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The follwlnR report covers the period fro« 1 Auj.jst  1972 to 15 March  1973, 

Duving this period effort has been concentrated  in the following areas: 

I. Crystal Growth 

II. Magnetic Resonance Study of Defects 

III. Hydrogen Diffusion Experimental 

IV. Hydrogen Diffusion Theoretical 

V. Determination of Conduction Band Parameters by Use of Hydrogen 

Solubility Theory Developed in Previous Report 

VI. Far I.R. Spectrometer 

The four preprints included in *he last progress report have all been 

accepted for publication and will appear shortly.  In addition, three papers 

dealing with work in progress were presented at the San Diego APS Meeting. 

I. Crystal Growth 

The relation between the actual temperature profile inside the chemical 

vapor transport ampoule and the temperature distribution of the exterior heat 

source has been followed further. The temperature gradient at the growing 

crystal determines to a large extent the interface stability. Hence this 

investigation is basic to CVT crystal growth in general. Precious little had 

been known before our measurements, concerning temperature oscillations and 

profiles in this crystal growth technique. By expanding the study from TeCl 
4 

to iodine, that is also frequently »sed as CVT transport agent, we were able 

to verify chemical convective instability on a broader basis, leading to a 
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publication thit will be basic for future CVT studies.    (See the attached 

Preprint I that has been submitted to the Journal of Crystal Growth; an invited 

talk on this subject will be presented at the Gordon Research Conference on 

Crystal Growth in July.) 

The crystal growth efforts are suaurized in the er.loswd thesis  (Preprint 

II) of M. C. DeLong.    Beyond  this thesis,  further insight has been obtained 

into the actual transport chemistry of the process.    In former progress reports 

it had been pointed out already that  the transport reaction assumed by earlier 

workers 

Ti02(s)*T^4(g):TiCl4U).Te02(g) (1) 

is at best a crude overall equation for a chain of subreactions. One of these 

reactions, thermal dissociation of TeCl4 has been identified earlier in this 

work. Quantitative measurements of the dissociation kinetics are now imder 

way. In addition, thermo-chemical calculations predict that Te02 should also 

dissociate to a large extent in the employed temperature range. This species 

will ht  included into the kinetic studies which will result in better defined 

thermo chemical d^a for the various tellurium compounds involved, than are 

currently available. Furthe more we found that Si02 of *• quartz container 

is also transported in the system, leading under certain conditions to a 

sizeable contamination of the Ti02 crystals. We assign the observed SiO 

transport preliminarily to the coupled reactions [that are also coupled to (1)] 

Si02(s)*
T^4(g):S^4(g)

+^2(s) (2) 

S1C14(g)*02(g):Si02(s)*2C12(g) (3) 
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Further experiments are planned to verify the role of (2) and (3) which arc 

of general Interest since various other workers employ quartr ampoules in 

CVT processes that involve SiCl.. 

II. Magnetic Resonance 

Work in this area has centerd on investigation and identification of 

various charge states of impurities in rutile. See attached preprints 

III and IV.  In addition to the work discussed in the preprints we are 

studying W-doped and V-doped material and are attempting to Identify the 

site of Interstitial protons In the rutile lattice. 

III. Hydrogen Diffusion Experimental 

A large effort has been made In this area because of the importance 

of H as a probe In the study of electron trapping levels as discussed In IV. 

This has proved to be an extrec-ly difficult project both experimentally and 

theoretically (Sec. IV). In onler to avoid large electric field effects t 1$ 

necessary to perfor- the experiments at nearly constant Fermi Level. This has 

been achieved by simultaneously diffusing Hin and Dout or vice versa In su:h a 

way that the total concentration of H ♦ [) remains nearly constant. Problems 

of vacuum contamination at the elevated temperatures required have been severe, 

as have surface effects. Thus far satisfactory results have not been obtained 

but we feel that the problems are nearly under control. 
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IV. Hydrogen Diffusion Theoretic«! 

A.  Introduction 

Diffusion in insulators is generally accoi^anied by changes in the Fermi 

Level, which in turn results in electric fields which influence the diffusion 

rate in the material. Since the electric field present may vary greatly with 

the sample and the experimental conditions one cannot expect a unique diffusion 

coefficient or even that the system will obey Pick's Law. The observed diffusion 

will be the result of many factors including microscopic Jump rates in the 

absence of fields, mpurities, and nearby diffusing ions etc.; distribution of 

Impurities and defects; in addition to internal electric fields. Yet experi- 

mentally what is measured is simply concentration vs. time - indeed, often only 

total integrated concentration vs time. The purpose of this study (consisting 

of the theory of this paper and the experimental work of Sec. Ill) is to identify 

precisely what can be determined from diffusion measurements. 

As a prototype system we will consider the simultaneous diffusion of H and 

D in rutile in such a fashion that the total concentration of H plus D remains 

nearl/ constant. A^ will be shown, this permits a quantitative treatment of 

the effects of both concentration gradients and electric fields in a self- 

consistent manner, and cietcrmination of an effective diffusion coefficient 

in the absence of a field. 

In summary, the Poal of mis  study if to indicate the conditions under which 

Pick's Law is valid and to determine the meaning of the measured diffusion 

coefficient if these conditions are met. 
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B.  Diffusion Equation 

We begin by deriving an equation describing diffusion in the presence of 

both a concentration gradient and electric fields, in a form suitable to the 

present problem as indicated in the Introduction. We shall not be concerned 

with a first principles calculation of diffusion rates and in fact we wish to 

formulate the problem is a manner which is as model independent as possible. 

We assume that the concentration n of a given species can be represented as 

a continuous function of position which is sufficiently slowly varying that 

An/n « 1 (where An is the change in n) over a region large enough that a 

macroscopic electrostatic potential can be used. ..«., over a region of several 

Cv 5-10) atomic planes. We suppose further that the macroscopic potential, 4,, is 

sufficiently slowly varying over the same region that qA* « kT (where q is the charge 

of the diffusing species and A* is the change in «), and that the local concentration 

influences the average (over the above region) probability that a particular ion 

will jump out of the region only through the macroscopic potential gradient. 

The latter is an assumption that the concentration is low enough that "most" 

hops of "most" ions are not influenced by the presence of others. The fact that 

they mey be influenced occasionally is covered by the averaging process, but 

we are ignoring any dependence of the average jump frequency on concentration. 

Considering the normal concentration rangeof % 1018-ip.19/cm3 this should be a 

good approximation. 

Using these assumptions, and considering one-dimensional diffusion, it 

is readily seen that the time rate of change of concentration is given by: 

-5- 
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-|P»* - n(x * Ax.t) FL(x ♦ Ax) • n(x - Ax.t) FR(x - Ax) 
(1) 

- n(x.t)[FL(x) • FR(x)]  , 

where x is the position, t is the time. FL and FR are the average probabilities 

of an ion leaving the region by hopping to the left and right respectively. 

The relation between FL and FR can be found by considering a concentration 

profile corresponding to equilibrium in the presence of a macroscopic potential. 

♦00.  (Note that equilibrium requires a uniform chemical potential, not a 

uniform concentration.) Since the F's depend on n only through * (as assumed 

above) the relation found at equilibrium will be valid for all n. The equilibrium 

concentration is given by Boltzmann statistics as: 

n(x) = n0e-^W/
kT . (2) 

where n0 is a constant, k is Boltzmann's constant, and T is the absolute 

temperature. 

Since in equilibrium the net number crossing any plane must be zero we 

have i 

n e-q<Kx+Ax)/kT m t . .     -<i(|)fx)/kT V FLCx + ^0 a n0e^<PW/,a FR(x)       . 

Expanding the exponents and rearranging, we find: 

J
L(x + Ax)^Fp(x) [l +5i ^IAxJ  . 
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Substituting (3) in (1) we find, after some manipulation, the equation: 

fe%U - (Ax)2 I [FR(X) M^U • ^ PR(X) n(x,t) !^|    (4) 

where Ax is the width of the region. Ax takes the place of the lattice constant 

in the normal derivation of Pick's Law. In our case Ax is not the lattice 

constant and FR(x) is not the probability of jumping fron, one plane to the 

next. We can, howeve-, combine them into an effective diffusion constant as 

shown below. For the momei.t we simply let 

(Ax)2 FR(x) » g(x). (5) 

What we have done is consider a region large enough that local fluctuations 

(e.g.. is there another impurity or lattice defect near the diffusing ion?) average 

out. Hence Ax does not correspond to a single jump but rather to many jumps. 

Exactly how many is not important so long as it is enough to eliminate local 

perturbations. Similarly FR is not the usual jump frequency but rather 1/t where 

t is the average time required for a particular ion to leave the region. Ax, by 

jumping to the right. In the ideal case of a completely homogeneous crystal, 

with low concentration of diffusing ions, and in which only single jumps occurred, 

we would have: 

a2F = (Ax)2 FR = D . (5a) 

where a is the lattice constant, F is the microscopic jump frequency, and D is the 

usual diffusion coefficient. In general, however, none of these conditions are 
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met ui g(x) is not related to a and F in a.ny  simple fashion. We will see 

later (in Sec. D) the significance of g(x). Thus: 

^ - ^r [«w ^ • * «ex).«.« ^1] . „, 

To proceed further we suppose that g(x) is constant. If the crystal is 

homogeneous - save for the diffusing species - this assumption amounts to 

restricting the macroscopic electric field to values too small uo effect the 

jump probability. This corresponds to the assumption that ga ^ « W where a 

is the lattice constant and W is the barrier height if the jumps are thermally 

activated. If tunneling predominates the situation is considerably more com- 

plicated and model dependent. F.xperimentally, however, this appears to be a 

good approximation at least at high temperatures. With this simplification 

the diffusion equation becomes: 

MbSl = „ 32"(x.t)     M _3_ f      t.  dHx.tj] 
at      g    ^r- + KT^ [nCx'^-Jt5rn  • (7) 

^. MACROSCOPIC Field Equations 

To determine (Kx.t) we impose the boundary condition r.hat <j) =■ 0 at the surface 

and make use of Poisson's equation in CGS units. 

djb = _ 4TT£ 

d?    e  ' (8) 

where £ is the dielectric constant and p is the charge density. The 

interpretation of (8) requires some care in that the potential needed 
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in (2) and (3) is the potential at the equilibrium sites of the diffusing ion, 

and hence is a local potential which may be subject to a local field correction. 

If so, we would have: 

'Loc = ^ + a?  , 

Where ELoc is the field at the ion site. ^ is tk« macroscopic field, ? is the 

polarization, and a is the appropriate Lorentz local field factor. Now in 

cur case P is not being produced by the diffusing ions themselves and hence ? 

is not proportional to ELoc, but rather to EM. The proportionality constant 

will not be just the susceptibility but will involve Lorentz local field factors 

appropriate to the system. The net result, however, is that: 

where y is a constant. 

Hence: 

fLoc " V  + Y)^  • 

Thus: 

d\oc d*M 

and 

♦LOC = Cl + YT <I>M * 6 , 

it. 
where ^ is macroscopic potential given by (8), (j)   is defined by -  Loc ■ E 

and 6 is a constant. The requirements of charge neutrality for the crystal as 
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a whole means 4>M and <{),  both equal 0 at the surface. Hence: 

*Loc ' (1 ♦ Y) 4.M • 

Thus |L| as obtained from (8) can be used in C7) by simply replacing q in (7) 

by q-rr» However, in the absence of experimental evidence to the contrary we 

shall suppose that y » 0 so that q ff = q. and (J).  c $u~ ^' 

The total charge density is made up of th . following terms: 

p, = Charge density dvie to Lattice Ions; 

p,= - n^e ■ Conduction electrons; c    c 

P-. = - n_e = "Trapped" electrons; 

p = nq = Diffusing ions; 

p. = Non-diffusing Ions; 

Py = Valence electrons; 

where -e equals the charge of an electron. Noting that p. ♦ pv = 0, for an 

insulator we have: 

p = pj ♦ nq - e(nc + Op) (9) 

In the absence of electric fields, 

= I 
"r= • 7G&; i   ' 

where N. is the concentration of traps with trapping level E., ß = 1/kT, and 

y is the electron Fermi level. Similarly: 

(10) 
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n(F.)  dE 

?i5j:; (ID 

where Ec is the energy of the botto« of the conduction band and DfE)dE is the 

number of states/cm3 between E and E ♦ dr. 

In the presence of a macroscopic electrostatic potential, equations  (10) 

and   (11) take the form: 

i. 

"T00 " I TWFWsnnrr (12) 

nc(x) D(E) -, dE 

Ec(x) 
BIE-e^W-u]  J j (13) 

In practice, n^x) is always small enough that (13) can be approximated by: 

nc(x) - N0 e-ß[Ec(0)-w-e*(x)] , ^ eße*(x)  ^ 

where N, is the conduction electron density at the surface of the crystal (where 

♦(x) is taken to be zero). 

We now consider a special case of particular experimental interest. We 

suppose that, in addition to the conduction band fand shallow traps which can 

be lumped with it), we have deep filled traps and one trapping level near the 

Fermi level. This case can be made to fit nearly all experimental situations 

by appropriatS choice of parameters. The concentration of electrons on the 

trap near the Fermi level is: 

-11- 
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igcrj -M 
• i 

TTTEpA 
• i 

h>(V.) 
12  J 

♦ 1 

(15) 

where |- is the density of the trap, ^ is the energy of the trap at the 

surface of the crystal, and NT is the concentration of electrons on the trap. 

Hence: 

P(x) " ?! ♦ n(x)q - eN^e ße0(x) - e (ND • U (16) 

where ND is the concentration ol  filled traps and N '  is the concentration of 

electrons,   in the conduction band   and in shallow traps, at the surface of the 

crystal.    Note that we have ignored any contribution due to surface states. 

These can ♦>« included by an additional  6 function term at the surface if needed. 

At this point it is useful to note some of the special cases covered by 

(16).    In a perfect crystal pj - ND « NT - 0 and  (16) becomes: 

P(x) - n(x)q - eN »«MOO    , (16a) 

In the case of several deep traps well below the Fermi Level  (16) becomes: 

p(x) - n(x)q - eND - m'J**** 

Similarly, most experimental situations can be described by (16). 

-12- 
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D-      Two Component Diffusion Equation with Macroscopic Field 

We are now in a position to write down a system of equations governing the 

si-ultaneous diffusion of H and D in the presence of a macroscopic electric 

field they help to produce.    We assume that no other electrically active species 

is diffusing.    Prom (7) and  (8) we have: 

anH(x,t) 
 5t  

3 g (I 

3 nH(x'^       VH 

3x 2      
+ TT^T nH(x.t) Mg^ (17) 

and 

Vx.t) »V».tl      qDgD 

H —^T~ ' -w- * at nD(x,t) ^ gjfed] 

dx2 G 

(18) 

(19) 

where p is given by equation 16.    Equations 17 and 18 are .alid in the interior 

of the sample but not at the surface.    This  Is best seen by considering the 

limitiy.=0 in  (17) and  (18) above  (Pick's 2nd Law).    The situation of interest 

experimentally is one in which the concentration at the surface is constant. 

Hence the solution of Pick's 2nd Law is of the form 

00 

n(x,t)  » A0 ♦    Z   An(t) sin(mrx/r)       , 
n=l 

where £ is the thickness of the sample.    Now. strictly speaking. Pick's 

Second Law is not valid at the surface due to the fact that the crystal ends 

and hence there is a discontinuity in the physical parameters.    Mathematically 

we add an "anti-crystal" at the surface and extend the solution to negative x 

-13- 
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and to x > i.    Since n(x.t) - \Q  is odd at x = 0, the effect is to make both 

2    2 
[n(x,t) - A0] and d n/dx"  » 0 at x » 0,Ä. Hence the discontinuity can either 

be removed by adding the anti-crystal or can simply be ignored since both give 

precisely the same answer for n and d2n/dx2 at x = 0,£.  In other words, the 

symmetry is such that the discontinuity at the surfaces can be neglect'd. 

However, in the case of Eqs. 17-19, this is no longer true,  (n - A0) and (j) are 

odd at the surface, but 3/9x[n(d<j)/dx)] is not. Thus the discontinuity cannot 

be ignored and we must simulate the surface by adding the term required to 

make an/3t = 0 at x = 0,JI. 

This source term which accounts for the injection (or ejection) of ions 

at the furface by the electric field is: 

•#i[»C«)^ t«WI(»-«l  . (20) 

where 6 is the Dirac 6 Function. With this modification, Eqs. 17-19 describe 

the physical system. 

We now need appropriate boundary conditions. We shall be interested in 

the case in which the initial concentrations of H and D are constant throughout 

the sample except at the surface, and the surface concentrations are constant in 

time. For example, we will have conditions of the type: 

njj (x,0) - NH 0 < x < Ä 

nD (x,0) - ND 0 < x < I 

nH &»**  a % " "H M (21) 
nD (0'^ " ND0 " 

nD tM3 
•HO) - ♦(£) - 0 

-14. 
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Note that ihe condition on <j) is simply a statement of overall charge neutrality 

for the crystal. 

E.  Small Potential Approximation 

The system (17)-(19) is in general nonlinear because of the dependence 

of p on *. However, if ße«. « 1. the system can be linearized. The resulting 

equations admit solutions for which ße* » 1. Hence, if the solution does indeed 

satisfy the condition ße* « 1. the approximation is satisfactory.  In this spirit 

we now consider p in this limit. Referring to Eq. (16) we find: 

N„ 

N 

e      ♦ 1 

1 - ße^i 

ß(ET-U) 

ß(ET-u) 
♦ 1 

-1 

where 

Hence 

where 

♦ i 

0(ET-M) 

1 + ^-ifenir 
♦ i 

= G ♦ H* , 

N„ 
'0 

H 

♦ 1 

ßeNn 

e  '   ♦I 

»(Ej-y) 

T&pW 
*  1 

P(x) « [pj - e^' - eND - ecj * nH(x)qH • nD(x)qD 

M -Ipj - e NS' ♦ ND ♦ cj  ;  N • eH ♦ ße2^' 

(22) 

(23) 

(24) 

(24) 
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F.      Solution in the Small Potential Approximation 

To solve the system (17)-(19) we expand the concentrations and potential 

in Fourier Series as  follows: 

1 

nH(x,t)  » A0 ♦    I   A (t)  sin(mTx/Jl) 
n»l 

(25) 

nD(x,t)  = B0 •»•    Z    Bn(t)  sin(mTx/Jl) 
n=l 

(26) 

(j»(x)  -    I    Cn(t) sin(mTx/Ä) 
n«l 

(27) 

Note that the requirement of constant   n and 4) at the surface excludes cosine 

ttrms  from Eqs.   25-27.    Substituting  (25)-(27)  into  (19) we find: 

-    I    C     f 
n-1    n  I 

mr]2    . «    sxn mrx 4Tr 
T1"-T 

Hence: 

M * JL '""*" * "O"" ■ NCn,    ^"(T1) * Vo * V, 

Vo »%%•-"    I    Si  (T)2 ■ T [Vn » Vr " "Ü   • 

Therefore 

(28) 

(29) 

c    _   (4n/e^Vn ^DV 
"        (4Tr/G)N ♦  (nir/Ä)2 (30) 

Next, substituting  (25) and  (27) into (17) we find; 

■16- 
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j        n mrx) _    _      r    A    
niTf    o^ n^xf  ^ ^H   3 

i TT »"iT-J    -«H Jj, AnlTj   S1"H * TT 5? 

n,m»l I 

g" i A"R sm 

cos 

nirx 

'mirx 
T ♦ Art    E    C 

0      ,    in 
m=l 

T cos 
(nnrx) 

n,m=l   ^        »    ' 

rnr 
T cos mrx 

VH 
kT 

\ ^ \ 
cos rairx imrx 

T "•m 

JjC.pr) sinH (31) 

Note that   (20)  insured that  (dA0/dt'  =0.    Now: 

and 

co,(nji) cos (5™) - ^cos[(n • m) ™]  * cos[(n • *) f]\  . 

sin(nji)  sin^) - ^cos[(n - m) ^]  - cos[(n ♦ m) ™] |   . 

(32) 

(33) 

Substituting (32) and (33) into (31), multiplying by sin(mrxM) and integrating 

over x from 0 to I,  and setting qH = qD = e, we find: 

ük.   „A H2  erH Ar H 

n - (p ♦ m)   n^ - |p - m| P" 
odd 

(34) 
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Similarly, 

dB 

+ 2gr 

D n 

2  egl, 
[TJ - TT B0Cn 

mr 
T 

nTT 
X 

pm   ' 
odd 

j) » m 

n   (p ♦ m)' 

p - m 
~2 
n -    p - m 

(35) 

The system (30). and (34)-(35) cannot be solved analytically but it is very 

easily done numerically. Thus as soon as experimental numbers (work of Sec. HI) 

are available for the parameters the problem will be completed. 

V. Determination of Conduction Band Parameters 

Considerable experimental work has been done on applying the theory of 

hydrogen solubility of the last progress report to the deterrJnation of con- 

duction band parameters, trapping levels, etc. The difficulties encountered 

in this work demonstrate quite compellxngly precisely why these measurements 

are so essential. The first parameters which must be determined are the proton 

binding energy and the conduction band density of states. After these have been 

determined to sufficient accuracy, it will then be possible to measure the Ti 

interstitial binding energy and to start measuring thermal trapping energies 

for electrons on various defects and impurities, and to calculate the 

equilibrium concentration of both <H> and <ri> (H and Ti interstitials). 

Determination of <H> binding energy and conduction band density of states 

requires measurement of equilibrium concentration of <H> ind conduction 

electrons, over a fairly wide temperature range, with Pu   and P   held 
H2    H20 

-18- 
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constant, in a concentration ange where the electron Fermi level is high enough 

that we can be sure that all electron traps are filled, in order for our re- 

sults to be meaningful, however, we must simultaneously hold the concentration 

of <Ti> at a very low level, since ^e have no quantitative means of measuring 

their concentration. Fortunately, the theory is sufficiently detailed to 

provide a variety of checks to determine whether or not this requirement ' 

being met. So far, we have encountered considerable difficulty in selecting 

operating conditions which yield adequate <H> concentrations without significant 

<ri> concentrations. This same difficulty has been the source of many incorrect 

interpretations in published work. The most recent measurements indicate that 

we now have the problem under control, however, and quantitative results should 

be obtained in the next few weeks. 

Because of the extreme imnortance of these measurements (severa other 

projects can be done properly only after these measurements are corapined), 

most P| our efforts recently have been devoted to this probic. . If we are 

successful in completing these determinations, it will be the first time, 

to our knowledge, the defect and impurity thermodynamics of a system such as 

rutile have been worked out tht^retically and the necessary experimental 

parameters obtained. This will make possible a wide variety of experiments 

that could not previously have been done, and will be a major step forward 

in obtaining a useful characterization of this system. 

-19. 



VI.    Far IR Spectrometer 

The spectrometer Is essentially complete and the first experiments are 

now being plaraed.    We will begin with a general  survey of transmission and 

reflection properties with special attention being devoted to looking for the 

pla-ma frequency. 
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