
AD-760 549

A PROGRAMMER'S GUIDE TO PDP-10 EULER

William M. Newman, et al

Utah University

Prepared for:

Rome Air Development Center
Defense Advanced Research Projects Agency

June 1970

DISTRIBUTED BY:

urn
National Technical Information Service
U. S. DEPARTMENT OF COMMERCE
5285 Port Royal Road. Springfield Va. 22151

DISCLAIMER NOTICE

THIS DOCUMENT IS THE BEST

QUALITY AVAILABLE.

COPY FURNISHED CONTAINED

A SIGNIFICANT NUMBER OF

PAGES WHICH DO NOT

REPRODUCE LEGIBLY.

,:'.

4ft
O

p
RADC-TR- 73-152
Technical Report
June 1970

A PROGRAMMER'S GUIDE TO PDP-10 EULER

University of Utah

Sponsored by
Defense Advanced Rcse, rch Projects Agency

ARPA Order No. 829

•v

Approved for public release;
distribution unlimited.

The views and conclusions contained In this document are those
of the authors and should not be Interpreted as necessarily
representing the official policies, either expressed or Implied,
of the Defense Advanced Research Projects Agency or the U. S.
Government.

Rome Air Development Center
Air Force Systems Command

Griffiss Air Force Base, New York

Reproduced by

NATIONAL TECHNICAL
INFORMATION SERVICE

U S Dopattmenl af Ccnimorfo
Springflplrl VA ??1 'i I

^

UNCLASSIHEO
Srrunty Clatnlualion

r
11

DOCUMENT CONTROL DATA R&D
>»<-u«l.r clmtulK mllon ol III!» b.>Jt .(«fctlfi I J.I.) indnng «...fi« inn n,ut' 6« t<l*r»J »'»n tft» ..rj»!! rtpjll II < t«t«l(«»<j_

" " ' ^ " ~ lia. MCPOMT tccumr« eL»»»>'ic »TION I ONIGIN* TING * C J I * t J v [Citrpurmf muthitt*

University of Utah
Salt Lake City, Utah 84112

UNCLASSIFIED

N/A
I -«IPOnT TITLt

A PROGRAMMER'S GUIDE TO PDP-10 EULER

4 C ItCniPTivl NOTt* t ryp» of import and Incluxv* <<■(••)

• *u TMONitl rFlrtt Mm*, mlddlm Initial, laal nama)

William M. Newman
Henri Gouraud
Donald R. Oestreicher

« mcfomt DATE

frM 1970
ta. CONTRACT on an*NT ««o

/\i'3G (602)4277
6. Pnojic T NO

ARPA Order No. 829
C.

Program Code No. 6D30

Mb rOTALNO OF paoci *LNO

^5
it, MO OF mirt

3
•a omeiiATOK'l RCPORT N^MBCPIII

None

»D oTMCn nCPORT NO<*l (Anr oihn numbtft Mai
Ihl« raparfj

RADC-TR-73-152

 J
mmr ba »mt'ifted I

10 OUTFilBUTION (TATEMENT

Approved for public release; distribution unlimited,

)1 SUPPLEMENT»BY NOTE» Moni-tored by:
M\irray Kessleman
RAUC (I8CE), GAfl NY 13441
AC 315 330-2018

W IPONIORINS MILI T ARV ACTIVITY

Defense Advanced Research Projects Agency
Wash DC 20301

)> ASITHACT

This manual describes the l-UU.R iaii^iage as implemented on the DEC PDP-IO
computer, I'ULiiR is a Mock-structured language, similar to Algol-60 but
simplified by omitting type declarations and by altering tJie way procedures
arc defined and called. PwP-lü I-ULLR includes features for list and array
manipulation, and also for a number of form'5 of input - output, including
f.raphics.

DD ;r.s1473 UNCLASSIFIED

Security Classification

UNCLASSIFIED
Stcutily CI»«»il>fUoti

Crapliics

ComjMiter Graphics

LINK • LIM« C

• O«. «

"CfiS UNCLASSIFIED
Sccuiity Classification

A PROGRAMMER'S GUIDE TO PDP-10 EULER

William M, Newnwn
Henri Gouraud

Donald R. Oestmcher

Contractur; University of Ut ii
Contract Number: AT30(602)427/
Effective Date of Contiact: 20 May i966
Com ra t ilxpiratiou Date?: 30 Novembi r 1970
A-nount of Contract: $5,028,542.00
Program Code Number: 6D30

Principai invesclgitor: Thomas (■. Stockham, Jr.
Phoiif: 801 381-8224

Project Engineer: Murray Kebsolman
Phone: 315 330-2018

Approver! for public release;
distribution unlimited.

This research was supported by the
Defense Advanced Research Projects
Agency of the Department of Defense
and was monitored by Murray Kessel man
RADC (ISCE), GAFB, NY 13441 under
Contract AF30(602)4277.

t-t

A PROGRAWOR'S GUIDF. TO PW-10 LUIÜR

PUBLICATION REVIEW

This technical report has been reviewed and is approved

RADC ProjÄTt Engineer
MURRAY KLSSEU1AN

!'C

ACKNOWLEDGMENTS

EULER was originally implemented on the PDP-IO as a class

exercise, since then it nes grown into a fulJ-fie.iyed compiler-

interpreter system. We would like, however, to acknowledge the

work done on the original implementation by momoer.s of CS 632 at

the university of Utah, namely uavid And-rson, Kay Hrown, Duane

Call, Patrick Baudeiairo, Rogr-r Deliry, jor- LoraPcio, Don Vickers,

and Martin Yonko.

We would also like to thank Jim Curry and Carl Ellison

for '■iieir helpful advice and assistance.

11

TABLF Of CONTENTS

Acknowledgments ü

Abstract v

Introduction , i

Part Ir The Basic Features of EDLEP 2

1. EULER Variables 2

2. Expressions 3

1. Statements 4

3.1. Assignment statement 4

3.2. FOR Statomont 5

4. String Manipulation in EULER 6

5. Arrays and Matrices 7

6. Lis ts B

7. Procedures 10

8. Teletype Input and Output 12

9. EULER Constants 13

10. Program Formatting and Conments 14

Part II: How to Use PDP-10 EULEK 16

1. Compi 1 ing 16

2. Loading and Executing 16

3. Run-Time Errors 17

4. Debugging Aids 18

in

Part III: Advanced EULER Programming 21

1. Use of Statement Values 21

2. Procedures 23

3. External and Library Procedures. 25

4. Pile Input-Output 26

5. Coping with Large List-Structures 29

6. Send-Receive <. 31

Appendix I: Basic Operators 34

Appendix II; EULER Reserved Procedures 36

Appendix III: EULER Library Procedures 37

Appendix IV: Euler 0, SEULD 39

Appendix V: List of Error Messages 41

Appendix VI: Euler-G 44

Appendix VII: EULER Compiler Error Messages 56

- Appendix VIII: Linking Assembly Code to EULER Programs 57

Appendix IX: Data Formats 61

References 65

IV

/

INTRODUCTION

EULER is a block-structured language, similar in appearance to

Algol but embodying many fresh concepts which make it an easier lan-

guage to understand and use. The original reason for implementing it on

the PDP-10 was to create a language for experimenting with data structures.

However, it soon appeared that KUI.KR had many applications as a general-

purpose language with gooo data-handling and debugging facilities, and

this manual has been prepared for people who wish to make use of it as

such.

The first thing that must be said about PDI'-IO EUIXR is that it is

different from EULKR as proposed by Wirth and Weber . It contains

for statements, arrays as well as lists, and omits go to statements.

There are also some major differences in the way it has been implemented,

but these are probably not of interest to the general user. Readers

familiar with Algol 60l2) will have l^Me difficulty in using EULER,

once they have understood the bisic differences between the two languages.

These are covered in Part I.

EULER programs are executed by an interpreter called SEUI.. This

interpreter operates on Polish-string object code gtnorated by the

EUJ.-JR compiler. The object code la in the form of six-bit bytes, and

some care was taken to make it readable for debugging purposes. A

number of other debugging aids have been added to the interpreter which

probably make this feature redundant.

Other useful features of PDP-10 EULER are string, list and ma-

trix operations, file input-output and a very straightforward library

feature. These are all described in the rest of this report.

>

PART I

THE BASIC PEATUHES OF XLi>

I. EULLR VariabU«

Like most m^n-Kvwl languages. F.ULER h4» facilities for

handlinq integers, real numbers, boolean values, strings and arrays.

These can all be stored Into variables and manipulated In the usual

way. However, EULER imposes no mstrictions on the type of data

that may be stored into a given variable. A single variable may,

during execution of a program,, successively contain an integer, a

real number, a boolean value, a string, an array, a list and a pro-

cedure. This contrasts with Algol 60, in which variables are de-

clared to have a -ertain type whtn the program is written and during

execution can contain omy that typo of data.

The EULER interpreter avoids this restriction by saving a few

extra bits of information with each variable; by using these bits

during execution it can determine how the contents should be treated.

This of course reduces execution speed. However, it permits mixed

types of data to be stored into lists and arrays, and it also reduces

the burden on the programmer. EULER variables are declared in a single

NEW declaration following the start of a block:

BEGIN Hi A, 7A. 7.2, MAXVALUE;

END

Any statement betw;en the decUration and the final END may refer

to these variables. Outside th« L-ior.k they are meaningless, and any

attempt to rcfei to thea will cause an error. The contents of .«

variable just after it nss been declared are undefined. Variable

naaes nay be any nutoer of characters in length/ all characters are

significant.

Variables «ay be subscripted to address a particular cell in a

list or an array or to pass arguaents to a procedure:

•M

NAXIA.B]

Each of the Mubscripts in the list enclosed within brackets may

be any EULER atatement or expression: see below for a list of the vari-

ous types of statement permitted in EUL£R. Also discussed below is

the use of multiple subscripts, such as;

L23(KjmiN*S|

2. Expressions

EKpressions may be fotMd from variables, censtants and other

expressions enclosed in parentheses. The most common type \m an arith-

metic expression»

A ♦ 3.2 - 100 * (B ♦ C/17)

However, logical expressions are jjst as useful: they have either true

or false value«]

A > B

A •) OR NOT (B ' 17 AND B00L3)

Expressions may also involve strings, lists or arrays, as described

later.

3. Sf teaent«

EULER includei most of the types of statements permitted by

Alool. These include assignment statements, conditional (IF) state-

ments, FOR statements, and compound statements or blocks. An expres-

sion (arithmetic or logical) is a valid KULF'i statement. GO TO state-

ments and labels are omitted. I'DP-IO EIIU.M also includes some

special forms of output statement (I'RINT, WKITKI .md list manipula-

tion statement (IMSMPT, RKW-VK) .

3.1 Assignment Statement

An important feature of KUI.KR is that every statement has a

value. In most cases this valut- is not put to »ny use, but is thrown

away after the semicolon which separates statements is passed. For

example, the value of the following statement is th»» sum of the values

stored in A and B:

A ♦ &;

By itself, this expression does nothing. Similarly, the following con-

ditional expression may have th«' value of C or D, but will not affect

the state el the program:

IF A > B MM C E1,SE D;

On the other hand, if we incorporate this exrression into an assignment

statement, as KUI.KR will allow us ro do, we oin^ change the program's state:

P • IF A > B THEN C ELÜK la-

uere the value of the statement, which is the value of either C or D,

is stored into P. KULER allows an^ statement, with any type of value.

5

to be used as the right-hand side of an assignment statement.

3.2 FOR Statement

The FOR statement provides a basis for most algorithms involv-

ing repeated operations. There are several variants of the FOR state-

ment. The FOR-STEP-UNTIL statement allows an operation to be executed

a predetermined number of times:

FOR K * 1 STEP 1 UNTIL 10 DO A[K] ■<- 0

This will store zero into cells A[l] to A[10] inclusive. The scope

of the DO is limited to one statement:

FOR N ■*- 1 STEP 1 UNTIL 5DOP^P*N; Q*Q + P

The first statement following DO,"P * P * N", will be executed five

times; the second/'Q - Q + P'^will be executed only once, following

completion of the FOR statement. To cause both statements to be executed

after every step, we must include them in a single compound statement:

FOR N ■»- 1 STEP 1 UNTIL 5 DO

BEGIN

P ••- P * N;

Q •<- Q + P

END

WHILE may be used instead of UNTIL or STEP-UNTIL so that looping

terminates when a condition is no longer true:

LOOKING * TRUE;

FOR K "- 1 STEP 1 WHILE LOOKING DO

LOOKING *■ A[K]#N;

6

The above will loop through A until a cell equal to N is found.

FOR XNP 4- TRUE WHILE INP DO

BEGIN NEW N;

N «- INVAL;

ANS + ANS + N

END

This example creates an endless loop since INP never becomes false.

This type of loop is useful for writing interactive programs in EULER.

Note that there is no semicolon before an END. Semicolons are

used only to separate a statement or declaration from the following

statement. Errors will occur if this rule is not followed.

4. String Manipulation in EULER

A string of any length may be stored into a variable:

S3 <■ "THIS IS THE PLACE"

The contents of this variable may then be printed out, concatenated

with other strings, or manipulated in various ways. It is not pos-

sible to access individual characters in a string. However, any

string may be converted to a list of integers, using the reserved

procedure UNSTRING:

L7 ♦ UNSTRING[S31

Each cell in the list L7 will receive one character, converted into an

integer representing the appropriate ASCII code. The reverse operation

is also permitted:

S2 ■<- STRINGlN]

7

N may be a list or array of integers or just a single integer. A

string is formed of all the codes up to the first zero or non-integer.

5. Arrays and Matrices

EULER arrays are similar to FORTRAN arrays in that the lower

bound is always unity. However, EULER arrays may have any number of

dimensions. They are created as follows:

A *■ ARRAY[2,ASIZE]

and may be accessed as follows:

Atl,J+l] •*- 2

Any type of information may be stored in any array cell, including

another array:

A3110] ♦ "JOHN SMITH'"

A3(ll] *■ TRUE;

A3 [14] * ARRAY[20);

An array stored in a cell of another array can be accessed by double

subscripting;

X * A3[14][N]

Two-dimensional arrays may be treated as matrices. The interpre-

ter is able to carry out matrix multiplication and addition:

A ♦ ARRAY[2,3] ; %A becomes a matrix with 2 rows of 3 cells*

B *- ARRAY[3,4];

C ••- A * B;

This will create a new array C, whose dimensions are 2x4, containing

the matrix product of A and B. Matrices may be scaled:

A -e ARRAy[l,4] ;

A * A/A[l,4] ;

Matrices may contain integer or real values in any mixture. The

result of a matrix operation leaves all the contents real.

Lists

Wirth's original description of EULER includes list-processing

operations, and with a few minor changes these have been implemented

3-H i^iJ

FABCI

J-> TRUE 0

2 i23 i 0 o-o>

in PDF-10 EULER. Figure 1 shows

an EULER list, stored into a

variable L. Cells in this list

can be accessed in the same way

as array cells: for example,

L[l]=3.6., L[2] ="ABC", L[4]=123.

L[3] is itself a list, and its Figure 1

cells can be addressed by double subscripting: L(3][l]=TRUE, L[3l(2]=0.0.

There are three principal ways ot constructing a list:

1.) By explicitly defining its contents;

LM3.6,"ABC",[TRUE 0.01,1231

2.) By defining the list and later defining its contents:

L< MST[41

L{ I] *3.61

L[2]*"ABC";

L13]*-LIST[2] ;

L[4]*-123;

L(3] [UNTRUE;

L13] [2]*-0.0;

3.) By concatenating existing lists:

LI*-[3.6, "ABC"];

L2^[TRUE,0.0];

L3-<-Ll&[L2]&[123]

The expression [] can be used to indicate an empty list.

Wirth's two other operations, ^ENGTH and TAIL, pre also included.

LENGTH allows the number of cells in a list, to be determined:

LENGTH[L]=4

LENGTH[L [3]] = 2

TAIL removes the first element from a list:

TAIL[LJ -["ABC",[TRUE,0.0],123]

TAIL[TAIL[L][2]][11=0.0

PDP-10 EULER also includes two special statements, INSERT and

REMOVE, to make list operations more efficient. INSERT has four vari-

ants:

a) INSERT LI BEFORE L2

b) INSERT Ll AFTER L2

c) INSERT Ll BEFORE L2:N

d) INSERT Ll AFTER L2;N

(a) and (b) add list L2 to list Ll, respectively before the first

and after the last element of L2. (c) and (d1 permit additions to be

made anywhere within a list—N is an index into L,2, and can be any

10

expression. For example, the structure in Figure 1 could be created

as follows:

INSERT ["ABC",[TRUE,0.0]] AFTER [3.6,123]:1

REMOVE has only one form:

REMOVE L:N

which removes the Nth element of list L. Thus REMOVE L:l is equivalent

to L«-TAIL[L].

The value of the INSERT statement is the resultant list struc-

ture. REMOVE returns as value the removed element.

7. Procedures

One of the most attractive features of EULER is its handling

of procedures. Basically, a procedure may be assigned to any variable;

then whenever that variable ii accessed, the procedure will be eyr-

cuted. Procedures may be stored into cells of an array or list. The

way in which procedures are defined is as follows:

OUTAB*'PRINT A; PRINT B'

All the statements included within quotes are executed when

the procedure is accessed. Arguments may be passed to procedures by

the use of subscripts; there must be a formal declaration at the start

of the procedure, listing all the parameters to be passed:

MAX"'FORMAL A,B; IF A>B THEN A ELSE B';

X^MAX[J,3*P-17];

11

The mechanism of calling procedures in EULER is quite different

from that in Algol. Unless specified, parameters are passed by value.

Each of the expressions in the subscript list is evaluated, and each

of these values is assigned to a formal variable, starting with the

first. Thus in the example above, A would receive the value of J, B

the value of the expression 3*P-17.

Calls by name are achieved by enclosing the arguments within

quotes. Consider the following example:

A-K);

PRI^"-'FORMAL X; X*2,- PRINT X" ;

PRINT2[A];

PRINTaL'A'];

PRINT2[A] merely prints t]>e number 2: since it is called by

value, the contents of A are not changed. PRINT2I'A'l on the other

hand is a call by name, hence all references within PRINT2 to the

formal X are treated as references to A. At the end of this second

call, A contains the value 2.

The value returned by a procedure is the value of the last

statement executed within the procedure. Thus the value of the above

procedure MAX is the value of the IF-expression. Procedures may

also be thought of as returning an address. For example:

CELL3-* 'A^l ' ;

CELLS" 22;

B" CELL3;

This exami lo defines an "access procedure" which allows data

to be stored into or read out of A[3] as if CELL3 were a simple

wr

12

variable. Note that when a procedure is stored into a variable, that

variable becomes "execute only" and no other contents can replace

the procedure.

Arrays, lists and strings may be passed as arguments to a

procedure. For example, the following procedure ^MATRIX will create

a two-dimensional array of the required dimensions, with all ceils

set to zero:

iiMATRIX<'FORMAL M,N;°

BEGIN NEW A,J,K;

A*ARRAY[M,N] ;

FOR J->] STEP 1 UNTIL M DO

FOR K" 1 STEP 1 UNTIL N DO

A[J,K)*-0;

A

END'

and can then be called as follows:

ROTN*-ZMATRIX[3,3]

8. Teletype Input and Output

The INPUT statement in EULLR reads one character from the

teletype. If nothing has been typed, the program waits until a

character is typed. The value of INPUT is an integer, representing the

AdCII code of thecharacter typed. It may be converted to a single-

character string with the STÄINQ operator:

IF STRING [I.\PU'r] = "G" THEN PROGO

The INPUT statement has d«er incorporated in a number of library

procedures for input of ■.umaers and text (bee Apperaix III).

13

Output to the teletype is achieved by using the PRINT state-

ment !

PRINT A;

PRINT "ANSWER IS", X23

Any number of arguments may be listed in a PRINT statement,

and their values may be of type integer, real or string. Numbers are

printed out in a fixed format. Programmers may define their own for-

mat as follows:

PRINT A,B IN ■'A=\\\ B= \\.\\\ " ?

FMT^'ANGLE IS \\ .I DEGREES";

PR7NT 180*THETA/P1 IN FMT;

Each item in the output list of a formatted PRINT statenent

will ba inserted in a field of the format; these fields are indicated

by back-slashes. A period will cause numbers to be converted to

floating-point notation—otherwise integer notation will be used.

Positive values are left unsigned unless a sign position is indicated:

PRINT XI, X2 IN "AW +\\\,,

9. Euler Constants

Constants may be integers, real numbers, or strings. Any

number including a decimal point is treated as real. Any text en-

closed within double quotes is stored as a string. The compiler will

not accept certain characters within strings, so the following

conventions are used:

14

'B bell

•c carriage return

'F form feed

•L line feed

•N carriage return - • linefeed

•s space

'T

i i

tab

single quote

10. Program Formatting and Contonts

Spaces, tabs, and carriage-return/line-feois may be inserted

anywhere in the source program except within a symbol or operator, or

within a string enclosed in double quotes. The program may therefore

be indented by ir.aans of spaces and tabs, as illustrated by most of

the examples1, in this manual.

Wherever a space, tab, or carriage-return/line-feed is per-

mitted, a comment may be inserted by enclosing it within percent

symbols:

IF A > B THEN tEXCHANGP: A AND B%

BEGIN NEW T; %T IS TEMPORARY VAM

T *- A; A *- B; B *■ T tEXCHANGE COMPLETE*

END;

Comments may extend to more than one line.

.

15

The complete program should be enclosed within a BEGIN...END

pair. This first BEGIN must be followed by a declaration, and

preceded by a title, which is aiy symbol:

TITLE PR0G3

BEGIN NEW X, Y, P;

END

/C

PAPT II

HOW TO USE POP-10 EULER

1. Compiling

Source proqraips should be prepared and filed in the usual way

• with QED or TECO. They can then be compiled in the followinq manner:

.R EULER

*DEV:FNAMEl.EXT^DEV:FNAME2.EXT

or the following shorter form may be used:

.R EULER

♦xxxx+xxxx

This assumes that the source file is XXXX.SRC and is on the disk.

An object file called XXXX.MAC is created, also on the disk. Users

are encouraged to use this form since the EULER debugging routines

rely upon these file-name conventions.

2, Loading and Executing

EULER programs are not compiled into machine code and loaded in

the conventional manrer. Instead they are interpreted by a program

called SEUL*. Umort öhould type

.p. awtr*

*Non-French ipoakorb: t.-.ir. p.-..iour.ceabl<>. The cic^f'St approxi-
mation ii; SSRL.

17
ard then type the name of the object file produced by the EULER

compiler:

h SEUL

•D6K:XXXX.HiC

If the device nmm is emitted. I** is «ssunwd: if both device

nan» and extension are omitted. 06K and .MAC arc assumed. Provided

the normal file-name conventions are used, the following is therefc?«

sufficient:

»I SEUL

•xxxx

Loader switches arc provided to request special action dunnq

loadinq. Theve may bo typed at any point in t «• file name.

/U prints out ill undeclared variables
after loadiig. These include ex-
ternal and library procedures.

/B program enters EULER DDT aftsr loadinq.

Kx.imple:

.R SEUL

•PROG/U

Unless the /B switch is used, the proqram proceeds to execute

as soon as loading is complete. A carriage-return/line-feed is output

to the teletype as execution commences.

3. Run-Time Errors

If an error is detected during execution, the following happens:

.REE

•VAL/ 2J1

•K/ S.60017

•NAME/ ■JOB"

•PMJND/ IMi

*XYZ/ UNDEF

18

i) An t-rroir message is printed on the teletype;

ii) The statement in the source file in which the
error occurred is printed;

iii) The program returns to the monitor.

We have tried to ensure that the source statement printed out

is indeed the statement in which the error occurred. However, the

technique we have used takes some short cuts to avoid complete re-

compilation of the program. On occasions, several statements will be

printed if SEUL cannot determine the precise statement in which the

error occurred. A list of error messages will be found in Appendix V.

4. Debugging Aids

Debugging aids fall into two categories:

i) Facilities to print out the state of the program;

ii) Facilities to set break-points so that execution
is interrupted at a certain point.

Whenever a run-time error occurs, the contents of any active

triable may be printed out. To do this, type MIH'IU (or REE for

^hort). The program should respond with an asterisk, and you may

then type the name of any active variable^ followed by a slash. If

the variable is inactive, "U?" will be printed in an appropriate for.nat.

The following are some examples of printouts from KULER DDT:

19

Variables to which procedures have been assigned, and formal
■

variables called by name, simply print out as "PROC". Similarly

arrays and lists print out as "ARRAY" and "LIST". You may however

access individual array and list cells by adding a subscript or

subscripts to the name:

*MAT[3,2]/ 1.71503

*L3[5][6]/ 77

To print out the entire active stack contents, type:

Break-points may be srt prior to execution by using the /B

lw%'ter switch. After loading is complete an asterisk is printed,

and up to eight break-points may then be set in the program. Wher-

ever possible this feature uses the conventions of PDP-10 DOT.

To set a break-point, type a line number In the source code

followed by $nB ($ - alt-mode; n is the break-point number, 1 to 8).

The break-point will be set at the first "store" operation in that

line. For example, if the following is line 27 of the source program,

and 27$1B is typed, the program will break before storing 33 into A:
a

A*33; B*-A+5;

To cause breaking on the second or successive "store" operations,

you may type:

27,2$1B

or 27,3$1B etc.

m

20

The integer following the comma indicates to which of the

"stores" the break-point is to be attached. If this number exceeds

the number of assignments on the line, a statement will be chosen in

the lines following. The break-point number, n, may be omitted. In

this case numbers are assigned automatically, starting at 1. To

clear a break-point type 0$nB. To clear all break-points, type $B.

To print out the contents of any line, type the line number,

followed by a slash:

27/

The most recent line typed can be referred to as ".", and

other lines may be addressed relative to it:

27/ prints lino 27

,+1/ prints line 28, . becomes 28

./1$B sets a break-point at the first "store"
in line 28

.-5,2$B sets another break-point at the second
"store" in line 23

2/ prints line 30 (space and + are equivalent)

As in PDP-10 DDT, line-feed and .+1/ are equivalent, and so are f

and .-1/.

To start execution, type $G. The program will execute normally

until a break-point is encountered. Then execution will cease, and

the break-point number, together with the value just about to be

stored, will be printed:

3B >> 0.01753

You may now examine variables and set or clear break-points,

as described above. To resume execution, type $P.

>/

1'AKT III

ADVANCED EULER PROGRAMMING

This section is devoted to some of the more refined techniques

in EULER programming, and to some of the facility in the language

which were not described in Part I.

1. use of Statement Values

It is frequently possible to take advantage of the fact that

statements possess values. An example was given earlier in Part I.

More elaborate examples are discussed here.

When matrices are being used, it is sometimes necessary to

create a new matrix with its cells set to certain initial values.

Suppose we wish to store into A either the matrix currently in

B or, if B is undefined, a 3x3 unity matrix. This can be done as

■

follows:

Ai-IF TYPE[B] = 4 THEN B ELSE

BEGIN NEW T,J,K;

T*-ARRA,i'[3,3] ;

FOR J-1 1 STEP 1 UNTIL 3 DO

FOR K'-l STEP 1 UNTIL 3 DO

T[J,Kl-»-IF J"K THEN 1 ELSE 0;

T

END

This example makes use twice of the value« of IF statements.

Another technique that may bo u^ed With IP statemc.-nts is the compound

22

logical expression. The expression following "IF" may be an£ ex-

pression whose value is true or false. An expression may be any state-

ment or statements enclosed within parentheses*, so the following is

permitted:

IF (A+B[X];A>0) THEN ^-A

Since all the statements within parentheses are executed be-

fore the test is carried out, this provides a method of including

unconditional statements in chains of IF statements (1F...TOEN...

ELSE IF...THEN...ELSE IF...) without the use of BEGlu and END:

IF(X^X-l;A[X,Y]-0) THEN TRUE ELSE

IF(X-«-X+l;Y«-Y+l;A[X,Yj-0) THEN TRUE ELSE

IF(X^X+1;Y<-Y-1;A[X,YJ=0) THEN TRUE ELSE

(X^X-1;Y^Y-1;A(X,Y]=0)

The above statement finds whether any cell adjacent to (X,Y)

in the matrix A contains zero, and if so returns with X and Y set

to the position of the first such cell it finds.

Difficulties often arise with IF statements because all parts

of a complex logical exprssaion are evaluated before the test is

applied (this is out of line with Wirth's proposals). In a statement

of th« form IF LI AND L2 THEN A ELSE B the evaluation of L2 may

cause an error if LI has the value false. One solution is the nested

IP statement:

IF LI THEN

BEGIN

IF L2 THEN A

END ELSE B

* Note that parentheses () are equivalent to BEGIN END

21

The BEGIN is necessary here since the ^cond IF statement does

not include an ELSE clause, but the first one does. Another correct

version is:

IF LI THEN IF L2 VHEN A ELSE B ELSE B

and the following will also work:

IF(IF Li TOEN L2 ELSE FALSE) TOEN A ELSE B

2. Procedures

Part I mentioned that variables into which procedures have been

stored become "execute only." This means that it is not possible suc-

cessively to store different procedures into a variable as follows:

p t- 'IF N-0 THEN A ELSE B';

P ♦■ 'A •»• B ■«- 0" ;

Whenever a procedure variable is ac r^ed, the procedure is called

intnedLately; so the example above will succeed only in storing the sec-

ond procedure into either A or B.

The only way to replace one procedure by another is to reclaim and

re-allocate the space it occupies. This is difficult to do with ordinary

variables, since a variable is only reclaimed when the end is reached of

L
the block in which xt was de-

clared. With lists and arrays,

however, it is easier to do.

Suppose we wish to build a list

L in the form shown in Figure 2

CZ3—C
[PRQC] III PBOC I

UE J
a—i 0
Figure 2

24

Each element of L is itself a list, which contains in the first

element a procedure indicating what to -to with the following two

elements. If we wish to change the procedure, leaving the rest of

the sub-list unchanged, we can do do by discarding the first element

and then redefining it. For example:

L[Kj^LIST[l] &TAIL[L[K]];

L[K] [l]""-'FORMAL A,B; A+B';

We may now "evaluate" any sublist K in the following manner:

VAL^L[K][1][L[K1(2],L[K1[3]]

The concept of recursive procedures is widely understood and

used. All EULER procedures may be called recursively. However, if

the number of nested calls exceeds 30, stack overflow will occur.

To illustrate the use of recursion, here is an example taken from the

EULER library file:

TITLE SINE

'FORMAL X; BEGIN NEW PI;

PI-»-3.14159;

IF X>-0 THEN

BEGIN IF X<0.1 THEN X-(X+3)/6 ELSE

IF X<=PI/2 THEN 2*SIN[X/2]*SQRT[l-SIN[X/2)t21 ELSE

IF X<=PI THEN SIN[PI-Xl ELSE SIN[X-2*PI1

END ELSE -SIN[-XJ

END*

One of the original ideas behind PDP-10 EULER was the concept

of using procedures as access functions. It is possible to use

procedures to attach names to specific list or array elements, and

25

to store into and read out of these elements by means of their names:

BEGIN NEW A, LENGTH, HEIGHT, WTDTI, K, J;

A<-ARRAY[100,3] ;

LENGTH-*-'FORMAL X; AlX,!]';

HEIOTT*-'FORMAL X; A[X,2r;

WIDTH^'FORMAL X; ÄtX,!]*»

LENGTH [Kl-^INVAL;

IF LENGTH[J]-0 THEN...

The above example makes LENGTH[Xl synonymous with A[X,1]. Notice

the use of EULER's block structure to pre-empt a "reserved" procedure

name, i.e., LENGTH. Within the block in which LENGTH is declared the

user's procedure will take precedence over the reserved LENGTO procedure

which determines lengths of lists and arrays. Users who feel they can

improve upon the EULER library procedures can pre-empt them in the

same way, as described below.

3. External and Library Procedures

EULER programs may be written as external procedures by adopting

and following slightly modified syntax:

TITLE EXTRROC TITLE EXTPROC

'FORMAL Fl, F2; or

A complete example is shown above in the sine procedure. Rxtcrnal

procedures may be called from other programs without declaring them. The

26

interpreter assumesthat every undefined variable is an external pro-

cedure and attempts to find it on the disk as follows:

a) by looking it up on the users area with extension .MAC;

b) by looking it up on his area with extension .EUL;

c) by looking it up under [1,11 with extension .EUL.

If all of these fail, an error message is printed. This order of prece-

dence is useful in a number of ways. For example, if a program has

been designed to be controlled by the mouse, and ihe user wishes to test

it from the teletype, he can do so by writing his own external MOUSE

procedure and filing the object code on his disk area as MOUSE.MAC or

MOUSE.EUL. The following procedure would allow him to type in a switch

number and two coordinates, and to the program would be indistinguish-

able from library MOUSE procedure:

TITLE MOUSE

'BEGIN NEW SN;

SN-^INVAL;

IF SN-1 TOEN [TRUE, FALSE, FALSE, INVAL, INVALl ELSE

IF SN-2 THEN [FALSE, TRUE, FALSE, INVAL, INVALl ELSE

[FALSE, FALSE, TRUE, INVAL, INVALl

END'

4. File Input-Output

EUI£R programs may read and write standard PDP-10 text files.

For this purpose, a WRITE statement and a reserved procedure called READ

have been added. They operate in a fashion exactly analogous to PRINT

and INPUT:

27

WRITE "MOVE AC,"»NAME; % will write MOVE AC, and the

contents of NAME %

CH-*-READ; % will read one character into

CH as an integer %

WRITE statements may include format specifications.

In order to make use cf READ and WRITE, the programmer must include

statements to open and close files, If you are going to write a file,

you must open it for output:

0UTFILE[,,DSK","FNAME","EXTN,,1 ;

After all output is complete, the file is closed for output:

OCLOSEj

Since only one file at a time may be opened for output, the OCU)SE

statement requires no arguments. Existing files may be opened for input

and later closed as follows:

INFILE("DSK,,,,,FNAME","EXTNH1 f

ICLOSE»

During input it is possible to check whether the end of the file

has been reached by using EFILE. This will return true if the end has

been reached, otherwise it will return false;

I? EFILE THEN ICLOSE ELSE aMK*K+U*-READ

Arguments for INFILE AND OUTFILE may ' given as shown above, i.e.,

as a separate string for device name, file name, and extension. Other

28

combinations of arguments are permitted, and the complete list is as

follows:

["FNAME"] assumes device DSK, no extension

["FNAME", "EXTN"] assumes device DSK

["DEV", "FNAME", "EXTN"]

["rev", "FNAME", "EXTN", PROJ, PROG] where PRDJ and

PROG are project and programmer numbers

["FNAME", "EXTN", PROJ, PROGJ

["FMAME", PROJ, PROG]

INFILE

OUTFILE

It is of course permissible to use any string as device name,

file name, or extension, although names that are too long will be trun-

cated. The following program will write out successive cells of the list

LTEXT as files called LTEXT.001, LTEXT.002, etc.:

FOR K*-l STEP 1 UNTIL LENGTH [LTEXT] DO

BEGIN

OUTFILE["LTEXT",STRING IIK//100+48#(K MOD 100)//10+4B,K MOD 10+48111;

WRITE

OCLOSE

END

File input-output will work successfully for the fc.llowing physi-

cal devices:

• dummy file-n

be given

«ad extension must

29 I
5. Coping with Large List-Structures

Almost any program that makes use of lists will tend to produce

large structures. This raises two problems:

a) It becomes very tedious to examine and debug these structures;

b) The program will eventually grow too big to be accommodated

in core.

With these problems in mind, two features have been added to EULER.

One is a library procedure call WRLIST. It will write out a text file

listing all the contents of a named list, making it possible to examine

the contents. It is called as follows:

WRLISTf'DEV", "NAME", "EXT", LISTNAKFl

LISTNAME is the variable containing the list. The resultant text

file looks something like this:

[CELLI, CELL2, CELL3.. .-CELLN]

f

where CELtl, CELL2, etc., ata the contents of each cell. These contents

are written out in a format appiopriate to the data type, for example:

[3.6, "ABC",

[TRUE, 0.0J,

UK j

This is the WRLIST output of the list structure shown on page 8.

30

Since WRLIST can output arrays, it provides a convenient means

of dumping out the entire contents of an array without using FOR

statements:

WRLISTl-TTY", "X", "X", [All

There Is currently no RDLiST procedure to read in the results of

WRLIST. To cope with this need, and with the second problem mentioned

above, the EULER interpreter has been extended to permit the reading

and writing of lists in library format. The principal value of this

is to permit the use of secondary memory for storing data, as follows:

SWAPOUTI-XXX", Lll; «Ul write out Ll onto the

disk as a file called XXX.

LH-SWAPOUrrxxX", Llls will do the same, and will reclaim

the storage occupied by Ll.

J-LLNOTHlLll» »"I ■«•■ Ll to * ** baCk

in fron XXX.

L2-SWAPIN("XXX-1 will perform the equivalent of storing

the original contents of Ll Into L2.

The actual operation will not take

place until L2 is referenced, e.g.,

by LENGTH{L2].

Thus, after a list has been swapped out. it can still be accessed

and modified as if it were in core-the very next access will automatically

bring it back in. SWAPIN and SWAPOUT use the same file-name argument

conventions as INFILE and OITTPILE, except for the additional final argu-

raent to SWAPOUT.

31

•i. Send-Htc«ive

If two EULER progr«M «re runnxng sinulfitnccasly, thoycan com-

municate via »end-receive. Scnd-receive pesfifedts program» to do the

followinq:

a) to announce their name for the purpose of sending

message« to and receiving then from othe*- jobs;

b) to send a message to another 30b of known name:

c) to wait for a message from another job;

d) to determine whether a message has boon received

from another job, and if so to determine the name

of the sender and the message contents.

A process name may be any text string. For example

"WILLIAM-

"MASTCRPHDCESS"

are valid names for processes. A program announces its name to the

outside world by fhe following procedure call:

ÜECLA«El"JOB,,]l

After declaring its name, a program may send a message to another

program whose name xt knows:

SENDrPETE", MBGJ

A message may be one of the following:

i) an integer in the rang« 0 to 250,000

ii) a text string

in* a list

32

Vo receive a message, a program calls:

X*RECE1VE["J0E"1

Ulis will be executed inaediately, and will store into X:

a) an empty list, if no message has been received;

b) a two-element list, (sender, message), if a message has

been received from the requested sender;

c) a single-element list, (sender], if the requested sender

sent nothing, but another sender, whose name is now re-

turned, has sent a message. A second RECEIVE is n cessary

to determine his message.

RECEIVE(Ö] will receive a message independent of its sender. In

this case the name of the sending process may be not a string but a list

containing two integers. If you wish the program simply to halt until

a message is received, you may use RECWAIT. RECWAIT ("JOE"] will cause

the program to halt until a message is received from process JOE.

?i:CMAIT(0) waits until a message is received, irrespective of the sender.

The »^liws returned by RECWAIT and RECKIVE are identical.

As an example of the use of send-receive, suppose that we wish to

allow two terminal users to send messages to each other without using the

standard TALK facility of the PDP-10. The following program will handle

each end of such a conversation:

TITLE SR

BEGIN MISNAME, RUNNING;

PRINT "irrii YOUR NAME:";

DECLARE (INTEXT); % declares typed string as
name of process \

PRINT "TYPE DESTINATION:";

MISNAME«INTEXT:

PRINT "DO YOU WISH TO WAIT FOR A MESSAGE?";

33

IF INTEXT # "V" THEN % send a message %

SEND[HISNAME,INTEXT];

FOR RUNNING TRUE WHILE RUNNING DO

BEGIN

% wait for a message %

PRINT RECWAIT[HISNAME][2]

% when received, print it %

SEND[HISNAME,INTEXT]

% send another %

END

END

\
Sw

.

APPENDIX I.

BASIC OPEPATORS

.ff

Symbol

+

Meaning

unary plus

addition

Ope rands

scalar

scalar scalar

matrix matrix

unary minus

subtraction

scalar

scalar scalar

matrix matrix

multiplication scalar scalar

matrix matrix

matrix scalar

division scalar scalar

matrix scalar

//

MOD

ABS

integer division

exponentiation

modulus

e.g., A MOD 3

absolute value

e.g., A •«- ABS B

scalar scalar

scalar

scalar

integer

scalar scalar

35

>

<

>m

greater than

less than

greater than /equals

less than /equals

equals

not equals

scalar scalar

string string

boolean boolean

NOT

AND

OR

complement

logical intersection

logical union

concatenation

integer •

boolean -

integer -

boolean -

integer -

boolean -

string string

list list

Precedence is as follows, in descending order:

ABS + - (unary)

♦ / // MOD +

s + - (binary)

> < >a <a x ;

NOT

AND

OR

.H

APPENDIX II

EULER RESERVEü PROCEDURES

ARRAY[M.N...]

EFILE

EXIT

ENTIES;:;;

ICLOSE

INFII.EI . . .!

INPUT

LENGTH (Ll

LIST(N)

OCLOSE

OUTFILE(...I

READ

STRING IL]

TAIL (LI

TYPEtV)

UNSTRINGIS)

creates an array with dimensions M^N...

checks for end-of-file, returns true/false

program returns to the Monitor

makes an Integer

closes file after input

opens file for input

inputs one character fro» teletype

returns the length of a list, array» or string

creates a list of N cells

closes file after output

opens 'lie for output

nads one character from file

converts list, array or integer to string

removes the first cell of a list

revurn* the type of argtwent VJ

-1 means undefined

0 means real

1 means integer

2 means boolean

} means string

4 means array

5 means list

converts string to list

57

APPENDIX III.

EULER LIBRARY PROCEDURES

DECLARE I
SEND V
RECEIVE I
RECVfAITj

INSTRINC

INTEXT

INVAL

INVERT

HOUSE

See Part III., Section 6.

Headi in text str.nq from the teletype.

e.g., liOOKUP(INSTRING)

Terminating chaiacters are space, period,

■ and carriage-return.

Identical to INSTRING, but carriace-

return is the only terminator.

Reads in one signed integer or tloatinq-

point number from the teletype.

e.g. , XMNVAL

Terminating characters are comma, space

or carriage return.

Will invert a matrix

e.g., Ml«INVKRT{M2J

Reads the status of the mouse or tablet

next time a switch is pressed. Returns

as value a five-eUment array, containing:

in element 1: switch 1 setting (true

or false)

in clement 2: switch 2 setting

in element 3: .switch 3 setting

38

RANDOM

SIN y
cos f
ARCTANJ

SMOUSE

SQRT

WRLIST

in element 4: x-coordinate (integer

in range 0-1023)

in element 5: y-coordinate (integer

in range 0-1023)

Note that when the Sylvania tablet is in

use, switches 1, 2 and 3 are turned on

(«true) progressively in that order as

the stylus approaches the tablet surface.

e.g., M^-MOUSE;

IF M[l] THEN (X^M[41; Y^M[5])

Returns a pseudo-random number in the

range 0 to 1.0.

e.g., X-*-RANDOM

Trigonometric functions. Angles are

assumed to be in radians.

Identical to MOUSE, but the coordinates

are scaled to lie in the range -1 to +1.

Square root function.

Writes out a text file representation of

any list; useful for debugging. The file

may be written out onto the teletype.

e.g., WRLIST["DSK","FNAME" /'EXT",Ll;

WRLIST r'TTY" , "X" , "X"' ,Ll

These will write out the list L Onto a disk

file called FNAME.EXT and onto the tele-

type , respectively.

\

39

APPENDIX IV.

EULER D, SEULD

Before the appearance of EULER-G a very simple graphic package

was implemented for Euler. This package is still available as part

of a special interpreter called SEULD. Euler programs which use

this system can be compiled by the standard EULER compiler.

The graphical commands are:

POS(X,Y]

POINT[X,Y]

LINE[Xl,yi,X2,Y2]

LINET01X2,V2]

% Position beam to absolute coordi-

nates X, Y %

% Display a point at absolute co-

ordinates X, Y %

% Draw a solid line from absolute

coordinates XI,Yl to absolute

coordinatesX2,Y2 %

% Draw a solid line from the present

position of the beam to the absolute

coordinatee X2, Y2 %

All coordinates must be between 0 and 2047. The visible portion

of the screen is the lower left quadrant of this area (0,0 to 102 3,

102 3). Arguments may be integers or floating-point numbers.

To display some text, one may use the command POSlX.Y) to position

the beam, followed by DISPLAY X, Y, Z IN F where the DISPLAY statement

X

40

has exactly the same syntax as the PRINT statement. The format F

may be omitted. Characters whose ASCII code is less than 40 will

be ignored.

The command CU-AR will clear the entire screen.

The commands PCS, POINT, LINE, LINETO, CLEAR are implemented

as external procedures.

APPENDIX V: LIST OP ERROR MESSAGES
Jl

(904 CANNOT ROTATE 3-D PICTURES
005 "SIZE IT WILL NOT WORK, NO OF DimiOHJ UNKNOWN
P0« "SCALE N" WILL NOT WORK, NO OF DIMENSIONS UNKNOWN
P07 NO END OF FILE ON CHARACTER SET
010 STRANGE, FRAME FILE HAS BEEN LOST
III NO CHARACTER SET FILE FOUND ON DISK
012 CAN'T ENTER FRAME FILE
013 DISK I NIT ERROR
014 OUTPU. ERROR TO JTA
015 STATZ ERROR ON OUTPUT TO D5K
0I>0 CALLING FRAME fflOH -'ITHIN F*AME
021 PARAMETER LIST IN FUNNY SHAPE
??.?. DISPLAY PARAMETER NOT NUMEPfC
023 DISPLAY PARAMETERS MUST BE A LIST
024 NO OF PARAMETERS MUST BE 2 OR 3
025 WINDOW OR VIEWPORT MUST BE SPFCIEIED AS I LIST
02« NO OF PARAMETERS MUST BE EVEN
027 WRONG VC oC PARAMS FOR WINDOW OR VIEWPORT
050 TRANSFORMATION MUST BE AN ARRAY
051 TRANSFORMATION ARRAY MUST B^ 2-DIMENSIONAL
052 TRANSFORMATION MATRIX MUST BE SQUARE
055 PERMISSIBLE SIZES ECR TRANSFORMATION ARE 2X2,5X5,4X4
057 ASTERISK OMITTED FROM FTMME PROCEDURE DEFINITION
040 VALUE LEFT FOR JUMP-ON-EALSE NOT BOOLEAN
041 WRONG NO OF WINDOW ARGUMENTS
042 WRONG NO OF POSITION ARGUMENTS
045 WRONG NO OF SIZE ARGUMENTS
044 WRONG NO OF SCALE ARGUMFNTS
045 CANNOT DEFINE BOTH SIZE AND SCALE
04<? ERROR IN PASSING DISPLAY ARGUMENTS
047 WRONG SIZE OF MATRIX FOR TRANSFORMATION
«50 CANNOT ROTATE AND TRANSFORM IN SAME DISPLAY CALL
051 CANNOT ROTATE 5-D PICTURE
052 SCÄLXY AND RELSCALE DO NOT WORK YET WITH ROTATIONS
"55 TRANSFORMATIONS ARE NOT PERMITTED IN FRAMF PROCEDURES
054 •MIF SHOULD HAVE 8 ARGUMENTS» X,V.NAME
05« SCALE SHOULD NOT BE DEFINED IN FRAME PROCEDU"
057 ROTATIONS CANNOT BE DEFINED IN FRAME PROCEDURES
0ß7 HUH? SINE RTN ASKED FOR SCRT OF NEG NO
070 THIS DISPLAY OPERATION NOT YET IMPLEMENTEP, SORRY
.172 LINE ARGUMENTS MUST BE PASSED AS LIST
"75 WRONG 10 OF LINE PARAMETERS FOR CURRENT "0 OF DIMS
077 ILLEGAL INSTRUCTION CODE
100 TOO MANY BLOCK LEVELS
101 TOO MANY VARIABLES DECLARED AT TH^ SAME LEVFL
102 STACH IN ABNORMAL STATE AT "END"
135 DISP'AY REGISTER UNDERFLOW ON "END-

104 UNKNitfN DESCRIPTOR IN FETCHED VARIABLE
135 RETUP ADDRESS WORD FOUND IN PLACE OF VARIABLE
10« DOWN-POINTER FOUND IN PLACE OF VARIABLE
107 SAVED DISPLAY REGISTER FOUND IN PLACE OF VARIABLE
110 NCW TOP DISPLAY REGISTER FOU»!D IN PLACE OF VARIABLE
111 SPECIAL ARRAY DESCRIP'iTR FftllND I f J PLACC OF VARIABLE
112 NO AtiDRESS POINTER FOUND ON STORE
S00 NOT A PROCEDURF EXECUTING CALL

201
2P2
203
204
205
20«!
210
301
510
312
314
315
315
317
33«
340
542
544
346
347
350
352
360
361
362
363
364
377
500
501
502
503
540
541
542
551
552
553
554
555
557
600
601
602
603
604
605
60*
607
610
700
701
702
703
704

NUMBER OF PROCEDURE ARCUMEMTS NOT INTEGER
TOO MANY ARGUMENTS IN CALL
NO RETURN ADDRESS FCUND ON RETURN TOOM PROCEDURE
NO SAVED TOP DISPLAY REGISTER FOUND (P.RSTR)
CALL INSTRUCTION EXECUTED UNEXPECTEDLY
NO SAVED TOP DISPLAY REGISTER FOUND (P.PRIM)
NO DOWN POINTER FOUND ON STACK

NON-INTEGER
FOR
FOR
FOR

ADDITION
SUBTRACTION
MULTIPLICATION

DIVISION
EXPONENTIATION

CAN'T EXPONENTIATE BY
NON-NUMERIC ARGUMENTS
NON-NUMERIC ARGUMENTS
NON-NUMERIC ARGUMENTS
DIVISION BY ZERO
N0«-NUMER1C ARGUMENTS FOR
NOY-NUMERIC ARGUMENTS FOR
MOD ERROR
"OR" ERROR
"AND" ERROR
-NOT- ERROR
NON-BOOLEAN IN BOOLEAN OPERATION
NON-BOOLEAN IN BOOLEAN OPERATION
NON-NUMERIC ARGUMENT FOR ABS
NON-NUMERIC ARGUMENT FOR COMPLEMENT

??.T?iJ. ^ISJIl?1*5 APPLY 0',LY T0 2-DIMENSIONAL ARRAYS
ILLEGAL OPERATION ON MATRICFS
MATRICES WRONG SI7ES FOR MULTIPLY
MATRIX CONTAINS NON-NUMERIC DATA

nlISifr«r2TrSILFT^',T !I7FS' CANNf)T BF A0DFD 0R SUBTRACTED UNIMPLFMENTED MATRIX OPERATION
NUMBER OF ITEMS IN OUTPUT LIST NOT INTEGER
ILLEGAL TYPE OF ITEM IN OUTPUT LIST
WRONG FORMAT FOR STRING OUTPUT

122 rEW 1T?nS lH 0UTPUT LIST COMPARED WITH NUMBER OF FIELDS
WRONG NUMBER OF ARGUMENTS IN A POS.LINE «P POINT CALL
ARGUMENT
POS »LINE

OF
OR

POS.LINE OR POINT IS NOT A NUMBER
POINT WAS CALLED WITHOUT ARGUMENTS

DEVICE NOT AVAILABLE
NO FILE NAME 1IVEN
FILE NOT FOUND
TOO MANY NEW VARIABLES OR FORMALS
TOO MANY BLOCK LfeVELS
TOO MANY EXTERNAL VARIABLES
ILLEGAL INSTRUCTION FORMAT FOR ARRAY DEFINITION
ARRAY DIMENSION VALUE NOT AN INTEGER
WRONG TYPE OF VARIABLE USED FOR ARRAY CALL
NON-INTEGER USED IN ARRAY DEFINITION
NUMBER OF ARRAY DIMENSIONS NOT AN INTEGER
INCORRECT NUMBER OF ARRAY DIMENSIONS
ARRAY DIMENSION VALUE NOT AN INTEGER
SUBSCRIPT NOT AN INTEGER
SUBSCRIPT OUT OF RANGE
BAD DYNAMIC VARIABLE PASSED TO INTERPRETER
SYS ERR - BAD NUMERIC FORMAT 'p*™tTt*
EILE NAME ENTER ERROR
FILE NAME LOOKUP ERROR
OUTPUT DEVICE INITIALIZATION ERRO«»

43

75*5
llif,
707
7|P
711
712
111
714
715
716
717
720
721
722
723
724
725
726
727
730
751
732
733
734
776
777

PARAnFTERS PAFGED
PARAMFTERS PARSED
TO INTERPRETER
FOR LIST

TO
TO

LIST
LIST

I«»PUT DEVICE INITIALIZATION ERROR
PAD FILE NAME FORMAT
OUTPUT CLOSE ERROR
INPUT CLOSE ERROR
OUTPUT ERROR
INPUT ERROR
WRONG NUMBER OF
WRONG NUMBER OF
BAD LIST PASSED
INDEX TOO SMALL

TOO LARGE FOR LIST
NUMBER OF PARAMETERS PASfED TO SRPROC
NUMBER OF PARAMETERS PASSED TO TAIL
TYPE OF PARAMETERS PASSED TO CONCATINATION
TYPE OF PARAMETERS PASSFO TO UNSTKING

RESERVED PROCEDURE EXPECTED WJ J^*«""
W»ONG TYPE OF PARAMETERS PASSED TO STRING
WRONG TYPE OF ARRAY PASSED TO STRING
RESERVED PROCEDURE EXPECTED AN INTEGER
WRONG TYPE OF PARAMFTERS PASSED TO SRPROC
RUN UUO RETURNED
FNTIER TAKES ONLY ONE PARAMETER
ENTIER TAKES ONLY REAL, INTEGER. OR BOOLEAN
BAD ARGUEMENTS TO COMPARE I.E. tt«,>tit»r,«=
SYS ERR - JUMP II TOO LARGE
SYS ERR - DICTIONARY OVERFLOW ^ ..„_.
LEAVE THIS AS LAST LINE PLEASEt ALL FOLLOWING LINES

I NDEX
WRONG
WRONG
WRONG
WRONG

IGNOREP

V

qs)

APPENDIX VI

MMMl

This appendix describes sone extensions which h«vp been ««de

to PDP-10 Euler to pemit interactive graphics. The extended language,

called Euler-G, should not be confused with the library of graphical

procedures in SEULD.

Euler-G uses «any of the ideas first proposed in Dial (1). These

Include the concept of display procedures, and the assumption that all

pictures are scaled before being displayed. Euler-G also contains ad-

ditional features such as the moans to specify rotations and viewports

and the ability to display projections of three-dinensional objects.

Ittese features should make Euler-G considerably more useful than Dial.

Euler-G produces display files for the Univac 1SS9. These files

are created first in a device-independent format, which is oonwrted

to 1559 format by a separate tramnussion program. It is therefore ex-

tremely easy to convert Euler-G so as to output to other devices. Mork

has already begun on a plotter output package.

Ba>iic Graphical Operations

Graphical output is generated by means of a small set of prtmi-

tives. The most important primitives are the following:

NC'.'E TO P s move the display beam to point P

HOVE D : IT» v.; the display beam through a dis-
tance D frexn its current position

LINE TO P t draw a line from the current beam
position to point P

LINE D : draw a line of length D fron the
current be«« position

DISPLAY Tl, T2... : display text iteas Tl, T2...
at the current bean position

The reeavmnq priaitives are variants of LINE TO and LINE which

produce different line textures:

ZIP TO P -i the ^„jjf, between lines are slightly

ZIP D / rounded. Useful for drawing curves. }

}
D0T T0 F 1 to draw dotted lines
DOT D

All points and distances nust b« specified by lists. These

lists aust have either two or three elements, depending on whether two-

dinensional or three-dimensional objects

are being defined. For exaaple:
200.2SO

/r MOVE TO 1100,1501» LINE TO (200,2501
100,150

will draw a line from (100.150) to (200,.

figure I 250) tß shown in Figure 1.

Instead of a list, the name may be used of any variable which

currently contains a list. For example:

L3 • 110.0, J.7Ji

LINE L3}

or:

HOVE TO POINTLISTUI ;

FOR K «■ 2 STEP 1 UNTIL LENGTH IPOINTLISTl DO
LINE TO POINTLISTIK);

46

The second exwnple will produce a sequence of connected lines,

such a« is shown in Figure 2(b), from a list POINTLIST containing

their coordinates in the format shown in Figure 2(a).

POINTUST.

t X 0

t
\A

S «aVj

0

0

«••yu

Figure 2(a) Figure 2(b)

The DISPLAY statement is modeled on the Euler PRINT statement,

and produces on the display the same output that PRINT produces on

the teletype. The same formatting technique is used:

DISPLAY A, B IN "A - NW B - \\ .\\\\ "

Page Coordinates and Screen Coordinates

Most display programining systems force the user to define pictures

in a fixed coordinate system, the coordinate system of the display screen,

This is not the case with Euler-G. Instead pictures are defined in

what is called the page coordinate system, and are displayed by trans-

forming the appropriate parts of t ie picture into screen coordinates.

V

47

The programmer has a great deal of freedom to specify: (a) the region

of the page which he wishes to see on the screen, (b) the transformation

which he wishes to apply to the picture, and (c) the region of the

screei. which he would like the picture to occupy. This does not imply

that he always has to take advantage of all this flexibility. The nor-

mal procedure is to specify a rectangular window onto the page informa-

tion, ard a rectangular viewport onto the screen. Figure 3 shows an

example. All the page information lying within the window will appear

on the screen within the viewport;

everything else is eliminated. |^ yy | ^\ |

The statement to define this

transformation is the display

procedure call, of which the

following is an example:

page
viewport screen

Figure 3

POINTS WITHIN [200,200,100,100] ONTO (0,0,1,11

•1.0

POINTS refers to a procedure, which might well be the example

given and shown in Figure 2. The window onto POINTS is specified by

MITHIN (200,200,100,1001, which means that the center of the window is

at (200,200) and that it measures 100

*l.0i ■ | i page coordinate units in size, measured

fro« the center to each edge. The view-

port has its size from this point. This

is the full screen size: rather than use

the particular coordinate system of the

-1.0 +1.0 Univac 1559, Euler-G assunes the screen

Figure 4 dimensions to be those shown in Figure 4.

J

48

The complete-sequence of instructions for generating a con-

nected-line picture might be the following:

FRAME1 «■ »'POINTS WITHIN[200,200,100,1001

ONTO 10,0,1,11*

POINTS ♦ «BEGIN NEW K;

MOVE TO POINTLISTtH

FOR K-«-2 STEP 1 UNTIL LENGTH [POINTLISTl DO

LINE TO POINTLIST(Kl

END';

FRAME1;

Note the asterisk preceding the body of the procedure FRAME1.

Any display procedure which is not itself ca.led from another display

procedure should include this special mark, indicating that it is a

frame procedure. Frame procedures have a number of special properties.

In the first place, they allow the picture on the screen to be composed

of a number of logically separate parts, each of which cam be altered

or removed without affecting the others. A frame can be removed by

means of the DELETE statement:

DELETE FRAME1

It can be altered by changing the data which it accesses, and

then calling it again. For example, if we changed the contents of the

list POINTS, and then called FRAME1. we should see a new picture repre-

senting the new contents of POINTS. Alternatively the window might be

changed in order to show a different part of the complete picture.

49

Display Procedure Calls

It may be useful to call display procedures to several levels.

For example, we might wish to define a symbol that appears repeatedly

in a certain picture. Figure 5 shows a

f J it symbol commonly used to indicate wind velo-

city and direction in weather maps. We

Figure 5
— could define this as a display procedure

C*} called WINDSYM, and create a 'weather map*

—. V^/* \\ by means of the following statement:

\y V\ FOR K^l STEP 1 UNTIL LENGTH (STATIONS] DO

Figure 6 WINDSYM AT STATIONS[K]

This assumes that the position of each weather station is held

in a list called STATIONS. the result will be a picture such as Fig-

ure 6. We can add a rotation to each symbol as follows:

FOR K*-l STEP 1 UNTIL LENGTH [STATIONS] DO

WINDSYM AT STATIONS [K] ROT WD[K]

WD is a list containing the wind directions, measured in radians.

Arguments may be passed to display procedures. The number of

'bars' on a symbol could be held in a list called BARS and passed

as follows:

FOR K*l STEP 1 UNTIL LENGTH [STATIONS] DO

WINDSYM(BARS[KJ] AT STATIONS[K] ROT WD(K]

The definition of WINDWYM might look something like the following:

f»
-»

50

WINDSYM * 'FORMAL N; % N IS NUMBER OF BARS %

BEGIN NEW Kj

CIRCLE WITOIN (0,0,1,11 SIZE 1 AT [0,01?

MOVE TO (1,01;

LINE TO (5,01;

FOR K*-! STEP 1 UNTIL N DO

(LINE (1,01;LINE(1,-11; MOVE (-1,11)

END*

CIRCLE is yet another display procedure, possibly written as an exter-

nal procedure.

Th' complete range of transformations and other arguments which

may accompany a display procedure call are as follows:

Window: WITOIN + 4-element list

Viewport: ONTO + 4-element list

Position: AT + 2-eleinent list

Size: SIZE + 2-element list or scalar

Scale: SCALE + 2-element list or scalar

Rotation: ROT + scalar

Transformation: TRANS + 2x2 or 3x3 array

Name: AS + integer or real number

They may be listed in any order. ONTO [a,b,r,dl is equivalent to AT(a,

b]SIZE(c,d]. If both size dimensions are the same, a single scalar may

be used; the same applies to SCALE. Rotations are measured anti-clock-

wise in radians. Names have no effect on the picture: they are for

use in detecting mouse hits and so forth.

Windows play an important part in reducing processing time.

Suppose we have defined the weather map shown in Figure 7, and wish to

view just the portion shown by the dotted outline. The program shown

51

above will test every line of

every symbol for vitibi'ity,

and discard those outside the

window. If there are a lot

of invisible symbols this

will take a lot of time.

d\ O-

1 Q^o

! CS
Figure 7

^

^

We can reduce this time by specifying a window around the syimjol

WINDSYM[BARS(K1J WITHIN [0,0,10,101 AT ... etc.

This implies that we are only interested in the information with-

in the boundary shown in figure 8(a), and the program jan immediately

eliminate those symbols whose boundaries t
I
I

_10! O—^X ►M lie entirely outside the main window. In
i j
i J Figure 8(b) this would mean the upper

Figure 8(a) three symbols.

Ul

i

i /<w

Figure 8(b)

The Use of Names

Names are useful principally for

pointing with the mouse. The reserved

procedure HITlx,yl will return a value

true or false according to whether any

lines or text lie within a small dis-

tance of (x,y) on the screen. Usually

this information on its own is of little

use: we need to know which item lies

at (x,y). This is why names are useful.

If, for example, we would like to point at one of the wind symbols on our

weather map, we should call each symbol with a unique names

52

FOR K*l STEP 1 UNTIL LENGTH[STATIONS! DO

WINDSYM AS K AT ...etc.

When HIT returns a value true, th€ name of the symbol we were

pointing at is in HITNAME.

The x and y values are normally the x and y coordinates of the

mouse, in screen coordinates. To determine these values, use the

library procedure SMOUSE. This returns a five-element list as its

value each time one of the mouse switches is pressed:

M ♦■ SMOUSE;
% MUl IS TRUE IF SWITCH 1 WAS PRESSED, OTHERWISE FALSE

M[21 AND M[3] CONTAIN THE SAME

INFORMATION FOR SWITOIES 2 AND 3.

M[41 AND M[51 CONTAIN X AND Y

IN THE RANGE -1 TO +1 %

Usually when HIT is usec* we would like to restrict its scope to

a certain part of the picture. This can be done by passing a name to

HIT: this is the name of the procedure call one level above the sym-

bols at which we are pointing. So if we are going to point at wind-

symbols, we should pass HIT the name of the call to the whole weather

map:

MAP ♦ 'BEGIN NEW K;
FOR K*l STEP 1 UNTIL LENGTH [STATIONS] DO

WINDSYM AS K WITHIN [0,0,10,10] ROT WD[K]

AT STATIONS[Kl

END1;

FRAME ♦ «'MAP WITHIN W ONTO V AS 100';

53

FRAME;

M * SMOUSE

IF HITtM(4],Ml51 , 100] WEN ...

% HITNAME NOW CONTAINS THE SYMBOL NUMBER %

A second use for names Is In converting from screen coordinates

to page coordinates. This can be done with the reserved procedure

SCALXY. For example

SCALXy[X(Y#100]

would return the position, in the coordinate system of NAP, correspond-

ing to (X,Y) in screen coordinates. For obscure reasons, SCALXY will

not return correct values unless the frame containing the procedure

call in question has been called at least once.

A reserved variable which may be accessed within a display pro-

cedure is RELSCALE. It returns as value the relative scale on the

screen of the current "instance" of this procedure, i.e., the ratio

of page units to screen units. It returns a list if the scales in

the x- and y-directions are different.

Display Procedure Call Syntax

The syntax of display procedure calls permits any sequence of

statements within parentheses to be used in place of a procedure vari-

able name. For example, the following is a permissible display procedure

call:

(MOVE TOt20,0lj LINE TO 130,301) AT tX,Yl SCALE 5

S4

Thi« fotw may be convenient for such thinq« as displaying text Messages:

FTCXT * •'(DISPLAY -START") AT (-.1..91 W1TOIM 10,0,100,1001';

rrexTi

This will display the Message "START- near the top center of the screen.

The display procedure call syntax also requirus that all display

procedures called fro« a frame procedure are called with a window or

a viewport specified.

Displaying Three-dimensional Data

LINE, LINE TO, MOVE, etc. may specify three coordinates instead

of two. In thi« case the third is treated as a «-coordinate. Three-di-

mensional information «ay be transformed in the same way as two-dimen-

sional, with the restriction that rotation cannot be specified by ROT.

Windows and viewports, other than the final window and viewport speci-

fied in the fra'e ?roceditre, should have six arguments instead of fouri

scale, size and position lists should contain tliree elements; and

transformation matrices should be 3x3 or 4x4. SCALXY will not work on

three-dimensional data.

How to Use Euler-G

A special Euler-G compiler has been written, and can be run

as follows:

.R EULERG

This assumes the source file of the user's program is on the disk under

*5

the name PROG.SRC. to run the program, type.-

.R StVLG

•PROG

Tti« debugging feature« of BÜLER are all Included in Euler-G.

F • •*...
OP • "...
P
DELETE P
CLEAR

MITHIN lx,y,w,hj
ONTO l*,y,v,hl
AT [K,yl
SIZE Iw.h)
SIZE S
SCALE [W.h]
SCALE S
ROT r
TRANS t
AS n

MOVE TO Ix.yl
MOVE [dx.dy)
LINE TO (x,y|
LINE (dx.dy]
ZIP TO (ii.yj
ZIP (dx.dy)
DOT TO (x.yj
DOT (dx.dy]
DISPLAY tl.t2
DISPLAY tl.t2 IN f

HIT (x.y.nj

SCALXY(x.y.n)

RELSCALE

defines a frame procedure
defines a display procedure
calls a frame procedure
deletes it
clears the screen

followed by one or more t.snsformations calls a
display procedure. Transformations allowed are:

window, center (x.y). sice 2wx2h
viewport, center (x.y). size 2wx2h
position
sise 2wx2h
sisc 2sx2s
scale v-xh
scale sxs
rotated r radians anti-clockwise
transformed by matrix t

n

move beam to (x.y)
move beam through Uxstance dx.dy
draw line to (x.y)
draw line of length dx.dy
like LINE TO. zip mode
like LINE, zip mode
dotted LINE TO
dotted LINE
display text items tl.t2
display text in format f

look for hit under call n at screen position
(x.y). raturn true or false; return name
in HITNAhsE

scale (x.y) from screen coordinates to page
coordinates for call n.

returns relative scale of current display
procedure

\
-

APPENDIX VI1: EULEB Cotpxler Error Massage»

Syntax Error l: Illegal title

2: Outemoet block «ust include declaration«

3t Illegal declaration list

4: Illegal fomal variable list

St Not a valid statement

6t Illegal «tatement terminator

7t Illegal subscript litt

8t Integer must follow period

9t Illegal statement terminator

10t No begin or quote following title

lit Illegal item in declaration

12: Illegal variable following tor_

13t Only unsubscripted variable names allowed in declarations

14: For statement expects ♦

15t No expression following • in for statement

16: Illegal expression following step

17t Illegal expression following until

18t Illegal expression following while

I9t Either until or while must be Included in stepped for statement

20: Illegal expression as operand to arithmetic test

21t No do in for statement

22t Illegal operand for arithmetic binary operator

23: Illegal expression following if

24t No then in if statement

25: Illegal expression as operand for not

26: Illegal operand following unary ♦ or -

27t Illegal stat^menw as item in output list

28: Illegal Item used as format

29: Illegal expression as operand for or

30t Illegal expression as operand for and

System Error 8: Null string, not permitted (use ■ 'Z ")

127: String extends over more than one line, not permitted (use 'N)

End of File Input: Compiler reached end of file without finding final end

or quote.

Stack Overflow: Too many nested blocks

\

APPENDIX VIII

LINKING ASSEMBLY CODE TO EULER PROGRAMS

Assenbly cad« may be linked to EULER programs by creating

usei procedures. There is provision for up to ten user procedures.

They are called UPO through UP9. These procedures may or may not

have parameters, but they must return a value. There is also a facil-

ity to initialise user procedures when the program starts.

1. Empty User Procedure Macro Source

An empty user procedure macro source called UPROC.MAC is avail-

able from the system programmers. This file has the necessary linkage

declarations» accumulator and special symbol definitions, and macro

definitions. This file should be used to create user procedure files.

A copy of UPROC.MAC is included at the end of this appendix.

2. Accumulator Usage

Accumulators which have names starting with T or FREE may be used

without the user having to save them. All others in general should not

be touched, except as described below. Accumulator 0 should never be

used because the macros use it.

3. User Procedure Initialization

When a program starts, control is transferred to UPI$$$. The

user may do whatever initialization is necessary and then return control

to the interpreter by executing a RET instruction.

4. U«T Procedure«

When a user procedure i« celled, control i« transferred to UPnS.

When the procedure I. collate, control t« returned to the Interpreter

by executing a JRST I.RET if there are no paraaeter«. or a JRST I.BRET

if there are parameters.

t i iraaeters to User Proceduree

Parameters to the user procedures are passed on the WP ■taclc.

The vaue at (VIP) is the number of parameters as an integer. (See

Appendix IX for data formats.) The value at-l(WP) is the n parameter

thr>ugh-n(WP) which is the first parameter.

Before the procedure returns control to the interpreter, it

should execute the instruction CAL B.PEEL one« for each parameter

value and once more for the parameter count value.

6. Determining the Data Type of a Value

Two macros are provided to allow the program to determine the

data type of EULER values, -rtiey are SKDB and SKDN, SKp Descriptor Equal

md SKp Descriptor Not Equal, respectively. Ttie format ist

SKDE address of value, type of value desired.

The types of interest are:

UNDEFINED D.UNDF

INTEGER D. INT

REAL O.r?

BOOLEAN D.BOOL

\

59

STKING

ARKAY

U8T

See Append!« IX for <*«ta fonuits.

D.STR or D.TSTR

D.ARB or D.TAR

D.LIST or D.TLST

7. Returning Value»

After the proper n*ber of cell« on B.PEEL the procedure must

put its return value on the stack. This is done by the following code:

MOVE AC, value

STACK AC.

If the procedure wishes to return an undefined value, the code would

bei

MOVE AC, ID.UNDP]

STACK AC.

8. Internal Subroutines

Internal subroutines may be called by CAL subroutine and the

subroutine will return with a RET.

9. Saving Accxwulators ou the Stack

AC'S may be saved on the stack by SAVE AC and restored by FETCH Au.

10. Free Storage

To get a block of free s tor/ige N word long, the following code

is used:

60

MOVEI TAC, N

CAL S.GET

TAC no*» contnins a pointer to the block.

To return a blodr to free atorage, the following code is used:

MOVE TAC, ptr to block

CAL S. r<ETS

•

k
>.

APPENDIX IX

DATA FORMATS

All EULER values have special formats.

1. Integers

The following code converts an EULER integer into

a PDP-10 integer:

LSH AC, 2

ASH AC, -2

The following code converts a PDP-10 integer into an

EULER integer:

TLO AC, 400000

TLZ AC, 200000

2. Reals

The following code converts an EULER real into a

PDP-10 real:

LSH AC, 1

The following code converts a PDP-10 real into an

EULER real:

LSH AC, -1

62

3. Booleans

Bit 35«1 is true, and Bit 35-0 is false.

4. Strings

The right half is a pointer to a ASCIZ block of characters.

5. Arrays

The right half is a pointer to an array.

Array format is:

Word 0:

Word 1:

D.INT,,

0.DOPE,,

number of dimension

size dimension n

Word n:

Word n+1:

Word n+2:

0.DOPE,,

value (1r...,1,1]

value [l,...,1,2]

size dimension 1

Word n+llD. t value [DwD. ,... ,D] 1 *• n

6. Lists

The right half is a pointer to a list header:

List header

word -1

word 0

word 1

D.DUBB LENGTH
N FIRST ELErfENT PTR

Nth ELEMENT PTR LAST ELEMENT PTR

word 0

word 1

List Element

D.SINB NEXT ELEMENT PTR

VALUE

63

EXTerN JOBI.IUnfJ-)P.41,JOrJ!tF,L,JG:.DDT,JOBSÄ,JOnrir^tjoHAPr
mthH JüBCNIfJOHTPC,JOBOPC

S.RET,S.RhZTS.S.COPY,S.
rWORKIVJ STACK
jl'JST. hYTE PTP

"IXTKIrV
WPr 1

XP=3
An=4

Tl =6
T2s7
TÄsit
TACrll
T4:1X
T5 = 13
T6sH
LP:li>
PEEF-Irlf

ijl'T.C.H^AD.I.F^T.B.Pil-ZL.I.nr.rT

PUSH-JUMP STACK

tlJLOCK
PEG,
LSVEL OF LATEST FITCH

OPOEF F> ET
CAL
STACK
stvz
FKTCH
znh OP

OPDEF
OPI^F
OPUEF
OPDtF
DiiFIMt: SKDE
IFZ DESC,

SKIPGE
>
IFE

; 'JOT IJS^D Pf "S.^v'TLY-NüT
: MOT USSO P^'MSK'JTLY-MOT
[POPJ XP,]
IPUSHJ XP,]
[PUSH WP,]
[PUSH XP,)
[PUP XP,]
[inn i

<

PtiFS15TE«T
PEPSISTEWT

(LOC.DESC)
<

LOC

DSSC-lftf, <
WOVE LOC
SK1PCF
tin

>
IF S 0! SCA.^ I 5b] ,

WOVE LOC
TLZ 77^',;,i'.
!•)!■ [OESCl
CAME LOC

DS^lWi SKjfJ (LUC.D^SC)
IF5 ÖWC, <

SKI PL LOC
>
r/E DhiSC-U;^, <

"lOV- LOC
SKIPÜE
TL'JE Rftfffftfl
SKI PA

Ic"L DSSCi5i>l -M 1,
MOVK Loc
TLZ iHtm
I or IDKICI
CA^'J LOC

64

»
D.FP=0
D.IMT=1R0
D.900Lr3i31
D.LIST=I41B6
D.TLST=16IBfi
D.ARrr|42B6
D*STHsl4lB<
D.P^0C=M5B6
D.KArl46B6
Ü.REK = I47B6
l),3'jlf'.zlblBe
D.tiKPTrl50ö6
D.SR/V = M6B6
D.STDI(:I52B6
D.D0PErli>3B6
D.SUBF;r|54P6
D.EXTP:l55Bf
D.PF0P=I44B6
D.TAITsKSM
D.TS7}<=I63B6
r).FSHK:i70B6
D.SINb:l7|36
D.DUb3:17P.B6
D.DA:)fi=l73B6
D.ÜNDF=I77B6
D,UND=l77Bfi
TITLE UPROC
INTEM UPe5lSlUPi,i.S$lUPf!?55.fUP3S$$,UP4Sl!
INTERN UP5II5 , UP614$,UP7l£$, UP8$$$,UP9$$$,UPI$$$
UPISSf: RET ft.
UPe$$$t
upissit
iipmjt
UP3111:
UP411!t
UP5$$J.j
UP61$!|
UP7iIlj
IJP315J.:
UPSSIS: TTCALl. 3, f ASCI?./
m USER PROCEDURES DEFINED
/]

CALL ISIXI IT/CXIT/1
END

REFERENCES

Naur, P. (Ed.) "ALGOL 60: revised report on the algorithmic

language". Cormunioatione of the ACMt Vol. 6 1-17 (Jan. 1963)

Newman, W. M. "An experimental display programming language for

th<« PDP-10 computer". University of Utah, Computer Science

Technical Report, UTEC-CSc-70-104 (June, 1970)

Wirth, N. and Weber, H. "Euler: ■ generalization of Algol and

its formal definition". CormuniaationB of the ACM, Vol. 9 13-

25+ and 89-100 (Jan. and Feb., 1966)

