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ERRATA

Page 5. Fourth equation: Change u2 and p2 to u, and pz.

Page 28. Third equation from the bottom: Insert an integral sign f in
front of .l do. J

Page 29. A - Replace the-statement: "which may be rewritter. as..." with
"subject to

(1 + t,)E = E= D

which may be rewritten as

(1 - flD = E"

B -, Third equrtior, from the bottom: The subscript of 1 in the
last exponent is L ratier than H.

Page 32. Top line should read:

= " Ot i2 a l l r

Page 39. Fourth. equati,z The rst term on the right should read

-2

Page 45: L1ast equation: Replace "sin, 2 0 ... " with "2 sinh2 0 =

Page S.. Last-equation: Correct the term "1 .- " to 1/-y-i
Page 55. A -Top equation: Correct the last term to I -V1 _y-2

B - Second equation: The upper limit of the first integral on
the right is -1 rather than -o.

Page 60. Last part of ka-eqition should read Polo e.

'to

Page 61. Second equation should read

sinh2 X (ex - cX)2 e 2 x e- 2 x -

4 4

ic:
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PREFACE

One iim of the X-Ray Optics Branch during the past years has been an
widerstan dng of the diffraction pwopextiLi of crystals; pd their chaacteriza-
tion on the basis of• defect structure. Fob ibis purpose, my coworkers andl
have carried out. bolh experimental and L'.eoretical inmesgtions in dffrac-
tion and hare compa-ed our re.,lts with the mathematical and physical
models h!t have been avahble in the wotks of .arous authors.

A reference we have belvzd to W a source of many subtle ideas in the
dhfrac ron field i s 7,acaris6s 1945 b ok, Th ery of X-.RayDJifrc!ion in
CQystak Ilowe-r aa~tsp ai!ltahmta informa-
in - in general'too brf. Thus;n cuntrast to Fis s- e le

21rrsicl pi ewhv.ch is often quite E.vid.manyofhissnimcanrderb-ations
hnvea str3king absence of intermcda steps. Alt oug no reader would like
to see a the detail, we b e that the more difficu~t Xteps shoud be=com-
paned by at eat a few comments a~t would indicate the. poi.t at which
!l-y-, 'z ng matrematical apt xicnat-,% h*= been intWsced.

The present s- of notes on 4pter l17,1fbeoiy of X-Fay Dif-ftaction
in Ideal C-Als' of Zacharhs;Ws 5ook is intended to pniially remote this
deficiency of explnatory -mmeno. Initially, comments were written both
for Chapter III and that part of C spl.er- IV which precedes the -ection on
"'leat Motion." Pior-to their intri-ducticn as = NRL Reporthowev, tbe
nrtes had to be modified wmewh-:. First, to make them useful to readeis
with diwise lrels of r.a.INaticl 1-,xkround. coer,,- eable effort was made
to gime exblaatioa and de-ivaU*!os of formulas in as -el-ena-y a fasiica
zs possible. (For example the nrde Ieg with simple iustations of-the
periodic functions.) ThIs has r- -t always been practical, of course, and
>everal conmpts will neverthev, rernin difficult. The emphasis-has been
on those numerous derivation u iach require special mathematidd tools and
clever ses in reasoning and a ,ximatio.

Second, asz compromise i-, theamountof malerial presented, Chapter
Ill alone was prepared for thl, NRL Report. In fac, Chapt!er IV is much
easier to undersAnd once the ;oncepts of -.per Ill a.e clarified. bTese
not" re only a supplement tv ;he orig.dnl chapter and are not an entity in
themselves; a conpletely reari=en chapue would prebably hae tripled the
size of this work

With the publication of I -ti-report it is hoped that at lezst some of the
time taken by the serious stud,- x of diffracticn tMeory would be bet-e7 speni
in thinking about ::ew soluti -is to old problems (such as the concept of
'imoszic block"). which at tte, same time realiing Uve economy and pro.

fundity of Zachariasen's ah- 4ite, which hare bccomz an inse Zle part
of his style throughout the y --as.

M. Fatemi

iv

r.I



ABSTRACr

W. H. Zacbsmis~ w*V10wwn 1945 book 'Theoir *-f X-112y
Diffraction in Cytal' corstairs =min spuk-aL wid owigid

mak the text. Wefci to readersof diii.m MaheMxtleal Wakpoiad.
'The P=c&-os of, thee notes is to P:oMide Z&Hitma Carn-awts =a
ii eia defrivfiowiJ steps for Cbap~er Iff of this booJ, "7hwrly
o f K-Ray Diffirx-tim ii- Ideal CitSals," whose coxnt W 1 of ten b ecn
refz-ctd in the pubhsbed Eterakze

PR.OBLEMl STIATUS

NP.L F&e'P04*4

Naz'usz-pLsuixn tted Jauary 29, 1923i



EXPLAAMOY NOTES, ON W. H. ZACHARI-ASMNS
WfflERY OF X-RAY DJFFRAMl IIN IDEAL CRYSMhS"

INTRODUCTION

Mhe stuksy of x-ray fifd Jncysl ! jrae; d& to the mev mmn Of -
few basic pmetezs which. = a VeeJ~ vvo-ae relect. t q=Uaty. of the acas!whe
cmed i apptl-d p obes; suzh as -etza-azabm~s of nrdaiion-sources, anal3ys-of comi-
pounds , rad=-:on dazzM and grnmika nd de-fecLt.zUcture of inabIs. Arcocg these
jaZ2=km! =r ibe Mowing:

0 'The efficiency- v th which x 12ys of a mtkuiar ennff (or wzrlfit) am &f
facted frarri a crystaL

Liona a ciyw ay' byesizuse.

'The inrisuzment cap~b&-e of sxch rrems~ecxWns is -.-.e do-..e-cysta! sixwoae.c
Hre 6i 71i41 ic x =.yS of Wzeuvrh IL =z re-Sected by the irs crysa! vrKochroa-
o4o) acer.15g to Rmas 1w X - 26 -4n -$, wbere d Es the interpArb zpxdig of the dif-
fraemwr~g phm- ad 0 is the ra~ =e. The reflected-x xavs then arrie c-nt the second
Cn.Vl, Which is to bor tzalyd (Or~ zo.s 01=i pterftion or to be-urcJ- in thr 2=-yvsis art

To iest. pe the difEr~imtO cbxrctezis of a cnysWa in a doirbkG-sAA neuon-
efM. tie n odeso=Wor is fixed =id the sec=I CrysWa ;- rWt~-, -o4:-z
vidnity of h.e Iri= tn;e. Ue resonzse of the cz-vs:A to the icdLx-ray p*hotams,
9v by a-pot of it~ersity us anije,, fs t alked its rodkig --=me.

'The peak of the rocking cmne. Whidi ocz 21. for r.-y near-) the Brkg Z;;e, is a
sipifiar.t11 panx~ff. The ralio of the peak inte-sely to the ixiden u i~s~ty 's a 4F-w
goakus quafity csied the peak -.Iffrjct&o uiffcitic. Mwe *mgu~ar zfh of the rockinW
ctume which is a nmsure cf the gupoe of &ffz0t-;cm. is influeced bysiea ~en~
rical faaama fulit. si2* emc4 ac wiI =s ky the pelfortic of Wch csystams. In sc4etairk cvr

rzu~atonscet ~ th -z~ 'c: .4 a (MOP31 or the )=;f breadth al b2:f
=axinwrn (GBMI) we q~xOte T[he =ze un-de the rmcking . (Wxbc wou far~ tbe

toWa nuber of ptom~ dfffacted) di!-. ed b3y the nuber of ~etpbxo is known
ws the inte.rated rfection. caeffi- (P. vzu.e) and is expcrswd in wuml of ra&=vs

M the Iq f t~ oCi~ 1f otT(a~ iXryTfr~w sC~A~



The point of thisinxdutitOn is to emznIsize the uh=e pnt os of anI the &nir&-
tioas and explnations boih hee and ina tnhiwin~s bwLk Th--e sh o.i be rcze d ±d

a mm--.s tawa-.d 2n expeuimenW~ end: in the rW a'ys, any dilfi t~on tbeory sbwa~d
be teated -by a physkc.I insrn*-nt, such as the doubke-mystal- specro=neWe. This is why
smtri a dkcso 2prmza1~a '.,e end of 7uzadaizses CIa=.er tUl.

llurk can be lfaned from any thmeoreial~t exeimise. boa L~e rizW 2! w of a m~od
thw.-_N i; not only to expkaio expezrmn rsa ~ts buit. to do it on 3 plh-ysm"y souznd b~is
2=1 wO.Th wcab nzor as to t.-mW- the experamewe to *;xZy Ra. is fm41x -.xrict'oos

DERIVATIONS AND EXPLNATIONS

The defraiion and exp=;os pcesaifed btese %M~ be~gn wira Mhe snt esOf
ChpAer III and be keyed by =rbhe2&x7g;-:o pqges cr tq~ztiu =irbu~s in h
of 2a2=0aC~ in .3 ike.

Pie W3: Cosecet of a ?eriuce Functio

A typic&i p ~~'e~i4d frn~tio is the s~ne fundic2 If the pemiaffx~y
is sbown by -tMe wet" z,, -- wnhilray pe-d fn~. .?apma n

7' be red"o a de-funes a spxmiiic oriematioo L spwt. Shm ce~ soW is; td~ -
e=Wm] ft is in £wme.- ntecmmy.5c spexify tiree c~rwctoms for =y ptriDfx ;dte faztkoa.

Pip -&. Waxe Vector korlc0

The mwr vector k ci ko is deiined c~rffemrlJ! by rwkwio- =Utboc In qmni,
dEunim the =ore waln~ oawticoi is kb 2--N. wb~as Wben~ pW~t- k = l wrbm the
fdor2 -Ox

A-

~r:) -m&brv m--6 fmm i-
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Page 84 (and Chapter I)

A clear explanation- of -reciprocal lattice concepts, -together with a discussion on the

equivalence of Bragg's iaw and Laue diffraction conditions, is given by Azairoff I I].

Figure -3.2

Figure 3.2 is a-diagranm drawn in the-reciprocal lattice-space. In this space,-Iineair
dimensions -have units inverse to- the "real" crystal lattice space. The "reality" of thie
reciprocal space, however, becomes apparent upon studying the origins of the stereographic'- --

projection.

Fakes 87 and 88

Four general or three "practical" experimental -methods are described. Today, how-
ever, th -e fourt -h- niethdd- (cntinous -variittiont of X togcuher w'bfh the direction -of-incidence)

'has found -a significant place in diffraction- studies: The curved-crystal spectrometer de-
scribed- by Birks [-2]- has -been used as an- invaluable tool in-spectral analysis of pulse
x-rays-(flash x-ray tubes, laser-inducedx -ra:-,-etc.).

Page 89

In-sections 3 through 7-intensity expressions are -derived on the-basis of kinematical
theory, for the case -of a-single electron, a-single atom z(aggregate rf electrons), a-unit cell
(baisic -array of atom s),- and a "smiall" -crvstall it4e. The dynamical theory ;s then treated in
sections 8 through 12.

Page 90; Basic Assumptions of Thomson Scattering

!lie first assumption ofl Th3mson scattering is--that the restoring !omz. oni the electron
'is negligible. Therefore, the force due to the electric field, eE, is the n~f force I~nd accel-
erates the electron ac~cording to Newton's second law. The second Assumption is that the
natural -frequency olt the electron is small compared to-the frequency of x rays. Thuts no
re.sonance will occur between the 6,ectron anid the electromagnetic field. This means thjat-
toc electron scattering intensity will be an expression independent of x-ray frequencies,
On the basis of these assumptions, equation 3.7 follows from the simple second-order dif-
f~:rential equation

dt2

Equation 3.8 is a "definition" from elementary electricity and magnetism theory. Equa-
tion 3.9 alco defines the coefficient of E0-in Equation 3.8.
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Page 90: Dipole Radiation,- Equation 310

The following texts give more explicit forms for dipole radiation by writing out vari..
ous components : Becker and Sauter [3], Pugh and Pugh [41, and Panofsky and Phillips
(1962) [5]. The vectorial fon given by equation 3.10-will-be used in the following deri-
vation.

Derivation of Equation 3.11

The vector u is the-unit vector-]n the. direction of scattering-(or-observation), and
Pe is the electric-dipr'.-moment. The vector u X p. appearing in equation 3:10 is avec-
tor normal to Uand- p. Itsrnagnitude is

Iulip.1 sin-L.(u, pC) = Itlipj sin -p = sin V,

-and -its direction is determined by- the- right-handed, screw rule. aNow

e _Ot Ee  -(u X pe )-X eiO t i2kR ,

Ee  (,i ype)-X ue - i2 nk-R

EC =IE l2 -eEe"E [(uXPe)X u_ (uXpe)X U.

-Note that taking- complex 'conjugate removes e-2?Uk R Again,

[(uX PC) K.ul I u and I (u-X P-) "(u X p) X u]I 11 PC,

Now

I(u X pC)-X-ui lu-X peIluj:sinL[(u- X PC), u] juX p. I lul

because u I u X PC and s;n L[(u X p.), u) 1. Thus

J(u X p') X U12  p2 sin p E0 sin- "p

Since

i0 E'

theniequation 3.11 follows.

Page 91: Derivatiou of Equation 3.12

'Ilie wintence introducing equation 3.12 states that'the equation is obvious. However,
even though equation 3.12 may be justified by visual observation, it is not at all obvious.
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Sin p is-defined in the relation

1u0 X pcI = luoIlpe Isinp = Ipc Isin ,

or

sin p= u X Pe

Ipc I

and

sin 2 p = u x p pIIU =p (u X PC) " (U X PC)

Pc2  _p,12

NoW define 1j, r? as the set of unit vectors along the- X, Y,-Z directions. We have
U p = -(Y+ 4 X (P.. + P2k),

which becomes, since ji =- , j X k 1, k X i = x, and k X-k -0,

-U X p= -1 uP.i + UypzI + -up1

With-

Uy= !ulcos 20 = cbs-20, uz = sin 20,

Px Ip sin , Pz = Il cos 4,.

Then

(U Xp) (u X p)
=o 2 20 sin 2  + cos 2 20 cos 2  + sin 2 20sin2

- cos 2 20 + sin 2 20 Ein 2

- sin 2 2 0 + sin 2 20sin2

-= 1 - sin 2 20(1 -sin 2 4)

1-sin 2 20 cos 2 4

Page 91: Scattering by an Atom

Under the a~sumption uf a small restoring force and no interaction between lectrons,
equation 3.13 should be corrected to
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Xj = --- E0 e iJO.i21k0"r"

Now define the dipole moment as
e2

-ex= Eoeijot-i2nko'rj

= p1 e',"W

In other words pj contains cnly the spatial part of th;e dipole. With th3 definition

pj - 2 Eoe-i2 ,ko'.
Mwo

Equation 3.8 previously defined Pe as

62Pe -Eo

0
so that

- Pei2nkor,
This means, physically speaking, that the dipole moment of the jth electron in the atomis equal to the dipole moment of Thomson e, ectron weighted. by a phase factor dependingon- the spatial coordinates of the electron.

Equations 3.15 and 3.16

In equation 3.15, E . is the amplitude of the electric-field observed at the point R.However Rj appears in the exponent, because of the effective E at point R-is the sum of vari-owi electronic contributions of index j (Fig. 2), The jih -contribution to the amplitude hasthe form

2e i 2r kj " Rj 0 ;6 2 zkrj-2kR,
(uj X p) Xui..ci2ij C = (uj X Pei X u i2 kor,,i2fk"1j XP XU 2 I c2R ,

where we replaced k; by k, although we did not substitute R for Rtinator of co/C2 Rj). Then the exponential part looks like 
A(ecept 

in the denom-

e-i2fko'rje'i2*.ki(R-rj
) = e2i(kko)'ri2k.R

'

and the total sum goes over to

c 2
X L, cH1L

i U ) j 4 , 2C _,~-o ,j
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Fig. 2-Vectois from the nucleus of an atom and
itsjth lectron

Looking at the similarity between this and equation 3.10, we can write equation 3.16:

Eat . = Ee 2 7iS', s 21(k -k0).

Thismeans that the amplitude Eat. at the observation point R -is the same as that of an
electron-in a-;in'dectric field, multiplied by a phase-factor, e!"i which is summed over all
electrohs -in the atorm.

The "interference effects" referred t athe fZid of page 92 may be observed not
only for coherent beamS from regulararriys, aris'ng from crystal structurebut also from
instaieously incoherent beams. Thc onlyT difference is that in the fornier these effects
remain detectable through time but in the later they. disappear within a-time comparable
to the inverse frequency of the interacting photons. We ar here concerned with only

-those effects that show up afR.r time aivrging, namely, structure-dependent, steady-state
effects.

Page 93: Classical Assumption ofiJndepend-nt Probabilities.

Thbe cLassieal-assumptioi of independent distribution functions aj obviously would .iot
hold ifi the quantum-mechanical-treatment of-the problem,=becaase~the-Pauli exclusion
principle would-impose an additional conetraint on the electronic wave functions or asso-
ciated probabilities.

Rage-193: Coherent Scattering

The incoherent scattering is obtained only after the coherent s Vtering and total
scattering aze written down:

I(inc.) =- l(tot.)'-- -I(coh.).

To obtain the coherent scattering, first th, -instantaneous aiplitudes-of equation 3.16 are
averaged, whereas -to obtain the 1otal scattering the instantaneous intensity expression is.
averaged.

The mean amplitude in equation 3.17 is obtained by summing the amplitudes of vari-
ous electrons, each one of which contribute to the sum in the form rf equation 3.18.
Note that averaging the quantity is the sane as integrm.,ing the probability (oi) over the en-
tire volunie. The phase factor eiSri has 4, be included for each term.
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Equation 3.20

The second equality in equation 3.20 results from the fact- that for i = the value of
the double integral equals 1. There arz Z terms in this integral (for -the Z electrons with i
= j. Only the terms with i Aj need by calculated. Note that since

j jeisrV dv,

-then

-=f oCe-is' dv.

Derivation of Equation 3,21

In the derivation- of equation 3.21 we must show that

22

We can write

-2I

= (soi + +- ) +.+.
J

= bp112 + 2 + 'V'P1 + "" V 212 + ""+

j#If: j

Therefore

j2 , "
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Page 93: Sentence Following Equation 3.21

Aside from a factor of c/87 the total intensity is the'average of the squared ampli-
tudes (mean square amplitce). The coherent sco ering is-tie.squared-mean am-litt e
(as we rioted undt&r "Page 93: Coherent Scattering").

Page 94: Definition of Atomic Scattering Power

From equaion 3.17 the-definition of f0 on pae 94 gives

!EI E ipj
atomic amplitude j

ele,.-ronic amplitude IEJ j
I-

This expression itgood only for highb-frequency x ys.

Equation 8.23

The clement of volume in spherical symmetry is_4rr2 dr. When p(r) (probability per
unit. volure) is given, the number of electroni between r and r + dr becomes

p(r '4rr U(r) dr,

where

U(r) 4r 2p(r)

and thus

p(r) = U(r)

-Page. 95: The Atomic Scattering Power

I nlike section 3, in section 4 two otier forces are now added to the equation of mo-
tion: thd centripetal force and a velocity-dependent force. Both have minus signs- and
they tend to decrease the effect of the applied force

-e EoeicOt-i2 akorj" -
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Again, we must solve the ordinary recond-order differential equstion 3.27 and obtain equa-
tion 3.28. Thus equation 3.29 is tle revised expression for atomic scattering power for
lower energy x rays.

Page 96

Equation 3.31 is written in a purely forinal manner. It implies that the scattering
power f contains an imaginary pat due to the radiation damping, and a real part which
may be split between fO (high-frequency limit) and the binding-force tern mcjjxj. Equa-
tion 3.31 can also be written as

ffo + >(j + in) 7~uj(],+ j+~

Section 5: First Paragraph

The vector ai is the lattice parameter, and xi is a number defining a fraction of this
parameter. In- the-definition of structure factor (scattering power of a uniL ceil) the same
provisions apply as in the atomic scattering factor.

Equation 3.32

In Equation 3.32 92(r) is a single function (distribution fvnction), whoic Fcurier com-
ponen, are S2,1 These are related to each other by the Fourier recip.ocity theorem.

Equation 3.36

Equation 3.36 is analogous to equation 3.1.2.

Equation 3.38

Again, equation 3.38 states that the structure factor FO is the sum of individual scat-
tering powers of ars. each of which is multiplied by 2 phase factor. Particular note
should be taken of the remarks following this equation.

Equation 3.44

For a unit cell with large or appreciable anomalous dispersion, the expression for F
(not F0 as irs equation 3.38) is

F f.Cis.rk

k
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where fk is the sattering power for the ith atom and is given by the expression

I

Equatio;n 3.31 is f he same expression without the superseript k.

Equation 3.45

When the distance R is large compared with the crystal dimensions, the wav-s arri-
ing at the observetion -point-ore "plane." The "plane-wave approximation" does-rot, ob-
viously, hold foi very small R. -n the-way the phase factor eis*AL comes in the expres-
.ion. the inherent assumption is -that various unitcells in this crystallite radiate with the
same strength aside from tie geometrical phase factor. No absorption or ther dy amical
effects are inuded.

JEquation 3.47

In equation 3.46 the first of. the three summations on the right is

NI-i $
1  - 15

Z I 1 31- C ML irailsl i -

L1=0 L1=O

ei 'al

ei '; - 1

Thus the product of the three summations follows as given in equation 3.47, with the sum-
mation index being i = 1, 2, 3.

Equation 3.49

All three Laue conditions should be satisfied simultaneously.

Equation 3.52

Equation '.52 states that when the Laue ectuation is satisfied the quantity F:, (struc-
ture factor for $ = s$l) can be ,'efined as
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Fj _ €_i2zBSlrrk

k

Note how this equation may-be evalaated for various crystal structures to give usabl ex-
pressions for struc.ure factor; see, for example, Azaroff-11 and Cullity [61.

Middle of Page 101 to Middle of Page 102

Forfuture convenience let us correct the assumed varintion in the angle 20 by writing
21)-- 2E (rath& than 26 + e) so thaVtthe angle of incidence will change ta-i-O + e. Then
let us substitute 2e far e everywhere. *Equation-3.56 becomes

and-,equation 3.57-b bcomes.

0=og2 - X

There is in principle no difference between this and equation 3.57.

Page 102: DLsussion of Absorption-Pr 6esses

Distinction is-made here b-,veen photoeledtric absorption and exthiction. Our en-
planatory note above on equation-3.45 pointed out that absorption effects are not included
in that equation.

Page 102: Primary and Secondary Extinction

It is perhaps appropriate at this point to discuss !he relationship between the half
width ofthe rocing curve and the concept of extinction.

A brihf explanation of primary and secondary extinction is given by Zachariasen in
Chapter 4. Here, for definition alone, we choose the Darwin model of the crystal: The
bulk crystal is composed of small crystallite blocks, each block oriented at a small (mis-
orientation) angle with respect-to its neighbors. -Hoth- the block size and the mis.rienta-
tion angles way be assumed to follow smooth, normal distribution functions. The line
shape (diffraction pattern) for each block may be assumed to have the form derived in
equation 3.54.

Absorption--in a perfect crystallite is made up of two distinct processes. Consider
what happens when the crystal is rotated with the xespect to the collimated, monochro-
natic-beam, toward the Bragg angle OB . At considerable ai gles outside #g, the crystal t-
haves like an amorphous absorber and the p netraticn of:the beam into the crystLal inay be
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rebtively-high. If the-linear ab ,rption coffcin i e "absorption db4stanc ' lipma

reAch 9everal millimeters. !,- the Br-, angle is approacihed, a greater and greater poction-
of-the inclident photons cot'Lributes to-diffraction, and sirnultaneousIy-thedeptb of pene-
tration is raRidjydecrzise& ThL5-rapid reduction-of the priry beam during- diffraction
in perfect crystals (ao-cRaUk'dpri'mary extincti'on)-is-due to- multiple reflection of the beam
f-.;m neighboring plan= At each double~ reflection the phasev'f the-reflected beam-is
IS&~ behind -tiat of Owe 'riident beAm. mTu ijay-take no- rro~e than a-hundred thou-
sand-atomic layers Wo ~re the amplituee o -the bickient, beam-dies ouL This ditrcof

1 to 105 atomic laye- is calkUtlye -extincti~n depth" (e uetc 7)

Consider now vainA imits when an aggregate of mosaic- blocks (a mos31c crystal) is
=&-deto rock~round fbe-&BN% angle. The future history of-a parallel penicil of x-rays

arriving ai the crysta-i siaface is deterrziined by several-factors:

* Photoecribz absorption coefficient A

0 Misorien~ation ange -between-the blkcks,

* Shze of-the crystallites,

* W'atin'i" hal-brea.dth of the-pefct4 czytalVe.-' -

if the moaic blocks-were so-laWg compgred to the i distance that no-snRificant _

radiation -could pass throub a given block-after ordinary- absorption, then, -by- usinga smA
beam, one should-sep-the ;amne half breadth for the btflk- crysta as-for the-perfzct: crystal-
lite (Learn 1in-Fig. 3 i. qt qniitative example). If the-x-ray beam-covered-an area c-on-
sistiqg-of several blocks, th-, effect of-the- rm~sorientation between- the-crystalhites; should
also Nt s&-n in-P r1 e ocing curve by a !Tultipke pkingteaonofwihmyay
depending usa the geometrical divergence of the primary beam.

Fig. 3 -Excam ples of' beams incident from the right wbich are (1) townly dirrracted, (2) £ota~ty
ab!-orbc-d, and (3) partbily aborbed and pa~dially diffiracted
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If the absorption disance lip is much Later than the averag, size Gf a gien block,
- and ifthe bW size in turn is larger thar- the exinctiondistance, the the beam, if rot

totally diffracted by a given block, may peneWAelt frathr into ihe crystal, thereObbe-dif-
fracted by another block of proper orientl".' is an example in which the dif-. ~fiact -_ea----- 9.-iiv n- - .) -i -

Fin lyif the absorption distand, r ch I rei h.--te extinction depth, and-if
-ti~sin turn is larer hw ihe-block Si;*±e~c n nt beam (boam 3)-will -remain

uabsorbed after diffrctio -by mh bk, a - lower lyig cr-s)allites.

The loss of power of primary beam due -to - ffaction by c rsaites'prior to the-oz-
Rival of a tLemm at. the block under consideration- c-i ed _daay eI:-idlan.

C
i quation -3S; AbisoqonCoeffikie

Note that P here-is the finear absorption coeffic-Lnt. Jn some books(suchas _Jenins
n"il- -V ~e%: 13j) it. stands for themasS absorption coeffidenL

-Fge 103" Comments Foloing Equation 3.58
The reader should py particul atention -o the cornentsfolowhgequatio n 3.58-

which decrib the ionditien under T-.cl! the intensity formulla 3.48 holds.

Section 1

Th. pragrmn of section 7is to copsider the three methods of obtaigin diffract'on
lines and to derive an expression for the intensity of a small crystal-as -a function of appro-
pra tev-riabler_ Thus -an initial pwarmeteri E I -is chosen which corresponds- to the "'most
importear" variable in each o" the three methods. For example in the Laue method AM;s
coretnds to a change in the-wavelength in the neighbo7hood of Bragg ). Ifa detection
surface is chosen (such-as an -ionization chamber), then the total power received by the de-
tector Ls the integralof the -intensity (function of )-ov'er the entre surface of the detec-
tor, where at ihe same time the varicbte r-1 coers all-possibe r.es, he-ce equation 3.6?.
The dcdinition of A at the beginning of the section (equation 3.59) is for t,0 sake of sim-
plicity. - The integration of r -a -' function of A may be further simpiiAi., it" an explicit
form jonA can be obtained in terms of E 1, 62, and 3. Then the integral takes the form
given -r equation 3.67.

M.e surface element in each of the three met*hods crw be easily evaluated. For ex-
ampt, in the Laue methu: " c obtained by "measuring" the latitude and longitude -

throall which Ull may iry -. ObViot.dy dS is the area of a rect'-oe on the Surface of the :
sph:r (Fig. 3.4) whose sides are R de 2 and R di 3 .



Derztion nf-tEquation 3. 65

16!

=nd

S = ui -uo) - j-(uly-4.

Eren 1hough in F-ig.3.4 !he-directint off uI.

Prom equatien .G4'tv- obtain

Tit -1 i) I 61M

xtk~ US Pse- the u &-rut .,g uO. u:, ulo akomg:tbe ~.o ( ,i,3

imw'i' s in the ijpJn, Teeor

Mue-meto 0 is onrented-along r,-,

Tfhe revtor uiH has 211 th-ee components, ~h 3 compor-ent. is

fugl i f 2 T3 Sin - T 3 .

Its -gwiection on the T1 T-2 plane is

itkil c = cOG f -2

7Teeore ". have

Ulf COS 2CO (20 Ails + co '' tSin (20r+'c 31JTq+ Si' F213

We expand cos (20 + e.-) and sin (201 + jq3 io get.

cos (20 + E cos20 ros 3  sUi20s~in ~3

Scos 20 -3sn2



16 )IOUf M"AD MEN~!

~si20 + -3 ou3s 20.

s-s 11 u - -IS (--~

ot - 4.

I& lr3 4-T -r,(bS2-e~t629) i~so2 *J4Y3  o2g)

ow 2f -r, -ia 2e,:-

2r

or

S sw tI - cm 
2

V) - -rig 20

wiuidh agc -with ieqbo~im 3.65 1& jn'e ia ib.- text. etccpl, tha in the W.x1 Un- snbipt.
H his bowi dwnppod -gr co nien-. Ano- ft k trA4 od that, al tie eqmUixi
for the s'zne sa of W 4tI.Z!3 by H.

Tbe concrt of ~ a6wba is tipod wtr a ch~eo 7-it w~k; nect-ew in a
multirAriab~e integratIolL in lihe simlkmt catu a chm~e of YafMbk from x to y, say. whm

p f(x), is effected in the fo~mo~iwhV



NRL REPORT 7556 1.7

dy = ay dx.ax

Thus, in an integration with respect to x,-the differential dx may be changed to dy if it is
rewritten as

1 ax d
dx y- dy -dy.

When the number of variables is-more t..an one, the Jacobian may be shown to take the
form of a determinant. For exampl3, the -three variables y {y, Y2, Y3} may replace
x {x1, x2, x by introducing the Jacobian

ay, ayl ayi

ax1  ax2  aX3

(ay1  V2  a 2  DY2

aY3  ay3- ay3

flx1  ax2- ax3

Consider-now a vector function A decomposable along the three coordinatesrl, 1-2;
il.. The Jacobian which transforms the coordinatesfromze 1 , P2, F3 to-p 1 , P2, PO clqua-
ition-3.59) can-be written in a-simple form, with-the aid of the rules of expansion of aetermi-
-nants. Forlthis purposelet-us-consider the derivative of the-vector function A(el, e2 , 63 ) or,
.in general, A( X, x2, x3 ) as a three-component vector in a rectangular coordinate system:

aA a}A1 e A2  a)A3
= -- + -eg + --- '-

ax1 - xi xi ax iax3

-where A1, A2, A3 re the componentsof A along the -unit vectors e, e2, e3. Without-be-
ing too concerned over the mathematical rigor, we may formally regard

a)as "4equivalent" to y
\ay+/

assuming A can be expressed in terms of both x and y. Because of the implicit relation-
ship between x and y (or ej and Pi in our problem) we may furthermore set

/a/a EA
as equivalent toj/3A Fa_'Pi)"
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The reader may use the expansion of a three-by-three determinant and prove to himself that

where in that deLerminut each row contains the components of the derivatives DAlax i .

Now, to evaluate equations 3.68a and 3.68b, remember some simple rules on cro6s
and dot products:

X T1 X =O, rl X F2 ='r 3 , '*2 XT i =-r 3, etc.

T 1 ' I =1, Tj"1-2  0: ete.

To evaluate-the Jacobian (3A/aae 1 ) • [(aA/ae 2 )'X (AA 3 )]:

= 2 [ir1(l -cos26B) - -2 sin20B],

~.X : T3 X -- j(r 2 cos20B - r1 sin 20B

41rL,R
and-

S =(cos 20, - 1) cos 2OB + sin 2 20 1
I8F 2 E.

81r3
I-(cos 2 20B + sin 2 WB - cos 20B ]

16ff 3

= B s in 2 0B .

Equation 3.71

In equation 3.71, V is the unit cell volume, 6V is the unit cell volume Yn-iltiplied by
N1 N 2 N3 , and the-notation is somewhat misleading.

-Equation 3.74

The surface element given by equation 3.74 is the area of the rectangle swept by the
tip of U11 , -as e2 and e3 are varied (Fig. 4):
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dS- (R COS c 2 )R&((V+ P3 )

or, becau-3 p is-a fixed angle,

dS -R COS pd eRde3

=R
2 Los'OS$de 3 .

RCO5-P s

2C

Fig. 4-Gcome try pertaining to equation 17?4

Derivation of.Equation 3.75

In deriving equation 3.75 we -will- use, the expression -fi -s - sil =-A 2s defined- previ-
ousl byeqution 3,65. However-the variable e~ inow-refers-to the rotation -angle- fromi

any u0 to u Ti rotation -is defined in eqtiitior, 3.. huwt fence to Fig. 3.5,

-U 0 = + e.1T 3 X -U D_ = 1 uXB

=co!;xri + e 1 COS x * - sinlxT:3,

U0  csX -sin X7 1,

u11  s in(60 + 63 Yr3 + COS (0 + E3 ) [COS(U1+ E2 )T1 +si +e2)21

UB si1(60) 73 + COS [COS 'PTI + Sin frr2 J

21r 2X B BA ~S11 S yt- _j (U u) _ (U11 ..u) -U11  (l - u + u0  U

Again we expand sin 6~P + 62) etc. using the approximation of small e3

sin P + C3 ) = Sin P + F3 C~OS 'P,

COS ( O+ 62 ) = COSp P f:.?sin V,
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cos( + - 2 ) cos4' - e 2 sin !,

sin( + e2 ) = sin' + e cos f.

Thlien

U1 = (S' o + E 3 cos 'P) + ?I (cos V - e 3 sin p)(cos 2 - 2 sin 4'

+ r 2(cos 'p - E3 sin p)(sin tP + 62 cos ,)

" T3 Sin-p + T3 F3 COS P + T1 (COS VO Ps -0 - E2 sin P cos -C 2 sin (P cosp)

+ T.) (cOs sin e - 2 sin Vp sin .+ 2 cos ' cos p).

Rearranging in termsof El, e 2 , E3, we get

2ff 2ff
SS 2cos V 2 (r 2 cos j -r, sin-')

2-ff+ - s 3 (-sin cos Ir"1 - sin 'sin v!r2 + cos 'tp 3 )

The minus sign in the e1 term is missing in Zachariasen'sbook and needs to be corrected

Derivation ofUEquation 3.77

Equation 3.77, as derived using equation C 75, is( aeA [faA\ NJa: COS _T2 2ffr,
Cos = so sin 1 cosr3)I

- Cos X cos2 p sin.

In this drivation only those terms in TI1, r2, ij were written out which would give non- - - -
z7i €contribution to the result of the cross and dot products.

Derivation of Equation 3.79

We know that cos 20[f is the dot product of incident and diffracted unit vectors:

u0  11  cos 201.

Let us decompose u0 and ul along the three directions 11, T2, r73:
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UB = (cosX - SinXr3)

and

u =(sinpr a + cos Sp cos rI1  cos sin r 2 ).

Taking the dot-product;

u0  uif = (cos Xr I - sin Xr 3)- (sin ,r3 + coms. cos o 1r )

or

cos 2OB cosX-cosipcos r - sinXsinp.

Two c-rors exist in-the Za-chariasen version of this result (equation 3.79).

Equation 3.80

In-the-powder met.hod, the variable --1 is associated with the variation in the Bragg-in-
cidence angle, that is, the variation between u0 and uo (Fig. 3.6). If all directions of inci-
dence become equally probable, then-in the cakulation of intensity-a required term is the
probability of finding a photon at the glancing angle-in the range of 0B + e 1. and 0t n * +
do-, as a function-of-0

n . To-do this we draw the cone of axis By- and semi-apex ang!e
+ EI) (Fig. 5a). Now we-change 0B t F I to 0 n + + dt (Fig. 5b), and we

-calculate the fraction-ofphotons that arrive at the apex of the cone through the small area
of the circular strip. We find

area of strip - (2ra)rdO [2,, cos(OB + F )]rdF.1

=2rr2 cos (OB+ cjdE,

The-total area is that of the surrounding sphere: 4-r 2 . The ratzo of the two areas deter-
mines the probability w d~1 (equation 3.80):

Fig. 5b-Circular cone of Fig. 5a plu. an
Fig. 5a-Circu|zr cone about the veclor B1! in.T-emented cone



22 MOHAMMAD FATEMI

area of strip 2r 2 cos ( B + el) del
area of sphere 4rr2

-cos 0B del.

This probability factor must be multiplied into the-intensitAy expression according to
equation 3.81. Thi surface element-for the ionization chamber is easily seen to be R de1
R de-2 = R 2 delde2 , and equation 3.81 follows.

Derivation of Equation 3.82

Calculation of A follows the same line as in previous sections:

2s= B H
4(U11 -'Uo) -( -- U0 ] - SH,

U11 = e33 + COS(OB +S 2 )T2 + Sif,(Og + 2 )7l,

u BinOB71 + cosOB72,

u0 = - sin (08 + e1 )rl + cos(0 +6 l )r 2 ,

u0B  - sin O0- 1 i 
" cos0g'r 2,

cos (0B + E2 ) "  cos 00 -sin 0 e 2 ,

sin (0B +62) ;zSin 08 + 5_2Cb siB,

2r
"'[EF373 + (CoS0 B - sin0- 2)7,2 + (sin 0B +2osB']

+ - [(sin 01 + cos_0Bs ! )7l - (cosO0B - sinOBsl ) "2 ]

2ir+ -[-cos 0172 - sin 071 - sin OB"7 + COS 0B"2]

2r 2,r 2,r

= -z! (cos08B" + sin 0BT2) + "-- 2 (cOS 0B1- - sin OB'2) + "3T3.

Equation 3.85

As stated by the equation directly above equation 3.85, the intensity expression is
an expression of the form

all 0 QSV
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where 6 V is the volume of the crystal (not tht 1nit cell volume) and Q is -an expression
which in the kinemitical theory is well defined , no:-a s the ey.perimental method is
given. In the powder method; tlire is-aJo the musplicity factor which takes into ac-
count the- contribution due to different atomic planes of the same type. in this connec-
tion it is important to read carefully the-paragraphs-of section 7. following equation 3.85.

Pages 111 and 112-

Paragraphs on pages 111 and 112 contain important information regarding the differ-
enees~between dynamical and kinematical theories. A large group of mathematical defini-

tions appears here with liat of thedirection_ of n (page 112).

Equation 2.88

In equation 3.88the vectors Do anl Po-inside the crystal medium replace Eo and
ko outside; Both these numbers are very nearly the same, that-is, D o - EO and k0 - PO
subject to equation-3.89. To solve the problem two~conditions must- be satisficd: Tne
first.ois-the boundary condition that at the surface-(where n- r- 0)

external incident wave - internal incident wave:

The second condition that must hold is the "self-consistency" of internal waves (incident
and diffracted).

Derivation of Equation 3.90

-"-According to equation 3.89

PO =k0(1 + 0)

or

2 +2 2 2- kogl, + 0)- k2(1 + 280).

Now we set
DOicio-i2aPo r = E P A;0OWi2nkO r .

At .he boundary we have

eiwOt-i2uP,'r = eikot-i2iko'r

or

-i,-P~ i2,-ko-r
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When two exponentials are equal, the exporents are equal, to within an additional 2r.

O *r = ii -r.

Since adding a zero term on the right does not change the equality, this zero term can-be
in -the form of a dot product wit!' r. Specifically,

r = k-r + An-r,

where on the surface n o r 0 and the factor A is necessary to make the equation valid
everywhere esc:

PO =k + An.

Thus outside the crystal we have "A 0.

To obtain equation,&;90, we square the quantity Po obtained above, that is, dot it
into itself:

O + kn k0 .

We had p2 = k2(1 + 250). so that

k2o + Mn -ko k2 + 25k20k 0  0&k

or

2A = 0k 2  8oko 85o

n--ko n -uc TO

Therefore

Po -k + An k + - n-o,,

'o

where -'o is the direction cosine of the incident wave:

cos5 = yo n uc0.

Equation 3.91

Remember that the product of the electric field and the-dielectric constant defines
the displacement vector.
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Equation 3.92

The subscript H refers to a set of Miller-indices hh 2h3 . One may how.ever assign an
"order" number 1, 2, 3, ete. to each set (h1Ih2h3 ) or diffracting wives in equation 3.92.
Thus in equation 3.92 I may be a number like 1,-2, etc. rather than a set of three num-
bers. Also notice that the total diffracted wave 9) is the sum of several DII multiplied by
phase factors.

Middle of Page 113

It is important ko keep in mind-that we are dealing with a two-wave diffraction (Do
and D11). The interested reader may search the recent literature for three-beani diffraction
studies.

Equations 3.93rand 3.94

The dielectric constant of a crystal -lattice-is only slightly differentfromunity. Vie
difference-between the constant and unity is approximately-4ircr, and this quantity is a
function of the pedodicity- of the lattice.

The factor 47aix is a scalar quantity. From optics and electricity-and-magnetism theory
we-know, however, that the dielectri6 constant has-both real and imaginary parts and -the
imaginary part is related-to the linear obsorption coefficient. :(We will consider more -e-
tail on this- point later.) W-can therefore expand the quantity 4rax into a Fourier seri--s:

S1 + 4ra = I+ ,

where

42111r

Remember tbhat 81, is a vector of the reciprocal lattice and the productBj1 r is
dimensonless. Thne subscript HI refers to any one of a number of possible-sets of three

Miller indices that give rise to diffraction. The components 41j of the Fourier expansion
can be evaluated by the usual method based on the orthog6naiity of the exponential func-
tions:

41, = -2 J , i2 ,nI'r du

(the summation is over H, !he integration-is over du). 'Thus, every vector B11 or sl! has
assigned to it a subscript H for which a component 411 may be defined.
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Equation 3.95 -

To get-equation 3.95 froin equations 3.41and 3.42, we note that

2

T-O - aiz~
F e-2 f4w d

e2 4v

or
4re2

where we call the particular F, related to the subscript H, by the symbol F11; thatis FH

is-the value of structure factor F for s 2 B 1.

Equation 3.96

We have
1

where ' is a small quantity ( i << 1).-

The real part of -the refractive index is the factor responsible for dispersion (because
•i is a function of wavelength). The imaginary part of n leads to a phase shift in scatteing
or to true absorption.

Equations 3.97

We had, from equations 3.95 and 3.41

4 Ira(1 + +h02
I

= V' V"



NRL REPORT 7556 27

where

4,re 2 x'

MW-1

and

The-expiession-for index of refraction thus becomes
¢

n =1+ -~=1+ +("if" o1t+
2 2 2 -2

'ThIe imaginary part-of n is 1/2 0".

Equztion 3.99

When both it and l, are expandefd in a Fourier series, we have

(. = Z ei2w '

H

and

H

i~itb

ph ispeirBy-r du.

This iinplies

= ~~ci2nar-rdu
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and

If

2,.
Wot

then

2r 2v 42 -I " ei2nBnrrdu"
-/'I/- ~ ~ ' mwH 7 C r

- With co = 2r,(cA)

2e X fvPt= mc2 y ei i'd"

Equation 3.100

To obtain the average coefficien,-the -et of values (hih2h3 ) are set at zero; that is,
the-phase factor is 1.

Equation-3.101

The averagereal index of refraction is 1 + (&A,'/2), so that 1 = o can be obtained
by the same method we used for equation 3.100:

4;re 2 F0  4irc2

2mwV m(+, j do

4ffe2

2/

where equation 3.42 is used in expressing Fo, and where

fj R du= Z
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because it simply stteslthat the density oi electrons integrated over the entire volume
should give the.total number~f electrons (of type j).

Equation 3.102

The first sentence of section 9B is impotant The more familiar form of equation 3.102
is

) c 2 af2

which may be rewrilten as-

Derivation of Equation 3.103

LAL us write

Then

(1- $ )= ciwoZl flS-i ,,ci2e; 1 t'r - " o Li 2 f ',

(1 eL C141

fHere II and L are equiraknt dummy Ir4fccs. Wd expaid4 ir- a Fourier series,

K

and obtain-equation 3.103:

(1- , e w [2 Dnc' "' - DjL ] L" KJLi!;

Li 3
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Deriva ion 6f Equation .104

Starting with equaiion 3.103, we have-

[H £ L

z i

e" [ZDC4*r - i -24lj
~herl

Deivation of irpatk 3.105a

From equ.Don3.104

~X~ Xl .~ P ~ M-z p g t i -C )J

and --om eapati 3-92

c C-

Tberfore,

*gj X .6 X (D --C. l p-H 1.

g X 11 X U -3] H X -
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To wtpand this, we use the rule in vector products that

A X (B X C) = B(A C) - C(A B),

so that

P11I X [(DH1 - CH) X PHI~ = (Di1 - C)P- M~PH (D HI k Dff

or

C-c1 , - P [OH -c = H CH) ( - 1 1 )DH.

Now

OH (DH-CH) = DI - PH CH P - CH

because

PH'DH 0

(which can be seen by d -tting both sides of equation 3.105a into PH), and we have from
equation 3.104a

H " CH -P ' ?H-LD L)

which we insert along with equation 3.104a into our last equation in the preceding section
to obtain

[ D L
* 

H - H-LADL = (k 2 _P2 )D//.

L

Middle of Page 116

'"Transverse" in the disciusior folloving equation 3.105b means having componentsc
normal to the direction of pr,,,tgatirai Mathematically this is writt-:m as DH  H P1/= 0,
where P11 is the wave vectoiK. 'The ,latina V" -J = 4frp, where p is the charge dnesity, is
on of Maxwell's cquations. Us;ng this, we get

V " 5) = V " DlCI wOti2 
lIr

H
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III

since applying the operator (V) on the vector sum D is equivalent to the product P11

!Dh, where P11 is the "derivativc- c r the exponent. Thus

Dil " il = 0 implies V 0.

This last equation is good for the oscillating part of the displacement -vector, since the
divergence of the static part is not zero.

Derivation of Equation 3.106

To solve the complicated set ef equations 3.105, we must use some approximations.
First let us assume that the Iaue .quations are not satisfied for any becter B11; that is, let
us assume that the -x-ray beam arr;ves at the crystal surface in such a way that the angle
of incidence is not equal to any Bragg angle with a "detectable" diffraction amplitude.
The-only component ofrD is then Do. Others are "relatively" zero; that is, tlheye is only
an incident beam of displacement amplitude Do. With all Di equal to zero, equation
3.105b will become

00(g 0" DO)t 0 - O0p0D0 = (k2 - 2)O

(because H and L are both zero). However Po - Do = 0, so that

2 2 2-0 0D0 =(ke -D)o 0

or

or

1

which is the first part of equation 3.106. Since 4o is very small, we may expand this ex-
pression and get

______ ko k 0  +10 2 0'

which is the second part of equation 3.106. Rememberdthat 1 + (1/2)4' is the average
refractive index.
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Equation 3.107

'r'n derive equation 3.107, rewrite equation 3.105b in the followirg way:

[O,-L(/P]I DL)AI - MLMJADLY - (L2 2)DA .

L

Since the summation is over L, each M refers to a separate equation.

For M = 0,

S-L(po DL)PO - O'ID_ (k 0-.

Since DL 0 unless DL = DiJ and DL = C-, ...'.ave

0-1( o D 1)Po + Oc(Po *,)Po -- - o32Do = (k2 -3 2 )Do.

We note that Po. D0 = 0 and set 0_t1 -- to obtain
OT, (PJo" Oj)P0o- OF-{2! - /,Cp2Do= (k 2 -#2 Do,

4qy(0 01~ - 0 - 1

which ieads to the first of equaticns 3.107.

For Al * 0, the right side of equation 3.105b contains DAY, which means At H.
Summing th terms for L = H and L = 0, we get

Po(Pj" DI) , - Oo'O DI + 0'n i * DO)3D - = (k J-I)Dj.

Again the-first term in this expansion is 7ero (Pli " D11 = 0), so that

Oi1(ft 'Oo)Pjj - O/ !2 - 'fo3,Dt = (h?2- )DII.

Since DI! is a linear combination of ! anl- D,, it lies in the same plane as Do and P11.
Furthermore it was already shown that 11 -i )l, = 0; that is, P1 1 is normal to Dj,. Thus
the thrv" vectors P,,, Do, D11 are all in one plane and arrangeJ as shown in Fig. 6. The angle
bheLcn Du and PI, will be designated as X.

Derivation of Equations 3.109
Approximating /2 and 32according to equations 3.108, we get

ho an accrdin eqution

K _ .,". I I l I 11 i
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X D

Fig. 6-Vectors of equa-
tions 3.107 (all are co-
planar with the page)

k0 - Po(1 - i 0) ko - k2(I + 250)(1 - P(;)

0o - k0(1 + 20- 0)

2-ko(2o + o)

and similarly

22 - 0"(1 - 0ro) = o;+ 100 )-

To get the first equation 3.109, we use the first equation 3.107 to write

gig (Po )P D -O Do f D o, = -k2(25 0 +; O)D2

or,(remembering P0" Do = 0)

0 - jjk20(1 + 26 0 )DIID0 sin x -k (20 - 20)Dg.

In this equation the right side is a very small quantity, because both 28 0 and 00 are smAdl;
it therefore maces sense to regard the-factor (I + 28 0 )_as almost equal to 1. Then we get

(250 - to)Do - 4ff sin xDU 0.

Similarly for the-second equation 3.109, we begin with the second equation 3.107 and get

(25,! - OO)DH - OH sin X Do = 0.

Equation 3.110

In equation 3.110 a distinction is made between !! and OgE , that is, between the two
components when planes of the form (ORk. ) and (hkt) are considered. We will inter discuss
the conditions under which i)T may be set equal to ;It, although in most derivations we
will set the two approximately equal.
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Page 117: Normal mid Parallel Polarization

Let us remember the waves are transverse. Moreover, let us note that sin X appears
in the product rj sin X only. We will set sin x = 1 and assume normal polarization (Fig.
7). When the need arises, we will replace 'j' by -Pff cos 20 for parallel polarization. -

1 1 90 0

(sin x 
20I

28

•- -co 28 1
(u n -cos- 28)

-0

Fig. 7-Waves with parallel polarization (left half of figure) and normal polarization (right half of figure)

Derivation of Equations 3.113, 3.114a, and 3.114b

Starting with equation 3.112, we have

pit fk'+ 1160n +B
7o

P2 = p, p = (k + 0 0 ,n + B) (k  + l n + B,)

0 + + B 0  + 2mo,-B..+

+ 2 0)• i( Vic
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Irnoring k0g5/, 0 in equating the preceding equation and equation 3.108, we get

(1 + 2U.n + 26okoBtfn + 2k. B11

= .k + o2  + o 
or

or

u 0,

n k

+ ~o

The quantities 60 and 6i1 are related to the internal incident wave and the internal dif-
fracted wave. The wave vectors PO and P11 of the internal incident and diffracted beamare related to the incident wave vector k0 through the pair of equations 3.108. The quan-

tities 50 and 61, are obviously small quantities, so that there is experimentally a very small
difference between the various refractive indices. Equation 3.113 enables us to evaluate
61- as a function of 50 and the wave vector of the incident beam. 'rhe quantity 6o itself
is related through equations 3.10r) and 3.106 to 410 and thus to the average refractive index
of the medium. From equation, 3.113, 3.114a, and 3.114b we see that 51, contains a part
which is approximately equal to 6o plus another part o/ 2 of the same order of magnitude.

Derivation of Equation 3.115

From equation 3.114a and the relation B11 = B - k

n • koe

n "(ke + kB - ko)

Numerfcally !h'J -1 0 I1, because the wave vector does not change its value by much in
diffraction. Thus

LI
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n k0  k0 n-0 ,
n. kB k-.,, -,'i

Derivation of Equation 3.116

Referring to the Laue diagram in the reciprocal lattice (Fig. 3.2), we can easily write

11  - 0 .

Substituting this the expression for o (equation 3.1 14b), we get

ci = - [ (1)2 - 2kB kB + 2k0 -k,, 2ke kBI.

The first two terms and the last term cancel out, as they are approximately equal fnd con-
tain no cosine term. The remainder is

1 [ 2kcos 20B + 20cos(0+O0)] 2 cos 208 + 2 cos (0 - 0,).

To get rid of cos 20B. we rewrite 0 + 08 as 208 + (0 - 098)6r, in turn, as 20j + AO and
evaluate

cos(208 +1W) = cos-2B- co AO - sin 2 0B sin AO

cos 2 0B - (sin 208)(0 -0B).

Substituting this in the expression for a, we get

ct = 2(srn 20B)( O B  0).

Derivation of Equation 3.117

B1The ungle between u0 and uO is not 08 - 0, as the vectors u0 can lie on a cone with
Bconstant 0 but changing the angle between u0 and u0 (Fig. 8).

We must resort to some mathematical tricks for the evaluation of the quantity (0 -
0) sin 20 in equation 3.116. We write

'o

Fig. 8-Geomet;, pertaining to the derivation of equation 3.117
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018 + 0 20 (OB - 0)

or

cos (08 +O0) cos [20B - (OB - 0AJ

Now

cos (20B - (OB - 0)) = cos 20,U COS (08 - 0) + sin 20BU sin (%' - 0).

If Oft 0, then Ofi - 0 is small, so that

sin (0B - 0) Oft -0

and

-COS (011 0) 1

It follows that

cos (08 + 0)_ -- -os 20B + (sin 20 B)(OB 0).

First, to evaluate COS (08 + 0), we consider the plane which contains the incident and dif-
fracted beam (Fig. 9). The angle h'tween the diffracted beam at the Bragg angle and the

3: -~incident 1weam slightly off the Bragg angle (the angle between U0 and u) iB I %O + 0. Thus,
with~ reference to Fig. 3.5,

COS (Oft + 0) =UD U11  CS csspco CO 4 + F, COS XcoS sin ~ sin 'sin p.

Next cos 20D according to equation 3.79 is

cos Xcos pc C ' - sin 'sin ip.

From these last three rejatiorts we see that

(OD -0) sin 208U e I COS Xcosp sin J!

U

U0

89 05

Fig. 9-Geomnetry of the angle between uj -- d u1B
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as given in equation 3.117-resulting from the "simple consideration" mentioned in the
sentence prior to the equation but rather tricky.

Derivation of Equation 3.118

Rather than expressing a in terms of 0, we consider ?, as the independent variable.
So (equation 3.114b),

k H

where (from equations 3.4 and 3.2)

B IB B _BX ~ '% \ B X

- +) 2  cos 2 0B:,B =), 2 ) oB2 0
B B B

Similarly

2k'B 1  = _2± 1 + 2- -cos20.

Thus

2 0cos 2 0B - 2 2o 2Cos2B)
41 4 B OXB 'XOXB

X 02 [T2 cos20B) - ~j(1 -cos 20,)]

XO (1 -cos 20 B )  - 1

(I csn0(os 0)X_AnB 1

Equations 3.119 through 3.26

Equation 3.119 is derivcd using equation 3.113 in equation 3.110, the so-called dis-
persion relation, under the assumption of sin X 1 (normal polarization).
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Substitution in equation 3.119 in terns of x (amplitude ratio, D111Do) leads to equa-

tion 3.120. Either in terms of 60 or in terms of x the roots of the quadratic equation are

given in eqUation 3.121 or equation 3.122. The fact that two 6's emerge from these equa-

tions implies that two internal incident waves exist. Moreover, for each x there is a ratio

between D11 and D0 . Hence4wo diffracted waves exist also. It is clear that thb values of

these waves should correspond to the values of 66 and 6"0.

We write the total incident wave inside the medium as a two-component field (primed

and double primed)

eiwot-i2nkrDIe-4qlt + D0 e4E2t],

where , and '2 arise from equation 3.90 in the following way.

Inside the crystal one should use P, rather- than k0 , which from equatio'n 3.90 is

P c co Iko'On.7o

The additive term in the exponential becomes the multiplier in the form e- '%Pt , c'12t,

with

7O0

P2 = 2vrI°,--'

and with

t = n * r.

The quantity n - r defines the vertical distance from the origin to the point of observation.

It is obvious that the diffracted beam has the -ame form, the only difference being

in the addition of B11 to k' in the numerator and multiplication of x, and x2 (amplitude

ratios) by external amplitudes. (Remember D11 = xD0 .)

Equation 3.127

The question of the boundary condition is rather involved and is broken down into

"Laue" and "Bragg" cases. However, the only additional boundary condition which can

be written down is the equalty of amplitudes at n • r = 0 'crystal surface). Here the in-

cident wave outside is E' and that inside is the sum D4 + D", so that D'0 + D Ec.
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Section 10: First Paragraph

Comments on the sign of b should be read carefully.

'Equation 3.129

Substituting t n -r 0 in equation 3.125 and setting the quantity equal to 0, v. -
get 3.128:

xiD'o + x 2D" 0.

This together with equation 3.127 gives us

= X 2  
E&-

x2 -x 0 x2 - xl

Equations 3.130 and 3.S31

The notations 10, I have both an advantage and a disadvantage. First, they are con-
fusing as to which is the transmitted incident and which is the external incident wave. They
are at the same time mnemonicaly useful: interchanging e and 0 is like interchanging the
incident and transmitted waves in the Laue case.

The easiest way to remember the-symbolism is to think of the ordinary It as the

original beam intensity and of the superscript e as denoting "external.' To get-equation
3.130, write

jx ID -' ' +.x2 e- ' -j2

v01

and

(xoD'oe- + x 2Dc-'i2')(xD' .-411 + x2D;Cii2')•

= XI - e - "

- xJx.(c' - C2 ) 12 ,2
X0) - X

where

anid

C2 = e-i;-2t



42 MOHlAMMAD VATEMI

In the same fashion equation 3.131 can be derived for thie transmitted intensity.

Derivation of Equation 3.133

Equation 3.133 is obtainedI by working out equation .3.130.:

In deriving equation 3.133, one mtL,; remember that 41he quantity 111/10 is teal. 'TIbs means
4:'AL he expres5ion inside the vertical lines in equation 3.130 must firtf-be expanded all the
*iavto -separate its-real and imagiiiary-parts. That expanded expression-is then multiplied
by -its coimplex conjugate.

The- qualtntities ic1 and xt are L'e two roots; of -the quadratic- equation 3.120. From
elmetay-rmiafi~5nsof the quadi tic equatios vm know tiraLif

a2+ bx + c =0,

tien

C
=IX a-

and

Hfere wre ha-.e

Hence

lrlx,12 - 62 F112 bj

'7h#. quantity x., -x, is the difference betweena the two roots , and from equation
3.122 we ind

I -. :!2 4jq +:!
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C 11nce

b2 :OHi2

It renin~ns to calrulate fc - c4r. Be definitim

*here

Mea, f-,- c22enbe cecirlated c and! cv hne to be wiiktkoa i exp%~y ina *=
im2v.nazy partt szard ~ b inpz t o re~s =d fir=20raz s
where ve hare from equatioo 3.123

1-b.

and we delima f7 v + i frepr-dEi of the rab of q and z4 'Thu

in wichid

1-b..- b
S 2 V + f
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We

H~ere, 4 aod £ii!3.2)XI b+VO w) 2e r -#-- q

I3-b-

we eae

2-_ j

NOW ± 2
-
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We define

e2-,lO¢'O( l12)[ (,H+70o)l tHTO)]tO -- CePO!,

wiuere

Next we rewrite 2 (cosh 2aw - cos 2av) in terms of sinh 2 aw and sin 2 (at). We recall
that

CM2 + e- i 20
cos 20 e

.2

and

ei -iO
sin 0 e=0 -e

2i

so that

-- O - e 2i 0

sin 2 0 = 2iO e +2
4

or
e2i0 + -2i0

2sin2 0 = e 2 - cos 20
2

or

cos 20 1 - 2sin2 0 .

Similarly

csh 20 e20 + e- 20

2

mid

e0 -e-__ _0
sinh = 2 '

so that

20 + e-osinh 0 = 2 -1=cosh -20-1
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or

2sinh 2 0 + 1 = cosh 20.

(Both these relations could have been looked up in the handbook.) Thus

2(cosh2aw - cos2av) = 2(2sinh 2 aw + 1 - I + 2sin2 av)

= 4(sinh 2 aw + ;in 2 au).

Finally

le= b2 jHj2e-pot sinh 2 aw + sin 2 ao

n (q + z2j

with

t= (To + T , to0

In the fashion in which the quantities b, q, z are defined, it seems as though tqj' is absent.
Closer examination of equation 3.133 shows however that q + z 2 contains 4q7, so that the
expression is not asymmetric in ViH or Og. As it stands equation 3.133 is quite general;
there are no restrictions such as centrosymmetry of crystal structure, etc. Equation 3.113
has been used, which came about from an approximation of the form 3.108 and implies
that the relationship 3.133 holds when two internal waves ex.q.t and the geometry of "near-
diffraction" is satisfied. (An operationally meaningful measurement of diffracted intensity
requires that in the Laue case the intensity should be evaluated at n * r = to whereas in
the Bragg case it should be evaluated at n • r = 0.)

Page 121: The Bragg Case

In the Bragg case, one assumes that tle ditraction takes place toward the face of the
crystal closer to the incident beam. We aze not concerned with the situation in which a
mixture of Laue and Bragg could take place, as this implies more than one point in the
reciprocal lattice &atisfying the Laue equations and interferes with our original assumption
of two internal waves only. (See page 116, sect-on 9C.) Again using the always-valid
relationship 3.127, we get equations 3.136, which are similar to equations 3.129.

Equation 3.137

The quantity Ill/jl for the Bragg case (equation 3.137) is evaluated at n • r = 0,
whereas IM/Io is evaluated at n , r = to . Equation 3.137 can be derived with a little more
tedium than was equation 3.133 (but along the same line), because it contains more terms.
This derivation is left out of our notes.
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Although this equation does not contain an explicit ab ;orption factor (e-pot), this does
not mean that absorption is not present, because absorption is related to the polarizability per
unit volume, whose value imposes a numerical condition on 11 and ; g. In particular, as
stated at the cnd of the second note that follows, zero absorption means 111H" = 10,112 .

Page 122: Last Paragraph

Figure 10 may clarify the geometry of incident and diffracted beams in the evaluation
of the integrated power ratio. It is clear that the assumption

so Jbi

holds only for small depths of penetration. An expression could be worked out- fcr the
ratio SiiS0 as a function of depth of penetration. This, however, would be irrelevant to
the present problem, because in most cases the beam size is indeed large enough compared
to the penetratik'n dnpth to satisfy the above relationship, and if the penetration depth
were large, the relations PH = IIjl!j and P 0 

= 1080 would not hold true, as the intensity
would not be uniform across the beam (due to absorption), and both relations should then
be replaced by some sort of volume integrals rather than simple linear products. Note
also that the only case its which the cross-section areas of the incident and diffracted beam
are equal occurs when the diffracting planes are parallel to the surface of the crystal.

(a) (b)

Fig. 1O-Geometry of incident and diffracted beams in the evaluation or the integrated power ratio for
the Bragg ,zase: (a) L,.ge depth of penetration and (b) Small di Fr of penetration

Page 123: First Paragw-nh of Section 11

Remember that p0 wus obtained from equation 3.100 and depends on the imaginary
part of the polarizability per unit volume. Therefore

41" = 0. oC = I + @'.

Furthermore the Fourier coefficients are not necessarily real, but they must satisfy the con-
dition that inverting the indices H does not change the value of tH (see equation 3.94):
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ei2nBt!r = e-2nBff-r = ei2nBllr

or

Therefore

OH Off = OH = OIRl

Page 123: Power Ratio in the Laue Case; Derivation of Equation 3.142

With zero absorption equation 3.133,becomes

IH = sin 2 (au)le = _ b210,11
2.

I0 q +z2 1

We convert IOHI to KI'PnI, where K is the pc.larization factor (1 or cos 20). With q
bI'Pi 2 K 2 and u = r we have

r - z2

b2i4'1 12K2 si 2 (vI'IK 1+bIP1 K2

I0 K2bq1,12(1+ b'PI2K2)

which from the relation PHI!Po = (1/lbl)(f1 1 /lo) becomes equation 3.142, in which (defini-
tions 3,140 and 3.141)

1_ f(1 - b)O 0 - bctl

A = a-VrbIOiiK, Y =  = -

From the form of equation 3.142 the variaole y is dimensionless. It is related to at
through tne definition 3.141. However do not confuse this a with the c (polarizability)
as defined in equation 3.93! The dimensionless variable y I -.s a particular advantage over
the other variables (0, A, e ) in that it makes the calculations "coordinate independent."
Once the results are obtained for y, they can be easily rewritten for other variables.

Page 124

In the Bragg case it is necessary to check whether vr'7z-2 ;s positive or negative,
bcveo,:: b < 0. The separate solutions are derived in equations 3.143 and 3.144. Note the
remark dirctly under equation 3.144.

A particular elegance of the use of the y scale L, that it makes the diffraction patterns
symmetrical (since changing y to -y does not change the form of equutions 3.142 through
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3.144. On the other hand the center of the diffraction pattern, y = 0, does not necessarily
corresond to 0B but to 0 0 or X0 as defined below. With reference to equation 3.123

1-b b
'Po A + =o

or

(- )0= -bc .

From equation 3.116 we have

(1 - b)4 o = -bot = 2b(00 - 0B) sin 2 0 B-

Therefore

00 OB +(I - b)V10
2b sin 20B

Similarly from equation 3.118 we have

= - o 20B
(1 - 6) 00  -4b si

or

X),B(1 - b)
S4b sin 2 0 'Po-

Obviously D0 = 0B and X,, = B only when b = +1. The center of diffraction pattern
corresponds to the Eragg angle only in the symmetrical Laue case. This is not true
for any other geometry.

Page 124: Last Two Sentences

See equations 3.95, 3.100, and 3.101. Remember that ip is zero (no absorption), so
that 0 is completely real.

' 0  0

Derivation of Equation 3.146a

From equation 3.131

10 x2 -x I  x2-X I  2 -x I -

I -- ic 2 (X
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Previously we had

=H b~ 2sin2 aU

I'T lq +z 2 1

Here the de.iniwinator is obtained the same way as before

1x2 x 112 = 41oA 1z2

The numerator is

Ix2cI - XIc 2 12 = X + X2 xIx 2 (c 1 4 + c;,)

I 4+ X2 -XIX 2 [e'6(2 'P1) + efIV)
This factorization is possible because x = x* with-no absorption. Note that the q's arereal; if they were imaginary or complex the above step would have to-be-done more care-
fully! Thus

X 2 CI - X =C212 -X + X 2
- 2XX 2 COS I(S 2 P)tO],

where

( -k0t10 (8 -6'") = 2a( - 6'o),

in which a was defined in equation 3.134. With

6- 0-- _ ,

we get for the numerator

numerator = x2 + x2 + 2xIx 2 - 2xX 2 - 2xIx 2 cos 2av

= IXI -x 212 + 2xlx 2 (1- cos 2au)

x1 +x21
2 - 4b i sin2 av.

Observing the expressions above for 1,1/Ig and I flo, we have

or

= P1 1i
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or

Page 125: Bottom Paragraph

See equations 3.116 and 3.118.

Equations 3.147 through 3.149

In the four relations 3.147 the ratio P111Po should first be expressed in terms of the
variable with respect to which the integral is calculated. For the variable y this quantity is
already worked out as equations 3.142 through 3.144. It is therefore necessajy to trans-
form the integrals for the other three variables. To avoid the difficulty of 'he precise deft-
nition of domain of integration, we-conveniently extend the limits to (-, +oo). Then the
integration can be perfo-_..-4 by multiplying each integrand-by-the partial derivative of the
variable considered with respecc to Y, For example, dO = (QO0I/y)dy, etc., where 8O/ay is
then a constant and comes out of the integral sign (the relationship between all these vari-
ables is linear). In this fashion equation 3.148 leads to 3.149. Once again we-see that
only Rj, is essential for any calculation,

Page 126: Diffraction in Thick Crystals

The power ratio 3.14? in the Laue case shows an oscillating rqature that becemes more
and more pronounced with increasing A. An uncertainty in the thickness equal to 10 - 3 cm
or in A equal to 7r/2 justifies "ne substitution of the sin 2 term by its average value 1/2.
We arrive at this uncertainty through the following estimate. We have from equation 3.140

A = :fkgK ,111I -

or

At0
AA = 7rkoK~l, 1I

For AA =r/2

2

Since

pt mcj 2 V

0Kn2F
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with

e = 4.8 X 10 - 10 esu,

k0 = 1019,

PH = 10 ok 20,

V (3X)3 -- 30 X 10-24 cm 3 ,

m = 9.1 X 10-27 g,

this gives

At 0 - 10 - 3 cm.

Equation 3.151

The half-*idth value is determined easily on 0 and X scales by the same method as
equation 3.149.

Equations 3.152

The evaluation of RI! = x/2 and other R values as in equations 3.152 are the easiest
for the Laue case with no absorption. These again are straightforward and will not be ex-
plained here.

Equation 3.153

The average polarization factor is the value customarily used in a simple diffraction
experiment. However it should not be assumed that this value holds for various geomet-
rical arrangements, as encountered for example in the double-crystal spectrometer.

Equation 3.154

In Equation 3.144, v -y2 is physically meaningful when LYW < 1. Hence, as A in-
creases, the ratio Pl(P0 approaches unity, because both the numerator and the denomina-
tor contain s:nh 2 A Tr'?. For very thick crystals it follows

P! 1 when LY1 < 1 and A >> 1.
PO

We had previously (!ast paragraph on page 122)

fIf = - /it
P0 IbI I
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or

1 I_ bVI= I 0 =1 with b < 0

or

111lY1I + 71e= 0,

which shows that the (algebraic) sum of inward and outward flux equals zero (total reflec-
tion). This holds for the range LyI -- 1.

Derivation of Equation 3.155

Equation 3.155 is the result of evaluating the average Pll/P for thick crystals when
[y1 > 1. We begin with the expression for PII/P0 given by equation 3.143:

P11  sin 2 AVy 2 - 1

P0  y2 - 1 +Sin 2 A r "

This can be rewritten

sin 2 AN/y-2 - 1 y2 - 1 + (sin 2 AV' y/3- I) - (y 2 -1)

y 2 _ 1+sin 2 AVrT- y2 - 1 + sin2 A VN/'- 1

1y2 -1

y -1 + sin 2 AVyT

For large A therefore we need to average the second part only. We are interested in
an integral of the form

1 +6A Y2 -1

A y 2 - 1 + sin 2 A y T A,

where 6A is chosen such that the integral goes-between maximum and minimum. W'thout
setting the limits of integration and specifying the value of 6A more exactly, we evaluate
the indefinite integral. We let

y 2 _ X1x2 , x > 0.

"'hur
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I1 fy2. (ysj2 A T y2_f dA
T A- - A X 2 + sin 2 Ax

1 y2_ 2 - d(Ax)
x SA x 2 +sin2 Ax

Y2_1f dz

A6A Jx 2 + Sin 2 z

From a table of integrals

dx = signa' ( b= aretan tan b
j a4-sin2 x X a /Va+ b)a

or

I' _____ /x2+13 - arctan k - tarzX2 + sin 2 z X/T2 X 2

The limits of integration were ,et at At and A, + SA. After multiplication by x and re-
defining the variable, the limits are A x and (AI + SA)x. Hence

fx2n2z 1/fx2 i3x {tn tan(A +-SAl x

-Ffr ta n- [, .x

Since the value of A] is uncertain by an appre~ciable amount ( rj2), we choose A 1x in
such a way tha tan Alx = 0. The value of the second of the twco terms in the braces is
then 0. For the first term in the braces we should evaluate tan (AI + 6A 1 )x. Since tan
Alx = 0, tan (A1 + 6A 1 )x = tan (MAlx). The value of this quantity depends (for e~zch x
in the problem) on the value 6A1 . We choose the smallest value in terms of x that makes
1h1, quantity tan (64 1x) a maximum (we do not care for other values of 6A x)- So we

-must have MAlx = r/2 or At= w/2x. This is the value of 5SA1 that gives the average of
the integral, which should be evaluated between the !imnits A l and A z + 641. Reinserting
the multiplier (y2 _ 1)Ix6A that was in front of the integral, we get

y2 - X 1 ir2 1 y- ____2__ 4_____ 1

7rI~V~+) - ___ _ - 12

Ax 2 +22X2 +1 {y2 _ )y2  " 1

The complete expression for eqauation 3.155 is now
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The relationship 6.A = xI2x ;mplie- th-&for smalix, that is, y 1, 6A 1 can be many
times x!2. Ihowever as x, rrnd thferefore y, irzcveases, up tox - 1, the %-lue of;A1 ap-
proaches ,42. Fo ver y large = or y. sensitivity in A decrees to a fractionif Sr, it is
therefore important to indicate-the ranr of applicability of these results. -C4 si-.clt.,
drawn from equation 314 -are left up to:the:reader-

Top of:!,e 129

TO eH uve R, wein-ePra

aP-L d+ P--OL dy- Pf dy

- -1 '2 + -~ -1= z.
2

-iher expressions in equxior 3.156 follow the same way as for e'atiou 3.152. Note
the.

Rig (Bragg) = 2RYi (Laue).

The eadkr- may be able-.; give a simple plausibiuity argurent for this.

Page 129, Uin Crystals

For the v'gry thin cW-U2, w;.tb A very -Small, one of two things may occur. Ira the
equation

either y is small, in whidi case the numerator is much smaller than the unity and the ratio
Pj1/Po is negligible, or y is large, in which case y 2 + 1 f y 2 and equation 3.157 follows.
The same reasoning applies to equatiors 3.143 and 3.144.

Comments Following Equation 3.159

The comments following eqIuation 3.159 As.ould be read in the light of our redefinition
of half.width according our note pertaining to the middle of page 101. When D is small
'so that the entire crystal plate contributes to diffraction), we may see that the definition
D = to (sin OB)IIy,11i is physically reazonable (Fig. 11).
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to

L r
(0)0

FRg. I I--iffract geoaetzies for thin c'ystals: (a) Ba4fca.e D -.10 and tb) LaueCpse:

Equation 3.160

IL mny be seen that the total reflecting power for a "thin" crystal is a linear function
of A-. whec-s G~tth ±cysa there is no A dependence

Equation 3.161

We write

A - V'T_ _ I al = .11. YJ! 1 ,
7o

K = lorcos20.

-0.

and

r:- j; =* j12- 1 2 IF, -
~" m(2;re)2 V - - jIF,.

Therefore, from the last of equations 3.160,

X 7A I r1 KX Z~kotov"5TK 2  l,1 2)

.2 Sin 2 0B N/II 2(sin 2 0 B )vo

which becomes after taking the mean for normal and pa."lA polarization

?, I~o( + COS2 2O.q\ IF11 2X4 ( 2 \
-yo 2 /2(sin 2 08 X2 kncV
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to

In taking the mean we have written

i(KI (+cos 20).

Page 131: Top of Page

The paragraph portion at the top of page 131 contains aome very important remarks
regarding kinematical and dynamical theories.

Page 131: Cr%.als of Intermediate Thickness

Setting y = 0 in the Laue expression ($in2 A /jI.1(1 + y2 ) (for th' center of the
diffraction pattern), we see that Me value of.-sin A in-reases to I as A -: z)2. Thereafter,
it oscillaies between 0 and 1. Away froM the center, that is, for y ' 0, the Laue ezpres-
sion is an Oscillating function of A. for every y in the problem, the higher values of A
lead to faster and faster oscillationv Gmtht is, the interference fringes squeeze together with
increasing A.

Equation 3.162 Through 3.166

it is easier to develop z; manageable expression for the total integrated intensity than
for the power ratio. A familiar mathematical tooi is used here: To ev-auate a function
f() it may be convenient to -st differentiate the hinction, expand the eera-Jti-e in a
Taylo." or some other infinite seies, and then reintegrate. A variation of this trick is used
-i deriving equation 3.165" Since we observe from-equation 3.163 ti* -4:0l4-ty with the

BesMel integral, differentiate equation 3.163,.express the rguit in the Bcssel-function
Jo(p), and again integrate.

Equation 3.166 verifies the previous results that for the ,aue (as well as the Bragg)
case, small A implies f14 = =A, and-for the Lue ccse alone, with very large A, RY1 =
w12.

Page 133: Bragg Case

For the range y < 1 see equation 3.154. Again, working out the integral 3.167 for
RIj , we find the numerical L-timates for large and small A in agreement wiih previously
derived eqjations.
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'Tederinition 3.169 is the sanme as tbe defbition 3.140- A r!og" refkce~ionex.ss
rebativey large Ff1 or OIy. Sudfng 2pprojuiae rzmtbe for f-S (cte etc.), we gx
A 15 X 103 Ktoi~ jwhereas for smna~erF 'eo3dfd LTh -
sumption that w wf-d*=!t-A o s

A = - X C <O0R

impm

<00

Thus the "effedhe JInex tlneiso" increse vi~h decrzkg AL The ideiowr~ip 3.169
controls the r=W of 2pp~caWity of the tbkst czysizla tfxrn far s~zrxm and wftk reitc-

Byq wee rne= 0 , w'ith "minus /L.- thAt Is, with rex-ed M~3er i&tc

Equation 3.172

Se equation 3.9S.

Bquation 3.14 i

In equztion 3.174 t fzdor Obrm is the sxe 2s So s shorm y eqLions 33)0.
3.106, and 3.10. Adso note ft uis~iat: the- k-a*et in the cjqxpoeri sho'Jd we cd
into r-

Eq!=tions 3.177

Both Fouricr comiponents of 0' wxi V' ave in vencrA cocnpex. We had previously
set the quantities logr- ~>7I, and Ir!g- equal to each other- Here honewer we mm-t
resov hem into real ard iniaginazy pzat s. For exzjnuie

iu 0j, + 12= 1 + jof;vf-iH)

2 + - *YIV

Now
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H + = 2 Re (j4HH )

We have
Vft*= ( 'rj44Ii)* = WHr -i'bHi ," -J /rl)

H ~ ~ ~ r-iUr H

and
Re (i4o4 /*) = Re [i(O4ir -'4iW)(W'r + 'ltii)

- I~ilr~~li Hr H

Fizially
1 ,j 12 -- I H I 2 + 1 0, 111 2 + 2[ 0 ', 0 " O f -" 1H .

H 211i4Hr HrH

Equations 3.179 and . k80

The-assumpiion of equality of the three expressions 3.177 is purely a matter of con-
venience. However it is clear also that for crystals without centrosymmetry the calculation
would become quite involved. From now on we assume that the Fourier components 44!
and 0' ! are real, and for each set of Miller indices we set

where in general 4,' is much less than 44 (due to the small anomalous part of polariza-
bility). Equations 3.180 follow from equations 3.177:

i01I 2  = IFI-!2  - P i12.

Equations 3.181

The definitons 3.181 follow the same pattern as equation 3.141. One difference is
in the factor 00, which is now cxplicitly written cut as

0 = ' + i0.

The factor I.,,,I in the denominator is now rewritten Ps I 4' 1, The expression for y in
equation 3.1- 1 is now rep.act-d by twv, expressions: y as befoie and g (absorption term),

Equation 3.182

'ro obtain N f + z (equation 3.182), we substitute q an d z2 from equation 3.123.
Equati,.-; 3.180 shiuld be used in evaluating q, and equations 3.181 shoild be used in
evaluating z 2 .
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Dcrivation of Equation 3.133

Within equatioj 3.182

V17 +21K+ y2 + +. iPT~21) +y2 +yI)Therefore the real part is VIT , and the imaginary part is ii/,/T1+- . This in equa-tion .3.182 gives, using the third definition 3.181,

au = KWJ; IWbRe[VTT i+ ( 1 c) V T

and

K/iaw =

A'so, ignoring K, we have

Iq +z 2[ = 102 +1w21 - K2 [ I2(1 +y2).

Comments Following Equation 3.184

I'. is the factor appearing in A; t'I and 0'0' appear in the absorption term. If 0<<qp;, then

/ °t << A.

Equation 3.185 is the approximation for- Jare A, and equation 3.186 is that for smallA(<0.4). Equation 3.186-is r-adkily integrated whereas one must resort to more elaboratenumeical techniques in calculating RY for larger KA.

Derivation of Equation 3,188

We first write by definition

2ka= 2 ± K] I =1= 21 q11",I ! Eot K
70 7 o I

0 0o10 = 1 I =

With this definition equatiop 3.185 N.hcomes
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1A _ inh 1 Ky2 e_.UOt /l~o 1 (E/l l+ y2) ]1 o ol o 1 + 2 sinh 2  + -
2+1 + y] 4(1+

To see this, we write

sinh 2  KA sinh 2  = (,x e-X)2 - e 2x + e 2 X -1
VI~4

If we set x = 3, then e2x = e6  400 and c- 2 = 0.0025 and can be neglected; hence we
have

sinh 2  KA e 2l xA/V - , for x > 3,

to one part in 400. Thus equation 3.188 fLolowvs.

Page 140: Top Two Lines

To evaluate the half-width oy, we proceed as previously, by setting the maximum
value of equation 3.188 equal to twice the value at wy = y:

, e(PtOIO)[1-( E/V4l l 1 1 e_(iolo)(l-).

'faking logarithms of both sides, we obtain

-log(1+y 2 ) + log2 + PJ19° _ poto Poto + poto
-tov~ 7 +70 yo t 70

This equation, after simplification, is seen to be satisfied for y between 0 and 1. In fact
when 2KA = poto/7yo is very large, the equation holds for y very near zero. It is then
reasonable to assume that

log (1+y 2) y 2 +

by expansion around y = 0. Then we have

2iKA
_y 2 + log2 + 2 2iA.

We now expand

1 1 1
1 2 2
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Hence

-y 2 + log2 + 2KA(1- Y- 2 A

or

y 2 (1 +KA) = +log2

or

y2 = log2
KA + I

Thus

Wy =V JA + 1

The next statement that "as IKIA decreases to zaro, wy increases to 1," obviously
does not come from the expression just derived, because the latter refers only to an ap-
proximation for large IKdA. It may hx seen from equation 3.186 that the half-width at
IKIA = 0 is equal to 1.

Page 140: Bragg Case

The Bragg case is again more difficult than the Laue case. For very thick crystals we
may set sinh aw - cosh aw so that equation 3.139 reduces to equation 3.189. (Note that
sin au then oscillates between -1 and +1 and may be ignored.)

Derivation of Equation 3,190

From equation 3.182 we get

Iq + z 2 = K2 l1jj21bl I- (2'K + 1) + y2 + 2igy - g21,

where the minus sign is used for b in the Bragg case. From equations 3.123 and 3.180

q2- = b12 njq(lp,14 2 = b2 tp'12K2 11 + 2iKI

jb21 Il't 1I2K2 (1 + 4 2 ).

Substituting this in equation 3.189 namely.

1 Iji = P11  bI1',, 12 K2

b I P !q +zz + z2
I + [q[2+z21 + 1z21)2 '
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we get

Po L + /L 2 -(1 + 4K2 )

where we have set

[q +Z 2 1 + kz21
K21 ,'121bl L

which is the same as the definition for L given .-y equation 3.190a, because

Iq + z 21 = K 2 I( 11p/ 2 Jbb/( 1-+y 2 -g 2 )2 + 4(yg-,C)2

Z2 = y2 +g 2 .

Then

-U L - /L2 - (.1-4K-2 ) L - viL2 - (1+4K2 )

PO L2 - (L 2 -1-4i4 2 ) 1 + 4K2

Here we multiplied both the numerator and the denominator by L - V/L2 - (1 + 40g).
Since 4V2 << 1, we ignore it in the denominator and obtain equation 3.190.

Page 141: The Darwin Solution

The assumptions of the Darwin solution are stated in the subsection beginning on page
141. Here A - L if g = 0 and K = 0, or from equation 3.190a

,Il =- 2 -l + y2 .

Equations 3.192 and 3.193

When yl <1 -, equation 3.192a is obvious, because Al = 1. When [yI j 1, we write
Al = 2y2 - 1, so that from equation 3.191 the expression for Pl1/P0 is

2y 2 - 1 - ,(2.v 2 - 1)2 - 1 = 2y 2 - 1 - fy- 4y 2

= 2y2 - 1 - 2iyk /y

= (Jyl- V2-) 2 .

In evaluating the integral RYI, the expression just derived is integrated in the two regions
-* <y - 1 and +1 < y < +o, whereas for lyl < 1 the value R-1 is clearly = 2.
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Furthermore since in equation 3.192b the expression fo; PIIIP0 is an even function of
y (changing y to -y does not change the value of the function), it is necessary to evaluate
only

2 f(y - Vy-2 )2dy.

Page 141: Last Paragraph-

The lack of symmetry is apparent by changing y to -y.

Equation 3.194

Equation 3.194 can be shown immediately by solving for the root of OL/Oy = 0. Or.
the glancing angle scale we have

Y= 2 2

with a as given in our note pertaining to page 124. Therefore (see equation 3.145a)

IbI sin 20B

The quantity IbI is written as an absolute value to make equation 3.194 more universal.
Note that in the Bragg case

1-b 1+ ]bl
2 2

Equations 3.104 and 3.1,15a are similar except for the K term. The effect of this
term depends on the sign of K. Ordinarily this term would tend to bring the peak of dif-
fraction back to the Bragg position. However the shape would still be unsymmetric unless
g=O.

Top of Page 143

From equation 3.190 we evaluzte the intensity maximum (PII/Po)mx at y = K g:



- - - -- - -- - -

NRL REPORT 7556 65

S 1 .j 
2  2  2

= + g2_ _ g + + g2

K2  g2
1+g2 +- + g22 g2

=14 2,g2 .

In the transition from the second to the third equality we used the fact that K < g always.
So

- L - VL2 - (1-4K2 ) = 1 + 2g 2 - 2Vg2 (g2 + 1-K 2 ).
P0

The crude app:oximation R (8/3)(i - 21gi) is based on the following: When g =
0, R11 = 8/3, so that for very small g one might be able to write for P11/P0 the expnss:on
just derived:

PL = 1 + 2g 2 - 21g12 V1+g 2 -K 2

P0

S1+ 2g2 - 21g1[ + .1(g2 -.K2)]

S1 - 21gl

or

RY' I 8§(1-21gl).

Pages 144 to 147: Diffraction Pattern for Calcite

The diffraction pattern calculation is quite tedious but straightforward. It is suggested
that the reader become familiar with structure factor calculation techniques, the simplest
of which can be found in Cullity [6) and Azarofi [1]. Otherwise Zachariasen's three-page
explanation of z.&ults is adequate.

Page 147: Double Crystal Diffraction Patterns

In this final section of Chapter III the expclmental method of verification of pervious
theory is described. Again we find the explanation quite lucid and leave the derivation
entirely as an additional exercise for the reader.
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