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ABSTRACT

Long jife non-tubular regencratively cooled thrust chambers were fabricated and
hot fire cyclic tested to verify the life prediction tachniques estabiished in
Volume I of this report.

Chambers incorporating coppes alloy (NARloy 2 zad rirconium copper) and nickel
for the hot gas wall material and olsctroforzed nickel closures were febricated
by Rocketdyne and hot fi.e cyclic testzed by the AFRPL. Propellants were L02/H2
at 2 neminal mixture ratio of 6:1. C(hamber pressure was 750 psia and thrust
{corrected to vacuum and with z full area ratic nozzle} was 3300 pounds. A
calorimeter thrust chamber assembly (calcrimeter thuugy chamber and coaxial
injector) were also fabricated and hot-fire tested to cstabl.sh the heat fiux
profile,

Post-test analysis and metallurgical evaluation of the chamber ware performed to
tocate and define fatigus cracks.
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INTRODUCTION

The next generation of liquid rocket engine thrust chambers will employ non-tubi
construction methods and will have a requirement for long life and multiple reuse
The practicality of producing non-tubular thrust chamber, of thc candidate matzri 1's

has beer demonstrated in a range of thrust and chamber pressure levels. However,

very little effort has been expended in evaluating the long life characteristics
of such chambers.

The Air Force Rocket Propulsion Laboratory (AFRPL) awarded the Rocketdyne Di.iviun,
Rockwell International, a contract to analytically and experimentally exp.ore the
long 1ife characteristics of non-tubular thrust chambers. This program was entitled

"Investigation of the Thermal Fatigue Characteristics of Non-Tubular Regenerstiveiv
Cooled Thrust Chambers."

The objective of this program was to (1) dafine design criteriz for the thermal
cycling capability of non-tubular regeneratively cooled thrust chambers and
(2) to demonstrate this cycling capability.

The results of Phase II - Thermal Cycling Demonstrat are presented herein.

The results of Phase I - Development of Design Criteria are presented in
Volume I.
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SUMMARY

Phase Il of this program, entitled Thermal Cycling Demonstration, consisted of
three tasks:

Task I - Fabrication and Structural Testing
Task II - Test

Task II1 - Post-Test Analysis

In Task I a total of three regeneratively cooled thrust chambers were fabricated:

NARloy-C Regeneratively Cooled Chamber
Zirconium Copper Regeneratively Cooled Chamber
Nickel 200 Regeneratively crooled Chamber

All chambers incorporated an anne:led electroformed nickel closure and were
fabricated as follows,

A forged disk was spun to chamber shape, the internal and external surfaces were
machined, the coolant passages were machined intc the outer surface and the
electroformed nickel closure deposited in place. Subsequently, flanges and

manifolds were TIG bra:ed onto either end of the chambers and appropriate instru-
mentation added.

The copper alicy chambers were of identical design and incorporated 40 constant
width, variable depth coolant passages. The nickel 200 chamber incorporated

77 ztep width, variable depth channels with transition occurring at a plane
~ 2.9 inches upstream of the throat.

Also fabricated was a calorimeter thrust chamber to be vL3a2d to establish the heat

flux profile and a 40 element coaxial injector to be tested with the calorimeter
thrust chamber and used in the cyclic test effort.




ey sy

A total of 654 cycles were accumulated on the NARloy-Z chamber and 587 cycles
were accumulsced on the zirconi:zm copper chamber., At the end cof the cyclic
test series the NARloy-Z chamber had S cracks through the wall and the zirconium

copper chamber had 16 through cracks.

The hot gas surface of the NARloy-Z chamber was in good condition after testing;
however, the zirconium copper chamber showed substantia! surface roughness. This
was attributed to its coarse grain structure when compared to the NARloy-Z. The
rickel 200 chamber accumulated approximately 50 cycles with no evidence of fatigue

cracking when a facility malfunction damaged the chamber.

Post-test evaluation of the two copper alloy chambers showed that generally thz
cracks were associated with small zirconium oxide inclusions. These inclusions
are formed as small spherical globules during ingot processing and are subsequently

worked into long narrow stringers by the forging and spinning operation.

The chambers both demonstrated good life characteristics even with thesy small
inclusions. In additicn, processing techniques are available which wili produce

ingots free of these inclusions to improve iife even further.




DISCUSSION

This program was undertaken with the cbjective of defining design criteria for
the thermal cycling capability of non-tubular regeneratively cooled thrust cham-
bers and to demonstrate this cycling capability., The program effort was divided

into two phases:

3 Phase 1 - Development of Design Criteria

Phase II - Thermal Cycling Demonstration

The results of the Phase I effort are presented in Volume I of this report.

Phase II results are presented herein.

PHASE II - TASK I - FABRICATION AND STRUCTURAL TESTING

In this task the hardware designed as a part of the Phace I effort was fabricated,
: laboratory tested and delivered to the AFRPL for hot-fire testing. The hardware
that was fabricated included:

Nickel 200 Regeneratively Ccoled Thrust Chamber

NARloy-Z Regeneratively Cooled Thrust Chamber

TTE TR

Zirconium-Copper Regeneratively Cooied Thrust Chamber

: Calorimeter Thrust Chamber Assembly

Water Cooled Calorimeter Thrust Chambter

Co-axial Element Injector

A discussion of the fabrication and structural test history of each follows.

Nickel 200 Thrust Chember

The nickel 200 chamber consisted of a spun and machined nickel 200 liner, an

electroformed nickel closure, and welded-on stainless steel flanges and menifolds.

L. st 4 ST Mot apa
E-N




The liner was hot-spun from ultrasonically inspected nickel 200 plate stock as

shown schematically in Fig. 1. After spinning, the liner was annealed at 1500 F

TR O WOYRY SRR

for 30 minutes and then ultrasonic and dye-penetrant inspected preparatory tc

machining inte the final configuration. A typical as-spun liner is shown in Fig. 2.

TIIRIARY * PN

Machining of the liner consisted of cutting three contours; the A mold line (thrust
chamber internal contou1), the B mold line (bottom of the coolant channel), snd

C mold line (chamber external contour). Each of these operations constituted a
tracer lathe or mill procedure. To insuTe maximum telerance control, the templates
{ for the three operations were manufactured as a coordinated set, with the B tem-
plate matched to the A fnr control of wall thickness, and the C iemplate matched

to the B for control of channel depth.

1 The first step in liner machining was to maching the internal contour to net

i dimensions using the A template. The liner was then installed on a mandrel, all

3 void areas filled with wax and the external contour machined to its net dimensions
using the C template. Coolant channels were then machined into the liner using
the B template. The initial slotting operation consisted of adding the 0.080
channels into the combustion zone (Fig. 3), followed by machining of the 0.040
wide channels in the throat region. The as-slotted liner is shown in Fig. 4

and a claseup view of the transition from 0,04 wide channels to 0.080 wide channels

TR T

is shown in Fig. S. The channels were then deburred and the liner removed from

the mandrel for inspection.

After verifying dimensional acceptability, the liner was prepared for electro-
forming of the nickel closure. The liner was reinstalled on the mandrel. The
1 channels were filled with wax and the surface hand sanded to the proper con-

ditions. A conductive copper power was added over the wax. The liner was placed

" Yo

inside its piexiglass shislding (Fig. 6) and taken through its activation and
electroforming cvcles. The as-electroformed closure is shown in Fig. 7. After

electroforming the outer contour was machined to the prescribed thickness using

sy

a fourth, or D template, This machining was also accomplished using a tracer

YA,

lathe. The manifold configuration was also machined into each end, and the liner

was cut to the final length., The liner was then removed from the mandrel and

A S R RN I Pt iy
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1x232-3/719/71-ClA

Figure 3. View Showing Slotting Operation on Nickei-200 Chamber
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Figure 4. View Showing Slotted Nickel-200 Chamber
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Figure 6.

1XW32-4/1/71-C2A

Nickel-200 Chamber Ready for Flectroforming
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Figure 7.

1XW32-4/8/71-C1

As-Electroformed Nickel-200 Chamber
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all wax fiushed from the channels. A visual inspectiun and flov’ test was run at
this time to assure that all channels were open and flowing properiy. The chamber
is shown in this condition in Fig. 8. The liner was then annealed at $00 F for

30 minutes in argon to improve the hydrogen resistan:e capability of the electro-
formed nickel cleseout. Subsequently, the S04L stainless steel flanges, which

had beer. prepared as subassemblies were TIG brazed to chamber body. The final
operation then consisted of finish machining these flanges to 2stablish sealing
surfaces, etc, The completed chamber, shown in Fig. 9, was then waterflow

checked to assure proper ccolant distribution, proof pressure teste” to. 2400 psig
and delivered to the AFRPL for hotr fire testing.

Copper Alloy Thrust Chambers

Fabrication of the two copper alloy chambers was virtually identical in process
to the nickel chamber fabrication. The major exception being that the fabrica-
tion process started with the procurement of cast ingots which were subsequently

procescsed intc piate stock for spinning.

The NARloy-Z ingot was melt2d using the procedures Rocketdyne had previously
developed for preducing this company proprietary allcy. After casting, the

ingct was hot forged into a disk and ultrasonically inspected to verify that it

(¥}
lad

was free of zirconium oxide inclusions. This inspection conducted to a Rocketdyne
specification was used to veri’  that there were no inclusions larger than 0.C50

inch in diameter.

This forged disk was then hot spun into the chamber shape, heat treated, and
aged {900 F for 4 hcurs). The -ompleted liner was again ultrasonic nspectec

and penetrant inspected to verify quality.

The NARloy-Z liner was then machined using the same procedures and types of
templates as those empioyed on the nickel chamber. The major difference was
that the NARloy-7 chamter incorporated 40 constant width (.080 inches wide)
channels rather than the step width channels employed in the nickel chamber. A

completed NARioy-Z iirer is shown in Fig. 10 and 11. The liner, ready for
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Figure 10.

1X232-9/1/71-CiB*

Machined NARloy-Z Liner

16

N




!

3y
1 4%

re

1

1
i

View Showing

Internal

Surface of

1XZ232-9/1/71-

NRloy-2 Liner

1

A




R

I, EOWTCRRTCewT

TR

Loy

B i

electroforming of the nickel closure is shown in Fig. 12 and the completed
NARloy-CZ chamber is shown in Fig. 13 and 14,

In addition, to improve the data yield from the hot firing tests, thermocouples
and strain gages were added to the chamber exter.or to record external surface
temperatures and strain profiles as a function of time. A photograph of the
NARloy-Z chamber showing this instrumentation is presented in Fig. 15 and a
closeup of one area showing the thermocouple and the axial and circumferential

strain gages is shown in Fig. 16,

The zirconium copper alloy is a commercially available material and it was
origirally planned to use this material as supplied by the marufacturer. An

ingot was purchased, forged into a disk and ultrasonically inspected for oxide
inclusions. Results showed the presence of several inclusions greater than the
0.050 flat bottom hole standard The disk was sectioned for metallurgical eval-
uation which verified the presence of the oxide inclusions. A detailed discussion

of this investigation is presented in Appendix A.

It was concluded form this effort that "off-the-shelf" zirconium copper ingots
w2re unsuitable for use as liners in long life thrust chambers. To solve this
problem new ingots were procured and then remelted using the consumable electrode
process (as discussed in Appendix A). Subsequent forging and ultrasonic inspec-
tior revealed that the inclusions had been eliminated to the degree that their

presence could be determined by ultrasonics.

The zirconium copper liners were then spun into shape, heat treated and aged

(900 F for 4 hours}), inspected, and machined using the same tooling and procedures
as that employed in the N\Rloy-Z chamber. The zirconium copper liner is shown

in Fig. 17 while a closeup view of the completed chamber 1s shcwn in Fig. 18.
Pressure and flow testing of this chamber was identical to that used on the
NARloy-Z chamber. Instrumentation identical to that shown previously for the

NARloy-Z chamber was added and the chamber delivered to the AFRPL for testing.

18
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Calorimeter Thrust Chamber

The calorimeter thrust chamber liner was fabricated from an OFHC copper billet.
All machining was accomplished using coordinated templates for dimensional control.
The first step in the fabrication process consisted of machining the ID to net
dimensions, and then machining the OD to net dimension<. This was followed by
the machining of the circumferential water-coolant grooves, Fig. 19. After
machining and dimensional inspection, an electroformed nickel closeout was added
to this chamber (Fig. 20) and individual water feed and collection tubes TIG

brazed to each coolant channel as showi in Fig. 21 and 22.

Injector

The injector was fabricated to AFRPL drawings. Initially the nickel injector body
and posts were machined and the rigimesh face and manifold were welded in place,
as shown in Fig. 23 through 26. The injector was then water-flow calibrated to

verify proper injection parameters and delivered to tire AFRPL,
PHASE IT - TASK II - TEST

All hot firing effort was accomplished at the AFRPL. A description of the test

procedure, test facility and the test program follows.

Test Procedures and Facility

The nickel thrust chamber was tested with coolant in a bypass mode (hydrogen
coolant in parallel with injector hydrogen). The copper alloy chambers were
cyclic tested with cooclant in a2 regenerative mode (hydrogen coolant in series
with injector hydrogen). Hydrogen coolant at -100 to -150 F ran continuously;
shuttled between the injector and burn stack by use of a start valve and s

bvpass valve. Ignition was accomplished by injecting a small quantity of gaseous
fluorine into the O2 side of the injector at startup of each cycle. A simplified
system schemat . is shown in Fig. 27 and a detailed description of the facility

follows.
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Machined OFHC Copper Liner for Calorimetric Thrust Chamber

Figure 19.
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Figure 20.
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Figure 21.

Calorimetric Thrust Chamber
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The test facility at the AFRPL was test stand 1-52A. This stand was originally
designed as a 10,000-pound-thrust fluorine/hydrogen facility and needed only

minor modifications for use in this program. The liquid oxygen tank is a 1500 psi,
S00 gallon vessel. Hydrogen is stored as a liquid, converted to a gas with a

cryogenic pump and held in two 6000 psi, 300 cu ft gas bottles for running.

Hydrogen was temperature condit®oned by passing it through a heat exchanger con-
taining liquid nitrogen. The LN2 flows continuously into the heat exchanger

during the test to compensate for boiloff. The LN2 level was controlled by

adjusting the height of a runoff pipe.

The fuel flowrate was controlled by regulating an upstream orifice pressure with
a hydraulic servo valve. For cycling tests, the engine was regencratively
cooied and a subsonic orifice was used to minimize pressure drops. For checkout
tests, a sonic orifice was used to control the fuel flow, and a subsonic orifice
was used in a parallel hydrogen loop which cooled the engine. The hydrogen in

the cooling lecp was burned in an exhaust stack.

Oxygen flowrate was controlled by using a flowmeter signal to regulate the
oxidizer start valve. This control signal was biased through an EAI TR-20
analog computer to account for fuel flowrate deviations, as indicated by the
pressure in the fuel injector manifold. This was to prevent extreme mixture

ratio excursions.

Ignition was achievid by injecting a slug of gaseous fluorine downstream of the
oxidizer start valve just prior to opening the start valve. The fluorine is
then pushed by the LO2 into the chamber and ignites the hydrogen which has also

just reached the chamber.

Data were recorded cn 20 strip charts, 2 oscillographs, a SEL digital tape
recorder, and an FM tape recorder. The final data were obtained by processing
the digital tape through an izt 7040 computer. The FM tape was used to check
for high frequency pressure cscillations. No such oscillations were seen on the

runs when it was used. A detailed facility schematic is shown in Fig. 28.
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Test Program

The first regeneratively cooled chamber to be hot-fire tested as a part of this
program was the powder metallurgy nickel thrust chamber, residual hardware from

a previous program. A series of hot-fire checkout tests were conducted with the
coolant in a bypass mode, such that it did not go through the injector. Opera-
tional parameters and facility checkout were established using this hardware.
Effort to cyclic test this hardware was initiated; however, a facility malfunction

resulted in hardware damage prior to the accumulation of very many cycles.

The nickel chamber was then installed on the test stand. A series of checkout
tests were run and cyclic tests initiated. After approximately 50 cycles, a
facility malfunction again occurred which resulted in destruction of the chamber.
The chamber is shown post-test in Fig. 29. Although the cyclic life demonstration
was not completed on this chamber, 50 cycles were accumulated prior to the mal-
function, There were no thermal cracks on the chamber, indicating that this

material can be used for chambers having a reasonably long life requirement,

After this, the cyclic test effort was concentrated on the two copper alloy thrust
chambers with some testing accomplished on the calorimeter thrust chamber to
establish the heat flux profile. The test program is summarized in Table 1,
while the range of operating conditions experienced during the test program is
presented in Table 2 The actual sequence of events in testing these three cham-
bers is shown in Table 3. The calorimeter thrust chamber was tested 9 limes
with durations from 1 to 15 seconds to establish a heat flux profile at the
nominal operating point (?C = 750 psia, MR = 6.0). Data from test No. 7
are shown in Fig. 30 . For reference the predicted heat flux profile used in
the design of the copper alloy chambers is also presented. Comparison of the
two shows the experimental profile to be somewhat lower than the predicted value
indicating that the chambers were somewhat overdesigned in that they would run
with lower wall temperature and bulk temperature rise than predicted. Subse-
quently, the zirconium copper chamber was installed, and a series c¢f ~ests run
to establish cooling and operational parameters. These tests were of 1 to 6

ceconds duration, with hydrogen coolant supplied in a bypass moue. The coolant
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was then rerouted such that the chamber was regeneratively cooled and the cyclic
test effort initiated. During the first test series, a total of 312 cycles were

accumulated.

These cycles were of 3 seconds on time, 2 seconds off, as noted in Fig. 31, Post-
test inspection of the hardware indicated some surface roughing of the hot gas
wall; however, a coolant circuit leak test indicated there were no fatigue cracks
in the wall (Fig. 32 through 34), After non-destructive evaluation the roughening
was attributed to the coarse grain structure and low strength inherent in the
zirconium copper material. The chamber was then returned to the AFRPL for
additional cycie testing. This next series of cyclic tests consisted of 2 to
2-1/2 seconds on time, followed by 1-1/2 to 2 seconds off time. After 398 cycles,
a coolant circuit leak check showed that there was one crack through the hot gas
wall, Testing was continued until 512 cycles were accumulated, at which time

the chamber was returred to Rocketdyne for further non-destructive evaluation.
After this evaluation, the chamber was reinstalled on the test stand and cycled
until a total of S5S87 cycles were accumulated. This last series of tests (530 to
537) had higher wall temperature operation due to some anomalies which occurred

in the test facility and a test procedure as will be discussed below. Upon
completion of the 587 cycles, a post-test ieak check of the coolant circuit

showed several additional cracks through the hot gas wall, and the chamber was
returned to Rocketdyne for thorough post-test non-destructive and destructive
evaluation. Tabulations of reduced data vuore obtained for all tests. In addition,
scale printout of various parsmeters were obtained as a function of time. Typical

examples are shown in Fig. 35 through 37

A similar procedure was used on the NARloy-Z thrust chamber. The first 10 cycles
consisted of checkout to establish operational requirements with the coolant
supplied to the chamber in a bypass mode. Test durations of 1 to 15 seconds were
run and successfully verified chamber cooling capability. The coolant was then
rerouted as discussed previously to run the chamber in a regenerative mode as
shown in Fig. 27, and the cyclic test effort initiated. A total of 615 cycles
were accumulated, each cf 2 to 2-1/2 seconds on and 1-1/2 to 2 seconds off. The

coolant circuit leak check after 410 cycles showed one crack had occurred in the
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hot gas wall; however, the test effort was continued until 615 cycles were
accumulated. At this time the chamber was returned to Rocketdyne for non-destruc-
tive evaluation. Following this evaluation, the chamber was reinstalled on the
test stand and additional cycles a:zcumulated until 654 cycles had been accumulated
on the chamber. Here again, this last series of tests (615 through 654) showed
test anomalies reflected in higher wall temperatures. Post-test inspection of

the hardware indicated that the injector was experiencing face burning. At this
rime it was decided to terminate the hot fire test effort on the regeneratively
cooled hardware, return the chambers to Rocketdyne for post-test non-destructive
and destiuctive evaluation, and to retest the injector and the calorimetric

thrust chamber to establish a post-test heat flux profile,

An additional six tests were completed on the calorimeter thrust chamber assembly
with durations as long as 20 seconds. Data showed that the heat flux profile

had increased significantly from the pre-test configuration. Typical results are
shown in Fig. 38. The real significance of this is that the last series or cycle
tests on each of the two copper alloy chambers differs markedly from the first
several hundred on each and effected the life somewhat. However, the majority

of the testing effort was accomplished under well-controlled conditions and
demonstrated the fatigue characteristics of the two copper chambers. Photographs
or the hardware at various times during the test and post-test are presented in
the following section.

Post-Test Evaluation of Copper Alloy Thrust Chambers

The post-test inspection of the two copper alloy chambers consisted of (1) non-
destructive testing; (2) destructive evaluation; and (3) thermal and cyclic life
analyses to predict the cyclic life capability of the chambers based on as-tested
conditions. A summary of the visual and NDT inspection efforts is presented in
Table 4.

Non-Destructive Tes.ing. Part way through the hot fire cycling test effort,

both copper alloy thrust chambers were returned to Rncketdyne for non-destructive

evaluation of the hot gas wall. This evaluation, which consisted of visual,
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dye-penetrant, and x-ray examination of the hot gas wall was used to ascertain

the location of cracks through the hot gas wall as well as incipient cracking

on the hot wall or on the coolant side of the liner, First, the chambers were
subjected to a visual inspection to determine areas that showed obvious cracks.
Dye penetrant was then added into the coolant passages through the supply manifold,
until the channels were completely filled with the dye penetrant solution. Devel-
oper was added to the hot gas wall, such that any cracks which existed all the
way through the hot wall could be determi-ed. Typical photographs depicting

this condition on the NARloy-Z and zirconium copper chambers are snown in Fig. 39
and 40, The next step in the NDT evaluation was to dye penetrant inspect the
surface of the hot gas wall. This was not only agair located the through cracks
but also any cracks on the hot gas wall which were not all the way through the
wall. An alternate non-destructive test technique that was used on the chambers
was a series of x-rays of the hot gas wall. The x-rays showed not only the cracks
through the wall .nd those on thie hot gas surface, but also indicated additional
c-acks that were located on the coolant side of the liner, but which did not
extend all the wa2y through the wall. A compilation of these results conducted
part-way through the test effort and upon completion of the test effort is given
in Table 5 and 6 and Fig. 41 and 42, 7Tt is noted in reviewing the data on these
tables, that the cracks did propagate somewhat during the latrter portion of the
test effort; however, propagation was much less in the NARl. I chamber than in
the zirconium copper chambers. Typical photographs of the two chambers are pre-
sented in Fig. 43 through S0,

Destructive Fvaluation of the Hardware. The initial step in this phase of the

hardware post-test evaluation was to machine off the forward manifold and water
flow the coolant circuit su-h that the flow from eacn channel could be evaluated
to determine if there were any anomalies in ¢ ~lant distribution. Results com-
pared quite favorably Lo the present condition, and led to the conclusion that
there was no maidistribution of coolant. Subsequently, the aft flange was
machined off and the chambers were split longitudinally to expcse the hot gas
surface. Sections of eac!: chamber were then metallurgically evaluated to deter-

minc the location and effect of the cracks wherever possible,
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Metallurgical evaluation of the chamber has revealed two types of cracks in the
copper alloy liners. These are (1) stringer cracks, related to an inclusion,

and (2) linear tears associated with machining of the coolant channels.

Stringer Cracks in NARloy-Z. All of the cracks which extended through the

wall, other smaller cracks that were detected by non-destructive test methods,

and a large number of much smaller cracks visible at 30X magnification were all
oriented with the chamber axis. These were all further characterized by the

slightly erratic path of a typical crack.

A number of these cracks were examed metzllographically by polishing the surface
on which the crack appezred ar” also by nciishing a section cut transverse to
this pl-ne. By either method the originating oxide stringer could be detected
by removing smali increments of material and examining the c¢rack edges. The
transverse method was found to involve many more successive cuts because of the
greater length of the cracks in relation to their depth. When the plane under
examination was completely within the fatigue extems.cn zone no stringer was
visible.

A number of large and small cracks were also investigated by bending to expose
the fracture faces as a more rapid and certain methed of finding the origin. All

cracks expesed in this manner clearly criginated in an inclusion.

Chemical analysis was performed by dispersive X-ray fluoroscepy and by eleztren
beam microprobe on the crack faces after breaking them open and also upon stringers
that were evident in polished microspecimens adjzcent to cracks. The dispersive
X-ray fluoroscopic qualitative analysis detected zirconium, titanium, aluminum,
silicen, and copper on the exposed crack face and principolly zirconium in the
stringers in microspecimens. The quantitative analysis of siringer material
adjacent to a crack in a polished specimen obtained by electron beam microproba
is presented in Table 7 for the NARluy-Z chamber. The znslysis of the metallic
second phase particles is included for reference.
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TABLE 7. ELECTRON BEAM MICROPROBE ANALYSIS
CF THE NARioy-Z CHAMBER

1. BLACK INCLUSIONS IN FORM OF STRINGERS

Neaxr Hot Wall Near Cold wall
ir 44 percent 52 percent
Cu "High" 28 percent
Ag 4 percent 1 percent
Al - 1 percent
0 10 percent 10-15 percent

TR Y

2. GRAY-BLACK INCLUSTIONS IN STRINGERS

T

R

Si 9 percent
: i O2 45 percent
[ Al 23 percent
E E Cu 1 percent

ir Nil

Ag Nil

3. ROI'NDED GRAY PARTICLES CONSIDERED TO BE THE NORMAL M:TALLIC PHASE

Near Hot Wali Near Cold Wall
ir 16 percent 18 percent
Ag 10 percent 1. percent
Cu Balance 70 percent

Note: The slight difference shown for the metallic second-phase
particles on the hot wall and the cold wall a—e really
insignificant and are wiinin the accuracy of the microprobe.
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Linear Tears. Grinding off the electroformed nickel closure on the NARloy-Z
chamber revealed proncunced lincar marks on the bottom of some of the machined
channels in an area starting approximately 1/Z inch above the throat and extending
2 inches towards the injector. Under magnification it became apparent that these
had started as very fine, regular machine marks from the slitting saw but had been
enlarged in width and depth., Transverse microspecimens through a number of these
locations showed a maximum depth cf approximately ©.005 inch and a width of 0.0005
inch. Examination at high magnification after exposing the surfaces by bending
clearly showed the striations of fatigue propagation. The original machined
surface outside the affected area was 30-50 microinches RMS and showed no evidence
of deep markings. The hot gas surface on the other hand showed relatively deep
circumferential machining marks but no evidence was found of propagaticn. Although
not examined, the zirconium copper chamber should exhibit similar characteristics

since all machining parameters were identical.

Photomicrographs of Liner Sections. Both stringer initiated cracks and
linear tears dve to machining marks on the NARloy-Z chamber are seen in Fig. Sl.

This is a view looking down into the channel after the electroformed nickel

closeout had been machined away. The cracks occurred earlier than the linear
tears (or seams). As shown in this figure the tears did not develop in the areas
relieved by cracks. Later metallographic preparation verified the presence of

the non-metallic stvringer mataerial in both of the cracks.

The originating stringers are difficult to detect by polishing a material sample
at a crack. They are readily seen on the fracture surfaces zfter they are
exposed by bending as illustrated in Fig. 52. The original crack surfaces in
this example were darkened by exposure to the combustion atmosphere but the
stringer was clecrly visible. Several small stringers which had not cracked

opan are more evident against che light background of the fresh break.

Figure 53 shows the cold wall in two separate channels after bending to expose
two very small cracks. The dark stringer materizl which initiated thc cracks is
most easily found by this methnd, It is noted that the machining marks tend to

tear open when the material is bent in this manner.
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Photographs Showing Stringer Initiated
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Channel of NARloy-Z Chamber
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A number of typical stringers are shown in the microspecimen of Fig. 54 through
59. At rejatively low magnification the stringers appear as dark patches, with
the smaller particles being the metallic zirconium rich phase. The difference

: between the metallic and the non-metallic phases is very apparent at higher

P

magnification,

These transverse sections shown in Fig. 60 are through the channel wall at the
worst linear tear locations that were found in the NARloy-Z chamber., The wide,
blunt ended type of crack was the only mode of propagation found in either the
] | machine mark tears or the stringer cracks. The very small stringer crack found
in the same sample shows this same blunt characteristic.

The distortion of the hot gas wall of the zirconium copper chamber is evident
in the photographs of Fig. 61. The channels were initixlly of rectangular
cross saction as shewn by the NARloy-Z photograph.

TR

T

: Post-Test Thermal and Cycle Life Analysis. As a part of the post-test analysis

effort the cyclic life capsbility of the two copper alloy chambers was recalculated
using actual test data. This was accomplished using a typical cycle test, Test
é No. 11, from the NARloy-Z test series.

From heat transfer data obtained from the water-cooled calorimetric chamber
tests and regeneratively cooled copper alloy chamber tests, the cyclic thermal
strain experienced was determined by analytically correlating measured backwali

_ temperatures. These temperatures were measured at ~arious axial chamber locations.

"n the thermal analysis performed, the following assumptions were made:

1. Chamber pressure versus time was a step-function from zero to
design chamber pressure.

2. Coolant filow as constant during a cycle.

3. Analytical coolant-side film coefficient was correct.
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CHAMBER SURFACE AT 200X

CHAMBER SURFACE AT 50X

IN AREA OF INCLUSION

CRACKS

NOTE GROSS DISTORTION OF SURFACE

Hot Gas Surface of Zirconium Copper Chamber

Figure 54.
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Figure 58. Inclusion in N*Rloy-Z Chamber
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4, ¥ater-cooled chanmber test data were directly applicabie

AT

“*1nlet to
__Pesired Station
s

{
{umbustor

= Constant During the Cvcle

$. Axial heat conduction was neglected.

Typical measured test data are shown in Fig. 62 and 63 for run number 11 which
was at approximately 50 psia chamber pressure and a mixture ratio of apnrox-
imrtely 5.0, To match the measured transient backwall temperature profiles,
cooiant bulk temperature versus time was determined at the decired location

and the predicted coolant-side f.lm coefficient was corrected for the coolant
temperature and the measured coolant flowrate. Then the gas-side coefficient was
varied until a reasonable correlation with the measured backwall temperature was
achieved. Predicted wall Temperature transients for three axial locations are
presented in rig. 64 *hrough 66  The maximm thermal gradient (gas-side to back-

waii) occurred at approximately 0.15 second into the cycle.

Fairly good agreement were obtained for the start to the steady-state portion
of the cycle; however, for the shutdown the predicted temperature did not decay
as rapidly as the measured value for the X = -1.0 inch and -0.1 inch locations.
(X = 0 is throat plane and - X indicates distance upstream of the throat). This
may be the result of some axial heat conduction occurring through the backwall
on shutdown. Typical wall temperature diitributions at various times in the
cycle are shown in Fig. 67 through 69.

From these thermal data an analysis was undertaken to determine the maximm
effective strain imposed on the hot gas wall during the start cycle. Results,
plotted in Fig. ~0 showcd that 3 peak strain of ~1.4 percent occurred at 2 point
1.0 inches upstream of the throat and at a time (.3 seconds into the run. Steady
state strain value at the same plane is ~1.25 percent. The strain is higher
during the start transient than at steady state conditions since the hot gas wall
responds much faster than the back wali, resulting in a greater temperature

differential across the chamber wall during the transient.
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In parallel .ith this, the isothermal fatigue data reported ir Volume I was

cross plotted to determine cycles tc €aijure capzbility versus temperatures for
several effective strain rarges as shown in Fig. 71, These data were then used
to determine cycles to failure versus effective strzin for the incrementally
averaged dati. Results are shown in Fig. 72. Also, upper and lower bounds were
established based on the data scatter resulting from the isothermal istigue tests,
These data are for heat D540Z, the heat of NARloy-Z uzed in the isothermal fatigue
testing. These data were then adjusted for heat D5415, (the imgot used to make
the thrust chamber; by the differernces in basic material properties; accompli ed
by using the Universal Sispes equation as discussed in Volume 1. These results,
presented in Fig. 73 vesult in a plot of cycies to failure versus effective strain
for the NARloy-Z chamber that was cyclic tested. Entering this curve at 1.4 percent
effective strain shows a predicted life for the NARloy-Z chamber of 3100 to 15,000
cycies. These values are indicative of the cyclic life capability of a KARloy-Z
chamber whica ha# no inclusions as was experienced or the hardwire listed here.

A comparsble analysis on the zirconiue copper chsmber yielded a predicted life
range for ciean zsterial of 2000 to 6300 cycles,
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CONCLUSIONS AXD RECOMMENDATIONS

It can be concluded from this test prozram that the copper allcy chambers do
exhibit good life characteristics. This is typified by the fact that the
Zirconium copper chamber accumulated 398 cycles prior to occurrence of a through
crack, while the NARlov-Z chamber rarn 410 cycles before a simiiar crack occurred.
The chambers were both subsequently tested for many more c<ycles, and although
additiona! cracks cccurved, they were capable of additional testing when the
test prooram was terminated, due tc the injector problem. It is recognized that
the cracks occurred in the chambers gquite early compared to the predicted values,
based on the iscthermal fatigue test data; however, as d’scussed previously,
thare is some lack of correlation bhetween the two, since the effect of the in-
clusions is quite different on the cl.asbers than on thc isothermal fatigue
specimens. On both the isothermal fatigue specimens and in the chamber these
inclusions, in gﬁe form of stringers, were axially oriented. This coincid?s with
the direction of loading for the isothermal fatigue specimens thus minimizing
their effect on life. Conversely on the thrust chasbers, the circumferential
loads are transverse %o the major stringer dimension, with a resulting major
contribution to cyclic life cavability. It is apparent that additicnal work
needs to be Gone in laboratory testing to establish the cyciic life capability
of material in a condition more nearly representative of that experienced by a
thrust chamber. Also refinement of the processing of the two copper alloys is
necessary to eliminate these inclusions such that the life capability can be
increased to a value more nearly corresponding to that of the isotlermal fatigue
test specimens.

It is recommended that additional effort be accomplished in this area to (1) refine

the processing of the eaterial, and (2! conduct laboratory tost effort more nearly
representative of that which is experienced by a thrust chamder. This could be
accowplizhed through the testing of small panels which experience a thermal
gradient comparable to that of the thrust chamber, and would he more nearly
representative of the chamber operating conditions than that of the isothermal
fatigue specimens.
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APPENDIX A

b RN T T

PROCESSING AND INSPECTION OF INCLUSION FREE ZIRCONTUM COPPER

PTIY

The zirconium copper thrust chamber liner was to be fabiicated by shear and forx
3 spinning from a preform forged disk 20 inches diameter x 1 inch thick. This
forged Jisk cornfiguration was selected as the most suitable for ultrasonic in-
spection of internal gquality. The prior inget stage was impossible to ultra-
sonic inspect because of coarse grain size and the final iiner stage represented
1 excessive cost if the materizl proved unsuitable. The forged disk represented

é the earliest stage of fabrication that the material would be pote.tially suitable
: for ultrasonic inspection.

PETYTTT

Initially, three disks available from ancther program were evaluated. The ¢isks
were ultrasonically inspected in accordarnce with Rocketdyne Spec. RAG'15-012
Class #A “Ultrasonic Inspection of Wrought Metals™ (3/64 inch flat-bottom hole
standard). The sttenuation and hash level was go pveat in these parts that-
inspection even to a Class A level (5/64 inch flat-tottom hole standard) wac

3 impossible. No further action was taken on these forgings.

It is known that ultrasonic attentuation in copper alloys is significantly affected
by the hot-work history of tne forging. For this reason it was decided to procure
zirconium conper ingots which could be forged under conditions which could be
observed. Table 3-1 outlines pertinent paterial informition and two forging pro-
cedures employed. Two ¢isks were forged according to Procedure I, of Tahle A-l.
One disk was forged according tc Prccedure 1I, of Table A-1. The basic difference
in the two procedures was the mumber of heating cycles given the forgings. Pro-
cedure I disks were mace in one heat cycle. Procedure II disk was mede with two
heat cycles. The material in both cases was crozs-worked with a high percentsge
of forging reduction. The intermediate heat cycle of Procedvre 1] was introduced
to cause recrystallization frum any cold work that may have been introduced. The
recrystaliized structure, assuming mo s2ricus grain growth, aight be expected to
havo lowered attentuation characteristics.
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TAPLY A-1, MATFRIAL AXD FORGING PROCEMIRES USFD TO
PRODUCT ZIRCONIIN COPPER DISKS FOR
THERMAL FATIGUE LINER SPINNINGS

MATERIAL: 8-inch diameter direct chill cast ingot
rough machined tc 7-1/. inch diameter

Heat No. HT 329-%

Three pieces approximately 100 pounds each
"-1/2 inch diameter x 7 inch long

Ingot precured from AMPLQO Metais, Penmnsylvaria
Ingot prduced by A*W\X Copper, vew Jersey

FORGING PROCFDURE :
All operations performed on 2 600C pound onen frame steam hammer.
PROCEDURE I - Twc pieces forped

a. Heat material to 1500 F

b. Forge 7-1/2 inch diameter cross section to
5 inck square x 12 inches long

¢. Break corners to 5 inch round
4. Upset 12 inch Jength tc 20 inch diameter x 1 inch thick

e. Al forping operations were completed in cne heat. Tewmperature
of part after forging was comp.ete was belcw 1000 F.

:
:

Cne piece forged

a. Heat material to 1500 F

Forge 7-1/2 inch diaaseter crosc section to
5 inch square x il inches long

LB $U B ARGy e s BT s v
.

¢. Areak corners to S inch round

d. Upset 12 inch lenzth to 5 inches x 9 inches diameter

e. Reheat to 1500 F

f. Upset 5 inch length to 20 inck diameter x 1 inch thick

g. Material did not go below 1000 F during forging operations

WA

Three disks rough machined to clean up both faces with a 125 ms finish.

Y I
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The forgings were rough machined or both faces and subsequently ultrasonically

inspected in accordance with RAQI15-012 (lass AA at a iocally approved inspection
source (Sonic Testing and Engineering). None of the disks could be inspected

TILNTE T LT P L © S

with standard test blocks because of high attenuation. Forging Procedure II

- seemed to produce lower attenuaticn characteristics, however, the attenuation

i level was still toc high for precise inspectior without special test blocks.
Singular ultiasonic responses were found in all three forgings when the instru-
mentation was calibrated to standard test blocks. The size of the indications
were estimated to be larger than a 3/64 (.050 incn) flat-bsttom hole standard.

As many as 47 indicaticns were found in one of the disks.

TR PO AR PTTTUTE § Y W OUE TTTTEAL At

One disx (Forging Procedure 1) was selected for more detailed evaluation at
locketdyne. Special copper test blocks having attenuation characteristics
similar to the forgings were used for the evaluation. The forging was scanned
using a2 frequency of 5.0 MHz and 2.25 MHz. The hash level was too great at

P AR TR Ty N v

5.C MHz but 2 saticfactory inspection was possible at 2.25 MHz. This disk was
found to have a total of 17 indications greater than 3/64 standard. Fight of

: thess indications were greater than responses from a 5/64 test standard. The

T FTTERITIT

indicstions were estimated tc range in size between 0.045 inch and 0.150 inch

cross section,

Two of the 5/€4 indications weve isolated by sectiocuing the forging. The area
was examined metallographically and inclusions were €fsund. Figur2 A-i shows

the size and fcrm of one of the inclusions. The long axis of the inclusi.z was
oriented in the radial dircction of the disk. The inclusion shown in the figure
had a lenpth of apprcximately 0.060 inch. The maximue length of the inclusion
measured 0.078 inch at an earlier stage of examination. Grinding and polishing
for photography ~aused the length of the inclusion to diminish.

Results of this investigation showed that:

1. The commercially produced zirconiwz-copper alloy contained large
quantities of randomly dispersed oxide inclusions.
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2. Inclusions in zirconium-copper found by this investigation ranged
between an estimated .045 inch to .150 inch nominal diameter as
determined ultrasonically by comparison with standards of known

area,

TSI AR\ RO T L

X
(2]
L)

Special melting and casting techniques will be required to produce

o I,

inclusion-free zirconium-copper alloy suitable for rocket nozzles.

ATORTY

T

4. Zirconiwm-copper alloy in one-inch section thickness was difficult,
if not 1mpossible, to inspect ultrasonically to the Class AA level
(3/64 inch flat-bottom hole standard equivalent to inclusions of
approximately 0.059 inch diameter).

G T} LTI

1 Inclusions of similar character had been observed in some of the early NARloy-Z
ingots. Microprobe analysis identified these inclusions as primarily zirconiur
oxide. It was reasonable to assuae that the inciusgions in the zirconiur-copper

R e i g

alloy had the same compusition,

? Ultrasonic evaluation of many heats of NARloy-Z have demonstrated that the

forged material is readily inspected by ultrasonic technique and displays none

of the annoying attentuaticn problems encountered in this cvaluation of zirconium-
copper ailoy. Further, siaslar ultrasonic responses in NARloy-Z have been
veriried many times to be generated from oxide films and not be extraneous
nicro-structural phenomena. The techrique has demonstrated effectiveness in
detecting inclusions and comversely it can be assumed that an ultrasonically
clean forging is fr. : of these defects.

It is difficult to assess the causes of erratic attenuation and ultrascnic
difficulties in the zirconium-copper alloy. Grain size and grain distribution
can have a significant effect. However, tne forging practices employed to
prodixce the disks were conducive to producing a fine-grain forgirg. Similar
forging operations in NARloy-Z have produced uniform equiaxed grain si:e with
sonic attenuation equivalent 20 or lower than the standard test blocks used for
normal inspection. Verbal comsmmication with AMAX Copper, producer of the alloy,
indicated that sonic inspection was a problem in the limited experience of
commercial apnlications. They couid offer no explanations for the difficulties.
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Other copper alloys such as iaval brass and OFHC copper have displayed attsnuation
problems. Rocketdyne experience with naval brass for wear rinps found it impossible
under any circumstance to inspect the material even to a Class A level (5/64 inch

s nemata ] R T TN

§ standard). No forging practice could be established which would alleviate the
H attenuation problem in this material. Grain size in this case was influential
E but not the total problem. No satisfactory explanation was detarnired.

Zirconium-copper alloy is rot in the same category as naval brass, however, reliable
inspection (Class AA level) in ail but thin sections (1/2 inch-to-1/4 inch) may
be a continual problem from the attinuation standpoint.

It was con~luded from this effort that if zirconium-copper alloy was to be con-
sidered for long life thrust chamber lincr applications, refinements in present
mill practice or alternate methods of producing the material were mandatory.
Development work on melting and casting NARloy-Z had evolved techniques capable
of producing saterial free of ultrasonic indications and thus inclusions when
inspected to the Ciass AA level. Those techniques were evaluated for zirconium-
copper fabrication.

It was subsequertly determined that consumable electrode remelting of zirconium-
copper ingots dramatically improved the ingot quality, making it available for
use in long life thrust chambers.

This process involves a two-step meltinz procedure as illustrated in Fig. A-2.
1 The basic ingot is produced by vacnum induction melting as shown. The ingot is
then remeited and recast under vactam by passing an electrica! current through
: the ingot as illustrated. In this manner all inclusiors are driven to the top
of the ingot where they are subsequently machined awa s prier to ingot forging.
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