AD-760 549

A PROGRAMMER'S GUIDE TO PDP-10 EULER

William M, Newman, et al

Utah University

Prepared for:

Rome Air Development Center
Defense Advanced Research Projects Agency

June 1970

DISTRIBUTED BY:

National Technical Information Service
U. S. DEPARTMENT OF COMMERCE
5285 Port Royal Road, Springfield Va. 22151

DISCLAIMER NOTICE

THIS DOCUMENT IS THE BEST
QUALITY AVAILABLE.

COPY FURNISHED CONTAINED
A SIGNIFICANT NUMBER OF
PAGES WHICH DO NOT
REPRODUCE LEGIBLY.

3
2

RADC-TR- 73-152
Technical Report
June 1970

A PROGRAMMER'S GUIDE TO PDP-10 EULER
University of Utah

Sponsored by
Dcfense Advanced Rese-rch Projects Agency
ARPA Order No. 829

\‘,\,u

g

s,
e

Approved for public release;
distribution unlimited,

The views and conclusions contained in this document are those
of the authors and shorid not be interpreted as necessarily
representing the official policies, either expressed or implied,
of the Defense Advanced Research Projects Agency or the U. S.
Government.

Rome Air Development Center
Air Force Systems Command
.Griffiss Air Force Base, New York

Reproduced by

NATIONAL TECHNICAL
INFORMATION SERVICE

U S Department of ¢ erce
Springfield VA 22158)

K

UNCLASSIFIED
Security Classification

COCUMENT CONTROL DATA-R& D

(Securtiy clossilicotion al title, body of abatrect and indesing annolation must be entered when the ovarell teport ls cleselfied)

t. ORIGINATING ACTIVITY (Corporate suthor)
University of Utah
Salt Lake City, Utah B4112

20. HEPOR T SECURITY CLASSIFICA TION
UNCLASSIFIED
».

N/A

? AKPORTY TITLE

A PROGRAMMER'S GUIDE TO PDP-10 EULER

4. CIICMIPTIVE HOTES (Type of report and Inclusiva deies)

9. AUTHORSI (Firet nems, middie inlllel, leet name)
William M. Newman
Henri Gouraud
Donald R. Oestreicher

¢ RERQAY OATE

June 1970

78, 'OYA?NO. OoPF PAGKS 8. NO. OF AEPFS

&) 3

88. CONTRACT OR GRANT NO.

A¥30(602)4277

5, PROJECTY NO.

ARPA Order No. 829

<

Program Code No. 6D30
d.

38. ORIGINATOR'S REPOR Y NUMBE RIS)

- —

None

o0, OTHER REFPORT NOI(S) (Any other numbdere thal may be sseigned
thie report)

RADC-TR-73-152

10. DISTRIBUTION STATEMENTY

Approved for public relecase; distribution

unlimited.

1. SUPPLEMENTYARY NOTES

Monitored by:
Murray Kessleman

RADC (ISCE), GAFB NY 13441

AC 315 330-2018

12 SPONSORING MILITARY ACTIVITY

Defense Advanced Research Projects Agency
Wash DC 20301

3. AGSTHACT

computer,
simplified by omitting type declarations
arc defined and called.

graphics.

This manual describes the EULER language as implemented on the DEC PDP-10
FULER is a block-structured language, similar to Algol-60 but

PuP-10 EULER includes features for list and array
manipulation, and also for a number of forms of input - output, including

and by altering the way procedures

FORM

DD 27..1473 .

UNCLASSIFIED

Security Classification

. So—

UNCLASSIFLED
Sccurnity Classilicstion
‘e LINK & LN 8 LiNR €
REY WORDS
LE-2N wY noL & L 24 noLE wr
Craphics
Computer Graphics
UNCLASSIFIED

Secutity Classification

A PROGRAMMER'S GUIDE TO PDP-10 EULER

William M. Newman
Henri Gouraud
Donald R. Oestr=icher

Contractor: University of Utah

Contract Number: Ar30(602)4277

Effective Date of Contract: 20 May 1966
Contra:t Expiration Date: 30 November 1970
Amount. of Contract: §5,028,542.00

Program Code Number: 6D30

Principal Invescigator: Thomas G. Stockham, Jr.
Phone: 801 581-8224

Project Engineer: Murray Kesselman
Phone: 315 330-2018

Approved for public release;
distribution unlimited.

This research was supported by the
Defense Advanced Research Projects
Agency of the Department of Defense
and was monitored by Murray Kesselman
RADC (ISCE), GAFB, NY 13441 under
Contract AF30(602)4277.

/- ¥

A PROGRAMMER'S GUIDE TO PDOP-10 EULLR

PUBLICATION REVIEW

This technical report has been reviewed and is approved

MM_
RADC Projéét Engineer

MURRAY KESSELMAN

\(q
¢

ACKNOWLEDGMENTS

EULER was originally implemented on the PDP-10 as a class
exercise. Since then it hzs grown into a full-fledyed compiler-
interpreter system. We would like, however, to acknowledge the
work done on the original implementation by members of 7S 632 at
the University of Utah, namely David Anderson, Kay Brown, Duane
Call, Patrick Baudelaire, Roger DeBry, Joe Locascio, Don Vickers,

and Martin Yonke.

We would also like to thank Jim Curry and Carl Ellison

for *.ieir helpful advice and assistance.

ii

TABLE OF (ONTENTS

Acknowledgments

Abstract

Introductionc..... 00 000G 000606500000 0

Part I: The Basic Features of EULER

1. EULER Variables0..

®e s 0 003 s

2. Expressions 50000000000 0000000L 00O O J
3. StatementS.........co00000 ceeee cesstenesen
3.1. Assignment Statement....... 0ddo 6o 00
3J.2. FOR Statement........ovcveen 50c oo o oo
4 String Manipulation in FULER... 5.0.00 0 o0l 0
5 Arrays and Matrices......ceevveenenrorees o
6 LiStS.u.eauns, O o
7 Procedures............. 0 0000000 o 00
8. Teletype Input and Output.......... cooooo o
9. EULER COnStantsS....cccesceercenoeserecnonons
10. Program Formatting and Comments....... 000o00a o
Part IT: How to Use PDP-10 EULEK......cvuveeeennnnn. cenes
1. Compiling......c..00.... 00000000000 0600000
2. lLoading and EXecUting......eoeeeeesena. 000000
3. Run-Time Errors...... 6000000000000 00 ©oo0o00
4. Debugging Aids........... 0000000000 000 500

iii

ii

13

14

16

16

16

17

18

Part II1: Advanced EULER Programming.....ececececccccccccns

l. Use of Statement ValueS....ccoecccesescscsas

2. ProcedureS....ccceec0.

3. External and Library ProceduresS......ceeecee

4. File Input'output-.................-.....-..

5. Coping with Large List=StructureS......cc...

6. send-ReceiV'ee...........-.-.......-.........

Appendix I: Basic Operators

Appendix II: EULER Reserved Procedures

Appendix III:

EULER Library Procedures

Appendix IV: Euler D, SEULD

Appendix V: List of Error Messages

Appendix VI: Euler-G

Appendix VII:

Appendix VIII:

Appendix IX:

References

EULER Compiler Error Messages

Linking Assembly Code to EULER Programs

Data Formats

iv

21

21

23

25

26

29

31

34

37

39

41

44

56

57

6l

65

INTRODUCTION

EULER is a block-structured language, similar in appearance to
Algol but embodying many fresh concepts which make it an easier lan-
guage to understand and use. The original reason for implementing it on
the PDPfIO was to create a language for experimenting with data structures.
However, it soon appeared that EULER had many applications as a general-
purpose language with gooa data-handling and debugging facilities, and
this manual has been prepared for people who wish to make use of it as
such.

The first thing that must be said about PDP-10 EULER is that it is
different from EULER as proposed by Wirth and Weber(l). It contains
for statements, arrays as well as lists, and omits go to statements.
There are also some major differences in the way it has been impliemented,
but these are probably not of interest to the general user. Readers
familiar with Algol 60(2) will have little difficulty in using EULER,
once they have understood the basic differences between the two languages.
These are covered in Part I.

EULER programs are executed by an interpreter called SEUL. This
interpreter operates on Polish-string object code generated by the
EUL IR compiler. The object code is in the form of six-bit bytes, and
some care was taken to make it readable for debugying purposes. A
number of other debugging aids have heen added to the interpreter which
probably make this feature redundant.

Other useful features of PDP-10 EULER are string, list and ma-
trix operations, file input-output and a very straightforward library

feature. These are all described in the rest of this report.

PART 1

THE BASIC FEATURES OF TULER

1. EULKR Variables

Like most higyh-level lanyuages, FULER has facilities for
handling integers, real numbers, boolean values, strings and arrays.
These can all be stored into variables and manipulated in the usual
way. However, EULER imposes no restrictions on the type of data
that may be stored into a given variable. A si:gle variable may,
during execution of a program, successively contain an integer, a
real number, a boolean value, a string, an array, a list and a pro-
cedure. This contrasts with Algol 60, in which variables are de-
cisred to have a certain type when the program is written and during
execution can contain only that type of data.

The EULER interpreter avoids this restriction by saving a few
extra bits of information with each variable; by using these bits
during execution it can determine how the contents should be treated.
This of course reduces execution gpeed. However, it permits mixed
types of data tu be stored into lists and arrays, and it also reduces
the burden on the programmer. EULER variables are declared in a single
NEW declaration foliuwing the start of a block:

BEGIN NZW A, Z1, 72, MAXVALUE;

END

Any statement betw:2en the declaration and the final END may refer

to these variables. Outside the block they arc meaningless, and any

attempt to refe: to them will cause an error. The contents of
variable just after it nas been declared are undefined. Variable
names may be any number of characters in length,; all characters are
significant.

Variables may be subscripted to address a particular cell in a
list or an array or to pass arguments to a procedure:

Aj23)
L3[K+1)
MAX([A,B]

Each of the subscripts in the list enclosed within brackets may
be any EULER statement or expression: see below for a list of the vari-
ous types of statement permitted in EULER. Also discussed below is
the use of multiple subscripts, such as:

L23(K} (3] [ne5)

2. Expressions

Expressions may be fo:med from variables, ccnstants and other
expressions enclosed in parentheses. The most common type is an arith-

metic _expression:

A+ 3.2~-100+ (B ¢+ C/17)

However, logical expressions ave just as useful: they have either true

or false values;

A>B
A = 3 OR NOT (B < 17 AND BOOL3)

Expressions may also involve strings, lists or arrays, as described

later.

3. Statements

EULER includes most of the types of statements permitted by
Algol. These include assignment statements, conditional (IF) state-
ments, FOR statements, and compound statemernts or blocks. An expres-
sion (arithmetic or logical) is a valid EULER statement. GO TO state-
ments and labels are omitted. PDP-10 EULEK also includes some
special forms of output statemont (PRINT, WKITE) and list manipula-

tion statement (I1NSEPT, REMOVE).

3.1 Assignment Statement

An important feature of KULER is that every statement has a
value. In most cases this value is not put to any use, but is thrown
a7ay after the semicolon which separates statements is passed. For
example, the value of the following statement is the sum of the values

stored in A and B:

A+ B ...

By itself, this cxpression does nothing. Similarly, the following con-
ditional expression may have the value of C or b, but will not affect
the state of the program:

IF A > B THEN C ELSE D;

On the other hand, if we incorporatc this expression into an assignment

statement, as EULEK will allow us to do, we can change the program's state:
P+~ IF A> B THEN C ELSE D;

Here the value of the statement, which is the value of either C or D,

is stored into P. EULER allows any statement, with any type of value,

to be used as the right-hand side of an assignment statement.

3.2 FOR Statement

The FOR statement provides a basis for most algorithms involv-
ing repeated operations. There are several variants of the FOR state-
ment. The FOR-STEP-UNTIL statement allows an operation to be executed

a predetermined number of times:

FOR K + 1 STEP 1 UNTIL 10 DO A[K] « O

This will store zero into cells A[l) to A[10] inclusive. The scope

of the DO is limited to one statement:

FORN < 1 STEP 1 UNTIL SDOP « P * N; Q « Q + P

The first statement following DO,"P « P * N", will be executed five
times; the second,"Q + Q + P",will be executed only once, following
completion of the FOR statement. To cause both statements to be executed

after every step, we must include them in a single compound statement:

FOR N + 1 STEP 1 UNTIL 5 DO
BEGIN
P+ P *N;
Q+Q+ P
END

WHILE may be used instead of UNTIL or STEP-UNTIL so that looping

terminates when a condition is no longer true:

LOOKING « TRUE;
FOR K « 1 STEP 1 WHILE LOOKING DO
LOOKING + A[K]#N;

The above will loop through A until a cell equal to N is found.

FOR INP « TRUE WHILE INP DO
BEGIN NEW N;
N « INVAL;
ANS « ANS + N
END

This example creates an endless loop since INP never becomes false.

This type of loop is useful for writing interactive programs in EULER.
Note that there is no semicolon before an END. Semicolons are

used only to separate a sStatement or declaration from the following

statement. Errors will occur if this rule is not followed.

4. String Manipulation in EULER

A string of any length may be stored into a variable:
§3 <« "THIS IS THE PLACE"

The contents of this variable may then be printed out, concatenated
with other strings, or manipulated in various ways. It is not pos-
sible to access individual characters in a string. However, any
string may be converted to a list of integers, using the reserved

procedure UNSTRING:
L7 + UNSTRING[S3]

Each cell in the list L7 will receive one character, converted into an
integer representing the appropriate ASCII code. The reverse operation

is also permitted:

S§2 + STRINGIN]

N may be a list or array of integers or just a single integer. A

string is formed of all the codes up to the first zero or non-integer.

5. Arrays and Matrices

EULER arrays are similar to FORTRAN arrays in that the lower
bound is always unity. However, EULER arrays may have any number of

dimensions. They are created as follows:

A + ARRAY[2,ASIZE]

and may be accessed as follows:

A[l,J+1] « 2

Any type of information may be stored in any array cell, including
another array:

A3[10] « "JOHN SMITH"'
A3[1l] + TRUE;
A3[14]

+

ARRAY[201;
An array stored in a cell of another array can be accessed by double
subscripting:
X + A3[14]([N]
Two-dimensional arrays may be treated as matrices. The interpre-
ter is able to carry out matrix multiplication and addition:

A “ ARRAY([2,3]; %A becomes a matrix with 2 rows of 3 cells%
B « ARRAY[3,4];

This will create a new array C, whose dimensions are 2x4, containing

the matrix product of A and B. Matrices may be scaied:

A « ARRAY[1,4];

A « A/A(1,4];

Matrices may contain integer or real values in any mixture. The

result of a matrix operation leaves all the contents real.
6. Lists

Wirth's original description of EULER include« list-processing
operations, and with a few minor changes these have been implemented

in PDP~10 EULER. Figure 1 shows
g L[=3[a.e)

an EULER list, stored into a

i le
B
Q

variable L. Cells in this list
can be accessed in the same way | |, ’[TRUE
as array cells: for example,

123 |¥| 0.0l

L{1]=3.6, L{2] ="ABC", L{4]1=123.

4

L[3] is itself a list, and its Figure 1
cells can be addressed by double subscripting: L{3][1]=TRUE, L{[3][2]=0.0.
There are three principal ways of constructing a list:

1.) By explicitly defining its contents:
IL<{3.6,"ABC", {TRUE 0.0],123]

2.) By defining the list and later defining its contents:

L*LIST{4]
11[]]“3-6;

L[2]«"ABC";
L[3)+LIST[2]);
L[4)+123;
L(3] [1])«+TRUE;
L[3])(2]+0.0;

3.) By concatenating existing lists:

L1<[3.6,"ABC"]):
L2+ [TRUE,0.0];
L3«Lls&[L2]&[123)

The expression [] can be used to indicate an empty list.
Wirth's two other operations, LENGTH and TAIL, are also included.

LENGTH allows the number of cells in a list to be determined:

LENGTH[L]=4
LENGTH[L [3]]2

TAIL removes the first element from a list:

TAIL[L) :["ABC", [TRUE,0.0],123]
TAIL[TAIL(L]} [2]])[1]Z0.0

PDP-10 EULER also includes two special statements, INSERT and
REMOVE, to make list operations more efficient. INSERT has four vari-
ants:

a) INSERT L1 BEFORE L2
b) INSERT L1 AFTER L2
c) INSERT L1 BEFORE L2:N
d) INSERT L1 AFTER L2:N
(a) and (b) add list L2 to list L1, respectively before the first
and after the last element of L2. (c) and (d' permit additions to be

made anywhere within a list--N is an index into L2, and can be any

10
expression. For example, the structure in Figure 1 could be created

as follows:

INSERT (["ABC", [TRUE,0.0]] AFTER ([3.6,123]:1

REMOVE has only one form:

REMOVE L:N

which removes the Nth element of list L. Thus REMOVE L:1 is equivalent
to L+TAILI[L].
The value of the INSERT statement is the resultant list struc-

ture. REMOVE returns as value the removed element.

7. Procedures

One of the most attractive featnres of EULER is its handling
of procedures. Basically, a procedure may be assigned to any variable;
then whenever that variable is accessed, the procedure will be exe-
cuted. Procedures may be stored into cells of an array or list. The

way in which procedures are defined is as follows:

OUTAB+'PRINT A; PRINT B'

All the statements included within quotes are executed when
the procedure is accessed. Arguments may be passed to procedures by

the use of subscripts; there must be a formal declaration at the start

of the procedure, listing all the parameters to be passed:

MAX+'FORMAL A,B; IF A>B THEN A ELSE B';
X+«MAX[J,3*P-17];

11

The mechanism of calling procedures in EULER is quite different
from that in Plgol. Unless specified, parameters are passed by value.
Each of the expressions in the subscript list is evaluated, and each
of these values is assigned to a formal variable, starting with the
first. Thus in the example above, A would receive the value of J, B
the value of the expression 3*P-17.

Calls by name are achieved by enclosing the arguments within

quotes. Consider the following example:

A+Q;

PRINT2«'FORMAL X; X<«2; PRINT X';
PRINT2[A);

PRINT2['A'];

PRINT2[A] merely prints the number 2: since it is called by
value, the contents of A are not changed. PRINT2['A') on the other
hand is a call by name, hence all references within PRINT2 to the
formal X are treated as references to A, At the end of this second
call, A contains the value 2.

The value returned by a procedure is the value of the last
statement executed within the procedure. Thus the value of the above
procedure MAX is the value of the IF-expression. Procedures may

also be thought of as returning an address. For example:

CELL3«'A[3]';
CELL3+22;
B<CELL3;

This example defines an "access procedure" which allows data

to be stored into or read out of A[3] as if CELL3 were a simple

12

variable. Note that when a procedure is stored into a variable, that
variable becomes "execute only" and no other contents can replace
the procedure.

Arrays, lists and strings may be passed as arguments to a
procedure. For example, the following procedure ZMATRIX will create
a two-dimensional array of the required dimensions, with all cells

set to zero:
4“MATRIX<'FORMAL M,N;
BEGIN NEW A,J,K;
A<ARRAY [M,N] ;
FOR J<«] STEP 1 UNTIL M DO
FOR K<1 STEP 1 UNTIL N DO
A{J,K)+0;
END'
and can then be called as follows:

ROTN+ZMATRIX (3, 3]

8. Teletype Input and Output

The INPUT statement in EULER reads one character from the
teletype. If nothing has been typed, the program waits until a
character is typed. The value of INPUT is an integer, representing the
A5CI1 code of thecharacter typed. 1t may be converted to a single-

character string with the STXiNG operator:

IF STRING[INPUT]="G" THEN PROGO

The INPUT statement has seer incorporated in a number of library

procedures for input of numbers und text (see Apperdaix III).

i3

Output to the teletype is achieved by using the PRINT state-

ment:

PRINT A;
PRINT "ANSWER IS", X23

Any number of arguments may be listed in a PRINT statement,
and their values may be of type integer, real or string. Numbers are
printed out in a fixed format. Programmers may define their own for-

mat as follows:

PRINT A,B IN "A=W\ B=\\.\\\ ";
FMT<+"ANGLE IS \\.\ DEGREES";
PRINT 1B80*THETA/P1 IN FMT;

Each item in the output list of a formatted PRINT statenment
will be inserted in a field of the format; these fields are indicated
by back-slashes. A period will cause numbers to be converted to
flecating-point notation--otherwise integer notation will be used.

Positive values are left unsigned unless a sign position is indicated:

PRINT X1, X2 IN "+\\\ +W\\"

9. Euler Constants

Constants may be integers, real numbers, or strings. Any
number including a decimal point is treated as real. Any text en-
closed within double quotes is stored as a string. The compiler will
not accept certain characters within strings, so the following

conventions are used:

14

'B bell

'C carriage return

'F form feed

'L line feed

'N carriage return - linefeed
's space

‘i tab

DG . single quote

10. Program Formatting and Contents

Spaces, tabs, and carriage-return/linc-feeds may be inserted
anywhere.in the source program except within a symbol or operator, or
within a string enclosed in double quotes. The program may therefore
be indentec¢ by mecans of spaces and tabs, as illustrated by most of

the examples in this manual.

Wherever a space, tab, or carriage-return/line-feed is per-
mitted, a comme: t may be inserted by enclosing it within percent

symbols:

IF A > B THEN %EXCHANGE A AND B%
BEGIN NEW T; %T 1S TEMPORARY VAR%
T+« A; A<« B; B+ T S$EXCHANGE COMPLETE%
END;

Comments may extend to more than one line.

15

The complete program should be enclosed within a BEGIN...END
pair. This first BEGIN must be follcwed by a declaration, and

preceded by a title, which is aiy symbol:

TITLE PROG3
BEGIN NEW X, Y, P;

END

PART I1

HOW TO USE PDP-10 EULER

I o Comgiling

Source programs should be prepared and filed in the usual way

with QED or TECO. They can then be compiled in the following manner:

.R EULER E
*DEV:FNAME1.EXT+DEV:FNAME2, EXT

or the following shorter form may be used:

.R EULER
AXXXXEXXXX

This assumes that the source file is XXXX.SRC and is on the disk.
An object file called XXXX.MAC is created, also on the disk. Users
are encouraged to use this form since the EULER debugging routines

rely upon these file-name conventions.

2. Loading and Executing

EULER programs are not compiled into machine code and loaded in
the conventional manrner. Instead they are interprcted by a program

called SEUL*. Uscor: should type

.R SE"L

*Non-French speakers: tiis i: ..proaounceable. The cicsest approxi-
mation ic SERL.

17
and then type the name of the object file produced by the EULER

compiler:

.R SEUL
*DSK 3 XXXX. MIC

If the device name is omitted, USK is assumed; if bo.t,h device

name and extension are omitted, DSK and .MAC are assumed. Provided

i the nuormal file-name conventions are used, the following is therefc'ie

sufficient:

- R SEUL
*XXXX

Loader switches are provided to request special action during

loading. These may be typed at any point in the file name,

/U prints out ill undeclared variables
after loadirg. These include ex-
ternal and .i{brary procedures.

/B program enters EULFR DDT after loading.

Example:
+R SEUL
*PROG/U

Unless the /B switch is used, the program proceeds to execute

as soon as loading is complete. A carriage-return/linc-feed is output

to the teletype as execution commences.

3. Run-Time Errors

If an error is detected during execution, the following happens:

18

i) An error message is printed on the teletype;

ii) The statement in the source file in which the
error occurred is printed;

iii) The program returns to the monitor.

We have tried to ensure that the scurce statement printed out
is indeed the statement in which the error occurred. However, the
technique we have used takes some short cuts to avoid complete re-
compilation of the program. On occasions, several statements will be
printed if SEUL cannot determine the precise statement in which the

error occurred. A list of error messages will be found in Appendix V.

4. Debugging Aids

Debugging aids fall into two categories:

i) Facilities to print out the state of the program;

ii) Pacilities to set break-pcints so that execution
is interrupted at a certain point.
wWhenever a run-time erro: occurs, the contents of any active
variable may be printed out. To do this, type REENTER (or REE for
short). The proyram should respond with an asterisk, and you may
then type the name of any active variable, followed by a slash. 1If
the variable is inactive, "U?" will be printed in an appropriate format.

The following are some examples of printouts from EULER DDT:

«REE

*VAL/ 231

*K/ $.60017
*NAME/ "Jou"
*FOUND/ TRUE

*Xyz/ UNDEF

Variables to which procedures have been assigned, and formal
variables called by name, simply print out as "PROC". Similarly
arrays and lists print out as "ARRAY" and "LIST". You may however
access individual array and list cells by adding a subscript or

subscripts to the name:

*MAT([3,2]/ 1.71503
*L3(5] 6]/ 77

To print out the entire active stack contents, type:

o/

Break-goints'may be set prior to execution by using the /B
losdsr switch. After loading is complete an asterisk is printed,
and up to eight break-points may then be set in the program. Wher-
ever possible this feature uses the conventions of PDP-10 DDT.

To set a break-point, type a line number in the source code
followed by $nB ($ = alt-mode; n is the break-point number, 1 to 8).
The break-point will be set at the first "store" operation in that
line. For example, if the following is line 27 of the source program,

and 2751B is typed, the program will break before storing 33 into A:
&4

A+33; B+A+5;

To cause breaking on the second or successive .'store" operations,

you may type:

27,281B
or 27,351B etc.

rryr

20

The integer following the comma indicates to which of the
"stores" the break-point is to be attached. If this number exceeds
the number of assignments on the line, a statement will be chosen in
the lines following. The break-point number, n, may be omitted. In
this case numbers are assigned automatically, starting at 1. To
clear a break-point type @$nB. To clear all break-points, type $B.

To print out the contents of any line, type the line number,

followed by a slash:
27/

The most recent line typed can be referred to as w.,", and

other lines may be addressed relative to it:

27/ prints line 27
.41/ prints line 28, . becomes 28
.,18B sets a break-point at the first '"store”

in line 28

.=-5,2$B sets another break-point at the second
"store" in line 23

2/ prints line 30 (space and + ére equivalent)

As in PDP-10 DDT, line-feed and .+l/ are equivalent, and so are 4
and .-1/.

To start execution, type $G. The program will execute normally
until a break-point is encountered. Then execution will cease, and
the break-point number, together with the value just about to be

stored, will be printead:

3B >> §.41753

*

You may now examine variables and set or clear break-points,

as described above. To resume execution, type SP.

21

PART ITI

ADVANCED EULER PROGRAMMING
This section is devoted to some of the more refined techniques
in EULER programming, and to some of the facilities in the language

which were not described in Part I.

1. Use of Statement Values

It is frequently possible to take advantage of the fact that
statements possess values. An example was given earlier in Part I.
More elaborate examples are discussed here.

when matrices are being used, it is sometimes necessary to
create a new matrix with its cells set to certain initial values.
Suppose we wish to store into A either the matrix currently in
B or, if B is undefined, a 3x3 unity matrix. This can be done as

follows:

A+IF TYPE[B) =4 THEN B ELSE
BEGIN NEW T,J,K;
T<ARRAY[3,3];
FOR J«1 STEP 1 UNTIL 3 DO
FOR ¥+l STEP 1 UNTIL 3 DO
T{J,K]«IF J=K THEN 1 ELSE 0;

END

This example makes use twice of the values of IF statements.

Another technique that may be used with IF statements is the compound

22

logical expression. The expression following "IF" may be any ex-

pression whose value is true or false. An expression may be any state-

ment or statements enclosed within parentheses®, so the following is

permitted:

IF (A+B[X];A>0) THEN Q<A

Since all the statements within parentheses are executed be-~
fore the test is carried out, this provides a method of including
unconditional statements in chains of IF statements (IF...THEN...

ELSE IF...THEN...ELSE IF...) without the use of BERIN and END:

IF (X¢X-1;A[X,Y]=0) THEN TRUE ELSE
IF (X+X+1;Y+Y+1;A[X,Y])=0) THEN TRUE ELSE
IF(X*X+1;Y*Y-1;A[¥,Y]=O) THEN TRUE ELSE
(X+X-1;Y+Y-1;A[X,Y]=0)

The above statement finds whether any cell adjacent to (X,Y)
in the matrix A contains zero, and if so returns with X and Y set
to the position of the first such cell it finds.

Difficulties often arise with IF statements because all parts
of a complex logical exprcssion are evaluated before the test is
applied (this is out of line with Wirth's proposals). 1In a statement
of the form IF L1 AND L2 THEN A ELSE B the evaluation of L2 may
cause an error if L1 has the value false. One solution is the nested

IF statement:

IF L1 THEN
BEGIN
IF L2 THEN A
END ELSE B

* Note that parentheses () are equivalent to BEGIN END

23

The BEGIN is necessary here since the <econd IF statement does
not include an ELSE clause, but the first one does. Another correct

version is:

IF L1 THEN IF L2 1HEN A ELSE B ELSE B

and the following will also work:

IF(IF Li THEN L2 ELSE FALSE) THEN A ELSE.B

2. Procedures

Part I menticned that variables into which procedures have been
stored become "execute only." This means that it is not possible suc-

cessively to store different procedures into a variable as follows:

p « 'IF N=O THEN A ELSE B';
P+ 'A+B<«0';

Whenever a procedure variable is ac--red, the procedure is called
immediately; so the example above will succeed only in storing the sec-
ond procedure into either A or B.

The only way to replace one procedure by another is to reclaim and
re-allocate the space it occupies. This is difficult to do with ordinary

variables, since a variable is only reclaimed when the end is reached of
L

the block in which it was de- E___ﬂ_j] ;[I 3 3

clared. With lists and arrays,

however, it is easier to do. !

Suppose we wish to build a list

L in the form shown in Figure 2.

Figure 2

24

Each element of L is itself a list, which contains in the first
element a procedure indicating what to o with the following two
elements. If we wish to change the procedure, leaving the rest of
the sub-list unchanged, we can do do by discarding the first element

and then redefining it. For example:

L[K]<«LIST[1l) & TAIL[L[K]]);
L[K)[1)«'FORMAL A,B; A+B';

We may now "evaluate" any sublist K in the following manner:

VAL+L[K] (1] (L{K] [2] ,L(K] (3]]

The concept of recursive procedures is widely understood and

used. All EULER procedures may be called recursively. However, if
the number of nested calls exceeds 30, stack overflow will occur.
To illustrate the use of recursion, here is an example taken from the

EULER library file:

TITLE SINE
'FORMAL X; BEGIN NEW PI;
PI+3.141%59;
IF X>=0 THEN
BEGIN IF X<0.l1 THEN X-(X*3)/6 ELSE
IF X<=PI/2 THEN 2*SIN([X/2] *SQRT[1-SIN[X/2]42] ELSE
IF X<=PI THEN SIN[PI-X) ELSE SIN[X-2*PI]
END ELSE -SIN(-X]
END'

One of the original ideas behind PDP-10 EULER was the concept

of using procedures as access functions. It is possible to use

procedures to attach names to specific list or array elements, and

25

to store into and read out of thesc elements by means of their names:

BEGIN NEW A, LENGTH, HEIGHT, WIDTi, K, J;
A+ARRAY[100,3];
LENGTH+'FORMAL X; A[X,1]';
HEIGHT+'FORMAL X; A[X,2]';
WIDTH+'FORMAL X; AI[X,3]';
LENGTH [K] «INVAL;

® o v e v

IF LENGTH[J]=0 THEN...

The above example makes LENGTH[X] synonymous$ with A[X,1]. Notice
the use of EULER'S block structure to pre-empt a "reserved" procedure
name, i.e., LENGTH. Within the block in which LENGTH is declared the
user's procedure will take precedence over the reserved LENGTH procedure
which determines lengths of lists and arrays. Users who feel they can
improve upon the EULER library procedures can pre-empt them in the

same way, as described below.

3. External and Library Procedures

EULER programs may be written as external procedures by adopting

and following slightly modified syntax:

TITLE EXTPROC TITLE EXTPROC

'FORMAL Fl, F2; 'eveanne .
or

A complete example is shown above in the sine procedure. External

procedures may be cailed from other programs without declaring them. The

26

interpreter assumesthat every undefined variable is an external pro-

cedure and attempts to find it on the disk as follows:

a) by looking it up on the users area with extension .MAC;
b) by looking it up on his area with extension .EUL;

c) by looking it up under [1,1] with extension .EUL.

If all of these fail, an error message is printed. This order of prece-
dence is useful in a number of ways. For example, if a program has
been designed to be controlled by the mouse, and zhe user wishes to test
it from the teletype, he can do so by writing his own external MOUSE
procedure and filing the object code on his disk area as MOUSE.MAC or
MOUSE.EUL. The following procedure would allow him to type in a switch
number and two coordinates, and to the program would be indistinguish-

able from library MOUSE procedure:

TITLE MOUSE
'BEGIN NEW SN;
SN<INVAL;
IF SN=1 THEN [TRUE, FALSE, FALSE, INVAL, INVAL] ELSE
IF SN=2 THEN [FALSE, TRUE, FALSE, INVAL, INVAL) ELSE
[FALSE, FALSE, TRUE, INVAL, INVAL)
END'

4. File Input-Output

EULER programs may read and write standard PDP-10 text files.
For this purpose, a WRITE statement and a reserved procedure called READ
have been added. They operate in a fashion exact., analogous to PRINT

and INPUT:

27

WRITE "MOVE AC," ,NAME; % will write MOVE AC, and the
contents of NAME %

CH+READ; % will read one character into

CH as an integer %

WRITE statements may include format specifications.
In order to make use cf READ and WRITE, the programmer must include

statements to open and close files. If you are going to write a file,

you must open it for output:

OUTFILE ["DSK","FNAME" , "EXTN"] ;

After all output is complete, the file is closed for output:

OCLOSE;

Since only one file at a time may be opened for output, the OCLOSE
statement requires no arguments. Existing files may be opened for input
and later closed as follows:

INFILE["DSK","FNAME" ,"EXTN"];

ICLOSE;

During input it is possible to check whether the end of the file
has been reached Ly using EFILE. This will return true if the end has

been reached, otherwise it will return false:

17 EFILE THEN ICLOSE ELSE CH([K+K+1]+READ

Arguments for INFILE AND OUTFILE may ‘i given as shown above, i.e.,

as a separate string for device name, file name, and extension. Other

28

combinations of arguments are permitcted, and the complete list is as

follows:

'["FNAME"J assumes device DSK, no extension
["FNAME", "EXTN") assumes device DSK

["DEV", "FNAME", "EXTN"]

J["DEV", "FNAME", "EXTN", PROJ, PROG! where PROJ and

INFILE

GEESRE PROG are project and programmer numbers

[("FNAME", "EXTN", PROJ, PROG]
L["l"NI\ME:", PROJ, PROG]

It is of course permissible to use any string as device name,
file name, or extension, although names that are too long will be trun-
cated. The following program will write out successive cells of the list

LTEXT as files called LTEXT.001, LTEXT.002, etc.:

FOR K+1 STEP 1 UNTIL LENGTH[LTEXT] DO
BEGIN
OUTFILE["LTEXT" ,STRING([[K//100+48, (K MOD 100)//10+44A,K MOD 10+48]]):
WRITE
OCLOSE
END

File input-output will. work successfully for the fcllowing physi-

cal devices:

DaK
DTAB=DTAT

a dummy file-name and extension must
be given

29

5. Coping with Large List-Structures

Almost any program that makes use of 1lists will tend to produce

large structures. This raises two problems:

a) It becomes very tedious to examine and debug these structures;
b) The program will eventually grow too big to be accommodated

in core.

With these problems in mind, two features have been added to EULER.
One is a library prucedure call WRLIST. It will write out a text file
listing all the contents of a named list, making it possible to examine

the contents. It is called as follows:

WRLIST["DEV", "NAME", "EXT", LISTNAMX]

LISTNAME is the variable containing the list. The resultant text

file looks something like this:

[CELLl, CELL2, CELL3.....CELLN]

where CELLl, CELL2, etc., ara the contents of each cell. These contents

are written out in a format appropriate to the data type, for example:

(3.6, "ABC",
{TRUE, 0.0],
123]

H

This is the WRLIST output of the list structure shown on page 8.

30

Since WRLIST can output arrays, it provides a convenient means
of dumping out the entire contents of an array without using FOR

statements:

WRLIST["TTY", "X", "X", [(All

There is currently no RDLiST procedure to read in the results of
WRLIST. To cope with this need, and with the second problem mentioned
above, the EULER interpreter has been extended to permit the reading
and writing of lists in library format. The principal value of this

is to permit the use of secondary memory for storing data, as follows:

SWAPOUT["XXX", Ll]; will write out L1 onto the
disk as a file called XXX.

L1+SWAPOUT ["XXX", Ll1); will do the same, and will reclaim
the storage occupied by Ll.

J*LLNGTH(L1); will cause L1 to be read back
in from XXX.
L2¢SWAPIN["XXX") will perform the equivalent of storing

the original contents of Ll into L2.
The actual operation will not take
place until L2 is referenced, e.g.,
by LENGTH(L2].

Thus, after a list hac been swapped out, it can still be accessed
and modified as if it were in core--the very next access will automatically
bring it back in. SWAPIN and SWAPOUT use the same file-name argument
conventions as INFILE and OUTFILE, except for the additional final argu-

ment to SWAPOUT.

a1

5. Send~Receive

If two EULER programs are running simultanecusly, theycan com-
municate via send-receive. Send-receive pegihits programs t6 do the

following:

a) to announce their name for the purpose of sending

messages to and receiving them from other jobs;
b) to send a message to another job of known name;
c) to wait for a message from another job;
d) to determine whether a message has been received
from another job, and if so to determine the name
of the sender and the mezsage contents.

A process name mzy be any text string. For example:

"WILLIAM"
“MASTERPROCESS”

are valid names for processes. A program announces its name to the

outside world by the following procedure call:

DECLARE ["JOE"]

After declaring its name, a program may Send a message to another

program whose name it knows:

SEND{"PETE", MSG}

A message may be one of the following:

i} an integer in the range 0 to 250,000
ii) a text string

iii) a liat

32

To receive a message, a program calls:

X+RECEIVE (“JOE"]

This will be executed immediately, and will store into X:

a) an empty list, if nc message has been received;

b) a two-element list, (sender, message], if a message has
been received from the requested sender;

C€) a single-element list, [sender]), if the requested sender
sent nothing, but another sender, whose name is now re-~
turned, has sent a message. A second RECEIVE is nccessary

to determine hiz message.

RECEIVE([0] will receive a message independent of its sender. In
this case the name of the sending process may be not a string but a list
containing two integers. 1If you wish the program simply to halt until
& massage is received, you may use RECWAIT. RECWAIT ("JOE"] will cause
the program to halt until a message is received from process JOE.
RECWAIT(O] waits until a message is received, irrespective of the sender.
The w:ifiwes returned by RECWAIT and RECEIVE are identical.

As an example of the use of send-receive, suppose that we wish to
allow two terminal users to send messages to each other without using the
standard TALK facility of the PDP-10. The following program will handle

each end of such a conversation:

TITLE SR
BEGIN HISNAME, RUNNING;
PRINT “TYT£ YOUR NAME:";

DECLARE [INTEXT]:; A declares typed string as
name of process \

PRINT "TYPE DESTINATION:";
HISNAME+ INTEXT;
PRINT “DO YOU WISH TO WAIT FOR A MESSAGE?";

33

IF INTEXT # "Y" THEN % send a message %
SEND [HISNAME , INTEXT] ;
FOR RUNNING TRUE WHILE RUNNING DO
BEGIN
% wait for a message %
PRINT RECWAIT [HISNAME] (2]
% when received, print it %
SEND [HISNAME , INTEXT)
% send another %
END
END

Symbol

//

APPENDIX I.

BASIC OPERATORS

Meaning

unary plus

addition

unary minus

subtraction

multiplication

division

integer division

exponentiation

modul us

e.g., A MOD 3

absolute value

e.g., A+ ABS B

OEerands
scalar -
scalar scalar
matrix matrix
scalar =
scalar sScalar
matrix matrix
scalar scalar
matrix matrix
matrix scalar
scalar scalar
matrix scalar
scalar scalar
scalar integer
scalar scalar
scalar -

g

35

NOT

OR

ABS

greater than

less than

greater than /equals
less' than /equals 3
equals

not equals

complement

logical intersection

logical union

concatenation

Precedence is as follows, in descending order:

+ - (unary)

* / // MOD ¢

&

OR

+ = (binary)

scalar
string

boolean

integer

boolean

integer

boolean

integer

boolean

string

list

scalar
string

boolean

string

list

7l

APPENDIX 11

EULER RESERVED PROCEDURES

ARRAY (M,N...)

creates an array with dimensions M,N...

EFILE checks for end-of-file, returns true/false
EXIT program returns to the Monitor
ENTIER(S) makes an integer
ICLOSE closes file after input
INFILE(...] opens file for input
INPUT inputs one character from teletype
LENGTH(L) returns the length of a list, array, or string
LIST(NI] creates a list of N cells
OCLOSE clnses file after output
OUTFILE(...] opens file for output
READ reads one character from file
STRING(L] converts list, array or integer to string
TAIL(L) temoves the first cell of a list
TYPE(V] revurn® the type of argument V:

-1 means undefined

0 means real

1 mcans integer

2 means boolean

3 means string

4 means array

5 means list
UNSTRING(S) converts string to list

DECLARE
SEND

RECEIVE
RECWAIT

INSTRING

INTEXT

INVAL

INVERT

MOUSE

37

APPENDIX III.

EULER LIBRARY PROCEDURES

See Part 111., Section 6.

Reads in . text string from the teletype.
€.9., LOOKUP[INSTRING]
Terminating characters are space, period,
= and carriage-return.
Identical to INSTRING, but carriave-
return is the only terminator.
Reads in one signed integer or floating-
point number from the teletype.
e.g., X+*INVAL
Terminating characters are comma, space
or carriage return.
Will invert a matrix
e.9., M1+ INVERT([M2]
Reads the status of the mouse or tablet
next time a switch is pressed. Returns
as value a five-element array, containing:
in element 1: switch 1l setting (true
or false)
in element 2: switch 2 setting

in element 3: switch 3 setting

38

RANDOM

SIN
Cos
ARCTAN

SMOUSE

SQRT

WRLIST

in element 4: x-coordinate (integer
in range C0-1023)
in element 5: y-coordinate (integer
in range 0-1023) _
Note that when the Sylvania tablet is in
use, switches 1, 2 and 3 are turned on
(=true) progressively in that order as
the stylus approaches the tablet surface.
e.g., MEMOUSE;
IF M[1) THEN (X+M[4); Y+M[5])
Returns a pseudo-random number in the
range O to 1.0.
e.g., X+RANDOM
Trigonometric functions. 2ngles are
assumed to be in radians.
Identical to MOUSE, but the coordinates
are scaled to lie in the range -1 to +l.
Square root function.
Writes out a text file representation of
any list; useful for debugging. The file
may be written out onto the teletype.
e.g., WRLIST ["DSK","FNAME" ,“"EXT",L] ;
WRLIST["TTY","X","X",L]
These will write but the list L éonto a disk
file called FNAME.EXT and onto the tele-

type, respectively.

39

APPENDIX IV.

EULER D, SEULD

Before the appearance of EULER-G a very simple graphic package
was implemsnted for Euler. This package is still available as part
of a special interpreter called SEULD. Euler programs which use

this system can be compiled by the standard EULER compiler.

The graphical commands are:

POS [X, Y] % Position beam to absolute coordi-
nates X, Y %

POINT [X, Y] % Display a point at absolute co-
ordinates X, Y %

LINE[X1,Y1,X2,Y2} % Draw a solid line from absolute
coordinates X1,Yl to absolute
coordinates X2,Y2 %

LINETO [X2,Y2] % Draw a solid line from the present
position of the beam to the absolute

coordinates X2, Y2 %

All coordinates must be between 0 and 2047. The visible portion
of the screen is the lower left quadrant of this area (0,0 to 1023,

1023). Arguments may be integers or floating-point numbers.

To display some text, one may use the command POS[X,Y] to position

the beam, followed by DISPLAY X, Y, Z IN F where the DISPLAY statement

40

has exactly the same syntax as the PRINT statement. The format F
may be omitted. Characters whose ASCII code is less than 408 will

be ignored.

The command CLEAR will clear the entire screen.

The commands POS, POINT, LINE, LINETO, CLEAR are implemented

as axternal procedures.

APPENDIX V: LIST OF ERROR MESSAGES

@04 CANNOT ROTATE 3-D PICTURES

APS "SIZE N® WILL NOT WORK, NO OF DIMENSIUNS UNKNOWN
Pd8 "SCALE N™ WILL NOT WORK, NO OF DIMENSIONS UNKNOWN
MAA7 NG END OF FILE ON CHARACTFR SFT

219 STRANGE, FRAME FILE HAS BFEFN LOST

211 NO CHARACTER SET FILE FOUND ON DISK

612 CAW'T ENTER FRAME FILE

P13 DISK INIT ERROR

@ia OUTPUT ERROR TO S5TA

@15 STATZ FRROR ON OUTPUT TO DSK

P20 CALLING FRAME ROM WITHIN FRAME

021 PARAMETER LIST IN FUNNY SHAPF

222 DISPLAY PARAMETER NOT NUNMERIC

823 DISPLAY PARAMETERS MUST BE A LIST

@24 NO OF PARAMETERS MUST BE 2 OR 3

@25 WINDOW OR VIEWPORT MUCT BE SPFCIFIFD AS A LIST

026 NO OF PARAMETFRS ®MUST RE EVFN

@27 WRONG Y2 OF PARAME FOR WINDOW OR VIFWPORT

P30 TRANSFORMATION MUST BRF. AN ARRAY

A3] TRANSFORMATION ARRAY MUST RF 2-DIMENSIONAL

P32 TRANSFORMATION MATRIX MUST BF SQUARE

@33 PERMISSIBLE SIZES FCR TRANSFORMATION ARE 2X2,3X3,4X4
@37 ASTERISK OMITTED FROM FRAME PPNCFEDURE DEFINITION
@A® VALUE LEFT FOR JUMP-ON=FALST NOT BOOLEAN

@41 WRONG KO OF WINDOW ARGUMENTS

Ma2 WRONG NO OF POSITION ARGUMERTS

43 WRONG N0 OF SIZF ARGUMENTS

P44 WRONG NO OF SCALTI ARGUMENTS

0a5 CANNOT DFEFINE BOTH SIZF AND SCALE

(46 ERROR IN PASSING DISPLAY ARGUMENTS

@AT WRONG SIZF OF MATRIX FOR TRANSFORMATION

n53 CANNOT ROTATF AND TRANSFORNM IN SAME DISPLAY CALL
@51 CANNOT ROTATE 3-D PICTURE

252 CCALXY AND RELSCALE DD NOT WORK YET WITH ROTATIONS
53 TRANSFORMATIONS ARE NOT PFRMITTFED IN FRAMF PROCEDURES
PS4 “MIT" SHOULD HAVE 3 ARGUMENTS: X,Y, NAME

M56 SCALE SHOULD NOT BE DFFINED IN FRAME PROCEDURE

@57 ROTATIONS CANNOT BE DEFINED IN FRAME PROCFDURES
P67 HUH? SINE RTN ASKED FOR SQRT OF NEG NO

AT7G THIS DISPLAY OPFRATION NOT YFT IMPLEMENTFED, SORRY
772 LINF ARGUMENTS MUST BE PASSED AS LIST

n73 WRONG 10 OF LINE PARAMFTERS FOR CURRENT 10 OF DIMS
#77 ILLEGAL INSTRUCTION CODE

100 TOO MANY RLOCK LFVELS

181 TOO MANY VARIABLES DECLARFD AT THE SAME LEVFL

102 STACK 1IN ABNORMAL STATE AT “END®

123 DISP'AY REGISTER UNDFRFLOW OM “FND®

124 UNKN YN DFESCRIPTOR IN FETCHED VARIABLE

135 RETUE ADDRFESS WORD FOUND IN PLACF OF VARIABLE

106 DOWN=POINTFR FOUND IN PLACFE OF VARIABLF

187 SAVED DIGPLAY REGISTER FOUMD IN PLACF OF VARIANLE
11@ Y59 TOP DISPLAY RFGISTER FOUMD IN PLACE OF VARIABLF
111 SPECIAL ARRAY DFSCRIPTCR FOUND IN PLACE OF VARIABLE
112 % ADDRESS POINTFR FOUND ON STORF

2am NOT A PROCEDURE EXECUTING CALL

201
202
203
204
205
206
210
301
310
312
314
315
316
317
336
340
342
344
346
347
350
352
360
361
362
363
364
377
$00
a1
5A2
$83
Sa0
541
542
551
552
553
sS4
555
557
600
601
602
603
604
605
606
607
610
700
101
1702
703
704

42

NUMBER OF PROCEDURE ARCUMENTS NOT INTEGER

TOO MANY ARGUMENTS IN CALL

NO RETURN ADDRESS FCUND ON RETURN FROM PROCF.DURF.
NO SAVED TOP DISPLAY REGISTER FOUND (P,RSTR)
CALL INSTRUCTION EXECUTED UNEXPECTEDLY

NO SAVED TOP DISPLAY REGISTER FOUND (P.PRIM)

NO DOWN POINTER FOUND
CAN°T EXPONENTIATE BY

NON=NUMERIC
NON-NUMERIC
NON=-NUMFRIC
DIVISION BY
NON=-NUMERIC
NON-NUMERIC
MOD ERROR
“OR" ERROR
“"AND" ERROR
“NOT™ ERROR
NON~-BOOLEAN
NGN-BOOLEAN
NON-NUMERIC
NON-NUMERIC

ON STACK
NON-INTEGER

FOR ADDITION

FOR SULSTRACTION
FOR MULTIPLICATION

ARGUMENTS
ARGUMENTS
ARGUMENTS
ZERO

ARGUMENTS
ARGUMENTS

FOR DIVISION
FOR EXPONENTIATION

IN BOOLEAN OPERATION

IN BOOLFAN OPERATION
ARGUMENT FOR ABS
ARGUMENT FOR COMPLEMFNT

MATRIX OPERATIONS APPLY ONLY TO 2-DIMENSIONAL ARRAYS
ILLEGAL OPERATION ON MATRICFS

MATRICES WRONG SIZES FOR MULTIPLY

MATRIX CONTAINS NON-NUMERIC DATA

MATRICES OF DIFFERENT SIZES, CAMNOT RF

ADDED NR SUBTRACTED

UNIMPLEMENTED MATRIX OPERATION

NUMRER OF ITFMS IN OUTPUT LIST NNT INTEGER

ILLEGAL TYPF OF ITEM IN OUTPUT LIST

WRONG FORMAT FOR STRING OUTPUT

TOO FEW ITEMS IN OUTPUT LIST COMPARED WITH NUMBFR OF FIELDS
WRONG NUMBER OF ARGUMENTS IN A POS,LINFE OR POINT CALL

ARGUMENT OF POS,LINE OR

POS,LINE OR

POINT IS NOT A NUMRFR
POINT WAS CALLED WITHOUT ARGUMENTS

DEVICE NOT AVAILABLE

NO FILE NAME GIVEN

FILE NOT FOUND

TGO MANY NEW VARIABLES OR FORMALS

TO0 MANY RLOCK LEVFLS

TOO MANY EXTERNAL VARIABLES

ILLEGAL INSTRUCTION FORMAT FOR ARRAY DEFINITION
ARRAY DIMENSION VALUE NOT AN INTFGFR

VRONG TYPE OF VARIABLE USED FOR ARRAY CALL

NON=-INTEGER

USED IN ARRAY DEFINITION

NUMBER OF ARRAY DIMENSIONS NOT AN INTFGER
INCORRECT NUMBER OF ARRAY DIMFENSIONS
ARRAY DIMENSION VALUE NOT AN INTEGFR
SUBSCRIPT NOT AN INTFGER

SUBSCRIPT OUT OF RANGF

BAD DYNAMIC

VARIABLE PASSFD TO INTFRPRETER

SYS ERR - BAD NUMERIC FORMAT

FILF NAMF. ENTER ERROR

FILE NAME LOOKUP ERROR

OUTPUT DEVICE INITIALIZATION ERRO®

43

785 1NPUT DEVICE INITIALIZATION FRROR

706 BAD FILE NAME FORMAT

707 OUTPUT CLOSE ERROR

710 INPUT CLOSE ERROR

711 OUTPUT ERROR

712 INPUT ERROR

713 WRONG NUMRER OF PARAMETERS PASSED TO LIST
714 WRONG NUMBER OF PARAMETERS PASSED TO LIST
715 BAD LIST PASSED TO INTERPRETER

716 INDEX TOO SMALL FOR LIST

717 INDEX TOO LARGE FOR LIST

120 WRONG NUMRFR OF PARAMETERS PASSED T0 SRPRNC
721 WRONG NUMBER OF PARAMETFRS PASSED TO TAIL
752 WRONG TYPE OF PARAMETERS PASSED TO CONCATINATION
723 WRONG TYPE OF PARAMETERS PASSFD TO UNSTRING
724 RESERVED PROCEDURE EXPFCTED ONF PARAMETER
725 WRONG TYPF, OF PARAMETFRS PASSED T0 STRING
726 WRONG TYPF OF ARRAY PASSED TO STRING

797 RESERVED PROCEDURE EXPECTED AN INTEGER

730 WRONG TYPF OF PARAMETERS PASSFD TO SRPROC
731 RUN UUO RETURNED

732 ENTIER TAKES ONLY ONE PARAMETFR

733 ENTIER TAKES ONLY RFAL, INTEGFR, OR ROOLEAN
734 RAD ARGUEMENTS TO COMPARE I1.F, =,<,>,#,>3,<:
776 SYS ERR = JUMP IS T00 LARGF

977 SYS ERR - DICTIONARY OVERFLOW

END LEAVE THIS AS LAST LINE PLEASF: ALL FOLLOVING LINES IGNORFD

y

APPENDIX VI

EULER-G

This appendix describes some extensions which have been made
to PDP~10 Euler to permit interactive graphics. The extended language,
called Euler-G, should not be confused with the library of graphical
procedures in SEULD.

Euler-G uses many of the ideas first proposed in Dial [3]. These
include the concept of display procedures, and the assumption that all
pictures are scaled before being displayed. Euler-G also contains ad-
ditional features such as the mcans to specify rotations and viewports
and the ability to display projections of three-dimensional objects.
These features should make Euler-G considerably more useful than Dial.

Euler-G produces display files for the Univac 1559. These files
are created first in a device-independent format, which is converted
to 1559 format by a scparate transmission program. It is therefore ex-
tremely easy to convert Euler-G so as to output to other devices. Work

has already begun on a plotter output package.

Basic Graphical Operations

Graphical output is generated by means of a small set of primi-

tives. The most important primitives are the following:

MCVE TO P : move the display beam to point P

MOVE D : move the display beam through a dis-
tance D from its current position

LINE TO P : draw a line from the current beam
position to point P

45

LINE D : draw a line of length D from the
current beam position

DISPLAY Tl1, T2... : display text items Tl1, T2...
at the current bean position

The remaining primitives are variants of LINE TO and LINE which

produce ¢ifferent line textures:

il the corners between lines are slightly
ZI1P D rounded. Useful for drawing curves.
Al } to draw dotted lines

pOT D

All points and distances must be specified by lists. These
lists must hi\'f. either two or three elements, depending on whether two-

dimensional or three-dimensional objects

200,250 are being defined. For example:
¢ MOVE TO (100,150); LINE TO (200,250)
100,150
will g}raw a line from (100,150) to {200,
Pigure 1 250) & shown in Pigure 1.

Instead of 2 list, thie name may be used of any variable which

currently contains a list. For example:

L3 +« [19.0, 3.7},
LINE LJ;

or:

MOVE TO POINTLIST{1};

FOR K « 2 STEP 1 UNTIL LENGTH[POINTLIST] DO
LINE TO POINTLIST(K]:

46

The second example will produce a sequence of connected lines,
such as is shown in Figure 2(b), from a list POINTLIST containing

their coordinates in the format shown in Figure 2(a).

POINTLYS
INTL) *r_,l i X,

Y
Y
& X1 ¥

Y
X3

I‘ X3¥3 XyYy
Y3
Xy

N
Yy
FPigure 2(a) Figure 2(b)

The DISPLAY statement is modeled on the Euler PRINT statement,
and produces on the display the same output that PRINT produces on

the teletype. The same formatting technique is used:

DISPLAY A, B IN "A =\\\ B =s\\\\\\ "

Page Coordinates and Screen Coordinates

Most display programming systems force the user to define pictures
in a fixed coordinate system, the coordinate system of the display screen.
This is not the case with Euler-G. 1Instead pictures are defined in

what is called the page coordinate system, and are displayed by trans-

forming the appropriate parts of t.ue picture into screen coordinates.

47

The programmer has a great deal of freedom to specify: (a) the region
of the page which he wishes to see on the screen, (b) the transformation
which he wishes to apply to the picture, and (c) the region of the
screei; which he would like the picture to occupy. This does not imply
that he always has to take advantage of all this flexibility. The nor-
mal procedure is to specify a rectangular window onto the page informa-
tion, ard a rectangular viewport onto the screen. Figure 3 shows an
example. All the page information lying within the window will appear
on the screen within the viewport;

everything else is eliminated. —_N\

The statement to define this

transformati i dai
ansfo tion is the splay i devad viedport
. page screen
procedure call, of which the ;
Figure 3

following is an example:
POINTS WITHIN (200,200,100,100] ONTO (0,0,1,1]

POINTS refers to a procedure, which might well be the example
given and shown in Pigure 2. The window onto POINTS is specified by
WITHIN ([200,200,100,100], which means that the center of the window is

ac (200,200) and that it measures 100

+1.0 page coordinate units in size, measured
from the center to each edge. The view-

port has its size from this point. This

is the full screen size: rather than use

the particular coordinate system of the

-1.0 +1.0 Univac 1559, Euler-G assumes the screen

Figure 4 dimension® to be those shown in Figure 4.

48

The complete-sequence of instructions for generating a con-

nected-line picture might be the following:

FRAMELl + *'POINTS WITHIN([200,200,100,100]
onTo {0,0,1,11'

POINTS « 'BEGIN NEW K;

MOVE TO POINTLIST(1]

FOR K+2 STEP 1 UNTIL LENGTH({POINTLIST] DO

LINE TO POINTLIST(K]

END!;

FRAME];

Note the asterisk preceding the body of the procedure FRAMEL.
Any display procedure which is not itself caliled from another display
procedure should include this special mark, indicating that it is a

frame procedure. Frame procedures have a number of special properties.

In the first place, they allow the picture on the screen to be composed
of a number of logically separate parts, each of which can be altered
or removed without affecting the others. A frame can be removed by

means of the DELETE statement:

DELETE FRAME1

It can be altered by changing the data which it accesses, and
then calling it again. For example, if we changed the contents of the
1ist POINTS, and then called FRAMEl. we should see a new picture repre-
senting the new contents of POINTS. Alternatively the window might be

changed in order to show a different part of the complete picture.

49

Display Procedure Calls

It may be useful to call display procedures to several levels.
For example, we might wish to define a symbol that appears repeatedly
in a certain picture. Figure 5 shows a
symbol commonly used to indicate wind velo-
city and direction in weather maps. We

Figure 5
== could define this as a display procedure

<:>___(\ called WINDSYM, and create a 'weather map'
(::)”“"T\ by means of the following statement:

FOR K¢1 STEP 1 UNTIL LENGTH [STATIONS] DO
Figure 6 WINDSYM AT STATIONS (K]

This assumes that the position of each weather station is held
in a list called STATIONS. The result will be a picture such as Fig-

ure 6. We can add a rotation to each symbol as follows:

FOR K+]1 STEP 1 UNTIL LENGTH[STATIONS] DO
WINDSYM AT STATIONS{K] ROT WD[K]

WD is a list containing the wind directions, measured in radians.
Arguments may be passed to display procedures. The number of
'bars' on a symbol could be held in a list called BARS and passed

as follows:

FOR K41 STEP 1 UNTIL LENGTH[STATIONS] DO
WINDSYM[BARS [K]] AT STATIONS[K] ROT WD(K]

The definition of WINDWYM might look something like the following:

50

WINDSYM « 'FORMAL N; A\ N IS NUMBER OF BARS %

BEGIN NEW K;
CIRCLE WITHIN {0,0,1,1] SIZE 1 AT [0,0};
MOVE TO [(1,0};
LINE TO (5,0};
FOR K+1 STEP 1 UNTIL N DO

(LINE {1,0};LINE[1,-1]}; MOVE [-1,1])
END'

CIRCLE is yet another display procedure, possibly written as an exter-
nal procedure.
Th~ complete range of transformations and other arguments which

may accompany a display procedure call are as follows:

Window: WITHIN + 4-element list
Viewport: ONTO + 4-element list

Position: AT + 2-element list

Size: SIZE + 2-element list or scalar
Scale: SCALE + 2-element list or scalar
Rotation: ROT + scalar

Transformation: TRANS + 2x2 or 3x3 array

Name: AS + integer or real number

They may be listed in any order. ONTO {a,b,c,d] is equivalent to AT{a,
b)}SI12E(c,d}. If both size dimensions are the same, a single scalar may
be used; the same applies to SCALE. Rotations are measured anti-clock-
wise in radians. Names have no effect on the picture: they are for
use in detecting mouse hits and so forth.

Windows play an important part in reducing processing time.
Suppose we have defined the weather map shown in Figure 7, and wish to

view just the portion shown by the dotted outline. The program shown

51

above will test every line of
every symbol for visibility,
and discard those outside the
window. If there are a lot
of invisible symbols this

will take a lot of time.

-—
]

TN
o=@ !
o\“o\"i

cewm - B = o -

- > s o e -

Figure 7

We can reduce this time by specifying a wirdow around the symiol:

WINDSYM[BARS (K)) WITHIN (0,0,10,10]) AT ... etc.

This implincs that we are only interested in the information with-

in the boundary shown in Figure 8(a), and the program c-an immediately

Figure 8(a)

~ .
(AR ’
’ 4 ‘\
] ’,, N
. ll () 'l
S50 4 '\ ’
- N ’
~J ! . ¢
- (Y 4

’ -
\.
e
'

-7\

oo Com e o oo o o
-
-
LY
L)
P
PR
! Qif)
N2y
v

.

' et !
n-----.e - s as o

Figure 8(b)

eliminate those symbols whose boundaries
lie entirely outside the main window. In
Figqure 8(b) this would mean the upper

three symbols.

The Use of Names

Names are useful principally for
pointing with the mouse. The reserved

procedure HIT(x,y) will return a value

true or false according to whkether any

lines or text lie within a small dis-

tance of (x,y) on the screen. Usually
this information on its own is of little
use: we need to know which item lies

at (x,y). This is why names are useful.

1f, for example, we would like to point at one of the wind symbols on our

weather map, we should call each symbol with a unique name:

FOR K¢1 STEP 1 UNTIL LENGTH [STATIONS] DO
WINDSYM AS K AT ...etc.

when HIT returns a value true, the name of the symbol we were
pointing at is in HITNAME. '

The x and y values are normally the x and y coordinates of the
mouse, in screen coordinates. To determine these values, use the
library procedure SMOUSE. This returns a five-element list as its

value each time one of the mouse switches is pressed:

M <« SMOUSE;
% M(1) IS TRUE IF SWITCH 1 WAS PRESSED, OTHERWISE FALSE
M({2] AND M[3] CONTAIN THE SAME
INFORMATION FOR SWITCHES 2 AND 3.
M[4] AND M[5] CONTAIN X AND Y
IN THE RANGE -1 TO +1 &

Usually when HIT is used we would like to restrict its scope to
a certain part of the picture. This can be done by passing a name to
HIT: this is the name of the procedure call one level above the sym-
bols at which we are pointing. So if we are going to point at wind-
symbols, we should pass HIT the name of the call to the whole weather

map:

MAP « 'BEGIN NEW K;
FOR K+1 STEP 1 UNTIL LENGTH [STATIONS] DO
WINDSYM AS K WITHIN {0,0,10,10] ROT WD([K]
AT STATIONS [K]
END';

FRAME + *'MAP WITHIN W ONTO V AS 100';

53

FRAME ;
M + SMOUSE
IF HIT(M(4],M[5], 100] THEN ...
% HITNAME NOW CONTAINS THE SYMBOL NUMBER 3%

A second use for names is in converting from screen coordinates
to page coordinates. This can be done with the reserved procedure

SCALXY. For exampla
SCALXY (X,Y,100]

would return the position, in the coordinate system of MAP, correspond-
ing to (X,Y) in screen coordinates. For obscure reasons, SCALXY will
not return correct values unless the frame containing the procedure
call in question has been called at least once.

A reserved variable which may be accessed within a éisplay pro-
cedure is RELSCALE. It returns as value the relative scale on the
screen of the current “instance" of this procedure, i.e., the ratio
of page units to screen units. It returns a list if the scales in

the x- and y-directions are different.

Display Procedure Call Syntax

The syntax of display procedure calls permits any sequence of

statements within parentheses to be used in place of a procedure vari-

able name. For example, the following is a permissible display procedure

call:

(MOVE TO[20,0]; LINE TO [30,30]) AT [X,Y] SCALE 5

54

This form may be convenient for such things as displaying text messages:

FTEXT + *'(DISPLAY “START") AT (-.1,.9) WITHIN (0,0,100,100) *;
FTEXT;

This will display the message "START" near the top center of the screen.
The display procedure call syntax also requires that all display
Procedures called from a frame procedure are called with a window or

a viewport specified.

Displaying Three-dimensional Data

LINE, LINE TO, MOVE, etc. may specify three coordinates instead
of two. 1In this case the third is treated as a z-coordinate. Three-di-
mensional informa*ion may be transformed in the same way as two-dimen-
sional, with the restriction that rotation cannot be specified by ROT.
Windows and viewports, other than the final window and viewport speci-
fied in the fra'e procedure, should have six arguments instead of four;
scale, size and position lists should contain three elements; and
transformation matrices should be 3x3 or 4x4. SCALXY will not work on

three-dimensional data.

How to Use Euler-G

A special Euler-G compiler has been written, and can be run

as follows:

R EULERG
*PROG+PROG

This assumes the source file of the user's program is on the disk under

55

the name PROG.SRC. To run the program, type:

.R SEULG

*PROG

The debugging fsatures of BULER are all included in Euler-G.

smg

"...l.lll
w"l..lll.
F

LELETE P
CLEAR

WITHIN [x,y,w,h]
ONTO [x,y,w, h)
AT [x,y)

SIZE ([w,h)

SIZE S

SCALE (w,h]
SCALE S

MOVE TO [x,y)

MOVE [dx,dy])

LINE TO [x,y)

LINE [dx,dy])

ZIP TO (x,y)

ZIP [dx,dy)

DOT TO [x'Yl

DOT [dx,dy)
DISPLAY tl,t2
DISPLAY tl1,t2 IN ¢

HIT (x,y,n]

SCALXY [x,y,n)

RELSCALE

defines a frame procedure
defines a display procedure
calls a frame procedure
deletes it

clears the screen

fullowed by one or more t-ansformations calls a
display procedure. Transformations allowed are:

window, center (x,y), size 2wx2h
viewport, center (x,y), size 2wx2h
position

size 2wx2h

size 28x2s

scale wvxh

scale sxs

rotated r radians anti-clockwise
transformed by matrix t

name

move beam to (x,y)

move beam through Jistance dx,dy
draw line to (x,y)

dravw line of length dx,dy

like LINE TO, zip mode

like LINE, zip mode

dotted. LINE TO

dotted LINE

display text items tl,t2
display text in format f

look for hit under call n at screen position
(x,¥), return true or faise; return name
in HITNAME

scale (x,y) from screen coordinates to page
coordinates for call n.

returns relative scale of current display
procedure

Syntax Error 1:
23
3
4:
5:
6:
7:
8:
9:

10:
11:
12:
13:
14:
15:
16:
17:

29:
30:

System Error 8:

127:

APPENDIX VII: EULER Compiler Error Messages

Illegal title

Outermost block must include declarations

Illegal declaration list

Illegal formal variable list

Not a valid statement

Illegal statement terminator

Illegal subscript list

Integer must follow period

Illegal statement terminator

No begin or quote following title

Illegal item in declaration

Illegal variable following for

Only unsubscripted variable names allowed in declarations
For statement expects ¢

No expression following ¢ in for statement

Illegal expression following step

Illegal expression following _un_t_g._

11legal expression following while

Either until or while must be included in stepped for statement

Illegal expression as operand to arithmetic test
No do in for statement

Illegal operand for arithmetic binary operator
Illegal expression following if

No then in if statement

Illegal expression as operand for not

Illegal operand following unary + or -

Illegal statemen. as item in output list

Illegal item used as format

Illegal expression as operand for or

Illegal expression as operand for and

Null string, not permitted (Use " Slgrf)

String extends over more than one line, not permitted (use 'N)

End of File Input: Compiler reached end of £ilc without finding final end

Stack Overflow:

or quote.

Too many nested blocks

APPENDIX VIII

LINKING ASSEMBLY OODE TO EULER PROGRAMS

Assembly code may be linked to EULER programs by creating
user procedures. There is provision for up to ten user procedures.
They are called UPO through UP9. These procedures may or may not
have parameters, but they must return a value. There is also a facil-

ity to initialize user procedures when the program starts.

1. Empty User Procedure Macro Source

An empty user procedure macro source called UPROC.MAC is avail-
able from the system programmers. This file has the necessary linkage
declarations, accumulator and special symbol definitions, and macro
definitions. This file should be used to create user procedure files.

A copy of UPROC.MAC is included at the end of this appendix.

2. Accumulator Usage

Accumulators which have names starting with T or FREE may be used
without the user having to save them. All others in general should not
be touched, except as described below. Accumulator 0 should never be

used because the macros use it.

3. User Procedure Initialization

When a program starts, control is transferred to UPIS$SS. The
user may do whatever initialization is necessary and then return control

to the interpreter by executing a RET instruction.

58

4. User Procedures

when a user procedure is called, control is transferred to UPnSS.
When the procedure is complete, control is returned to the interpreter
by executing a JRST I.RET if there are no parameters, or a JRST I.BRET

if there are parameters.

t. DParameters to User Procedures

pParameters to the user procedures are passed on the WP stack.
The value at (WP) is the number of parameters as an integer. (See
Appendix IX for data formats.) The value at-l1(WP) is the nth parameter
through-n(WP) which is the first parameter.

Before the procedure returns control to the interpreter, it
should execute the instruction CAL B.PEEL once for each parameter

value and once more for the parameter count value.

6. Determining the Data Type of a Value

Two macros are provided to allow the program to determine the
data type of EULER values. They are SKDE and SKDN, SKp Descriptor Equal.

and SKp Descriptor Not Equal, respectively. The format is:

SKDE address of value, type of value desired.

The types of interest are:

UNDEFINED D.UNDF
INTEGER D.INT
REAL D.rFP

BOOLEAN D.BOOL

53

STRING D.STR or D.TSTR
ARRAY D.ARR or D.TAR
LIST D.LIST or D.TLST

See Appendix IX for data formats.

7. Returning Values
After the proper number of calls on B.PEEL the procedure must

put its return value on the stack. This is done by the following code:

MOVE AC, value
STACK AC.

If the procedure wishes to return an undefined value, the code would

be:

MOVE AC, [D.UNDF]
STACK AC.

8. Internal Subroutines

Internal subroutines may be called by CAL subroutine and the

subroutine will return with a RET.

9. Saving Accumulators on the Stack

AC's may be saved on the stack by SAVE AC and restored by FETCH Ac.

10. Free Storage
To get a block of free storige N word long, the following code

is used:

60

MOVEI TAC, N
CAL S.GET

TAC now contains a pointer to the block.

To return a block to free storage, the following code is used:

MOVE TAC, ptr to block
CAL S.TETS

APPENDIX IX

DATA FORMATS

All EULER values have special formats.

1. Integer>

The following code converts an EULER integer into

a PDP-10 integer:

LSH AC, 2
“H AC' -2

The following code converts a PDP-10 integer into an

EULER integer:

TLO AC, 400000
TLZ AC, 200000

2. Reals

The following code converts an EULER real into a

PDP-10 real:

LSH AC, 1

The following code converts a PDP-10 real into an

EULER real:

LSH AC, -1

62

3. Booleans

Bit 35=1 is true, and Bit 35=0 is false.

4. Strings
The right half is a pointer to a ASCIZ block of characters.

5. Arrays

The right half is a pointer to an array.

Array formet is:

Word 0: D.INT,, number of dimension
Word 1: D.DOPE,, size dimension n
Word n: D.DOPE, , size dimension 1
Word n+l: value (1,...,1,11]
Word n+2: value [1,...,1,2]
6. Lists
The right half is a pointer to a list header:
List header
word -1 C.DUBB LENGTH
word O N FIRST ELEIMENT PTR
word 1 NP ELEMENT PTR | LAST ELEMENT PTR
List Element
word O D.SINB NEXT ELEMENT PTR

word 1 VALUE

63

EXTEPN J2Buun,d e 41, JOBREL,JO0LDET,J0RSA y JOBPEN, JORAPH
EXTERN JUECNI,JOBTPC JOBOPC

CATERY S,RET,S +RETS,S. COPY,S,5ET, 0, HEAD) I FET,R.PIEL, 1, A6ET
WPzl WJFKINh GTACV

Ii=2 °11€T BYTE PTR

XP=3 'PUSH =JUMP STACK

Az 4 $2ODFP. HEG,

LVyL=5 $CLOCK LYVEL OF LATKST FiTCH

Tl =€

T2=217

T\‘:l 1Y)

TAC=11

T4=z1~

15213

T6:14

P”FEFI:I, ¢ NOT USTD PREGINTLY=NOT FAFSIGTENT
FREEN2:217 $VOT USZD PHESENTLY=NOT PERSISTENT
NPLEF RET (POPJ XP,)
IPDEF Cal (PUSHJS XP,]
OPIEF STeCK (PUSYH WP,)
OPOEF SeVT (PUSH XP,)
oPLEF FiTCH (PoP XP,]
OPNEF LR OF (1he)
DEFINS SKOE (LOC,DESC) <
1IR3 DESC, <
SKIPCE LOC

>

IFE DESC-1R@G, <
MOYE L oC
SKIPCE
TLNT 200000

>
175 NUSCAZH| =31, <
MOVE LOC
TLZ 774000
[V [DESC)
CAME LOC
>>
HOFLRE SKUN CLOC, DESC) <
IF: vEsc, <
5KIPL L.JC

>

IFE DESC-154, <
MOVE 1.6,
SKIPGE
TLNE 200¢¢0
SK1PA

v

L

Fe DE3C&301=3F1, -
MOVE L0C

TLZ 774009 &
Ior (drsc) ;
CAMN LOC

64

>>

D.FP=0

D. INTz|BO
D.B00L=381
D.LIST=141E6
D.TLST=1618B6
D,ART =1 4286
D.STH=143B6
D.PlOC=145B6
D.RAz146B6
D.REF=z147B6
DeSDRE=151R6
DeBiKPT=15016
DeSFRAz=146B6
D.STDK=152B6
D.DOPE=153H6
D.SUBE =154R¢€
D.EXTP=155K¢€
D.PROP=144B6
D.TAK=162B6
D.TSTH=163B6
D.FSEK=170B6
D.SINB=17136
D.0UL3=z172B6
D.BADE=17386
D.UNDF=17786

" Do UND=177B6

TITLE UPROC

INTEREN UP@§1S,UP14$S,UP225S, UP3SSS, UPAsEY
INTEKN UP53%%, UP6$SS, UP715¢, UPBSSS, UP9SSS, UPISSS

UPI%ES: RET

UP?$% %

UP1%%¢:s

UP2%%%e

UP3%49S

UP4§.$¢ ¢

UP5%$%4.s

UP6LSE s

UP7%%%s

UP3$L S

UP9$33s TTCALL 3,(ASCIZ/

N USER PROCEDUKES DEFINED

/)
CALL [SIXi.1T/EXITZ)
END

(05

REFERENCES

Naur, P. (Ed.) "ALGOL 60: revised report on the algorithmic

language". Commnications of the ACM, Vol. 6 1-17 (Jan. 1963)

Newman, W. M. "An experimental display programming language for
the PDP-10 computer". University of Utah, Computer Science

Technical Report, UTEC-CSc-70-104 (June, 1970)

Wirth, N. and Weber, H. "Euler: a generalization of Algol and
its formal definition". Communications of the ACM, Vol. 9 13-

25+ and 89-100 (Jan. and Feb., 1966)

