED AND

3

É

2000

ч

3

Foreword		(* *		٠	•	ه ه	•	•	٠	•	•	n	1
Abstract	· • •		•••		٠			٠		٠	•	•	3
Introduction	s' 9, 9	• •	÷.	•		•, •		•		* *	•		5
Publications During Past	Contract	Year	• •	ŕ		· ·		'n,		٠	•		5
Discussion	•, • •	• •;	• •	•							ı		9
Chlorine Trifluoride Dio	xide .	•, •		'n	•	•, •	•		•	•	٠		9
The $ClF_2O_2^+$ Cation	• •; •			*	٠	•	u		ř				9
The ClF ₆ ⁺ Cation		• •	• •	•	•		•	*)	•	•	•;	۲	9
On the Existence of ClF _c	0 and Rel	ated Pl	hoto1	ysis	Rea	ctio	ins		٠	•		•	9
Synthesis of FC10	۰ <u>ب</u> ۰	• •	• •	ï	•	·, ·	•	7				٠	10
Synthesis of ClF	• • •			•					٩,	٠		'•	10
Ptr, Reaction Chemistry	0, 1° 16;		• •	•	•				٠			ŝ	11
Ozone Oxidations		· •	• •	•			•,	۲	•	•,	•	•	14
Chlorine Perchlorate Rea	ctions 🐭	·· ·	· .	•	•					•	•		17
Halogen Heptoxides	• • •	s .		•	*		,	•	•	•	v	×	19
Covalent Fluorosulfate S	tudies .			•	`•		•	•			•	•	19
NF ₄ Chemistry				•	•		÷	•		•	,	•;	22
Oxidation of Xenon by Cl	F AsF	• •		•	•		•	ı		'n		•	23
Structural Studies	*	· ·		•	•		•	s.			,	•	23
experimental	· · ·		• •;			• •		•	•	•	•		25
Preparation of Ozone .	e, in, e	• •	• •	•	•			•,	r			٠	25
Ozonization of Chlorine	Perchlora	te.		•	•		٠	.•		•	٠	•	25
Ozonization of Chlorine	Dicxide			*	•	• •	•	•		•	٠	•,	26
Ozonization of Bromine P	erchlorat	с "	•, •	Ť		• •							26
Ozonization of Bromine F	luorosulf	ate .		•				•,		•,	•	٩	27
Ozonization of Chlorine	Nitrate		•, •,	•	•		•			٩,	•	6	27
Ozonization of Chlorine	Fluorosul	fate			۰,		•	•	¥	•		•	27
Reaction of Cl_2O_4 and Io	dopentafl	uorobe	nzene		•		•					ŧ,	28
Reaction of Cl_2O_4 and Br	omopentaf	luorob	enzen	ŧ.	•			•	,			٠	28
Reaction of $Cl_{0}O_{A}$ and Su	lfuryl Ch	loride			•				•	÷	٠		29
Fluorine Fluorosulfate-C	SSF ₅ Reac	tion			•		•	•	•	٠		•	29
Chlorine Fluorosulfate-C	sIF _A Reac	tion			•	• •	•,		•		•		29

R-9262 iii

30 Difluoramino Fluorosulfate-CsIF, Reaction Peroxydisulfuryl Difluoride-CsSeF₅ Reaction 30 30 31 Chlorine Fluorosulfate-Phosgene Reaction References 33 Appendix A Chlorine Trifluoride Dioxide, ClF₃0₂. Synthesis and Properties . . . A-1 Appendix B Chloride Trifluoride Dioxide. Vibrational Spectrum, Force Constants, and Thermodynamic Properties . . B-1 Appendix C Appendix D The Hexafluorochlorine (VII) Cation, ClF_6^+ . Synthesis and Vibrational Spectrum . . . D-1 Appendix E On The Existence of Chlorine Oxide Pentafluoride . E-1 Appendix F The Preparation of Chlorine Monofluoride F-1 sppendix G On a New Synthesis of NF_a^+ Salts and its Mechanistic Interpretation Involving Appendix H Appendix 1 On Halogen Pentafluoride Lewis Acid Adducts . . , I-1 Appendix J . . J-1 Appendix K Appendix L Vibrational Spectra of Trifluoroacetates . L-1

FOREWORD

The research reported herein was supported by the Office of Naval Research, Power Branch, Code 429, with Dr. Ralph Roberts as Scientific Officer. This report covers the period 1 April 1972 through 31 March 1973. The program has been directed by Dr. D. Pilipovich, Manager, Exploratory Chemistry. Staff members responsible for the scientific effort were Dr. K. O. Christe, Dr. C. J. Schack, Mr. R. D. Wilson, and Dr. E. C. Curtis. The Program Manager was Dr. B. Tuffly.

ABSTRACT

The synthesis of the nevel heptavalent chlorine oxyfluoride, $\text{ClF}_{3}\text{O}_{2}$, was scaled up and its physical properties were determined. Its structure was established by ¹⁹F nmr and vibrational spectroscopy and both force constants and thermodynamic properties were computed. Its complex formation with strong Lewis acids was studied and two new salts, $\text{ClF}_{2}\text{O}_{2}^{+}\text{BF}_{4}^{-}$ and $\text{ClF}_{2}\text{O}_{2}^{+}\text{AsF}_{6}^{-}$, were synthesized. With Lewis bases, such as CsF, FNO, or FNO₂, $\text{ClF}_{3}\text{O}_{2}$ does not form adducts. The structure of the $\text{ClF}_{2}\text{O}_{2}^{+}$ cation was determined by nmr and vibrational spectroscopy and a force field was computed.

A thorough study of the ClF_5-OF_2 photolysis yielded no evidence at all of the existence of ClF_50 . It appears that the claim by Zuechner and Glemser for its formation is invalid. Photolysi of the BrF_5-OF_2 system did not produce any evidence of new compounds such as BrF_30 or BrF_50 . The interaction between ClF_30 and SF_4 in the presence of CsF did not yield FC10, but all the secondary reaction products expected for its disproportionation to FC10₂ and ClF. Reaction parameters for the synthesis of ClF from Cl₂ and ClF₃ were determined.

We have continued to study the reaction chemistry of PtF_6 . Its reactions with OF_2 , O_3 , BrF_5 , $C1F_3O$, $Cs^*C1F_4O^-$, CF_3NO , and $(CF_3)_2NG$ were investigated in an attempt to synthesize the novel species, OF_3^+ , O_3^+ , BrF_6^+ , $C1F_4O^+$, and $(CF_3)_2NO^+$, respectively. The synthesis of $(CF_3)_2NO^+$, a potential precursor for the synthesis of a CF_3^- group substituted ONF_3 molecule, was also studied by using $O_2^+AsF_6^-$ as the active oxidizing agent.

A systematic study of low-temperature ozonization reactions was carried out, involving the following starting materials: ClOClO_3 , BrOClO_3 , ClO_2 , BrOSO_2 F, ClONO_2 , and ClOSO_2 F. In all cases, the starting materials were successfully oxygenated. Interestingly, the high yield product from the ClONO_2 ozonization is $\text{NO}_2^+\text{ClO}_4^-$.

The reaction chemistry of chlorine perchlorate, $C10C10_3$, was further investigated. Attempts were made to synthesize members of the so-far unknown class of

2

ないいましいでいたいとうとなるならったいというないないできょう

perfluorarylperchlorates from C_6F_5I or C_6F_5Br and $C10C10_3$. In both cases, novel compounds, i.e., $C_6F_5I(0C10_3)_2$ and $(0_3C10)_2C_6F_5C1$, respectively, were obtained.

Efforts were made to synthesize the as-yet unknown halogen heptoxides, Er_2^{0} and I_2^{0} , by reaction of perhalate salts with SO₃. In the case of Cs⁻ClO₄⁻, the known Cl₂O₇ was indeed obtained in high yield, but for the BrO₄⁻ and IO₄⁻ salts the isolation of Br₂O₇ and I_2^{0} was not possible owing to complexing with the starting materials.

Covalent fluorosulfates have significant usefulness for chemical synthesis and a number of reaction systems were studied involving iodine, sulfur, and selenium fluorides. In addition, a new and more convenient synthesis of $S_2^{0}S_2^{F}$ was found by reacting COC1₂ with ClOSO₂F.

A novel synthesis of NF_4^+ salts was discovered employing uv photolysis. The PtF_6^- , AsF_6^- , and BF_4^- salts were prepared in this way. A plausible mechanism for the formation and decomposition of NF_4^+ salts is presented which does not require the assumption of NF_5^- as an intermediate. Moreover, this study suggests that F_2^- in the presence of a strong Lewis acid has an ordidizing power comparable to that of PtF_6^- . This enhancement of oxidizing power by a Lewis acid was also demonstrated for CIF which, in the presence of AsF_5^- , can oxidize xenon to the +II oxidation state.

As in the past, a number of structural studies were conducted. Among the compounds studied were ClF_4^+ , BrF_4^+ , IF_4^+ and SF_5^- salts, trifluoroacetates of iodine. SF_4 , SF_4^- , and Cl_2^- . Our collaboration with other scientists (Professors Sawodny, Edwards, and Naumann) in some of these areas continues, and a new connection was established with Dr. F. Lovas from the National Bureau of Standards, who will carry out a structive determination of ClF_4^- by microwave spectroscopy.

During the past contract year 17 papers were published and an additional 7 manuscripts were submitted and have already been accopted for publication on the work done under this contract.

4

INTRODUCTION

This report describes the activities during the past year at Rocketdyne in the area of halogen oxidizer chemistry. As in the past, the research areas were diverse and were both technique and new compound oriented. A large number of compound types were investigated including halogen perchlorate chemistry, halogen oxyfluoride synthesis, PtF_6 chemistry, new fluorination catalysts, novel energetic cation synthesis, halogen oxide chemistry and halogen fluoride reactions. In addition, pertinent structural data for a number of species were generated. As in the past (Ref. 1 - 4), most of the data have been summarized in manuscript form.

A number of papers also were published or presented which arose from work supported on this program. These are listed below.

PUBLICATIONS DURING PAST CONTRACT YEAR

Papers Published

8.9

- "Chlorine Trifluoride Oxide. I. Preparation and Properties." by D. Pilipovich,
 C. B. Lindahl, C. J. Schack, R. D. Wilson, and K. O. Christe, <u>Inorg. Chem.</u>, <u>11</u>,
 2189 (1972).
- "Chlorine Trifluoride Oxide Is. Photochemical Synthesis," by D. Pilipovich,
 H. H. Rogers, and R. D. Wilson, Inorg. Chem., 11, 2192 (1972).
- 3 "Chlorine Trifluoride Oxide, III. Vibrational Spectrum, Force Constants, and Thermodynamic Properties," by K. O. Christe and E. C. Curtis, <u>Inorg. Chem., 11</u>, 2196 (1972).
- "Chlorine Trifluoride Oxide. IV. Reaction Chemistry," by C. J. Schack, C. B. Lindahl, D. Pilipovich, and K. O. Christe, <u>Inorg. Chem.</u>, <u>11</u>, 2201 (1972).
- "Chlorine Trifluoride Oxide. V. Complex Formation with Lewis Acias and Bases," by K. O. Christe, C. J. Schack, and D. Pilipovich, <u>Inorg. Chem.</u>, <u>11</u>, 2205 (1972).

- "Chlorine Trifaucride Oxide. VI. The ClF₄O" Anion. Vibrational Spectra and Force Constants," by K. O. Christe and E. C. Curtis, <u>inorg. Chem.</u>, <u>11</u>, 2209 (1972).
- "Chlorine Frifluoride Oxide, VII. The ClF₂0⁺ Cation. Vibrational Spectrum and Force Constants," by K. O. Christe, E. C. Curtis, and C. J. Schack, <u>Inorg. Chem.</u>, 11, 2212 (1972).
- "The C10₂F₂⁺Cation," by K. O. Christe, <u>Inorg. Nucl. Chem. Letters</u>, <u>8</u>, 453 (1972).
- "Chlorine Trifluoride Dioxide, C1F₃O₂," by K. O. Christe, <u>Inorg. Nucl. Chem.</u> <u>Letters</u>, <u>8</u>, 457 (1972).
- 10. "The CIF₆⁺ Cation," by K. O. Christe, <u>Inorg. Nucl. Chem. Letters</u>, <u>8</u>, 741 (1972).
- "On the Reactions of Chlorine Fluorides with Hydroxyl Compounds," by K. O. Christe, Inorg. Chem., 11, 1220 (1972).
- "Iodine Trisperchlorate and Cesium Tetraperchlorato Iodate (111)," by K. O. Christe and C. J. Schack, <u>Inorg. Chem.</u>, 11, 1682 (1972).
- "On Alkali Metal Fluoride IF₅ Adducts," by K. O. Christe, <u>Inorg. Chem.</u>, <u>11</u>, 1215 (1977).
- 14. "Vibrational Spectra and Force Constants of the Square Pyramidal Anions, SF₅, Se^F₅, and TeF₅," by K. O. Christe, E. C. Curtis, C. J. Schack, and D. Pilipovich, <u>Inorg. Chem.</u>, <u>11</u>, 1679 (1972).
- 15. "The Tetrafluoroiodate (III) Anion, IF₄," by K. O. Christe and D. Naumann, <u>Inorg. Chem.</u>, 12, 59 (1973).
- 16. "A ¹⁹Fnmr Study of Chlorine Fluoride Cations," by K. O. Christe, J. F. Hon, and D. Filipovich, Inorg. Chem., 12, 84 (1973).

17. "Vibrational Spectrum and Force Constants of the SF₅O⁻ Anion," by K. O. Christe, C. J. Schack, E. C. Curtis, D. Pilipovich, and W. Sawodny, <u>Inorg. Chem.</u>, <u>12</u>, 620 (1973).

Papers in Press (Submitted and Accepted)

٤.

- "Halogen Perchiorates: Additions to Perhaloolefins," by C. J. Schack, D. Pilipovich, and J. F. Hon, <u>Inorg. Chem.</u>, <u>12</u>, 897 (1973).
- 19. "Cn the Reaction of Cl₂F⁺AsF₆ with Xenon, by K. O. Christe and R. D. Wilson. <u>Inorg. Nucl. Chem. Letters.</u>
- "The Diflucroperchloryl Cation, Cl0 2⁺," by K. O. Christe, R. D. Wilson, and E. C. Curtis, <u>Inorg. Chem</u>.
- "Chlorine Trifluoride Dioxide, C.F₃O₂," by K. O. Christe and R. D. Wilson, <u>Inorg. Chem.</u>
- "The Hexafluorochlorine (VII) Cation, CIF₆⁺. Synthesis and Vibrational Spectrum," by X. O. Christe, Inorg. Chem.
- "Vibrational Spectra of Trifluoroacetates," by K. O. Christe and D. Naumann, Spectrochim. Acta.
- 24. "Chlorine Trifluoride Dioxide Vibrational Spectrum Force Constants, and Thermodynamic Properties," by K. O. Christe and E. C. Curtis, Inorg. Chem.

Papers Presented at Meetings

- 25. "Chlorine (VII) Fluorides: Preparation, Characterization, and Properties," by K. O. Christe, D. Pilipovich, and R. D. Wilson, 4th European Symposium on Fluorine Chemistry, Ljubljana, Yugoslavia (August 1972).
- 26. "Inorganic Halogen Oxidi:ers," by K. O. Christe, invited lectures at the Universities of California, Los Angeles, Riverside, and Berkeley (1972-1973).

DISCUSSION

Section Section Sector

CHLORINE TRIFLUORIDE DIOXIDE

Chesta and and the second

The syntnesis of $\text{ClF}_{3}\text{O}_{2}$ from FClO_{2} and PtF_{6} was successfully scaled up and the reaction parameters were studied. In spite of enormous handling and purification problems, sufficient amounts of material were prepared to allow the determination of its physical, chemical, spectroscopic, and thermodynamic properties. The results from these studies were summarized in two manuscripts and are presented as Appendixes A and B.

THE CIF202 CATION

Two novel $\operatorname{ClF}_{2}O_{2}^{+}$ salts, $\operatorname{ClF}_{2}O_{2}^{+}\operatorname{AsF}_{6}^{-}$ and $\operatorname{ClF}_{2}O_{2}^{+}\operatorname{BF}_{4}^{+}$ were prepared and characterized by vibrational and ¹⁹Fmmr spectroscopy. A modified valence force field was computed for $\operatorname{ClF}_{2}O_{2}^{+}$. Attempts to synthesize the $\operatorname{ClF}_{4}O_{2}^{-}$ cation from $\operatorname{ClF}_{3}O_{2}$ and strong Lewis bases such as CsF, FNO, or FNO₂ were unsuccessful. The results from this study are given in manuscript form in Appendix C.

THE CIF⁺ CATION

The investigation of the ClF_6^+ cation was completed and a detailed manuscript was written (see Appendix D) summarizing Rocketdyne's work. In this manuscript we have also included a vibrational analysis and force constant computations for the PtF_6^- and IF_6^- anions.

ON THE EXISTENCE OF CIF O AND RELATED PHOTOLYSIS REACTIONS

Pacently, Zuechner and Glemser (Ref. 5) cleimed the synthesis of ClF_50 by photolysis of ClF_5-OF_2 mixtures. However, Rocketdyne studies on this system show quite conclusively that no detectable amounts of ClF_50 are formed in this system. Data on this system are summarized in Appendix E. Because ClF_30 is the main product of the ClF_5-OF_2 photolysis, BrF_5-OF_2 photolysis also has been studied in more detail. Contrary to ClF_5 , the BrF_5 starting material did not react and was recovered unchanged. Similarly, the $FClO_2-OF_2$ system, when exposed at -78° to filtered uvirradiation, did not produce any novel compound.

SYNTHESIS OF FC10

The $C1F_3 \cup SF_4$ reaction system was studied in an attempt to synthesize FC10 according to:

 $SF_4 + C1F_30 - SF_6 + FC10$

When no catalyst was used, the starting material did not interact at -50 and 25 C. In the presence of CsF, however, the following products were obtained: SF_6 , SF_5C1 , SF_40 , and $FC10_2$. These results indicate that the desired reaction may have initially occurred, but was followed by:

2FC10 ------ FC10₂ + C1F

 $C1F + SF_4 \longrightarrow SF_5C1$

In addition, a competing reaction, i.e., oxygenation of SF_4 to SF_40 , must have occurred to a lesser extent. This finding, i.e., the ready disproportionation of FC10 to FC10₂ and C1F, was recently confirmed by Cooper <u>et al</u>. (Ref. 6). They studied the hydrolysis of C1F₃ in a flow reactor and obtained infrared spectroscopic evidence for an unstable intermediate which rapidly decomposed to FC10₂ and C1F.

SYNTHESIS OF C1F

うちまたいであるというないないできたが、 したいないのであるというないできたとうないできたいです。 したいないできたいないである しょうしょう

The reaction parameters were studied for the synthesis of ClF from ClF_3 and Cl_2 . It was found that ClF can be prepared in almost quantitative yield at temperatures as low as 150 C. The results are summarized in manuscript form in Appendix F.

PtF_ REACTION CHEMISTRY

 \mathbf{T}

Because PtF₆ has proved to be such a useful fluorinating oxidizer for the synthesis of $\text{ClF}_{3}O_2$, $\text{ClF}_{2}O_2^+$, and ClF_6^+ , its reaction chemistry has been under continuing study. A logical extension of the ClF_6^+ synthesis was the attempt to prepare BrF_6^+ salts. However, in the $\text{BrF}_5\text{-PtF}_6$ system at 2S C, no reaction occurs between BrF_5 and PtF_6 . Using unfiltered uv irradiation, PtF_6 decomposes to lower platinum fluorides and F_2 , but no BrF_6^+ salt is formed. The ternary system, $\text{FClO}_2\text{-BrF}_5\text{-PtF}_6$, was also investigated. Upon melting of the halogen fluorides, a rapid reaction occurs, producing exclusively $\text{ClO}_2^+\text{PtF}_6^-$ and F_2 , but no BrF_6^+ . The third system, $\text{Cs}^+\text{BrF}_6^- + \text{BrF}_5 + \text{PtF}_6$, was kept at 2SC for 93 days. Analysis of the products showel no evidence for the desired BrF_6^+ cation, but indicated the formation of some Cs}^+\text{PtF}_6^- and PtF₅ as only new products.

Much effort was concentrated on the synthesis of ClF_40^+ salts, which would allow the synthesis of the new and very desirable compound ClF_50 . Because the reaction of PtF_6 with ClF_30 in the absence of a solvent had to be carried out above -42 C (m.p. of ClF_30) and yielded only $\text{ClF}_20^+\text{PtF}_6^-$ and F_2 , this system has been studied in a low melting solvent. An ideal inert solvent was found with FCl0_3 which melts at about -150 C, has a high solubility for PtF_6 , and is completely inert to PtF_6 . Two reactions of ClF_30 with PtF_6 were carried out in FCl0_3 solution, differing in the warm-up conditions. In both cases, again only $\text{ClF}_20^+\text{PtF}_6^-$ and F_2 , but no ClF_40^+ , were obtained. Because previous attempts to prepare either ClF_40^+ or ClF_50 directly from ClF_30 and PtF_6 were unsuccessful (see Appendix D), the reaction of $\text{Cs}^+\text{ClF}_40^$ with PtF_6 was studied in the presence and absence of a solvent. Without any solvent and using ultrasonic mixing, solid $\text{Cs}^+\text{ClF}_40^-$ interacted with PtF_6 at 25 C within 48 hours quantitatively, according to:

$$2PtF_6 + Cs^+ C1F_40^- - Cs^+ PtF_6^- + C1F_20^+ PtF_6^- + F_2$$

Using FC10₃ as a solvent, the reaction of PtF_6 was much faster and proceeded at a lower temperature. However, the reaction products were identical to those given above. The possibility of using PrF_5 as a polvent was also examined. It was

found to be incompatible with $s^*ClF_4^0$, owing to the following quantitative displacement reaction:

$$Cs^{+}C1F_{4}O^{-} + BrF_{5} - Cs^{+}BrF_{6}^{-} + C1F_{3}O$$

Another desirable, energetic species would be the OF_3^{4} cation. It is isoelectronic with NF₃ and, hence, might possess a reasonable stability. In its attempted synthesis, a mixture of OF_2 and PtF_6 was kept for 100 days in a sapphire reactor at 25 C. While all of the PtF_6 was consumed, all of the OF_2 was recovered unreacted. Based on the observed weight changes and the infrared spectrum of the solid residue, the following interaction between the reactor and PtF_6 occurred:

The reaction of ozone and PtF₆ has also been investigated for the possible formation of 0_3^+ PtF₆⁻. The 0_3^+ cation might exist, being isoelectronic with N0₂. During several weeks reaction at temperatures of -80 to -45 C, it was found that very little 0_3 reacted and nearly all was recoverable. Thus, it appears that the PtF₆ has a stablizing effect on 0_3 under these conditions. At ambient temperature, $0_3^$ and PtF₆ gave a nearly quantitative yield of 0_2^+ PtF₆⁻. This was based both on the amount of excess 0_2^- recovered and the weight increase of the PtF₆. Thus, 0_3^+ PtF₆⁻ does not appear to be preparable in this manner.

Since PtF_6 can oxidize ClF_5 to ClF_6^+ and since $XeOF_4$ is pseudo-isoelectronic with ClF_5 , it might be possible to prepare $XeOF_5^+$ according to:

$$2 \times 00F_4 + 2PtF_6 \longrightarrow \times 00F_5^+ PtF_6^- + \times 00F_3^+ PtF_6^-$$

The first attempt to synthesize the XeOF₄ starting material according to a literature report by hydrolysis of XeF₆ came to an explosive halt. In the meantime, several grams of XeOF₄ were prepared by the alternate procedure based on the slow interaction between XeF₆ and quartz. In addition, a PtF₆ preparation, which in the past has successfully been carried out many times, failed owing to

burn out. As soon as new platinum wire is received, this study will be resumed.

Reactions of PtF_6 with free nitroxide radicals such as $(CF_3)_2NO$ were investigated with the intent of achieving the synthesis of a novel CF_3 substituted NF_3O molecule, according to:

 $(CF_3)_2NO + PtF_6 \longrightarrow (CF_3)_2NO^+PtF_6^ (CF_3)_2NO^+PtF_6^- + FNO \longrightarrow NO^+PtF_6^- + (CF_3)_2NFO$

The nitroxide starting melerials were synthesized and allowed to interact with PtF_6 at the lowest posel le temperature. However, in all cases the reaction was so violent (confined explosions) that the only products obtained were $N0^+PtF_6^-$, CF_4 , $C0F_2$, CF_3N0_2 , $(CF_3)_2N0CF_3$, and small emounts of NF_3 . It is planned to repeat these reactions in the future using the milder oxidizers ReF_6 or MoF_6 in place of PtF_6 .

The reaction of $0_2^{+}AsF_6^{-}$ with $(CF_3)_2NO$ at low temperature was also studied as an alternative route to $(CF_3)_2NO^{+}$ salts:

$$0_2^{+}AsF_6^{-} + (CF_3)_2NO^{----}(CF_3)_2NO^{+}AsF_6^{-} + 0_2$$

However, the solid was shown to be NO⁺AsF₆ and COF₂ and CF₄ were obtained as volatile products. This indicates that $(CF_3)_2 NO^+$ may nave initially formed, but is unstable. This experiment will be repeated at a lower temperature, substituting $O_2^+AsF_6^-$ with the more stable salt $O_2^+SbF_6^-$. The latter starting material was synthesized from $O_2^- + F_2^- + SbF_5^-$.

OZONE OXIDATIONS

Compounds containing the terminal haloxy group, X0-, are uniformly reactive and utilitarian reagents. However, nearly all of the known chemistry of these materials centers on their reaction through cleavage of the haloxy bond, e.g., the use of $C10S0_2F$ to produce $C10C10_3$ from $Ag^*C10_4^-$ (Ref. 3) and the use of $C10C10_3$ to prepare $C1C_1^2$ - $C0C10_3$ compounds (Ref.3). To change the nature of these X0- moieties and thus perhaps to change their types of reactivity and stability, studies were aimed at the oxidative oxygenation of the terminal halogen.

The only report of such an oxidation was given by Schmeisser and Taglinger (Ref.7). They reported the o_2 onization of BrCNO₂ at -78 C as shown in the equation:

$$Brono_2 + 20_3 - Bro_2 No_3 + 20_2$$

The good results realized in that system offered promise of equally useful reactions with other XO- species. Of immediate interest were the halogen perchlorates, $CloClo_3$ and $BroClo_3$. In the case of $CloClo_3$ it was found that exidation via ezonization occurred under a variety of conditions according to the equation:

 $C10C10_3 + 20_3 - C1_20_6 + 20_3$

At -80 C the reaction was slow, providing only a 35-percent yield of Cl_{20}_{6} after more than a 24-hour reaction. At -45 C the reaction was studied with and without CF_3Cl as a solvent. In the former case, and using excess Cl_{01010}_3 , an 80-percent yield of Cl_{20}_6 based on 0_3 , was obtained with the unreacted Cl_{01010}_3 bein recovered. Thus, an even higher conversion of the reacted Cl_{01010}_3 was realized. Without the solvent, but with a slight excess of 0_3 over the required 2:1 ratio, a vircually quantitative formation of Cl_{20}_6 was achieved.

14

To prove the identity of the chlorine oxide produced by this reaction and that reported for Cl_20_6 , alternative syntheses were carried out. One of these involved the slow degradation of $Cl0Cl0_3$ in the dark (Ref. 8):

$$2C10C10_3 - \frac{-15}{2}C - C1_20_6 + 0_2 + C1_2$$

Another employed the usual ozonization of chlorine dioxide (Ref. 9):

$$2010_2 + 20_3 - C1_20_6 + 20_2$$

When this ozonization was run at -45 C, it was found that $\text{Cl}_2^{0}_6$ was formed at a faster rate than with Cl_3^{0} as a substrate. In all respects -- appearance, vapor pressure, composition, and mass spectra -- the $\text{Cl}_2^{0}_6$ from each of these sources was the same and no indication of isomeric forms of $\text{Cl}_2^{0}_6$ was noted.

Some disagreement regarding the mass spectrum of Cl_{20}_{6} exists. Cordes and Smith (Ref. 10) observed a weak Cl0_{3}^{+} ion as the highest m/e from $\text{Cl}_{20}_{6}^{-}$. However, Fisher (Ref. 11) found no Cl0_{x}^{+} ions above Cl0_{2}^{+} , but his samples showed appreciable HCl0_{4} impurity. In Rocketdyne's work, samples without HCl0_{4} gave a small (5-percent of base) peak for Cl0_{3}^{+} . Even samples with some HCl0_{4} exhibited a modest but reproducible Cl0_{7}^{+} peak when the spectrum was corrected for that impurity.

The novel process for ozonizing the terminal chlorine of ClOClO_3 was applied to BrOClO_3 . Surprisingly, it was found that neat O_3 and PrOClO_3 in the temperature range of -80 to -45 C reacted to cause their complete degradation to the elements. An effort was therefore made to moderate the reaction through the use of CF₃Cl as a solvent. This was successful and the reaction observed at -45 C was:

 $Br0C10_3 + 20_3 - Br0_2C10_4 + 20_2$

Excellent oxygen balance for this stoichiometry was realized and confirmed by analysis of the product. This showed that 30_2 was present for each BrCl in the molecule.

The new composition, $Br0_2C10_4$, is a bright orange solid that does not melt up to at least -40 C. Decomposition at room temperature occurs slowly in well-passivated metal. Efforts to further characterize and utilize the compound are in progress. An attempt to displace $FBr0_2$ using $FN0_2$ was unsuccessful since only a small amount of $FN0_2$ reacted.

In view of the failure to secure a controlled reaction of 0_3 and $8r0Cl0_3$ in the absence of a solvent, it was not unexpected that $8r0S0_2F$ sould behave similarly. Thus, it was determined that neat 0_3 and $8r0S0_2F$ did not produce an ozonization product. Instead, all the 0_3 was decomposed to 0_2 and most of the $8r0S0_2F$ degraded to $8r_2$, $S0_2F_2$ and $S_20_5F_2$. Results of solution ozonization of $8r0S0_2F$ are not in hand as yet.

Bromine nitrate was also sought for use in the ozone oxidation studies. Its synthesis from Br_2 and $CINO_3$ (Ref. 7) at -45 C was extremely sluggish. Also, long reaction times were ineffective because of an apparent degrading reaction which produced Br_2 , CIO_2 , and N_2O_5 . The formation of these products probably occurs through a competitive and previously unsuspected interaction of $BrNO_3$ and $CINO_3$, as shown by the equations:

 $2C1NO_{3} + Br_{2} - 2BrNO_{3} + C1_{2}$ $C1NO_{3} + BrNO_{3} - N_{2}O_{5} + BrOC1 (or Br + C10 +)$ $2 Br + Br_{2}$ $2 C10 + C10_{2} + 1/2 C1_{2}$

Alternate routes to BrNO3 are being investigated.

An initial attempt to effect the ozonization of $C10NO_2$ at -80 C without a solvent indicated no reaction occurred. With CF₃Cl as a solvent, at either -80 or -45 C, a successful oxidation was achieved as shown:

 $C10N0_2 + 30_3 - - N0_2 + C10_4 + 30_2$

Yields of $NG_2^+CIO_4^-$ on the order of 80- to 90-percent are routinely obtainable. This reaction represents a new process for preparing nitronium perchlorate and avoids the use of the troublescme CIO_2 which is commonly employed as part of that synthesis (Ref. 9).

Chlorine fluorosulfate was expected to undergo exidative ezonization since a predicted product, Clo_2So_3F , is known from other synthetic schemes (Ref. 9 and 12). It was found that no solvent was required to produce the reaction:

 $C10S0_2F + 20_3 - C10_2S0_3F + 20_2$

A moderate reaction occurred even at 0 C furnishing 70- to 90-percent yields of chloryl fluorosulfate. Further oxygen up-take beyond this composition was not observed.

CHLORINE PERCHLORATE REACTIONS

Several examples of the synthesis of the previously unknown class of compounds, perhalbalkylperchlorates, were discovered on this program (Ref. 3) through the use of chlorine perchlorate. More examples were obtained recently under another program (Ref. 13). However, no examples of aromatic perchlorates have been reported and it was of interest to ascertain whether Cl_20_4 would be useful in this regard. Iodopentafluorobenzene was selected as a test vehicle. Reaction at -45 C produced excellent volumetric and gravimetric data in accordance with the equation:

$$C_{6}F_{5}I + 2C1_{2}0_{4} - C_{6}F_{5}I(C_{1}0_{4})_{2} + C1_{2}$$

The perchlorate product is a shiny, pale yellow solid completely stable at ambient temperature and nonvolatile. It is probably similar to $1(ClO_4)_3$ (Ref. 2) or $(CF_3)_2CFI(ClO_4)_2$ (Ref. 13), although this stoichiometry does not rule out a composition such as $(C_6F_5)_2I^+I(ClO_4)_4^-$ as was found for the compound $(C_4F_9)_2I^+IF_6^-$ (Ref. 14). Retention of the aromatic character of the ring was shown by the infrared spectrum which also showed the presence of perchlorate groups.

Although thermally stable, the solid is either friction or impact sensitive. Thus, while attempting to break up a lump of this solid with a metal spatula, it exploded. While insoluble in water, the solid is slowly hydrolyzed, producing a pale yellow powder.

$$C_{6}F_{5}I(C10_{4})_{2} + H_{2}0 - C_{6}F_{5}I = 0 + 2HC10_{4}$$

The identity of the iodoso derivative was confirmed by comparison of its infrared and melting point to that given in the literature (Ref. 15). Investigation and characterization of this new perchlorate is continuing.

When the reaction of C_6F_5Br and Cl_2O_4 was examined at -45 C, a different result was obtained. Again, two moles of Cl_2O_4 reacted for each noise of the aryl compound. However, displacement of the bromine was accomplished as evidenced by the evolution of BrCl. Nevertheless, the product was not a simple R_fClO_4 moiety. After pumping for several hours at 0 C to room temperature, there remained a colorless, slightly viscous liquid. The by-products observed and the weight of the product indicated a composition for this liquid of $(ClO_4)_2C_5F_5Cl$. The infrared spectrum of the neat liquid revealed very strong covalent ClO_4 group bands but no 1500 cm⁻¹ aromatic ring band. These results indicate the probable reaction to be:

The mass spectrum of the liquid confirms the tack of aromatic character for the liquid. Moreover, ion peaks for fragments such as $C_4F_3Cl_20^+$, $C_3F_3Cl_20^+$, $C_3F_2Cl0^+$, and $C_2F_2Cl0^+$ tend to support the above formulation. However, there appears to be an abnormally high number of peaks tentatively assigned to saturated molecular fragments such as CFCL⁺ and CF₂Cl⁺. Also, the infrared spectrum shows a strong band near 1870 cm⁻¹. Typically, such a band is due to the C=O stretching mode of an $R_fC(0)F$ species. If such were the case here, then it would mean the aromatic ring had been opened. Additional spectral investigations including ¹⁹F nmr are planned to resolve these points.

HALOGEN HEPTOXIDES

New approaches for the synthesis of $Cl_{2}O_7$ from perchlorate salts were studied. These will be applied to the syntheses of the as-yet unknown heptavalent halogen oxides Br_2O_7 and I_2O_7 . We found that Cl_2O_7 can be prepared from $Cs^+ClO_4^-$ and $SO_3^$ in high yield. Extension of this reaction to $Cs^+BrO_4^-$ and $K^+IO_4^-$ resulted in Interaction of the starting materials; however, the products appeared to form adducts and could not be isolated and characterized without decomposition to the elements. Further experiments are planned in which SO_3^- will be substituted by the more volatile FSO_2-O-SO_2F . This should facilitate the product workup. The new Br_2O_7 and I_2O_7 species would be excellent candidates for high detonation pressure explosives.

COVALENT FLUOROSULFATE STUDIES

The covalent inorganic fluorosulfates have significant synthetic usefulness and a number of reaction systems were studied involving iodine, sulfur, and selenium fluorides. Fluorine fluorosulfate and CsSF₅ were reacted to determine which of two possible reaction paths would be followed.

$$C_{3}SF_{5} + FSO_{3}F$$

$$C_{5}SF_{5} + SF_{5}SO_{3}F$$

$$C_{5}F + SF_{5}SO_{3}F$$

R-92€2 19 As has often been noted with the other halogen fluorosulfates, the tendency to form the fluorosulfate ion predominates and, accordingly, the upper path was foilowed exclusively. While all the FSO₃F that reacted liberated SF₆, not all the FSO₃F or CsSF₅ reacted. A 55-percent conversion of the available SF₅⁻ was achieved.

Chlorine fluorosulfate has repeatedly demonstrated an ability to serve as a source of positively polarized chlorine in converting anions to covalent species. An attempt to utilize this property was made with the goal of forming IF_4Cl as indicated by the equation

$$CsIF_4 + C1SO_3F - CsSO_3F + IF_4C1$$

Despite the use of a maximum reaction temperature of -80 C, it was found that Cl_2 was quantitatively released at that temperature. At higher temperatures the coproducts IF₅ and I_2 were found leaving a residue of CsS0₃F. The indicated stoichiometry is:

$$CsIF_4 + C1SO_3F - CsSO_3F + 1/2 Cl_2 + 4/5 IF_5 + 1/10 I_2$$

Perhaps IF_ACl was formed, but it was certainly unstable even at -80 C.

In a similar manner, NF₂SO₃F was reacted with CsIF₄ in an effort to make the substituted IF₅ derivative, IF₄NF₂. With excess CsIF₄, a prolonged reaction at -45 C did not consume all the NF₂SO₃F. However, no TF₄NF₂ was detected, but only IF₅/I₂ and SO₂F₂. The apparent reaction sequence is:

$$CSIF_4 + NF_2SO_3F - CSSO_3F + [IF_4NF_2]$$

$$[IF_4NF_2] - [IF_3] + NF_3$$

$$[IF_3] - IF_5/I_2$$

Nitrogen trifluoride was not observed but it would have been pumped away in the course of the work-up procedure used. The SO_2F_2 arose from the fluorination of SO_2 which was an impurity in the NF_2SO_3F . It seems certain that IF_4NF_2 is incapable of synthesis in this manner.

Peroxydisulfuryl difluoride was reacted with the salt, CsSeF₅, with the expectation that a simple fluorosulfonation would occur.

$$CsSeF_5 + S_2O_6F_2 - CsSO_3F + SeF_5SO_3F$$

Reaction at ambient temperature did not occur in this manner, however. Instead the exclusive reaction was the fluorination process represented by the equation:

$$CsSeF_5 + S_2O_6F_2 - CsS_2O_6F + SeF_6$$

The fluorodisulfate anion is not especially well known and only one other example of its formation from $S_2O_6F_2$ is known to Rocketdyne (Ref. 16). That synthesis entailed the fluorination of peroxydisulfate salts with $S_2O_6F_2$.

In contrast to this result, the interaction of $S_2 O_6 F_2$ and SeF_4 did proceed via cleavage of the percey bond but again fluorination was encountered. The observed ambient temperature reaction was:

$$3SeF_4 + S_2O_6F_2 - SeF_6 + 2SeF_3^*SO_3F^-$$

Among the useful properties of chlorine fluorosulfate is its ability to serve as a precursor for other covalent inorganic fluorsulfates. This has led to its use (Ref. 19) in preparing $S_2O_6F_2$ and $BrSO_3F$, for example. Another such synthetic application was found in the following reaction:

$$\operatorname{cocl}_2 + 2\operatorname{clso}_3 F \longrightarrow \operatorname{co}_2 + 2\operatorname{cl}_2 + \operatorname{s}_2 \operatorname{o}_5 F_2$$

Pyrosulfuryl fluoride can be obtained in at least 90 percent yield and quickly by this process. Purification is simple since the by-product CO_2 and Cl_2 are apreciably more volatile.

S |

1.4.6

20 A 10 (10 10 1 1

×,

NF⁺ CHEMISTRY

A new synthesis of NF₄⁺ salts has been discovered at Rocketdyne. When mixtures of NF₃, F₂, AsF₅ or NF₃, F₂, BF₃ at 200-psi pressure in a sapphire reactor were exposed to uv radiation, the solids NF₄⁺ AsF₆⁻ and NF₄⁺ BF₄⁻, respectively, were formed. It was shown that in the absence of light, no reaction occurs, and that based on the observed rates, the NF₄⁺ AsF₆⁻ formation must be a chain reaction. Rationalization of the following reaction systems led to the conclusion that the common reactive intermediate must be the AsF₆ radical having an oxidizing power comparable to that of PtF₆ (>12 ev).

 $O_2 + F_2 + AsF_5 - O_2^+ AsF_6^-$ Xe + F₂ + AsF₅ - XeF⁺AsF₆⁻ NF₃ + F₂ + AsF₅ - NF₄⁺AsF₆⁻

A plausible mechanism was written for both the formation and thermal decomposition of NF₄⁺ salts. Contrary to the mechanism suggested by I. Solomon of IITRI, the Rocketdyne mechanism does not require formation of the energetically unfavorable NF₅ molecule as an intermediate. These results are summarized in Appendix G.

In addition, the photolysis of NF₃ - F₂ - SbF₅ has been studied at a 1-atmosphere pressure in a quartz bulb. Within several days, all of the SbF₅ was converted to a white solid, which was shown to be an equimolar mixture of NF₄⁺Sb₃F₁₆⁻ and $O_2^{+}Sb_3F_{16}^{-}$ in agreement with the following equations:

 $NF_{3} + F_{2} + 3SbF_{5} - NF_{4} + Sb_{3}F_{16}$ $2F_{2} + SiO_{2} - SiF_{4} + O_{2}$ $O_{2} + 1/2 F_{2} + 3SbF_{5} - O_{2} + Sb_{3}F_{16}$

BAY to assess the

0

The Xe, ClF, AsF_5 (stem was studied as a model reaction for the heterolytic fission of ClF according to:

$$Xe + C1F + AsF_5 \longrightarrow XeC1^*AsF_6^*$$

However, the following competing reactions occurred:

$$2C1F + AsF_{5} - C1_{2}F^{+}AsF_{6}^{-}$$

$$C1_{2}F^{+}AsF_{6}^{-} + Xe - XeF^{+}AsF_{6}^{-} + C1_{2}$$

$$2 XeF^{+}AsF_{6}^{-} - Xe_{2}F_{3}^{+}AsF_{6}^{-} + AsF_{5}$$

$$C1_{2} + C1F + AsF_{5} - C1_{3}^{+}AsF_{6}^{-}$$

These results demonstrate that Cl_2F^+ is a stronger oxidizer than ClF_3 or ClF, both of which do not oxidize Xe, and establish the following order of oxidizing power:

 $Cl_2F^+ > XeF^+ > BrF_2^+$

Results from this study were summarized in manuscript form (Appendix H).

STRUCTURAL STUDIES

The vibrational spectra of the following halogen pentafluoride Lewis acid adducts were recorded: $\text{ClF}_4^+\text{SLF}_6^-$, $\text{ClF}_4^+\text{Asr}_6^ \text{BrF}_4^+\text{Sb}_2\text{F}_{11}^-$, and $\text{IF}_4^+\text{SbF}_6^-$. Complete force constant ellipses were computed for the ClF_4^- cation. In addition, the 1S F nmr spectra of these adducts were studied in HF solution. Results are given in Ar endix I.

be able to assign the ClF_4^+ spectrum, it was necessary to clarify the existing 'iscrepancies for isoelectronic SF, by force constant and mean square amplitudes of vibratic, computations. The results are summarized in Appendix J.

Because the vibrational spectra of chlorine fluorides or oxyfluorides were found to closely resemble those of the isoelectronic sulfur compounds, we studied the spectrum of SF_5O^- . This anion is isoelectronic with CiF_5O , an as-yet unprepared oxidizer in which we have much interest. The results from this study are given in Appendix K. For the same reason, an investigation was begun on the vibrational spectrum of SF_4O which is isoelectronic with the as-yet unknown ClF_4O^+ cation. This study is still in progress and the results will be presented in a future report.

Rocketdyne has conducted studies on the structure of the $CsI(O_2CCF_3)_4$ and $Cs_3I^ (O_2CCF_3)_6$ adducts by infrared and Raman spectroscopy and by X-ray powder diffraction techniques. It was shown that the trifluoroacetate group forms a highly polarized covalent bond with iodine. The results from this study are summarized in Appendix L.

A strong effort was made to establish the structure of free dichlorine hexoxide by both matrix isolation and mass spectroscopic techniques. Unfortunately, Cl_2O_6 decomposes in the gas phase extremely rapidly to ClO_2 and oxygen. Consequently, no clear-cut evidence for either covalent chloryl perchlorate present in its ionic form in solid Cl_2O_6 (Ref. 20) or for the ClO_3 radical could be obtained. Two novel species were observed, but could not be identified conclusively.

A sample of $ClF_{3}O$ was prepared, purified, and shipped to Dr. F. Lovas of the National Bureau of Standards where a structure determination will be conducted using microwave spectroscopy.

EXPERIMENTAL

PREPARATION OF OZONE

Ũ

Ozone was prepared by electric discharge of O_2 in a Pyrex U-tube cooled with liquid nitrogen. A 15-kv power supply through internal copper electrodes provided the discharge. Upon conversion of a charge of O_2 to O_3 (which was easily followed manometrically), the discharge was stopped and the O_3 was transferred to the vacuum line. After expanding and measuring the O_3 in the line, it was immediately loaded into a precooled reactor. Somewhat more than one millimole of pure O_3 was obtained from each batch. Larger quantities could be easily prepared but would, of course, not be as safe to handle.

OZONIZATION OF CHLORINE PERCHLORATE

Freshly prepared (Ref. 8) and purified chlorine perchlorate (1.35 millimole) was condensed into a prepassivated, 30-milliliter stainless-steel cylinder cooled to -196 C. To the same cylinder, freshly prepared O_x (2.86 millimoles) was subsequently added. The reaction was allowed to proceed by warming and maintaining the reactor at approximately -45 C for 2 days or longer. At that time, recooling to -196 C showed 0_2 was present as indicated by its vapor pressure. The oxygen was pumped from the reactor and measured (2.96 millimoles). Additional pumping on the reactor, while warming to -45 C, produced less than 1 cc of condensable materials. Thus all the Cl_2O_4 had reacted with sufficient O_3 , as indicated by the by-product O_2 , producing Cl_2O_6 . The identity of the Cl_2O_6 was established by its elemental analysis after decomposition at elevated temperature. Thus from 1.35 millimole of $U_{2}U_{6}$ there was obtained 1.33 millimole Cl₂ and 3.95 millimole O₂. Furthermore, transferring this product to a Teflon U-trap on the vacuum line showed it to have the same physical appearance and properties described for Cl₂O₅ synthesized by other processes (Ref. 9). It was a very dark red liquid or solid, melting near 0 C and exhibiting only several mm vapor pressure near ambient temperature. On standing at ambient temperature, slow bubbling within the sample was noted and the gas pressure increased gradually. This was found to be caused by the formation of ClO_2 , Cl_2 , and O_2 , resulting from the decomposition of the Cl_2O_6 .

OZONIZATION OF CHLORINE DIOXIDE

Chlorine dioxide was prepared from NaClO₂ and Cl₂ (Ref. 21) at -45 C and purified by fractional condensation. The ozon zation of ClO₂ is the favored method for synthesizing Cl_2O_6 (Ref. 9). The procedure followed at Rocketdyne was identical to that described previously for the $Cl_2O_4-O_3$ reaction. After an 18-hour reaction at -45 C, 1.26 millimole of ClO_2 and 3.16 millimoles of O_3 yielded 1.85 millimole of unreacted O_3 and 1.34 millimole of O_2 . This indicated 1.30 millimole of atomic oxygen had been taken up in good agreement with the reported stoichiometry for the reaction. Essentially, a quantitative conversion to Cl_2O_6 was confirmed by the failure to recover any ClO_2 or other by-products. The product Cl_2O_6 was as described in the *literature*.

OZONIZATION OF BROMINE PERCHLORATE

Bromine perchlorate was prepared in reactors in which subsequent ozonization could be performed without transfering the BrClO4. Thus decomposition of BrClO4 through handling was evolded. The reaction of Br_2 and Cl_2O_4 was used to synthesize $BrClO_4$ (Ref. 22). A 1.29-millimole sample of $BrClO_A$ and 3.06 millimoles of O_3 were reacted at -45 C in the presence of 12 millimoles of CF_3C1 solvent. After several days the mixture was recooled to -196 C and the by-product O_2 (3.26 millimoles) was measured indicating one mole of 0_2 was taken up per mole of BrClO₄ present. The solvent was removed by warming and pumping, and finally the sample was pumped on for an hour at -45 C. Only the solvent, CF_3Cl , was observed among the volatile species. Analysis of the indicated BrO_2CIO_4 product was obtained by decomposition of the sample at 90 C for several hours. From the 1.29 millimole of BrO₂ClO₄ was obtained 1.28 millimole of a mixture of Cl_2 , BrCl, and Br_2 which was identified by its mass spectrum. In addition, 3.97 millimoles of O_2 were obtained. Thus, the product contained BrCl and O₂ in the ratio 1.00:3.07. Bromyl perchlorate samples prepared in sapphire reactors were observed to be bright orange solids that did not melt to about -40 C. Decomposition to the elements also occurred at ambient temperature over several days.

OZONIZATION OF BROMINE FLUOROSULFATF

Bromine fluorosulfate was prepared from Br_2 and $CISO_3F$ in a 30-milliliter cylinder. After purification by removal of by-product Cl_2 and excess $CISO_3F$, ozone (3.37 millimoles) was added to the $BrSO_3F$ (1.25 millimole) at -196 C. The reactor was allowed to warm very slowly to -45 C by placing it into a liquid N_2-CO_2 slush bath that was permitted to evaporate in a -45 C chamber. After 6 days, recooling to -196 C revealed all the O_3 had decomposed and part of the $BrSO_3F$ to give 5.14 millimoles of O_2 . Further ovidence for partial decomposition of the $BrSO_3F$ was the discovery of SO_2F_2 , $S_2O_5F_2$, and some Br_2 by fractional condensation of the -45 C v. Tatile products. Additional fractionation led to the recovery of $BrSO_3F$ only and no other product.

OZONIZATION OF CHLORINE NITRATE

Chlorine nitrate (1.03 millimole) prepared from CIF and HNO_3 (Ref. 23) was loaded into a 30-milliliter cylinder at -196 C followed by CF_3Cl solvent (21 millimoles) and O_3 (4.04 millimoles). The reaction was then allowed to proceed at -45 C for several days. At that time the O_2 present was measured (4.73 millimoles) and removed together with the solvent. The latter had a faint yellow color but no infrared absorbances other than those of CF_3Cl itself, thus indicating some Cl_2 as an impurity. Finally, the cylinder was pumped on at room temperature for 30 minutes before weighing.

The nonvolatile residue, a white fluffy powder, weighed 135 milligrams and was identified as $NO_2^+CIO_4^-$ by its intrared spectrum (Ref. 24). This yield of 0.92 millimole was 89 percent of theory.

OZONIZATION OF CHLORINE FLUOROSULFATE

Chlorine fluorosulfate (1.06 millimole) prepared from CIF and SO₃ (Ref. 19) was condensed into a 10-milliliter cylinder cooled with liquid N₂, followed by O₃ (2.30 millimoles). After reaction at -45 C for several days, the -196 C non-condensable gas, O₂, which had formed was measured (2.44 millimoles) and removed.

R-9262 27

ζ,

「「「「「「「」」」

Warming to -45 C while pumping liberated about 1 cc of -196 C condensable material. Thus, nearly all the $CISO_3F$ had reacted producing CIO_2SO_3F in 97 yield (1.03 milli-mole). The product is a low-volatility dark red liquid (Ref. 12).

REACTION OF C1204 AND IODOPENTAFLUOROBENZENE

A passivated 30 milliliter cylinder was charged with C_6F_5I (1.39 millimole) in the dry box. Upon evacuation, freshly purified Cl_2O_4 (3.04 millimoles) was condensed into the liquid N₂-cooled cylinder. Reaction was obtained by warming the reactor very slowly (through evaporation of a liquid N₂-CO₂ slush) to room temperature. After a couple of days at ambient temperature, it was noted that a few milliliters of -196 C noncondensables were present along with 1.72 millimole Cl_2 (contaminated with a little FClO₃). No other volatile materials were observed and the nonvolatile shiny, slightly yellow solid product (0.681 grams) corresponded to a 99.6-percent yield of C_6F_5I (ClO₄)₂.

REACTION OF C1204 AND BROMOPENTAFLUOROBENZENE

Bromopentafluorobenzene (1.31 millimole) was loaded into a 30-milliliter cylinder in the dry box. Subsequently, Cl_2O_4 (3.17 millimoles) was added at -196 C from the vacuum line and the reactor was then kept at -45 C for several days. Removal at ambient temperature of all volatile species showed them to be mainly a mixture of BrCl and Cl_2 , which were identified mass spectrometrically together with some unreacted Cl_2O_4 and lesser amounts of $S_2O_5F_2$ (impurity in the Cl_2O_4 originally used) and Cl_2O_7 . Unreacted C_6F_5Br or other volatile C-F moleties were not detected. After pumping on the cylinder at ambient temperature for several hours, the remaining product (0.507 grams) was examined in the dry brx. An oily, colorless liquid, its infrared spectrum showed C-F bands and very strong covalent $-ClO_4$ group bands. Based on the recovered BrCl, Cl_2 , and Cl_2O_4 , the composition of this liquid approaches (ClO_4) $_2 C_6F_6Cl$. The theoretical weight for 1.31 millimole of this product was 0.525 grams.

28

REACTION OF C1204 AND SULFURYL CHLORIDE

23

Chlorine perchlorate (3.87 millimoles) and sulfuryl chloride (1.95 millimole) were reacted at -23 C in a stainless-steel cylinder for several months. At that time it was found that much O_2 was present which was pumped away without measuring. The -190 \Box condensable products were Cl_2 (3.79 millimoles), a trace of ClO_2 , and unreacted SO_2Cl_2 , which was identified by its infrared spectrum. No Cl_2O_4 was recovered.

FLUORINE FLUOROSULFATE-CSSF5 REACTION

A sample of $CsSF_5/CsF$ (60:40 millimole percent, 0.40 gram) was reacted with FSO_3F (1.77 millimole) in a 30-milliliter cylinder at ambient temperature for several days. Only a trace of -196 C noncondensable material was observed and the other products were subjected to fractional condensation in a series of cold U-traps. These consisted of unreacted FSO_3F (1.23 millimole) and SF_6 (0.53 millimole), both identified by their infrared spectra (Ref. 25). Pyrolysis of the solid left in the reactor liberated SF_4 (0.43 millimole). Thus, of the available SF_5^- (0.96 millimole), 55 percent had been converted to SF_6 . An infrared spectrum of the solid showed only $CsSO_3F$ (Ref. 26).

CHLORINE FLUOROSULFATE-CSIF₄ REACTION

Solid CsIF₄ (1.13 millimole) was placed into a 30-milliliter cylinder in the dry box and freshly purified ClSO₃F (1.02 millimole) was added from the vacuum line by condensing at -196 C. The reactants were maintained at -80 C for 48 hours. Recooling to -196 C showed no noncondensables had formed. Gradual warming first to -45 C then room temperature while pumping any volatile materials through successive U-traps cooled to -80, -112, and -196 C led to the separation of 0.52 millimole of Cl₂ and trace amounts of $S_2O_5F_2$. These were accompanied by a mixture of I_2/IF_5 as shown by appearance and an infrared spectrum. The solid by-product weighed 0.236 gram, which compares well with that calculated (0.277 gram) for 1.02 millimole of CsSO₃F and 0.11 millimole of unreacted CsIF₄.

DIFLUORAMINO FLUOROSULFATE-CSIF, REACTION

Cesium tetrafluoroiodine (0.69 millimole) was loaded into a 30-milliliter cylinder in the dry box. After evacuation and cooling the cylinder to -196 C, a sample of NF₂SO₃F containing ~20 percent SO₂ (0.69 millimole) was condensed in. Several weeks of reaction at -45 C was followed by workup via fractional condensation of the volatile products at -80, -112, and -196 C. These were unreacted NF₂SO₃F (0.23 millimole), SO₂F₂ (0.46 millimole), and a mixture of I_2/IF_5 .

PEROXYDISULFURYL DIFLUORIDE-CsSeF, REACTION

After loading $CsSeF_5$ (3.62 millimoles) into a 30-milliliter cylinder, purified $S_2O_6F_2$ (3.22 millimoles) was condensed in at -196 C and the reaction was allowed to proceed at ambient temperature for a couple of weeks. No -196 C noncondensables were formed and fractional condensation of the gases present was carried out at -45, -95, and -196 C. Unreacted $S_2O_6F_2$ (0.94 millimole) was recovered and SeF_6 (2.30 millimoles). No other volatile material was found. The weight of solid product (1.10 grams) agreed well with that expected (1.12 grams) for a mixture of 2.30 millimoles of CsS_2O_6F and 1.32 millimoles of $CsSeF_5$.

i.

PEROXYDISULFURYL DIFLUORIDE-SeF_A REACTION

A 10-milliliter cylinder was cooled to -196 C and charged with SeF₄ (1.64 millimole) followed by $S_2 O_6 F_2$ (1.92 millimole). The reactor was warmed slowly to room temperature and left for 1 week.

Vacuum fractionation of the volatile species led to the recovery of unreacted $S_2O_6F_2$ (1.34 millimole) and product SeF_6 (0.55 millimole) as the only gaseous materials. The cylinder contained a white solid (0.260 gram) which was identified as $SeF_3^+SO_3F^-$ by its infrared spectrum (Ref. 17). The yield (1.10 millimole) was 95 percent based on the reacted $S_2O_6F_2$.

CHLORINE FLUOROSULFATE-PHOSGENE REACTION

Chlorine fluorosulfate (3.55 millimole) and phosgene (1.84 millimole) were separately condensed into a 30-milliliter cylinder which was held at -196 C. The reactor was warmed to ambient temperature and then heated at 50 C for several hours. The products were separated by fractional condensation at -65, -112, and -196 C. These consisted of CO_2 and Cl_2 together with traces of COFC1 and SO_2F_2 , all of which were retained at -196 C. The -112 C fraction was $S_2O_5F_2$ (1.60 millimole) and the -65 C fraction was $ClC(0)SO_3F$ (0.20 millimole), both of which were identified by their infrared spectra and vapor pressure (Ref. 27 and 28). The yield of $S_2O_5F_2$ was 90 percent.

R-9262 31/32

0

 \bigcirc

Ū
REFERENCES

Collegenerte same a college a c

والمنام والمحافظة والمتحالين والمتقاط والمتابع المتركم والمتحاف والمحاور والمتحافظ والمحافظ والمحافظ والمحافظ

A LOUIS AND A LOUIS AND

Concession of the local division of the loca

0

2

Second Providence

1.	R-9004, <u>Annual Report, Inorganic Halogen Oxidizers</u> , NOOO14-70-C-0294, Rocket- dyne Division, Rockwell International, Canoga Park, California, 26 May 1972.
2.	R-8725, Annual Report, Inorganic Halogen Oxidizers, N00014-70-C-0294, Rocketdyne Division, Rockwell International, Canoga Park, California, 1 Jane 1971.
3.	R-8234, <u>Final Report, Inorganic Halogen Oxidizers</u> , Nonr 4428(00), Rocketdyne Division, Rockwell International, Canoga Park, California, 31 May 1970, CONFIDENTIAL.
4.	R-7881, <u>Annual Report, Inorganic Halogen Oxidizers</u> , Nonr 4428(GO), Rocketdyne Division, Rockwell International, Canoga Park, California, 31 May 1969, CONFIDENTIAL.
5.	Zuechner, K, and O. Glemser, Angew. Chem. Internat. Edit. 11, 1094 (1972).
6.	Cooper, T. D, F. N. Dost, and C. H. Wang, J. Inorg. Nucl. Chem., <u>34</u> , 3564 (1972).
7.	Schmeisser, M, and L. Taglinger, Chem, Ber., <u>94</u> , 1533 (1961).
8. 9.	Schack, C. J., and D. Pilipovich, Inorg Chem., 9, 1387 (1970). Schmeisser, M, and K. Brandle, "Adv. in morg. Chem. and Radiochem., 5, 58 (1963).
10.	Cordes, H. F., and S. R. Smith, J. Chem. Eng. Data, <u>15</u> , 158 (1970).
11.	Fisher, I. P., Trans. Faraday Soc., <u>64</u> , 1852 (1968).
12.	Woolf, A. A., J. Chem. Soc., 4113 (1954),
13.	AFATL-TR-72-127, <u>Final Report, Organic Perchlorates</u> , F08635-61-C-0101, Rocketdyne Division, Rockwell International, Canoga Park, California, June 1972.
14.	Rondestvedt, C. S., Jr., J. Am. Chem. Soc., <u>91</u> , 3054 (1969).
15.	Schmeisser, M., K. Dahmen, and P. Sartori Chem. Ber., <u>103</u> , 307 (1970).

16.	Des Marteau, D. D., and G. H. Cady, Inorg. Chem., 6, 416 (1967).
17.	Gillespie, R. J., and W. A. Whitla, Can. J. Chem., <u>47</u> , 4153 (1969).
18.	Shreeve, J. M., and G. H. Cady, J. Am. Chem. Soc., 83, 4522 (1961).
19.	Schack, C. J., and R. D. Wilson, Inorg. Chem., 9, 311 (1970).
20.	Pavia, A. C., J. L. Pascal, and A. Potier, C. R. Acad. Sc., Ser. C, <u>272</u> , 1495 (1971).
21,	Hutchinson, W. S., and R. J. Derby, Ind. Eng. Chem., 37, 813 (1945).
22.	Schack, C. J., K. O. Christe, D. Pilipovich, and R. D. Wilson, Inorg. Chem., <u>10</u> , 1078 (1971).
23.	C. J. Schack, <u>ibid.</u> , <u>6</u> , 1938 (1967).
24.	Nebgen, J. W., A. D. McElroy, and H. F. Klodowski, ibid., 4, 1796 (1965).
25.	Dudley, F. B., G. H. Cady, and D.F.E. Eggers, J. Am. Chem. Soc, <u>78</u> , 290 (1956).
26.	Ruoff, A., J. B. Milne, G. Kaufmann, and M. Leroy, Zeitschrift anorg. und allgen. Chem., <u>372</u> , 119 (1970).
27,	Clark, H. C., and H. J. Emelius, J. Chem. Soc., 190 (1958).
28,	Des Marteau, D. D., Inorg. Chem., <u>7</u> , 434 (1968).

PROPERTY AND A DESCRIPTION OF A DESCRIPR

「「「「「「「」」」」

R-9262

Contribution from Rocketdyne, a Division of North American Rockwell Canoga Park, California 91304

Ĩž

Chlorine Trifluoride Dioxide, CIF302. Synthesis and Properties

by Karl O. Christe* and Richard D. Wilson

Received: Oct. 24, 1972

Abstract

Chlorine trifluoride dioxide was prepared from FNO_2 and $CIF_2O_2^+PtF_6^-$, the latter being synthesized from $FCIO_2$ and PtF_6 . Physical properties and the ¹⁹F nmr spectrum are reported. The nmr spectrum suggests the following trigonal bipyramidal structure of symmetry C_{2v}

Chlorine trifluoride dioxide forms stable adducts with BF₃ and AsF₅ but not with FNO, FNO₂ or CsF.

Introduction

A brief note on the existence of $\text{CIF}_{3}O_2$ has recently been published by Christe¹. In this paper we report details on its synthesis, purification, and properties. The infrared spectrum of the gas, the solid, and of the matrix isolated species, and the Raman spectrum of the gas and the liquid together with a normal coordinate analysis and computation of thermodynamic properties will be published elsewhere².

k-9262

Experimental

-2-

<u>Materials and Apparatus</u>. The stainless steel-Teflon FEP vacuum system³, the glove box, the ¹⁹F nmr spectrometer and sampling technique⁴, and the syntheses and purification of PtF_6 , $FCIO_2$, $FNO_3^3 FNO_2$, BF_3 , and $CIF_2O_2^{+}BF_4^{-5}$ have previously been described. Cesium fluoride was fused in a platinum crucible and powdered in a drybox prior to use. All equipment was passivated with CIF_3 and BrF_5 prior to its use.

<u>Purification of CIF₃O₂</u>. A sample of CIF₂O₂⁺ BF₄⁻ (2.41 minOle), prepared and purified as previously reported⁵, was placed in a passivated Teflon FEP ampoule. Nitryl fluoride (6.83 mmoie) was added at -196° and the mixture was kept at -78° for 12 hours with periodic agitation. Volatile products were removed at -78° and separated by fractional condensation through a series of traps kept at -95, -126, and -196°. The -95° trap contained only a very small amount of material which was discarded. The -126° trap contained 2.22 mmo/e of CIF₃O₂ which according to its infrared spectrum² at 700 mm pressure showed as the only detectable impurity less than 0.1 mole % of FCIO₂. This sample was used for the subsequent characterization studies. The -196° trap contained the unreacted FNO₂ (4.4 mmole) and a small amount of CIF₃O₂ (0.2 mmole). The solid residue was shown by its weight and infrared spectrum to be NO₂⁺BF₄⁻.

<u>The CiF₃O₂-CsF System</u>. Two reactions between CIF₃O₂ (1.5 mmole) and CsF (1.0 mmole) were carried out in 10 ml stainless steel cylinders at 25° and 105°, respectively. At the lower temperature the cylinder was placed on a mechanical shaker for five days. The volatile material consisted of F₂, FC1O₂, and some CIF₃O₂. The solid residue had gained 33 mg in weight and was identified by its infrared spectrum⁶ as a mixture of Cs⁺C1O₂F₂⁻ and CsF. When the starting materials were heated to 105° for 68 hours, the CIF₃O₂ had quantitatively decomposed to FC1O₂ and F₂.

Results and Discussion

Synthesis. The synthesis of CIF_{30}^{0} is best described by the following reaction sequence: R-9262

A-2

i... **36**

$$2FC10_2 + 2PtF_6 \rightarrow C1F_20_2^+PtF_6^- + C10_2^+PtF_6^-$$
 (1)

Several side reactions compete with (1) and the yield of ClF_2^{02} varies greatly with slight changes in the reaction conditions³. The ClF_3^{02} is then displaced from its ClF_2^{02} salt according to:

4

D

$$c1F_{2}O_{2}^{+}PtF_{6}^{-} + c1O_{2}^{+}PtF_{6}^{-} + 2FNO_{2}^{+} + 2NO_{2}^{+}PtF_{6}^{-} + c1F_{3}O_{2}^{+} + FC1O_{2}^{-}$$
 (2)

Chloryl fluoride is slightly less volatile than $C + \overline{3} \cdot \overline{3}$

$$C1F_{3}O_{2} + FC1O_{2} + 2BF_{3} + C1F_{2}O_{2}^{+}BF_{4}^{-} + C1O_{2}^{+}BF_{4}^{-}$$
 (3)

Since $CIF_2O_2^+BF_4^-$ is stable⁵ at 20° whereas $CIO_2^+BF_4^-$ is not⁷, the ratter can be pumped away at 20°. The resulting pure $CIF_2O_2^+BF_4^-$ is then treated with an excess of FNO₂ and the evolved CIF_3O_2 and unreacted FNO₂ are readily separated by fractional condensation through a series of -126 and -196° traps:

$$C1F_{2}O_{2}^{+}BF_{4}^{-} + FNO_{2}^{+} + NO_{2}^{+}BF_{4}^{-} + C1F_{3}O_{2}$$
 (4)

Whereas the overall yield of pure $\text{ClF}_{3}^{0}{}_{2}^{0}$ based on the PtF₆ used in step 1 was found to be rather low (about 10 mole %), the method was satisfactory to provide enough material to characterize Cl $\frac{1}{2}$. Therefore, no effort was undertaken to search for alternate synthetic routes which might rive higher yields of $\text{ClF}_{3}^{0}{}_{2}$.

<u>Properties.</u> Pure $CIF_{3}O_{2}$ is colorless as a gas or liquid and white in the solid state. It melts at -81.2°. Vapor pressures were measured over the range -96 to -32° and the data for the range -64 to -32° were fitted by the method of least squares to the equation

log P_{mm} = 7.719 - $\frac{1217.2}{T(K)}$ with an index of correlation of .99998.

The extrapolated bolling point is ~21.58°. Measured vapor pressures at the noted temperatures are [T(°C), P(mm)]: -95.64, 7.3; -78.73, 25.5; -64.34, 77.5; -57.69, 117.5; -46.32, 226.5; -31.93, 470. The two lowest temperature points were not used for the computation of the vapor pressure equation because the lowest point was measured for solid $CIF_{3}O_{2}$ and the second lowest was too close to the melting point of CIF_{302} . While at -78.73° the CIF_{302} sample was all liquid, the observed vapor pressure was reproducibly lower than expected from the above vapor pressure curve. This indicates that close to the melting point some ordering effect occurs in the liquid causing a decrease of the vapor pressure. The latent heat of vaporization of CIF_{3} ⁰₂ is 5.57 kcal/mole and the derived Trouton constant is 22.13, indicating little association in the liquid phase. This is in agreement with the low boiling point and the good agreement between the Raman spectra of the gas and of the liquid². The molecular weight was determined from the vapor density and found to be $12^{\circ}.1$ (calcd. for $C1F_{30}^{\circ}$ 124.5). The good agreement indicates little or no association in the gas phase a the pressures used (P - 1 atm).

-4-

Chlorine trifluoride dioxide resembles chlorine fluorides and oxyfluorides in its corrosive and oxidizing properties. It appears to be marginally stable in a well passivated system at ambient temperature. It is a strong oxidative fluorinator as evidenced by its tendency to fluorinate metal surfaces to metal fluorides with $FCIO_2$ formation. It reacts explosively with organic materials and care must be taken to avoid such combinations. The hydrolysis of CIF_3O_2 was not quantitatively studied; however, on one occasion a slight leak in an infrared gas cell containing CIF_3O_2 resulted in the formation of $FCIO_3$ and HF indicating the following reaction:

 $CIF_{3}L_{2} + H_{2}O \rightarrow FCIO_{3} + 2HF$ (5)

R-9262

38

A-4

 $\frac{19}{\text{F} \text{ nmr Spectrum}}$. The ^{19}F nmr spectrum of liquid ClF_{30_2} was measured in the temperature range -20 to -80°. It showed at all temperatures one partially resolved signal centered at -413 ppm below the external standard CFCl₃. Figure 1 shows the details of the spectrum recorded at -77°. The observed signal is in excellent agreement with an AB₂ pattern⁸ with $\frac{J}{VO6} = 1.0$ (for the computed pattern see Figure 1). From these data a value of $J_{FF} = 443$ Hz was calculated. The low chemical shift of -413 ppm for ClF_30_2 is in excellent agreement with a heptavalent chlorine fluoride and compares favorably with those observed⁴ for FCl0₂ (-315 ppm), ClF_6^+ (-388 ppm) and $\text{ClF}_20_2^+$ (-310 ppm). The fact that the resonance of the $\text{ClF}_20_2^+$ cation was observed upfield from that of ClF_30_2 is similar to rationalize, but seems to be quite general for chlorine fluorides⁴. The fluorine-fluorine coupling constant of 443 Hz observed for ClF_30_2 is similar to that of 421 Hz observed for the structurally related ClF_3^4 .

Since the chlorine atom in $\text{ClF}_{3}^{0}_{2}$ does not possess a free valence electron pair, it is pentacoordinated and the ligands should form a trigonal bipyramide. To account for an AB₂ pattern one has to assume two fluorine atoms in either the axial or the equatorial posicions:

Of these two models, I has to be preferred for the following four reasons. (i) The B_2 part of the AB_2 pattern occurs downfield from the A part and in trigonal bipyramidal species the resonance for the axial fluorines occurs at a lower field than that of the equatorial ones^{9,10}. (ii) in trigonal bipyramidal

> R-9262 A-5

39

-5-

< 2

 \mathbb{O}

molecules the most electronegative ligands generally occupy the axial positions¹¹. (iii) The vibrational spectrum² is consistent only with model 1. (iv) In the structually related CIF_3O^{12} and CIF_3^{13} molecules (in which the oxygen ligands are replaced by one and two sterically active free electron pairs, respectively) both axial positions are occupied by fluorine atoms.

<u>Adduct Formation</u>. Chlorine trifluoride dioxide forms stable adducts with strong Lewis acids, such as BF₃, AsF₅, or PtF₅⁵. These adducts have ionic structures containing the $ClF_20_2^+$ cation. A detailed discussion of the vibrational and nmr spectra of this cation will be given elsewhere⁵. The high stability of these adducts can be explained by the change from the energetically unfavorable trigonal bipy:amidal structure of ClF_30_2 to the more favorable tetrahedral $ClF_20_2^+$ configuration¹⁴. Contrary to ClF_3^{15} but by analogy with ClF_30^{14} , it does not form stable adducts with FNO or FNO₂ at temperatures as low as -78°. This was demonstrated by the various displacement reactions where ClF_30_2 and unreacted FNO or FNO₂ could be readily removed from the reactor at -78°. With the stronger base, CsF, it does not form a stable adduct but decomposes to FClO₂ and F₂ with CsF possibly catalyzing the decomposition.

Acknowledgement. We thank Drs. D. Pilipovich and C. J. Schack for helpful discussions. We are pleased to acknowledge support of this work by the Office of Naval Research, Power Branch.

References

-7-

1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 -

1.	K. O. Christe, Inorg. Nucl. Chem. Letters, <u>8</u> , 457 (1972).
2.	K. O. Christe and E. C. Curtis, to be published.
3.	K. O. Christe, Inorg. Chem., 12, (1973).
4.	K. O. Christe, J. F. Hon, and D. Pillpovich, Inorg. Chem., <u>12</u> , (1973).
5.	K. O. Christe, R. D. Wilson, and E. C. Curtis, Inorg. Chem., <u>12</u> , (1973).
6.	K. O. Christe and E. C. Curtis, Inorg. Chem., <u>11</u> , 35 (1972).
7.	K. O. Christe, C. J. Schack, D. Pilipovich, and W. Sawodny, Inorg. Chem., <u>8</u> , 2489 (1969).
8.	J. W. Emsley, J. Feeney, and L. H. Sutcliffe, "High Resolution Nuclear Magnetic Resonance Spectroscopy," Pergamon Press, Oxford, Encland, (1966), Vol. 1, p. 326.
9.	E. L. Muetterties, W. Mahler, K. J. Packer, and R. Schmutzler, Inorg. Chem., <u>3</u> , 1298 (1964).
10.	R. J. Gillespie, B. Landa, and G. J. Schrobilgen, Chem. Comm., 1543 (1971).
11.	R. F. Hudson, Angew. Chem., internat. edit., <u>6</u> , 749 (1967).
12.	K. O. Christe and E. C. Curtis, Inorg. Chem., <u>11</u> , 2196 (1971).
13.	D. F. Smith, J. Chem. Phys., <u>21</u> , 609 (1953).
14.	K. O. Christe, C. J. Schack, and D. Pilipovich, Inorg. Chem., <u>11</u> , 2205 (1971),
15.	E. D. Whitney, R. O. MacLaren, T. J. Hurley, and C. E. Fogle. J. Am. Chem. Soc., <u>86</u> , 4340 (1964).

R-9262

•

41

A-7

0

•• • •

Second Press

ţ

Diagram Caption

-8-

Figure 1. ¹⁹F nmr Spectrum of Liquid $CIF_{3}O_{2}$ at ~77° Recorded at 56.4 MHZ. The Chemical Shift was Measured Relative to the Z-Fernal Standard $CFCI_{3}$.

ŧ.

ŧ

A-8

. .

- --

The state of the second a s

0

(])

¢

R-9262 A-9/A-10 **43**

.

Contribution from Rocketdyne, A Division of Rockwell International, Canoga Park, California 91304

O

Chlorine Trifluoride Dioxide, Vibrational Spectrum, Force Constants, and Thermodynamic Properties

By Karl O. Christe* and E. C. Curtis

Received: March 16, 1973

Abstract

The infrared spectra of gaseous, solid, and matrix isolated $\text{ClF}_{3}\text{O}_{2}$ and the Raman spectra of gaseous and liquid $\text{ClF}_{3}\text{O}_{2}$ are reported. Twelve fundamental vibrations were observed, consistent with a structure of symmetry C_{2v} . A modified valence force field and thermodynamic properties were computed for $\text{ClF}_{3}\text{O}_{2}$.

Introduction

A brief note on the existence of $\text{ClF}_{3}O_{2}$ was recently published by Christe^{1} . In a subsequent paper², more details on its synthesis and physical properties were given. Proof for a pseudo-trigonal bipyramidal structure of symmetry C_{2v} was obtained² from its ¹⁹F nmr spectrum, which showed an AB₂ pattern with strong evidence for the two equivalent fluorine atoms occupying the apical positions. In this paper, we report the complete vibrational spectrum, force constants, and thermodynamic properties of $\text{ClF}_{3}O_{2}$.

R-9262 B-1

Experimental

The synthesis and purification of $\operatorname{ClF}_{3}O_2$ has previously been described^{1,2}. The sample used in this investigation showed no detectable impurities except for small amounts of FClO₂ which easily forms during handling and cannot be separated from $\operatorname{ClF}_{3}O_2$ by fractional condensation². The amount of FClO₂ formed, however, could be minimized by thorough passivation of the stainless steel-Tefion FEP vacuum system with BrF₈ and ClF₃. For example, the infrared spectrum of gaseous $\operatorname{ClF}_{3}O_2$ at 700 mm pressure showed the presence of less than 0.1 mole percent of FClO₂.

The infrared spectra were recorded on a Perkin Elmer Model 457 spectrophotometer in the range of 4000 to 250 cm⁻¹. The instrument was calibrated by comparison with standard gas calibration points³. The gas cell was made of Teflon and had a path length of 5 cm and AgCl windows. The apparatus, materials, and technique used for the matrix isolation study have previously been described^{4,5}. Raman spectra were recorded on a Cary Model 83 spectrophotometer using the 4880 Å line of an Ar-ion laser as the exciting line. A stainless steel cell with Teflon 9-rings and sapphire windows was used for obtaining the spectrum of the gas. The design of this cell was similar to that of a cell described previously⁶. The spectrum of the liquid was obtained using a Teflon FEP capillary as the sample container in the transverse excitation transverse viewing mode.

and the second production of the second second

1 45

Results and Discussion

<u>Vibrational Spectra</u>. Figure 1 shows the infrared spectra of gaseous, solid, and N_2 -matrix isolated ClF_3O_2 and the Raman spectra of gaseous and liquid ClF_3O_2 at various concentrations. The spectra of solid ClF_3O_2 were corrected for small amounts of FClO₂. The FClO₂ bands were verified by depositing pure FClO₂ on top

R-9262 B-2 of the $\text{ClF}_{3}O_2$ sample and observing the relative growth rates of the bands. Figure 2 shows the most intense infrared bands of gaseous and matrix isolated $\text{ClF}_{3}O_2$ at higher resolution allowing some conclusions about the band contours and the determination of the ${}^{35}\text{Cl}_{-}{}^{37}\text{Cl}$ isotopic shifts. Table I lists the observed frequencies. Table II lists the fundamental vibrations of $\text{ClF}_{3}O_2$ and their assignment compared to those of the related species, ClF_3 , 7 ClF_3O_2 , 9 ClF_4^+ , 10 and ClO_2^+ .

Ţ,

The structure of ClF_3O_2 can be derived from a trigonal bipyramid, in which the two oxygen ligands could occupy either both spical (I), or one spical and one equatorial (II), or two equatorial (III) positions. These three models belong to different point groups and should differ markedly in their

	F-C1-F	F-C1 <f< th=""><th><math display="block">\mathbf{F} = \begin{bmatrix} \mathbf{F} \\ \mathbf{C} \\ \mathbf{F} \end{bmatrix} \begin{bmatrix} 0 \\ 0 \\ \mathbf{F} \end{bmatrix}</math></th></f<>	$\mathbf{F} = \begin{bmatrix} \mathbf{F} \\ \mathbf{C} \\ \mathbf{F} \end{bmatrix} \begin{bmatrix} 0 \\ 0 \\ \mathbf{F} \end{bmatrix}$
	<u> </u>	<u>11</u>	<u>111</u>
Point Group	D _{3h}	C	C _{2v}
Total Number of Fundamentals	8	12	12
Infrared Active	5	12	11
Raman Active	6	12	12
Polarized Raman Bands	2	8	5

vibrational spectra. The observation of a total of 12 fundamentals for ClF_{302} (see Figures 1 and 2 and Table I) with a minimum of ten ban's being active in the infrared and the Raman spectrum, together with the occurrence of four or five

R-9262

B-3

23

	Vibratio	nal Spectra of Cl	F302 and their A	ssignment in Point Group	C _{2v}
Obse:	rved Frequenc	ies (cm ⁻¹), Inter	isities	Assignme	<u>nt</u>
r	-Infrared				
GAB	<u>sol</u>	<u>id</u> <u> </u>	is Liquid		
	Matrix <u>Isolated</u>	Neat			
2655 vw				$2 \times 1327 = 2654$	$2 v_{10} (A_1)$
2415 vw	2420 2405 2385	2405 vw		1093 + 1327 = 2420	$v_1 + v_{10} (B_2)$
2184 vw		2180 vw		2 x 1093 ≈ 2186	2 v ₁ (A ₁)
2012 vw	2012 vw	2010 vw		683 + 1327 = 2010	$v_2 + v_{10} (B_2)$
1860 vw		1850 vw		520 + 1327 = 1847	$v_3 + v_{10} (B_2)$
1770				1093 + 695 = 1788	$v_{1} + v_{7} (B_{1})$
1(/5 VW				1093 + 683 = 1776	$v_1 + v_2 (A_1)$
1625 vw				1093 + 531 = 1624	$v_1 + v_{11} (B_2)$
1018		1410		$\int 1093 + 520 = 1613$	$v_1 + v_3 (A_1)$
1010 VW		1010 VW		286 + 1327 = 1813	$v_5 + v_{10} (B_2)$
1579 vw				1093 + 487 = 1580	$\nu_1 + \nu_4 (\Lambda_1)$
1400		1405		$\int 2 \times 487 + 520 = 1494$	$2 v_4 + v_3 (A_1)$
1440 VW		1489 YW		683 + 286 + 531 = 1500	$v_2 + v_5 + v_{11}(B_2)$
1375 vw		1375 vw		683 + 695 = 1378	$v_2 + v_7 (B_1)$
1268 M	1365 vw			2 x 683 ≈ 1366	$2 v_2 (A_1)$
1341	1221 4 -	1407 .			» ³⁵ сі (в.)
1331	1001.4	1021 8			10 01 (22/
1317	1318.8 mg	1315 m, sh	1320 (0.1),br	1093 + 222 = 1315	$v_1 + v_{12} (B_2)$
1306	1307.8 ms	1305 m, sh			$v_{10}^{37} c1 (B_2)$
1230 vw	1230 vw			520 + 695 = 1215	$v_3 + v_7 (B_1)$
1218 vw	1218 vv			683 + 531 = 1214	$v_2 + v_{11} (B_2)$
	1207 vw	1200 vw		683 + 520 = 1203	$v_2 + v_3 (A_1)$
	A17		R-9262		
•	- 1 2 - 2		B-4		

TABLE I

www.eventeria area

갑장 11 6

20 100

È.

B-4

TABLE I (continued)

Upie	rved Frequen	cles (cm), Inter	usities	<u>Assi</u>	gnment
	-Infrared-		Banan		
14.	Matrix Isolated	lid G	<u>as Ligui</u>	<u>1</u>	
1195 vw	1203 vw			$2 \times 592 = 1184$	$2 v_8 (A_1)$
1186 vw		1150 vw		487 + 691 = 1182	$v_4 + v_7 (B_1)$
1174 vw	1173 1169 vw			683 + 487 = 1170	$v_2 + v_4 (A_1)$
	1116 vw			417 + 693 = 1112	$v_{6} + v_{7} (B_{2})$
				520 + 592 = 1112	$v_3 + v_8 (B_1)$
093 s	1993 ms	1000		())	$v_1 \frac{35}{1} c1 (A_1)$
	1086 m	1093	(3.5) 1090(pol	5.1)	$v_1 \frac{37}{c1} (A_1)$
	1080 vw				
	1073 vw	1070 vw,sh		$\begin{cases} 695 + 372 = 1067 \\ \end{cases}$	$v_7 + v_9 (A_1)$
	1065 vw			$(2 \times 531 = 1062)$	$2 v_{11} (A_1)$
985 vw				286 + 695 = 991	$v_5 + v_7 (B_1)$
278 vw	974 vw	968 vw		$2 \times 487 = 974$	2 v ₁ (A ₁)
881 vw				286 + 592 = 878	$v_5 + v_8 (B_1)$
356 vw				487 + 372 ≈ 859	$v_{a} + v_{g} (B_{1})$
805 797	810 vw	806 v v		520 + 286 = 806	$v_3 + v_5 (A_1)$
786 vw				417 + 372 = 789	$v_6 + v_9 (B_2)$
772 vw		760 sh, vw		487 + 288 = 773	$v_4 + v_5 (A_1)$
758 vw				531 + 222 = 753	$v_{11} + v_{12}$ (4

· . .

A COLORED

APROPOSAL VISION

0

R-9262 B-5

48

	ved Frequenc	ies (cm ⁻¹), 1	ntensities	<u> </u>	Assignment
<u>]</u>	infrared		Ra		
Gar	<u>Sol</u>	<u>ið</u>	Gas	Liquid	
	Matrix <u>Isolated</u>	Neat			
702					
695	686.3 vs	655 vs, bi	r		$v_7 \frac{35}{01} (B_1)$
687 sh'vs	682.6 m	700 sh,s	683(10)	675(6.5)	
683	674.7 B			bor	v_7^{35} c1 (B ₁)
679 sh					$v_2^{35} c1 (A_1)$
593 s	591 ms	570 s		586(0.1)	$v_{8} (B_{1})$
543) m 531)	531 m 528 mw	327 m	540 sh	530 sh	$v_{11} \frac{35}{5} c1 (B_2)$ $v_{11} \frac{37}{5} c1 (B_2)$
520 sh.mw	519 w	520 sh,w	520(7.5)	518(10) pol	v ₃ (A ₁)
	487 vw	473 mw	487(8.1)	481(9.0) pol	v_4 (A ₁)
	417 vw	417 vw		402 (0+)	$v_6 (A_2)$
	372 w	368 w			∨ ₉ (B ₁)
	287 #	2 90 ¥	295(0.9)	285(1.6)	v ₅ (A ₁)
			222(0.7)	222(1.2)	$v_{12} (B_2)$

TABLE I (continued)

(a) Uncorrected Raman intensities representing the relative peak height; the relative peak widths, and hence, the relative peak heights change from gascous to liquid CIF₃O₂.

(b) Only qualitative polarisation measurements could be obtained, owing to the optical activity of the sapphire windows of the gas cell and owing to the tendency of ClF₃0₂ to act as a plasticizer for the Teflon FRP capillaries.

49

ĩ

TABLE II

Vibrational Spectrum of CIF₃02 Compared to Those of Similar Molecules and Ions

				Berred 1	Prequencies ((I	tensitie.					Assignment	
I	.el.	h	₽Ç.	Ł	- To-	8	1	<u> </u>				fer CIP 0 in Peint 2 Group C2v	Percenter of
n	2	Ħ	2	Ħ	1	A	2	E	3	A	4		
1061 .	1093(4)	<u>zi</u>)	ลิ	1		1		1079 .	1075(10)	1044 .	1044(10)	۲, ۱۲	sys. Cl0 ₂ stretch
H 29	663(10)p		\$94(2.4)I	732 .	4*9 ZN1	930 -	610	•	1			251	CIP stretch
515 w	a(e)022	!		1	1	I	•	168 m	0.09(1.2)	621 .	521(3)	>**	Cl02 acisser
~	4(8)ret	1 24	4(01)294	× 0r,	4.av 953	2008 2009	567(7)	19 10	363(19)	•	1	**	aya. FarCifur atretuk
* L92	(1)582	•	t(0)+62		4'A 820	u	237(1)	u	146(0.7)	,	1	, 1 0	Factor actors in
(111)*	(+0)289	413 4	414(0-3)415	I	1		+ (1)+1+		(1)084	ł	1	به م	tersim
5 H 17		56 Y.		44 AF		170 va	.	510 Va	<i>a a a a a a a a a a</i>	ĩ	1	<mark>ہ</mark> ۔	mulians. Pucific atretel
2	(+o) 18 2	# 98 7	(1)009	1	1	1	336(2)	- 225	.) 18	,	1	> *	CIO2 mercine
• EI				4 5 •	1 to			•	1		1	, °	Antioya. F. CIF
er ⁴ 1241	1330(ev)	म स	1	1	1	ł	• •	1:25 **	(**)121		(1) MET	1 2 10	Artisys. Cl0 ₂ stretch
	(I) 		(1.9)ett	1 55	R	1	. (+9)88	370 H	378(6)	ş î	1 1	,, ,, ,,	ClO ₂ recine F.ClP ₃ science ant of ClClP ₃ piane
							-						

- Observed only for solid ClP302
- Prequency carrected for disturbance by Feini resonance
 - Below frequency range of opectrometer used
- E. 0. Christe and Z. C. Curtis, Inerg. Chem., 11, 2196 (1972).
- decerding to the potential energy distribution, the 224 and 250 cm modes are an almost equal mutture of the cerresponding symmetry contentions and, hence, not very characteristic 22233
- H. Selig, H. H. Clanssen, and J. Z. Jellewsy, J. Chru. Phys., 12, 3517 (1970).

R-9262

B-7

0

1 , polarized Raman bands rule out point group \mathcal{D}_{3h} and favor \mathcal{C}_{2v} over \mathcal{C}_{8} . Additional strong evidence for symmetry \mathcal{C}_{2v} consists of the relative infrared and Raman intensities and of the frequency separation of the ClF_2 stretching modes, indicating a highly symmetric, i.e., approximately linear, FCIF arrangement. Comparison with the vibrational spectra of a number of related species having geometries similar to that of model III (see Table II) also supports model III. This conclusion in favor of model III, reached exclusively on the basis of the observed vibrational spectrum, is in excellent agreement with the observed ¹⁹F nmr spectrum² and the general observation¹² that in trigonal bipyramidal molecules, the most electronegative ligands always occupy the apical positions.

The 12 fundamentals expected for an XY_3Z_2 molecule of symmetry C_{2v} are classified as $5A_1 + A_2 + 3B_1 + 3B_2$. All of these should be active in both the infrared and Raman spectrum except for the A_2 mode which should be only Raman active. The strong bands at about 1327 and 1093 cm⁻¹ have frequencies too high for any Cl-F stretching modes and, hence, must be assigned to the antisymmetric and symmetric ClO₂ stretching modes, respectively. The antisymmetric axial F-Cl-F stretching hold should occur in the 600-800 cm⁻¹ frequency range, be of very high infrared and very low Raman intensity, and by comparison with ClF₃O ⁸ and ClF₃⁷ show a ³⁵Cl-³⁷Cl isotopic shift of about 11 cm⁻¹. Consequently, this mode must be assigned to the bands observed at 686.3 and 674.7 cm⁻¹ in the N₂ matrix. The symmetric axial F-Cl-^{*}.*retching mode should occur in the 450 - 570 cm⁻¹ frequency range and be of high intensity in the Raman and of very low intensity in the infrared spectrum. There are two intense polarized Raman bands at 520 and 487 cm⁻¹, respectively, which might be assigned to this mode. Since the 487 cm⁻¹ band is of much lower infrared intensity (for an ideal linear, symmetric F-Cl-F group,

51

R-9262

 Ω

{)

0

The remaining seven bands must be assigned to the deformation modes. Of these, only the A₂ torsion mode ideally should be infrared inactive. Since the Raman band at about 410 cm⁻¹ shows no counterpart in the infrared spectrum of the gas, it is assigned to this torsion mode. The 520 cm⁻¹ Raman band is clearly polarized and, hence, must belong to species A1. Based on its relatively high frequency, it must represent the ClO_p scissoring mode and not the axial F-Cl-F deformation. Based on the observed Fermi resonance (see telow) between the 1327 cm⁻¹ band and the 1093 + 222 combination band, the 222 and 1327 cm^{-1} bands must belong to the same symmetry species. Consequently, the 222 cm⁻¹ band must represent the B_{cr} axial F-C1-F deformation. There are four bands occurring at about 590, 530, 370, and 290 cm⁻¹, respectively, left for assignment. Two of these represent a rocking and wagging motion, respectively, of the ClO2 group and, therefore, should have higher frequencies than the two remaining FCIF deformations. Assignment of the 591 cm⁻¹ band to the Clo_2 wag and of the 531 cm⁻¹ band to the Clo_2 rock can be made based on the observed gas phase band contours and the observed 35 Cl- 37 Cl isotopic splittings (see Figure 2, traces G to K). The 591 cm⁻¹ band shows a Q-R

> R-9262 B-9

branch splitting for ${}^{35}\text{ClF}_{3}0_2$ of about 8 cm⁻¹ comparable to that observed for the antisymmetric FClF stretch, v_7 (B₁). The 531 cm⁻¹ band exhibits a missing Q branch and a P-R branch separation of about 11 cm⁻¹ comparable to that observed for the antisymmetric ClO₂ stretch, v_{10} (B₂). Furthermore, the 531 cm⁻¹ band shows a larger ${}^{35}\text{Cl}^{-37}\text{Cl}$ isotopic splitting than the one at 591 cm⁻¹ in agreement with the values (see Table IV) computed for the ClO₂ rocking and wigging motions, respectively. The remaining two bands at 286 and 272 cm⁻¹ are assigned to the axial F-Cl-F scissoring mode v_5 (A₁) and the antisymmetric in plane ClF₃ deformation mode, v_9 (B₁), respectively. This assignment is based on the observed frequencies and the relative infrared and Raman intensities. The assignment of the 286 cm⁻¹ Raman band to an A₁ mode is further supported by the fact that it appears to be weakly polarized. The excellent fit between all the observed and computed combination bands and overtones (see Table I) without violation of the selection rules (B₁ + B₂ = A₂ and A₁ + A₂ = A₂ combinations are infrared forbidden) also suggests the correctness of the above assignments.

The observation of three relatively intense bands in the N₂ matrix for the antisymmetric Clo₂ stretching mode, v_{10} (B₂), requires further explanation. For this mode, a 35 Cl 37 Cl isotopic splitting of about 15 cm⁻¹ might be predicted by comparison with that observed for related Clo₂ + 11. The combination band, 1093 + 222 = 1316 cm⁻¹, should show a considerably smaller 35 Cl- 37 Cl isotopic splitting of about 8 cm⁻¹ (see Table IV) and based on its frequency fall between the 35 Cl and 37 Cl isotopic bands of v_{10} . As shown schematically in Figure 2, Fermi resonance between v_{10} and $v_1 + v_{12}$ will increase the frequency separation between the 35 Cl and 37 Cl components of v_{10} and decrease that between the two isotopic combination bands. This assignment is supported by the observed bandwidths at half beight which are similar (~ 2.0 cm⁻¹) for the 1331.4 and 1307.8 cm⁻¹ bands,

53

R-9262

B-10

but larger (~3.0 cm⁻¹) for the 1318.8 cm⁻¹ band. The disturbance by Fermi resonance can also account for the strongly increased intensity of the combination band. The fact that the frequency of the 1318.3 cm⁻¹ band is closer to 1307.8 than to 1331.4 cm⁻¹, agrees with the observed relative intensities. The 1307.8 cm⁻¹ band has lost relatively more of its original intensity as demonstrated by the observed intensity ratio of 1:4.4 for the 1307.8 and 1:51.4 cm⁻¹ bands. For undisturbed 35 C1- 37 Cl isotopic species, this ratio should be 1:3.07.

D

Ū

0

The observed gas phase infrared band contours are complicat 1 by the 35 Cl- 37 Cl isotopic splittings, Fermi resonance, and two double coincidences of v_7 with v_2 and of v_{11} with v_3 , respectively. However, for mose of the bands, the R branches of the 35 Cl isotope are well separated (see Figure 2). Since the geometry of ClF_3O_2 of symmetry C_2 can be estimated (see below), the three principal moments of inertia were computed resulting in A = 0.150, B = 0.106, and C = 0.0085 cm⁻¹. Based on these values, the infrared band contours were estimated for ClF_3O_2 , according to the method of Ueda and Shimanouchi¹³. Using No. 33 of Ueda's Figure 3, 13 one should expect for the B_1 modes an A-type band contour with a sharp Q breach and a P-R branch separation of about 16 cm⁻¹. As can be seen from Figure 2, the 636 and 591 cm⁻¹ bands show the predicted band shape and branch separation and, therefore, may be assigned with confidence to v_7 and v_8 , respectively. The 1331 and 531 bands do not show a Q branch as expected for Btype bands of species B_2 . Consequently, the observed band contours are consistent with the proposed structure of symmetry C_{2v} and the assignments listed in Table I.

Comparison between the vibrational spectrum of $\text{ClF}_{3}0_2$ and those of related species (Table II) shows good agreement and strongly supports the above assignments for $\text{ClF}_{3}0_2$. Two features in the $\text{ClF}_{3}0_2$ spectrum, however, require further comment. The ClO_2 scistoring mode, v_3 (A₁), is unexpectedly intense in the Raman

R-9262

spectrum. Since the frequency of v_3 is close to that of the intense v_2 (A₁) mode and since these motions could easily couple (as indicated by the normal coordinate transformation L⁻¹ and to some extent by the PED), this represents a clausible explanation for its high intensity. Alternate explanations, such as Fermi resonance between the symmetric axial FCIF stretching mode v_4 and 222 + 286 = 508 can be ruled out because they belong to different symmetry species. Resonance between v_3 and v_4 can also be eliminated because the observed combination bands involving either v_3 or v_4 show a good frequency fit, indicating that the fundamentals are undisturbed. Secondly, the frequencies of the two axial FCIF scissoring modes (in and out of the CIF₃ plane, respectively) are strongly influenced by the point group of the corresponding molecules and by the presence or absence of other modes in the same symmetry species and, hence, are difficult to correlate. Furthermore, in CIF₃O, these two frequencies are not characteristic and are an almost equal mixture of the corresponding symmetry coordinates⁸.

Force Constants. The potential and kinetic energy metrics for $\text{ClF}_{3}0_2$ were computed by a machine method¹⁴. The geometry assumed for this computation was D(Cl0) = 1.40 Å, $B(\text{ClF}_{eq}) = 1.62 \text{ Å}$, $v(\text{ClF}_{ax}) = 1.72 \text{ Å}$, $\alpha(\geqq0\text{Cl0}) = 130^{\circ}$, $\beta(\end{Bmatrix} F_{eq}\text{ClF}_{ax}) = \delta(\$0\text{ClF}_{ax}) = 90^{\circ}$, and $\gamma(\geqq0\text{ClF}_{eq}) = 115^{\circ}$, based on the observed geometries of ClF_3 ¹⁵ and FCl0_3 ¹⁶ and a correlation¹⁷ between Cl0 bond length and stretching frequency. The deviation of the OCl0 band angle from the ideal 120° was estimated by comparison with the known geometries of SF_40 ¹⁸ and FCl0_3 ¹⁶.

R-9262 B-12

The symmetry coordinates used for $\operatorname{ClF}_{3}O_2$ are given in Table III. The bending coordinates were weighted by unit (1 Å) distance so the stretching force constants have units of mdyn/Å, the deformation force constants units of mdynÅ/radian², and the stretch-bend interaction constants mdyn/radian. The G matrix and Z transformation were found numerically by the computer and, hence, are not given here.

 ${ar O}$

1

The force constants were adjusted by trial and error with the aid of a computer to give an exact fit between the observed and computed frequencies. Owing to the underdetermined nature (28 symmetry force constants and 12 frequencies) of the problem a diagonal force field was computed assuming all off-diagonal symmetry force constants equal to zero. In the A1 and B1 block, however, non-zero values were required for several off diagonal constants to be able to reproduce the observed frequencies. The quality of the resulting force field was examined by comparing the computed ³⁵C1-³⁷Cl isotopic shifts with those observed. The observed Cl isotopic shifts were then used to improve the force field by introducing offdiagonal constants until the calculated isotopic shifts agreed with the observed ones. Those interaction constants not significantly influencing the isotopic shift were not changed while those introduced were required to achieve a fit between observed and computed isotopic shifts. The force field is still not unique and other solutions are certainly possible. Species A1 contains 15 symmetry force constants. Of these, three off diagonal terms, i.e. F_{14} , F_{24} , and F_{34} , may be neglected¹⁹ since their corresponding G matrix elements are zero. Therefore, eight frequencies (5 35 Cl + 3 37 Cl) are available for obtaining 12 symmetry force constants. In species B_1 and B_2 5 frequency values are available for obtaining six symmetry force constants. Numerical experiments indicated that plausible force fields and PED value

> R-9262 B-13

TABLE III

1.4.19-1

8 A A

Symmetry Coordinates for ClF302

and the same in the second state of the

b...

$$A_{1} = S_{1} = \frac{1/\sqrt{2} (\delta P_{1} + \delta P_{2})}{S_{2}}$$

$$B_{2} = \Delta B$$

$$S_{3} = \frac{1/\sqrt{6} (2\Delta \alpha - \Delta \gamma_{1} - \Delta \gamma_{2})}{S_{4}}$$

$$S_{4} = \frac{1/\sqrt{2} (\Delta r_{1} + \Delta r_{2})}{S_{5}}$$

$$S_{5} = \frac{1/\sqrt{2} (2\Delta \theta_{1} + 2\Delta \theta_{2} - \Delta \delta_{1} - \Delta \delta_{2} - \Delta \delta_{3} - \Delta \delta_{4})}{S_{r1} = \frac{1/\sqrt{3} (\Delta \alpha - \Delta \gamma_{1} + \Delta \gamma_{2})}{S_{r2}} = 0}$$

$$S_{r2} = \frac{1/\sqrt{5} (\Delta \theta_{1} + \Delta \theta_{2} + \Delta \delta_{1} + \Delta \delta_{2} + \Delta \delta_{3} + \Delta \delta_{4})}{S_{r2}} = 0$$

$$A_{2} = S_{6} = \frac{1/\sqrt{4} (\Delta \delta_{1} - \Delta \delta_{2} - \Delta \delta_{3} + \Delta \delta_{4})}{S_{2}} = 0$$

$$S_{2} = \frac{1/\sqrt{4} (\Delta \delta_{1} - \Delta \delta_{2} - \Delta \delta_{3} + \Delta \delta_{4})}{S_{2}} = 0$$

$$S_{2} = \frac{1/\sqrt{4} (\Delta \delta_{1} - \Delta \delta_{2} + \Delta \delta_{3} - \Delta \delta_{4})}{S_{2}} = 0$$

$$S_{2} = \frac{1/\sqrt{4} (\Delta \delta_{1} - \Delta \delta_{2} + \Delta \delta_{3} - \Delta \delta_{4})}{S_{1}} = 0$$

$$A_{1} = \frac{1}{\sqrt{2} (\Delta p_{1} - \Delta p_{2})}{S_{12}} = \frac{1/\sqrt{4} (\Delta \delta_{1} + \Delta \delta_{2} - \Delta \delta_{3} - \Delta \delta_{4})}{S_{1}} = \frac{1/\sqrt{4} (\Delta \delta_{1} + \Delta \delta_{2} - \Delta \delta_{3} - \Delta \delta_{4})}{S_{1}} = \frac{1/\sqrt{4} (\Delta \delta_{1} + \Delta \delta_{2} - \Delta \delta_{3} - \Delta \delta_{4})}{S_{1}} = \frac{1/\sqrt{4} (\Delta \delta_{1} + \Delta \delta_{2} - \Delta \delta_{3} - \Delta \delta_{4})}{S_{1}} = \frac{1/\sqrt{4} (\Delta \delta_{1} + \Delta \delta_{2} - \Delta \delta_{3} - \Delta \delta_{4})}{S_{1}} = \frac{1/\sqrt{4} (\Delta \delta_{1} + \Delta \delta_{2} - \Delta \delta_{3} - \Delta \delta_{4})}{S_{1}} = \frac{1/\sqrt{4} (\Delta \delta_{1} + \Delta \delta_{2} - \Delta \delta_{3} - \Delta \delta_{4})}{S_{1}} = \frac{1/\sqrt{4} (\Delta \delta_{1} + \Delta \delta_{2} - \Delta \delta_{3} - \Delta \delta_{4})}{S_{1}} = \frac{1/\sqrt{4} (\Delta \delta_{1} + \Delta \delta_{2} - \Delta \delta_{3} - \Delta \delta_{4})}{S_{1}} = \frac{1/\sqrt{4} (\Delta \delta_{1} + \Delta \delta_{2} - \Delta \delta_{3} - \Delta \delta_{4})}{S_{1}} = \frac{1/\sqrt{4} (\Delta \delta_{1} - \Delta \delta_{2} - \Delta \delta_{3} - \Delta \delta_{4})}{S_{1}} = \frac{1/\sqrt{4} (\Delta \delta_{1} - \Delta \delta_{2} - \Delta \delta_{3} - \Delta \delta_{4})}{S_{1}} = \frac{1}{2} = \frac{1}{2} + \frac{$$

Observ	1		TABLE IV			
Observ	1		Mark 1 and 1			
	red Freque.	ncies (cm ⁻¹)), Symmetry Forme Constants ⁸ , and Computed and Observed ³⁵ C	1 and ³⁷ Cl I	wtopic Shil	ts (cm ⁻¹)
					Av Comp.	Av Obsd.
Ă	2	1093	$F_{11} = f_0 + f_{10}$	- 9.14	7.1	7.2
4	4		$\mathbf{F}_{1,3} = 1/\sqrt{3} \left(2t_{\text{D}}^{2} - t_{\text{D}}^{2} - t_{\text{D}}^{2} \right)$	= 0.70		
	26	683		= 3.35	6.8	7
	N		$\mathbf{F}_{03} = \sqrt{2/3} (\mathbf{f}_{R,2} - \mathbf{f}_{R,2})$	= -0.30		
	26	520	$F_{33} = 1/3 (2f_{5} + f_{5} + f_{5}) - 4f_{60}$	= 1.27	0.8	~I
	يد در	487	$F_{44} = f_{1} + f_{11}$	= 2.65	0	
	^{مر} "	286	$\mathbf{F}_{55} = 1^{\prime} 3 \left(\mathbf{2f}_{\mathbf{B}} + \mathbf{f}_{\delta} + \mathbf{2f}_{\mathbf{B}} + \mathbf{f}_{\delta} + \mathbf{f}_{\delta} + \mathbf{f}_{\delta} \right)^{\prime}$	= 1.37	0.5	
R-9	,		$-4f_{\beta\delta}-4f_{\beta\delta},$			
₹ 262	مح	417	$\mathbf{F}_{66} = \mathbf{f}_{5} - \mathbf{f}_{55} - \mathbf{f}_{55} + \mathbf{f}_{55}$	= 1.13	0	
Ŕ	> ^t	695	$\mathbf{F}_{\gamma\gamma} = \mathbf{f}_{\gamma} - \mathbf{f}_{\gamma\gamma}$	= 2.75	11.7	11.6
-1	-		$\mathbf{F}_{78} = \sqrt{2} \left(\mathbf{f}_{\mathbf{r},\mathbf{k}} - \mathbf{f}_{\mathbf{r},\mathbf{k}'} \right)$	= 0.70		
				⊨ 0.20		
	۶ ^α	592	$\mathbf{F}_{\mathbf{S}} = \mathbf{f}_{\mathbf{S}} - \mathbf{f}_{\mathbf{S}} + \mathbf{f}_{\mathbf{S}} - \mathbf{f}_{\mathbf{S}}$	= 2.15	0	0~~
	D		$\mathbf{F}_{\mathbf{B9}} = \sqrt{2} \left(1_{\mathbf{B5}} - \mathbf{f}_{\mathbf{B6}} \right)$	=0.44		
	о ⁶	372	$\mathbf{Y}_{\mathbf{G}} \mathbf{G} = \mathbf{f} = \mathbf{f}$	= 1.31	1.0	-
ຸຕິ 58	v10	1327	$\mathbf{F}_{\mathbf{I0},10} = \mathbf{f}_{\mathbf{I}^{1}} - \mathbf{f}_{\mathbf{D0}}$	= 9.33	16.8	16 - 17
i	v ₁₁	531	$\mathbf{F}_{11,11} = \mathbf{f}_{1,7} - \mathbf{f}_{1,7}$	≈ 1.63	2,2	2.6
	v12	222	$\mathbf{F}_{12,12} = \mathbf{f}_{0} + \mathbf{f}_{55} - \mathbf{f}_{55}, - \mathbf{f}_{55},$	= 0.78	0.6	

Ĩ.

and the second

A CONTRACTOR OF

ドレーン たためできた たたし たたい ちょうちょう あいていたい ないたい ないたい ノンション

LOW TO MANY TO LOOK

ž

·

could be achieved only with values reasonably close to those shown in Table IV. The requirement of a large off-diagonal constant for B_1 has previously also been found for the structurally related pseudo-trigonal bipyramidal SF₄0 molecule²⁰.

The internal coordinate stretching force constants can be computed; however, the bending valence force constants cannot be completely separated from the interaction constants without making additional simplifying assumptions (see Table V). The constants of greatest interest are the stretching force constants since they are a measure of the strength of the various bonds. Uncertainty estimates are difficult to make owing to the underdetermined nature of the force field. The value of the Cl=O stretching force constant should have the smallest uncertainty (0.1 mdyn/Å or less) owing to the highly characteristic nature of the ClO, stretching modes and the use of isotopic shifts for its computation. Its value of 9.23 mdyn/Å is in excellent agreement with that of 9.37 mdyn/Å found for ClF_3O^{-8} and the General Valence Force Field values of 9.07 and 8.96 mdyn/Å reported for FC10 $_2$ ²¹ and Clo_{2}^{+} , respectively. The values of the ClF stretching force constants are comparable to those previously reported for the related pseudo-trigonal bipyramidal molecules, $\operatorname{Clr}_3^{22}$ and Clr_30^8 (see Table V.). In all three molecules, the stretching force constant of the equatorial CIF bond is significantly higher than that of the two axial bonds, although their relative difference decreases with increasing oxidation state of the central atom. The difference in bond strength between equatorial and axial bonds implies significant contributions from semi-ionic three-center fourelectron bonds to the axial CIF bonds. This bonding scheme has previously been discussed in detail 23 for the related pseudo-trigonal bipyramidal CIF_2^{-1} anion and, hence, will not be repeated.

> R-9262 B-16

59

ころう してんちてんない ちょうし しつちょうし いたいない ちょうちょう

Internal Force Constants of ClF.0.

f = 0.09 = 9.23 f $f_{rg} = -f_{rg} = 0.10$ f_p = 3.35 $f_{r_{\delta}} = -f_{r_{\delta}} = 0.25$ $f_{r} = 2.70$ $f_{\alpha} = 1.41$ $f_{D\alpha} = 0.61$ $f_{\beta\delta} = -f_{\beta\delta} = -0.16$ $f_{a} = 1.40$ $\mathbf{f}_{\delta\delta} = -\mathbf{f}_{\delta\delta^{\dagger}} = -0.34$ f = 1.33 $f_{AS'} = -0.17$ $f_{\rm s} = 1.30$ $f_{VV} = -0.30$ $f_{\rm DD} = -0.09$ $f_{R\alpha} = -0.37$ $f_{rr} = -0.04$ (a) Stretching constants in mdyn/Å, deformation constants in mdyn Å/radian², and stretch-bend interaction constants in mdyn/radian. (b) Only the values of the stretching force constants can be uniquely determined from the symmetry force constants; for the computation of the remaining constants, the following assumptions were made: $f_{r6} = -f_{r6'}$, $f_{r6} = -f_{r6'}$, $f_{r6} = -f_{r6'}$, $f_{c6} = -f_{c6'}$, and $f_{R_V} = f_{D_V} = f_{\alpha \gamma} = 0; f_{\delta \delta}, f_{\delta \delta}, and f_{\delta \delta^{\dagger \dagger}}$ are the interactions between angles having a common oxygen, fluorine, and no common atom, respecitvely.

R-9262

60...

()

()

ClF Strete	hing Force Co	nstants (mdyn/Å)	of ClF ₃ 0 ₂ Comp	ared to Those of
Paeudo-T	rigonal Bipyr	amidal ClF.0 ⁸ ,	c1F ²² , c1F ⁻	23, and CIF.09
			÷	
	1 _p	£_	1	$\frac{\mathbf{I}_{\mathbf{R}} - \mathbf{I}_{\mathbf{r}}}{\mathbf{R}}$
	14	r		'n
CIF3	4.2	2.7	0.36	0.36
ClF_0	3 - 2	2.3	0.26	0.26
3				
0189 0	<u> </u>	. .		0.10
^{CH} 3 ⁰ 2	3.4	2.7	-0.04	0.18
ClF2		2.4	0.17	
CLF_0_		1.6	-0.1	and a second
22				

TARLE VI

eleder aus lieten in die fahren

12.438

in Masterilian.

and the second second

19 N

÷

ł

{

;

,

ķι

たっていたろうでしょう

Sarahar Marsh

,1

Inspection of Table VI also reveals that the value of f_r does not depend exclusively on the oxidation state of the central atom. Obviously, formal negative charges (as in the anions) and increasing oxygen substitution facilitate⁹ the formation of semi-ionic bonds and, hence, counteract the influence of the oxidation state of the central atom. It is interesting to note that the relative contribution from semi-ionic bonding to the axial ClF bonds (= $\frac{f_R - f_r}{f_R}$) decreases from ClF₃ to ClF₃O and ClF₃O₂ (see Table VI). This can be attributed to the decreasing electron density around the central atom with increasing oxidation state, thus making it more difficult to release electron density to the axial fluorine ligands as required for the formation of semi-ionic bonds.

In summary, the bonding in $\text{ClF}_{30_2}^2$ might be described by the following approximation:²⁴ The bonding of the three equatorial ligands, ignoring the second bond of the Cl=0 double bond, is mainly due to a sp² hybrid, whereas the bonding of the two axial ClF bonds involves one delocalized p-electron pair of the chlorine atom for the form ∞ of a semi-ionic three-center four-electron po bond.

The potential energy distribution²⁵ for $\text{CIF}_{3}O_2$ was obtained from the internal force constants of Table V using a least square force field computation code without using least square refinement. With this code, we also verified that no computational errors had been made in the trial and error force field computation. The computed PED is given in Table VII. The results were normalized, but the sums do not in all cases add up to 1.0 since the less important terms are not listed. As can be seen from Table VII, most vibrations are reasonably characteristic, except for v_7 and v_8 , which are mixtures of the symmetry coordinates S_7 and S_8 .

> R-9262 B-19

62

TABLE VIT

and the second secon

41; °

.

1.9400.00

÷

, i

ſ

Potential Energy Distribution for ClF₃O₂

	Assignment	Frequency,	Potential Energy Distribution
A 1	v ₁	1093	$0.99 f_{\rm D} + 0.06 f_{\rm R} - 0.06 f_{\rm D\alpha}$
	v ₂	683	$0.71 f_{\rm R} + 0.20 f_{\alpha} - 0.13 f_{\rm R\alpha} + 0.10 f_{\gamma} + 0.05 f_{\beta}$
	v ₃	520	$0.50 f_{\alpha} + 0.23 f_{\gamma} + 0.22 f_{R} + 0.12 f_{R\alpha} - 0.05 f_{\gamma\gamma} - 0.05 f_{D\alpha}$
	v 4	487	1.02 f _r
	۲ ₈	286	$0.61 \ f_{\beta} + 0.28 \ f_{\delta} + 0.14 \ (f_{\beta\delta} - f_{\beta\delta}) + 0.07 \ (f_{\delta\delta}, - f_{\delta\delta}) + 0.06 \ f_{\alpha}$
A ₂	۳ ₆	417	1.15 $f_{\delta} + 0.30 (f_{\delta\delta} - f_{\delta\delta'}) - 0.15 f_{\delta\delta''}$
^B 1	⁷ 7	695	$0.86 f_{r} + 0.39 f_{\delta} - 0.22 (f_{r\delta} + f_{r\delta}) + 0.10 (f_{\delta\delta} + f_{\delta\delta}) + 0.05 f_{\delta\delta''}$
	` ` 8	592	$\begin{array}{c} 0.26 \ f_{g} + 0.25 \ f_{r} + 0.10 \ (f_{rg} + f_{rg}) \\ + 0.07 \ (f_{\delta\delta} + f_{\delta\delta}) + 0.06 \ f_{\beta} \end{array}$
	٧ ₉	372	1.10 f = 0.10 (f +f) + 0.08 f $_{\delta}$ = 0.07 f $_{\beta\beta}$
^B 2	۷10	1327	0.93 f _D
	۲11	531	$0.75 f_{\gamma} + 0.16 f_{\gamma\gamma}$
63	^v 12	222	1.58 $f_{\delta} = 0.41 (f_{\delta\delta} + f_{\delta\delta}) + 0.21 f_{\delta\delta}$ R-9262 B-20

1.

Association in the Liquid and fure Solid. The relatively low boiling point $(-21.58^{\circ})^2$ and Trouton constant $(22.13)^2$ of $\text{ClF}_{3}O_2$ imply little association in the liquid phase. This predation is confirmed by the vibrational spectra of the liquid and the neat solid which exhibit only minor frequency shifts when compared to the spectra of the gar and the matrix isolated solid. This finding is somewhat surprising since both ClF_3^{24} and ClF_90^8 show a pronounced tendency to associate in the liquid and solid state through bridges involving the axial fluorine atoms. For the pure solid, the infrared spectrum indicates the lowering of symmetry C_{2v} due to slight distortion or a lower site symmetry in the crystal because the A_2 torsion mode, ideally forbidden in the infrared spectrum and not observed for the gas, becomes infrared active. Similarly, the symmetric axial FClF stretching mode, $v_4(A_1)$, which was not observed in the infrared spectrum of gaseous ClF_3O_2 , gained for solid ClF_3O_2 in relative intensity and was observed as a medium weak band.

25

2.03 4

<u>Thermodynamic Properties</u>. The thermodynamic properties were computed with the molecular geometry and vib; ational frequencies given above assuming an ideal gas at 1 atm pressure and using the harmonic-oscillator rígid-rotor approximation²⁶. These properties are given for the range 0 - 2000° K in Table VIII.

<u>Acknowledgment</u>. The authors wish to express their gratitude to Mr. R. D. Wilson for his help in the experimental efforts, to Drs. D. Pilipovich and C. J. Schack for helpful discussions, and to Dr. D. Lawson of the Jet Propulsion Laboratory for the use of the Raman spectrophotometer. This work was supported by the Office of Naval Research, Power Branch.

TABLE VIII

<u>T, ^ok</u>	C, o, cal/mol	H ⁰ - Ho ⁰ , kcal/mol	$\frac{-(F^{0} - H_{0})/T}{H_{0}}$	S ⁰ , cal/ (mol deg)
0	0	0	0	0
100	10.127	0.847	48.967	57.437
200	16.511	2.179	55.51 6	66.411
298.15	21.256	4.049	60.375	73.956
300	21.327	4.089	60.459	74.088
400	24.384	6.386	64.711	80.675
500	26.362	8.930	68.484	86 .344
600	27.685	11.636	71.881	91.275
700	28.599	14.453	74.968	95.615
800	29.251	17.347	77.795	99.479
900	29.727	20.298	80.400	102.953
1000	30,085	23.289	82.816	108.105
1100	30.360	26.312	85.066	108.985
1200	20 .574	29.353	37.171	111.637
٦	30.745	32.425	89.145	114.091
1400	30.883	35.507	91.012	116.375
1800	30,995	38.601	92.775	118.509
1600	31.089	41.705	94.447	120.513
1700	31.167	44.818	96.036	122.400
1800	31.233	47.938	97.551	124.183
1900	31.289	51.064	98.997	125.873
2000	31.337	54.196	100.382	127.480
		P-02	50	

Thermodynamic Properties for ClF_30_2

١

Ę

١

k. 65

à

REFERENCES

 $M_{\rm eff}$

.

.

1000

0

وهرسيتين

0

(`)

λų

1.	K. O. Christe, Inorg. Nucl. Chem. Letters, <u>8</u> , 457 (1972).
2.	K. O. Christe and R. D. Wilson, Inorg. Chem., <u>12</u> , June (1973).
3.	E. K. Plyler, A. Danti, L. R. Blaine, and E. D. Tidwell, J. Res. Natl. Bur. Std., <u>64</u> , 841 (1960).
4.	K. O. Christe and D. Pilipovich, J. Am. Chem. Soc., <u>93</u> , 51 (1971).
5.	K. O. Christe, Spectrochim. Acta, <u>27A</u> , 631 (1971).
6.	E. L. Gasner and H. H. Claassen, Inorg. Chem., <u>6</u> , 1937 (1967).
7.	H. Selig, H. H. Claassen, A. J. H. Holloway, J. Chem. Phys., <u>52</u> , 3517 (1970).
8.	K. O. Christe and E. C. Curtis, Inorg. Chem., <u>11</u> , 2196 (1972).
9.	K. O. Christe and E. C. Curtis, Inorg. Chem., <u>11</u> , 35 (1972).
10.	K. C. Christe and W. Sawodny, to be published.
11.	K. O. Christe, C. J. Schack, D. Pilipovich, and W. Sawodny, Inorg. Chem., <u>8</u> , 2489 (1969).
12.	R. F. Hudson, Angew. Chem., internat. edit., <u>6</u> , 749 (1967).
13.	T. Ueda and T. Shimanouchi, J. Mol. Spectrosc., <u>28</u> , 350 (1968).
14.	E. C. Curtis, Spectrochim. Acta, <u>27A</u> , 1989 (1971).
15.	D. F. Smith, J. Chem. Phys., <u>21</u> , 609 (1953).
16.	A. H. Clark, B. Beagley, and D. W. J. Cruickshank, Chem. Comm., 14 (1968).
17.	E. A. Robinson, Canad. J. Chem., <u>41</u> , 3021 (1963).
18.	J. L. Hencher, D. W. Cruickshank, and S. H. Bauer, J. Chem. Phys., <u>48</u> , 518 (1968).
19.	W. Sawodny, J. Mol. Spectrosc., <u>30</u> , 56 (1969).
20,	K. Sathianandan, K. Ramaswamy, S. Sundaram, and F. F. Cleveland, J. Mol. Spectrosc., <u>13</u> , 214 (1964).
21.	D. F. Smith, G. M. Begun, and W. H. Fletcher, Spectrochim. Acta, <u>20</u> , 1763 (1964).
22.	R. A. Frey, R. L. Redington, and A.L.K. Aljibury, J. Chem. Phys., <u>54</u> , 344 (1971).
	R-9262
	B-23

đ

66

φų,

REFERENCES (continued)

1 27 7

- 23. K. O. Christe, W. Sawodny, and J. P. Guertin, Inorg. Chem., 6, 1159 (1967).
- 24. K. O. Christe, Paper presented at the Fourth International Fluorine Symposium, Estes Park, Colorado, July 1967.
- 25. J. Overend and J. R. Scherer, J. Chem. Phys., <u>32</u>, 1289 (1960).
- 26. J. E. Mayer and M. G. Mayer, "Statistical Mechanics," Wiley, New York, N.Y., (1940).

67

and the second

DIAGRAM CAPTIONS

Figure 1. Infrared and Raman Spectra of ClF.Q.

0

1

Traces A and B represent the infrared spectrum of 22.3 and 230 μ mole, respectively, of neat solid $\text{ClF}_{3}0_{2}$ at 4°K ; traces C and D, the infrared spectrum of 0.89 and 20.6 μ mole, respectively, of $\text{ClF}_{3}0_{2}$ in a N₂ matrix (mole ratio 1:760) at 4°K ; traces E to H, the infrared spectrum of gaseous $\text{ClF}_{3}0_{2}$ at the denoted pressures in a 5 cm path-length cell; traces I and K, the Raman spectrum of gaseous $\text{ClF}_{3}0_{2}$ at 4 atm pressure in a stainless steel cell with sapphire windows; traces L and M, the Raman spectrum at two different recorder voltages, respectively, of liquid $\text{ClF}_{3}0_{2}$ in a Teflon FEP capillary at 25°; S indicates spectral slit-widths and P indicates polarized bands.

Figure 2. Principal infrared bands of gaseous and N_2 matrix isolated ClF_30_2 recorded at ten-fold scale expansion under higher resolution conditions. The frequency denotations refer to the matrix isolation spectra. The frequency scale of the gas bands has been slightly shifted to line up the matrix band centers with the corresponding Q branches of the gas band contours.

> R-9262 B-25

í

Ĺ

í

69

この一般の時間に、ためにないないないのない。 いたたち たちまた

R-9262/B-26

DIAGRAM CAPTIONS

Figure 1. Infrared and Baman Spectra of ClF₀O₂.

 \bigcirc

17

Traces A and B represent the infrared spectrum of 22.3 and 230 μ mole, respectively, of neat solid $\text{ClF}_{3}0_2$ at 4°K ; traces C and D, the infrared spectrum of 0.89 and 20.6 μ mole, respectively, of $\text{ClF}_{3}0_2$ in a N₂ matrix (mole ratio 1:760) at 4°K ; traces E to H, the infrared spectrum of gaseous $\text{ClF}_{3}0_2$ at the denoted pressures in a 5 cm path-length cell; traces I and K, the Ramen spectrum of gaseous $\text{ClF}_{3}0_2$ at 4 atm pressure in a stainless steel cell with sapphire windows; traces L and M, the Raman spectrum at two different recorder voltages, respectively, of liquid $\text{ClF}_{3}0_2$ in a Teflon FEP capillary at 25° ; S indicates spectral slit-widths and P indicates polarized bands.

Figure 2. Principal infrared bands of gaseous and N_2 matrix isolated ClF_3G_2 recorded at ten-fold scale expansion under higher resolution conditions. The frequency denotations refer to the matrix isolation spectra. The frequency scale of the gas bands has been slightly shifted to line up the matrix band centers with the corresponding Q branches of the gas band contours.

> R-9262 B-25

1

71

ŝ

.

Carlo Southern

Contribution from Rocketdyne, a Division of North American Rockwell Canoga Park, California 91304

The Difluoroperchloryl Cation, ClO2F2+

By Karl O. Christe*, Richard D. Wilson, and E. C. Curtis

Received 1972

Abstract

()

「こう」のないではないない。 こう、こう、こう、こうないないないないないないないないです。

The reaction of FClO₂ with PtF₆ yields a product containing $ClO_2F_2^+PtF_6^-$. A synthetic method is described that convents this salt into $ClO_2F_2^+BF_4^-$ or $ClO_2F_2^+AsF_6^-$. All three salts are stable at 25° C and according to their infrared, Raman, and ¹⁹F nmr spectra are ionic in both the solid state and HF solution. The vibrational spectrum of $ClO_2F_2^+$ closely resembles that of isoelectronic SO_2F_2 , suggesting a pseudo-tetrahedral structure of symmetry C_{2V}^- . A modified valence force field is reported for $ClO_2F_2^+$.

Introduction

A preliminary note on the existence of $\text{ClO}_2\text{F}_2^+\text{PtF}_6^-$ has recently been published ¹ by Christe. This salt was prepared from FClO_2 and PtF_6^{-1} A detailed report on this interesting system, yielding under different reaction conditions $\text{ClF}_6^+\text{PtF}_6^$ has been given elsewhere.² A ¹⁹F nmr chemical shift of -310 ppm relative to

> R-9262 C-1

external CFCl₃ has been tentatively assigned to $\text{ClO}_2\text{F}_2^{+,3}$ A more complete characterization of the $\text{ClO}_2\text{F}_2^{+'}$ cation in the original PtF_6^- salt, however, was pre-empted by interference from the PtF_6^- anion and from substantial amounts of by-products such as $\text{ClO}_2^{+}\text{PtF}_6^-$. Consequently, efforts were made to prepare ClO_2F_2^+ salts containing different anions and to eliminate the undesirable byproducts. We have now succeeded in preparing $\text{ClO}_2\text{F}_2^{+'}\text{BF}_4^-$ and $\text{ClO}_2\text{F}_2^{+'}\text{AsF}_6^-$ and in more fully characterizing the $\text{ClO}_2\text{F}_2^{+'}$ cation. These results are described below.

Experimental

<u>Apparatus and Materials</u>. The stainless steel - Teflon-FEP vacuum system, the glove box, the infrared, Raman, and ¹⁹F nmr spectrometers and sampling techniques, and the syntheses and purification of PtF_6 , AsF_5 , and $FClO_2$ have been described elsewhere.^{2,3} Nitryl fluoride, prepared from N_2O_4 and F_2 , and BF_3 (from The Matheson Co.) were purified by fractional condensation. Debye-Scherrer x-ray diffraction powder patterns were taken as previously described.⁴

Syntheses of ClO_2F_2^+ Salts. The synthesis of $\text{ClO}_2\text{F}_2^+\text{PtF}_6^-$ has been described elsewhere.² For the synthesis of $\text{ClO}_2\text{F}_2^+\text{BF}_4^-$, a mixture of $\text{ClO}_2\text{F}_2^+\text{PtF}_6^-$ (4.8 mmole) and $\text{ClO}_2^+\text{PtF}_6^-$ (12.2 mmole) was treated in a passivated (with ClF_3 and BrF_5) 75 ml stainless steel cylinder with FNO_2 (25.3 mmole) at -78° for 48 hours. The reaction products volatile at 25° consisted of FClO_2 , ClF_3O_2 , and unreacted FNO_2 and were separated by fractional condensation through a series of traps kept at -112°, -126°, -142°, and -196°. The -126° fraction contained most of the ClF_3O_2 and some FClO_2 . Attempts to further separate the ClF_3O_2 and FClO_2 mixture by fractional condensation were unsuccessful. Consequently,

> R-9262 C-2

2.76 mmole of this mixture was combined with BF_3 (3.00 mmcle) at -196° in a passivated Teflon-FEP ampoule and the temperature was cycled several times between -196° and 25°. The product was kept at -78° for several hours and unreacted BF_3 (0.22 mmole) was removed at this temperature in vacuo. Removal of volatile material in vacuo was continued at 20°. The volatile material (2.60 mmole) consisted according to its infrared spectrum of 4 1:1 mixture of FCIO₂ and BF_3 . The white, so d, nonvolatile residue (280 mg = 1.46 mmole) was identified by infrared, Raman, and ¹⁹F nmr spectroscopy as $CIO_2F_2^{+}BF_4^{-}$.

0

()

For the preparation of the AsF_6^- salt, $ClO_2F_2^+BF_4^-$ (0.62 mmole) and AsF_5^- (1.43 mmole) were combined at -196° in a passivated Teflon-FEP ampoule. The contents of the ampoule were kept at -78° for 30 minutes and at 25° for 1 hour. Volatile products were removed at 25° and consisted of unreacted AsF_5^- (0.79 mmole) and BF_3^- (0.59 mmole). The white, stable solid weighed 185 mg (weight calcd for 0.62 mmole of $ClO_2F_2^+AsF_6^- = 183$ mg) and was identified as $ClO_2F_2^+AsF_6^-$ by infrared, Raman, and ^{19}F nmr spectroscopy.

Results and Discussion

Syntheses and Properties of $Clo_2F_2^+$ Salts. The synthesis of $Clo_2F_2^+$ PtF₆⁻ from FClo₂ and PtF₆ and its temperature dependence has been discussed elsewhere.^{1,2} Since the PtF₆⁻ anion interfered with the vibrational spectroscopic studies of $Clo_2F_2^+$, the BF₄⁻ and AsF₆⁻ salts were prepared according to the following scheme:

$$C10_{2}^{+}PtF_{6}^{-} + C10_{2}F_{2}^{+}PtF_{6}^{-} + FN0_{2}^{-} + FC10_{2}^{-} + C1F_{3}0_{2}^{-} + 2N0_{2}^{+}PtF_{6}^{-}$$

Unreacted FNO_2 and some of the $FCIO_2$ could be separated from CIF_3O_2 by fractional condensation. The remaining $FCIO_2$ was separated from CIF_3O_2 by complexing with

R-9262 C-3

BF₃. Since the resulting $ClO_2^+BF_4^-$ has a dissociation pressure⁵ of 182 mm at 22.1° while $ClO_2F_2^+BF_4^-$ is stable, the former salt could be readily removed by pumping at 20°. Conversion of $ClO_2F_2^+BF_4^-$ to the corresponding AsF_6^- salt was accomplished through displacement of BF_4^- by the stronger Lewis acid AsF_5 .

All three salts, $\text{ClO}_2\text{F}_2^{+}\text{PtF}_6^{-}$, $\text{ClO}_2\text{F}_2^{+}\text{AsF}_6^{-}$, and $\text{ClO}_2\text{F}_2^{+}\text{BF}_4^{-}$, are solids, stable at 25°, and react violently with water or organic materials. The PtF_6^{-} compound is canary yellow, while those of AsF_6^{-} and BF_4^{-} are white. The salts dissolve in anhydrous HF without decomposing. They are crystallinic in the solid state and the x-ray powder diffraction patterns of $\text{ClF}_2\text{O}_2^{+}\text{BF}_4^{-}$ and $\text{ClO}_2\text{F}_2^{+}\text{AsF}_6^{-}$ are listed in Table I. The powder pattern of $\text{ClO}_2\text{F}_2^{+}\text{BF}_4^{-}$ is much simpler than that of $\text{ClO}_2\text{F}_2^{+}\text{AsF}_6^{-}$. This is not surprising since the anion and cation in the former salt are both approximately tetrahedral and of similar size. The powder pattern of $\text{ClO}_2\text{F}_2^{+}\text{BF}_4^{-}$ can be indexed on the basis of an orthorhombic unit cell with a = 5.45, b = 7.23, and c = 13.00\text{Å}. Assuming four molecules per unit cell and neglecting contributions from the highly charged central atoms to the volume, ^{6,7} a plausible average volume of l6A^3 per F or 0 atom is obtained. However, the agreement between the observed and calculated veflections is somewhat poor for several lines and, hence, the above unit cell dimensions are tentative.

The thermal stability of $\text{ClO}_2F_2^+\text{BF}_4^-$ is higher than those of $\text{ClO}_2^+\text{BF}_4^-$.⁵ $\text{ClF}_2^+\text{BF}_4^-$,⁸ or other similar salts. This is in good agreement with the previously made correlations⁹ between the stability of an adduct and the structure of the parent molecule and its ions. Thus, totrahedral $\text{ClO}_2F_2^+$ (see below) should be energetically much more favorable than trigonal bipyramidal ClF_3O_2 .¹⁰

 $\frac{19}{\text{F nmr Spectra.}}$ A broad singlet at -310 ppm relative to external CFCl₃ has previously been observed for $\text{ClO}_2\text{F}_2^+\text{PtF}_6^-$ at low concentration in anhydrous HF

76

R-9262

C-4

Table I. X-Ray Powder Patterns for $C10_2F_2^+BF_4^-$ and $C10_2F_2^+AsF_6^-$

0

-

0

$C10_{2}F_{2}^{+}BF_{4}^{-}$			<u>C102</u> + AsF6					
<u>d,Å</u>	Intens	<u>d, Å</u>	Intens	<u>d, Å</u>	Intens			
5,47	S	7.49	W	2.12	W			
5.06	m	5.50	ms	2,01	W			
4,37	ms	4.98	W	1.94	mw			
4.15	W	4.35	ms	1.90	niw			
3.70	VS	4.02	W	1.86	W			
3.56	S	3.86	S	1.80	W			
3.00	n	3.70	W	1.76	mw			
2.77	m	3.57	m	1.72	W			
2.57	vw	3.40	IIIW	1.70	DIW			
2.41	m	3.02	IIW	1.65	W			
2.18	5	2.77	m	1.62	W			
2.08	S	2.69	m	1.59	w			
1,86	ms	2,60	W	1.54	W			
1.80	W	2,41	W	1.50	w			
		2.30	W	1.41	W			
		2.20	W	1,37	W			
				1.34	W			

R-9262

77 · ^{; ;},

and was tentatively assigned to $\text{ClO}_2\text{F}_2^{+,3}$ This tentative assignment is confirmed by the present study. The spectrum of $\text{ClF}_2\text{O}_2^{+}\text{BF}_4^{-}$ in HF shows a strong temperature dependence. At 30° it consists of a single peak at 185 ppm relative to external CFCl₃. With decreasing temperature the peak at first becomes broader, then separates at about 0° into three signals at -301 ($\text{ClO}_2\text{F}_2^{+}$), 146 (BF_4^{-}),¹² and 194 ppm (HF) which become narrower with further decrease in temperature. The observed pt ak area ratio of approximately 2:1 for the 146 and -301 ppm signals confirms their assignment to BF_4^{-} and $\text{ClO}_2\text{F}_2^{+}$, respectively, and proves the ionic nature of the $\text{ClF}_3\text{O}_2^{+}\text{BF}_3$ adduct in HF solution.

The spectrum of $\text{ClF}_2\text{O}_2^+\text{AsF}_6^-$ in HF (which was acidified with AsF_5)³ consists of two resonances at -307 (ClO_2F_2^+) and 105 ppm (HF, AsF_5 , AsF_6^-)³, recrectively. Rapid exchange between HF, AsF_5 , and AsF_6^- preempted the measurement of the ClO_2F_2^+ to AsF_6^- prese area ratio.

<u>Vibrational Spectra</u>. Fig. 1 shows the infrared and Raman spectrum of solid $ClO_2F_2^+BF_4^-$ and the Raman spectrum of an HF solution of $ClO_2F_2^+BF_4^-$. Fig. 2 depicts the infrared and Raman spectrum of solid $ClO_2F_2^+AsF_6^-$. Fig. 3 shows the infrared spectrum of a mixture of solid $ClO_2F_2^+PtF_6^-$ and $ClO_2^+PtF_6^-$. T = observed frequencies are listed in Table II and are compared with those reported for isoelectronic $SO_2F_2^{-12}$.

Inspection of Figures 1 to 3 and of Table II reveals that the spectra of $C1F_{3}O_{2} \cdot BF_{3}$, $C1F_{3}O_{2} \cdot AsF_{5}$, and $C1F_{3}O_{2} \cdot PtF_{5}$ contain the bands characteristic for $BF_{4}^{-,13-16} AsF_{6}^{-,16-19}$ and $PtF_{6}^{-,2,20}$ respectively. Furthermore, the Raman spectra of $C1F_{3}O_{2} \cdot BF_{3}$ are practically identical for both the solid and its HF solution. These observations together with the ¹⁹F nmr spectrum of the BF₃ adduct in HF solution, establish that these adducts are ionic and contain the $C1O_{2}F_{2}^{+}$ cation.

> R-9262 C-6

78

Timic 11. Vib'itional Spectra of $010_2, \frac{1}{2}$ Saits Compared in that af $50_2^{-1}f_2$

•,

Ō

()

Û

......

Ð

ø

A 12 12

la de la dela

				4 Frequencies	Ma (¹ -m)	P. Ative inte	maities				Assignment	(Polat Cru	3
	8.F.			CIO,F, BF,		(10 ² ¢ ⁺)	 [95 [%] -		1	֛ׅ֢ׅׅׅ֢֢֢֢֢֢ׅׅ֢ׅ֢֢֢֢֜֜֜֕֬֬֬֬֬֬֬֕֬֕֕֕֕֕֕֕֕֕֕	۲۴ ₆ (۵ _۴) ⁴	aF, (T,)	C102 (C2v)
	ور ار د	, MI	1		a.	3	M	2	2				
3	11000	đ	NF 501.	Solid									
									4.040 w				(¹ 5, ¹ , ¹ , ¹)
				o data -		•			2115~				(¹ V) ¹ ^2
1562	467(1)491	156575	11955(QJ)4p	1485 (0.6) 1469 (0.2)	1485) s	1452(0.25)	1489]s		1465 1470] s	* ₆ (3 ₁)			
					1295a				, ,			v1•v4(F2)	
								1299(0.5)	1297vs				v ₃ (B ₁)
5,7045	1263(7)p	12691	1252(4.4)	1245(3.9)	1245]s	1252) 1244) (1.9)	1250] s 1242] s	1246(0+)	5 5 5 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	۷ ₁ (۸ ₁)			
								1051(2.7)	1052s 1047m				۲,(۸ ₁)
			1050(0+),br	1050(0+),br	990- 1150v3,br			bank Albertand				v ₃ (1 ₂)	
7	## 7(1)	885 v s	834 (0.7) , 43	823().6)	824s	834 (0.6)	8723		\$275	'8 ⁽¹ 2)			
		k	771sh.P	772 (6.3)	R							(¹ V) ¹	
B47m	64 (10) .p	Mar	761(10) P	753(10)	7545	761(4.5)	7555	754(0.1)	7565	(¹ y) ² n			
							700vs,br	617(2.5)	Edvs.br		v3(F1L)		
						683(JU) 573(1.9)	495 55	54(1.3) 54(1.3)	3		ر بر ال ال		
								[[0-1]]			4		
543745	\$47(6),d	552.8 544.5 538.4	538(3.8) 5336h 517(1.6)	534(4.7) 530sh 515(1.5;)	5294 sh	5284(2.9) 52854 514(1)	527s 527s 514	514(0.4)	5145			V4(F2)	v2(A1)
Search	de, (\$) EEE	3.4	388 (4. C) dr.	395h 387(7.9)	15 22	390(3.8)	395sh			(v v)			
							SACAS		Side a	•	V4(F12)		
						(2)572			239(2.9)		ξ(F ₂₅)	9	
			4553	(5.0) ^25					(+0)081		لا (F _{2v)}	7 ~	

(a) Uncorrected Raman int-mastics; (b) F. Wender and J. W. Wood, Jr., J. Chem. Phys., 23, 1316 (1955); (c) D. R. Lide, Jr., D. E. Naman, and J. J. Comeford, Spectrodim. Acta, 21, 497 (1965), and G. A. Haat and H. K. Milson, Ibid., 16, 578 (1960); (d) Assignments for FEF are made for simplicity on the basis of po.mt group O_A though the sits symmetry of PEF is lower than O_B (K. O. Christe, Imorg. Chem., in press).

C-7

79

The assignments for the anions are well established and are summarized in Table II. Consequently, only the assignments for ClO_2F_2^+ will be discussed in more detail. The ClO_2F_2^+ cation is isoelectronic with SO_2F_2 which was shown by microwave spectroscopy to possess symmetry C_{2V} .²¹ The SO_2F_2 structure can be derived from a tetrahedron with two oxygen and two fluorine ligands occupying the corrers and with the 0=S=0 angle increased to 123°58' and the F-S-F angle compressed to 96°7'. Comparison of the bands due to ClO_2F_2^+ with those previously reported¹², ¹², ²³ for SO_2F_2 (see Table II) reveals a pronounced similarity indicating closely related structures and bonding. Therefore, assignments for ClO_2F_2^+ were made by analogy with those of SO_2F_2 which were reliably established by infrared, ²³ Raman, ²² matrix isolation, ¹² and microwave¹² studies. The analogy appears to include the triple and double coincidences between $\text{V}_7(\text{B}_1)$, $\text{V}_3(\text{A}_1)$, and $\text{V}_9(\text{B}_2)$ at about 530 cm⁻¹ and between $\text{V}_4(\text{A}_1)$ and $\text{V}_5(\text{A}_2)$ at about 390 cm⁻¹, respectively. As for SO_2F_2 , ¹² only tentative assignments to the individual modes can be made for the bands observed in the 520 cm⁻¹ region.

The close analogy between the vibrational spectra of isoelectronic $Clo_2F_2^+$ and So_2F_2 parallels those found for the isoelectronic pairs $ClF_2O^+-SF_2O$, $^{16}ClF_6^+-SF_6$, $^2ClF_5-SF_5^-$, 24 and $ClF_4^+-SF_4$. 25 It demonstrates the usefulness of knowing the vibrational spectra of the corresponding sulfur compounds for predicting and assigning those of the isoelectronic chlorine fluorides.

.)

Additional evidence for the pseudo-tetrahedral structure of symmetry C_{2v} of $ClO_2F_2^+$ consists of the ${}^{35}Cl - {}^{37}Cl$ isotopic splittings observed for the stretching modes (see Table III and Force Constant section).

R-9262 C-8

R-9262/C-9

f2x (a) Symmetry force constants not shown were assumed to be zero; (b) fpg, fgg', and fgg" refer to the interactions between the deformations of two angles (a) Symmetry force constants not shown were assumed to be zero; (b) fpg, fgg', and fgg" refer to the interactions between the deformations of two angles having a common oxygen atom, a common fluorine atom, and no common oxygen or fluorine atom, respectively; (c) assumed values; (d) the numerical coefficients in the F matrix-are based on the 124 and 96° bond angle geometry.

81

Ū

()

Force Constants. Three sets of force constants were computed for $C10_2F_2^+$ assuming different geometries. Two additional sets were computed requiring agreement between observed and computed ${}^{35}C1 - {}^{37}C1$ isotopic shifts (see Table III). The potential and kinetic energy matrices were computed using a machine method.²⁶ The three different geometries adopted for $ClO_2F_2^+$ differ only in the bond angles but not in the bond lengths. The bond lengths were estimated to be D(C10) = 1.41and R(CIF) = 1.53 Å by comparison with related molecules and based on the correlation of Robinson²⁷ between frequencies and bond lengths. The bond angles of set I, $\alpha(\frac{1}{2} \text{ OC10}) = 124^\circ$, $\beta(\frac{1}{2} \text{ CC1F}) = 108^\circ 15^\circ$, and $\gamma(\frac{1}{2} \text{ FC1F}) = 96^\circ$, were chosen to be identical with those of isoelectronic SO_2F_2 .²¹ For set III, tetrahedral bond angles were used and for set II a geometry was selected intermediate between those of sets I and III. The redundant coordinate was found numerically, and the deformation symmetry coordinates S_x and S_A were made orthogonal to it. To demonstrate that the redundancy condition was correct, it was vorified that the frequencies of each block taken separately and the corresponding frequencies of the direct sum of all symmetry coordinates wire the same.

The force constants were computed by trial and error with the aid of a computer, requiring exact fit between the observed and computed frequencies. The results are given in Table III where the force constants not shown were assumed to be zero. The values shown for sets I to III were the simplest set that would give an exact fit and, with the exception of F_{89} , represent a diagonal symmetry force field. By analogy with isoelectronic SO_2F_2 , ²⁸ a nonzero value was required for F_{89} to fit the observed frequencies. Its value was assumed to be 0.5 to obtain a plausible value for F_{99} . Table III demonstrates the dependence of the force constants on the chosen bond angles and the impossibility to achieve a fit between

> R-9262 C-10

82

the observed and the computed ${}^{35}Cl - {}^{37}Cl$ isotopic shifts by simple variation of the bond angles. Numerical experiments confirmed that nonzero off-alagonal symmetry force constants are required to fit the observed isotopic shifts. The results for the more likely geometries I and II are listed as sets IV and V, respectively, in Table III. In the A, symmetry block, the only interaction constant capable of sufficiently decreasing the v_1 isotopic shift is F_{12} . The experimental data do not permit to distinguish between sets IV and V. However, the variation in the two force constants of greatest interest, f_{D} and f_{p} , is relatively small. Consequently, their values might be expected to approach those of a General Valence Force Field. A statistically meaningful uncertainty estimate cannot b made for the force constant values owing to their underdetermined nature and to the lack of exact structural data. However, the numerical data of Table III allow some conclusions concerning the ranges of possible solutions. It should also be mentioned that the observed ${}^{35}C1 - {}^{37}C1$ isotopic shifts varied slightly depending on the nature of the anion. In $Clo_2F_2^+BF_4^-$ for both the solid state and the HF solution, isotopic shifts of 7.5 and 15.9 cm⁻¹ were observed for $v_1(A_1)$ and $v_6(B_1)$, respectively. For solid $C10_{2}F_{2}^{+}PtF_{6}^{-}$ the corresponding values were 8.5 and 16.6 cm⁻¹.

O

Section Section

 \mathbf{D}

Of the internal force constants, the stretching force constants are of greatest interest since they can be used as a measure for the relative covalent bond strength. The stretching force constants of ClO_2F_2^+ are listed in Table IV and compared to those of related molecules and ions. Comparison of the ClO stretching force constant of ClO_2F_2^+ (12.1 mdyne /Å) with those listed in Table IV shows that it is the highest value known for a ClO bond. This is not surprising, since the central atom in ClO_2F_2^+ has a high oxidation state (+ VII), highly electronegative ligands, and a formal positive charge (cation). The influence of these

> R-9262 C-11

18010	$C10_2F_2^+$ Co	mpared to Those	of Related Co	or ompounds
	£ _{C10}		f _{C1F}	f _{ClF} , ^a
C10,F,+	12.1	$C1F_{e}^{+1}$	4.7	
$C1F_{2}O^{+b}$	11.2	C1F [°] + ^k	4.7	
FC10 [°]	9.4	$\operatorname{ClF}_{4}^{2+1}$	4.5	, 3.2
CIF ₂ 0 ^d	9.4	C10_F_+	4.46	
FC10 ⁹	9.1	C1F ^m	4.2	, 2.7
-		FC10, C	3.9	
C10 ₂ +f	9.0	C1F5 ⁿ	3.5	, 2.7
C1F40-8	8.9	$C1F_2O^{+b}$	3,4	
$C1F_2O_2^{-h}$	8.3	C1F ₃ 0 ^d	3.2	, 2.3
		FC102 ^e	2.5	
		C1F2 ⁰		2.4
		$C1F_4^{-P}$		2.1
		$C1F_{4}0^{-8}$		1.9
	****	$C1F_{2}O_{2}^{-n}$		1.6
(a) CIF bonds 4 electror	for which strong tonds can be in	contributions f	From semi-ion	ic 3 center-
(b) Ref. 16.				
(c) W. Sawodny	, A. Fadini, and	K. Ballein, Spe	ectrochim. Ac	ta, 21, 995 (1965).
(d) K. O. Chri	iste and E. C. Cu	rtis, Inorg. Che	em. 11, 2196	(1972).
(e) D. F. Smit 1763 (1964	th, G. M. Legur, 1).	and W, <u>H</u> . Fl o tch	er, Spectroc	<u>him. Acts, 20</u> ,
(f) Ref. 19.				
(g) K. O. Cari	iste and E. Curti	s, Inorg. Chem.,	<u>11</u> , 2209 (1	972).
(h) K. O. Chri	ste and E. C. Cu	rtis, Inorg. Che	om., <u>11</u> , 35 (1972).
(i) K. O. Chri	iste, Inorg. Chem	., in press.		
(k) K. O. Chri	iste and C. J. Sc	hack, Inorg. Che	em., <u>9</u> , 2290	(1970).
(1) Ref. 25.				
(m) R. A. Frey 344 (1971)	/, R. L. Redingto)	n, and A.L.K. Al	jibury, J. C	hem. Phys. <u>54</u> ,
(n) Ref. 24.				
(o) K. O. Chri	lste, W. Sawodny,	and J. P. Guert	in, Inorg. C	hem., <u>6</u> , 1159 (1967).
(p) K, O. Chri	iste and W. Sawod	ny, Z. Anorg. Al	lgem. Chem.,	374, 306 (1970).
		R-9262		

12. ...

N. 84

factors on f_{C10} has previously been discussed¹⁶ for $C1F_20^+$ and, hence, will not be reiterated. By analogy with $C1F_20^+$, the only other known species exhibiting a f_{C10} value of similar magnitude, contributions from the following resonance structure

O

()

might be invoked¹⁶ to explain the high f_{ClO} value. The value of the ClF stretching force constant (4.46 mdyne /Å) falls within the range expected for a predominantly covalent ClF bond. The interpretation of relatively small differences (~0.3 mdyne /Å) in the ClF stretching force constant values listed in Table IV should be done only with caution since most values were computed from underdetermined systems and might be significantly influenced by the chosen stretch-bend interaction constants.

Acknowledgment. The authors are indebted to Drs. D. Pilipovich and C. J. Schack for their help and to Dr. D. Lawson of the Jet Propulsion Laboratory for the use of the Raman spectrometer. This work was supported by the Office of Naval Research, Power Branch.

References

(1)	K. O. Christe, Inorg. Nucl. Chem. Letters, <u>8</u> , 453 (1972).
(2)	K. O. Christe, Inorg. Chem., in press.
(3)	K. O. Christe, J. F. Hon, and D. Pilipovich, ibid., in press.
(4)	K. O. Christe and D. Naumann, ibid., in press.
(5)	K. O. Christe, C. J. Schack, D. Pilipovich, and W. Sawodny, ibid., 8, 2489
	(1969).
(6)	W. H. Zachariasen, J. Am. Chem. Soc., <u>70</u> , 2147 (1948).
(7)	F. H. Ellinger and W. H. Zachariasen, J. Phys. Chem., <u>58</u> , 405 (1954).
(8)	H. Selig and J. Shamir, Inorg. Chem., <u>3</u> , 294 (1964).
(9)	K. O. Christe, C. J. Schack, and D. Pilipovich, Inor, Chem., 11, 2205 (1972).
(10)	K. O. Christe, Inorg. Nucl. Chem. Letters, <u>8</u> , 457 (1972).
(11)	E. L. Muetterties and W. D. Phillips, J. Am. Chem. Soc., <u>81</u> , 1084 (1959).
(12)	D. R. Lide, Jr., D. E. Mann, and J. J. Comeford, Spectrochim. Acta, 21,
	497 (1965).
(13)	J. Goubeau and W. Bues, Z. Anorg. Allgem. Chem., 268, 221 (1952).
(14)	N. N. Greenwood, J. Chem. Soc., 3811 (1959).
(15)	H. A. Bonadeo and E. Silberman, Spectrochim. Acta, <u>26A</u> , 2337 (1970).
(16)	K. O. Christe, E. C. Curtis, and C. J. Schack, Inorg. Chem., <u>11</u> , 2212 (1972).
(17)	K. O. Christe and W. Sawodny, ibid., <u>6</u> , 313 (1967).
(18)	K. O. Christe, J. P. Guertin, A. E. Pavlath, and W. Sawodny, ibid., <u>6</u> ,
	533 (1967).
(19)	K. O. Christe, C. J. Schack, D. Pilipovich, and W. Sawodny, ibid., <u>8</u> , 2489
	(1969).
(20)	N. Bartlett, Angew. Chem., Intern. Ed. Engl., 7, 433 (1968); N. Bartlett and
	S. P. Beaton, Chem. Comm., 167 (1966); and F. O. Sladky, P. A. Bulliner, and
	N. Bartlett, J. Chem. Soc., A, 2179 (1969).
(21)	D. R. Lide, Jr., D. E. Mann, and R. M. Fristrom, J. Chem. Phys., 26, 734
	(1957).
(22)	P. Bender and J. M. Wood, Jr., ibid., 23, 1316 (1955).
(23)	G. R. Hunt and M. K. Wilson, Spectrochim. Acta, <u>16</u> , 570 (1960).

đ

1

R-9262

C-14

86

2

Ę,

Service of

Sec. Sec.

a han an

States and

Sec. S. January

den ar

- (24) K. O. Christe, E. C. Curtis, C. J. Schack, and D. Pilipovich, Inorg. Chem., <u>11</u>, 1679 (1972).
- (25) K. O. Christe and W. Sawodny, to be published.

0

()

0

- (26) E. C. Curtis, Spectrochim. Acta, Part A, 27, 1989 (1971).
- (27) B. A. Robinson, Canad. J. Chem., <u>41</u>, 3021 (1963).
- (28) W. D. Perkins and M. K. Wilson, J. Chem. Phys., 20, 1791 (1952).

R-9262 C-15

87

Diagram Captions

- <u>Figure 1.</u> Vibrational spectrum of $ClO_2F_2^+BF_4^-$. Trace A, infrared spectrum of the solid as a AgCl disk; trace B Raman spectrum of the solid; traces D and E Raman spectrum of the HF solution, incident polarization perpendicular and parallel, respectively; exciting line 4880 Å, C indicates spectral slit width.
- Figure 2. Vibrational spectrum of solid ClO₂F₂⁺AsF₆⁻. Trace A, infrared spectrum as AgCl disk; trace B, Raman spectrum; exciting line 4880 Å.
- Figure 3. Infrared spectrum of a mixture of solid $ClO_2F_2^+PtF_6^-$ and $ClO_2^+PtF_6^-$ as a AgCl disk.

90

Figure 2. R-9262/C-18

Contribution from Rocketdyne, a Division of North American Rockwell, Canoga Park, California 91304

> The Hexafluorochlorine (VII) Cation, ClF₆⁺. Synthesis and Vibrational Spectrum

£].

By Karl O. Christe

Received July 28, 1972

Abstract

The ClF_6^+ cation was prepared in the form of its PtF_6^- salt from the reactions of PtF_6 with either FClO_2 or ClF_5 . A displacement reaction between $\operatorname{ClF}_6^+\operatorname{PtF}_6^$ and FNO at -78° yielded only ClF_5 and F_2 , indicating that ClF_7 cannot exist under the given reaction conditions. Attempts were unsuccessful to prepare either $\operatorname{ClF}_6^+\operatorname{HF}_4^-$ by low temperature glow discharge of a $\operatorname{ClF}_5-\operatorname{F}_2-\operatorname{BF}_3$ mixture, or ClF_6^+ salts from ClF_5 , F_2 , and the Lewis acids SbF_5 , AsF_5 , or BF_3 at elevated temperatures and pressures, or ClF_4^- salts either from ClF_3^- 0 and PtF_6 or from ClF_3^- 0, F_2 , and SbF_5^- . Iridium hexafluoride was found to be too weak an oxidizer to produce any heptavalent, chlorine containing cations from FClC_2^- . Vibrational spectra were recorded for PtF_6^- salts of ClF_6^+ , ClF_4^+ , ClF_2^+ , ClF_2^- , ClF_2^- , and ClO_2^+ and for $\operatorname{ClO}_2^+\operatorname{IrF}_6^-$. Modified valence force fields were computed for the ClF_6^+ , PtF_6^- , and IrF_6^- ions.

Introduction

Two preliminary notes on the synthesis of $ClF_6^+PtF_6^-$ from PtF_6 and chlorine fluorides or oxyfluorides have recently been published^{1,2}, and the identity of

R-9262 D-1

 ClF_6^+ was established beyond doubt by ${}^{19}\operatorname{F}$ nmr spectroscopy 2,3 . The ClF_6^+ cation is of particular interest for two reasons: (1) except for the recently discovered $\operatorname{ClO}_2\operatorname{F}_2^+$ cation⁴, it is the only known heptavalent chlorine cation and (2) in addition to the NF_4^+ salts ${}^{5-9}$, it is the only known example of the synthesis of a fluoro cation derived from hitherto unknown compounds (i.e., NF_6 and ClF_7 . respectively). In this paper, we give a full account of the synthesis, vibrational spectrum, and force constants of the ClF_6^+ cation.

Experimental

<u>Apparatus and Materials</u>. - The materials used in this work were manipulated in a well-passivated (with ClF_3) 304 stainless steel vacuum line equipped with Teflon FEP U-traps and 316 stainless steel bellow-seal valves (Hoke, Inc., 425 IF4Y). Pressures were measured with a Heise, Bourdon Tube-type gauge (0-1500 mm $\stackrel{+}{-}$ 0.1%). Because of the rapid hydrolytic interaction with moisture, all materials were handled outside of the vacuum system in the dry nitrogen atmosphere of a glove box.

The infrared spectra were recorded on Perkin Elmer Models 337 and 457 spectrophotometers in the range $4000 - 250 \text{ cm}^{-1}$. The spectra of gases were obtained using 304 stainless steel cells of 5-cm path length fitted with AgCl windows. The spectra of solids were obtained by pressing two small single-crystal platelets of either AgCl or AgBr to a disk in a Wilks mini pellet press. The powdered sample was placed between the platelets before starting the prossing operation.

The Raman spectra were recorded on either Cary Models 82 or 83 spectrophotometers using the 4880 and 6471 Å exciting lines, respectively. Glass melting point

R-9262

D-2

capillaries or clear thin-walled Kel-F tubes were used as sample containers in the transverse viewing-transverse excitation technique.

Mass spectra were recorded on a Quad 300 (Electronic Associates Inc.) quadrupole mass spectrometer using a passivated all stainless steel inlet system.

Platinum hexafluoride was either purchased (from 02ark Mahoning Company) or freshly prepared by burning Pt wire in an F_2 atmosphere at -196° , according to the method of Weinstock and his coworkers¹⁰. Iridium hexafluoride was obtained from 02ark Mahoning Company. Prior to use, both IrF_6 and PtF_6 were purified by fractional condensation at -78° in a dynamic vacuum. Arsenic pentafluoride (02ark Mahoning Company) was purified by fractional condensation and ShF_5 (02ark Mahoning Company) by distillation. Chlorine pentafluoride (Rocketdyne) was stored over dry CsF to remove any ClF_3 and purified by fractional condensation through traps kept at -112 and -126° with the material retained at -126° being used. Fluorine (Rocketdyne) was passed over NaF is remove HF. Chloryl fluoride was prepared from KCl0₃ and ClF_3^{11} , ClF_3° by fluo-ination of $ClONO_2^{12}$, and FNO from NO and F_2 at -196° . The purity of the volatile starting materials was determined by measurements of their vapor pressures and infrared spectra.

<u>The FC102-PtF6 System</u>. Platinum hexafluoride (17.0 mmole) and FC102 (46.1 mmole) were combined at -196° in a passivated (with ClF3) 75-ml stainless steel cylinder. The mixture was allowed to warm up slowly to 25° and was kept at this temperature for three days. The cylinder was cooled to -196° and 3.75 mmole of material volatile at this temperature was removed and identified as F_2 by its vapor pressure and mass spectrum. The products volatile at 25° were separated by fractional condensation through traps kept at -78, -126, and -196°. The -126° fraction consisted of FC102 (28.7 mmole) and the -196° one of FC102 (0.3 mmole), ClF5 (0.1 mmole), and a small amount of FC103. The cylinder contained a stable canary yellow solid (6.618 g),

R-9262/D-3

which was identified by infrared spectroscopy as a mixture of $\text{Cl0}_2^+\text{PtF}_3^-$ and $\text{Cl0}_2\text{F}_2^+\text{PtF}_6^-$. Hence, PtF_6 (17.0 mmole) had reacted with FCl0_2 (17.1 mmole) in a lil mole ratio yielding F_2 (3.75 mmole), $\text{Cl0}_2^+\text{PtF}_6^-$ (12.2 mmole = 4.594 g), and $\text{Cl0}_2\text{F}_2^+\text{PtF}_6^-$ (4.8 mmole = 2.000 g) as the main products.

Platinum hexafluoride (2.04 mmole) azd FClO_2 (3.98 mmole) were combined at -196° in a passivated sapphire reaction tube (Varian, Model CS-4250-3). The reactor was rapidly warmed from -196° to -78° and kept at -78° for 48 hours. At the end of this time period, the brown PtF_6 color had completely disappeared and a canary yellow solid had formed. The reactor was cooled to -196° and noncondensible material (0.33 mmole of 0_2) was removed. The product volatile at 25° consisted of FClO₂ (1.03 mmole). The yellow, solid residue weighed 800 mg and was shown by infrared, Raman, and ¹⁹F umr spectroscopy to be a mixture of $\operatorname{ClO}_2^+\operatorname{PtF}_6^-$ and 0.34 mmole of $\operatorname{ClF}_6^+\operatorname{PtF}_6^- = 796$ mg). Hence, PtF_6 (2.04 mmole) had reacted with FClO₂ (2.05 mmole) in a 1:1 mole ratio producing 0_2 (0.33 mmole) and a 1:5 mole ratio mixture of $\operatorname{ClF}_6^+\operatorname{PtF}_6^-$ and $\operatorname{ClO}_2^+\operatorname{PtF}_6^-$.

<u>The CIF₆-PtF₆ System</u>. Platinum hexafluoride (2.70 mmole) and ClF₅ (3.90 mmole) were combined at -196° in a passivated sapphire reactor. The mixture was hept at 25° for 24 hours. Since the brown PtF₆ color was still very intense, the tube was exposed to unfiltered uv radiation from a Hanovia Model 616A highpressure quartz mercary-vapor arc. After 24 hours of uv irradiation, the dark brown PtF₆ color had disappeared and a yellow to brown solid had formed. The product was kept for 12 hours at -20° without irradiation and its color changed to yellow-orange. The reactor was cooled to -196° and noncondensibles (2.58 mmole of F₂) were removed. The reactor was warmed up to 25° and the volatile products were separated by fractional condensation. They consisted of CIF₅ (1.08 mmole) and ClF₃ (0.12 mmole). The yellow solid residue weighed 1.096 g 95 R-9262

D-4

(weight calculated for a mixture of 0.84 mmole $\text{ClF}_6^+\text{PtF}_6^-$ and 1.86 mmole $\text{ClF}_2^+\text{PtF}_6^-$ = 1.097 g). The identity of this solid as $\text{ClF}_2^+\text{PtF}_6^-$ and $\text{ClF}_6^+\text{PtF}_6^-$ was verified by ¹⁹F nmr, infrared, and Raman spectroscopy. Hence, PtF_6^- (2.70 mmole) had reacted with ClF_5 (2.70 mmole) producing $\text{ClF}_6^+\text{PtF}_6^-$ (0.84 mmole), $\text{ClF}_2^+\text{PtF}_6^-$ (1.86 mmole), and F_2^- (2.46 mmole). In addition, some of the ClF_5^- (0.12 mmole), which had been used in excess, had decomposed to ClF_3^- and F_2^- .

In a second experiment, PtF_{6} (5.26 mmole) and ClF_{5} (8.02 mmole) were combined at -196° in a sapphire reactor. The mixture was exposed at ambient temperature to uv radiation from a Hanovia Model 616A high pressure Hg arc using a Pyrex-water filter. After 14 days of irradiation, the PtF_{6} color had disappeared and a yellow to orange solid had formed. The volatile products consisted of F_{2} (0.23 mmole), ClF_{5} (3.23 mmole), and a trace of ClF_{3} . The solid residue weighed 2.245 g and was, according to its infrared spectrum. a mixture of $ClF_{6}^{-}PtF_{6}^{-}$ and $ClF_{4}^{+}PtF_{6}^{-}$. It appears that owing to the Jong reaction time and uv irradiation, some PtF_{6} (0.46 mmole as indicated by the F_{2} evolution and by the weight of the solid reaction product) had reacted with the container walls. Hence, PtF_{6}^{-} (4.80 mmole) had reacted with ClF_{5} (4.79 mmole) producing $ClF_{4}^{+}PtF_{6}^{-}$ (2.40 mmole) and $ClF_{6}^{+}PtF_{6}^{-}$ (2.40 mmole). The observed weight of the solid product (2.245 g) agreed well with that calculated (2.252 g) for the above reactions.

<u>Displacement Reaction Between FNO and $\text{ClF}_{6}^{+}\text{PtF}_{6}^{-}$ </u>. To a mixture (0.390 g) of $\text{ClF}_{6}^{+}\text{PtF}_{6}^{-}$ (0.30 mmole) and $\text{ClF}_{2}^{+}\text{PtF}_{6}^{-}$ (0.66 mmole) in _ passivated Teflon-FEP empoule, FNO (6.75 mmole) was added at -196°. The contents of the ampoule were kept at -78° for 12 hours. The ampoule was cooled to -196° and F₂ (0.28 mmole) was removed. The products volatile at ambient temperature were separated by fractional condensation and consisted of FNO (5.76 mmole), ClF_{3} (0.64 mmole),

R-9262 D-5

and ClF₅ (0.27 mmole). The yellow, solid residue weighed 0.329 g (calculated weight for 0.96 mmole of $N0^+PtF_6^- = 0.326$ g) and was identified by its infrared spectrum as $N0^+PtF_6^-$.

Reaction Between ClF_{0} and PtF_{6} . Platinum hexafluoride (1.87 mmole) and ClF_{3} 0 (4.71 mmole) were combined at -196° in a sapphire reaction tube. When the mixture was allowed to warm to 25°, a rapid reaction with gas evolution occurred and the characteristic PtF_{6} color disappeared within a few minutes. The mixture was kept at 25° for several hours and was then cooled to -196°. Fluorine (0.78 mmole) was removed at -196° and ClF_{3} 0 (2.05 mmole), ClF_{5} (0.14 mmole), and FClO_{2} (0.48 mmole) at 25°. The canary yellow residue weighed 0.749 g (weight calculated for 1.87 mmole of ClF_{2} 0⁺PtF₆⁻⁻ = 0.746 g) and was identified as ClF_{2} 0⁺PtF₆⁻⁻ by its infrared, Raman, and ¹⁹F nmr spectrum.

In another experiment, PtF_6 (2.12 mmole) and ClF_30 (5.51 mmole) were allowed to interact at -45° for 12 hours. The volatile products consisted of F_2 (1.60 mmole), ClF_30 (3.35 mmole), $FCl0_2$ (0.07 mmole), and a small amount of ClF_5 and PtF_6 . The yellow solid residue weighed 0.837 g (weight calculated for 2.12 mmole of $ClF_20^+PtF_6^- \approx 0.845$ g). The infrared spectrum of the solid showed it to be mainly $ClF_20^+PtF_6^-$, but also revealed the presence of smaller amounts of $Cl0_2F_2^+$ and ClF_6^+ salts.

<u>Beaction Between FC10</u> and IrF₆. Chloryl fluoride (2.57 mmole) and IrF₆ (1.96 mmole) were combined at -196° in a sapphire reactor. The mixture was kept at -78° for 48 hours, then cooled to -196° . All products were condensed at this temperature. At 25°, almost all of the starting materials were recovered unchanged except for 0.011 g of a yellowish solid which was identified by its infrared spoctrum as $Clu_2^+IrF_8^-$. The unreacted starting materials were condensed

and the second secon

97

R-9262

back into the reactor and kept at 25° for 11 days. After this period, the product still showed the original brown color but had partially solidified. The mixture was cooled to -196° at which temperature J.03 mmole of noncondensible material was removed. The material volatile at 25° consisted of IrF_{6} (1.12 mmole), FC10₂ (1.88 mmole), and C1F₅ (0.21 mmole). The yellow crystalline solid weighed 0.147 g (0.39 mmole) and was identified by infrared and Raman spectroscopy as $\mathrm{C10_2^+IrF_6^-}$.

ىر ئە

9

Attempted Syntheses of $\text{ClF}_6^+\text{SbF}_6^-$, $\text{ClF}_6^+\text{AsF}_6^-$, $\text{ClF}_6^+\text{BF}_4^-$, and $\text{ClF}_4\dot{\upsilon}^+\text{SbF}_6^-$. When mixtures of ClF_5 , F_2 , and AsF_5 in different mole ratios were heated in Monel cylinders for five to ten days at 125 to 145° under autogenous pressures of 500 to 1000 psi, only unreacted starting materials were recovered in addition to very small amounts of metal AsF_6^- salts. Heating the mixture to 160° resulted in partial breakdown of ClF_5 to ClF_3 and F_2^- .

Heating a BF_3 , F_2 , and ClF_5 mixture (mole ratio 1:2.7:2) for eight days to 95^o under an autogenous pressure of 450 psi did not result in the formation of a solid product.

Mixtures of ClF_5 , F_2 , and SbF_5 (mole ratio 1:5:3) were heated for three to 40 days in Monel cylinders at 140 to 225° under autogenous pressures of ~ 1000 psi. At 140° and three days reaction time, no F_2 consumption was observed. At 160° and 25 days reaction time, 6.5% of the F_2 used was consumed due to attack on the cylinder. The solid product was a mixture of ClF_2^+ , ClF_4^+ , Ni^{++} , and Cu^{++} salts of SbF_6^- .xSbF₅. Controlled vacuum pyrelysis of this solid resulted in the evolution of ClF_5 at lower and of ClF_3 at higher temperatures. The composition of the solid residues of this stepwise pyrolysis was monitored by infrared and Reman spectroscopy. It was shown that the wore stable component having strong

R-9262

absorptions in the infrared and Raman spectrum at 825 and 830 cm⁻¹ generated only ClF_3 when heated in the presence of CsF. When the reaction between ClF_5 , F_2 , and SbF_5 was carried out at 225° , $ClF_2^+SbF_6^-$ was formed with F_2 evolution.

Glow discharge of a BF₃, F₂, and ClF₅ mixture (mole ratio 1:1.42:1) at -78° in a Pyrex apparatus at pressures ranging from 20 to 50 mm produced only $\text{CJF}_2^+\text{BF}_4^-$ and no ClF_6^+ salt.

Heating a mixture of ClF_30 , F_2 , and SbF_5 (mole ratio 1:10:5) in a Monel cylinder to 135^0 for six days under an autogenous pressure of 600 psi produced exclusively $ClF_20^+8bF_6^-.xSbF_5$.

Results and Discussion

<u>Synthesis of $\operatorname{ClF}_{6}^{+}$ Salts</u>. Complex fluoro cations of the type $\operatorname{XF}_{y-1}^{+}$ are generally prepared through fluorine abstraction from the parent compound XF_{y} by means of a strong Lewis acid. This was first demonstrated in 1949 by Woolf and Emeleus¹³ for BrF_{3} :

$$BrF_3 + SbF_5 \longrightarrow BrF_2^{\dagger}SbF_6^{-}$$
(1)

The synthesis of a fluoro cation from a lower fluoride, according to:

$$\mathbf{XF} + \mathbf{F}^{\dagger} \longrightarrow \mathbf{XF}_{2}^{\dagger}$$
 (2)

is pre-empted by the fact that fluorine is the most electronegative element. Hence, F^+ should be extremely difficult if not impossible to prepare by chemical means. The first and only known synthesis of a fluoro cation derived from a nonexisting parent compound was achieved ^{5,9} in 1966, according to:

99

R-9262

D-8

$$NF_3 + F_2 + AsF_5 \longrightarrow NF_4^+ AsF_6^-$$
(3)

This synthesis involved either glow-discharge⁵ or elevated temperature and pressure⁹. Since tetrahedral and octahedral species exhibit outstanding stability, as demonstrated by CF_4 and SF_6 , the successful synthesis of NF_4^+ suggested the feasibility of synthesizing ClF_6^+ salts.

× .

۱)

The application of glow-discharge to the synthesis of ClF_6^+ salts is limited to the $\operatorname{ClF}_5-\operatorname{F_2}-\operatorname{BF_3}$ system. Stronger Lewis acids, such as AsF_8 , form adducts with $\operatorname{ClF}_5^{-14}$, thus preventing the use of the low-temperature glow-discharge technique. In the case of BF_3 , we did not successfully prepare $\operatorname{ClF}_6^+\operatorname{BF}_4^-$, owing to rapid breakdown of ClF_8 to ClF_3 and $\operatorname{F_2}$, followed by removal of the ClF_3 from the gas phase by complex formation with $\operatorname{BF}_3^{-15}$. The possible utility of the second technique, involving elevated temperature and presture, for the synthesis of ClF_6^+ salts was also examined with BF_3 , AsF_5 , or SbF_5 as Lewis Acids. At lower temperatures, no fluorination of ClF_5 occurred, whereas at higher temperatures, breakdown of ClF_5 to ClF_3 and F_2 was observed. Since ClF_2^+ salts are thermally more stable than the corresponding ClF_4^+ salts, ClF_3 was continuously removed from the ClF_5 was converted to ClF_3^+ and F_2^- .

Since the techniques which had successfully been used for the synthesis of NF₄⁺ salts did not result in ClF_6^+ , other fluorinating agents were investigated. Of particular interest were the third transition series hexafluorides which exhibit an astonishing oxidizing power¹⁶. It was found¹⁷ that PtF₆ and FClO₂, when combined at -196° and allowed to slowly warm up to 25°, interacted according to:

> R-9262 D-9 **100**

$$2FC10_2 + 2PtF_6 \longrightarrow C10_2F_2^+PtF_6^- + C10_2^+PtF_6^-$$
(4)

The yield of $Cl0_2F_2^+$ was not 50% as expected from the above equation, but generally about 25% owing to the following competing reaction:

$$2FC10_2 + 2PtF_6 \longrightarrow 2C10_2^+ PtF_6^- + F_2$$
 (5)

In some of the experiments, small amounts of $\text{ClF}_6^+\text{PtF}_6^-$ (see below) or ClF_5 and FClO_3 were observed, depending on the exact reaction conditions. The formation of some FClO_3 is not surprising since it is known that FClO_2 readily interacts with nascent oxygen to yield $\text{FClO}_3^{-18,19}$

Attempts to suppress the competing reaction (5) by changing the reaction conditions (rapid warm up from -196 to -78° and completion of the reaction at -78°) resulted in an entirely different course for the reaction:

$$6FC10_2 + 6PtF_6 \longrightarrow 5C10_2^+ PtF_6^- + C1F_6^+ PtF_6^- + 0_2$$
(6)

The observed material balance was in excellent agreement with equation (6) and the identity of ClF_6^+ was unequivocally established by 19 F nmr spectroscopy²⁰. Further modification of the reaction conditions (rapid warm up of the FCl0₂-PtF₆ mixture from -196 to either -78 or 25° and completion of the reaction at 25°) did not produce detectable amounts of either $\operatorname{Cl0}_2F_2^+$ or ClF_6^+ PtF₆⁻, but only $\operatorname{Cl0}_2^+$ PtF₆⁻ and ClF_8 , F₂, and 0₂. This indicates that the nature of the reaction products are more influenced by the warm up rate of the starting materials from -1%6 to about -78° than by the final reaction temperature. Slow warm up favors the formation of $\operatorname{Cl0}_2F_2^+$, whereas rapid warm up yields ClF_6^+ or ClF_8 and F₂.

101

and the state of the second

R-9262 D-10 The above results for the $FC10_2$ -PtF₆ system indicated that $C1F_5$ might be an important intermediate in the formation of $C1F_6^+$. In order to prove the correctness of this assumption and in order to possibly increase the yield of $C1F_6^+$, which according to equation (6) can be at best 1/6 based on PtF_6 , we have studied also the $C1F_5$ -PtF₆ system. For the latter system, Roberto reported¹ the formation of a $C1F_6^+$ salt. Owing to the slow reaction rates in the $C1F_5$ -PtF₆ system, we have used uv radiation. Two reactions were carried out at 25° . When unfiltered uv radiation was used, the reaction was complete in several hours, according to:

$$2ClF_5 + 2PtF_6 - \frac{unfiltered}{uv} \Rightarrow ClF_2^+ PtF_6^- + ClF_6^+ PtF_6^- + F_2$$
(7)

and

1

$$2C1F_5 + 2PtF_6 \longrightarrow 2C1F_2^+ PtF_6^- + 3F_2$$
(8)

The relative contribution from (7) and (8) were 62 and 38%, respectively. In addition, some of the ClF_5 , which had been used in excess, was recovered in the form of ClF_3 and F_2 .

Using a Pyrex-water filter, a reaction time of two weeks was required with the products being:

$$2C1F_5 + 2PtF_6 \xrightarrow{Pyrex filter} C1F_4^+ PtF_6^- + C1F_6^+ PtF_6^-$$
(9)

Since unfiltered uv light can decompose ClF_5 into $ClF_3 - F_2^{21}$ and since ClF_2^+ salts are more stable than ClF_4^+ salts¹⁴, the displacement of ClF_4^+ by ClF_3 , observed for (7), is not surprising. The identity of the ClF_3^+ salt obtained from the $FCl0_2$ -PtF₆ system with that from the ClF_5 -PtF₆ system was established by infrared, Raman, and ¹⁹F nmr spectroscopy.

The unusual nature of these reactions and products ask for a possible rationalization. In spite of the complexity of the $FC10_2$ -PtF₆ system, the following assumptions appear plausible:

(a) An initial electron transfer from $FClC_2$ to PtF_6 , according to:

$$FC10_2 + PtF_6 \longrightarrow FC10_2 + PtF_6$$
(10)

(b) The resulting FC102⁺ radical cation could either stabilize by generating an active fluorine radical, according to:

$$FC10_2^+ PtF_6^- - C10_2^+ PtF_6^- + F.$$
 (11)

or act itself as the active fluorinating agent, depending upon the relative life times of these two radicals.

(c) In both cases (F. or $Cl0_2F$.⁺), the radical might react either with PtF₆ with F₂ evolution:

$$\mathbf{F} \cdot + \mathbf{PtF}_{6} \longrightarrow \mathbf{F}_{2} + \mathbf{PtF}_{5} \tag{12}$$

J

followed by:

$$PtF_{5} + FC10_{2} \longrightarrow C10_{2}^{+} PtF_{6}$$
(13)

or with FC10,:

$$FC10_2 + F. \longrightarrow F_2C10_2$$
 (14)

(d) The resulting F_2ClO_2 radical could readily stabilize by transfer of an electron to PtF_6 :

$$F_2C10_2^{\circ} + PtF_6 \longrightarrow C10_2F_2^{+}PtF_6^{-}$$
 (15)
R-9262

This sequence would account for the formation of $\operatorname{ClO}_2F_2^+$ and for the compecitive F_2 evolution reaction. Similarly, the formation of ClF_6^+ from ClF_5 and PtF_6 might involve an intermediate ClF_5^+ . radical cation and suggests a search for radical cations in these systems. The formation of ClF_6^+ from FClO_2 might involve either an intermediate ClF_5 molecule or the direct fluorination of $\operatorname{ClO}_2F_2^+$ to ClF_6^+ . A definitive answer to these interesting questions concerning the most important intermediates is beyond the scope of the present study.

<u>Properties of ClF_6^+ Salts</u>. The $\operatorname{ClF}_6^+\operatorname{PtF}_6^-$ salts are canary yellow solids. They were stored at 25° in Teflon-FEP containers for several months without noticeable decomposition and formed stable HF solutions. They are very powerful oxidizers and react explosively with organic raterials or water. Contrary to a previous statement¹, no evidence was found during our investigation that the ClF_6^+ salts themselves can be explosive.

On the Existence of ClF_7 . A displacement reaction between $\text{ClF}_6^+\text{PtF}_6^-$ and FNO was carried out under conditions similar to those which had successfully been used for the synthesis of ClF_30_2 from $\text{Cl0}_2\text{F}_2^+\text{PtF}_6^-$ and FNC^4 . Since $\text{ClF}_6^+\text{PtF}_6^$ can be considered as a Lewis acid adduct between ClF_7 and PtF_5 , the products from the INO displacement reaction allow some conclusions concerning the stability of the hypothetical compound ClF_7 . The following results were obtained for the displacement reaction:

This indicates that ClF_7 under the given reaction conditions (-78°) cannot exist.

R-9262 D-13

 \square
<u>Iridium Hexafluoride Reactions</u>. Replacement of PtF_6 by IrF_6 in the $FClO_2$ reaction did not result in an oxidative fluorination of Cl(+V) to Cl(+VII). At 25° and long reaction times, only $ClO_2^+IrF_6^-$ and ClF_5 were formed in moderate yields. This demonstrates that IrF_6 is a weaker fluorinating oxidiser than PtF_6 as has previously been demonstrated by Bartlett¹⁶.

Attempted Synthesis of ClF_40^+ Salts. The successful syntheses^{1,2,4} of the $ClO_2F_2^+$ and the ClF_6^+ cation suggest d the possible synthesis of the intermediate ClF_40^+ cation from ClF_30 and PtF_6 . At 25°, the main reaction was:

$$2C1F_{3}0 + 2PtF_{6} - \frac{25^{\circ}}{2} + 2C1F_{2}0^{+}PtF_{6}^{-} + F_{2}$$
(18)

In addition, small amounts of FClO₂ and ClF₅ were observed among the volatile reaction products. When the reaction temperature was lowered to -45° , the main products were again ClF₂C⁺PtF₆⁻ and F₂. However, small amounts of ClO₂F₂⁺ and ClF₆⁺PtF₆⁻ had also formed. No evidence for the presence of any ClF₄O⁺ could be obtained. This suggests that tetrahedral ClF₂O₂⁺ and octahedral ClF₆⁺ are more favorable products than the pseudo trigonal bipyramidal ClF₄O⁺. The formation of small amounts of ClO₂F₂⁺ and ClF₆⁺ (or FClO₂ and ClF₅) might be due either to the decomposition of an unstable intermediate, such as ClF₄O⁺, into ClO₂F₂⁺ and ClF₆⁺, or at least partially to the formation of some FClO₂ from the difficuit to handle ClF₃O¹². Attempts to synthesize CUF₄O⁺ShF₆⁻ from CUF₃O-F₂-SbF₅ at elevated temperature and pressure produced exclusively ClF₂O⁺SbF₆⁻.xSbF₅.

<u>Vibyational Spectra</u>. The infrared and Raman spectra of the solid reaction products are shown by Figures 1 and 2, respectively. The spectrum of $\text{ClF}_20^+\text{PtF}_6^$ was identical to that previously reported²² and hence, is not depicted. Attempts to record the Raman spectrum of the $\text{ClF}_4^+\text{PtF}_6^- - \text{ClF}_6^+\text{PtF}_6^-$ mixture were

105

R-9262

unsuccessful owing to rapid sample decomposition by the laser beam. From a large number of experiments, those spectra and products were selected which showed the least amounts of by-products. Depending upon the exact reaction conditions, however, the products sometimes were more complex mixtures of ClO_2^+ , ClO_2^+ , clO_2^+ , and ClF_6^+ , or of ClF_2^+ , ClF_4^+ , and ClF_6^+ . The observed frequencies are listed in Table I.

Since most products contain the PtF_6 anion, its spectrum will be discussed first. The simplest spectrum is that of N0⁺PtF₆⁻. Our observed spectrum is in good agreement with that previously reported 16,23,24 for this compound. In addition to the reported bands, we have observed an infrared band at 268 cm⁻¹. The crystal structure of 0_2^{+} PtF₆ (which is i-omorphous with N0⁺ PtF₆)¹⁶ has been determined⁵⁵. It was shown that PtF_6^- is approximately octahedral²⁵; however, its site symmetry 2^{6} is lower than 0_{b} . This site symmetry lowering can cause splitting of most of the bands and violations of the selection rules expected for symmetry 0h. Since the crystal structures and, hence, the actual site symmetries of PtF_{6}^{-} in the other chlorine fluoride salts are unknown and since the observed splittings are relatively small, the assignments for PtF_6 in Table I were made based on the group symmetry 0_h . In addition to the previously assigned bands 16,23,24, the antisymmetric deformation, v_4 (F_{1u}), and the normally inactive v_6 (F_{2u}) mode were observed at about 265 and 180 cm⁻¹, respectively. The spectrum observed for IrF_6 is in good agreement with that of PtF_6 . In addition to the previously reported²³ bands, the v_4 and v_6 modes were also observed for IrF_6^- .

<u>بر</u> د ب

> The vibrational spectra of $\operatorname{ClO}_2^+ 27$, $\operatorname{ClF}_2 O_2^+ 4,28$, $\operatorname{ClF}_2^+ 29,30$, $\operatorname{ClF}_2 O^+ 22,31,32$, and $\operatorname{ClF}_4^+ 33$ have been reported elsewhere. The assignments given in Table I are in excellent agreement with those previously given for these ions and, hence, require no further discussion. Assignments for ClF_6^+ , whose identity and

> > R-9262 D-15

TABLE 1. VIBRATIONAL SPE

	ND"PLF6"	cto,*.	CLF_0, PIF6	Ct0,
Obse Fraquency, ca'l	Assignment for PtF, in Q	Obsid Frequency, cm ⁻¹ IR RA	Assignment for CLO2° and CEF.02° in C2w, for PiFa- in Gh	Obsd Frequency, cm ⁻¹ IR AA
Cb sd Eraquency. cm ⁻¹ 18 RA 2329 as 2326 (0+) 1200 u. br 1212 u. br 840 vu. br 830 vu. br 640 vs. br 640 vs. br 520 (0+) 520 (0+) 520 (0+) 570 s 579 (2) 205 269 ma 249 (4) 236 sh	$HD^{*}PEF_{B}^{*}$ Assignment for PEF_{h}^{*} in Q_{h}^{*} vid) $V_{1} + V_{3}(P_{1u})PEF_{0}^{*}$ $V_{2} + V_{3}(P_{1u} + P_{2u})PEF_{0}^{*}$ $V_{3} + V_{5}(A_{2u} + E_{u} + V_{1u} + C_{2u})PEF_{0}^{*}$ $V_{2} + V_{4}(P_{1u} + P_{2u})PEF_{0}^{*}$ $V_{3}(P_{1u})PEF_{0}^{*}$ $V_{2}(E_{g})PEF_{0}^{*}$ $V_{4}(i_{1u})PEF_{0}^{*}$ $V_{5}(P_{2g})PEF_{0}^{*}$	Ct02*. C054 Frequency, cm ⁻¹ TR RA 2340 2320 v 2115 vv 1486 1470 v 1297 vs 12299 (0.5) 1297 vs 12299 (0.5) 1293 s 1285 (0.17) 1245 (0.1) 1245 (0.1) 1246 (0*) 1237 v 1246 (0*) 1237 v 1246 (0*) 1237 v 1246 (0*) 1237 v 1246 (0*) 1237 v 1246 (0*) 1257 v 1252 s 1051 (2.7) 1647 v 1051 (2.7) 1647 v 1051 (2.1) 642 (10) 340 v 544 (1.3) 552 s 553 (1.0) 330 v 514 s 514 (0.4)	$CLF_{2}O_{2}^{*}PtF_{6}^{*}$ Assignment for CLO ₂ * and CLF ₂ O ₂ * $in C_{2v}, for PtF_{6}^{*} - in O_{h}^{*}$ $v_{1} + v_{3}(B_{1})CLO_{2}^{*}$ $v_{6}(B_{1}) CLF_{3}O_{2}^{*}$ $v_{1}(A_{1})CLF_{2}O_{2}^{*}$ $v_{1}(A_{1})CLF_{2}O_{2}^{*}$ $v_{2} + v_{3}(P_{1u} + P_{2u})PtF_{6}^{*}$ $v_{1}(A_{1})CLF_{2}O_{2}^{*}$ $v_{2}(A_{1})CLF_{2}O_{2}^{*}$ $v_{2}(A_{1})CLF_{2}O_{2}^{*}$ $v_{3}(F_{1u})PtF_{6}^{*}$ $v_{3}(A_{1})PtF_{6}^{*}$ $v_{3}(A_{1}), v_{7}(B_{1}), v_{9}(B_{2})CLF_{2}O_{2}^{*}$ $v_{2}(A_{1})CLO_{2}^{*}$	$\begin{array}{c} \hline \\ 18 & & & & \\ \hline \\ \hline \\ 2340 \\ 2320 \\ \hline \\ 1297 \\ vs \\ 1297 \\ vs \\ 1299 \\ vs \\ 1299 \\ vs \\ 1285 \\ s \\ 1285 \\ (0,1) \\ 1210 \\ \hline \\ 120 \\ \hline \\ 1285 \\ s \\ 1285 \\ (0,1) \\ 1285 \\ (0,1) \\ 1285 \\ (0,1) \\ 1285 \\ (0,1) \\ 1299 \\ (0,3) \\ 1285 \\ (0,1) \\ 1299 \\ (0,3) \\ 1285 \\ (0,1) \\ 1299 \\ (0,3) \\ 1285 \\ (0,2) \\ 1285 \\ (0,2) \\ 1299 \\ (0,3) \\ 12$
		284 m 236 (2. <i>9</i>) 180 (6-)	ν ₆ (F ₃₄)94F6 ⁻ ν ₅ (F ₂₈)94F6 ⁻ ν ₆ (F ₂₀)94F6 ⁻	

ALL ALL - Part 192

24.6

107

Ma Land

A Stand LANG

1. VIBRATIONAL SPECTRA OF SEVERAL PEF⁻ SALTS AND OF CRO⁺IrF⁻ AND THEIR ASSIGNMENT - RAMAN INTE

	Ct0,*,	CLF6* PEF6	cur,*,	CIF6 PIF6	Cif ₂ 0'	* htt.
17 ,0,	Obsd Frequency, ca ⁻¹ 1 ⁿ AA 2340 1	Assignment for CEO2 in C2v, for CEF4 and PEF6 in Oh	Obsd Frequency, cm ⁻² 18 84	Assignment for CIF in Cove for CIF and PIF- in Of	Obsid Frequency, cm ⁻¹	Assignment for CEF in Cg, for PtFg in
	$\begin{array}{c c} \hline \begin{array}{c} \hline 0 \ sd \ Frequency \ cs^{-1} \\ \hline 18 \ A \\ \hline 2320 \ \end{array} \\ \hline 1287 \ vs \ 1299 \ (0.3) \\ 1283 \ s \ 1285 \ (0.1) \\ 1283 \ s \ 1285 \ (0.1) \\ 1210 \ v \\ 1053 \ s \ 1054 \ (2.0) \\ 1049 \ s \ \end{array} \\ \begin{array}{c} \hline 0 \ s \ 679 \ (0.5) \\ 640 \ \ e20 \ \end{array} \\ \hline \begin{array}{c} 679 \ (0.5) \\ 640 \ \ e20 \ \end{array} \\ \hline \begin{array}{c} 679 \ (0.5) \\ 640 \ \ e20 \ \end{array} \\ \hline \begin{array}{c} 679 \ (0.5) \\ 640 \ \ e20 \ \end{array} \\ \hline \begin{array}{c} 679 \ (0.5) \\ 640 \ \ e20 \ \end{array} \\ \hline \begin{array}{c} 679 \ (0.5) \\ 640 \ \ e20 \ \end{array} \\ \hline \begin{array}{c} 679 \ (0.5) \\ 640 \ \ e20 \ \end{array} \\ \hline \begin{array}{c} 640 \ \ e20 \ \end{array} \\ \hline \begin{array}{c} 580 \ m \ 560 \ (1.6) \\ 580 \ m \ 552 \ \ e54 \ (2.5) \\ 510 \ \ e510 \ \ (0.6) \\ 1240 \ (4.5) \\ 128 \ (0.2) \\ 130 \ (e.1) \\ \hline \begin{array}{c} 98 \ (1.6) \\ 98 \ (1.6) \end{array} \end{array}$	Assignment for CEO ₂ ⁺ in C ₂ _V , for CEF ₆ ⁺ and PtF ₆ ⁻ in O _h ⁻ v ₁ + v ₃ (8 ₁)CRO ₂ ⁺ v ₃ (8 ₁)CRO ₂ ⁺ v ₁ (A ₁)CRO ₂ ⁺ v ₁ (A ₁)CRF ₆ ⁺ v ₁ (A ₁₈)CRF ₆ ⁺ v ₃ (F _{1u})PtF ₆ ⁻ v ₃ (F _{1u})PtF ₆ ⁻ v ₂ (R ₂)PtF ₆ ⁻ v ₂ (R ₂)PtF ₆ ⁻ v ₆ (F _{2u})PtF ₆ ⁻ Sattice Vibvations	Obsid Frequency, cm ⁻¹ 12 BA 1:76 w 1554 w 1554 w 1510 w 1288 w 1240 w 1244 w 1240 w 1244 w 1245 w 1246 w 1247 state 1248 w 1249 w 1244 w 1244 w 1245 w 1246 w 1247 state 1248 w 1249 w 739 vs 758 (3.0) 754 (1) 754 (1) 733 vw 704 (0-2) 655 vs., br 641 (0-3) 639 (10) 630 sh 585 s., br 582 (0.8) 510 w, sh 513 (0.3) 47a w, sh 341 (0.2) 344 s 361 (0.2) 240 (3.2) 240 (3.2) 240 (3.2)<	Assignment for CiF ⁺ in C _{2V} . for CiF ₄ and PtF ₄ in C ₂ . $v_{j} + v_{j}(F_{1})CiF_{2}^{+}$ $v_{j} + v_{j}(F_{1})CiF_{3}^{+}$ $v_{2} + v_{3}(F_{1})CiF_{4}^{-}$ $v_{2} + v_{3}(F_{1})PtF_{6}^{-}$ $v_{2} + v_{3}(F_{1})PtF_{6}^{-}$ $v_{2} + v_{4}(F_{1} + F_{2})PtF_{6}^{-}$ $v_{3}(F_{1})CiF_{2}^{+}$ $v_{3}(F_{1})CiF_{2}^{+}$ $v_{3}(F_{1})CiF_{2}^{+}$ $v_{3}(F_{1})CiF_{2}^{+}$ $v_{2} + v_{6}(F_{1} + F_{2})PtF_{6}^{-}$ $v_{3}(F_{1})CiF_{2}^{+}$ $v_{2} + v_{6}(F_{1} + F_{2})PtF_{6}^{-}$ $v_{3}(F_{1})PtF_{6}^{-}$ $v_{3}(F_{3})PtF_{6}^{-}$ $v_{2}(E_{3})PtF_{6}^{-}$ $v_{2}(CiF_{2})CiF_{6}^{+}$ $v_{3}(F_{2})PtF_{6}^{-}$ $v_{4}(F_{2})PtF_{6}^{-}$ $v_{6}(F_{2})PtF_{6}^{-}$	Obsd Frequency, cm ⁻¹ 18 BA 1326 ms 1374 (0.6) 1313 mc 1311 (0.2) 737 s 737 (2.7) 705 s 705 (0.8) 643 vs 658 (4.2) 630 sh 630 (10) 544 s 575 sh 506 s 506 (0.5) 401 ms 531 (0.7) 386 ms 346 (0.2) 280 (0.3) 239 (7.9) 140 (0.3) 115 (0.2) 58 (1.0) 58 (1.0)	Assignment for CEF in CS, for PEFA, if V ₁ (A')CEF20' V ₂ (A')CEF20' V ₃ (A')CEF20' V ₃ (P ₁₀)PEFA' V ₁ (A ₁₈)PEFA' V ₂ (E ₈)PEFA' V ₃ (A')CEF20' V ₄ (A')CEF20' V ₄ (A')CEF20' V ₄ (A')CEF20' V ₄ (F10)PEFA' V ₅ (F23)PEFA' Lottice Vibrations
			170 (0.3) 101 (0.9) 72 (0.3) 54 (1.5) 42 (5.6) 36 (0.4)	v _é (P _{2U})PtP ₆ " Lottice Vibrations		

SSIGNMENT - RAMAN INTENSITIES ARE UNCORRECTED

Ċ,

、 こうそ くちゃ こうではかななない ないいい ひかどうな あかなななな かうちょう ちょう こうしょう しょう

CIF20° PLF6	CIF4", CIF4" PEF6"	C102+15F4-
$\frac{CEF_{2}O}{EA} = \frac{PEF_{6}}{11 CS_{2} for VEF_{6} - \frac{1}{11 O_{1}}} Assignment for CEF_{2}O^{*} in CS, for VEF_{6} - \frac{1}{11 O_{1}} is 1324 (0.6) \frac{1}{V_{1}}(A^{*})CEF_{2}O^{*} is 737 (2.7) V_{2}(A^{*})CEF_{2}O^{*} is 705 (6.8) V_{5}(A^{*})CEF_{2}O^{*} is 458 (4.2) V_{3}(F_{11})PEF_{6}^{-} is 575 sh \frac{1}{S44}(2.9) is 506 (0.5) V_{3}(A^{*})CEF_{2}O^{*} is 401 (0.7) V_{6}(A^{*})CEF_{2}O^{*} is 401 (0.3) is (0.2) V_{3}(F_{11})PEF_{6}^{-} is 506 (1.3) V_{3}(F_{12})PEF_{6}^{-} is 506 (1.3) V_{3}(F_{12})PEF_{6}^{-}$	$\frac{CF_{4} \cdot CF_{5} - FF_{5}}{Frequency_{-} ct^{-1}} = Assignment for Cf_{5}^{+} in C_{2}^{+} for Cf_{5}^{+} and PtF_{5}^{+} in C_{2}^{+} for Cf_{5}^{+} in C_{2}^{+} in Cf_{5}^{+} in$	$\frac{CO_{2} 12F_{6}}{(R - RA - $

weiter seine fürsteringen standense

octahedral structure has been established beyond doubt by ¹⁹F nmr spectroscopy³, were made on the basis of the following arguments. For octahedral ClF_6^+ , we would expect ideally six normal modes of vibration which are classified as $A_{1g} + E_{g} + 2F_{1u} + F_{2g} + F_{2u}$. Of these, only the two F_{1u} modes will be infrared active, while only the A_{1g}, E_g. and F_{2g} modes will be Raman active, assuming no other solid state effects such as site symmetry lowering or slight distortion of the octahedron. Three different salts containing CIF6⁺PtF8⁻ have been studied. In addition to ClF_6^+ , they contain either the ClO_2^+ , or the ClF_2^+ , or the ClF_4^+ cation. All three salts show a strong infrared absorption at 890 cm⁻¹. The frequency of t's band is higher than that of any known ClF fundamental vibration and is assigned to the antisymmetric stretching vibration, v_3 (F_{1u}) of ClF₆⁺. This assignment is supported by the following observation. In all three sults, the 890 cm⁻¹ band shows a pronounced shoulder at 877 cm⁻¹. The observed frequency difference of about 13 cm⁻¹ is in good agreement with the 35 Cl - 37 Cl isotopic shift value of 12.5 cm⁻¹ computed for octahedral ClF_{θ}^{+} , assuming 100-percent characteristic modes. Of the remaining unassigned bands, the second highest frequency belongs to a relatively intense Raman line at 679 cm⁻¹. Clearly, this line must be due to the totally symmetric stretching mode, v_1 (A_{1g}). The Raman spectrum of ClF_2^+ , $ClF_8^+PtF_8^-$ (trace d, Figure 2) shows a band at 513 cm⁻¹. It has the same frequency as the ClO_2^+ deformation mode but cannot be due to ClO_2^+ since there is no evidence for its more intense v_1 (A₁) mode at about 1050 cm⁻¹. The 513 cm⁻¹ band might be assigned to either ν_2 (E_g) or ν_5 (F_{2g}) of ClF₆⁺.

G

{`}

It has previously been shown that the vibrational spectra of $\text{ClO}_2^+ 2^7$, $\text{ClF}_20^+ 3^1$, $\text{ClF}_20_2^+ 4,28$, ClF_5^{-34} , and $\text{ClF}_4^+ 3^3$ closely resemble those of isoelectronic SO₂, SF_20 , SF_20_2 , SF_5^- , and SF_4 , respectively. A similar relationship might be expected for the isoelectronic pair ClF_8^+ -SF₆ (see Table II). Comparison with the vibrationa

> R-9262 D-17

spectrum of $SF_6^{35,36}$ suggests that the 513 cm⁻¹ band is due to v_5 (F_{2g}). This is further supported by the absence of another band below 513 cm⁻¹, which might be assigned to this mode and by the observed combination bands in the infrared spectrum. Generally, octahedral species exhibit two relatively intense combination bands in the infrared spectrum due to $v_1 + v_3$ and $v_2 + v_3$. For ClF_6^+ , two bands were observed at about 1560 and 1515 cm⁻¹, respectively. The 1560 cm⁻¹ band represents $v_1 + v_3$ (computed frequency: 1569 cm⁻¹). Assuming the 1515 cm⁻¹ band to be due to $v_2 + v_3$, a value ci 625 cm⁻¹ can be assigned to v_2 . Inspection of trace d of Figure 2 reveals a shoulder at 630 cm⁻¹, which is assigned to v_2 (E_g) of ClF_q^+ . Since there is no indication in the infrared spectrum for a combination band at about 1400 cm⁻¹ (890 + 513 = 1403), the 513 cm⁻¹ Banan band is assigned to v_5 (F_{2g}).

An alternate, although less probable, assignment is possible for v_2 (E_g) of ClF₆⁺. Trace d of Figure 2 exhibits two bands at 582 and 576 cm⁻¹, respectively. We prefer, however, to attribute both of them to v_2 (E_g) of PtF₆⁻ since the v_5 (F_{2g}) PtF₆⁻ bands also show additional splitting and since again no evidence for the corresponding $v_2 + v_3$ combination band can be found in the infrared spectrum at about 1470 cm⁻¹. Thus all the expected active modes have been assigned for ClF₆⁺ except for the antisymmetric deformation, v_4 (F_{1u}). This mode should be infrared active and by comparison with SF₆, occur in the rarge 550 - 610 cm⁻¹. A frequency of 582 cm⁻¹ is tentatively assigned to v_4 based on traces c, d, and e of Figure 1 and by comparison with the infrared spectrum of ClF₂0⁺PtF₆⁻²².

109

and the second of the second second

R-9262 D-18

Fundamental Vibrations of ClF_8^+ Compared to Those of Isoelectronic SF_6

TABLE II

$\frac{c_{1F_6}}{c_{-}}$	$\frac{SF_6}{2}$	Assignment in Point Group 0 h
679	769.4	$v_1 (A_{1g})$
830	639.5	v_2 (E _g)
890	947.9	v_3 (\mathbf{F}_{1u})
582	614.5	v ₄ (F _{1u})
513	522	$v_{5} (\mathbf{F}_{2g})$

(a) Data from Reference 35 and 36.

-

A modified valence force field was computed for ClF_{R}^{+} in order Force Constants. to obtain a more quantitative understanding of its relative bond strength. Except for the F₁₀ block, all the symmetry force constants are unique. The F₁₀ block is underdetermined since only two frequency values are available for the determination of three force constants. A third frequency value for the F_{1n} block might be obtained from the ³⁵Cl-³⁷Cl isotopic shifts which would allow the computation of a general valence force field. Unfortunately, the isotopic shift for v_3 could not be determined with sufficient accuracy. Consequently, the usefulness of mathematics constraints, such as minimizing or maximizing the value of one of the symmetry force constants was tested for isoelectronic SF_6 , for which a general valence force field has been reported³⁷. It was found that the condition, $F_{44} = \text{minimum}^{38}$, is the best approximation to the general valence force field, though it yields too high a value for F_{34} , due to appreciable coupling of the bonds³⁹. It also results in a rather large negative value (-0.269 mdyn/Å) for the stretch-stretch interaction constant, fr, which is difficult to rationalize. Using the same condition for computing the force field of ClF_6^+ , a comparable negative value (- 0.297 mdyn/Å)

> R-9262 D-19

was obtained for f_{rr} of ClF_6^+ . Since for SF_6 the GVFF value of f_{rr} is essentially zero, we prefer for ClF_8^+ the condition $f_{rr}' = 0$. The resulting force field is listed in Table III and compared to the GVFF values of SF_6^{-37} .

TABLE III

10.15	symmetry and	Interne	1 Force	Consta	unts (m	dyn/Å)	of ClF	- 6
	Computed fo	r a Modi	fied Va	lence F	orce F	ield Ag	suming	<u>k</u>
ſ,	'=0 and U	sing the	Freque	ncy Val	ues of	Table	<u>11. p</u>	or
•	Comparison	the GVE	Welue	a of Sé	are :	alao Ji	ated.	

	$\underline{clF_6}^+$	SF ₆
F ₁₁	5.161	6.628
F ₂₂	4.443	4.578
F ₃₃	4.682	5.256
F ₃₄	0.726	0.885
F ₄₄	0.955	1.035
F 55	0.736	0.763
1 _r	4.682	5.258
1 _{II}	0.120	0.341
f _{rr} '	0	0.002
i -i ra ra	0.363	0.443

The force constant of greatest interest is the stretching force constant, f_r . Its value is 4.7 mdyn/Å with a conservative uncertainty estimate of $\stackrel{+}{=}$ 0.2 mdyn/Å considering the uncertainties in the frequency of v_4 (F_{1u}) and in the approximating method used for the force constant computation. This value is comparable to those

111

D-20

of $\operatorname{ClF}_2^+ (4.74 \operatorname{mdyn}/\hbar)^{40}$ and of the equatorial Cl-F bonds in $\operatorname{ClF}_4^+ (4.59 \operatorname{mdyn}/\hbar)^{33}$, but significantly higher than those of the remaining known chlorine fluorides. The high value of f_1 in ClF_6^+ can be explained to some extent by the formal positive charge which generally increases the stretching force constant values. It also suggests strong covalent contributions to the bonding. The high f_r value is entirely consistent with the high stability observed for the ClF_6^+ salts and parallels the findings for the NF_4^+ salts⁶⁻⁹. In both cases, comparison with the isoelectronic molecules SF_6 and CF_4 , respectively, suggested unusual stability, although it proved difficult to actually synthesize these salts. In particular, it appears that the synthesis of ClF_6^+ requires an unusually powerful oxidative fluorinating agent such as PtF_6 .

Since v_4 (F_{1u}) and v_6 (F_{2u}) have been observed for both PtF_6^- and IrF_6^- , a modified valence force field was also computed for these two anions assuming octahedral symmetry and F_{44} = minimum. For PtF_6^- and IrF_6^- , this extremal condition is expected to give a force field close to that of a GVFF owing to the large mass of the central atoms and the resulting weak coupling. The frequencies used for the computation are listed in Table IV, together with the resulting force constants. The value of f_{v} of $P:F_6^-$ (3.89) is intermediate between those of PtF_6^- (4.46)⁴¹ and PtF_6^{--} (3.42 mdyn/Å)⁴¹ as expected on the basis of the increasing formal negative charge.

<u>Summary</u>. The successful synthesis of ClF_6^+ and the evidence for the nonexistence of a stable ClF_7 molecule and ClF_6^- anion¹⁴ completes the series of possible binary chlorine fluoride molecules and ions. Table V summarizes the presently known species. The existence of ClF_6^+ suggests the possibility of preparing ClF_6^0 and efforts to synthesize this new oxyfluoride will be continued.

> R-9262 D-21

4

Symmetry and Internal F IrF ₆ Computed for a Modified	orce Constants (mdy Valence Force Field	m/Å) of PtF ₆ and Assuming F ₄₄ = Minimum
	<u>PtF</u> ⁻ (a)	<u>IrF</u> ⁻ (b)
r ₁₁	4.613	5.025
F ₂₂	3.573	3.510
F 33	3.870	3.861
F ₃₄	0.100	0.101
F4+	0.308	0.307
F ₅₅	0.161	0.172
F ₆₆	0.181	0.192
1 _r	3.894	3.940
f _{rr}	0.173	0.255
1	0.024	0.079
ff	0.050	0.051
	0.171	0.182
$\frac{1}{\alpha \alpha} - \frac{1}{\alpha \alpha} - \frac{1}{\alpha \alpha} + \frac{1}{\alpha \alpha} + \frac{1}{\alpha \alpha}$	-0.010	-0.010
requencies Used: a) $v_1 = 642$, $v_2 = 565$, $v_3 = 642$	0, ν ₄ = 270, ν _δ =	= 240, $v_6 = 180 \text{ cm}^{-1}$.
b) $v_1 = 670, v_2 = 560, v_3 = 64$	$0, v_4 = 270, v_5 =$	=248, ν ₆ ≈ 185 cm ⁻¹ .
440	R-9262	

the state the second of the state of the state of the second of the seco

λ,

्)

ì

A. S.

ad In

a hand a state of the state of the second state of

TABLE IV

a statistic and a state to a strike the second

and the share the second state of the second s

Summary of Existing Binary Chlorine Fluorides. Nonexisting Species Are Given in Parentheses.

$\operatorname{Cl}_{\alpha}\mathbf{F}^{+}(\mathbf{a})$	сця (b)	ClF ₀ ^{- (c)}
2		X.

 $\operatorname{clr}_{2}^{+(d)}$ $\operatorname{clr}_{3}^{(e)}$ $\operatorname{clr}_{4}^{-(f)}$

 $ClF_4^{+}(g) = ClF_5^{(h)} (clF_6^{-})(g)$

 $c_{1F_6}^{+}$ (i) (c1F₇) (i) (c1F₈)

(a) K. O. Christe and W. Sawodny, Inorg. Chem., <u>8</u>, 212 (1969).
(b) O. Ruff, E. Ascher, J. Fischer, and F. Laass, Z. Anorg. Allgem. Chem., <u>176</u>, 258 (1928).
(c) K. O. Christe and J. P. Guertin, Inorg. Chem., <u>4</u>, 905 (1965).
(d) J. W. Dale and D. A. MacLeod, (1950), private communication.
(e) O. Ruff and H. Krug, Z. Anorg. Allgem. Chem., <u>190</u>, 270 (1930).
(f) L. B. Asprey, J. L. Margrave, and M. E. Silverthorn, J. Am. Chem. Soc., <u>83</u>, 2935 (1961).
(g) K. O. Christe and D. Pilipovich, Inorg. Chem., <u>8</u>, 391 (1969).
(h) W. Maya and H. F. Bauer, U. S. Patent 3,354,648 (1967).
(i) F. Q. Roberto, Inorg. Nucl. Chem. Letters, <u>8</u>, 737 (1972) and X. O. Christe, ibid., <u>8</u>, 741 (1972).

R-9262 114 D-23

Ĵ

Support of the second strate of the second

৻৾৾৾৾

<u>Acknowledgement</u>. I am indebted to Dr. C. J. Schack and R. D. Wilson for their help in some of the experiments, to Drs. D. Pilipovich and E. C. Curtis for helpful discussions, and to R. Cook of Cary Instruments for recording the Raman spectra. Financial support of this work by the Office of Naval Research was greatly appreciated.

[]

()

References

and the state of the set of the set

aliter in standard at the state is a second weather a description of the second state of the get

-

3

ş

0

ki da

(1)	F. Q. Roberto, Inorg. Nucl. Chem. Letters, <u>8</u> , 737 (1972).
(2)	K. O. Christe, ibid., <u>8</u> , 741 (1972).
(3)	K. O. Christe, J. F. Hon, and D. Pilipovich, Juorg. Chem., January (1973).
(4)q	K. O. Christe, Inorg. Nucl. Chem. Letters, 8, 453 (1972).
(ð)	K. O. Christe, J. P. Guertin, and A. E. Pavlath, Inorg. Nucl. Chem. Letters, <u>2</u> , 83 (1966).
(6)	J. P. Guertin, K. O. Christe, and A. E. Pavlath, Inorg. Chem., <u>5</u> , 1921 (1966).
(7)	K. O. Christe, J. P. Guertin, A. E. Pavlath, and W. Sawodny, ibid., <u>6</u> , 533 (1967).
(8)	K. O. Christe and D. Pilipovich, ibid., <u>10</u> , 2813 (1971).
(9)	W. E. Tolberg, R. T. Newick, R. S. Stringham, and M. E. Hill, Inorg. Nucl. Chem. Letters, <u>2</u> , 79 (1966) and Inorg. Chem. <u>6</u> , 1156 (1967).
(10)	B. Weinstock, H. H. Claassen, and J. G. Malm, J. An. Chem. Soc., <u>79</u> , 5832 (1957) and B. Weinstock, J. G. Malm, and E. E. Weaver, ibid., <u>83</u> , 4310 (1961).
(11)	D. F. Smith, G. M. Begun, and W. H. Fletcher, Spectrochim. Acta, <u>20</u> , 1763 (1964).
(12)	D. Pilipovich, C. B. Lindahl, C. J. Schack, R. D. Wilson, and K. O. Christe, Inorg. Chem., <u>11</u> , 2189 (1972).
(13)	A. A. Woolf and H. J. Emeleus, J. Chem. Soc., 2865 (1949).
(14)	K. C. Christe and D. Pilipovich, Inorg. Chem., <u>8</u> , 391 (1969).
(15)	H. Selig and J. Shamir, ibid., <u>3</u> , 294 (1964).
(16)	N. Bartlett, Angew. Chem., Intermat. Edit., 7, 433 (1968).
(17)	K. O. Christe, Inorg. Nucl. Chem. Letters, <u>8</u> , 457 (1972).
(18)	R. Bougon, M. Carles, and J. Aubert, C.R., <u>265C</u> , 179 (1967).
(19)	K. O. Christe, Inorg. Chem., <u>11</u> , 1220 (1972).
(20)	K. O. Christe, J. F. Hon, and D. Pilipovich, to be published.
(21)	A. E. Arworthy, private conversation.
(22)	C. J. Schack, C. B. Lindahl, D. Pilipovich, and K. O. Christe, Inorg. Chem., <u>11</u> , 2201 (1972). R-9262 416
	D-25

the state of the

<u>References</u> (continued)

(23)	F. O. Sladky, P. A. Bulliner, and N. Bartlett, J. Chem. Soc., A, 2179 (1969).
(24)	N. Bartlett, S. P. Beaton, and N. K. Jha, Chem. Commun., 168 (1968).
(25)	J. A. Ibers and W. C. Hamilton, J. Chem. Phys., <u>44</u> , 1748 (1966).
(26)	R. S. Malford, J. Chem. Phys., 14, 8 (1946).
(27)	K. O. Christe, C. J. Schack, D. Pilipovich, and W. Sawodny, Inorg. Chem., 8, 2489 (1969).
(28)	K. O. Christe and R. D. Wilson, Inorg. Chem., <u>12</u> , (1973).
(29)	K. O. Christe and W. Sawodny, Inorg. Chem., 6, 313 (1967).
(30)	R. J. Gillespie and M. J. Morton, ibid., <u>9</u> , 616 (1970).
(31)	K. O. Christe, E. C. Curtis, and C. J. Schack, ibid., <u>11</u> , 2212 (1972).
(32)	R. Bougon, J. Isabey, and P. Plurien, Compt. Rend., Ser. C., <u>273</u> , 415 (1971).
(33)	K. O. Christe, E. C. Curtia, D. Pilipovich, C. J. Schack, and W. Sawodny, Paper B ₄ presented at the 6th International Symposium on Fluorine Chemistry, Durham, England (July 1971) and K. O. Christe and W. Sawodny, to be published.
(34)	K. O. Christo, E. C. Curtis, C. J. Schack, and D. Pilipovich, Inorg. Chem., <u>11</u> , 1679 (1972).
(35)	H. Brunet and M. Perez, J. Mol. Spectry, <u>29</u> , 472 (1969).
(36)	C. W. Gullikson, J. Rud Nielsen, and A. T. Stair, Jr., ibid., <u>1</u> , 151 (1957).
(37)	A. Ruoff, J. Mol. Structure, <u>4</u> , 332 (1969).
(38)	W. Sawodny, J. Mol. Spectry, <u>30</u> , 56 (1969).
(39)	S. N. Thakur and S. M. Kai, J. Mol. Structure, 5, 320 (1970).
(40)	K. C. Christe and C. J. Schack, Inorg. Chem., <u>9</u> , 2296 (1970).
(41)	H. Siebert, "Anwendungen der Schwingungsspektroskopie in der Anorganischen Chemie", Springer Verlag, Berlin (1966), page 82.

()

117

;

í.

Diagrar Captions

- Figure 1. Infrared spectra of the solid products obtained from the following reactions: trace a, displacement reaction between FNO and a mixture of $\text{ClF}_2^+\text{PtF}_6^-$ and $\text{ClF}_6^+\text{PtF}_6^-$; traces b and c, $\text{FClO}_2 + \text{PtF}_6$ at 25 and -78° , respectively; traces d and e, ClF_5 and PtF_6 using unfiltered and filtered uv radiation, respectively; trace f, $\text{FClO}_2 + \text{IrF}_6$ at 25°. All spectra were recorded as pressed AgBr disks, except for trace c for which a AgCl disk was used.
- Figure 2. Raman spectra of some of the solid products shown in Figure 1 using the same notations. All spectra were recorded for dry powders in glass melting point capillaries, using the 6471 Å exciting line on a Cary Model 82.

118

8

こうちょうちょうちょう ちょうし ちょうちょうちょうちょうちょうちょうちょう ちょうちょう

119

F.

)

On The Existence of Chlorine Oxide Pentafluoride [**] By Karl O. Christe, Richard D. Wilson, and Donald Pilipovich [*]

The recent report by Zuechner and Glemser^[1] on the synthesis of ClF_50 from the photolysis of $\operatorname{ClF}_5-\operatorname{OF}_2$ mixtures prompted us to thoroughly study this system. Contrary to the previous report^[1], no evidence for the existence of ClF_50 could be obtained in the temperature range -78° to 30° C, using both unfiltered and Pyrex filtered uv radiation. All reactions were carried out in a stainless steel reactor equipped with a sapphire window. The progress of the reactions was periodically monitored by gas chromatography. At the end of an experiment, the products were also separated by fractional condensation, in a Tetlon-stainless steel vacuum system and were characterized by vibrational spectroscopy. It was shown that in the $\operatorname{ClF}_5-\operatorname{OF}_2$ system, when exposed to unfiltered uv radiation, ClF_5 rapidly decomposes to ClF_3 and F_2 and, therefore, yields only the same products obtainable from the photolysis of $\operatorname{ClF}_3-\operatorname{OF}_2$ mixtures.

The following properties reported by Zuechner and Glemser^[1] for ClF_{0}^{0} do not agree with the general trends observed for the remaining chlorine fluorides and oxyfluorides: i) nonvolatility at $-78^{\circ}C$, (ii) a ¹⁹F nmr resonance between -146 and -103 p_im relative to CFCl₃, and (iii) exchange broadening in the nmr spectrum even at $-76^{\circ}C$. For ClF₀0, we would expect (i) a volatility comparable to those of ClF₅^[2] or SF₆^[3], (ii) an averaged ¹⁹F nmr chemical shift of about -390 ppm^[4], and (iii) the absence of intramolecular e change owing to chlorine having its maximum ocrdination number and no free valence electron pair and owing to the lack of a plausible exchange mechanism.

The only remaining piece of evidence presented^[1] for ClF_50 is the presence of a low intensity fragment due to ClF_40^- in the negative ion mass spectrum of the crude reaction product. We prefer to attribute this fragment to a recombination process in the mass spectrometer since a 52% peak was also reported for F_2^- which can form only by recombination. Furthermore, negative ion spectra frequently show species of higher mass than that of the parent molecule due to attachment of other atoms or groups^[5].

> R-9262 E-1

- Dr. K. O. Christe, R. D. Wilson, and Dr. D. Pilipovich, Rocketdyne, a Division of Rockwell International Corporation, Canoga Park, California 91304 (USA).
- ** Whin work was supported by the Office of Naval Research, Power Branch.
- [1] K. Zuechner and O. Glemser, Angew. Chem. Internat. Edit. 11, 1094 (1972).
- [2] D. Pilipovich, W. Maya, E. A. Lawton, H. F. Bauer, D. F. Sheeban, N. N. Ogimachi, R. D. Wilson, F. C. Gunderley, Jr., and V. E. Bedwell, Tnorg. Chem. <u>6</u>, 1918 (1967).
- [3] P. R. Stull, Ind. Eng. Chem. 39, 545 (1947).
- [4] K. O. Christe, J. F. Hon, and D. Pilipovich, Inorg. Chem. 12, 84 (1973).
- [5] K. Bie manne Mass Spectrometry, McGraw-Hill Book Company, Inc., New York, 1962, page 161.

)

THE PREPARATION OF CHLORINE MONOFLUORIDE

C. J. Schack and R. D. Wilson Rocketdyne, a Division of Rockwell International Corporation, Canoga Park, California 91304

Chlorine monofluoride is a very vigorous and useful reagent which exhibits a diversity of reaction paths. Thus fluorinating, chlorinating, and chlorofluorinating reactions are well known (1) as well as amphoteric behavior in forming Lewis acid and base complexes (1, 2). Despite this bread utility, specific details regarding the synthesis of ClF are lacking. The experiments reported herein describe a simple, laboratory scale, procedure for the preparation of ClF.

Although ClF can be prepared from the elements (3), it is generally preferable to employ ClF_3 and Cl_2 according to the equation:

$$ClF_3 + Cl_2 \xrightarrow{\Delta} 3ClF$$

This reaction was first reported (4) by Schmitz and Schumacher. In their work and in later applications (5, 6) the reactions were carried out at temperatures in the range of $250 - 350^{\circ}$ C and at unspecified pressures and/or times. Therefore, it appeared desirable to better define the most significant parameters, i.e., temperature, pressure, and time. The following table summarizes some of our typical results.

Run No.	T ^o C	Max. Pressure Dsi	Time, br.	ClF3 <u>Recover</u> e <u>d</u>	\$ Yield <u>Purified ClF</u>
1	120	160	65	Yes	65
2	150	200	18	Уев	79
3	150	620	18	No	95
4	180	375	5	No	92
5	180	670	6	Trace	92

TABLE 1

Reaction Data For 1.06 ClF₃ - 1.00 Cl₂

From these experiments it is evident that a temperature of 120° C is too low for obtaining a bigh yield in a reasonable time. However, a temperature of 180° C, still much lower than those most often used, is quite satisfactory for producing complete reaction in a short time, over a broad pressure range. At 150° C a slightly higher yield was achieved, perhaps due to reduced wall reactions. The longer time required, 18 hr., is still a convenient overnight period. In all cases a 5-7 mole percent excess of CIF₃ was used to ensure sufficient material for the desired reaction since inevitably some fluorine is "lost" through formation of metal fluorides. These conditions have been successfully tested on a reaction scale of a few modes to about one mole of CIF.

Experimental

Commercial (The Matheson Co.) $ClF_3(98\%)$ and Cl_2 (99.5%) were used without further purification. Stainless steel (304), single ended, bigh pressure (1800 psi) cylinders (Hoke, Inc.) were used together with stainless steel (316) values (Hoke, Inc.) and bourdon tube gauges (The Matheson Co.). Clean, assumbled

121

A DESCRIPTION OF THE OWNER OWNER

F - 2

reactors were passivated with ClF_3 at ambient temperature before use. Measured amounts of ClF_3 and Cl_2 were condensed into the cylinder held at -196°C. After warming to ambient temperature, the loaded reactors were heated to the final reaction temperature in an oven or with heating tape. Because the temperaturepressure maximums employed were well below ratings for the equipment, small reactors could be placed completely (valve, gauge and all) and safely in an inexpensive drying oven set at the desired temperature. The heating cycle was conducted in an outdoor, pressure safe facility. On completion of the reaction, the contents of the cooled cylinders were separated by fractional condensation in a metal-Teflon vacuum line. A trap cooled to -142°C (methylcyclopentane slush) was used *o retain impurities such as Cl_2 , ClF_3 , and $FClO_2$, while the ClF was condensed in a trap held at -196°C. The purity of the ClF was determired by gas chromatography (7) and its infra-red spectrum.

**

Acknowledgement

The authors are grateful to the Office of Naval Research, Power Branch, for support of this work and to Dr. K. J. Christe for helpful discussion.

References

- L. Stein, "Halogen Chemistry", V. Gutmann, Ed., Vol. 1, Academic Press, New York, 1967, p. 134.
- (2) K. O. Christe and W. Sawodny, Inorg. Chem., 8, 212 (1969).
- (3) O. Ruff, E. Ascher, J. Fischer and F. Laass, Z. anorg. allg. Chem., <u>176</u>, 258 (1928).

- (4) H. Schmitz and H. J. Schumacher, Z. Naturf., 2A, 359 (1947).
- (5) M. T. Rogers, J. G. Malik and J. L. Speirs, J. Amer. Chem. Soc., <u>78</u>, 46(1956).
- (6) 0. D. Krogb and G. C. Pimentel, J. Chem. Phys., <u>56</u>, 969 (1972).
- (7) V. H. Dayan and B. C. Neale, "Advances in Chemistry Series", No. 54, 1966, p. 223.

۰. /

,

1

}

ł

1.00 M

and the second se

el est

こうかい うちてい うちがたい

R-9262

F-4

Contribution from Rocketdyne, a Division of Rockwell International, Canoga Park, California 91304

On A New Synthesis of NF4⁺ Salts and its Mechanistic Interpretation Involving A New and Exceptionally Powerful Oxidizing Species

by Karl O. Christe", Richard D. Wilson, and Arthur E. Axworthy

Received , 1973

Complex fluoro cations are generally prepared through fluorine abstraction from the parent molecule by means of a strong Lewis acid. This was first demonstrated in 1949 by Woolf and Emeleus¹ for BrF₃:

$$BrF_3 + SbF_5 \longrightarrow BrF_2^+ SbF_6^-$$
(1)

In the case of NF_4^+ salts, this approach was impossible since the parent molecule NF_5 is unknown and unlikely to exist owing to the validity of the octet rule for first row elements such as nitrogen and fluorine. The synthesis of NF_4^+ from NF_3 and F^+ is preempted by the fact that fluorine is the most electronegative element and, hence, F^+ should be extremely difficult. if not impossible, to prepare by chemical means. In 1965, Christe and co-workers discovered² that NF_4^+ salts can be prepared from NF_3 , F_2 , and a strong lewie acid in the presence of an activation energy source. Presently, three methods are known which are capable of producing NF_4^+ salts. These are (1) glow discharge at low temperature^{3,4}, (2) heating under high pressure^{5,6}, and (3) bremsstrahlung at $-196^{\circ 7}$. In this note, we describe a fourth method, i.e., uv photolysis, which is capable of producing NF_4^+ salts. R-9262

In addition to the great challenge which the preparation of NF_4^+ salts presented to the synthetic chemist, the NF_4^+ formation is of unusual interest from a mechanistic point of view. In view of the second and fourth methods of formation (see above), the originally suggested² mechanism cannot be considered satisfactory and a more plausible mechanism is offered. Based on the revised mechanism, we postulate a new intermediate of unusual oxidizing power comparable to that⁸ of PtF₆.

Experimental Section

Materials and Apparatus. The materials used in this work were manipulated in a well-parsivated (with ClF₃) 304 stainless steel vacuum line equipped with Teflon FEP U-traps and 316 stainless steel bellows-seal valves (Hoke Inc., 425 IF4Y). Pressures were measured with a Heise-Pourdon tube-type gauge (0 - 1500 mm + 0.1%). Nitrogen triflucride (Air Products), BF3 (The Matheson Company), and AsF5 (Ozark Mahoning Company) were purified by fractional condensation. Prior to its use, fluorine (Rocketdyne) was passed through a NaF trap to remove HF impurities. Because of their hygroscopic nature, materials were handled outside of the vacuum system in the dry nitrogen atmosphere of a glove box. The infrared spectra were recorded on a Perkin-Eimer Model 457 spectrophotometer as dry powders between AgCl windows in the form of pressed disks. The pressing operation was carried out using a Wilks mini pellet press. All reactions were carried out in a sapphire reaction tube brazed to a 304 stainless steel tube (Varian, Model CS-4250-3). This reactor had a volume of 23 ml. For the photolyses, unfiltered uv radiation from a Hanovia Model 616A high-pressure quartz mercury-vapor arc was used. In all reactions, NF_3 , F_0 , and the corresponding Lewis acid were used in 1:1:1 mole ration (2 mmol of each) resulting in an autogenous pressure of about 6.5 atmospheres.

> R-9262 G-2

1.28

<u>Preparation of NF₄⁺AaF₆⁻</u>. A mixture of NF₃, F₂, and AsF₅, when kept for three days at 25⁰ in a sapphire reactor in the dark, showed no detectable trace of solid formation. Upon exposing the sapphire section of the reactor to unfiltered uv radiation, clouds of suspended solid appeared within seconds inside the reactor resulting in an instant coating on the reactor walls. Continued exposure (for several days) of the reactor to uv radiation did not significantly increase the solid formation. After removal of the volatile reaction products, the weight gain of the reactor varied from 2 to 8 mg in several experiments. The solid residue was identified by vibrational spectroscopy^{9,10} as NF₄⁺AsF₆⁻ and in all cases did not show any detectable impurities.

<u>Preparation of NF₄⁺HF₄⁻</u>. The NF₃-F₂-BF₃ reaction was carried out in the same way as described for NF₃-F₂-AsF₅. The reactants behaved similarly and the reaction rate decreased sharply with increasing solid deposition on the inside walls of the reactor. The yield of NF₄⁺HF₄⁻ was between 1 and 2 mg. The infrared spectrum of the solid was in excellent agreement with that previously reported⁷ for NF₄⁺HF₄⁻.

Results and Discussion

When gaseous mixtures of NF_3 , F_2 , and the strong Lewis acids AsF_5 or HF_3 are exposed to unfiltered uv irradiation, the following rapid and reproducible reactions occurs

$$NF_3 + F_2 \sim A_0F_5 \longrightarrow NF_4^+ A_0F_6^-$$
(2)

$$NF_3 + F_2 + BF_3 - NF_4^+ BF_4^-$$
(3)

R-9262 G-3 **129** In all experiments, the yield of the NF_4^+ salt was less than one percent. This low yield, however, appears not to be caused by a low reaction rate, but by deposition of the solid product on the reactor walls, thus preventing further irradiation of the reactants. Significant improvement of the yields should be possible by continuous removal of the deposits from the wall or the use of a more sophisticated flow system. However, efforts in this direction were beyond the scope of the present study. In view of the relatively low intensity of the uv lamp used in our experiments and the small diemeter of the sayphire reactor, the observed high initial reaction rate strongly suggests a quantum yield larger than one, i.e., a chain reaction.

Taking all the presently available experimental data on the synthesis of NF_A^+ compounds into consideration, additional conclusions concerning a plaugible reaction mechanism can be reached. Based on the glow-discharge synthesis, we had originally invoked the intermediate formation of a F^{\dagger} or NF_3^{\dagger} cation². Whereas these cations might indeed be produced under glow-discharge conditions, the high ionization potentials of NF₃ (13.00 eV)¹¹, F₂ (15.69 eV)¹², or F \cdot (17.44 eV)¹³ preclude their formation in the uv photolysis, since the maximum energy available from the uv source does not exceed 7 eV. Even stronger evidence for an alternate mechanism stems from the thermal synthesis (method 2). Heating to about 120° cannot provide the activation energies required for the formation of NF3⁺, F9⁺, or F^+ . However, it has been found for the $Cl_2 - F_2$ dark reaction 14, 15 that a temperature of about 120° is sufficient to dissociate some of the F_2 into F. radicals $[D^{0}(F_{2})$ is only 37.5 kcal mol⁻¹ = 1.62 eV]¹⁶. Inspite of the very low F. atom concentrations expected at 120° , a chain reaction may result in relatively fast reaction rates. Based on these considerations and the observed fast init.al reaction rate in the NF_2 -F₂-AsF₅ photolysis, it seems safe to postulate F_2 dissociation as the first reaction step in the NF $\frac{+}{4}$ synthesis: R-9262

$$\mathbf{F}_2 \longrightarrow 2 \mathbf{F}$$
 (4)

The next step could involve the reaction of $F \cdot$ with either NF_3 or $AsF_5 \cdot Since$ the hypothetical $NF_4 \cdot Containing$ only first row elements would violate the octet rule, its formation is very unlikely. Therefore, the second step should be:

$$F \cdot + AsF_{B}$$
 (5)

This step appears plausible since AsF_5 generally acts as an excellent acceptor molecule and charges from a trigonal bipyramidal to an energetically more favorable octahedral AsF_6 configuration. The AsF_6 radical is pseudo-isoelectronic with SF_6^+ and, hence, a rough estimate for the exothermicity of the reaction

and the substance of the first of the substance of the

can be obtained from the known¹⁷ photoionization threshold of SP_6 (15.29 eV). This high value strongly suggests that the AsF_6 radical is the only likely intermediate capable of exidizing NF₃, which has a first ionization potential of 12.00 eV.¹¹ Consequently, the third reaction step in the NF₄⁺AsF₆⁻ formation should be:

$$AsF_6 \cdot + NF_3 \longrightarrow NF_3^+ AsF_6^-$$
 (6)

In order to maintain a chain reaction, the $NF_3^+A_8F_6^-$ could react with F_2 , according to:

$$NF_3^+ AsF_6^- + F_2 \longrightarrow NF_4^+ AsF_6^- + F.$$
 (7)

131

R-9262 G-5 A crude estimate of the bond energy changes involved in this step can again be obtained by comparison between the isoelectromic species:

 $NF_2^+ + F \cdot - NF_4^+$

and

$$CF_3 \cdot + F \cdot - Cr_4$$

Since the CF₃-F bond energy $(139.4 \text{ kcal mol}^{-1})^{18}$ is considerably higher than that of the F-F bond $(37.5 \text{ kcal mol}^{-1})^{16}$, reaction (7) should also be exothermic. Chain termination steps could occur by combination of any two of the radicals involved in this mechanism. The overall sequence, equations (4), (5), (6), and (7) appear to be a very plausible mechanism requiring only a low activation energy for (4) in excellent agreement with the experimental observations.

Solomon and co-workers have studied¹⁹ the kinetics of the thermal decomposition of NF₄⁺AsF₆⁻ to NF₃, F₂, and AsF₅ in the temperature range 175 to 222° at low pressure. Since Tolberg et al have shown⁵ that $NF_4^+AsF_6^-$ can be formed in this temperature range from NF₃, F₂, and AsF₅ under high pressure, reversibility of these reactions is indicated. Consequently, the $NF_A^+ AsF_B^-$ formation mechanism should allow us also to better understand the thermal decomposition. Solomon et al. observed¹⁹ that both NF₃ and AsF₅ inhibit the decomposition reaction and suggest that the decomposition mechanism involves the reversible dissociation of the solid to NF_{5} and AaF_{5} , followed by the irreversible decomposition of NF_{5} as the rate determining step. However, the observed fractional-order kinetics could not be explained by an elementary reaction mechanism. The mechanism, suggested 19 by Solomon and co-workers has several shortcomings. In our opinion, the most serious ones are (1) NF_5 violates the octet rule which is strictly valid for first row elements. Promotion of nitrogen electrons to the 3s level would result R-9262 132

G-6

in a prohibitively large activation energy for the NF₅ formation; (2) the NF₄⁺AsF₆⁻ formation and decomposition appear to be reversible; and (3) the inhibition of the NF₄⁺AsF₆⁻ decomposition by NF₃ addition suggests that the steps involving NF₃ cannot be irreversible. For these reasons and by analogy with the mechanism discussed above for the NF₄⁺AsF₆⁻ formation, a more plausible decomposition mechanism would be:

$$NF_4^{\dagger}AsF_6^{-} = NF_3^{\dagger}AsF_6^{-} + F \cdot$$
(10)

$$NF_3^{\dagger}AsF_6^{-} \checkmark NF_3^{\dagger} + AsF_6^{-}$$
(11)

$$AsF_6 \cdot \blacksquare F \cdot + AsF_5$$
 (12)

$$2 \mathbf{F} \cdot - \mathbf{F}_2 \tag{13}$$

Because the steady-state F atom concentration would be determined by a number of reactions, including the reverse of reaction (7), a very complex rate expression might be expected. The recombination of F atoms could occur either homogenously via a three-body collision or heterogenously. The inhibiting effects of NF₃ and AsF₅ could result from the reduction of the steady-state F atom concentration caused by the shifting of the equilibria (10), (11), and (12) to the left.

The postulate of an AsF_6 radical intermediate which can act as a powerful oxidizer, could also explain the following two previously reported²⁰⁻²² and highly unusual reactions.

$$2 0_{2} + F_{2} + 2 \operatorname{AsF}_{5} - \frac{130^{\circ}}{\operatorname{or} \operatorname{uv}} \ge 0_{2}^{+} \operatorname{AsF}_{6}^{-}$$
(14)

end

 $\langle \rangle$

$$X_{f} + F_{2} + A_{a}F_{5} \xrightarrow{uv} X_{c}F^{\dagger}A_{a}F_{6}^{\dagger}$$
(15)
R-9262
G-7
1.3.3

Both reactions proceed again under very mild conditions, resulting in the oxidation of two species, 0_2 and Xe, with very high first ionization potentials of 12.06 and 12.13 eV, respectively. Reaction: (14) and (15) are directly comparable to the following known^{8,23,24} PtF_A reactions:

$$D_2 + PtF_6 \longrightarrow O_2^+ PtF_6^-$$
 (16)

and

This analogy suggests that the oxidizing power of a Lewis acid-F· radical, such as AsF_6 , is comparable to that of PtF_6 , which is one of the strongest oxidizing fluorinators⁸ known. The applicability of the Lewis acid-activated F_2 system, however, sceme to be limited to starting materials which themselves do not form stable adducts with the Lewis acid. The given examples demonstrate that the oxidizing power of fluorine can be promoted significantly by the simultaneous use of a strong Lewis acid and an energy source promoting dissociation of F_2 into F· atoms. Consequently, many reactions previously requiring the use of the prohibitively expensive PtF_6 may now be carried out at a reasonable expense by the use of Lewis acid-promoted activated fluorine.

<u>Acknowledgment</u>. We wish to express our gratitude to Drs. D. Filipovich and C. J. Schack for stimulating discussions and to the Office of Naval Research, Power Branch, for financial support.

References

1.	A. A. Woolf and H. J. Emeleus, J. Chem. Soc., 2865 (1949).
2.	K. O. Christe, J. P. Guertin, and A. E. Pavlath, U. S. Patent 3,503,719 (1970).
3.	K. O. Christe, J. P. Guertin, and A. E. Pavlath, Inorg. Nucl. Chem. Lett., 2, 83 (1966).
4.	J. P. Guertin, K. O. Christe, and A. E. Pavlath, Inorg. Chem., 5, 1921 (1966).
5.	W. E. Tolberg, R. T. Rewick, R. S. Stringham, and M. E. Hill, Inorg. Nucl. Chem. Lett., <u>2</u> , 79 (1966).
6.	W. E. Tolberg, R. T. Rewick, R. S. Stringham, and M. E. Hill, Inorg. Chem., <u>6</u> , 1156 (1967).
7.	C. T. Goetschel, V. A. Campanile, R. M. Curtis, K. R. Loos, C. D. Wagner, and J. N. Wilson, Inorg. Chem., <u>11</u> , 1696 (1972).
8.	N. Bartlett, Angew. Chem., Int. Ed. Engl., 7, 433 (1968).
9.	K. O. Christe, J. P. Guertin, A. E. Pavlath, and W. Sawodny, Inorg. Chem., <u>6</u> , 533 (1987).
10	K. O. Christe and D. Pilipovich, Inorg. Chem., <u>10</u> , 2803 (1971).
11	V. H. Dibeler and J. A. Walker, Inorg. Chem., 8, 1728 (1969).
12.	V. H. Dibeler, J. A. Walker, and K. E. McCulloh, J. Chem. Phys., <u>51</u> , 4230 (1969).
13	R. E. Huffman, J. C. Larrabee, and Y. Tanaka, J. Chem. Phys., <u>47</u> , 856 (1967).
14	A. E. Axworthy and R. D. Wilson, unpublished results.
15.	E. A. Fletcher and B. E. Dahneke, J. Americ. Chem. Soc., <u>91</u> , 1603 (1969).
16	J. J. DeCorpo, R. P. Steiger, J. L. Franklin, and J. L. Margrave, J. Chem. Phys., <u>53</u> , 936 (1970).
17	V. H. Dibeler and J. A. Walker, J. Chem. Phys., <u>44</u> , 4405 (1966).
18	T. C. Ehlert, J. Phys. Chem., <u>73</u> , 949 (1969).
19.	I. J. Solomon, J. N. Keith, and A. Snelson, J. Fluorine Chem., 2, 129 (1972).
20	J. B. Beal, Jr., C. Pupp, and W. E. White, Inorg. Chem., <u>8</u> , 828 (1969).
21.	J. Shamir and J. Binenboym, Inorg. Chim. Acta, 2, 37 (1968).
22	J. Binenboym, H. Selig, J. Shamir, J. Inorg. Nucl. Chem., 30, 2863 (1968).
23	N. Bartlett and D. H. Lohmann, Froc. Chem. Soc., 277 (1962).
24	N. Bartlett, Proc. Chem. Soc., 218 (1962).
	R-9262

0

ł,

G-9/G-10

135

1. al 194

ON THE REACTION OF C1_FASF6 WITH XENON

Karl O. Christe and Richard D. Wilson Rocketdyne, A Division of Rockwell International, Canoga Park, California 91304

In the presence of strong Lewis acids, XeF_2 can act as a powerful fluorinating oxidizer (1,2). For example, it can fluorinate Br_2 or I_2 (3) resulting in the formation of BrF_3 and IF_5 , respectively, as shown by the following idealized equation:

$$3 \text{ XeF}^{+}\text{BF}_{4}^{-} + \text{Br}_{2}^{-} \longrightarrow 2 \text{ BrF}_{2}^{+}\text{BF}_{4}^{-} + \text{BF}_{3}^{-} + 3 \text{ Xe}_{3}^{+}$$

followed by dissociation of the thermally unstable $BrF_2^+BF_4^-$ complex to BrF_3 and BF_3 (4). However, to our knowledge, no example has been reported for the reverse reaction of this type, i.e.. the oxidative fluorination of Xe by a halogen fluoride under mild conditions. Furthermore, previous studies have shown that both ClF (5) and ClF₃ (6) do not interact with Xe.

We have now found that the addition of a Lewis acid to ClF, which causes Cl_2F^+ formation (7), also increases the oxidizing power of ClF significantly so that it can fluorinate Xe according to:

followed by the known (8) reaction:

0

These results suggest that the oxidizing power of cations decreases in the following order, $\operatorname{Cl}_2 F^+ > \operatorname{XeF}^+$ or $\operatorname{Xe}_2 F_3^+ > \operatorname{BrF}_2^+$, and that the enhancement of the oxidizing power of an amphoteric molecule by the addition of a strong Lewis acid is not limited to XeF_2 but is probably quite general. Furthermore, the fact that ClF is pseudo-isoelectronic with XeF^+ but acts as a rather mild fluorinating oxidizer, indicates that a specific valence electron configuration is not the main cause for unusual oxidizing power. Rather, it appears that cation formation, i.e., a formal positive charge, is more important.

Experimental Section

Xenon, ClF, and AsF₅ (2.09 mmol each) were combined at -196⁰ in a passivated (with CIF_3) 25 ml sapphire-stainless steel reaction tube. The mixture was allowed to warm up to 25° and was kept at this temperature for one hour. The mixture was recooled to -196° and did not show the presence of any noncondensible material. After removal of the products volatile at 25° by pumping, a white solid residue (83 mg) was obtained. The volatile material was condensed back into the reactor at -196°. The contents were kept at -80° for 1.5 hours. The reactor was allowed to warm to 25° and the volatile products were separated by fractional condensation. They consisted of Xe (1.68 mmol) and a mixture of ClF, Cl₂, and AsF₅ (total of 3 mmol) which could not be separated completely by fractional condensation owing to partial formation of the known $Cl_{\sigma}F^{\dagger}AsF_{B}^{-}$ (7) and $Cl_3^+AsF_6^-$ (9) adducts. The white solid residue (157 mg) showed the vibrational spectrum and x-ray powler diffraction pattern characteristic (10) for monoclinic $Xe_2F_3AaF_6$. The latter probably formed from the original XeF AsF (as indicated by the material balance) by loss of AsF during sample preparation in the glove box (8). Previous reports (8,11) on the infrared R-9262

137

apectrum and x-ray powder pattern diverge. Our data are in excellent agreement with the data of Bartlett et al. (8), but disagree with those reported by Binenboym et al.(11).

Acknowledgment

This work was supported by the Office of Naval Research, Power Branch. The authors are indebted to Drs. D. Pilipovich and C. J. Schack for helpful discussions and to Dr. N. Bartlett for making his original infrared spectra and x-ray powder patterns of $Xe_2F_3^+AsF_6^-$ available to us.

References

(1) N. Bartlett and F. O. Sladky, Chem. Commun., 1046 (1968). (2) S. Ruediger and H. Meinert, Z. Chem., <u>12</u>, 393 (1972). (3) H. Meinert and U. Gross, Z. Chem., 8, 343 (1968). K. O. Christe, J. Phys. Chem., <u>73</u>, 2792 (1969). (4) (5) K. O. Christe, unpublished results. (6) N. Bartlett, Endeavour, <u>31</u>, 107 (1972). (7) K. O. Christe and W. Sawodny, Inorg. Chem., 8, 212 (1969). F. O. Sladky, P. A. Bulliner, and N. Bartlett, J. Chem. Soc. A, 2179 (1969). (8) (9) R. J. Gillespie and M. J. Morton, Inorg. Chem., 9, 811 (1970). F. O. Sladky, P. A. Bulliner, N. Bartlett, B. G. DeBoer, and A. Zalkin, (10) Chem. Commun., 1048 (1968). J. Binenboym, H. Selig, and J. Shamir, J. Inorg. Nucl. Chem., 30, 2863 (11)(1968).138 R-9262

H-3/H-4

Ū

{ }
Contribution from Rocketdyne, A Division of Rockwell International Canooa Park, California 91304, and the Institut für Anorganische Chemie, Universität, Ulm, Germany

On Halogen Pentafluoride Lewis Acid Adducts

Karl O. Christe* and Molfgang Sawodny

Received . . . 1973

Abstract

Vibrational spectra have been recorded for the known adducts, $C1F_5 \cdot AsF_5$, $C1F_5 \cdot xSbF_5$ (x=1.08 and 1.36), $BrF_5 \cdot 2SbF_5$, and $IF_5 \cdot SbF_5$. Furthermore, the new adduct, $BrF_5 \cdot AsF_5$, has been prepared. It is marginally stable at -95°. The spectra of the $C1F_5$ adducts are consistent with predominantly ionic structures containing the $C1F_4^+$ cation. The spectrum of $C1F_4^+$ is very similar to that of isoelectronic SF_4 thus indicating a pseudo-trigonal bipyramidal structure of symmetry C_{2v} . All fundamentals have been assigned and a valence force field has been computed for $C1F_4^+$. The vibrational spectra of $IF_5 \cdot SbF_5$ and $BrF_5 \cdot 2SbF_5$ are compatible with the predominantly ionic structures, $IF_4^+SbF_6^-$ and $BrF_4^+Sb_2F_{11}^-$, respectively, established by x-ray diffraction data. Tentative assignments are given for BrF_4^+ and IF_4^+ . The $^{19}Fnmr$ spectra of $BrF_5 \cdot 2SbF_5$ and $IF_5 \cdot SbF_5$ in HF solution are also reported.

> R-9262 I-1

Introduction

Halogen fluorides exhibit amphoteric character. By combining with strong Lewis acids, they can form cations containing one F^- ion less than the parent molecule. In recent years these salts have received much attention, and numerous papers dealing with their syntheses and structures have been published². Whereas the structures of the halogen mono-, tri-, and heptafluoride adducts are reasonably well established, much less is known about the complexes of the halogen pentafluorides.

Chlorine pentafluoride combines with Lewis acids such as AsF_5 , 3SbF_5 , 3,4 and $PtF_5^{5,6}$. Ionic structures containing the ClF_4^+ cation were suggested, 3,5 however, no supporting data were presented. Recently, the ${}^{19}F$ nmr spectrum of $ClF_5 \cdot 1.36$ SbF₅ in HF-AsF₅ solution was studied⁷. The observation of two resonances of equal intensity at low field is strong evidence for the presence of a ClF_4^+ cation having a pseudo-trigonal bipyramidal structure of symmetry $C_{2\nu}$, analogous to that found^{8,9} for isoelectronic SF₄.

Bromine pentafluoride forms with SbF_5 the adduct, $\text{BrF}_5 \cdot 2\text{SbF}_5^{-10}$. A brief report on the ¹⁹F nmr spectrum of the solid and melt has been published¹¹ indicating the presence of two different kinds of fluorine ligands, however, the observed area ratio was in poor agreement with that expected for the postulated¹¹ structure $\text{BrF}_4^+\text{Sb}_2\text{F}_{11}^-$. Recently, the crystal structure of $\text{BrF}_5 \cdot 2\text{SbF}_5$ has been determined establishing¹² its predominantly ionic nature. After completion of our study¹, Surles and coworkers have reported¹³ the Raman spectra of $\text{BrF}_4^+\text{Sb}_2\text{F}_{11}^-$ and of BrF_5 in SbF_5 solution and proposed a tentative assignment for BrF_4^+ . Solutions of BrF_5 in SbF_5 were shown¹³ to be highly conductive suggesting an ionic formulation for the $\text{BrF}_5 \cdot \text{SbF}_5$ adduct.

140

R-9262

Iodine pentafluoride forms 1:1 adducts __th ${\rm SbF}_5^{-14}$ and ${\rm PtF}_5^{-15}$. Recently, the crystal structure of ${\rm IF}_5 {}^{\circ}{\rm SbF}_5$ has independently been studied by x-ray diffraction by two groups^{16,17}. Unfortunately, ${\rm IF}_5 {}^{\circ}{\rm SbF}_5$ tends to form twin crystals¹⁷ thus rendering the structural determination somewhat difficult. Both groups suggest for ${\rm IF}_5 {}^{\circ}{\rm SbF}_5$ a mainly ionic structure containing a distorted trigonal bipyramidal ${\rm JF}_4^+$ cation of symmetry ${\rm C}_{2\nu}$ and an ${\rm SbF}_6^-$ anion distorted from symmetry ${\rm O}_h$. However, several interesting questions such as the difference in bond length between the axial and equatorial IF bonds remain unresolved. Shamir and Yaroslavsky have xeported¹⁸ in a preliminary communication the Raman spectra of a number of adducts including that of ${\rm IF}_5 {}^{\circ}{\rm SbF}_5$. However, their experimental data are incomplete and, therefore, their conclusions are little convincing.

and the second second

Experimental

<u>Apparatus</u> - The materials used in this work were manipulated either in a well passivated (with ClF_3) 304 stainless steel vacuum system equipped with Teflon FEP U-traps or in the dry nitrogen atmosphere of a glove box. Pressures were measured with a Heise Bourdon tube-type gage (0-1500 mm \pm 0.1%).

The Raman spectra of the solids were recorded with a Spex Model 1400 spectrophotometer. The green (5145 Å) or the blue (4880 Å) line of a Coherent Radiation Løb. Model 52 Ar ion laser and the red (6328 Å) line of a Spectra-Physics Model 125 He-Ne laser were used as exciting lines. Pyrexglass tubes (7-mm o.d.) with a hollow inside glass cone for variable sample thicknesses or clear Teflon FEP or Kel-F capillaries (1 to 4 mm i.d.) were used as sample containers. For the capillaries the transverse viewingtransverse excitation technique was applie⁴. The Raman spectra of the HF solutions were recorded on a Cary Model 83 spectrophotometer using the 4880 Å R-9262

I-3

exciting line. The samples were contained in Teflon FEP capillaries which were also used for the 19 F nmr spectra.

The infrared spectra of the solids were recorded on a Beckman Model IR-7 with CsI interchange and Perkin-Elmer Models 337 and 457 spectrophotometers in the range 4000-250 cm⁻¹ as dry powders between AgCl or AgBr plates or thin (2 mil) Teflon FEP sheet. Compensation for bands due to the Teflon FEP window material was achieved by placing an empty cell in the reference beam. Screw-cap metal cells with Teflon FEP gaskets were used as window holders. The low-temperature infrared spectrum of $ClF_5^{\circ}AsF_5$ was taken by preparing the complex on the internal window (cooled with liquid nitrogen) of an infrared cell. The body of this cell was made from Pyrex-glass, all windows being AgCl. Temperature cycling of the internal window in vacuo was essential to obtain spectra free of unreacted starting materials.

The ¹⁹F nmr spectra were recorded at 56.4 MHZ on a Varian high-resolution nmr spectrometer equipped with a variable-temperature probe. Chemical shifts were determined by the sideband technique with an accuracy of ± 1 ppm relative to the external standard CFC1_x.

<u>Preparation of the ClF₅ Adducts</u> - The purification of ClF₅, SbF₅, AsF₅, and HF and the preparation of the ClF₅·Lewis acid adducts has previously been described³. Since the melting point and the composition of the ClF₅·SbF₅ samples varied somewhat with the method of preparation, three different samples were investigated. Sample I had the composition ClF₅·1.08 SbF₅ and showed first signs of melting at 88°. It was prepared by adding an SbF₅⁻ HF solution to excess ClF₅. Sample II had the composition ClF₅·1.36 SbF₅ and

> R-9262 1-4

()

142

State State State State State State

was prepared by combining SbF₅ diraclved in HF with an excess of ClF₅ at -196° followed by warm up to 25° and removal of volatile material in vacuo. It showed first indications of partial melting at $\sim 35^{\circ}$. With increasing temperature, however, the tample solidified again showing the onset of a second melting at 88°. Sample III had the same composition as sample II and was prepared by treating a part of sample II with excess ClF₅ in a Monel cylinder at 50° r 48 hours with agitation. It melted at about 33° to form a milky, highly viscous liquid. The synthesis of the ClF₄⁺PtF₆⁻ mixture has previously been determined.

3 4

Ĩ.

1. 11 S. 18 S. 18 19 20

<u>Preparation of $BrF_5 \cdot 2 \ SbF_5$ </u> - Bromine pentafluoride (from The Matheson Company) was treated with F_2 at ambient temperature until the material was coloriess. It was purified by fractional condensation through two traps kept at -64 and - $^{05^{\circ}}$. The material retained in the -95[°] trap showed no detectable impurities in the infrared spectrum.

Bromino pentafluoride (112.3 mmole) was condensed at -196° into a passivated 100 ml Monel cylinder containing 68.8 mmole of SbF₅. The cylinder was heated for three days to 120° . Subsequently, unreacted BrF₅ (78.3 mmole) was removed in vacuo at ambient temperature leaving behind a white, crystallinic solid. Consequently, BrF₅ (34.0 mmole) had reacted with SbF₅ (68.8 mmole) in a mole ratio of 1:2.02 producing the complex BrF₅ •2 SbF₅.

<u>Preparation of $BrF_5 \cdot AsF_5$ </u> - Bromine pentafluoride (4.42 mmole) was combined with AsF_5 (13.15 mmole) at -196⁰ in a Teflon FEP U-trap. The mixture was allowed to warm up slowly until melting and reaction occurred. When the pressure inside the trap reached 1200 mm, the mixture was cooled again

> R-9262 I-5

to -196°. This procedure was repeated several times until the reaction was complete. Unreacted AsF_5 (8.77 mmole) was removed in vacuo at -95° leaving behind a white solid which melted at higher temperature to form an almost colorless liquid Prolonged pumping on the adduct at -95° resulted in the removal of additional small amounts of AsF_5 indicating that the adduct has a slight dissociation pressure even at -95°. The infrared spectrum of the gas obtained by exhaustive dissociation of the solid showed BrF_5 and AsF_5 in a 1:1 mole ratio. Based on the above given material balance, RrF_5 (4.42 mmole) had combined with AsF_5 (4.38 mmole) in a mole ratio of 1:0.99 producing the complex BrF_5 As F_5 .

<u>Preparation of $IF_5 \cdot SbF_5$ </u> - This product was prepared as previously described¹⁴. The material was a white, crystallinic solid. The material balance was as expected for a 1:1 adduct. Anal. Calcd. for $ISbF_{10}$: 1, 28.9; Sb, 27.8; F, 43.3. Found: I, 29.4; Sb, 27.4; F, 43.0.

Liquid IF₅ and gaseous AsF_5 when combined at 20° with stirring did not form a stable adduct.

Results and Discussion

Syntheses and Properties - The preparation of the ClF_5 adducts has previously been discussed³. In the BrF_5 -SbF₅ system w- could not isolate a 1.1 adduct even when employing a large excess of BrF_5 and temperatures above 100° in the synthesis. The $\text{BrF}_5 \cdot 2$ SbF₅ complex is a white crystallinic solid. It can be stored in Teflon FEP containers without appreciable decomposition. Exposure to small amounts of moisture or reactive surfaces produces a pink to deep red color due to the formation of Br_2^+ salts². Single crystals of R-9262

141

I-6

 $BrF_5 \cdot 2 \ SbF_5$ can be readily grown by slow sublimation at temperatures slightly higher than ambient. The results of a single crystal x-ray diffraction study on $BrF_5 \cdot 2 \ SbF_5$ have been reported¹² elsewhere. With AsF_5 , however, BrF_5 does form a 1:1 adduct, but its thermal instability preempted its use for structural studies. Upon melting, the complex forms a colorless liquid. If impure BrF_5 is used in the synthesis, the color of the liquid is an intense burgundy red indicating the presence of Br_2^+ ions². The fact that AsF_5 and SbF_5 combine with BrF_5 in different mole ratios, might be explained by the pronounced tendency of SbF_5 to form polymeric anions such as $Sb_2F_{11}^-$.

0

<u>____</u>

Our data obtained for $IF_5 \cdot SbF_5$ confirm Woolf's reports¹⁴. Single crystals of $IF_5 \cdot SbF_5$ were grown by slow sublimation at 40°. A single crystal x-ray diffraction study in our laboratory was discontinued when we learned about the work¹⁵ of Baird and Giles. The fact that AsF₅, a weaker Lewis acid than SbF₅, does not form a stable adduct with IF₅ is not surprising. As previously pointed out¹⁹, halogen pentafluorides possess an energetically favorable pseudo-octahedral structure and show little tendency to form the energeticall; less favorable pseudo-trigonal bipyramidal XF_4^+ cations.

 $\frac{19}{\text{F} \text{ nmr Spectra}}$ - The ¹⁹F nmr spectrum of $\text{ClF}_5 \cdot 1.36 \text{ SbF}_5$ in acidified HF has previously been discussed⁷. The observation of two signals of equal intensity at -256 and -274 ppm, respectively, relative to CFCl_3 below -60[°] is strong evidence for a ClF_4^+ cation having two nonequivalent sets of two fluorine ligands⁷.

R-9262 I-7

A solution of $1F_5 \circ SbF_5$ in HF exhibited between 20 and -80° only one signal at 133 ppm indicating rapid exchange between all species present. Acidification of the solvent with AsF_5 did not influence the exchange rates sufficiently to cause a separation into individual signals.

The fact that the inter- and intra-molecular exchange rates decrease in the order $IF_5 \cdot SbF_5 > BrF_5 \cdot 2 SbF_5 > C1F_5 \cdot SbF_5$ might be explained by the decreasing size and polarizability of the corresponding halogen pentafluorides.

146

R-9262

<u>Vibrational Spectra</u> - The vibrational spectra of the halogen pentafluoride-Lewis acid adducts are shown in Figures 1 to 10. The infrared spectrum of the $ClF_4^+PtF_6^-$ and $ClF_6^+PtF_6^-$ mixture has previously been given⁶ and, hence, is not shown here. The deserved frequencies are listed in Tables I and II.

Ð

Since the ionic nature and structure of the Lewis acid adducts of ClF_{5^2} BrF₅ and IF₅ has been established by x-ray diffraction, ^{12,16,17} nmr, and conductivity studies,¹³ the discussion of their vibrational spectra can be kept relatively short. The main objective of this study is to demonstrate that the vibrational spectra are consistent with the known ionic structures, to define the principal bands of the $HalF_4^+$ cations, and to examine the plausibility of the given assignments by comparison with the known spectra of isoelectronic chalcogen tetrafluorides and by force field computations.

<u>Chlorine Pentafluoride Adducts</u> - The infrared spectra of the $ClF_5 \cdot xSbF_5$ adducts are relatively insensitive to changes in the $ClF_5 \cdot SbF_5$ combining ratio owing to the relative broadness of the bands due to the Sb-F vibrations (see Figure 3). In the corresponding Raman spectra (Figures 1 and 2), however, slight changes in the composition of the adducts or in the procedures used for their preparation may cause significant changes. As expected, sample I, having the composition $ClF_5 \cdot 1.08$ SbF₅, shows the simplest spectrum. With increasing SbF₅ content and tempering features attributable to polymeric anions such as $Sb_2F_{11}^-$ become more pronounced. Similarly, the low-temperature infrared spectrum of the $ClF_5 \cdot AsF_5$ adduct (Figure 5) indicates the presence of the $As_2F_{11}^-$ anion^{21,22}. However, the $As_2F_{11}^-$ anion is much less stable

> R-9262 I-9

			Frequencies (cm ⁻¹ .) and Relat	ive Intensities			– Assignment	(point group)
8	(sa)	0	F ₅ •J&F5		CIF5•5>F5	[CIF PEF - h		
ra ^d	•2	IR	đ.	K I	Ra (solid;	Ra(HF sol.)	LIF6 FUF6	XF4 (C24)	ΥF ₆ (0 _h)
1744vu		1600vu, b	fr					v.+v_(E _)	
1281		1390vv	a	1335			1330%, hr	V_1+V_(B_)	720 + 671
8675	B65 (0+)	8275	830(2.5)	825s, sh	822(2.5)	825sh]		va (8,)1	
891 s 730vs	586 (9.0)	796vs	(01)662	803vs	802(10)	802(10)	790vs		
		720VS	711(0.3)					.1.9	
		-669	695 (0.3)	EV999	670(0.5-2.5)		670-620vs	•	V3(PIL)
			671 (8°0) }	04BVS	653(8.6)	. 656(8)]			
•		576m	579(4)	579	583(0.6-4)				$v_2(E_g)$
SS Bm	553(10)	568w	567 (6.5)		566(5.5)	574(5.5)		v2(A1)	
552ms	532(4.0)	536mv	238(2.5)	535 ms *	534 (5)*	537(1)*	545s, br*	v_(B_) and	V2(Eg)•
164 14	475(1.2)	51125**	519(1)	510sh	515(0.2)	S15 (0+)	500s	$v'_{3}(A_{1}^{2})$ and	WEFAS"
	414(0+)		473(1)	•	475(0.4)	475(0.4)		V5 (A2)	
	350(0+)	3955	399(0.6)	386m 280s			383s 271s	v ₉ (8_)	v.(F.)
			372(2.7)		279(1.4)	277(1)	1		
226w	223(1.0)		237(I.1)		235(0.5)	245sh	•	V. (A.)	37 . C

(a) were 25 (b) uncorrection mean intensities; (c) Assignments for an original are not assuming for supplicity octamentary although in most cases the actual symmetry is expected to be lower than 0, (d) Ref. 23; (e) Ref. 24; (f) The low-temperature infrared spectrum indicates the presence of substantial amounts of $A_2 f_1^{-1}$; (g) Th⁶ [isted frequencies are those obtained for ClF.º1.08 SbF₅; The relative intensities of the 670, S83, and to a lesser extend of the S34 cm⁻¹ Naran ban's varied, indicating different degrees of deviation of Sb₆ from symmetry $\Omega_{\rm h}$ or slight inhomogeneity of the simple; (h) Ref. 6.

... , ...

i

148 - 1

1

I-10

()

NOT THE PARTY OF THE PARTY OF

0

46-45
Ref.
from
taken
assignme nts
bue
values
Best
ê
.) Uncorrected Reman intensities;
. 3

.

4.3

8			BrF5•2 SbF5		Assignment, for XF ₄ in C _{2V}	TeF		IF, SbF		Assignment, for XF ₄ in C ₂₁
		 	pi	in HF			[os	— pi	in HF	
IĶ	ð	IR	M	8A		IR	IR	V	2	
723s 744ms 522ve	724×,sh 749vs,p	730sh 690vs	[736sh [723(10) 704(2.4)	680sh	V8(B2) V8(A2) V2(B2)+5b F (1)	682m 682m	728sh 719m 691sh	729(9) 720(1,6) 693(7,2)]	704(10) 1	v1 (A1) v8 (B2)
		655ys 645sh	650sh 651(6.9)	560(10) 600sh	6 1 2 2 1 2 2	587s	668sh 655ys	662(10)	663(8)	Sbf 6" + v 6 (B1)
	574s,p	6.06mw 568m	6)6(4.8) 555(3.3)	575(5) }	v2 (A1)	· 572w	625 m, sh	625(3) 514(4)	(6)609	v. (A.)
		540mm 488ms	StSsh	540(1)	Sb ^F il Se-F-Sb		567w, sh 520we, sh	569(1.5) 521(1.3)	570sh	SbF
105m,	400v	419m	15 (0, 5)	426(2)	V7 (B1)	. 333w	388mm	335 (0.8)	•	v7(B1)
150m		369	359(0.5) 235(1))	363(5) 262 · 1	0682		3114	316(0.2)	.325 s h	v ^{3(B1)} v ^{9(B2)}
			254 (0.7) 250 (0.5)	235 (0+)	Sb2F11		28 8m 263 m	285(0+) 285(0+) 259(0,5)	280sh 250sh	SbF 6
SON	162w,p		219(0.2) \$5(1.5)		v ₄ (A ₁) Lattice modu			151(6.4) 72(1)	~ ~~	V4 (A1) lattice

TABLE II

V1 (A1 V2 (B1) V2 (A1) V2 (A1) V2 (A1) V2 (B1) V2 (B1) V2 (B1) V2 (A1) V3 (A1) V4 (A1) V4

R-9262 I-11

149

(c) Ref. 48

than Sb_2F_{11} resulting in the facile removal of the second AsF₅ molecule under the conditions³ used for the synthesis of the Raman sample (1:1 adduct).

The vibrational assignments for ClF_4^+ in point group C_{2v} (see Table I) were made by analogy with isoelectronic SF_4^{23-26} and by comparison with the known spectra of compounds containing AsF_6^{-} , 21,27-29 $As_2F_{11}^{-}$, 21,22 SbF_6^{-} and $Sb_{2}F_{11}$ - 20,28,30-33 anions. In solids, the deviation of the spectra of these anions from those expected for the isolated octahedral ions is very common. It can be caused by effects such as site symmetry lowering, slight distortion of the octahedrons owing to crystal packing and anion-cation interaction, and the tendency to form polymeric anions. Unfortunately, the splittings, frequencies, and relative intensities of these bands strongly vary from compound to compound. Therefore, reliable assignments for the cations require the recording of spectra of adducts containing different anions or of solution spectra which usually show the bands characteristic of the unperturbed ions. Contrary to the highly symmetric octahedral XF_6^- anions, the $\operatorname{ClF}_{a}^{+}$ cation of symmetry C_{2v} should be very little influenced by solid state effects because it possesses already its maximum number (3n-6=9) of modes.

;)

For the C1F₅ adducts sufficient experimental data (see Table I) are available to distinguish the anion from the cation bands. As can be seen, the spectrum of C1F₄⁺ is very similar to that of isoelectronic $SF_4^{23,24}$. This close resemblance is comparable to that found for the isoelectronic pairs, SF_2^{0-} C1F₂0⁺, ³⁴ $JF_2^{0}O_2^{-}$ C1F₂0⁺, ³⁵ SF_6^{-} C1F₆⁺, ³⁶ and SF_5^{-} -C1F₅, ³⁷ and, therefore, is not surprising. For C1F₄⁺, the assignment to the individual modes was

150

R-9262

I-12

made by analogy with SF_4 . For SF_4 , the assignment of Frey et al.²⁵ was used which was recently confirmed²⁶ by mean square amplitudes of vibration and force field computations.

In the spectra of the ClF_5 adducts, nine bands are found which might be attributed to ClF_4^+ . Of these, the intense infrared and Raman band at about 800 cm⁻¹ obviously represents the symmetric equatorial CIF_2 stretching mode v_1 . The moderately intense Raman and strong infrared band at about 825 cm⁻¹ then must be the antisymmetric equatorial stretch v_8 . The symmetric axial stretch, v_2 , falls within the range of the v_2 anion bands, but is clearly identified by the strong Raman band at 574 cm⁻¹ in the HF solution. The antisymmetric axial stretching mode, v_6 , should be of very high intensity in the infrared and of very low intensity in the Raman spectrum. By comparison with other pseudo-trigonal bipyramidal molecules such as CIF_{x}^{38} or $ClF_{3}O_{2}^{39}$ it should occur above 700 cm⁻¹. Since there is no additional yet unassigned strong infrared band above this frequency in all of the observed spectra, a coincidence with v_1 must be assumed. The assignment of v_4 and v_9 to the bands at 237 and 385 cm⁻¹, respectively, is clearcut and needs no further comment. This leaves us with three frequencies, 537, 515, and 475 cm⁻¹, for the assignment to v_7 , v_3 , and v_5 . Since the 475 cm⁻¹ band appears to be inactive in the infrared spectrum, we ascribe it to v_e which ideally should be forbidden in the infrared spectrum. Based on their relative Raman intensities, when compared to those of SF_4 , we prefer to assign v_3 and v_2 to 515 and 537 cm⁻¹, respectively. The assignments for v_3 , v_7 , and v_5 are somewhat tentative. However, a reassignment of these three deformational modes should owing to their similar frequencies, be of minor influence on the principal force constants.

R-9262 I-13

. 151

Force Constants - The method used for the computation of the ClF_4^+ force field has previously been described³⁹. The following geometry was assumed for ClF_4^+ , $\operatorname{r}(\operatorname{Cl-F}_{eq}) = 1.57$, $\operatorname{R}(\operatorname{Cl-F}_{ax}) = 1.66\text{\AA}$, $\alpha(\frac{F_{ax}}{\operatorname{ClF}_{eq}}) = 90$, $\beta(\frac{F_{eq}}{\operatorname{ClF}_{eq}}) = 97$, and $\gamma(\frac{F_{ax}}{\operatorname{ClF}_{ax}}) = 180^\circ$. The symmetry coordinates were identical to those previously given^{23,24} for isoelectronic SF₄, except for S₃ = $\Delta\beta$ and S₄ = 0.2765\Sigma\alpha_i = 0.8332\gamma which are different owing to $\gamma = 180^\circ$ in ClF_4^+ and were found numerically by a previously described⁴⁰ machine method.

A general valence force field for ClF_4^+ contains 17 symmetry force constants. Since only nine frequency values are available for their computation, a unique force field cannot be determined. Inspection of the G matrices of ClF_4^+ shows that in the A₁ block G₁₂, G₂₃, and G₂₄ are zero and, therefore, F_{12},F_{23} , and F_{24} can be neglected⁴¹.

The influence of the remaining off-diagonal F terms on the diagonal F values was determined by computing their values as a function of the off-diagonal F terms. The resulting halves of the force constant ellipses are shown in Figures 11 and 12 and represent the possible mathematical solutions of the force field. It has previously been shown⁴¹ that the most probable range for F_{xy} is limited by the extremal values F_{yy} and F_{xy} = minimum. Inspection of Figures 11 and 12 reveals that even with this constraint small variation of certain off-diagonal force constants can strongly influence the values of the diagonal force constants. Consequently, an uncertainty of about ± 0.5 mdyn/Å should be assumed for the stretching force constants F_{11} , F_{66} , and F_{88} . However, in spite of these relatively larger uncertainties, Figures 11 and 12

Ę

152

clearly show that the symmetry force constants involving the equatorial bonds (i.e. F_{11} and F_{88}) are significantly larger than those involving the axial bonds (i.e. F_{22} and F_{66}). The frequencies used for the force constant computations of ClF_4^+ are listed in Table III, together with our preferred force field, obtained by assuming plausible interaction terms. The fact that ClF_4^+ and isoelectronic SF_4 show similar force fields is not surprising in view of their similar frequencies and G matrices.

1 :

The significant difference in covalent bond strength between equatorial (5.1) and axial (3.3 mdyn/Å) bonds in ClF_4^+ is in excellent agreement with a generalized bonding scheme previously discussed⁴² for a large number of halogen fluorides. It suggests that the bonding in ClF_4^+ might be explained, as previously described for the related pseudo-trigonal bipyramidal species ClF_3 , $\operatorname{ClF}_30^{40}_7$, and $\operatorname{ClF}_30^{39}_2$, by the following approximation. The bonding of the three equatorial ligands (including the free electron pair on Cl as a ligand) is mainly due to a sp² hybrid, whereas the bonding of the two axial ClF bonds involves mainly one delocalized p-electron pair of the chlorine atom for the formation of a semi-ionic three-center four-electron ppo-bond⁴³⁻⁴⁵.

<u>Bromine Pentafluoride 2 SbF₅ Adduct</u> - The predominantly ionic nature of BrF₅ 2 Sb?₅ has previously been established¹² by a single crystal x-ray diffraction study. Owing to the large number of fundamentals expected for BrF₄ + Sb₂F₁₁ and to the inavailability of other salts containing the BrF₄ + cation only tentative assignments can be made for BrF₄ +. These are listed in Table II and are based on comparisons with those reported for isoelectronic SeF₄ + 46-48 and those of other salts containing the Sb₂F₁₁ anion^{20,28,31,33,49}. Our Raman spectrum¹ of solid BrF₄ + Sb₂F₁₁ - has in the

R-9262

I-15

TABLE III Observed Frequencies (cm⁻¹), Approximate Description of Modes,

of CIF And Computed Symmetry and Most Laportant Internal Force Constants^a

154

R-9262

I-16

(c) In addition to interaction constants which are not listed.

(b) Ref. 25

1

(a) Stretching constants in $mdyn/\hat{A}$, deformation constants in $mdyn \hat{A}/radian^2$, and stretch-bend interaction constants in mdyn/radian.

meantime been confirmed by Surles et al.¹³ and the proposed assignments^{1,13} agree for most of the fundamentals. Since the crystal structure of $BrF_4^+Sb_2F_{11}^$ is known¹² and the assignments for BrF_4^+ are tentative, no force constant computations were carried out for BrF_4^+ .

1

Ū

Iodine Pentafluoride·SbF₅ Adduct - Two independent single crystal x-ray diffraction studies^{16,17} have shown that the IF·SbF₅ has the predominantly ionic structure IF₄⁺SbF₆⁻, although the bond lengths and angles found by the two groups for IF₄⁺ differ somewhat. The observed vibrational spectrum of IF₅·SbF₅ (see Table II) is consistent with such a predominantly ionic structure. The bands were tentatively assigned by comparison with those of TeF₄⁴⁸, which is isoelectronic with IF₄⁺, and those reported for similar SbF₆⁻ salts^{20,30} containing an SbF₆⁻ anion distorted from symmetry O_h⁵⁰. Our Raman spectrum of IF₅·SbF₅ is in good agreement with that reported¹⁸ by Shamir and Yaroslavski. However, their interpretation suffers from the incorrect assumption of an ideal octahedral SbF₆⁻ anion. As for BrF₄⁺Sb₂F₁₁⁻, the tentative nature of the IF₄⁺ assignments does not warrant a force constant treatment.

In summary, all the experimental data, i.e., x-ray diffraction data, vibrational and ¹⁹F nmr spectra, and conductivity measurements, available for the halogen pentafluoride.Lewis acid adducts are consistent with predominantly ionic structures containing Hal F_4^+ cations. The structure of these cations can be derived from a pseudo-trigonal bipyramide with a free valence electron pair occupying one of the equatorial positions. Deviation from this structure increases, as expected, with increasing size and polarizability of the halogen central atom. This results in a decrease of

R-9262

I-17

the axial F-Hal-F angle and increasing F bridging from the ClF_5 to the IF_5 adducts. A comparison of the fundamentals assigned to the Hal F_4^+ cations with those of the isoelectronic chalcogen tetrafluoride series (see Table IV) shows consistent trends and satisfactory agreement.

<u>Acknowledgment</u>. We are indebted to Dr. E. C. Curtis for assistance in the force constant computations, to Drs. D. Pilipovich, C. J. Schack, and R. D. Wilson for their help, and to Dr. D. Lawson for the use of the Raman spectrometer. This work was supported by the Office of Naval Research.

and the second second second second

2 Jac + Williams

the second s

An and the second states

t

				TABLE IV			
C	ompari	son of the	Fundamental	Vibrations	of CIF	BrF4 ⁺ , and I	IF4
	With	Those of Is	soelectronic	SF4, SeF4,	and TeF4,	Respectively	r •
		C1F4+	BrF4 ⁺	1F4 ⁺	SF4	SeF ₄	TeF4
A ₁	v ₁	800	723	704	891	749	695
-	v ₂	571	606	609	553	574	572
	ν ₃	510	385	341	475	356	293
	v ₄	237	216	151	226	162	[151] ^a
A ₂	ν _s	475	**	4 • •	414		
B ₁	V ₆	795	704	655	730	622	587
-	v ₇	537	419	385	532	400	333
B ₂	vs	829	736	720	867	723	682
•	vg	385	369	316	353	250	[184.8] ^a

(a) Computed values

R-9262 I-19 157

n signal and signal a

ę

0

O

Į)

and the second second

REFERENCES

(1)	Presented in part at the 6th International Symposium on Fluorine
	Chemistry, Durhs, England, July 1971.
(2)	For a recent revi on interhalogen cations, for example, see
	R.J. Gillespie and M. J. Morten, Quart. Rev. 25, 533 (1971).
(3)	K. O. Christe and D. Pilipovich, Inorg. Chem., 8, 391 (1969).
(4)	D. V. Bantov, B. E. Dzevitskiy, Yu. S. Konstantinov, Yu. A. Ustynyuk,
	and V. F. Sukhoverkhov, Doklady Akad. Nauk SSSR, <u>186</u> , 851 (1968).
(5)	F. Q. Roberto and G. Mamantov, Inorg. Chim. Acta, 2, 317 (1968).
(6)	K. O. Christe, `norg. Chem., <u>12</u> , May (1973).
(7)	K. O. Christe, J F. Hon, and D. Pilipovich, Inorg. Chem. 12, 84 (1973).
(8)	W. M. Tolles and W. D. Gwinn, J. Chem. Phys., <u>36</u> , 1119 (1962).
(9)	K. Kimura and S. H. Bauer, J. Chem. Phys., 39, 3172 (1963).
(10)	M. Schmeisser and E. Pammer, Angew. Chem., <u>69</u> , 781 (1957).
(11)	H. Meinert and U. Gross, Z. Chem., <u>10</u> , 226 (1970).
(12)	M. D. Lind and K. O. Christe, Inorg. Chem., <u>11</u> , 608 (1972).
(13)	T. Surles, A. Perkins, L. A. Quarterman, H. H. Hyman, and A. I. Popov,
	J. Inorg. Nucl. Chem., <u>34</u> , 3561 (1972).
(14)	A. A. Woolf, J. Chem. Soc., 3678 (1950).
(15)	N. Bartlett and D. H. Lohman, J. Chem. Soc., 619 (1964).
(16)	H. W. Baird and H. F. Giles, (a) preliminary data abstracted in Acta
	Cryst., A25, S3, S115 (1969); (b) private communication, refinement of
	data of (a) resulted in the following geometry for IF ₄ ⁺ : r _{equat.} =1.78,
	$r_{ax.} = 1.87 \text{ Å}, \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$
(17)	N. Barilett, private communication. IF4": requat. =1.79, r =1.81 Å,
	≿ eq. 107, and ≮ ax 153°.
(18)	J. Shamir and I. Yaroslavsky, Israel J. Chem., 7, 495 (1969).
(1.)	K. O. Christe, C. J. Schack, and D. Pilipovich, Inorg. Chem., <u>11</u> , 2205
	(1972).
(20)	R. J. Gillespie and K. C. Moss, J. Chem. Soc., A, 1170 (1966) and
	M. Azeem, M. Brownstein, and R. J. Gillespie, Canad. J. Chem., <u>47</u> , 4159
	(1969).
(21)	K. O. Christe and W. Maya, Inorg. Chem., <u>8</u> , 1253 (1969).
(22)	P. A. W. Dean, R. J. Gillespie, R. Hulme, and D. A. Humphreys, J. Chem.
	Soc. A, 341 (1971).
(23)	I. W. Levin and C. V. Berney, J. Chem. Phys., <u>44</u> , 2557 (1966).
	158 R-9262
	I-20

()

- (24) K. O. Christe and W. Sawodny, J. Chem. Phys., <u>52</u>, 6320 (1970).
- (25) R. A. Frey, R. L. Redington, and A.L.K. Aljibury, J. Chem. Phys., <u>54</u>, 344 (1971).
- (26) K. C. Christe, W. Sawodny, and P. Pulay, J. Mol. Structure, in press.
- (27) R. J. Gillespie and M. J. Morton, Inorg. Chem. 9, 811 (1970).
- (28) K. O. Christe, R. D. Wilson, and W. Sawodny, J. Mol. Structure, <u>8</u>, 245 (1971).
- (29) K. O. Christe, C. J. Schuck, D. Pilipovich, and W. Sawodny, Inorg. Chem., 8, 2489 (1969).
- (30) K. O. Christe and C. J. Schack, Inorg. Chem., 9, 2296 (1970).
- (31) F.O. Sladky, P. A. Bulliner, and N. Bartlett, J. Chem. Soc. A, 2179 (1969)
- (32) R. J. Gillespie and M. J. Morton, Inorg. Chem., 9, 616 (1970).
- (33) D. E. McKee, C. J. Adams, and N. Bartlett, private communication.
- (34) K. O. Christe, E. C. Curtis, and C. J. Schack, Inorg. Chem., <u>11</u>, 2212 (1972).
- (35) K. O. Christe, R. D. Wilson, and E. C. Curtis, Inorg. Chem., <u>1</u>2 July (1973).
- (36) K. O. Christe, Inorg. Chem., 12, May (1973).

()

- (37) K. O. Christe, E. C. Curtis, C. J. Schack, and D. Pilipovich, Inorg. Chem., <u>31</u>, 1679 (1972).
- (38) H. Selig. H. H. Claassen, and J. H. Lolioway, J. Chem. Phys., <u>52</u>, 3517 (1970).
- (39) K. O. Christe and E. C. Curtis, Inorg. Chem. in press.
- (40) K. O. Christe and E. C. Curtis, Inorg. Chem., 11, 2196 (1972).
- (41) W. Sawodny, J. Mol. Specary, <u>30</u>, 56 (1969).
- (42) K. O. Christe, paper resented at the Fourth International Fluorine Symposium, Estes Park, Col., USA, July 1967.
- (43) G. C. Pimentel, J. Chem. Phys., 19, 446 (1951).
- (44) R. J. Hach and R. E. Rundle, J. Amer. Chem., Soc., 73, 4321 (1951).
- (45) R. E. Rundle, J. Amer. Chem. Soc., 85, 112 (1963).
- (46) K. Ramaswamy and S. Jayaraman, Ind. J. Pure Appl. Phys., <u>8</u>, 625 (1970).
- (47) L. E. Alexander and I. R. Beattie, J. Chem. Soc. Dalton, 1745 (1972).
- (48) C. J. Adams and A. J. Downs, Spectrochim. Acta, 28A, 1841 (1972).
- (49) A. M. Qureshi and F. Aubke, Lanad. J. Chem., 48, 3117 (1970).
- (50) A. J. Edwards and G. R. Jones, J. Chem. Soc., A, 1457 (1969).

R-9262

1-21

Diagram Captions

. Bernes hand an State . Rechtate bie

A MARKAN CANADA AND A MARKAN AND

जन्म सम्बद्धाः स्ट**भ्राम् क**रणसम्

- Figure 1 Raman spectrum of solid CIF₅•1.08 SbF₅ (Sample I) contained in Teflon FEP capillary. Exciting line was 5145 Å. C indicates spectral slit width.
- Figure 2 Raman spectrum of solid CIF₅°1.36 SbF₅. Traces A and B show Samples II and III, respectively. Kel-F capillaries were used as containers with 5145 Å excitation.
- Figure 3 Infrared spectra of solid ClF₅•xSbF₅ as dry powder between AgBr plates. Trace A, Sample II; trace B, Sample I; trace C, AgBr window background.
- Figure 4 Raman spectrum of solid ClF₅•AsF₅ contained in Teflon FEP capillary. Exciting was line 5145 Å. Bands marked by an asterisk are due to the Teflon tube.
- Figure 5 Low-temperature infrared spectrum of solid ClF₅·AsF₅. Window material AgCl.
- Figure 6 Raman spectrum of solid BrF₅*2 SbF₅ contained in glass tube with hollow inside glass cone. Exciting was line 5145 Å using the axial viewing-transverse excitation technique.
- Figure 7 Infrared spectrum of solid BrF_5 2 SbF_5 as dry powier between AgC1 plates.

R-9262

- Figure 8 Raman spectrum of solid $IF_5 \cdot SbF_5$ contained in glass tube with hollow inside glass cone using 5145 Å excitation.
- Figure 9 Infrared spectrum of solid IF₅•SbF₅ as dry powder between AgBr plates.
- Figure 10 Raman spectra of HF solutions of $IF_5 \cdot SbF_5$ (trace A), $BrF_5 \cdot 2 \ SbF_5$ (trace B), $CIF_5 \cdot 1.00 \ SbF_5$ (trace C), $CIF_2^+ SbF_6^-$ (trace D, the numbers indicate v_1 , v_2 , and v_5 of octahedral SbF_6^-) in Teflon-FEP capillaries using 4880 Å excitation. Trace E shows the spectrum of an empty capillary; Teflon bands are marked by and asterisk. F indicates spectral slit width .
- Figure 11 Force Constant Ellipses for ClF_4^+ . The solid and broken curves represent the solutions for F_{11} , F_{33} , and F_{44} as a function of F_{24} and for F_{11} and F_{33} as a function of F_{13} , respectively. Dimensions are in mdyn/Å.

()

Figure 12 - Force Constant Ellipses for $\operatorname{ClF_4}^+$. The solid, broken, and dotted curves represent the solutions for $\operatorname{F_{11}}$, $\operatorname{F_{33}}$, and $\operatorname{F_{44}}$ as a function of $\operatorname{F_{14}}$, for $\operatorname{F_{66}}$ and $\operatorname{F_{77}}$ as a function of $\operatorname{F_{67}}$, and for $\operatorname{F_{88}}$ and $\operatorname{F_{99}}$ as a function of $\operatorname{F_{89}}$, respectively.

> R-9262 I-23

ちょうないないがないますとうないとなったいない しんちょうかんかいがくないないとう しゃかいいちょうかん

and the second second

このであるとないというないではないないないないないないないないないないないのです。

Figure 3

Ĵ

 $(\overline{\ })$

Ϋ́Ę,

. (_______)

C

en station and the

ţ

-

A State State

and the state of the

Ņ

VIBRATIONAL ASSIGNMENT OF SFA

0

Kerl O. Christe Rocketdyne, A Division of Rockwell International Canoga Park, California 91304

Wolfgang Sawodny Abteilung Für Anorganische Chemie, Universität Ulm, Germany

Peter Pulay Hungarian Academy of Sciences, Budapest, Hungary (Received1973)

In a previous paper¹ we reported the Raman spectrum of gaseous SF₄. The Raman data and a reinterpretation of the infrared band contours suggested the need of revising all assignments for the deformational modes except for v_7 (B₁). For the four stretching modes, the previous assignment ²⁻⁴ was adopted and force constants and mean amplitudes of vibration were computed.¹ In a recent paper,⁵ Frey, Redington, and Aljibury proposed a reversed assignmont for the two antisymmetric stretching modes, $v_6(B_1)$ and $v_8(B_2)$, based on a comparison with the spectra of the structurally related molecules, BrF₃ and ClF₃. More recently, Levin⁶ proposed a reassignment of the deformational modes on the basis of Raman and infrared spectra of solid SF₄ and supported his assignment with a CNDO/2 calculation of the infrared intensities. One of Levin's main arguments for revising the assignment of the deformational modes was the observation of two bands at 245 and 205 cm⁻¹, respectively, in the Raman spectrum of solid SF₄. In a subsequent paper⁷, however, Berney showed that the 205 cm⁻¹ Raman bend is due to residual α -SF₄.

Another unsettled question involves the frequencies of the axial and equatorial SF₂ scissoring modes in species A_1 . It was shown⁸⁻¹² for related trigonal bipyramidal molecules such as PF₅ that these two deformational modes are highly mixed,¹¹ and that a better agreement with the observed mean square amplitudes of vibration can be achieved¹⁰ by assigning the lower frequency to

> R-9262 J-1
the equatorial deformation. This frequency sequence was also proposed by Levin⁶ for SF₄, contrary to our assignment¹ and that of Frey et al.⁵ which are more consistent with the fact that in SF₄ the equatorial bonds are considerably shorter and hence stronger than the equatorial ones.^{13,14} In view of these conflicting assignments, we have recomputed the force field and mean square amplitudes of vibration for SF₄ hoping that these data might allow us to distinguish between the different assignments ^{1,5,6} (see Table 1).

Since only nine frequency values are available for the computation of seventeen symmetry force constants, a General Valence Force Field cannot be computed. However, it is known that mean square amplitudes of vibration are only slightly influenced by moderate changes in the force field. This was confirmed for SF₄ by calculating mean amplitudes of vibration based on two force fields obtained by two different approximating methods. The first method used was the eigenvector method,^{15,16} and the second one was a diagonal MVFF for species A₁ and B₂ combined with the F₆₇ \equiv minimum solution for species δ_1 since no real values can be obtained for $F_{67} \equiv 0$. The results of these computations are given in Tables 2,3, and 4, and in Figure 1. The mean square amplitudes of vibration computed from the two force fields differed by less than 0.001Å, excer: for $<q^2 > 1/2 F_3 \dots F_4$ using the assignment of Levin⁶ which showed a differer *e* of 0.004Å. Therefore, only the data obtained by the eigenvector methor are listed in Tables 2,3, and 4, except for the preferred (see below) set II, for which the MVFF values are also given for comparison.

Table \sim gure 1 show that the mean square amplitudes of vibration are useful for electrominating between the different assignments of the deformational modes, but are of little help in finding the correct assignment for the two stretching modes $v_6(B_1)$ and $v_8(B_2)$. However, the following force field arguments fillow set II over set I: (1) Generally, the stretch-stretch interaction const t is relatively small whenever two bonds form an angle close to 90°. He set I, the equatorial interaction constant f_r ¹ exhibits a value of 1.21 m yn/Å which is unreasonably high for a F-S-F bond angle of 101°. The value of 0.49 mdyn/Å obtained for set II is much more plausible; (2) The value of the second stretch-stretch interaction constant, f_R ¹, shows

175

R-9262

only for set II a value similar to thuse observed for the related species, SF_5^{-17} , CIF_3^5 , and BrF_3^5 ; (3) The bond length of the equatorial S-F bonds in SF_4 (1.545[±] 0.003%)⁻¹⁴ is similar to that in $SF_6(1.56^{\pm} 0.02^{\rm A})^{18}$. Since bond lengths are related to the stretching force constants, one might expect f_r of SF_4 to approach the SF_6 value¹⁹ of 5.26 mdyne/Å. This is true only for set II; (4) The relatively large difference in the length of the equatorial and the axial bonds of $SF_4(0.10^{\rm A})^{14}$ favors set II which shows the larger difference betten f_r and f_R ; (5) Set II is in better agreement with the values found¹⁷ for $SF_5^{\rm T}$ if the general decrease in the force constant values owing to the formal negative charge is taken into account. Thus, the proposed⁵ reassignment of $v_6(B_1)$ and $v_8(B_2)$ results in a more satisfactory set of force constants for SF_4 , although it remains difficult to rationalize the observed infrared band contours.²,⁴

 \mathbf{T}

 $\left\{ \gamma \right\}$

The question as to which A, deformation mode should be assigned to the higher frequency value, can readily be decided based on the computed mean square amplitudes of vibration (see Table 4 and Figure 1). It should be noted that the $F_1 \dots F_3$ values reported in our previous paper¹ are incorrect due to a computational error. The revised values are listed as set Ia. It can be seen from Figure 1 that all b set: (i.e. δ sciss ax> δ sciss eq) result in unacceptably high values for $\langle q^2 \rangle^{1/2} F_3 \dots F_d$. Hence, δ sciss eq > δ sciss ax appears to be a better description of the two A_1 deformational modes of SF₄. It should be kept in mind, however, that both v_3 and v_1 are not highly characteristic. The potential energy distribution obtained for the diagonal force field shows that v_z is made up of 65% equatoial and 35% axial bending motion, and that v, contains significant contributions from both the axial and equatorial bending motions. This high degree of mixing is not surprising²⁰ since the G matrix elements G_{13} , G_{14} , and G_{34} of SF₄ show large numerical values. The two remaining modes in species A_1 are more characteristic: v_2 is made up entirely of axial stretching and v_4 represents 88% axial bending. As can be seen from Figure 1, the fit between observed¹³ and computed $<q^{2}>^{1/2}F_{3}...F_{4}$ and $F_{1}...F_{3}$ can be improved by increasing somewhat the mixing between v_3 and v_4 . However, this increase is too small to justify reversing the assignment of v_3 and v_4 . Additional support for $v_3 > v_4$ in the chalcogen tetrafluorides was recently obtained²¹ by Adams and Downs in a matrix isolation study of SeF_4 . The observed selenium isotopic shifts show that the higher frequency value belongs to v_x .

> R-9262 J-3

The high degree of mixing between the equatorial and axial bending motions for v_3 can be rationalized. Inspection of the normal coordinates of v_3 shows that this mode is essentially an umbrella type deformation, i.e. a symmetric combination of the equatorial and axial bending motions. The v_4 deformation might be considered as the corresponding antisymmetric combination of these motions. It should be the mode mainly involved in an intramolecular exchange process as suggested by Berry,²² although higher vibrational levels must be invoked since the normal coordinates show only little motion of the equatorial fluorines in the fundamental. The fact that the PED shows v_4 to be composed mainly of axial bending is due

 v_3 , symmetric combination of axial and equatorial bending v_4 , antisymmetric combination of axial and equatorial bending

()

to the fact that the sulfur moves in the same direction as the equatorial fluorines thus suppressing the equatorial scissoring motion.

Inspection of Figure 1 also reveals that the assignment proposed⁶ by Levin (set IIIb) results in unsatisfactory values for $\langle q^2 \rangle^{1/2} F_3 \dots F_4$ and $F_1 \dots F_3$ and, therefore, should be rejected. Furthermore, it can be seen that retaining Levin's frequencies⁶ for A_1 but reversing the assignment of v_3 and v_4 (set IIIa) results in too high a value for $\langle q^2 \rangle^{1/2} F_1 \dots F_3$. This discrepancy cannot be eliminated by increasing the mixing between v_3 and v_4 , since a small decrease in $\langle q^2 \rangle^{1/2} F_1 \dots F_3$ results in a large increase in $\langle q^2 \rangle^{1/2} F_3 \dots F_4$. A second strong argument against set IIIa was recently put forward⁷ by Berney. He showed that the splitting of the 223 cm⁻¹ Raman line in the spectrum of the solid is due to the α , β , and γ forms of SF₄ and not due to two different fundamentals, thus eliminating the basis of Levin's reassignment. Furthermore, the observed infrared band contours⁴ and Raman polarization measurements on gaseous SF₄¹ and SeF₄²³ favor set II over III.

R-9262 J-4 Since the MVFF obtained by the eigenvector method^{15,16} is not too different from the diagonal force field, numerical experiments were carried out by varying the off diagonal constants within meaningful limits. Whereas for set IIa, the fit between observed and computed $\langle q^2 \rangle^{1/2} F_1 \dots F_3$ could be improved, for set IIb the large discrepancy in $\langle q^2 \rangle^{1/2} F_3 \dots F_4$ could not be eliminated.

In summary, set IIa is the only assignment which can satisfy both the observed¹³ mean square amplitudes of vibration and basic force field arguments. Furthermore, the mean square amplitudes of vibration suggest that for SF₄ the higher frequency A₁ deformational mode v_3 should be assigned to the equatorial scissoring motion. However, a normal coordinate description of v_3 and v_4 as symmetric and antisymmetric combinations, respectively, of the equatorial and axial scissoring motions seems more appropriate.

ACKNOWLEDGMENT

0

(_)

We thank Drs. E. C. Curtis, D. Pilipovich and C. J. Schack, Rocketdyne, for many helpful discussions. This work was in part supported by the U. S. Office of Naval Research, Power Branch.

Assignment of Normal Modes of SF4

			Assignment	
Species	Approximate Description	I Christe and Sawodny ^a	II Frey et al. ^b	III Levin ^c
A ₁ ν ₁	v sym SF ₂ eq	892	89 2	892
ν ₂	∨ sym SF ₂ ax	558	558	558
v ₃	δ sciss SF ₂ eq	475	475	245 (233)
v ₄	δ sciss SF ₂ ax in plane	226	228	353
A ₂ ν ₅	SF ₂ twist	414	414	475
B ₁ ν ₆	∨ asym SF ₂ ax	867	730	728
ν ₇	SF ₂ rocking	532	532	533
^B 2 ^ν 8	v asym SF ₂ eq	730	867	867
~~v ₉	δ sciss SF_2 ax out of plane	353	353	206 (228)

a ref. 1

an all block in but

b ref. 5

c ref. 6

J-6

	Symmo	stry Force	Constants	a,b of SF4	Computed	from the	
	Assi ôSF2	gnments Li: eq >δSF ₂ ax	sted in Ta (A ₁) and f	ble 1 Assumi for Sets b of	ing for S SF ₂ eq <δS	ets a F ₂ ax (A ₁)	
	Ia	Ib	IIa	IIa(MVFF)	IIb	IIIa	IIIb
A ₁ F ₁₁	5.74	5.71	5.74	5.49	5.71	5.83	5.81
F ₂₂	3.48	3.48	3.48	3.48	3.48	3.48	3.48
F 33	1.97	0.57	1.97	2.10	0.57	1.10	0.63
F ₄₄	0.37	1.30	0.37	0,38	1.30	0.41	0.71
F ₁₂	0	0.01	0	0	0.01	0	0
F13	0.13	0.05	0.13	0	0,05	0.02	0.04
F ₁₄	0.05	0.16	0.05	0	0.16	0.04	0.05
F ₂₃	0.02	0.01	0.02	0	0.01	0.	0
F ₂₄	0.01	C.C2	0.01	0	0.02	0.01	0.01
F ₃₄	-0.04	-0.03	-0.04	0	-0.03	-0.07	-0.06
A ₂ F _{EE} (V	=200cm ⁻¹)		0.35				
2 55 1 (V	$=400 \mathrm{cm}^{-1}$)		1.40				
(v	$5 = 600 \text{ cm}^{-1}$		3.15				
B ₁ F ₆₆	3.66	3.66	2.65	2.35	2.65	2.65	2.65
F ₇₇	2.20	2.20	2.24	2.50	2.24	2.24	2.24
F ₆₇	0.45	0.45	0.60	0.54 [°]	0.60	0.60	0.60
$B_2 F_{gg}$	3.33	3.33	4.77	4,62	4.77	4.77	4.77
Fag	2.01	2,01	1.98	2.04	1.98	1.98	1.98
F ₈₉	0,20	0.20	0.17	0	0.17	0.17	0.17

- a) Stretching force constants in mdyn/Å, deformation constants in mdyn Å, and stretch-bend interaction constants in mdyn.
- b) Unless otherwise indicated the listed force fields were computed by the eigenvector method.
- c) Minimum value of F_{67} required for obtaining a real solution.

180

7

0

のないで、「ない」というという

0

Ł

Stretching Force Constants (in mdyn/Å) and Bond Lengths (in Å) of SF₄ Compared to Those of Related Molecules and Ions

			S	F ₄		SF, ^a	SF-	C1F. ^C
		Ia	IIa	IIa(MVFF)	IIIb	C	5	3
f _R	(AX)	3.57	3.07	2.92	3,07		2.06	2,70
f _R 1		-0.09	0.42	0.57	0.42		0.52	0,36
f _r	(eq)	4.54	5.25	5.05	5.33	5.26	4.12	4.19
fr'		1.21	0 .49	0.43	0.48			
R			1.646±	0.003 ^d				
r			1.545±	0.003 ^á	1.56±0	.02 ^e		
a	ref. 19	1.100 UNIT-3						
Ъ	ref. 17							
с	ref. 5							
d	ref. 14							

e ref. 18

181

R-9262 J-8 ()

()

ţ

Ō

The state of the second second second

0

No.

X-M

Computed and Observed¹³ Mean Square Amplitudes (in \mbox{A}) of Vibration of SF₄

			<q<sup>2>c٤</q<sup>	$alc^{1/2}$			<q<sup>2>obs^{1/2}</q<sup>
	Ia	IIa	IIa(MVFF)	IIb	IIIa	IIIb	
S-F ₁ (ax)	0.050	0.049	0.050	0.049	0.049	0.,049	0.047±0.005
S-F ₃ (eq)	9 .044	0.041	0.041	0.041	0.041	0.041	0.041±0.005
$F_1 \dots F_2$	0.061	0.061	0.061	0.061	0.061	0.061	0.059±0.01
F ₃ F ₄	0.063	0.063	0.064	0.094	0.076	0.091	0.068±0.01
$F_1 \dots F_3 \ (v_5 = 200 \text{ cm}^{-1})$	0.091	0.091	0.091	0.086	0.096	0.094	0.067±0.005
(=400)	0.074	0.073	0,074	0.068	0.080	0.077	
(=600)	0.070	0.069	0.070	0.064	0.076	0.073	
(=800)	0.068	0.068	0.068	0.063	0.075	0.072	

R-9262 J-9

Diagram Caption

Figure 1. Mean amplitudes of vibration $\binom{0}{A}$ of SF₄ for bonded and nonbonded distances. Rectangles represent experimental electron diffraction values ±esd according to ref. 8. Crosses, squares, diamonds, and circles represent amplitudes computed for the different assignments.

C

 $\langle \rangle$

R-9262 J-10

References

C

4

A. BURANA ANA ANA ANA

A SACA

P

ないでしたいであったいとうないできたいとうないできたとうとうないできたとうできた

0

20

of interpret of a size constantion frame

and the later of the second second

1.	K. O. Christe and W. Sawodny, J. Chem. Phys. <u>52</u> , 6320 (1970).
2.	R. E. Dodd, L. A. Woodward, and H. L. Roberts, Trans. Faraday Soc. 52, 1052 (1956).
3.	R. L. Redington and C. V. Berney, J. Chem. Phys. <u>43</u> , 2020 (1965).
4.	I. W. Levin and C. V. Berney, J. Chem. Phys. <u>44</u> , 2557 (1966).
5.	R. A. Frey, R. L. Redington, and A. L. Khidir Aljibury, J. Chem. Phys. <u>54</u> , 344 (1971)
6.	I. W. Levin, J. Chem. Phys., <u>55</u> , 5393 (1971)
7.	C. V. Berney, J. Mol. St ructure, <u>12</u> , 87 (1972).
8.	L. C. Hoskins and R. C. Lord, J. Chem. Phys. 46, 2402 (1967).
9.	P. Lockett, W. Fowler, and P. M. Wilt, J. Chem. Phys. 53, 452 (1970).
10.	L. S. Bartell, Inorg. Chem. 9, 1594 (1970).
11.	R. R. Holmes and J. A. Golen, Inorg. Chem. 9, 1596 (1970)., and R. R. Holmes, Acc. Chem. Res. 5, 296 (1972).
12.	R. R. Holmes and C. J. Hora, Jr., Inorg. Chem. 11, 2506 (1972).
13.	K. Kimura and S. H. Bauer, J. Chem. Phys. <u>39</u> , 3172 (1963).
14.	W. M. Tolles and W. D. Gwinn, J. Chem. Phys. 36, 1119 (1962).
15.	W. Sawodny, A. Fadini, and K. Ballein, Spectrochim. Acta 21, 995 (1965).
16.	H. J. Becher and R. Mattes, Spectrochim. Acta 23A, 2449 (1967).
17.	K. O. Christe, C. J. Schack, E. C. Curtis, and D. Pilipovich, Inorg. Chem. 11, 1679 (1972).
18.	H. Braune and S. Knoke, Z. Physik. Chem. <u>B21</u> , 297 (1933).
19.	A. Ruoff, J. Mol. Structure 4, 332 (1969).
20.	W. Sawodny, J. Mol. Structure 30, 56 (1969).
21.	C. J. Adams and A. J. Downs, Spectrochim. Acta, 28A, 1841 (1972).
22.	R. S. Berry, J. Chem. Phys. 32, 933 (1960).
27	L. E. Alexander and I. R. Beattie, J. Chem. Soc. Dalton 1745 (1972).

R-9262

184

And the little shift of a start of a

185

A CALMER AND

/

R-9262 J-12 (_)

)

[Reprinted from Inorganic Chemistry, 12, 620 (1973)] Copyright 1973 by the American Chemical Society and reprinted by permission of the copyright owner

Contribution from Rocketdyne, a Division of North American Rockweil Corporation, Canoga Park, California 91304, and the Abteilung fur Anorganische Chemie, Universitat, Ulm, Germany

Vibrational Spectrum and Force Constants of the SF₅O⁻ Anion

KARL O CHRISTE,* CARL J SCHACK, DONALD PILIPOVICH, E C. CURTIS, and WOLFGANG SAWODNY

Received August 30, 1972

The CsF-SF₄O adduct has been prepared and characterized by infrared and Raman spectroscopy. All eleven fundamental vibrations spectred for a pseudooctaliedral anion of symmetry $C_{4\nu}$ have been observed and are assigned. A modified valence force field has been computed for SF₄O^{*} and suggests an SO bond order of approximately 1.5.

Introduction

The existence of a CsF·SF4O adduct his been reported¹ in 1960 by Smith and Englehardt and in 1964 by Ruff and Lustig.² However, no details were given regarding its preparation or properties. In a subsequent paper Lustig and Ruff described³ the synthesis of Cs⁺SF₅O⁻ from CsF and SF4O in CH₃CN solution. The ionic formulation of this adduct was substantiated³ by its ¹⁹F nmr spectrum which showed a characteristic AB₄ pattern. The vibrational spectrum of this interesting compound is essentially unknown, since only four infrared absorptions the republished.³ In this paper we wish to report the complete vibrational spectrum of the SF₅O⁻ anion and the results from a force constant computation.

Experimental Section

Materials and Apparatus. Volatile materials used in this work were manipulated in a well-passivated (with ClF₁) stainless steel vacuum line equipped with Teflon FEP U traps and 316 stainless steel bellows-seal valves (Hoke, Inc., 425 1F4Y). Pressures were measured with a Heise Bourdon tube-type gauge (0-1500 mm ± 0.1%). Sulfur oxide tetrafluoride was prepared by the method² of Ruff and Lustig from SF₂O and F₂ and was purified by fractional condensation. Cesiom fluoride was fused in a platinum crucible and powdered in a drybox prior to use. The purity of the volatile starting materials was determined by measurements of their vapor pressures and infrared spectra. Solid products were handled in the dry nitrogen atmosp.cre of a glove box.

The infrared spectra were recorded on a Perkin-Elmer Model 457 spectrophotometer in the range 4000-250 cm⁻¹ with an accuracy of ± 2 cm⁻¹ for sharp bands. The spectra of gases were obtained using 304 stainless steel cells of 5-cm part length fitted with AgCl windows. Screw-cap metal cells with AgCl, refer to a spectra of solids as dry powders at ambient temperature. The quality of the infrared spectra could be somewhat improved by pressing two small single crystal plateiets of either AgCl or AgBr to a disk in a pellet press. The powdered sample was placed between the platelets before starting the pressing operation.

The Raman spectra were recorded with an accuracy of $x 2 \text{ cm}^{-1}$ using a Coherent Radiation Laboratories Model 52 Ar laser as a source of 1.3 W of exciting light at 5145 A. The scattered light was analyzed with a Spex Model 1400 double monochromator, a photomultiplier cooled to $\sim -25^\circ$, and a dc ammeter. Pyrex-glass tubes (7-mm o.d.) with a hollow inside glass cone for variable sample thicknesses or melting point capillaries were used as sample containera. For the conical tubes the axial viewing-transverse excitation (sechnique and for the capillaries the transverse viewing-transverse excitation techniques were used.

Preparation of CaSF,O. A preparativated (with CiF,) 30-ml 316 stainless steel cylinder was loaded with dry, powdered CaF (9.93 inmol). Purified SF,O (16.1 mmol) was added to the cylinder at

196°. After warming to ambient temperature overnight, the cylinder was heated at 90° for 5 days. Upon recooling to room temperature, all volatiles were removed in vacuo and trapped at

* Address correspondence to this author at Rocketdyne.

(i) W. C. Smith and V. A. Englehardt, J. Amer. Chem. Soc., 82, 3838 (1960).

(2) J. K. Ruff and M. Lustig, Inorg. Chem., 3, 1422 (1964).

(3) M. Lustig and I. K. Ruff. Inorg. Chem., 6, 2115 (1967).

--196°. The recovered SF₄O (7.32 mmol) indicated that 88.5% of the CsF had been converted to CsSF₅O. Confirmation of this was obtained by pyrolyzing a sample of the complex at approximately 250° for 10 min while pumping the evolved gas through a trap cooled to --196°. The evolved gas was identified as SF₄O and the amount found corresponded to an 82% conversion of CsF to CsSF₅O. A similar experiment expesing KF to SF₄O ar temperatures up to 125° for several days did not result in any complexing.

Results and Discussion

Synthesis and Properties. In the absence of a solvent, heating was required to achieve a significant conversion of CsF to CsSF₃O. The conversion obtained in the present study is comparable to that of 76% previously achieved³ by the use of CH₃CN as a solvent. The reversibility of the formation reaction was demonstrated by the pyrolysis experiment which resulted in SF₄O as the only volatile product. CsSF₅O is a white, crystalline solid and does not show any detectable dissociation pressure at ambient te_{1...p}erature; attempts to synthesize the analogous potassium salt failed under similar reaction conditions. This is not surprising since the stability of salts of this type generally decreases with decreasing cation size.

Vibrational Spectra. Figures 1 and 2 show the Raman and the infrared spectra, respectively, of CsSF₂O. The absorption between 300 and 250 cm⁻¹ in the infrared spectrum is due to the AgBr window material. The observed frequencies are listed in Table 1.

Analogy with isoelectronic $SF_5Cl^{4,3}$ and the typical AB₄ ¹⁹F nmr pattern previously reported³ for $SF_5\Omega^-$ suggests the following square-bipyramidal structure of symmetry $C_{4\nu}$ for $SF_5\Omega^-$

(4) L. H. Cross, H. L. Roberts, P. Goggin, and L. A. Woodward, Trans. Faraday Soc., 56, 945 (1960) (5) J. E. Griffiths, Spectracylin. Acta, Part A. 23, 2145 (1967).

۹.»

ないないないないであるというないというというよう

é

the second

....

The SF₃O⁻ Amon

		Obid freq. (cm ⁻¹ , and intens			Assignment in	Approximate description of
C	sf,0	S	SF,CM		IF,Ob	Cau	vibration
Ir	R	lı	R	ls	R	and all appropriately the state	
1154 vs	1153(1)	402 s	403 (10) p	927 s	928 (4) p	Α, ν,	ν(XY)
735 v	722 (0 2)	855 vs	833 (0 2) p	680 s	680 (10) p	· • • •	⊮(XF)
697 m	697 (10)	707 :	704 (3 0) p	640 w	640 (9+) p	<i>v</i> ,	$v_{\rm avm}(\rm XF_{\star})$
506 s	506 (1)	602 s	603 (0 2) p	360 \$	c	¥.	Seven(out-of-plane XI-)
	541 (3 3)		625 (07) dp		640(9+)p	B, v,	verm(out-of-phase XI)
	472 (0.2)			(275)d	•		6 mm (out-of-plane XF.)
	452 (0.9)		505 (0 2) dp		305 (1) dp	Β, ν,	Savm (in-plane XF.)
785 vs. br	780 (0 1) br	309 vs	927 (0 2) do	710 vx	700 (0+) sh	F P	Parm(XFa)
606 \$	607 (2 2)	287 vw	271 (0.6) do	369 \$	374 (1) dp	ν.	6(YXF.)
530 sh	530 (2)	379 mw	584 (0 1) dp	342 s	340 (4) dp	V.0	b(FXF,
325 mw		441 m	442 (0 8) dp	e	205 (0+)	, , , , , , , , , , , , , , , , , , ,	bas(in-plane XFs)

Table I.	Vibrational S	poctrum of CsSF.	O Compared to	Those of SF.	CI and IF.	0.
						_

* U.Y. Cross, M. L. Roberts, P. Goggin, and L. A. Woodward, Trans. Faraday Soc., 56, 945 (1969), J. E. Griffiths, Spectrochim. Acta. Part A 27, 2145 (1967), K. O. Christe, C. J. Schack, and E. C. Curtis, Inorg. Chem., 11, 583 (1972) - D. F. Smith and G. M. Begun, J. Chem. Ph x 43, 2001 (1971) " Band masked by v, and v10 d Not observed, value estimated from combination band " Below frequency range of spectrometer used

Figure 1. Raman spectrum of solid Cs*SF₁O . A indicates spectral slit width

Figure 2. Infrared spectrum of solid Cr*Sl ₃O⁺ as an AgBr disk

responding mode in SF₃O⁺ (1538 cm⁻¹)⁵ and SF₄O (1380 $(cm^{-1})^7$ shows the expected frequency decrease with an increasing formal negative charge. The SF₃O⁻ anion should have four additional stretching modes. Three of these belong to the approximately square-planar SF4 part and one involves the unique fluorine ligand. Of these, the totally symmetric SF₄ stretching mode of species A₁ should result in the most intense Raman line and is consequently assigned to the Rankn hand at 697 cm⁻¹. As expected for species A1, this Raman band has an infrared counterpart. The antisymmetric SF4 and the SF stretching modes in SF3Cl are both of very high intensity in the intrared and of very low intensity in the Raman spectrum418 and occur at fre-

(6) M. Brownstein, P. A. W. Dean, and R. J. Gillespie, Chem.

Commun., 9 (1970). (7) P. L. Goggin, H. L. Roberts, and L. A. Woodward, Trans Faraday Soc., 87, 1877 (1961).

187

quencies higher than that of $v_{sym}(SF_4)$ (A₁). Consequently, for SF₅O⁻ these two modes are assigned to the two weak Raman lir es at 780 and 722 cm⁻¹, respectively. Of these two, the 780-cm⁻¹ line is attributed to $v_{ac}(SF_4)$ owing to its width, lower Raman intensity, and larger frequency separation from $\nu_{sym}(SF_4)(A_1)$ Both Raman bands sho as expected a very intense infrared counterpart. Owing to the broadness of $v_{40}(SF_4)$, these two bands are poorly resolved in the infrared spectrum. The broadness of ν_{aa} was also observed for several other approximately squareplanar XFA groups, such as BrF4, 3 ClF4, 9 or those in SF5⁻ and SeF5^{-,10} and hence appears to be quite general. The remaining, yet unassigned, stretching mode, v_{sym}(outof-phase SF4) (B1), should be of medium Raman intensity, should ideally have no infrared counterpart, and should occur in the range 500-600 cm⁻¹. Since both the 506and 607-cm⁻¹ Raman lines show very intense infrared counterparts, only the 530- or the 541-cm⁻¹ line might belong to $v_{sym}(SF_4)$ (B₁). Based upon its higher Raman intensity and frequency, we prefer to assign 541 cm⁻¹ to $\nu_{sym}(SF_4)(B_1).$

There are six frequencies left for assignment to the six deformational modes. Of these, the O-SF4 wagging mode (E) should have the higher ' frequency since it involves a motion of the oxygen aton, which has partial double-hond character (see below). Furthermore, this mo ie should result in a relatively intense band in both the infrared and Raman spectra. Consequently, this mode is ascribed to 607 cm⁻¹. By comparison with $SF_5Cl_1^{4.5} SF_5^{-10}$ and SeF₃Cl¹¹ one would expect δ_{asym} (in-plane SF₄) (E) to have the lowest frequency of the SFs group deformational modes and to be infrared active. Consequently, this mode is assigned to the 325-cm⁻¹ infrared band. Of the remaining two yet unassigned infrared-active deformational modes, the δ_{sym} (out-of-plane SF4) or umbrelia mode (A1) should result in a very intense infrared band of relatively high frequency.^{4,5,10,11} Consequently, this mode is assigned to 506 cm⁻¹, leaving 530 cm⁻¹ for assignment to the F-SF4 wagging mode (E). The two remaining, yet unassigned in-

(8) K. O. Christe and C. J. Schack, Inorg. Chem., 9, 1852

- (1970). (9) K. O. Christe and W. Sawodny, Z. Anorg. Ally. Chem., 374. 306 (1970).
- (10) K. O. Christe, E. C. Curtis, C. J. Schack, and D. Pilipovich, Inorg. Chem., 11, 1679 (1973). (11) K. O. Christe, C. J. Schack, and E. C. Curtis, Inorg. Chem.,

11, 383 (1972).

Table II. Symmetry Force Constants of SF,O⁻⁴

Α,	v,	1154	$F_{11} = f_D$	6.46
	v,	733	$F_{ij} = f_{\rm P}$	3.75
	ν,	647	$F_{12} = f_r + 2f_{rr} + f_{rr}'$	5 4 3
	V.	٥٥6	$F_{aa} = \frac{1}{2} (f_{\beta} + 2f_{\beta\beta} + f_{\beta\beta} + f_{\gamma} + 2f_{\gamma\gamma} + f_{\gamma\gamma} - 2f_{\beta\gamma} - 4_{\beta\gamma} - 2f_{\beta\gamma}^{-1})$ $F_{aa} = f_{\alpha\alpha\beta}$	2.52
B,	v,	541	$F_{ss} = f_r + 2f_{rr} + f_{rr}'$	3 28
	ν.	472	$F_{ab} = \frac{1}{2}(f_{B} - 2f_{BB} + f_{BB} + f_{B} - 2f_{BB} + f_{BB}) - 2f_{BB} + 4f_{BB}) - 2f_{BB}$	3 19
в,	ມູ	452	$F_{22} = f_{0} = 2f_{022} + f_{022}$	1 46
E	ν.	785	$F_{aa} = f_{a} - f_{rr}$	2.84
•	ν.	607	$F_{ab} = f_{ab} - f_{ab} a^{\prime}$	2 2 2
	P.0	530	Fine = In - Inn	2 6 2
	ν,,	325	$F_{\text{run}} = f_B - f_{BB}$	1 21
			$F_{10} = f_{\mathbf{r}\gamma} - f_{\mathbf{r}\gamma}'$	0.40
			$F_{sso} = \sqrt{2}(f_{rg} - f_{rg})$	0.50
			$F_{n11} = f_{rg} - f_{rg}^{\prime \prime $	0 28

Comparison of the SF₅O⁻ assignment with that made for SF₅Cl^{4,5} (it should be noted that the assignment given in ref 7 for ν_{11} (E) is likely to be incorrect¹¹) shows satisfactory agreement (see Table I). The slight discrepancy in the relative Raman intensities observed for ν_{10} (E) between the two species might be ascribed to increased coupling between ν_9 and ν_{10} in SF₅O⁻ due to O being more similar in mass to F than Cl This might result in a symmetric and antisym inetric rather than in a characteristic F-SF₄ and OSF₄ wagging motion. This assumption appears to be supported by the spectrum¹³ of isoelectronic IF₅O (see Table I) for which the Raman intensity of ν_{10} is higher than that of ν_9 .

Of the four infrared bands previously reported³ for $CsSF_5O$ only the two weaker ones agree with our observations Furthermore, the previously suggested³ assignment of the SO stretching mode to a broad Land centered at 718 cm⁻¹ is obviously incorrect.

In summary, all 11 fundamentals of SF_5O^- have been observed and an assignment is offered The observed vibrational spectrum definitely supports the proposed structural model of symmetry C_{4v} .

For reconstants A normal-coordinate analysis was carried out to aid the spectral assignment. The kinetic and potential energy metrics were computed by a machine method,¹⁴ assuming the following geometry and coordinate definitions. $R_{SF}' = r_{SF} = 1.60$ Å, $D_{SO} = 1.47$ Å, α (FSF) = β (F'SF) = γ (OSF) = 90°, where F' refers to the axial (unique) fluorine ligand. The symmetry coordinates used were identical with those reported¹³ for 1F₅O. The bond lengths were estimated by comparison with similar molecules using the correlation¹⁵ noted by Gillespie and Robinson between stretching frequencies and bond lengths. The deformation coordinates were weighted by unit (1 Å) distance.

The force constants were calculated by trial and error with the aid of a time sharing computer to get exact agreement between the observed and computed frequencies using the simplest possible modified valence force field. Unique

(12) G. M. Begun, W. H. Fletcher, and D. F. Smith, J Chem. Phys., 42, 2236 (1965).
(13) D. F. Smith and G. M. Begun, J. Chem. Phys., 43, 2001

(13) D. F. Smith and G. M. Begun, J. Chem. Phys., 43, 2001 (1965).

(14) E. C. Curtis, Spectrochim. Acta, Part A, 27, 1989 (1971).
 (15) R. J. Gillespie and E. A. Robinson, Can. J. Chem., 41.
 2074 (1963).

force constants could not be computed since the general valence field has 36 constants and there are only 11 coserved frequencies. It was found, that for the A₁ block the values of F_{11} and F_{22} were strongly influenced by the value of the interaction constant F12 Since in isoelectronic SF5Cl¹⁰ and in IF_5O^{13} the equatorial and axial fluorine atoms do not significantly differ in their stretching force constants and since in SF₅O⁻ the equatorial SF stretching force constant f_r is about 3.6 mdyn/Å, we prefer for SF₅O a .orce field with $F_{22} = F_R \approx f_r$. Surprisingly, the interaction constant $F_{13} = 2f_{rD}$ had little influence on the frequencies of v_1 and v_3 Hence, its value might be comparable to hat of F_{12} although it is not required for obtaining a fit be seen the computed and observed frequencies. The computed symmetry force constants are listed in Table II The interaction constants not listed were assumed to be zero.

The following values were obtained for the more important internal force constants: $f_D = 6.46$, $f_R = 3.75$, $f_r = 3.60$, $f_{RD} = 0.66$, $f_{rr} = 0.54$, and $f_{rr}' = 0.75$ mdyn/Å. Sig. nificantly larger values of about 4.6 and 7.7 mJyn/Å are possible for f_R and f_D , respectively, by assuming a much smaller value for f_{RD} . However, the resulting large difference between f_R and f_r renders such a force field less likely. In spite of these uncertainties in the force constants, certain conclusions can be reached. The value of the SO stretching force constant f_D (6.5 mdyn/Å) is much lower than those of 10-12 mdyn/Å generally found for S=O double bonds.^{15,16} Its value is comparable to that found for the SO₄²⁻ anion (7.44 mdyn/Å¹⁶) indicating for SI'₅O⁻ a SO bond order of about 1.5. Furthermore, the values of the SF stretching force constants, f_R and f_r , are somewhat lower than those generally found for covalent SF bonds (4.5-6 mdyn/A¹⁶) indicating significant ionic contributions to the SF bonds in SF₃O⁻. These results are best interpreted in terms of the resonance structures

These structures together with orbital-following effects could also account for the unusually strong coupling between the SO and SF stretching modes suggested by the force constant computation.

Registry No. CsF SF4O, 37862-11-6.

R-9262

K-3/K-4

Acknowledgment. We are indebted to the Office of Naval Research, Power Branch, for financial support.

(16) W. Sawodny, Habilitationschrift, University of Stuttgart, Stuttgart, Germany, 1959

 $\mathbf{188}$

Christe, et al.

VIBRATIONAL SPECTRA OF TRIFLUOROACETATES

Karl O. Christe Rocketdyne, a Division of North American Rockwell Corporation Canoga Park, California 91304

> åro. -and

·* ,

Dieter Naumann Institut für Anorganische Chemie, Universität Dortmund Germany

Received 12 February 1973)

Abstract

Infrared and Raman spectra of $CsI(O_2CCF_3)_4$ and $Cs_3I(C_2CCF_3)_6$ are reported and compared to those of the free trifluoroacetate anion and covalent trifluoroacetyl compounds. The bonding of the trifluoroacetate group in $\left[I(O_2CCF_3)_4\right]^-$ is best interpreted as being covalent with strong ionic contributions. The vibrational spectrum of the free trifluoroacetate ion is reassigned.

 \bigcirc

Ū

Introduction

The trifluoroacetate group is frequently used as a ligand in coordination chemistry. In most cases, vibrational spectroscopy is used to postulate either ionic, covalent, monodentate, or bidentate structures. However, these postulates are frequently based exclusively on minor frequency changes or splittings and consequently are not convincing. The recent synthesis $\begin{bmatrix} 1 \end{bmatrix}$ of $Cs^+ \begin{bmatrix} I(0_2 CCF_3)_4 \end{bmatrix}^-$ presented an opportunity to study the vibrational spectrum of a trifluoroacetato ligand expected to be considerably more covalent than metal trifluorcacetates, but more polar than

R-9262

189

L-1

organic trifluoroacetyl compounds. The covalent character of the trifluoroacetato ligand in its iodine (III) compound is suggested by the nature of its analogous perchlorato $\begin{bmatrix} 2 \\ 2 \end{bmatrix}$ and nitrato $\begin{bmatrix} 3 \\ 3 \end{bmatrix}$ salts, $Cs^+ \begin{bmatrix} I(0Clo_3)_4 \end{bmatrix}^-$ and $\begin{bmatrix} N(CH_3)_4 \end{bmatrix}^+ \begin{bmatrix} I(NO_3)_4 \end{bmatrix}^-$, respectively. In addition, the skeleton of $I(0_2CCF_3)_4^-$ might be expected to have relatively high symmetry since the IF_4^- anion was recently shown $\begin{bmatrix} 4 \end{bmatrix}$ to be square planar. When comparing the assignments reported $\begin{bmatrix} 5 - 8 \\ 9 - 12 \end{bmatrix}$ for the free trifluoroacetate anion with those more recently reported $\begin{bmatrix} 9 - 12 \end{bmatrix}$ for a number of simple covalent trifluoroacetyl compounds, the need of revising the assignments for the free ion became obvious.

Experimental

The preparation of $CsI(O_2CCF_3)_4$ and $Cs_3I(O_2CCF_3)_6$ has previously been described $\begin{bmatrix} 1 \end{bmatrix}$. Silver trifluoroacetate was prepared from Ag_20 and CF_3C00H and vacuum dried at $100^{\circ}C$ $\begin{bmatrix} 7 \end{bmatrix}$, Sodium and cesium trifluoroacetate were purchased from Peninsular Chemical Research. The infrared spectra of the solids were recorded as dry powders in pressed AgBr disks on a Perkin Elmer Model 457 spectrophotometer in the range $4000 - 200 \text{ cm}^{-1}$. The instrument was calibrated by comparison with standard calibration points $\begin{bmatrix} 13 \end{bmatrix}$. The Raman spectra were recorded on a Cary Model 83 spectrophotometer using the 4880 Å line of an Ar ion laser and melting point glass capillaries as sample containers in the transverse excitation-transverse viewing mode.

Resultz and Discussion

Observed Spectra

F

190

ためたいとうなからうないのであったのであったないないであるというであるという

The vibrational spectra of solid $CsI(0_2CCF_3)_4$, $Cs_3I(0_2CCF_3)_6$, $Na0_2CCF_3$, and $Ag0_2CCF_3$, and of an aqueous solution of $Na0_2CCF_3$ are shown in Figures 1 and 2. The observed

R-9262

frequencies are listed in Tables I and II. The Raman spectrum of an aqueous AgO_2CCF_3 solution was also recorded. It closely resembled that of the sodium salt solution and, hence, is not listed. The spectra observed for the metal trifluoro-acetates are in good agreement with those previously reported $\begin{bmatrix} 5 & -8 \end{bmatrix}$.

Assignments for the Trifluoroacetate Ion

A comparison between the assignments reported $\begin{bmatrix} 5 & -8 \end{bmatrix}$ for $CF_3CO_2^{-}$ and those made for a corries of trifluoroacetyl compounds $\begin{bmatrix} 9 \end{bmatrix}$ revealed major discrepancies. Consequently, the vibrational spectrum of the free trifluoroacetate ion was reassigned based on the results of the thorough studies of Berney $\begin{bmatrix} 9 \end{bmatrix}$ on trifluoroacetyl compounds. For the $CF_3CO_2^{-}$ anion, a structure of symmetry C_s was assumed based on the known $\begin{bmatrix} 14 \end{bmatrix}$ structure of isoelectronic CF_3NO_2 . This structure

has only one symmetry element, i.e., a symmetry plane perpendicular to the CO_2 plane. Our revised assignments are summarized in Table I and were made by analogy with the well established assignments of CF_3COF [9]. The observed intensities and Raman polarization measurements are in good agreement with the predictions for symmetry C_8 . For species a', one of the Raman bands (598 cm⁻¹) appears to be depolarized. However, the a' bands can be either polarized or depolarized, and the corresponding Raman band in CF_3COF also showed a high depolarization ratio of 0.78 [9].

Nature of the Iodire-Trifluoroacetate Band in CsI(02CCF3)4

<u>Complete or Ionic?</u> The next and most difficult question deals with the nature of the trifluoroacetate ligand in $CsI(0_2CCF_3)_4$. A review of the literature on trifluoroacetate as a

R-9262 L-3

ligand reveals numerous studies. However, the conclusions reached are often conflicting. This is due to the fact that most studies deal with trifluoroacetato complexes of metals. In this type of adduct, the trifluoroacetate ligand is essentially a free trifluoroacetate ion [15], which is only weakly bonded to the metal atom. As a consequence, the vibrational frequencies of the trifluoroacetato group are very similar to those of the free trifluoroacetate ion and exhibit only small relative changes. Without detailed structural data, such as x-ray diffraction studies, it is difficult to correlate these small frequency shifts with structural parameters. For example, small changes in the 0-C-0 bond angle due to the size of the metal atom or crystal packing are difficult to separate from effects caused by mone or bidentate coordination.

ल्याने रहेगाने उन्हरू

In $CsI(0_2CCF_3)_4$, the bands due to the C-CF₃ part of the trifluoroacetate group are very characteristic and can readily be assigned (see Table II). Consequently, we will discuss mainly the vibrations associated with the $C0_2$ group and the $I0_4$ skeleton. To better understand the nature of the trifluoroacetate group, let us first consider the two extreme cases, i.e., the free trifluoroacetate anion and the highly covalent $CF_3C(0)OCE_3$ molecule [11]. Whereas the average of the two CO stretching frequencies (1500 cm⁻¹ for $CF_3C(0)OCH_3$ and 1559 cm⁻¹ for $CF_3(C0_2^{--})$ and, hence, the average CO bond order changes little, their frequency separation (586 cm⁻¹ for $CF_3C(0)OCH_3$ and 242 cm⁻¹ for $CF_3C0_2^{--}$) is very different. Furthermore, in the covalent trifluoroacetates of the type $X0_2CCF_3$ bands due to the XO vibrations will appear and show increasing frequencies with increasing covalent character of the X-O bond. Inspection of the $CsI(0_2CCF_3)_4$ spectrum reveals a CO stretching frequency separation of about 356 cm⁻¹ and the presence of skeletal IO stretching modes as high as 600 cm⁻¹. Since the frequencies of the latter almost approach the frequency range expected for covalent I-O single bonds, the bonding

192

R-9262

L-4

of the trifluoroacetate group in $Cal(0_2CCF_3)_4$ is best described as being covalent with strong ionic contributions. The ionic nature of an X-0_2CCF_3 bond might be expected to increase with decreasing electronegativity of the X atom. Experimental evidence for this trend has been found [16] for the trifluoroacetates of C, Si, Ge, and Sn. Within '~i* series, the C=0 stretching frequency decreases from 1852 cm^{-1} in $CF_3OC(0)CF_3$ [16] to 1750 cm^{-1} in $Sn(0_2CCF_3)_4$ [16], a frequency approaching those observed for $CsI(0_2CCF_3)_4$ (see Table II). Further proof for the highly covalent rature of the trifluoroacetates of the group IV elements consists of their high volatilities [16]. Unfortunately, only the carbonyl stretching frequencies have been reported for these trifluoroacetates [16], except for $(CH_3)_3Sn0_2CCF_3$ which in $CC1_4$ solution shows $C0_2$ stretching modes at 1720, 1660, and 1400 cm⁻¹ [17]. The fact that a decrease of the carbonyl frequency is generally accompanied by an increase of the C-0 frequency has also been recognized by Varetti and Aymonine [18].

<u>Monodentate or Bidentate?</u> The trifluoroacetate group could function as a monodentate or as a bidentate ligand. In connection with $CsI(O_2CCF_3)_4$, we will discuss mainly covalent ligands. Again, let us consider the two ideal cases, i.e., a monodentate and a symmetric bidentate triflucroacetate group. A covalent monodentate group should exhibit a spectrum similar to that observed for $CH_3OC(0)CF_3$ [11], i.e., a high C=O double bond and a low C-O stretching frequency. In addition, the trifluoroacetate group no longer possesses a symmetry plane. This removes the degeneracy between the FCF₂ and the antisymmetric CF_3 stretching modes in the 1100 - 1300 cm⁻¹ frequency range. For a covalent symmetric bidentate, trifluoroacetate group, the two CO bonds should be equivalent, causing a strong mixing of .heir stretching motions. Trastead of a C=O and a C-O stretch, one obtains a symmetric and an antisymmetric CO_2 stretch with a CO bond order about 1.5. The

R-9262 L-5

two CO_2 stretching frequencies and their difference should be comparable to those of the free trifluoroacetate anion [19]. A minor decrease in the frequency difference might be expected for the bidentate ligand when compared to the free ion, if one assumes that the XO₂ bonding in $X_{\bullet,\bullet,\bullet}^{\bullet,\bullet,\circ}$ will decrease the CO₂ bond angle from the 120° value in the free ion towards 90°. This decrease in the bond angle would decrease the coupling between the two CO motions and make their frequencies more similar. In addition, one might expect the bidentate ligand to have the same symmetry (C_s) as the free ion and, therefore, to show only two CF₃ stretching modes owing to the degeneracy between v_3 and v_{11} (see Table I). Consequently, distinction between a covalent symmetric bidentate ligand and the free ion may be difficult based upon the CO₂ stretching frequencies alone. However, the appearance of the XO₂ modes in the lower frequency range of the spectrum should clearly distinguish between the two possibilities.

Application of this reasoning to $CsI(0_2CCF_3)_4$ clearly rules out the possibility of a symmetric bidentate structure. To what extent back donation of electrons of the carbonyl group (which is generally a good donor) to iodine in a monodentate structure, such as $I(0_2CCF_3)_4^-$ takes place is difficult to judge from the presently available data and might be a matter of sementics.

Skeletal Modes

It was previously shown that the IF₄ anion is square planar having symmetry D_{4h} [4]. For the IO₄ skeleton in I(0₂CCF₃)₄ such a planar configuration is unlikely.

Comparison with other oxygen bridged species such as $F_5AsQAaF_5$ and

and the second second

suggests X-0-X bond angles of about 140 and 95° [20] for mono - and bidentate bonding, respectively, of a trifluoroacetate group. The actual I-O-C bond angle should be influenced by the degree of back donation of electrons of the carbonyl oxygen to iodine and mutual repulsion between the atoms involved. In any case distortion of the IO_4 part from symmetry D_{4h} is expected and a puckered arrangement of the oxygens around iodine is likely.

Comparison of the skeletal modes of $I(0_2CCF_3)_4^-$ with those reported for the related $I(0C10_3)_4^-$ [2] and $I(0S0_2F)_4^-$ [21] anions shows relatively poor agreement. This indicates that the assumed structural models may be too simple and calls for structural studies such as x-ray diffraction, which will yield more accurate information. Similar datagre required for $Cs_3 I(0_2CCF_3)_6$.

<u>Acknowledgements</u> - One of us (K. O. Christe) is indebted to the Office of Naval Research, Power Branch, for financial support. We thank Drs. D. Pilipovich, E. C. Curtis, and C. J. Schack and Professor M. Schweisser for helpful discussions and Dr. D. Lawson for the use of the Raman spectrometer.

> R~9262 L-7

REFERENCES

and the second second

	REFERENCES
[1]	D. Neumann, M. Schweisger, and R. Scheele, J. Fluorine Chem., 1, 321 (1972)
	K. O. Christe and C. J. Schack, Inorg. Chem., 11, 1682 (1972).
[3]	M. Lustig and J. K. Ruff, Inorg. Chem., <u>5</u> , 2124 (1966).
[4]	K. O. Christe and D. Naumann, Inorg. Chem., 12, 59 (1973).
[5]	R. E. Robinson and R. C. Taylor, Spectrochim. Acta, <u>18</u> , 1003 (1962).
[6]	E. Spinner, J. Chem. Soc. 4217 (1964).
[7]	M. J. Baillie, D. H. Brown, K. C. Moss, and D. W. A. Sharp, J. Chem. Soc., <u>A</u> , 3110 (1968).
[8]	C. A. Agambar and K. G. Orrell, J. Chem. Soc., A, 897 (1969).
[9]	C. V. Berney, Spectrochim. Acta, <u>27A</u> , 663 (1971).
[10]	E. L. Varetti and P. J. Aymonino, J. Mol. Structure, 7, 155 (1971).
[11]	G. A. Crowder and D. Jackson, Spectrochim. Acta, 27A, 1873 (1971).
[12]	G. A. Crowder, J. Fluorine Chem., <u>1</u> , 219 (1971).
ي [13]	E. K. Plyler, A. Danti, L. R. Blaine, and E. D. Tidwell, J. Res. Natl. Bur. Std., <u>64</u> , 841 (1960).
[14]	W. M. Tolles, E. Tannenbaum, and W. D. Gwinn, J. Chem. Phys., <u>43</u> , 3019 (19
[15]	A good example for proving this point is the crystal structure of the $Co(0, CCF_3)_4$ anion in which the trifluoroacetate ligands exhibit in spite of their monodentate nature C_1-0_1 and C_1-0_2 bond distances identical within experimental error (J. G. Bergman, Jr., and F. A. Cotton, Inorg. Chem., 5, 1420 (1966)).
[16]	P. Sartori and M. Weidenbruch, Chem. Ber., 100, 2049 (1967).
[17]	E. V. Van den Berghe, G. P. Var der Kelen, and J. Albrecht, Inorg. Chim. Acta, <u>2</u> , 89 (1968).
[18]	E. L. Varetti and P. J. Aymonino, Spectrochim. Acta, <u>27A</u> , 183 (1971).
[19]	For a theoretical treatment of bidentate bonding, see R. E. Kester and W. E. L. Grossman, Inorg. Chem., <u>5</u> , 1308 (1966).
[20]	W. Haase, Bor. Bunsen Ges., <u>76</u> , 1000 (1972).
[21]	H. A. Carter, S. P. L. Jones, and F. Aubke, Inorg. Chem., 9, 2485 (1970).
	R-9262

DIAGRAM CAPTIONS

いたいないというないというないないないないないです。

Ũ

d de

- Figure 1. Raman spectrum of solid Na⁺CF₃CO₂⁻ (trace A), of an aqueous solution of Na⁺CF₃CO₂⁻ (traces B and C, incident polarization perpendicular and parallel, respectively, of solid CsI(O₂CCF₃)₄ at three different recorder voltages (traces D, E, and F), and of solid Cs₃I(O₂CCF₃)₆ at three different recorder voltages (traces G, H, and I). K indicates spectral slit width; exciting line 4880 Å.
- Figure 2. Infrared spectrum of solid $Na^{+}CF_{3}CO_{2}^{-}$ (trace A), of solid Ag⁺CF₃CO₂⁻ (trace B), of solid CsI(O₂CCF₃)₄ (trace C), and of solid Cs₃I(O₂CCF₃)₆ (trace D) recorded as AgBr pellets.

197

L-9

Figure 1

R-9262/L-10

÷

Ĵ

198

. ;,

a funditional in

Math Definition Definit Definition Definition	٠		•						-	•		•	APPreximate Desci
$ \begin{bmatrix} 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1$	7			frared Sol			Teas			Infrar	bi sel id	Bamnb,c Solid	•1 Sode •
1446 1446 1441 <th< th=""><th></th><th></th><th>Œ</th><th>æ</th><th>This Verk</th><th><u>Build</u> This Work</th><th>œ</th><th></th><th>This Verk</th><th>[2]</th><th>This Sork</th><th></th><th></th></th<>			Œ	æ	This Verk	<u>Build</u> This Work	œ		This Verk	[2]	This Sork		
1334 1317 v. 1212 1216 (1.2) 1200 m, 12 1216 (1.2) 1200 m, 12 1200 m, 120 1200 m, 120 <td></td> <td></td> <td>1466 B</td> <td>1445</td> <td>1446 m</td> <td>1434 (10)</td> <td>1441 (10)</td> <td>143: va, p</td> <td>1438 (10) p</td> <td>1450</td> <td>1451 m</td> <td>1449 (7)</td> <td>• ' ' ' 'sym^{CO}2</td>			1466 B	1445	1446 m	1434 (10)	1441 (10)	143: va, p	1438 (10) p	1450	1451 m	1449 (7)	• ' ' ' 'sym ^{CO} 2
1136 1.2) 1136 800 mm 801 (1.2) 346 (3.2) 041 e. p 844 (6.0) p 845 53 mm 946 (1.1) 1770, 800 mm 801 mm 801 (1.2) 346 (3.2) 041 e. p 841 (6.0) p 845 53 mm 946 (1.1) 1770, 801 mm 801 mm 801 mm 801 (1.2) 346 (3.2) 341 (3.2) 721 (2.2) p 722 738 mm 946 (1.2) 1770, 126 mm 803 mm 802 (3.7) 586 (1.2) 601 mm, p 800 (1.2) (3.6) p 845 731 mm 445 431 mm 445 431 mm 430 (3.3) p 445 451 mm 450 (3.3) p 445 451 mm 450 (3.3) p 445 451 mm 450 (3.3) p 450 (3.3) p <td></td> <td>aces</td> <td>1213 TA</td> <td>1212</td> <td>1212 7.</td> <td>1210 (0+) he</td> <td>1211 (1.6)</td> <td>1200 m, p</td> <td>4 (r.1) act</td> <td>004.</td> <td>1206 v.</td> <td>1201 (1)</td> <td>^v2</td>		aces	1213 TA	1212	1212 7.	1210 (0+) he	1211 (1.6)	1200 m, p	4 (r.1) act	004.	1206 v.	1201 (1)	^v 2
mode body with bod	4		. 1130				1186 (1.2)						v3 v RCF2
170, 136, 136, 136, 136, 136, 136, 136, 136	#		850 .	94 5,541	847 #	847 (7.2)	46 (3.2)	841 e. p	844 (0.0) PH	845	852 m	648 (10)	4 ^{c.c.}
c 604 p T50 ms 724 726 ms 750 ms 756 ms 756 ms 750 ms 756 ms 750 ms 756 ms 756 ms 756 ms 756 ms		e a	807		804 ma				Ald ah, p	803 , 790	794 ma		vs Sacias CO2
x ues 4p 603 303 mm 602 2.17 566 1.2 4 p 500 606 mm x 345 p 422 mm 421 4.16 410 1.6 410 mm, p 400 (3.6) p 445 457 m 450		694 p	H S 2	12A	W 821	(5) 427	728 (0.4)	72% B, 2	727 (2.2) 🍷	1222	726 De		Ve 6 umbrelle
w 345 p 422 m 421 (4.6) 410 (1.6) 41 ¹¹ m, p 408 (3.5) p 443 457 m 450 (2. ww -234 0.0) 224 (0.0) 224 (0.0) 268 m, dp 1690, 1640, 1618 450 (2.3) br 1690, 1640, 1618 vw -1860 1140 m 1141 w 1145 (.3) 1130 m 1500 m vv 427 ds 505 (0.6) 521 v, dp 520 (0.1) 517 m 510 m vv 427 ds 421 m, dp 421 m, dp 421 m, dp 421 m, dp 520 (0.1) 510 m	*	4)7 50M		8	903 m	002 (2.7)	596 (1.2)	801 m. p	508 (1.2) dp	\$00	606 m		v ₇ 6 PCP ₂
www.v236	,	346 7			12 w	421 (4.8)	410 (1.6)	410 me, p	408 (3.8) p	445	457 m	450 (2.5)	v ₈ antigear re
1866 vs. lsc 1670 (0+) 168: ns. dp 1680 (0.3) br 1600, 1640.1615 vs(900 1140 1141 1145 (.3) 1130 1150 m m 520 dp 1141 1145 (.3) 1130 1150 m w 421 dp 515 431 ms. dp 431 ms. dp 435 (1) dp 320	ł	X 17			1		224 (0.0)						vg gear rock
vs (900 1140 1143 1140 1150 1150 1150 m 620 630 600 505 600 505 600 513 517 w 427 431 441 441 (2) 429 (1.2) 431 434 (1) 430 310 315 315			1869 15	1005	1688 v., In	Ŀ	1676 (0+)	168: m. dp	1680 (0.3) br	1650 . 1620	1640,1615		** ' ₁₀ '** ^{C9} 2
w 520 dp bi6 516 m 516 (0+) 505 (0-6) 521 v, dp 520 (0+) 513 517 m V 427 ds 421 dp 320 315 m	2 2	00617	1140 .	54 11	1158 v.			214.1 V	(c.) 2311	1130	1150 m		VII VasCP3
V 427 da 424 da 421 (2) 429 (1.2) 437 mv, da 434 (1) da 320 315 m	#	4 8 9			516 m	516 (0+)	505 (0.8)	621 v, dp	520 (0+)	513	517		V12 6. CT3
	>	427 də			A 14	4 11 (2)	420 (1.2)	437 mv. dp	434 (1) 4p	320	315 m		v _{ig} antigras w
m 246 dp 271 V 270 (2.8) 242 (1.2) 251 m, dp 266 (1.9) dp 284 233 m 280 (1)	#	246 47	_		271 V	270 (2.6)	262 (1.2)	261 m, dy	206 (1.9) df	35	203 #	280 (1)	"It fear we
													^{13 2} C-C

I MARE I

140

k. 200

State State

R-9262 L-12

(e) The Raman spectrum of an aqueens selution of A ^CCF3COO⁻ was also uncorded; since it was almost identical with that of the aqueeus H³CF₃COO⁻ solution, it is not listed. (b) Uncerrected Remma intensities.

(_)

(a) For description of this motion, see Ref. 9.

	TABLE II	
Vibrational Spect	trum (cm ⁻¹) of Solid Cs	$+ 1(0_2 \text{CCF}_3)_4 -$
Infrared	Raman	Assignment
	1750 (0.3)	
1710 vs, br	1725 (0.3)	v COn or von
	1695 (0.1)	48 2 0=0
1662 w		816 + 839 = 1655
1571)		
1561) ^{mw}	1570 (0+)	
1404 m	1405 (0.2)	V 60 or V.
1366 s)	1369 (1.6)	sym ² 2 C~0
	1225 sh	v _{avm} CF ₃
1140-1230 vs	1203 (0.2)	v FCF2
	1186 (0.2)	v FCF 2
854 mw	852 sh	
845 vw		
835 vw	839 (2.3)	`с-с
820 w	816 (1.3)	
782 mw	781 (Ů+)	δ sciss ^{CO} 2
727 m	725 (0.7)	⁶ umbrella ^{CF} 3
602 m	604 (5.2)	$\delta FCF_2 + v_{sym}$ out of phase IO ₄
	555 (0.1)	
517 mw	520 ab	\$ CF
	501(7.2)	Cas ²³ 3 V in phase TO
490 sh	490 gh	sym in plase 104
470 ms	,	v IO.
416 mw	418 (0.3)	as 4 antigear rock
380 ah	378 (0.1)	
346 vw	346 (0.3)	
329 vw		
310 m		antigear wag ?
305 sh	306 (5.8)	8 IO.
293 vw		4
275 sh	278 (0.1)	gear wag ?
	249 (0.2)	
	218 (0.3)	gear rock ?
	130 (10)	¹⁰ 4 201
	R-9262/L-13/L-14	

()

 $\hat{\mathbf{O}}$