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Fourth equation: Change u, and p, % u, and p,.

Third equation from the bottom: Insert an integral sign | in
front of £; dv.

A — Replace the statement: “wiurh may be rewritten as...” with

“subject to
Q+¢)E=cE=D
which may be rewritten as i
(1-y)D=E"
B — Third equatior: from the bottom: The subscript of B in the
last exponent is L raticr than H.

Top line should read:

= Z B{( . D"eiwol-:'Za‘:B”-r ,

Fourth.equation: The Tirst term on the right should read

Last equation: Replace “sink:2 0 = ..."” with “Z sinh? 0 = ...

1

Last equation: Correct the term *“1 uy%" to /1 -3

A ~— Top equation: Coirect the last term to 1 -y/1 - y~2

B — Second equation: The upper limit of the first integral on
the right is -1 rather than .

Holy

. Second equation should read

(X -¢X)2 _e2Xx +¢2x - 3

1 2 =
sinh“ x ]
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PREFACE

One 2im of the X-Ray Opitcs Branck: during the past yezrs has bren an
undersianding of the diffraction properiiz of crystals and Sheir characieriza-
tion on the basis of defect sfructore. Foz his purpuse, my coworkers and
have caried out. botk experimental and Vicoretical investigztiions in difirzc-
tion ard have compared our results wilh tbe mathematical and physical
models ths¢ have been available in the works of various authors.

A mfe:enqe we have k2fizved to be a source of many subtle ideasin the
diifrzciton fickd is Zacbaniasen’s 1945 baok, Taeory of X—Rdjr;Djffmczion in

Crystels. However, Zasharaws's: ;E’E:I‘-..‘*”““ af th=mathematical informa- -

isnicin genexal too brief. Thus, in cenirast to kis veshal description oftue
oliysical pracess, which is often quite hcid.many of hissignificant desivations
have & striking 2bsence of intermediaic steps. Sithough no reader would like
to see 211 ihe detail, we befieve that the mere difficcl steps should be 2ctom-
panied by at least a few comments Laxt would indicate tae point at which
undeslying mathematical approximat:.as have been introgfuced.

-The present sci- of notes on Capler I “Theors of X-Ray Diffraciion
in ldeal Crystals™) of Zacharizsen's Sook i intended to periialiy remove this
deficiency of explanatory scmmenix. Initially, comments were wriiten both
for Cazpter 1} and that pari of (*-3pier 1V which precedes the cection on
“Heat Motion.” Priorto their inte~duction 25 21 NRL Kepori, however, the
nctes had to be modified semewhsl. First, {0 make them useful {0 resders
with diverse levels of mm2thematical '«x@mmd censiderable efiort was made
to give exphnations and derivations of formulas in as elomentary a fasidcn
zs possible. (For cxample the nrfes begin witk ssmpl Mlfustrations of the
periodic functions.) This has r -t 2lways been praclical, of course, 2nd
several concepis will neverthelev. remair difficult. The emphasis has been
on those numerous derivations v +ich require special mathematical tools and
clever steps in reasoning and appraximatioa. -

Second, as2 compromise i- the amount of materiai presented, Chapler
11t alone was prepared for this NRL Repori. In fact, Chapler IV is much
exsier to undersiand once the oncevts of {hapler I are chirified. These
rotes are only a supplement t¢: he original chapier and are not an entity in
themselvas; a completely rewtizien chapter would prebebiy hare tripled the
size of this work

With the publicaticn of t~4-report it is hoped that 2f lezst some of the
timetaken by the serious stude t of diffraction theorv would be beiter spent
in thinking about rew soluti -3s to old problems (such as the concept of
“moszic block™), which at tie same time realizing ihe economy and pro-

fundity of Zzchariasen’s thoughts, which hase tecom? an inscparshle part

of his style throughout the y -as.

>l. Fatemi




rv"“\—‘w

ABSTRACT

V. H. Zachariesen's wellknown 1945 book “Theozy of X-Ray
Diffraction in Cyyda¥s™ contains many sSgnificeel and oniging!
fideas pertaining (o Ciffraiing thrmmy:  However, the dicussions and
mathemaiice] derivationsihersin back the nevessary dedail whish oguls
make the text usefal tn readers of diverse mathematical backgrowd.
The prrpose of these notes is to proside addition2! commenls and
lermrdiate denvalion=] steps {or Chapter Iil of this book, “Theory
of X-Ray Diffraction in Ideal Crystals,” whop> content bzs often been
refzenced in the published Eteracure.
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EXPLANATORY NOTES OGN W. H. ZACHARIASEN'S
“THEORY OF X-RAY DJFFRACTION IN IDEAL CRYSTAIS”

INTRODICTION

The stody of x-ray diffraction in aystals ulfimate?s feads {o the mecsurement of &
few basic pazmeters which, iz a general o2, reflect .aeqmﬁtvo. the crysia’s when
wsed in applied problems such as spectra? 2n2lysSs of radiaiion sources, 2aalysis of com- -
aﬂgn&zm&mge,zadg:nﬁ&mddef&tﬁmmzeofmzﬁank Amorg these .
perzmelers are she following: - :

& 'The efficency -ﬂhwhxhznssc{apztmmmrgy(o:wzrdmhlamﬁ-
fracted from 2 cxysial -

&  The shapoess of ditfraction pedks, that s, the reolation with which reffections
from a crysial may be dstingoihod,

The instrumment czpable of such mexcrements is the dosble-cavsial sectromeles.
Etre chgrpotoristic x rays of wavelergih X e rellected by the fired aysé! imenockrom-
#o7) socerSng te Brages law A = 24 sin &, where d s the interplmar spacing of the &&f-
fracting pheas, o0 O is the Bragz angle. The reflecied x raye then amrive enlo the second
cxysi2l, whick Bs (0 De 2a2lyzed (or s oxn perfeciion or 1o be wand in e 2l of

To imestigate the diffraciion characteristics of 2 crystal in a doublearysial spectrom-
efer, the monociromatior is fixad and the second ayea) is rot=tduw oodsd~S e -
vidnily of th2 Rapmg ande. T response of the arvsial o the incident x-1ay pholcas
hown by a-plot of intensity versus zogie, s called #ts rocking surve.

The peak of the rocking curve, which 6oty 2t {or very near) the Bragz angle, s a
senificant pamzrler. The radio of the pezk inteeiy 3o the Indden: intensly "s 2 éimen-
sloaless quantity cxlied the pak Effraction efficizacy. The angaler xidth of the rocking
cune, which is 2 pexsure ¢f the sharpeess of dfffzticn, is influenced oy wvera! prome:-
3l factors 53l sor, et} ac wiid 25 by the perfection of btk aysials. In scientific oxn-
muniations cith the S widh of Rl mosimum (FWHMD o ibe k23 beeadth 2t E2F
maximuzms (FB33HE) 2ve qooted. The area under the rxeXing <= (which zooounts foo the
totzi number of pholons diffracted) dErided by the number of yn=5dent pboloas is knesn
2< the integnted reflaction coeificient (R value) 2 is expoessed in taits of radiaas

Npte: The B2de of 2b3s 2vpoct nefery to CRaperr 117 of the Yook Thaory of X-Fey Diffracis i3 Cra<ids, Nrx
Yok By, 1385, -
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The point of this tniroduction is to emphesize the uliimate purnose of 211 the daive-
tions and exphnations both hese and in Zacharizen's book. These shou’d be reginded a2
a means {owarC an experimental end: in the final an2lysis, 2ny diffraction theory :hould
be tested by a physies) instrurment, such as the doublecrystal spectrometer. This i why
sack 2 discuasson 2ppears 2t the end of Zachennzsen'’s Cexpler (11

Musk: can be kamned from 20y theoreiical exercise, bud, e izl w2lve of 2 pood
theory &5 not caly to expizin experiimental resuits bat to do it ca a phvdaly sound bl
and-with such vigor 2s to enabis the éxpentasenied o 2pply £ i fonther Dredictions

DERIVATIONS AND EXPLANATIONS
_The derivalions znd explarzdions presenfed here will begn with the sturting pooes of

Chapler 1 and be keved by subbradng 1o pages o7 squiic: numbers in the wequrenos
of appeannoe in the chaples,

‘Page 33: Corcept of 2 Periocac Funchicn

A typical onedimensional petiodic function is the sSae funciion. lfthcmia&cﬂy
bsbﬁmbg&et&fwaa**h‘mm‘mc‘mm”wa L2 .

The veclor 3 Sefines 2 speaiiic orteniation By space. Stnee auy soid B8 (rendines-
sional, & Is in pemera] necessary 16 oodify three Crections for any perioside Juitioe foecticn.

Page 83: Waxe Vector k or kg

The wave vecior k cr kg is deftned Effesently by vaiows 2uthors.  In gznibes -
dnnmtbemmmxw.z‘mxskg 22739, whereas others prefer £ = 1/ wrthoot the
Sctor 22, T

o -

— 4 A
g iz} -

; [
g 1y /]
$
; §

1 ! 1

i 1 i —
17t !

Fag I—Am sehlney perisdic feoctios T
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Page 84 (and Chapter 1)

A clear explanation of reciprocal lattice concepts, together with a discussion on the
equivalence of Bragg’s iaw and Laue diffraction conditions, is given by Azaroff [1].
Figure 3.2

Figure 3.2 iz a diagram drawn in the reciprocal latiice space. In this space, linear
dimensions have units inverse to the “real” crystal lattice space. The “reality” of the
reciprocal space; however, becomes apparen., upon studying the orlgms of the stereographic
pro,uectlon
Fages 87 and 88

Four general or three “practical” experimental-methods are described. Today, how-
ever, the fourth-methad-(continuous.variation-of A-togeher with the direction.of-incidence)

‘has found a significant place in diffraction studies: The curved-crystal spectrometer de-

scribed-by Birks [2] has been used as an-invaluable tool in-spectral analysis of pulse
x-rays (flash x-ray tubes, laser-induced x rarz, etc.).

Page 89

In-sections 3 through 7:intensity expressions are derived on the-basis of kinematical
theory, for-the case of asingle electron, asingle alom-(aggregate cf electrons), a.unit cell

(basic-array of atoms), and a “small”-crystuaiiite. ‘The dynamical theory s then treated in
sections 8 through 12, -

Page 90: Basic Assumptions of Thomson Scattering

The first assumption of Thomson scattering is that the restoring fores on the electron

-is neghgible, Therefore, the force due to the clectric field, eE, is the nel, force and accel-

erates the electron accordinyg to Newton’s second law. The second ussumption is that the
natural-frequency of the electron is small compared to-the frecuency of x rays. Thus no
resonance will occur between the eiectron and the electromagnatic field. This means that
the electron scattering intensity will be an expression indcpendent of x-ray frequencies.
On the basis of these sssumptions, equation 3.7 follows from the simple second-ovder dif-
farential equation

iwo! -

—Ege

Equation 3.8 is a “definition” from elementary electricity and magnetism theory. Equa-
tion 3.9 alco defines the coefficient of Eg-in Equation 3.8,

RIS S — - - - - P
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Page 90: Dipolec Radiation, Equation 3.10

The following texts give more explicit forms for dipole radiation by. writing out vari-
ous components : Becker and Sauter [3], Pugh and -Pugh [4], and Panofsky and Phillips
(1962) [5]. The vectorial form given by equation 3.10-will-be used-in the following deri-
vaiion.

Derivation of Equation 3.11
The vector u is the unit vector in the direction-of scattering (or observation), and

p, is the electric diprle.moment. The vector u X P, appearing in equation 3.10 is a vec-
‘tor normal to u-and:g,. Its-magnitude is

luflp,isin-L(u,p,) = lllplsing = ' ;sing,

2,
Wy

,andéits.diréctioﬁ—‘is‘cﬁlietefmined by- the righ‘t-handed“s screw rule. ‘Now

+ FDOE, = (u Xepp )X O IR

: 7 E, = (uY.p,)X ue 2k R

EZ = IE,|> =B, ~EJ = [(WXp)X u]* [(uXPpe)Xu]. :
‘Note that taking complex ‘conjugate removes e"zm.k’ R\. Again,

[(uXp)Xul Lu and L(uXp,) = [(uXp,)Xu] I p,.

Now:
uXpe)yXul = fuX pollulsin L[(wX pg), u] = JuXpl- ul

because u L u X-p, and sin L[(u X n,), u} = 1. Thus

: - {2
=l an2 = 028 .
l l(uXp,)Xul2 = pSsin2¢= EF (;;c;%)sm P
? ~ Smce:
- .
: L | E
Iy E}

then: equation 3.11 follows. -

Page 91: Derivationr of Equation 3.12

The sentence introducing equation 3,12 states that the equation is cbvious. However,
even though equation 3,12 may be justified by visual observation, it is not at ali obvious.
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Sin ¢ is-defined in the relation

lug X pgl = lugllp,lsiny = Ip,isin g,

or
. uXpl
sinyp =
el
S and
3 sin2 o = lu X pelluXpei: _ (uXp,)* (uXp,)
1 .. - lpe!z lpclz

) No;v' define l:]: 75 as the set of unit vectors along the- X, Y, Z directions. We have
uXp = ,(uyf;+ usk) X (pj* pzl}),
which becomes, since f X { =5,/ X k= §, i X { =, and % X5 =0,

u4Xp= —uypgl + uyp,t + U Py

wit}r
~uy = lulcos 20 = cos26; u, = sin 20,
p,\; = IPI’Si" ‘ll’: pz, = |@|,005,';'/-
Then
uXp)e (uXp)
( p)!plé P cos? 20 sin2 ¥ + cos2 20 cos? Y + sin2 20 sin2 ]
= cos? 20 + sin2 20 sin2
= 1 - sin? 26 + sin2 20 sin2
= 1 - sin2 20(1 - sin2 )
. = 1 - sin? 20 cos2 ¥ ’
; Page 91: Scattering by an Atom i
Under the assumption uf a small restoring force and no interaction hetween alectrons, i

equation 3.13 should be corrected to




e . .
= iwot-i2nkger;
eX; = ~—5 E 0 0%
muig
= Pj eiwol.

In other words P; contains cnly the spatial part of tLe dipole. With this definition

el

P = 5 Ege™27k0'Y,

-~ mdpo
Equation 38 ﬁrevibiixslydeﬁned p; as
é2

pc = ._Eo ——
mwo

2

so-that

P = pce-i2nl§o'r,' .

This means, physically speaking, that the dipole moment-of the jth-electron in thie atom

is-equal to the dipole moment-of Thomson electron weighted: by a-phase factor depending
on:thespatial coordinates of the electron. -

Equations 3.15 and 3.16

In equation 8.15, E,, is the amplitude of the electric field observed at the-point R.
However R;appears in the exponent, because of the effective E at point R:is the sum of vari-
ous electronic contributions of ind

exj (Fig. 2). The jth-contribution to the amplitude has
the form

Wi wE . < -
]

i where we re.flaccd k_,- by k, although we did not substitute
inator of wolcsz). Then the exponential part looks Iike

e-i2nk0'rjc-525k'(8-q) = ezni(k-ko)ﬂ;;e-iz::k'ﬁ,

and the total sum goes over to

-i2nk*R
Z(uj Xp.) X ye™
- i

-

2
Yo | 2sik-ko)r;
———— c l.
c2fi

S T e S - -
. S -
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X = 5 Eoeiwos-iano-rj.
Now define the dipole moment as

R for R; (evcept in the denom-
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Fig. 2—Vectois from the nucleus of an atom and
its jth ¢lectron

Looking at the similarity between this and equation 3.10, we czn write equation 3.16:

Eg. = E Z e, = 2m(k - k).

This_means that the- amplltude E, at the observation-point K -is the same as that of an.

‘electron-in-an-électric field, multiplied by-a phase-factor. e!3"% which is summed over all-
_electrons -in_the- atom.

The “interference-effects” referred to ab:the:‘g}ﬁ'z} of page 2 may be cbserved not

-only. for coherent beams-from regular-arrsys, arising from crystal structure,-but also from

instantaneously -incoherent beams. The: On}y: difference-is-that in the former these effects

‘remain detectable through-time but in-the latter they. dxsappear :within a2 time comparable

to the inverse frequency of the interacting photons. We are herz concemed- with only

‘those effects that show up.after time: -averaging, namely, structure-dependent, steady-state

effects.

Page-93: Classical Assumption of-Independnt Probabilities,

ﬂ'}lc;g}assical—assumptionzof independent distribution functions 0; obviously would .10t
hold-in the quantum-mechanical treatment of-thé-problem, because tise-Pauli exclusion

iprmcxple would impose an additional consiraint cn-the electronic wave functions or asso-
‘ciated probabilities.

Pagél~93: Coherent Scattering

The incoherent scaitering is obtained only after the coherent < ttering and toto!
scittering ace written down:

Kinc.) = I{tot.)~~ I(coh.).

To obtain the coherent scattering, [irst the -instantaneous amplitudes of equation 3.16 are
averaged, whereas -to obtain the fofal scat(crmg the instantaneous infensity expression is.
averaged. -

The mean amplitude in equation 3.17 is obtained by summing the amplitudes of vari-
ous electrons, each one of which contributes to the sum in the form of equation 3.18.
Note that averaging the quantity is the same as-integrating the probability (o;) over tae en-
tire volume. The phase factor c" i has & be included for each term.
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¥quation 3,20

The second equality in equation 2.20 results_-from the fact that for i = j the value of
the double integral equals 1, There arz Z terms in this integral (for the £ electrons with i
=j. Only the terms with i # j need by calculated. Note that since

% Ef 0" d, :

-then

9 Efoie"s"i dv.

Derivation of Equation 3.21 -

)

“In the }iéii\{atioxt-of -equation_3.21 we must show- that

] - 2
) ) w =D el =) g
-t - B
ik j i

J

!' We can write ] <

(py *9pa+ @ )pp *9p + oo+ ¢})

4,
"

P19} + A1vE F el

LI}

(0112 + @195 + Pap] + oo wpl? F et g2

) = ZZ G * Z Io;12.

aa ceraatranent e I R e SR MY

Tk J
] Therefore
8 .
o | 2 2 5

T oo o| o =T |
] J#h j ]
! -
:y - "t ea -
-
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Page 93: Sentence Following Equation 3.21

_Aside from a factor of ¢/87 the total intensity is the average of the squared-2mpli-
tudes (mean squave amplitu.e). The coherent seo ering is the squared ‘mean amrlitude
(as we noted under “Page 93: Coherent Scattering”).

Page 94: Definition of Atomic Scattering Power

From eau«fion 3.17 the definition of /0 on page 94 gives

!,Eclz o
atomic amplitude i S
B . - P . = Saj'
slectronic amplitude IE, - L.a
] i.

Chis expression it.good only for-high-frequency x rays. i

Equation 3.23

The clement of volume in spherical symmetry is 4ar2 dr. When p(r) (probability per
unit volurse) is given; the-number-of ‘electrons between r and r + dr becomes

o(r 4mr? dr = Ulr) dr,

where . . -
U(r) = 4ar2p(r)
and thus - ‘ <
_ U
#r) = 4ar2 *

’iPagiz 95: The Atomic Scattering Power

_ Unlike section 3, in section 4 two other forces are now added to the equation of mo-
tion: the centripetal forcs and a velocity-dependent force. Both- have minus signs. .and’
they tend to decresse the effect of the applied force

e Eo piwot-i22Ko 1
m

W i g ——-—

P — e




T
'
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Again, we must solve the ordinary second-order differential equation 3.27 and obtain equa-

-tion 3.28, Thus equation 3.29-is the revised expression for atomic scattering power for
Jower energy X rays.

Page 96
Equation 3.31 is written in a purcly formal manner. It implies that the scattering:

power f contains an imaginary part due {o the radiation damping, and a real part which

may-be split between o (high-frequency limit) and the binding-force ter:n mwf x;. Equa-
tion 3.31 can-also e written as

R Zw,-(s,-ﬁn,-) = Z«w,-(us,win,:)- :

i
Section 5: First Paragraph-
The vector a; is the lattice parameter, and x; is a number defining a fraction of this

‘parameter. In-the-definition of structure factor (scattering power of a-unit ceil) the same
provisions apply as in the atomic scattering facter.

Equaticns 3.32. -

In Equation 3.32 §2(r) is a single function (distribution functiox}),;whosc Fcurier com-
ponenss are $2y;. These are related to each other by the Fourier reciprocity theorem.

Equation 3.36

Equation 3.36 is analogous to-equation 3.22.

Equation 3.38

Again, equation 3.38 siates that the structure factor FO is the sum of individual scat-
tering powers of alums, each of which is multiplied by a phase factor Particular note
should be taken of the remarks followmg this equation.

'Equation 3.44

For a unit cell with large or appreciable mmmalous dispersion, the expression fur F
(not FO as in equation 3. 38) is

- F = E :l-kcis'r;,,
k

] - = PR EEICT SUBR S SN S S e
e T e e e e e et T o o T - R P Sl =
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where i1 is the scattering power for the %th aiom and is given by the expression

1 .
I = E a +Ej+mj)‘f7}k)’
i

7Equnt§un 3.31 is the same expression without the superscript k.

Equation 3.45

When the distance R is large compzared with the crystal dimensions, the wav~s arriv-
ing at the-observztion point-ave “piane.” The “plane-wave approximation” does.rot, ob-
viously, hold for very small R. In the-way the phase factor 'S"AL comes in the expres-
sion. the inlierent assumption is-that various unit_cells in this crystallite radiate with the
same strengtn aside from {he gepmetrical thase factor. No absorption or u.ther dynamical
effects are inciuded.

Squation 3.47 :

o

In equation 23.46 the first of the three summations on the right is
Ny-1 N1 ige ' )
2 S N1 ) [ois-a1 _ I_i
E PUSTL) B Z PUS LI | (—
_ elS'Il - 1 J - -
Li=0 Li=6 -

l\']:-l ) 'l
z: [eifld'*l)rl] _ ciLls'al
; ) J
-L1=0 -

ciS'a1 - 1

ciA\'15'31 - 1

¥ _ 1

S~

Thus the product of the three summations foilows as given in ¢quation 3.47, with the sum-
mation index heingi=1, 2, 3.

Equation 3.49

All three Laue conditions should be satisfied simultaneously.

JTINEIN

Equation 3.52 » . F

Equatioa .52 states that when the Laue equation is satisfied the quantity F-, {struc-
ture factor for s = sp) can be Jefined as -




- in that cquation.

rwx"j A L R
b
b
)
|
}
!
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b
'
|

12 MOHAMMAD FATEM!
F” _ z"") fkcizes;rlk-
» 7 %

Note how this equation may be evaluated for various crystal structures to give usablé ex-
pressions for siruciure factor; see, for example, Azaroff [i} and Cullity (6].

Middle of Page 101 to Middle of Page 102

For future convenience-let us correct thé assumed v:grietion—in*thc apgev::o by \gwiiing
20-4 25 (rather than-26 + £7) so that'the angle of incidence will change {52 + ¢. Then
let-us substitute 2¢ for £ everywhere, ‘Equation 3.56 becomes

2IN233 = 2152 e _
Iy€) = LiFyfinZelWANeD2e0slp

and equation 3.57 bécomes. R

(Glypp ~ }/logz X

* 2Dcosly -

There is in principle no diffcrence between this and equation-3.57-

Page 102: Discussion of Absorption-Processes
_ Distinction is-made kere b>.seen photoelectric absorption and axthiction. Ourex-
planatory note above on equation:3.45 pointed out thal absorption effects are not included

Pa:‘gé 102: Primary and Secondary Extinction '

It is-prrhaps apprepriate at this point to discuss the relationship between the half
width of:the rocking curve and the concept of extinction.

A brief-explanation of primary and-secondary extinction is given by Zacharizsen in
Chapter 4. Here, for definition alone, we-choose the Darwin model of the crystal: The
bulk crystal-is composed of small crystallite blocks, each Llock oriented at a small (mis-
orientation) angle with-respect to its neighbors. Both the block size and the misorienta-
tion angles may be assumed-to follow smooth, normal distributior functions. ‘The line
shape (diffraction pattem) for each block may he assumed to have the form derived in
equation-3.54.

Absorption-in a perfect crystallite is inade up of two distinet processes. Consider
v/hat happens when the crystal is rotated with the respect to the coliimated, monochro-
matic beam, toward the Bragg angle 5. At considerable angles outside §p, the crystal be-
haves like an amorphous absorber and the penetraticn of the beam into the crystal may be

[h ]

[¢%

(A1

T e o mam i
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rels tively high. If the linczr absurption coefficient is p, tne “absorption distance™ 1/j: may -
reach Several millimeters. 43 the Bragz angle is approacied, a greater and greater poztion-
of-the incident photons cortributes to diffraction, and simultaneously the-depth of pene-
tration is rapiciy decrzass. This rapid reduction of the _orimary beam during diffraction

in perfect crystals (so-c:alled primary exiinction)_is-due to- ‘multiple reflection of the beam

f~ sm neighboring planx: At éach doublé reflection the phase of the reflected beam is -
180° behind tiat of the ncident beart. Thus i may-take no mote than a hundred theu-
sand atomic layers beZur the amplituce of.the bxcident bum dies out: This distarce of

104 to 105 atomic l2y«i: is callod the “extinction depth” (see Auleytnes [7]).

Consider now w.ful ni;-,u.m when an aggregate of mosmc;blqcks ‘(a mosaic crystal) is
rade to rock zround thi--Bragg angle. The future-history: of 2 paraliel pencil of x-rays
arfving ai the crysiat aoface is determined by several factors:

®  Phetoelectns > absorotion c.ae[f' cient u
’ L Mzsonen.ahon angle betwecn the blocks
» Size of the- ayslzlhus
®  “Natural” hallbreadth of the-perfect crystallite. 0T — oo

if the mosaic blocks were so- large compaed to the 1/u distance-that-no significant.
radxatwn -could pass through z given block after ordinary- absorption, then, by:using a:-small-
beam, one should see the ;ame half breadth for the bulk crystal as-for the perfoct crystal-
lite (beam 1-in Fig. 3 i*.a gualitative example). If the x-ray. beam_covered-an: -arex con-
sisting-of several blocks, a2 cffect of -the-misorientation between the crystallites should
also b saeen in-#.e rocking curve by a multipie peakmg, the amount of which-may vary
dépending un the gecmetrmi divergence of the primary: beam. -

Fig. 3-Examples of beams incident from the right which are (1) totally diffracted, (2) totally
absorbed, and (3) partially abvorbed and pastially diffracted

———

(R}
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If the absorption distance 1/ is much larper than the average size ¢f = given block,

: and if the blok size in tumn 35 larger than the exiinction distance, then the beam, if not
< . totally diffracted by a given block, may pene‘.m'!r fenther into the crystal, thers=i be dif-
fracted by another block of proper orientzf" > 302 is an example in which the dif-

fracteG- ,i»_a.'z: i5-4ataliv stenrhod.) .

: Finally, ‘Umabsonandmuwdnlm mr";heextmcuonoep!h,andxf - -
- . ’:Emmtunr.siaxgv:rﬂxarmeb!oc:szz&.mr‘c Eme i Zent beasn (bearn 3) wili remain - S
:.mbsorbed after difiractios: by each block, h aa fower Iying crystallites. v

The loss of power of primary beam duezto -éxf[.‘aclion by cr_-,‘sg!ﬁwsszior to the az-
- rival of 2 Leam at the block under conisideration:is called secondary exiiaclicn.

.- ’ f.qumon 3,55; Absorplion Cocfﬁmenf.p

:.\ob that 1 here-is the linear absorpticn:-coeffi cient. In-some books(such as Jenkins
- s GeVries £ ]) it stands for the mass abso'plxcrn coe!ﬁcze-l;.

‘Page 103: Comments Folloving Equation 3.58 o -

~_ The reader shouid pay pattu:uk attmbcn o the: comﬂents followm.g equation 3.58
" which: dﬂgcn'be the conditicn under “*.cls-the:-intensity formulz 3.48 holds. -

- -

Section 7
The- pregram of section 7-is to consider ke three methods of obtaining dufmctxo? I -

lines anuf to derive an expression for the intensity ofa small crystal'as-a function of appro-

priate viriablec. Thusan initial parametex: £y -is chosen which corresponds to-the “most .

importzat” variable in each of the-three methods. For example in the Laue method this .

coirespamds to a change in the wavelength-in the neighborhood of Bragg A. If a detection b

‘surface is ckosen (such-as an-jonization chamber), then the total power received by the de-

‘tector s the mtcg:ral of-the intensity (funcﬁon of £ ;) over the entire surface of the delec-

tor, where at the same time the varishle £ covers-all possible-ranges, hence cqu..?son 3.63.

The definition of A at-the beginning of the section (equation 3.59) is for the sake of sim- )

plicity. - The integration of ., H 2 function of A may be forther simpiified ;¥ an explicit T -
" form ror A can be obtained in terms of £, £5, and £ 3. Then the integral fakes the fona

given ‘¢ equation 3.67.

(B

g e surface element in each of the three methods cin-be easily evaluated. For ex-
}i amply, in the Laue methow * i< nbtained by “measuring’ the latitude and longitude - -
: through which uy; may very. Obvioudy 45 is the area of a rect>- le on the surface- of ihe o

sphozr (Fig. 3.4) whose sides are R dz 5 ané R ds 3.

P IR
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Deciation «f Equation 3.65 A
Befunggio!»‘ig.z.‘s n.uwedmwofm Thos uy = ug. Siare -
Avs-‘iu.remajurfe )
2= :
st = 35 (7 - 90)
. /8 . .
=nd ‘ :

s‘--zf-(u' ’U);-zf'(" o5
).;} /i »‘ 0 l, /14 e

EAPSCS N

_ Even though in 5 eg.3.-i'hed&admo;u,,,uﬂ,ﬁc,msk@wﬂfum“mwr
v remzmber thai their ssparation zso“xxsl.erderm-s.;. ,q,,s,ﬁadl zem:&il-ﬁ;suﬁia.

f . - From equation 3.64 w=cblain -
; T oz 1 S PR
< 7"}: 1r +xy 7;: Y ?'tz} G 0'5)2

Nextfd usdeoomm the u‘.xt-cr,.or u”, “o; u" mmg:ﬁe:&of:xs Tys T2.73- ThE -
» v:x’.cr.rs is in the ry7, plane. Therefore

u;B; = cos20 1y + 532&;2.

Tha wocior vl is oriented along 7y

ug = 7.
‘fhe vector vy has all three components; the 1, component is

fuplsneor; =sins,7r3. -

.- Its grojection on the 137, planc is

s dcos 20 = cos £y,

, Therefore we have

lv Uz = cos ’32{(?05{20 +z37lry + cos igtﬁn 26+ £331}72 + sin < 273.

We expand <os (20 + ¢3) and sin (20 + =3) (o get

cos(20+x2) = cos 206523 - zsin2sineg

~ ws2 - s3sn29
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ﬁﬂm 53}'= ﬁ’”“ﬁs + w‘%s-uiz

= sin 29 ‘5’53”@.

s$—-sg = a?(cn;-tgg){fg - b—} - :5'(4} ug)

2 ok ’ . "
= ;_g("e—";bgl - ﬁ—;.;}-z("@’-ﬁei- _ (i} -

Lie% 4/ aaant

el

L g - meary + s 2 g s 2) + Tl 20 453 08 29)

Y]

s 5y - sz,
1‘ ] _7 =2l 1"{‘.'-‘ wxﬁ?-qﬁﬁ}e;, - - izs
ﬁ}; - llg é—szrsz-(msm-izmﬁ) *f‘m\“xtﬁk) ‘l’g- £ - - : B

- mmmzmzﬁmqm l,é%::&xdngz;;wsmeﬁ‘e.zﬁc.,‘egu

a _
2 ~3p " } E‘qu"‘ = Mﬁ -~ 73 mw)"g,

- (1]
r - ‘.-(kﬁ)zizii"’—!(mﬁ -3} # Tp32n ﬁi}
b H -

7 or . I

2%
~55 Inli~o0s2) - 7.6n 261 = P ACE

Zzey
$-35 = 1

“SE i, ocn 29 - 7y 5in 28),

3::

7 wh»dz:;anthqmms.&a;mmm&ul,mﬁntmﬁhemwmﬁ
] H ks been dropped for ooaveniencz, Wxiémmumaﬁemimmmum
- for ihe same sel of e izdtices sspresented by 7.

Jazubians -
“Toe conoept of 2 Jacobizm is tad whenever 2 change 6f vriable £ neceery ina
[ multivariable integration. In loe Smpicst czor, a chanse of vaable from x o ¥y, 87, when
> = f(x), is effected in the following way:
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oy
dy = X dx,
ox

Thus, in an integration with respect {o x, the differential dx may be changed to dy if it is
rewritten as

1 ox
dy = —dy.
ay/ox Y ay Y

When the number of variables is-more {..an one, the Jacobian may be shcwn to take the
form of a determinant. For examplz, the three variables y {y, ¥5, ¥3} may replace
x {x;, X5, 23} by introducing the Jacobian

9 1 W
Oxl 8x2 3&3 B -

J(y:x)s.iizi - |2 2 Oye
' 02 - j0xy  dxg  Oxg|
0xy axg, dxg

Consider-now:a vector function A decomposable aiong the three coordinates-r4, 75,
4. Thedacobian -which transforms the coordinates-from-€, €3, £35 topy, Py, P2 lcyua-
:tion-3.59)-can‘be written in a simple form, with-the aid of the rules of expansion of-aetermi-
-pants. For.this purpose-let us consider-the derivative of the:-vector function A(g;, €4, £3) or,
in general, A(xy, xq, x3) as a‘three-component véctor in a rectangular coordinate system:

8 Wy, aAQ—e + -—e
dx;  oxp ' 0xp - 0w O

‘where Ay, Ay, Ay are the components:zof A along the-unit vectors ¢;, e,; e;. Without ‘be-
ing too concemed over the mathematical rigor, we may formally regard

{ i‘ﬁ)

\ ox; dy;
as “equivalent” to —
(ilég) ! oz’
ay,-
assuming A can be expressed in terms of both x and y. Because of the implicit relation- )
ship between x and y (or £; and p; in our problem) we may furthermore set

oA
J e—
(api)

s
194 as equivalent to J(-b-sf)
J ——
\asi
- . ” e JRTUPORP SRS S —g .‘,M;
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The reacter may use the expansion of a three-by-three determinant and prove to himself that

J(?-A.) = E-A— ? ?—A—- x —a.é_) .
0xy 0~ 0xg 0x3

where in that determinant each row contains the components of the derivatives 04A/0x;.

Now, to evaluate equations 3.68a and 2.68b, remember some simple rules on cross
and dot products:

B X 1= 0, T X To =173, ﬁ'z xrfi =-T3 etc.
i’]‘f; =1, T1°Ty =0, etc.

'To-evaluate-the Jacobian (80/de,) « [(0A/de,).-X (8A[0¢e3)]: 3

oA 2n
;')—e; U\B e [71(1 -cos26g) - 74sin20p],

). [

21
Wea © Bes)  [NF s X N (rg cos20p - 7y 5in 20p)
42
(kB )2( -T1 cos 203 - 72 sin. 203),
::’ } 8nd—
oA oA  0A\ 873 o A )
(d ‘1.) ) (5:; X 3t ) = a8yt [(cos 20 ~1) cos 20p + sinZ 20p]
‘ ) 873 2o o (
. ) = () )4 [cos® 20 + sin® 28p - cos 20p]
. 161r
.= 0\ ), sin? 0.
Equation 3.71
} In equation 3.71, V' is the unit cell volume, 8V is the unit cell volume maultiplied by

N{N3N3. and the notation is' somewhat misleading.

‘Equation 3.74 }

The suzface element given by equation 3.74 is the area of the rectangle swept by the
tip of ug, as g9 and ¢ 3 are varied (Fig. 4):

- S g e - PR .=
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dS = (R cosydeg)Rd(yp + £3)
or, becauzz ¢ is a fixed angle,
-dS = R cosepdeyRdeg

e = R2 vos pdepdeg.

R Cos F e, ~

Fig.4—Geometry pertaining to equation 3.74

Derivation of -Equation 3.75 S

In deriving equation 3.75 we will use.the expression-fors - s;; = A as defined- previ-
-ously-by -equation 3.65. However the variable ¢, now-refers-{o the rotation-angle from

any ug to ug. This rotation is defined in equiition 3.73. Thiss, with reference te Fig. 3.5,

up = ub + ey 1y Xuf = ub + e, cosxmy

cos X7y + €4 cOSXTy ~ sin XT3,

u§ = cosxr, - sinxrs,
Uy = sin(p+eg)ra + cos(p+eg)leos (Y +eq)ry + sin (Y +e,)75),
ub = sin (p) 7y + cosylcos Y1y + sin ¥ro],

]

i 2n 2\
8 A =5 -sy = T lluy-ug) - (ufy - ug)l = 3 En - ujf + ug - ug).

Again we expand sin (v + £5) etc. using the approximation of small €3: !

sin(p+ez) = sinp+rycos9,

eos{pteg) = cosy — £ siny,
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cos (Y + £4) = cos Y ~ egsin ¢,
sin(¥ +e9) = sin ¥ + e, cos .
Then
Uy = 13(sinp+egzcosy) + 1y(cos ¢ ~e3 sing){cos ¥ - €g-sin ¥} <

+ To(cosy -~ £3 sin g)(sin ¥ + g4 cos V)

L]

T3sinp + F3r3 cosy + T1(cosy cos-Y - €2 Sin ¥ COS Y - € 5 sin @ cos )

+ 73(cos ¢ sin Y - g0 sinw sin ¥ + £, cos ¥ cos ).
pA 2 2

Rearranging-in terms-of €y, €5, £4; we get

2r 2n )
A=s-sy = -7 ©0sXTaey * Tcospsg(fz cos ¥ ~ 75sin-{)

27 7 - :
+ _7\-83(.8"1 Y cos YTy — sinysin u12 + €osyT3):

The ‘minus sign in the ¢ term is missing in Zachariasen’s book 2nd needs to be corrected
there. .

Derivation of:Equation 3.77

Equation 3.77, as derived using equation & 75, ié

2e,)  |\oe, o X 0S XTo —lcosq:smwl )\cos\pra

- 27 \3 o .
—'_)\- cos X cos“ ¢ sin ¢,

In this darivation only those terms in 1y, 75, T, were written out which would give non-
7,(‘.1’“ contribution to the result of the cross and dot products.

Derivation of Equation 3.79
We know that cos 20y, is the dot product of incident and diffracted unit vectors:
ug . uﬁ = cos 20p,.

Let us decompmnse ug and u,'f aiong the threc directions 7y, 75, 74:

s augd '

£ s e N i

by

.

0




|
!
1
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B _ "
Ug <= (COSXT] - Sln'st)
and

up = (sin PTa + cospeos Y1y + cosysin YTy).

[}

* Taing the dot-product,
ug . ug {cos Xfl ~sin X1g) - (sin pry + co'w cos Y1) c
or
- 7 cos 20p = cosXcosy cosyY - sin xsing. 7 -

Two crrors exist-in:the-Zachatiasen {‘ers:ibxiréffthis resg)t,(gqu'zition 3.79).

Equation 3.80 : - -

In-the powder methodg, the -variable £ ;. is mmated with-the variation in the Braggin-
cidence angle, that is, the variation between ug and uo (Fxg 3 .6). If all directions of inci-
dence become equr;lly probable, then-in the calt ulation of-intensity-a required term is the
_probability of finding a photon at the glancing anéle in-therange of 0p + ¢y and Op +¢; +
ds; as a function-of-0y. To do this<we draw-the cone of:axis By and semi-apex angle
(#)2).—(0f + €5) (Fig. 53). Now we-change 0p + £, to g + ¢, + de; (Fig. 5b), and we

- - -—calculaie the fraction of photons:that arrive at the- apex of-the cone through the small area
of the circular stnp We-fi nd S o g

area o{—:strxp = (2mayrd0 = [27r cos 0y + €y)]rdey

<

= 2mr2 cos O+ e;)de;.

i - ' The-total area is that of the surréunding sphere: 4ar2. The raito of the two areas deter-
) mines the probability w d=; (equation 3.80):

Fig. 5h—Circular cone of Fig. 5a plu. av
invremented cone -
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" ¢
d area of strip 2nr2 cos (Op + €, ) d, o
wdey = = -
1™ area of sphere 4nr2

= }icos 0p de,y.

- This prgbability factor must be multiplied into the intensity expression according to

equation-3.81. The surface element-for the ionization chamber is easily seer to be R dz,
R de; = R? de,de,, and equation 3.81 follows.

 Derivation of Equation 3.82

Calculation of A follows-the same line as-in previous sections:

- 2n - B B
A = 3 1y -vo) - (f ~ug)l =s - 3y,
Uy = €373 + cos(0p +55)15 + sin(lg +€5)71y,

U}B{ = 3in OBTI + cos 0372,

up = -sin(0p +eq)ry + cos(Op +e4)7y,

Ug = -sianB Ty F c‘o}ﬂgrz;

cos (0 +€9) ~ cosOp -sin Oy €4,

Fr T sin (03 +£5) & sin OB + Eg 66598,

2 :
- A = —\t[esrs + (cosfp - sinfpeg)Ts + (sinlg + €5 coslp)ry ]

2n ]
+ '):' [(5in03 + 005,0381)7‘-— (COSOB - sin 0351)72] ]

27 -
+ ~ [-cos0y1y ~ sinOpry - sinOp7ry + cosOp7y]

’ - _ 27

; 27 27
y = ')Tal(c°5 Opry + sinOpry) + -xez(cos,anrl - sinfg71y) + ';\‘5373-

: |
Equation 3.85 '

As stated by the equation directly above equation 3.85, the intensity expression is .
an expression of the form

3y = 1oQBV.




z NRL REFORT 7556 23 ot

-where §V'is the volume of the crystal (not the wnit cell volume) and Q is an expression
which in the kinematical theory is well-defined .. ~o:i-2s the experimental method is
given. In the powder method; there is-a’-0 the muiuplicity factor which-takes into ac-
count the contribution due to dlfferent atomic planes of the same type. In this connec-
tion it is important to reaJ carefully thé:-paragraphs of section 7. following equation 3.85.

Pages 111 and 112°

?a_raéaphion pages 111 and 112 contain important information regarding the differ-
ences:betwsen dynamical-and kinematical theories. A large group of mathematical defini-
tions appears: here -with that of the directicn of n (page 112).

‘Equation -2.88 E -
In equation-3.88. the vectors. Dg and 8, inside the crystal medium replace Ep and
kg outside: Both these numbers are very nearly the same, that-is, Dy = Eo and ko = B,

: subject to- equatnon 3.89; "To solve the pmblem two.conditions_ mustbe satisfied: The
}1 first is-the-boundary- condition that at the surface-{where n:* r = 0)

external incident wave = internal ingident wave.

The second condition that must hold is the “self-consistency” of internal waves (incident
and diffracted).
Derivation of Equation 3.9¢

- According to equation 3.89

P. - ~

) ﬂo = k0(1+50)
or
B3 = kY1 +80)2 ~ k3(1+25).

Now we set

?i ) Dy olwot-i2afor _ Eg Jwot-i2nko s

3 At e boundary we have

cr‘wot-iz.':ﬂ-r = olwot-i2nko'r

or

e-i2::p-r = 8'52“"0",
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When two exponentials are equal, the exporents are equal, to within an additional 2.
Bo or = 'Ko »

Since adding a zero term on the right does not change the equality, this zero term can-be
in the form of a dot product with r. Specifically,

Ber=ker+Aln-r,

where on the surface n » r = 0 ang the factrr A is necessary to make the equation valid
everywhere else; :

Bo = ko + An,
Thus cutside the crystal we have A =-G.

To obtain equation<3:90, we square the quantity Bo obtained above, that is, dot it
‘into ‘itself:

AB% x ieg + 24n - k.
We had g = k3(1 + 254). 50 that
k3 + 24n -k, = B2 + 26k3
or v

-

8ok% _ 8oko _ 80'2077

A= :
n- k. n-uf Yo
Therefore
ko5
Bo = k§ + An = k& + —22p
Yo

where 7y iIs the direction cosine of-the incident wave:

cosa = yg = N ug.

Equation 3.91

Remember that the product of the electric field and the-dielectric constant defines
the displacement vector.

—— A ko e o L -

Lo g LIRS
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Equation 3.92

"The subscript H refers to a set of Miller-indices /1, iph3. One may however assign an
“order” number 1, 2, 3, ete. to each set (hyhyhg) or diffracting waves in equation 3.92.
Thus 1 equation 3.92 H may be a pumber like 1,.2, etc. rather than a set of three num-
bers. Also notice that the total diffracted wave 9 is the sum of several Dy multiplied by
phase factors.

Middie of Page 113

It is impoertant o keep in mind. that we are dealing with a two-wave diffraction (Do
and D). The interested reader may search the recent literature for three-beani diffraction
studies.

Equations 3.95and 3.94

The dielectric constant of a crystal:lattice-is only:slightly different:from-unity. The
difference -between the constant and unry is approvumately 4aa, and this quantity is a
function of the-periodicity. of the lattice.

The factor 47 is a scalar quantity. From optics and electricity-and-magnetism theory

we-know, however, that the dielectric constant:has-both real and imaginary parts-and the
imaginary part is related-to -the linear 2bsorption coefficient. :(\We will consider more ¢'e-

tail on-this-point later.) ‘We can therefora-expand the quantity 4#c into a Fourier seriss: -

ex1+4ra=1+ 19,

¥ = E :7¢Hle—i2an-r‘

T

where

N

Remember that By, is a vector of-the reciprocal lattice and the product-By; « v is

_dimens*onless. The subscript H refers-to any one of a number of: possibie sets of three

Miller indices that give rise to diffraction. The components ¥y of the Fourier expansion
can be evaluated by the usual method based on the orthogonality of the exponential func-
tions:

' ir {2280
i,’ll, = *‘-I-nge' i dv

{(the summation is over H, the integration.is over dv). '“hus, every vector By; or s;; has
assigned to it a subscript H for which a component ¥y may -be defined.

— i
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Equation 3,23

‘To get equation 3.95 froin equations 3.41 and 3.42, we note that

2
mo Tee ;
- F = :é—:‘—o»fae" 'Sl.dv
- " e Y

mw’g 3
e2 4x

22 -

J I,_JJB}I'f div

mwOV
eZ4x

«ll

V}r'

or
. 4xe2 P o :
e

where ‘we call the particular F, related to the subscnpt H, by the symbol ‘Fyy; that-is FH
is the value of structure factor F- for s = 2:8,,.

Eguatjbn 3.96 ; } ) -

We have

O

N o~

1
=\/e"=\/ﬁ7~1+,-2-¢a

where ¥ is 2 small quantity (¢ <<1). - -

The real part of the refractne index is the factor responsible for dispersion (because

# is-a function of wavelength). The imaginary part of n leads to a phase shift ir: scattering
or to true absorption.

’ Equations 3.97
We had, from equations 3.95 and 3.41

-

4me? Z
4r0 = ~ ——— + & +in)2.
£ mw% : (1 SJ lnj) ]

P
L}

14 ”

FiyY,
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v-here -

4me2

Y= - 22 (1-+£)Q;
mwg L
j

and

4xe2
5 = - - p .Q.;
v m‘w% Zﬂ, '

e

J

The-expression forindex of refraction thus becomes-

- I
<

1 1 ' 1, .1
nm=1+=Y=1+ =(WW+itVY=1+ =Y +i—y".
n i 2(v i) 2V tigY

'7he imaginary part-of n is 1/2 ¢". - - -
Equaztion 3.99
When both & and { are expandéd in a Foutier series, we have
* - o Zi"h' B h
: : H
: and
T ioaBy-
‘p = Z-’ ¢"e 1258}[:7,
H
)
: 1, 1 i2ﬂ8[{'f
: vy = v Ve dv.
This implies
\'
2 1 1 i2a8pr
v’l = “'V" y'l e dv
[
.
P —————T .
y

L@

27
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27 .,
p=-—y, -
Ao

21: e 27 4me? 1 {7
,,7_

7\0 mwj
= With wg = 2a(c/A) o -

2c21A3 1 - {2q8 rge . ;E
- = e . . RO Y . :
My me2V an»f Qe dv. )
. < v > . z
i- < i
Equahon 3.100 i ) - ﬁ

] To obtain the average coeff' ciem,-the et of values (hjhohg) are set at zero; that is,
~ the-phase factor-is 1.

Equation-3.101

?i;hc—m'cmgeireal'index of refraction is 1 + (*¥'f2), so that V' = Vg can be obtained
by the same method we used for equation 3.100: . ’ :

- - 47elF, 4me? - :
V' = Yo = Ulimo = ~—3— = - Zu ; dv : Lo
A 7 vV = Vo = Yylu-o mw%V me2V (1+&) :

40132

S\ :
mowiV L..(“E’) -

where equation 3.42 is used in expressing Fg, and where ] E |

vﬁidﬁzzi- 3
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because it simply sf,até;lhat the density of electrons integrated over the entire volume
should give the.total number =1 electrors (of type jj.

Equction 3.102°
The first senrtence of section 9B is inipoi*ant. The more familiar form of equation 3.102
is -
. ' S, 1 2%D
- A KXE = e —r
L VX (VXE ~e2 912
which may be rewriien 8. .

. - v}E e;E fﬂ

Derivation-of Equation'3.103 ~
Lzt us write ’ . -
. D=y e,
"

(@)

Then

(1-1) 9= e:wo(e E e} c-ch‘ﬂ;rr Z 7L c-?z:h; r
K ¥ L

Here If and L are equivalent dumnmy indices. Wweé expad.g iz a Founo: series,

b J e
V' - \> v ’I-—l r )
i K€ :
K

and obtain-equation 3.103:

a-9)?2= ot I-Z D"c'i"-;ﬁll" - Z Z DL;?KC'M"L‘?} By

Ln L K

-l

| FOPU
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Derivation of Equation 5.184

Staning with equaiion 3.103, we have-

-9 = ¢ ] D..c 2PHE _ Y‘Z -1'2:1’;.;)—;‘
: -9 ; e z Dy Oxe |
] L 3

= ‘l,f!&’&: FZDHC’E:’:’;:?! - ZZ: DL&}{.LC.?:&!.'] -
73 I

H-L

= Foc Zbge"'z"”" - Zc”c-?-’:'.‘i’t} o ) £
LK T H )

ohere - - 7 . 4
Z Or¥s:y = Cpo- - :

- Desivation of Equatira 3.105a

From equztion 3.104
s SR W AXU-9E] = By X By X (Bu-Cy)l.

and from Equation 3.92 )

i 3-33 - éi - R e e w?
-g:*:-‘Z'cg'gué‘t" =he - ,-c-gﬂsiéﬁ

- / -ﬂ;g Xk X (DH-CH)} = kgg;;.

Derivation of Zouption 3.305b
We Lave

P X 1By X (Oyg-Cp)l = B X (D5 -Cxpy X Byl = £30y.

i

a4
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To expand this, we use the rule in vector products that
A X (BXC =8BA-C)~-CA"Bj

so that

By X (D -Cy) X Byl = (D - Cy)BE - BylBy * (O -Cp)l = k3Dy

or
~CyBh - BylBy * Dy -Cp)] = (kG - 67Dy
Now ¢
By (Dy-Cy) =By Dy - By Cy = By Cy
because

3H'DH =0

(which can be seen by d>tting both sides of equation 3.105a into f;), and we have from
equation 3.104a

L

' \
“BuCy = -By - (Z ?-1D ),

which we insert along with equation 3.104a into our last equation in the preceding section
to obtain

Z (Vi1 - OBy - Vi1 B84DL] = (k§ ~BE)Dy .
7

Middle of Page 116
“Transverse” in the discussier following equation 3.105b means having components
normal to the direction of pr agation. Mathematically this is written as Dy « iy = 0,

where By, is the wave vector.” The ¢ uatiea ¥+ 9 = 4np, where p is the charge dnesity, is
on of Maxwell’s equations. “ising this, we get

v-D=y- Z D, fot-i2nbiee
i

e n—har 8 - — =

—— o | o =
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= g” . Y‘elwol-mnﬂ”-r,
T

since applying the operator ( V*) on the vector sum D is equivalent to the product §;;*
Dy, where By, is the “derivative™ &7 the exponent. Thus

-

D" * ﬁh' = Gimplies v SD = 0.

This last equation is good for the oscillating part of the displacement vector, since the
divergence of the static part is not zero.

Derivation of Equation 3.106

To solve the complicated set of equationes 3.105, we must use some approximations.
First let us assume that the Laue squations are not satisfied for any becter By; that is, let
us assume that the x-ray beam arrives at the crystal surface in such a way that the angle
of incidence is not equal to any Bragg angle with a “‘detectable” diffraction amplitude.
‘The only component of D is then Dg. Others are “relatively” zero; that is, theve is only
an incident beam of displacement amplitude Dy. With all Dy equal to zero, equation
3.105b wiil become

WolBy * Do)By~ ¥oBEDy = (k5 - B5)Dg
(because H and L are both zero). However §j * Dy = 0, so that

~YoB3Dy = -(d - £3)D,

or
' 2 _ .92
(2-¥0)Bo = ko
or
o
g2 = kg
0 1 - 5’/0 )

which is the first part of equation 3.206. Since ¥y is very small, we may expand this ex-
pression and get

ko ~ k 0

Be = -
¢ VI-vy

x ko(], + —1-1,'/0),
1 2
1-3%

which is the second part of equation 3.105. Remember-that 1 + (1/2)¥, is the average
refractive index.
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Equation 3,107

Ta derive equation 3.107, rewrite aquation 3.105b in the followirg way:

Z (W (Bay DBy - Wag1B3DLY = (k5 -B2)Dy.
L

Since the summation is over L, each M refers to a separate equation.

For M = 0,

Z Y rBo- DL)ﬁo: Y 83D, = (k3 - p2)D,.

Since Dy, = 0 unless D;, =Dy and Dy =€, .- lave
9_11(Bo - Dr)o + YeBo* Dol ~ VB - VoBEDo = (§ - B3)Do-
We note that 5 Dy = 0 and set ¥_y; = Y7 to obtain

ViT(Bo" Di)o - VifBaDy - WeB3Dy = (1 - B3)Dy,

which ieads to the first of equaticas 3.107.

For 5 # U, the right side »f equation 3.105b contains Dyy, which means M = H.
Summing the terms for L = H and L = 0, we get -

2 20 - (2 _ a2 -
VolBy * Oy)By - YoBrPn + ¥i(By * Do)By - YubyDo = (o - B)Dy-
Again the first term in this expansion is zero (B * Dy = 0), so that
; Do)By - VyBEDa - UeB5Dy = (hE-B3)D
V11(By * Do)By ~ YubuDa - YobiDy = (ky - Bo)Dy-
Since Dy; is a linear combination of fij; and B, it lies in the same plane as Dy and §;.
Furthermore it was already shown that fi;; » Dy; = 0; that is, §;;is normal to D;,. Thus

the thiee vectoss B, Dy, Dyy are all in one plane and arranged as shown in Fig. 6. The angle
bevacen Dy and f; will be designated as x.

Derivation of Equations 3.109

Ayproximating 133 and B,z, according to equations 3.108, we get

— oy

e v
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~

Fig. 6—Vectors of equa-
tions 3.107 (all are co-
planar with the page)

kg - BEA - W) = kf - i} (1“'250)(1 Vo)
~ k3 - RE(1+260 - ¥y)

~ -Rk3(250 + Up)

and similarly

ky ~ Bf(1 - W) = -kG(20y + o).
To get the Jirst equation 3.109, we use the first equaticn 3.107 to write
W77 (Bo - Dp1)Bo - Do - WirB3Dy * Do = -k5(28¢ + Yo)D§
or,(remembering B * Do = 0)
0 - Yiph3(1+280)DyDg sinx = -k3(260 - ¥o)DE.

In this equation the right side is a very small quantity, because both 283 and ¢ are small;
it thevefore makes sensc to regard the factor (1 + 284) as almost equal to 1. Then we get

(250 - l,’/o)Do - wﬁ sin XDH = 0.
Similarly for the-second equation 3.109, we begin with the sccond equation 3.107 and get

(25"- ‘P'IO)DH - l,’/H sin XDO = 0.

Equation 3.110

In equation 3.110 a distinction is made between ¥y and ¥j7, that is, between the two
components when planes of the form (hkR) and (th) are considered. We will 1ater discuss
the conditions under which W7 may be set equal to ¥y, although in most derivations we
will set the two approximately equal.

am— e
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Page 117: Normal and Parallel Polarization
Let us remember the waves are transverse. Moreover, let us note that sin x appears

in the product Y7 sin x only. We will set sin X = 1 and assume normal polarization (Fig.
7). When the need arises, we will replace Y77 by ¥ cos 20 for parallel pelarization. -

8, 8, & B,

isi

28

3

o

Fig. 7—Waves with parallel polarization (eft half of figure) and normal polarization (right half of figure)

Derivation of Equations 3.113, 3.114a, and 3.114b

Starting with equation 3.112, we have

k%"’ !f,'g'ég"+BHv

0

By

ko kb
Bit = By By = (kf) + _%);_on + B,,) . (kg + ef;oon + B,,)
AY

2 2 .
k(z) + !ioég + B?’ + 290 . nk_oao " 260'?08;] n
0 "o Yo

+ 2kg " By

o —————
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Irmoring k%&%/‘yo in equating the preceding equation and equation 3.108, we get

kgSy . 280keBy N
B = h3(1+26,) = k3 + BY + 2up - n..%._& + ..__0_27._1_1.___ + 2k§+ By
9 (|

kY + 26,k2

or
2 .
B 2k, * B us *n, 2RaBy * n
by = = + LM 4 05, 4 ZOH 5
or
-~ 1 1
< 6” = E'(X + ’560,
« where

1
o= ﬁ*(B?'i +2kg * By)
i

and, since ug * n = v,,

By on
.‘I c *
n kg

The quantities 5y and 8 are related to the intemal incident wave and the internal dif-

) fracted wave. The wave vectors iy and fy; of the internal incident and diffracted beam

: are related to the incident wave vector kj through the pair of equations 3.108. The quan-
tities 8 and &y are obviously small quantities, so that there is experimentally a very small
difference between the various refractive indices. Equation 3.113 enables us to evaluate
817 as a function of 8y and the wave vector of the incident beam. ‘The quantity 8 itself

is related through equations 3.10% and 3.106 to Y4 and thus to the average refractive index
of the medium. Frum equation’ 3.113, 3.114a, and 3.114b we see that 6;; contains a part
which is approximately equal tv 6 plus another part /2 of the same order of magnitude.

Derivation of Equaticn 3.115
From equation 3.114a and the relation By = k,lf - kg

n ko
ne (ks +kf-kE)

. o =

Numerically g} = Ikg I, because the wave vector does not change its value by much in
diffraction. Thus
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ne kg *kgn '-»ug Yo

b= n-kj B kfn - ub - '
Derivation of Equation 3.116
Referring to the Laue diagram in the reciprocal lattice (Fig. 3.2), we can easily write
By = k,’} - kg-
Substituting this  the expression for o (equation 3.114b), we get
«= o7 ()7 + 0B)° - 2k - kG + 2y i} - 2§ - k).

The first two terms and the last term cancel out, as they-are approximately equal and con-
tain no cosine term. The remainder is

o Z%[-Zk% cos 20p + 212% cos(0+0p)] =~ -2cos20p + 2cos(0 +0p).
0

To get rid of cos 205, we rewrite 0 + 0p as 20g + (0 -~ 8p) or, in turn, as 204 + AD and
evaluate

cos (205 + AD) = cos20gco: A0 - sin 20p sin AD
= cos 20g ~ {sin 203)(7 - 0p).
Substituting this in the expression for «, we get

a = 2(5,"11 203)(03 -0).

Derivation of Equation 3.117

The ungle between ug and ug is not 0y -~ 0, as the vectors uy can lie on a cone with
constant 0 but changing the angle between ug and ug (Fig. 8).

We must resort to some mathematical tricks for the evaluation of the quantity (05 -
0) sin 20 in equation 3.116. We write 7

Fig. 8~Geomet;* pertaining to the derivation of equation 3.117
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O0p + 0 =20p - (Gg-0)
or
cos(0pg +0) = cos [205 - (0g -0)].
Now
cos (205 - (0p -0)] = cos20g cos(0g - 0) + sin 20p sin (05 - 0).
If 0g = 0, then 0g - 0 is small, so that

sin(0g -0) = 0p - 0.

and

-cos (0g-0) = 1.
It follows that .
cos (0 +9) = -«0s 20 + (sin 205)(0p - 0).
Ficst, to evaluate cos (0g + 0), we consider the plane which contains the incident and dif-
fracted beam (Fig. 9). The angle h~tween the diffracted beam at the Bragg angle and the
F % incident heam slightly off the Bragg angle (the angle between ug and ug) is0g + 0. Thus,
with reference to Fig. 3.5,
cos(0g +0) = uy - ug = cosxcesypcosyY + €, cosxcosysiny - sinht,'lsimp.

Next cos 20p according to equation 3.79 is

cos X cosypcos Y ~ sin Usiny,

From these last three relations we see that

{Op ~0)sin20 = €4 cosx cosgsin §

/
@
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as given in equation 3.117—resulting from the *“simple consideration’ mentioned in the
sentence prior to the equation but rather tricky.

Derivation of Equation 3.118

Rather than expressing « in terms of 0, we consider:A as the independent variable.
So (equation 3.114b),

« = <5 [BY + 2 - By,
ko

where (irom equations 3.4 and 3.2)

B B t, B B
B?{__;(_‘_’u__‘lg).'\ﬂﬂ_.‘.‘ﬂ)
AB AB, _AB kB
1 1 1
. 1\121 + )‘;.,i - 2)\12; cos 20g.
Similarly
2k§ - By = _23\-1;;;—{-} + 2-)\1; -)-\lzcos 20g.

Thus

2 2 2 2
a=7\2(—.~ - 5cos20p - — <-—'—‘-cos20)
Y Rlz; )\B B XORB AORB 8

2 2
= )\2[—- (1-cos20p) - —— (1~cos20 ]
o A2 ( B) s p)

. 2/1 1
= A3{1-cos20 [—-— - - —)]
ot ) A

2 (1-cos ZOO)IM)
Ap ("

< 120,020,
B

Equations 3.119 through 3.26

Equation 3.119 is derivcd using equaticn 3.113 in equation 3.110, the so-called dis-
persion relation, under the assumption of sin x = 1 (normal polarization). -
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Substitution in equation 3.119 in terins of x (amplitude ratio, B/Dg) leads to equa-
tion 3.120. Either in terms of §; or in terms of x the roots of the quadratic equation are
given in equation 3.121 or equation 3.122. The fact that two &’s emerge from these equa-
tions implies that two intemal incident waves exist. Moreover, for each x there is a ratio
between Dy and Dg. Hencedwo diffracted waves exist also. It is clear that thz values of
these waves should correspond to the values of 8; and 8g.

We write the total incident wave inside the medium as a two-component field {primed
and doxple primed) ’

. . (4 . -
- ezwot-xznkQ'r[Db PR U Dgc""”z’ 1,
where ¢; and g, arise from equation 3.90 in the following way.

Inside the crystal one should use g, rather than kg, which from equation 3.90 is

; ) . 53=k5+.{‘0_°£2n'
- - Yo

The additive term in the exponential hecomes the multiplier in the form e"""'l', c"'Y'?',
- with - .
: kbt
¢l Zﬂ_ﬂ_g
7o

#

koas
= 2 ——,
Yo Yo

and with
t=n-r.

The quantity n - r defines the vertical distance from the origin to the point of observation.
- It is obvious that the diffracted beam has the same form, the only difference being
) in the addition of By to k§ in the numerator and muitiplication of x; and x, (amplitude
ratios) by extemal amplitudes. (Remember By = x[3.)
Equation 3.127

The question of the boundary conditicn is rather involved and is broken down into
“Laue” and *“Bragg” cases. However, the only additional boundary condition which can

be written down is the cquan*y of amplitudes at n * r = 0 {crystal surface). Here the in-
cideat wave outside is Eg and that inside is the sum Dy + Dy, so that Dy + Dy = Eg.
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Section 10: Firsi Paragrapn

Comments on the sign of b should be read carefully.

‘Equation 3.129

Substituting ¢ = n < r = 0 in equation 3.125 and setting the quantity equal to 0, v -
get 3.128:

x,Dg + xo0g = 0.

This together with equation 3.127 gives us

§ . " .
g Dy = E§ Dy = —— Eg.
; o xz_xl 0 0= 5=, Fo

"Equations 3:130 and 3.131

The notations 1‘,. 15 have both an-advantage and a disadvantage. First, they are con-
fusing as to which_is the transmitted incident and which is the external incident wave. They
are at the same time mnemonically useful: interchanging e and 0 is like interchanging the
incident and transmitted waves in the Laue case.

The easiest way to remember the symbolism is to think of the ordinary Iy as the

original beam intensity and of the superscript e as denoting “oxtemal’” To get equation
3.130, write )
B _ __I k; Dr 2—!;4 + Xy D ly"fi2 -
- - IO . IEC!Z
and
(xgDoe S+ DY ce2yx, Dye 1 + x,Dp e vty -
- 2 -
XX - 7 -y ~e12
b - I—-—xi _"’xJ (@I - eyl | TRty |EG)
),
f _ | *1xaley -cz)rwelz
Xg -~ Xy 1 0
where
)
<1 = &3"";"
and

Ca = (’-‘72‘
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In the same fashion equatior 3.131 can be derived for the transmitted intensity.

Derivation of Equation 3.133

"~ Equation 3.133 is obtained by working cut equation 3.130:

Iy _ (xixafes ~ea)l?
B | x2-x

In deriving cguation 3.133, one must remiember that the quantity I/l is real. This means
{iat the-expression inside the vertical lines in equation 3.X30 must first-be expanded all the

~ way to separate its rea! and lmagmary parts. Thnat expanded expression-is then multiplied
by its complex conjugate;

The auantities x, and .rf, are the two roots o( the quadratic-equation 3.120. From
_elementary reiatiSas of the quadrztic equations wo-krow {natiif

ax2 + bx + ¢ = 0,

= then
. b
- B (xl +x3) = =z’
- - - = € i -
s - ) xlx = G’
and . -

Ii—x2=x§-’x_=—"—'—‘—-

Herg we have

k].’fﬂ!z b.’l—‘_q , ' i- -
Vit Wk

P - The quantity x5 - x; is the difference between the two roots, and from equaticn

3.122 we find
!_,_,_’__x, !1\/&:,_‘ = iﬁ

-

i g7 | Iojpi2

AN
|
1
\
1}
!
)
|
i
{
t
|
b
o
¥
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a2 a2
‘x;x?_(:, -cp}$2 ‘ bzf};,a&y . 2 -
e Bl v e Lo R
2
621512 Yoy -t ]
4&? ,;;:2! !‘ b - z
It remzins tc calculate o) ~ cal®. Be efinition
) 6 = y-f‘éxfa, £y = €FFXC,
shere o
) sy = Bf%sﬂ, T = g?é.?f;_
Yo To
I whic: .
» : )
59 = 3(Pe - = * Vg*=%4 - .
5 = 5P -5 - Jorz®L

. Bedoa (¢ - €212 <an be alkulated, ¢, and ¢, Fave $0 be writien ozt expEelily in ol sxd
imeginay parts; tbat is, = and \/q *;E—gzﬂ.beﬂsmxed into recd and fmarineew parts,

where we have from eguation 3123 X
-b ,
- = '];'é_‘;lo b é“ - -

and we define /g + 2= = & + ix Iregardiess of the valnes of g aod 2). Thus

s T T 5Tz Viges2}
=& e = e

{=heeec = ‘-’ﬁ]ﬂagﬁ’g) or

- & » % - <
c = c—s[ LT T WA T ) |
4 . »
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Ye caz write

[ ] - gy - - i
;’:Q-b.-.#'g-(q,t+z:£=)iE?m=;’@-z‘tta+ii¢;—

wHaE=gg-3,, + o, o thk

g = z"“i‘a‘ﬂﬁml;&g&%’“_’l

Here 2% 2nd ef(172)1 + )75 + &) 2ze real cuaniitier. ey

= e-ﬁ&&?&’é—e—paﬁ,

where
“”. ",‘.’D ‘: -
a1 —2—-@-2:4-9,-5*.“..:-’&34';}'-:@
! -
Eg #’f 1:"’ _‘-—-32&-5'; -,g}

wEh g E S -2, - o 20 i 7 - ;

g 0 g TERLIRIE BN )

We es2laée
14 ==
1tk o™ | W' =,
2 2 21 )
Now .

- c—é:staﬁsa-m-;“g&agﬁe?yé- _ ci:aedﬁ;;—m;

- (AT By

= t."ﬁﬁ;e‘cﬁw - to‘.'.n: - ex’.‘r _ c—ia’.‘;‘

Ly - €=§z =

-

P I e

]

* = -
.-_Fa'."‘-t 2 fﬁc.«’-fﬁ

e AGOIMNUG WV T 113049 ot 220 - 2 cos Zex,
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We define
e2TROVO2) (Yol THYO) 0 = eHot
wiere

+
THYo / Yo TH

Next we rewrite 2 (cosh 2aw - cos 2av) in terms of sinh2 auw and sin2 (av). We recall

that
o2 4 o-i20
cos 20 = D
and
. _ el() _e-l'0
sin0 = o ’
so that
2 - 20 _ 200
4
or
git) ~2i0
+
2sin20 =1 - £ 2e =1 ~ cos 20
or
os20 = 1 - 2sin2 0.
Similarly
20 -20
+
cosh 20 = £ £
2
and
0 -0
., _el-g¢
sinh > ,
so that
20 -0
+
sink29 = S2E {2 osh2p - 1

— e g - - . - [,

SN 1 5w

45
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or
2sinh2 0 + 1 = cosh 20.
(Both these relations could have been looked up in the handbook.) Thus

2(cosh 2aw - cos 2av)

]

2(2sinh2aw + 1 - 1 + 25sin2 av)

4(sinh? aw + 3in2 av).

Finally

Iy 9 -yt Sinh?aw + sin2 av
= b2 e ot
I Wyl lg + 22

with

1/1 1
t= == + —|t,.
2(70 7H)°

In the fashion in which the quantities b, q, z are defined, it seems as though g is absent.
Closer examination of equation 3.133 shows however that ¢ + 22 contains VT, so that the
expression is not asymmetric in Yy or Yz. As it stands equation 3.133 is quite general:
there are no restrictions such as centrosymmeotry of crystal structure, etc. Equation 3.113
has been used, which came about from an approximation of -the form 3.108 and implies
that the relationship 3.133 holds when two internal waves exist and the geometry of “near-
diffraction” is satisfied. (An operationally meaningful measurement of diffracted intensity
requires that in the Laue case the intensity should be evaluated at n * r = t5 whereas in

the Bragg case it should be evaluated at n < r = 0.}

Page 121: The Bragg Case

In the Bragg case, one assumes that the difiraction takes place toward the face of the
crystal closer to the incident beam. We are not concerned with the situation in which a
mixture of Laue and Bragg could take place, as this implies more than one peint in the
reciprocal lattice satisfying the Laue equations and interferes with our original assumption
of two internal waves only. {See page 116, sect’on 9C.) Aga’n using the always-valid
relationship 3.127, we get equations 3.136, which are similar to equations 3.129.

Equation 3.137

The quantity 1,1/18 for the Bragg case (equation 3.137) is evaluated at n* r = 0,
whereas [§/I§ is evaluated at n * r = {5, Equation 3.137 can be derived with a little more
tedium than was equation 3.133 (but along the same line), hecause it contains more terms.
‘This derivation is left out of our notes.
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Although this equation does not contain an explicit aborption factor (e™#0!), this does
not mean that absorption is not present, because absorption is related to the polarizability per
unit volume, whose value imposes a numerical condition or ¢y and ¥g. In particular, as
stated at the end of the second note that follows, zero absoxption means ¥y i = Wnlz-

-~

Page 122: Last Paragraph

Figure 10 may clarify the geometry of incident and diffracted beams in the evaluation
of the integrated power ratio. it is clear that the assumption

holds only fer small depths of penetration. An expression could be worked out. fcr the
ratio Sy;/Sy as A function of depth of penetration. This, however, would be irrelevart to
the present problem, because in most cases the beam size is indeed large enough compared
to the penetration depth to satisfy the above relationship, and if the penetration depth
were large, the relations Py = ISy and Py = 14Sg would not hold true, as the intensity
would not be uniform across the beam (due to absorption), and both relations should then
be replaced by some sort of volume integrals rather than simple linear products. Note
also that the only case i which the cross-section areas of the incident and diffracted beam
are equal occurs when the diffracting planes are parallel to the surface of the crystal.

(a) (b)

Fig. 10~Geometry of incident and diffracted beams in the evaluation of the integrated power ratio for
the Bragg case: (a) Lacge depth of penetration and (b) 8mall degir of penetration

Page 123: First Paragrooh of Section 11

Remember that gy was obtained from equation 3.100 and depends on the imaginary
part of the polarizability per unit volume. Therefore

v =0, a=1+9.

Furthermore the Fourier coefficients are not necessarily real, but they must satisfy the con-
dition that inverting the indices H does not change the vaiue of ¥y (see equation 3.94):
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ei2n81g~r = e-ian,';-r = eiZnBy'r
or
vir = Vi
Therefore

YV = Yuvig = Wyl?

Page 123: Power Ratio in the Laue Casc; Derivation of Equation 3.142
With zero absorption equation 3.133 becomes

Iy sin? (av)
=22 = ——— p2y 2.
i lq + 22| Wl

We convert [yl to Kl{yl, where K is the pclarization factor (1 or cos 20). With g =
blyy12K2 and v = \/q + 2Z we have

2
2000 12K2 sin2 —E
Iy b2iYyl2K? sin (a\/l;lleHIK ‘/1 + bltllulsz)
I5 ) K26y 12(1 + 2 ’
H blyy;12K2

which from the relation Py /Py = (1/16])(f;/I5) becames equation 3.142, in which {defini-
tions 2.140 and 3.141)

21(1-b)yq * ba]

F4
A = ay/blyylK, y = __ = :
" 7 VolyyPK? VRS

From the form of equation 3.142 the variavle y is dimensionless. It is related to «
through tne definition 3.141. However do not confuse this o with the o (polarizability)
as defined in equation 3.93! The dimensionless variable y ! ns a pacticular advantage over
the other variables (@, A, €;) in that it makes the calculations “coordinate independent.”
Once the results are obtained for vy, they can be easily rewritten for other variables.

Page 124

In the Bragg case it is necessary to check whether /g + z2 .8 positive or negative,
becacze b < 0. The separate solutions are derived in equations 3.143 and 3.144. Note the
remark directly under equation 3.144.

A particular elegance of the use of the y szale i that it makes the diffraction patterns
symmetrical (since changing y to -y does not change the form of equutions 3.142 through
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3.144. On the other hand the center of the diffraction pattem, y = 0, does not necessarily
corresond to Oy but to Oy or Ay as defined below. With reference to equation 3.123

b .
3 Yot gx=0
or
(1-b)¥y = -ba.
From equation 3.116 we have

(1-b)Yo = ~ba = 2b(0g - Op) sin 20.

Therefore

- (1-bg
0o = 0p + 2bsin 20y °

Similarly from equation 3.118 we have

(1-b)Yy = -4b L e 0p
Ap
or

ho = Ag - ~23-D)
0~ "B " 4bsinZ0g 7O
Obviously 89 = 0g and M, = Ag only when b = +1. The center of diffraction pattern

corresponds to the Pragg angle only in the symmetrical Laue case. This 1s not true
for any other geometry.

Page 124: Last Two Sentences

See equations 3.93, 3.100, and 3.101. Remember that dlﬁ is zero (no absorption), so
that Y is completely real.

Yo = Yo + ivg
Derivation of Equation 3.146a
From equation 3.131
2 .
ig - X9C) ~X3Cq - XgC1 = X(Cq (X9Cy "IIC2\ -
10 X9 =Xy X9 = X1 Xg ~ X3y )
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Previously we had

sin? au

111 —_
== = 21 =12
b2l Pyl

i3

Here the de.anminator is obtained the same v;vay as before

The numerator is

ltge) ~ x1e902 = 2} + 22 - x1xp(e1e3 + chey)

. x? 4+ x3 - xpxp[e' 2P 4 ev1-v2))

This factorization is possible because x = x* with.no absorption. Note that the ¥’s are

real; if they were imaginary or complex the above step wouid have tc-be done more care-
fully! Thus

n o
kge; - xy0012 = X} + x5 - 2x;x4 cos [{g, -¢l,
where

_27!’20!0
Y0
in which a was defined in equation 3.134. With

1

(p2-91)¢ (80 - 8p) = 2a(55 - 57,

bo-Sp = Vg2 =

-

we get for the numerator

x2+x2+2xx - 2x1x9 - 2x1X, CcOS 2av
1 2 1+2 1-*2 1+2

numerator

Ixy ~x912 + 2x;x5(1 - cos 2av)

L

;
bey +x512 - b h:-il sin? qu,
Wit

Observing the expressions above for £;;/I§ and I%/15, we have

or

s e e
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or

P§ = PY + Py.

Page 125: Bottom Paragraph

See equatinns 3.116 and 3.118. -

Equations 3.147 through 3.149

In the four relations 3.147 the ratio Py /Py should first be expressed in terms of the
variable with respect to which the integral is calculated. For the variable y this quantity is
already worked out as equations 3.142 through 3.144. It is therefore necessacy to trans-
form the integrals for the other three variables. To avoid the difficulty of the: precise defi-
nitior: of domain of integration, we-conveniently extend the limits to (-0, +o0). Then the
integration can be perfor—o1 by multiplying each integrand by the partial derivative of the
variable considered with respece to y: For example, df = (00/3y)dy, etc., where 39/dy is
then a constant and comes out of the integral sign (the relationship betwern all these vari-
abies is linear). In this fashion equation 3.148 leads to 3.149, Once again we-see that
only Rj; is essential for any calculation,

Page 126: Diffracticn in Thick Crystals

Tae power ratio 3.142 in the Laue case shows an oscillating nature that becemes more
and more pronounced with increasing A.  An uncertainty in-the thickness equal to 103 cm
or in A equal to 7/2 justifies ‘ne substitution of the sin? term by its average value 1/2.

We arrive at this uncertainty through ths following estimate, We have from equation 3.140

to
A= ﬂkoxh,'l""‘——‘—
vVY0TH
or
DA = ThoKhpy|—rd
1 = ARGRIYppl — ———".
i vVYoTH
For AA = 7|2
7 At
3 = mholyyl T2 .
Since .
470'82F"
Yy =
Y mwiv ’
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with
e = 4.8 X 10710 esu,
ko = 1019,
Fy = 100r 20, g
V= (383 ~ 30X 10-24 cm?, /
m = 9.1X 1027 g, -
this gives

Aty ~ 1073 em.
] <
Equation 3.151

The half-width value is determined easily on 0 and A scales by the same method as
equation 3.149.

Equations 3.152

The evaluation of R}; = #/2 and other R values as in equations 3.152 are the easiest

“for the Laue case with nc absorption. These again are straightforward and will not be ex-
plained here.

Equation 3.153
The average polarization factor is the value customarily usaed in a simple diffraction

experiment. However it should not be assumed that this value holds for varicus geomet-
rical arrangements, as encountered for example in the double-crystal spectrometer.

Equation 3.154
f In Equation 3.144, V1 - y2 is physically meaningful when lyl < 1. Hence, as A in-

creases, the ratio Py /Py approaches unity, because both the numerator and the denomina-
i tor contain s’nh? A\/1 - y2. For very thick crystals it follows

S g when BI<1 amd A >> 1
0

We had previously (last paragraph on page 122}

r
|

|

|

}
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In !bl=|—"—°l =20 with b<o0
Iy T Tn

Fuvir + Y9i5 = 0,

which shows that the (algebraic) sum of inward and outward flux equals zero (total reflec-
tion). This holds for the range Iyl <1.

Derivation of Equation 3.155 -

Equation 3.155 is the result of evaluating the average Py /P, for thick crystals when
iyl > 1. We begin with the expression for Pg;/P, given by equation 3.143:

Py y2_14%in2 A\yEoT

This can be rewritten

sin2AVyYZ-1  y2-1+ (sin2 AVyZ-T)-(y2-1)
y2-1+sin? Ay2-1 y2-1+sin2 Avy?-1
2.1
=1 ~ Y

yE -1 +sin2 A/yZ =1

For large A therefore we need to average the second part enly. We are inlerested in
an integral of the form

1 A 1 "‘61‘ - 1

- 84 Ji, y2- 1+sm2A\/§27-

where 8A is chosen such that the integral goes.between maximum and minimum. Without
setting the limits of integration and specifying the value of A4 more exactly, we evaluate
the indefinite integral. We let

y2 -1 = x2, x> 0.

‘Thug

e SO g L _
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r : 1 (»2 - 1)dA _y2-1 j’
: 3A ) y2-1+sin2A4vy2-1  6A x2 +sin? Ax .
_ 1¥%2-1 7 d(Ax) :
} x SA x2 +sin? Ax
)-
{ , _¥2-1 dz
] T x8A x2 +sin2z °

- From a table of integrals

3 " dx signa
. Ja+bsinZx N 1

tan bx)
or

N dz _ B 1 Lan( 't2+1w .
§ T+ sin’z FERITS arc ]/ ) ¥

The limits of integraiion were set at A; and Ay + 64, After muitiplication by x aad re-
defining the variable, the limits are 4;x and (A; + 6A)x. Hence

_dz /
Zesinlz | f(z 2'_“"'2'.,. 1= [ h “mmx + 5-‘*1)]

2
’ - arctan {}I/Z :ltan.i!,x)]}.
; xe

Since the value of A; is uncertain by an appreciable amount (=~x/2), we choose A;x in )
such a way thal tan A;x = 0. The value of the second of the twc terms in the braces is -
then 0. For the first term in the braces we should evaluate tan (A; + 84, )x. Since tan
Ajx =0, tan {A; + 84;)x = tan (54;x). The value of this quantity depends (for each x
in the problem) on the value §4;. We choose the smallest value in terms of x that makes
the quantity tan (64 ;x) a maximum (we do not care for other values of 84,). So we
1 ‘must have A1 x = 7/2 or 8A; = 7/2x. Thisis the value of 64, that gives the average of
the integral, which should be evaluated between the limits Ay and A; + 54;. Reinserting
) the multiplier (y2 ~ 1)/x6A that was in front of the integrul, we get

y2-1 7r12 1 _¥%-1 o ¥r-r V¥Rl 1.1
x wx Jifxel) it JOEoinE | VP y2 -

The complete expression for equation 3.155 is now

w

——————— e Ay _ N —

-y
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i) W TR
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The relationship §4; = x/2x impliez that for small x, that is, ¥y & 1, §4; can be many
times =/2. However as x, and therefore y, increases, up to x =< 1, the vzive of 34, ap- -
proaches xf2. For very large = or y. sensitivily in 5A decreasss to 2 fraction i =. itis
therefore imporiant to indicate-the range of applicability of these results. -Conclusions
drawn frem oquation 2.14R are left up to-the reader:

Top. of Yage 129

~ To evaluzte Rj;, we integrate
- s 1 z
g, Po Fq . Po 1, P
= = A = -
—2f1;+2+2-1-:"

that i ) -

R}y {Bragg) = 2RY; {Laue).

The ré.ile;’may be ablews give a simple plawsibiiity argument for this.

Page 129, TKin Crystals
For the vary thin arystad, swith A very small, cne of two things may occur. In the
ecuation ’ -

. Py sin2 AVYZ + 1

Fy VyZ+1l

either y is small, in which case the numerator is much smaller than the unity and the ratio
Py;/P, is negligible, or y is large, in which case y2 + 1 = y2 and equation 3.157 follews.
The same reasoning applies to equatiops 3.143 and 3.144.

Comments Following Equation 3.159

The comments following equation 3.159 should be read in the light of our redefinition
of half-widli according our note pertaining to the middle of page X01. When D is smail
{so that the entire crystal plate contributes to diffraction), we may sce that the definition
D = tg (sin Op)flyyl is physically reasonable (Fig. 11).
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WL
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{c) - iy

-
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Fig. 11—Diffracticd geometriex for thin crystals: (a) Beaggcase: D = ig and (b) Laue cose:

D=tgtanfy
Eqgiuation 3.160
‘ It may be seer: that the total reflecting power for a “thin” crysial is a linear fur:ction
i of A. wherezs for-tive thisk-crystal there is no A dependence.
: ‘Equation 3.161
We write
akolg
: A= ‘;:)0 \/TE'{ leyl = a/1b. #i9y1,
F: -
K = 1lorcos 20,
4ze2F, )
Z "’]l - ‘--_"'2_1;1 ’
mwgV -
and
- ‘!:c’-"F,,T\?- 1 ez
T e mAr—cr——  Z v 2 SN w— — 2.
7 migsey2v Wal® = 2z (me*)2V?2 il

Therefore, from the fast of equaticns 3.160,

x _ FAWHIKN  22koto/TITK2IYy 12
H = /Tl 2sin2 04 181 2(sin? O5)vg

which becomes after taking the mean for normal and pareilel polarization

R - 729 {1+ cos? 205\ IFyI2\3 e2 )?'
H 7% \ 2 2(sin? 6g)A2\mc?V,
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w}

Q

[
= g2
7o

In taking the mean we have writfen
2

LG+kY) = L +cos2 20,
2( S 1)- 2( COs 32

iy

Page 131: Top of Page
The paragraph portion at the top of page 131 contains some very important remarks
regarding kinematica: and dynamical theories.

. Page 131: Crystals of Intermediate Thickness:

Sefting y = 0 in the Laue expression (sin2 A /1 + ¥2)[(1 + ¥2) (for the center of the
* diffraction paitem), we see that the value of:sin® A increases to 1 as A — z/2. Thereafter,
it oscillaies befween 0 and i. Away from the center, that is, for ¥ ¥ 0, the Laue expres-
sion is 2n oscillating function of A, for every ¥ in the problem, the higher values of A

Iead to faster and faster oscillations; that is, the interference fringes squeeze together with
increasing A. ’

Equation 3.162 Through 3.166

it is easier to develop < manageable expression for the fotel integrated intensity than
for the power ratio. A familiar mathematical tooi is used here: To evauate a function
f(x) it may be convenient to first diffcrentiate the function, expand the Gerivative in a
Taylor or some other infinite seiies, and then reintegrate. A\ variation of this trick is used
in deriving equation 3.165¢ Since we observe from_equation 3.163 #hs sinilarity with the
Bessel integral, differentiate equation 3.163, express the remlt in the Bessel-funciion -
Jo(p), and again integrate.

Equation 3.166 verifies the previous resulis that for the Laue (as well 2s ihe Bragg)
case, small A implies Ix}} = %A, and for the Leue ccse alone, wite very large A, R;, =
=12,

Page 133: Bragg Case

For the range y < 1 sce equation 3.154. Again, workmg out the integral 3.167 for
R%, we find the numerical estimates for large and small A in agreement wiih previously
derived egaations.
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Bquatios 3.169

The Gefintion 3.159 is the seme as the definition 3.140. A “siroog™ refleciion messs
relatively large Fy; or {. Substiiniing approgriate rambers for Fy; {sakite efc), we et
A = LT X 103 Kol /2o, Shemas for smaSer Fy; we would find seaBer 4 The as-
sempiion that '

, Eeg
A= ’7)(103-;‘,‘;;;’; < 04
impEes
Ko cos—i . = e2x10% = 2x10%.
e 17X 10° :,
Thus the “effectie Iinear dimension™ increases with decreasiog 4. The redationship 3569

coctrols the rasge of apphcabdity of the thin crysial formeks for strooz and wesk refiee-
©es

Equations 3.170

By Ujj we mesa Uy with “mines ™ that s with reversed Miler indices.

Equation 3.172 -

See equaation 3.98.

Equation 3.147

In equztion 3.174 the factos $f/2 is the same 23 §g 25 shovm by eqrations 399,
3.10G, and 3.105. Al nole i miguint: the bracket iIn the expoasnt shosld be doiled
intor.

Eg:=tions 3.177

Both Fouricr components of ¢ and ¥~ are in general complex. We had previousiy
set tie quantities [W;12, 19712, and I$ U7 equal to 2ach other. tiere bowerer we moit
resolve them into real ard imaginary parfs. For example

-8

Vi = Wiy +ivp? = (P VNS -i9%)

= Wyl + Wyt - Wpdy t YR
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WHVE + GOV = 2Re (W V).
Wa have

Vi = Wi )" = W, - Vh = VIV,

and
Re (Wi 0jy") = Re [i(Vy, - 1)V, + V)]
= "’I;li‘p';ir - w’;{i¢”l”r
Finally

Wyi2 = Wyl2 + Wil + 20ydh - Vi Vi)

Equationg 3.179 and ?.180

The-assumpiion of equality of the three expressions 3.177 is purely a matter of con-
venience. However it is clear also that for crystals without centrosymmetry the calculation
would become quite involved. From now on we assume that the Fourier components ¢},
and \b’iq are real, and for each set of Miller indices we set

"
= Y,
Vi
where in general {1}; is much less than Y}, (due to the small anomalous part of polariza-
bility). Equations 3.180 follow from equations 3.177:

iWyl2 = W2 ~ jgyl2.

quatjons 3.181

The definitions 3.161 follow the same pattern as equation 3.141. One difference is
in the factor v, which is now explicitly writlen cut as

Yo = ¥p + iy,
The factor {¢y| in the derominator is now rewritten os |Vjl. The expression for ¥ in
equation 3.1-.1 is now replaced by tw. expressions: y as befose and g (absorption lerm).
Eyuation 3,182
To obtain \’;:—;’- (equation 3.182), we substitute g and 22 from equation 3.123.

Equaticns 3.180 should be used in evaluating q, and equations 3.181 should be used in
evaluating 22,
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Derivation of Equation 3.133

Within equation 3.182

i\ 1
Vitoniz o ./ 2 KN VATl K
1+2ik +y V(1+y)1+1+y2 (1+y \1+1+yz

Therefore the real part is /1 + ¥2, and the imaginary part isik/« /T ¥ 2. This in equa-
tion 3.182 gives, using the third definition 3.181,

av = aK]','/},l\/TITIRe[\/I +y2(1+ Lt )] = AV1+y2

1+y2
and
KA
aw = -
VI+yZ

Also, ignoring k, we have

lg+2% = [p2 + 2| » K2[yp12(1 + y2),

Comments Foliowing Equation 3.184
Wil is the factor appearing in A; ¥}, and Ya appear in the ahsorption term. If /74
<< Y}, then

Holy o 4
Yo

Equation 3.185 is the approximaﬁipglor/}ar‘éé'}i. and equation 3.1886 is that for small
A(<0.4). Equation 3.186-is readily integrated whereas one must resort to more elaborate
nume:ical techniques in caleulating RY; for larger k4.

Derivation of Equation 3,188

We first write by definition

” , thot i1
%A z-:ffélaxw,,z = 2y Zoote 4 Wl
414

Yo gl

2”k0¢'6£Q eyl _ Holg ________l\f/:'{lf = Holo
Yo 1Yl Yo Ivg! 70

"

With this definition equatien 3.185 lx.comes
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L #00M0(1 4 g sinh2 —m o) & L -Hotolrol1-(€/ Ty D]
2(2 + y2) V1+y2 4(1 + »2)

To see this, we write

KA (X - e-x)2 2% 4 o=2x . 1
'nhz ——— = sin} 2 = =
Si w sinh< x e 4

If we set x = 3, then ¢2* = ¢6 =~ 400 and e~2% = 0.0025 and can be neglected; hence we
have

KA 1 o
: ~ 2%A/\14y2

Vi T

to one part in 400. Thus equation 3.188 fcllows.

for x > 3,

Page 140: Top Two Lines

To evaluate the half-width wy,, Ve proceed as previously, by setting the maximum
value of-cquation 3.188 equal to twice the value at wy =y:

b o-totolvo1-e/V1y?)] o 1 1 -(uotorro)i-€)
4(1+y2) 24 '

'Taking logarithms of both sides, we obtain

10€0l
-log(1+y2) + log2 + Hototo Mot _ _Holo | Holo

VI+¥2 T T Yo

This equation, after simplificatior;, is seen to be satisfied for y between 0 and i. In fact

wher 2¢A = potg/vo is very large, the equation holds for y very near zero. It is then
reasonable to assume that

4
log (1+y2) ~ y2 + (—%)

by expansion around y = 0. Then we have

, KA
-y2 + log2 + ————— = 2A.
V1 +y2
We now expand
1 1 1
~ -1 - —— l2
1 2,\

ol e ——
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Hence
y2\
-y2 + log2 + 2kA|1 - -—2-/ ~ 2A
or
¥2 (1 +KkA) = +log Z
or
log 2
2 =
Y kA+1
Thus

w = _.l—o.g—z—.
y kia+1°
The next statement that *“as |k]A Cecreases to z2ro, w, increases to 1,” obvicusly
does not come from the expression just derived, because the latter refers only to an ap-

proximation for large iki4. It may be seen from equation 3.186 that the half-width at
IklA = 0 is equal to 1.

Page 140: Bragg Case
The Bragg case is again more difficult than the Laue case. For very thick crystals we

may set sinh aw ~ cosh aw so that equation 3.139 reduces to equation 3.183. (Note that
sin av then oscillates between -1 and +1 and may be ignored.)

Derivation of Equation 3.190

From equation 3.182 we get
lg + 22| = K2|UyI21bl |- (2ik + 1) + y2 + 2igy - g2,

where the minus sign is used for b in the Bragg case. From equations 3.123 and 3,180

"

q% = bI12 (Y, 0712 = b2IYyI2K2(1 + 2k

U

162] 1@y 12K2(1 + 4k2).
Substituting this in equation 3.189 namely,

11y _ Py blyy 12K?

— —— Rl

by P§ g+t + 22| + g+ 22 + 202 - g2’
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we get

Py 1

P L +IZ (1+4k%)’

where we have set

lg +22] + 22| _
- K') ! 12 = L’
= 1Yy l1bl

which is the same as the definition for L given .oy equation 3.190a, because

L lg + 22|

K25 1216lV (-1 + y2 - g2)2 + 4(yg -k)?

Then

Zur_ L-VI2-@-4%) L-VL-(1+4&7)
Py L2 - (L2 -1- 4xk2) 1 + 4k2 |

Here we multiplied both the numerator and the denominator by L - VLZ (1 + 4k2).
Since 4k2 << 1, we ignore it in the denominator and cbtain equation 3.190.

Page 141: The Darwin Solution .

The assumptions of the Danwin solution are stated in the subsection beginning on page
141. Here M =L if g = 0 and k = 0, or from equation 3.190a -

M= [y2-1] + y2,

Equations 3.192 and 3.192

When jyl < 1, equation 3.192a is obvious, because M = 1. When [y] 21, we write
M = 2y2 - 1, so that from equation 3.191 the expressior: for Py /Py is

292 -1 - V(2v2-1)* - 1

e r—

2y2 - 1 - Vdyi -4y
2y% - 1 - 2lyly/yZ-1
(yl - Vy2-1)2

In evaluating the integral RY;, the expression just derived is integrated in the two regions
-0 <y~1and +1 <y < +oo, whereas for Jyl < 1 the value R}, is clearly = 2.

u

i}

- ——
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Furthermore since in equation 3.192b the expression for Py;/Py is an even function of
y (changing y to -y does not change the value of the function), it is necessary to evaluate
only

(-4

2 [ - V3ira

+

Page 141: Last Paragraph:

The lack of symmetry is apparent by changing y to -y.

Equation 3.194

Equation 3.194 can be shown immediately by sulving for the root of 8L/3y = 0. On
the glancing angle scale we have:

1-b ., g)
( 2 |Y‘0- +~~2Q K

y = /== =
Vbl Kyl g

with « as given in our note pertaining to page 124. Theretore (see equation 3.145a)

2

1 lbl ] K l '
(3 + —2-)1%1 - SWHIVBIK

Ib} sin 20

0p = 0p +

The quantity [b] is written as an absolute value to make equation 3.194 more universal.
Note that in the Bragg case

1-b _ 1+1bl
2 2

Equations 3.184 and 3.145a are similar except for the x term. The effect of this
term depends on the sign of . Ordinarily this term would tend to bring the peak of dif-
fraction back to the Bragg position. However the shape would-still be unsymmetric unless
Kk = 0. ’

Top of Page 143

From equation 3.190 we evaluute the intensity maximum (Pg/Pg)p., at ¥y = k/g:
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h
I
T
ok
+
oq |a§°
]
x
.
]

]
s
+
Qq
[ &)
'
lx
™
Sre”
N
+
"l
[ ]
+
Y
™

2 K2 2
.\~,1+32~_.2_ +—g3+g

1+ 22,

| In the transition from the second to the third equality we used the fact that k <{ g always.
- So

L’ L - VL2 - (1-4k2) = 1 + 2g2 - 24/g2(g2 + 1 ~k?2).

Py
- The crude approximation R{, = (8/3)(1 - 2lgl) is based on tne following: When g =
0, R}; = 8/3,:s0 that for very small g one might be able to write for Py;/Py the expression
just derived:

—gﬂ 1+ 2g2 - 21g12V/1+g2 — g2
0

~ 1+ 2g2 - 2igl [J + %(gz-xz)]

e

1 -~ 2lgl

or

Ry ~ 2e1-2.

Pages 144 to 147: Diffraction Pattem for Calcite

The diffraction pattern calculation is quite tedious but straightforward. It is suggested
{ that the reader become familiar with structure factor calculation techniques, the simplest

) of which can be found in Cullity [6] and Azaroft [1]. Otherwise Zachariasen’s three-page
explanation of results is adequate.

Page 147: Double Crystal Diffraction Patterns
4 In this final section of Chapter III the expecimental method of verification of pervious

l theory is described. Again we find the explanation quite Jucid and leave the derivation
entirely as an additional exercise for the reader.
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