AD-760 546

AN ANALYTICAL APPROACH TO COMPUTER
SYSTEMS SCHEDULING

Robert Mahl

Utah University

Prepared for:

Rome Air Development Center
Defense Advanced Reseatch Projects Agency

June 1970

Notionsl Tochaical information Sarvice
U. S OEPARTMENT OF COMMSERCE
S285 Purt Royel Road, Sprnghed Vo 22151

DISCLAIMER NOTICE

THIS DOCUMENT IS THE BEST
QUALITY AVAILABLE.

COPY FURNISHED CONTAINED
A SIGNIFICANT NUMBER OF
PAGES WHICH DO NOT
REPRODUCE LEGIBLY.

AD 760546

———
N

RADC-TR-73-107 |
Technical Report !
June 1970

AN ANALYTICAL APPROACH TO COMPUTER SYSTEMS SCHEDULINWG
University of Utah

Spoasored by
Defense Advanced Resesrch Projects Ageacy

ARPA Order No. 829 D DT\ °

(m™=nn o
MAY 25 8D
Approved for public relesse; T M P

distridution wnlinited. c

viove and conclusions esntained ia this decumeat are these
the suthore and chould ast de isterpreted as secessarily
tag the official policice, either cmpresced or laplied,
the Delfense Advanced Nesecarch Prejects Ageney or the U, S,

BH

p —
MANONAL HOHN

‘.!"i et & 4

Rewe A Developnes’ Conter
A Foce Sysrons Commend
Ceiffins Aie Forco Bose, New Yol

~e

7. UNCLASSIFIED

Jecurity Clu:lrﬂcnlon

DOCUMENT CONTROL DATA-R& D

(Security cleusitication ol titie, body ol ebatrect and Indexing annotetion must he entered when the overail report i clussiiied)

! ORIGINATING ACTIVITY (Corporate author) 20, REFORY SECURITY CLASSIFICATION
University of Utah Unclassified
Salt lLake City, Utah 84112 e

Y HEPORTY TITLF
AN ANALYTICAL APPROACH TO COMPUTER SYSTIMS SCHEDULING

4 OFSCAMIPTIVE NOTES (Trpe of report and Inclusive dates)

S AUTHORI (FIref name, middle iniiial. lasi name) - T =} D
Robert Mahl

Tlc!‘n.! Carvy 8 TOTAL MO OF T alLrs - | ~ T -
June 1970

90 CONMTRACY O ChaANT 1,0 ™ I LT -.u_w'a DN T rUI AL K .o_ - - =
AE30(002)4277

& =m0 08¢ w0

W;-- LX) N ARy oiher Pumbate (Nal mey he aeai; |

. RAUC-TR-73-107

* et mamy "Ny §PS TR MENT T "3
Approved for public release; distribution unlimited,]

1T SUPELENE Nt Ame RO TRS W‘tond by AR 04 sO WG o5 1 s tome € Pru ® =
Murray Kesselman Defense Advanced Research Projects Agerry
RADC (1SCE), GAFB, NY 1344) Wash DC 2030}] .
AC 315 330-2018 = — . e]

e SR mag ¥

This report exanines scre aspects of the probicm o

allocating resovrces in

a multi-programeed coguter <vsten.

It first investipates to s extent the

users might participate in rescurce allocation decisions; a system that dvismical ly
Jetemines the prices of services is advocated., A madel is studied vhiich yields

a balanced set of prograss in onder to get a poodd sisasltancous usage of the
available system's resources, It also exmnines hov resource utilization fipures
can affect the choice of equipwment to be used at a comguiter installation and the
tholce of a svapping algorithn at systen's design tisc,

B S i
NI ASSEE I,
i L “‘u] .

Security Classification

A
14 LiINK A LINK B LINK €
KEY WORDS
ROLE wT ROLE wT ROLE wT
Graphics
Computer Graphics
2°
*
i
IOCIASSIFIED
[y Clataalyr @tyne —

AN ANALYTICAL APPROACH TO COMPUTER SYSTEMS SCHEDULING
Robert Mahl

Contractor: University of Utah

Contract Number: AF30(602)-4277

Effective Date of Contract: 20 May 1966
Contract Expiration Date: 30 November 1970
Amount of Coatract: $10,535, 198.54

Program Code Number: 6D30

Principal Investigator: Thomas G. Stockhzm, Jrv.
Phone: 801 581-8224

Project Engineer: Murray Kesselman
Phone: 315 330-2018

Approved for public release;
distribution unlimited.

This research was supported by the
Defenne Advanced Remearch Projects
Agency of the Department of Defcenae
and was monitored by Murray Vesselman
RADC (1SCE), GAFB, NY 1344) under
Contract AF30(602)-4277.

AN ANALYTICAL APPROACH TO COMPUTER SYSTEMS SCHEDULING

PU3LICATION REVIEW

This technical report hg’s bpen reviewed and 1s approved
s 2”’ 0.,
«N& 22" N——
Y KISSE

RACC Project Engineer

ACKNOWLEDGMENTS

I am cspecially grateful to Dr. David C. Evans, of the University
of Utah, who has patiently directed my rescarch, restoring my confidence
in many hours of frustration.

Dr. Jean-Yves Leclerc, of France, convinced me in 1967 that com-
puter systems can be studied scientifically. As such, I consider him
as the origin of my vocation.

Many thanks to friends, professors and students of the University
of Utah, among them Denis D. Seror (with whom I had numerous fruitful
discussions), and Duane B. Call, who helped to improve the wording and
the comprehensibility of this document.

I also appreciate the relevant critics and comments which were
made on earlier versions of this paper, especially those of Roy A. Keir

and of Peter J. Denning.

i1

Chapter I

Chapter II

TABLE OF CONTENTS

Acknowledgments
Abstract
Introduction

I.1- The role of scheduling or allocation

in multiprogrammed computer svstems. . . .

I.2- Evolution of the problem of allocating
computer systems' resources

I.3- What is wrong with the current approaches

to resource allocation?

I.3.1- Job Shop Scheduling

I.3.2- Current Status of Queuina Theorv.

I.3.3- Simulation Methods.
I1.3.4- Heuristic Approaches
I1.4- Organization of the Thesis

1.5- Trends in future comnuter systems ., .

Pricing and Resource Allocation .,

I1.1- Introduction, . . . ¢ v ¢« & o o o &

I1.2- User made decisions in a svstem with
decentralized control , . ., . . .

11.2.1- Some definitions ,

11.2.2- Decisions made which are rel-
evant to the user , ., , ., . .

11.2.3- An example showine trade-offs
hotween the use of several re-
sources hy a user

1102.4' f‘l’icinc ¢ & ¢ ¢ s e+ s s ¢ e s

1

ii

vii

15

15

17

17

18

jo

21

Chapter III

I1.3~- Indivisibility in space

I1.4- Indivisibilities in the time domain
and reservations ¢ . . e s e . W

I1.5- More involved contracts

An Analytical Model of Space Sharina - -
ITI.1- Introduction
ITTI.2- Some definitions « « + v « v ¢ « o o &

1I1.3~ A model hased on fixed priorities (with
preemntion) for each user and resource..

I11.3.1- Overview of the model

II11.3.2- Fundamental ecuations and
CONSEAUENCeS .+ « « « - o + o .

I1T1.3.3- Definition of the mathematical
problem « . .+ + ¢ . ¢ 4 e .

I17.3.4- Examples . «
IT1.3.5- Multiprocessor Case « « « .« .

11I.4- Macroscheduling and microschedulina
alqoritlms under the nrevious model. . .

111.4.1- Combinina two levels (in time)
of schedulina. « . . .

111.4.2- Assianment of oriorities. . . .
111.4.2.1- A case where a
given assianment of wriorities

can certainlv '» imoroved.. . .

111.4.2.2- Two cases where we
know how to assion prioritins,.

111.4.2.3= Gonoral case ¢« o . &
111.4.3- Assinnment of values ‘or the

proqrens raten w". s o s s o o

iv

25

29

32

40

40

42

44

46

50

57

66

Chapter IV

Chapter V

I1IT1.4.3.1- The 0/1 integer
linear programming problem.

I11.4.3.2- A first algorithm,

II1.4.3.3- A more general

algorithm. ., . . , , ., ., . .

ITI.4.4- A sumrmary of the proposed
scheduling method. . ,

I1I.4.5- Pricing.., . ., . . .

III.5- Models of other priority systems.

ITII.5.1- The equipriority case without
preemption. ., ., .

III.5.2~ The equipriority case with
preemption. , ,
III.6- Problems for further research.

III.7- Conclusion.., . .,

Swapping Algorithms.

IV.1- The swappina algorithm of Van Tuyl ,

1V.2- Anothier swapping algorithm , . , . .

1V.3- Comvarison of the resource utilization
under both algorithms , , ., ., ,

Demand paging ,

IV.4- Scheduling a computer svstem under
the algorithm of section 4.3 , , . . .

1V.4.1- Schedulinae eriterion , , ., . .
IV.4.2- Jobs desirabilities , ., , , .

IV.4.3- Job schedulino over a timn-
‘nterv"l'ooo-oauoooo

Conclusion and Problems for Further Pesearch. . .

66

67

69

71

72

74

74

74

79

80

83

83

87

88

923

List of references

Appendix A.
Appendix B.

Appendix C.

Proof of theorem 2

Proof of theorem 3

Proof of theorem 7

vi

102

1058

107

110

ABSTRACT*

This report examines some aspects of the problem of allocating
resources in a multiprogrammed computer system. It first investigates
to what extent the users might participate in resource allocation de-
cisions; a system that dynamically determines the prices of services
is advocated. A model is studied which vields a balanced set of pro-
grams in order to get a good simultaneous usage of the available sys-
tem's resources. It also examines how resource utilization figures
can affect the choice of equipment to be used at a computer install-

ation and the choice of a swapping algorithm at system's design time.

*This report reproduces a thesis of the same title submitted to the
Department of Electrical Engineering, Division of Computer Science,
University of Utah, in partial fulfillment of the requirements for
the degree of Doctor of Philosophy.

vii

CHAPTER I

INTRODUCTION

I.1 The Role of Scheduling or Allocation in Multiprogrammed Computer

Systems.

For several years, computer scientists have been faced with the
task of organizing large information processing systems which many
users may access simultaneously. In these systems, there are a number
of physical resources (cells in core memory, peripherals, ...). At
each moment, some of these resources are allocated to some users (it
is implied that some of these resources are not allocated to anybody,
some others to the system, and finally some of them to many simulta-
neous users--like a shared program segment).

What are the specific problems for these large systems?

1) PROTECTION: A user must he prevented from accessing a re-
crource which is not allocated to him; or, equivalently a user should
"see" only the resources that he is allowed to access. Several solu-
tions which are more or less satisfying have been proposed in the last
few years, detailed accounts of which can be found in [1].

2) DEADLY EMBRACE occurs when two or more processes are mutually
blocking each other, in that each of them is demanding a resource that
another posesses and docs not want to release. The problem of avoiding
deadly embrace has been solved satisfactorily, for instance by Haberman

(2], who assumed that some facts could be known about a user (his maxi-

mum demand for resources) before any resources were allocated to him.

2

J) Tho scheduling or ALLOCATION problem itself (to whom thas re-
nources should bLe allocated {f there is any conflist] is cleatly sepa=
rate from the problem of protaction and can he comnletely separated
from the previous problem, because deadly emiirace 18 only lethal for
certain kinds of demands which are not rulevant to the allseator les-
sentially, access to shared tables and shared files).

Problem %3 is relevant to thie study.

1.2 Evolution of the Problea of Allocating Computer fysteis’' Fescurces,

The first computers were run in a batch-processing mode. There
were really two proucesses--the system and a proaram to he rua by a
user. 1f either of them asked for a resource which could not be allo-
cated (for example, too much core memory), the uUser's pProgram vas €ime
ply aborted, and the next one loaded.

Later came the idea of time-slicing the utilization of the entire
set of main resources (core memory, CPU and disk 1/0). At the end of
a time-slice, a user would be deailocated, and another user allowed to
issue requests to the available resources. The entire aystem could Ye
considered as just one big resource. Response time in such simple ays-
tems could be studied by queuing theory.

Another idea was not only to partition the time domain, but also
the space of the resources. One user might have the right to use 10K
of core and half of the CPU time while another might get 5K of core,
half of the CPU time and the disk 1/0. Space-slicing could be done
either independently or concurrently with time-slicing. Again, if a

user should ask for more than the resources which he was allowed to

Arfeas, bl fequeal wouid te donied,

Clearly, sum partilionisg leade 10 1ssfficiengion, WMoy sbhewld
the systen pefare 0 sllorate as addilions) jage of cois 4f 11 1% @-
vatlable, el [2lls outside of e eriginally Allscsted Az af o=
sources (Faftitien) of the toguesting wise’ This dravbant jod 19 e
Viea of Ravird 2 mdee MRAMC FAPTILIONIAD] The abhate of o wier wdils
ot e deleemised by Uie Sjeten ehte and (ot oll, ot would depmmid o
e yser’s cuttentl and Fulure fegui totests for pesguttnms,

Opaanie partitionisg of the potoutoss, of 4= il will lates bs
termed, dpeandc spagesshasinag, 175elf Jisde 1o Joctliciesgiot. For
iastanc e, suppose thatl & wiet €hould feguest Uw puatic-telality ef e
existing core memiry, and that 1" vould be avallable M e morent 31
vihich the reduest was dseued, *hen, Il o fov mill)seconds Jator @bt
Jobs vere v atk for cote, ey woulda’t get 119 and a8 3 recult anet
of the system's resourcet would be jdle wti] e large Job would Jib-
erate some of ILs cote. TO avoid these Irefficiencies, 1L IE peowssary
to allotate the entire sot of retources a5 4 vhole, rather than 9 alle-
cate each resource indeperdently. Note that queuing theory I already
too weak to analyac thit sjituation.

A conflict arises vhen o Or more uters ¢imultareoutly want to
uie the sase resource. Scheduling can be dofined an the art of solving
such conflicts. The echeduler has to solve imsediate confilicts (by
giving to some user a priority over the others) and minimize the probe
ability of future conflicts, without necessarily reducing this probalil-
ity to zero (which would lead to rejection of many non-curtently con-

flicting requests).

Pt Spaie-abaiing poublen iont it of Tisdiog o oot of simmd bans -
= ety ot e cetpebar, whioh weeld slficien. iy we Lie speten’s
Basilitinn, ond sptituie & gime crilevions svas & risis Vi | sterwel
s obay snods, sae Lowta lod o bilassnd st of weis. s i relatesd
1 what shall b cellad O @dapter 150 vhe jadivieimi Litieo: 18 Shaie
6f AS s e SeDgrane, U e A pareiile, foe Jantabiis, te abboevste
e CFQ 46 & wird Withoud SEFiNg AN aGbe @08 61 Tude §F B gupaeta
1. A& Faetder SFFIoNlty @atee Peon Whe ARG @2l Ditiee 10 Whe Bim
dotaie. For Iastante, I 2 Promtad tedm) e coiv (Gir Tehaty Wd The
CFQs 11 12 s reaittabls (@ 1Al by Late Gaet 0w (Dee Moty Wil =
A Jeativg 18 cafe LINE 16 get twadped Baih onte Eove MEDBREETY Ml ey

Moast il lond sbd Pudtadicrd setwife ot Glhet vl fRidl e Uie
sehedilet bac 10 Gope wiline & Wrer NPl Al 1 Het O e spelen enly
M e e b assured @f Baving sGhe goriion of tae deun for hie filer,
and & Cerlain partion of the (H0 atd cote menaty fae Lis Comprtal jene
for a full one Woue peried.

Eom: ellwt usets iGNl vasl L€ Qul Mare complicated ot ractss fue
isttance, 0 Inpeme deadlines for some anout of sstvice. Tho gefietal
scheduling prusslen for Uhe speton is O find 4 ect of wors, cath wor
having tequestled st CORLEATL, %uwih thal eath contesrl i the st cm
be tully satizliod regatdliete of ary poseible patitetn of usete peguents,
$uch a sat enall be called a conpatible set of ventracts. Fot a given
systen Uicte exists sone contracls Orf %ot of cuntracts for whic) 1t Anow:
hov to check user compatibility. This creates a estructure of prseible
contracts. A goal of rodeen schedulera is to naw a situclure of con-

tracts which vould be as rich as possible, and pos=ibly even enterdible.

L3
1

Nole Tt Wha AEWTiET @F fod@dnl Sekls GOMEst (L e GO ¢ RETR My
'y, dupemibing, Fis isadalkin, O 1A Tite 6f dag, siate 21 past ionlae
Litee i COML 4 £E12 WA b e gs Fibels 19 b prgueetad U eh @llage,
I & eomAFadt Bt btid aicepiad by the &-atafh, 11 Mt ales pedipen The
Slde 6F e fpurtuts efa)latle Tae sy s4siwing wespe,

FEREIAg i2 teldted B Yhe MUpnitetr W eatedsta, §F 3 wied aaea
Gt & eads= " Ot et Pragably Wi Ll act Al low atded geree aitel tares
e Al lfation, se will b ehaddid mdes Pl 1F he fapamiEte petiige e

Whlsd # VEY NN CEIMT AT Gehpdt ibls w it alhed et

.3

Fepetpister af Mmaptl Dpttent f idwasbatnd apetehy fuReided kil wBeed

belongiog 10 ome @f & cuttals nytise & clarane, T stpstogies ot
At ing the Congovied belwren fhete ¢lastes, @ Dofsuet ghets 6F The aabe
clane, e catiber 1213 Md B 231 eave Pk chadre Lo Uhe weee, The
epstan will Ly, Vot Jeststae, 10 NisiMids %be svetmse teipants Life for
teal Lite wsete, M 1S faeinide the CFC wlilisstion (of bty wiste;
et 1t Wil artificial iy determise 1@ which €lees a wiet Belomin, ot A
funstion of His past wie of fesautrel, The eytimn docidgners: will shew,
ol costss, That cettlain kirdé of prograne wel cerlale talietme of sar¥ite
retuosta (exatplos far vhich the ereton has Yuon ez met), yield » fes
sonable tLrade=of f betveen fesoutde wlilldation, freganar Lite, shd Gvw¢=
head

fueh feilicds, which conpromise betwsen detstality €f the €iluslione
vhich can he hassdled, and comploeitly of the alis ations alsatithime, ate

Aot criticized hete, thoush It would oftes Jw Sestible t0 S8l NEew gunye

6

erality far leds complesity than In the existing systens, [nstead, a
defibuemioly fuinristie hppothesis 18 presuled vierein nore compleaity
1% allowairle, asd vhefe 1L le 7eddonshile (2 @onsider haw (he ueer vants
i@ sad e@ild participate in Allocation decisione,

By GUyiIing 19 completely aianals (e fasadenest of the compulet’e
feadpfian, 4830 by e iag 'O hide e teally aval lable resources from
e wawt, 3 comsiletahle GPLIM SV (9A 00Test i d), THhat 18 The dadwiodie
@f 2 GEss Aot his PITEPan’s behaviow, ¢ lost, Of course, Mol ¢
Whee & Ml hadva depp GNAl] PrOgrane, Gf WO Ade Juel ladking (0f etrnts
s Walt peodeans, &b 651 vast @ be peftinsal 1¥ 12ad]lved I8 retiurde
Mampgeneal, Wowesad, fot lafge perosrane whieh afe s aftes, 1T be
den) piie TRt s pamiranted e able 10 185 luenor the aliotation als
pativhme, yieldisg imporatesis 18 CoMpItMIce 1 ite @ §D MehGdP wtade .
™Me plforte copetided Ia ATMICFIAG Thates Inpeoretuntes conld b Nt
thel etinpetiaated for by » sa¥iage 18 The E0E1 6f (0 eoe@ilios of Uhe
ptsran, Nits Al thars L 2 shall mutber 0f pedieam: Which M= rn
vty 6flas whih commaute alroitl The eatite fusisite (tommend (Mletrees
e, coOMpilere, File haadliog roet lomt, e17...),

Mivp et Adh 1he wime U0 flve hie aderice fat & Cerlals auber of
rade=Gf fe cuncetning the wee GF b hitige &0 Bededp, Sedwivd fes
SEWMERE, oo’ b cxatpls of sodt trade-affr will be given Jater, in
e eate af 3 encspass conpl let leastioe §1.0),

4 fxviee of e Mozl Cartent neibdde of analvreir of twetutes

sllocation algatithive 1o Lidesalafed €patehe will tow be presested,

‘0)0‘ Jﬁ' "ﬂ‘ ag!jzﬂ‘.lﬂi.
peferences) trdustrial Scheduling ()

Theoty ef Scheduling ($)

Host of the studies of scheduling have been done In operations
fesearch for the prohlam of a Jobs which ate 1o be rus In m S9aps (the
ofder of the shaps A be elther inposed or arbitearyl, Tho mumimr of
JomE 13 thas fiaite, afd the tine Spunt by 3 diven Job 16 2 qives shap
i hrawn in advanes, A& Job mever cprlen (mever passe: throush the Sane
#hop Mite that ends), The J% 18 12 Fisd @ schadile larder in elich
et Shay L Goitg o Naadle Ve Jomd) , wivigh misintiee, for Vnstance,
W averade Life speml bp o JObH IR The syeten,

The feublen Yae alen been et idstad amdet JecuMit Jome wii)oh
ate 2 H1lle Bit Mot felevert 16 Gutpiter epstema, The muetber ef Juoe
W isfinits. Mey arrive tsmdonly esared 16 TiMe, and JeEt o esan
UhtDagh Ghe shage; lnsl e Yol Stv abaphed bo 311 have 0l lsr @araee
tetistice lemte asads (ot teametome!l, Sae Cucse hamdlitng Sisiplines
bave buedk tladiad, The S0 (aohortest prodesing 1ime fiesti eveateqy
seahit, Veraflakly, %6 Fisld ot psralte,

The Qittsn® Pusviitg Theaty Methddalodd 10 Y Pe st ing Spetate
aalyzia, 18 o catession &f e sarly taeshew smalypeie (tee ot
SECUIMR) . MAMBEE colemblin wist G slwly, by & eanbinat los 6fF cifulsion
A gt 1etiE analprie, 3 pivohmp tisd of teuilen whege deise epile
Wtds b U iy, A trvicsl sty of Whis bind e b found in [4),
™e flavst iz %o ey O solve & eart madal, wivere all dats on Line
sPeil by A8 A0livitly 08 & fesurce ate perfectly bamwn, fL 12 haed te

se% hov Tuth techipeet Could be used for real-line comtwtles sehmdulin:,

f1.3.2 frent _Sratus of cusuing Theary,

The schivduling of tire=shared computer avstems has been studied
in the light of queuing theory. %eviews of such methnds can he foeund
in (6,7). is appiroach is not satisfying because 1t applias only to
very siaple problems, Mozt of tiie tin the eyitem 15 reduced te just
one precoptible resource (3 CTU er A dish), and a simsle wtiratogy like
B (Foumi Bohiinl, ar PR (Forearound Background) 1o studled; the respmase
tire of the ¥gaton L0 A User w0 WallS 1O Eel2e the uiljue FosOutte
for a cortaln Line Perlod, 1o oompated, THAREs sita'ogive are elwicusly
of oo help 1 Gur problen, limcavse L ottle pecis af 3 Pedors gon-
futet systel ate e sizuee of he moraries aad the bardvidth ef the
chatne le rathar Uran the speed of the O30,

Bate At L AuANed dows ael belleve Thal #1alistics @b e
Averaps geet’s tehalour ehaould le weed Whern ctasting » fesoutoe 3l les
CALIoNn Aleoeithn, Sath «1atielicE o be Yery uselul 18 predicl e
g tornaics 6 & vpeten faied Vith & Cetlais st 0F mare demards, atdd
O detepmioe 48 1810040 hardwate confisuration for 2 cotpate? 18etallse
Lok Mwewer, ' have 3 fesoutcr allogation sldansithr Lased en aPhe
Abberpd loms 6f the wSTE Chat el e1ie: Mgkl latre sroee 10 b ow e

At P DU,

£.3.) pumalerien Wetds.

Thaas meitorls B Labes (410 ASCGunl Cetlalt 1321800 CT Abdyt
e Gtety Aafd 3 corlait coafigutation of aval lal Is Vetdgrecs et
the resglies are walid oaly In the Carse for witl h 0@ 2iBU 40 R vepe

tan,. e putivmt «f patateters whghe of fect houlad e heeked 1% e

o
1atge that It s qenerally irpoasible to cheek the effaect of each of
then for severa) -gts of values of the others., The real danaer of
simulation i> to lase control of the caute wd offcet relationshing
under an encrnous ¢tack of results, and to misinterpret theso posulrs,
Here again, U 13 bLelieved that simiisticy ehmald ke af grest Ywlo in
¢hdsitg AR actudl hardiare @&t Igeration Whieh 11 0 ficing) run
a etvsas sartle af promeane, bt BAl In seleetine o e adaline alenrs
1uer wiiiehy o, bim @f feolive When 1he charpreme)= ion o7 The et

Chdtetn

1e)-4 mmaistie Myguaghes.

ridieonls, sany afeds) 1ng a)wr)ithme renpanad 3@ fae T 6
Pt Inige ths wwn of JuEl Gl COMRGASt fedrarew, Cemesradlv, 19 Me the
CIY (in [8)., fur Imttowge): sometidme 11 1& The cofe Pamery wiill2ses
taam ((2)), o0 e sR1)igation of he ehatms) bwmtwess 7 Jevsle ef
saraey (105,01)). iz teemgren ie conmtdernt te o “arifios],” and
e Aot 1P wntgihver 103 W EIEM o wiey cwtetully, The oftee
tErpEttes = cuvebdated At “auei Ve Y wel 1he omie Test Sale b Ve
Aot 1 10 gansite of ety Wietdat they dee zslgeste] of o,

Dore pewnieing ie Umemincs®s appeveart, (12,13, wnieth Wi)] be
dspyrnad 8 sertion 1.3,

The tesndils with Mot Tinecstarine Mdale 12 that ey seprphe
vagps wetlinales Af spslmne gmsaensane by Putely we we come avweal)
LAV TIE: o tha et A7 jabs cwmcted tn ter wnbor Ueen (8, 08), Thee,
Wy Calot Ln watd for sfulal ine 10 e 200 L I s Salateve? erte

&t atars,

Lo

It is wortinviiile to biriefly rention a vory 1solated approach
taken by a tean at UCLA. AMbsolutely everything abeut the progeam's
uehaviour 18 suprosed to be Anowvn and synthesized in a directed aeaph,
Using this infoermation, Bovet [1%) studies memory and progescor alle-
cation for 3 program rusnlrg Ia A mlLipePeassn Lyatem, This 1% an
esangle of hov o waer cmild optiniae hie own rrvavive aliocatién frr a
Qives envitoanasl, Wl Uhe fad: ¥ of pregrane coen G aogh)+®) cated
10 allov the findity of 3 kal mred dotl of weers ¥ty ewrea (¥ cvats

ki,

td Qtgamiasiioe 6f Uhe pegeet

1 believs a1 Whete aje soMe resednt wii¥ 4 arer Dwrgld paet el
Pt I6 e resturds alloastion deciviome, This tbedia Ifvest] e
Now this Canh be aghieiwdd, ety e assertially tvo appeosghes:

1) The wsst Can Mabe Llke dedisient hinsell, o,

¢} e gad Bive Uhe spflen sohe Infoemation abome! his ewy b=
havieat, steency, Ml pansible (rad affs bhetween the yie 6f vatlow:
tEEsrTes, sl lot 11 madke the degavliann,

e spiten ahosld anly worey aboe? conflicts, aad Ly to minindér
e, 0 jfevent 3 went feon tunapslioien "he whiele fechias, 10 1@
NECESSACY 10 JEnt 6l Bun by Invaking A pricies syaten, I A whep wants
ftr 6l 4 EErlaln teswstdn, ke had 16 Ay Mdee,

The comnpatar eypster (3 then condldotod ax a foteel of redoeten,
M cagh satant, the wiers Bl for same sintle teroutie ot some say of
tesatges for A seriod Hf tire, The systet would alloeate 1te=il tn o

st of Gidders in ordor Lo oplindde 1bs own prefit (for Imetive, Uhe

sun of the accertend bBIdS), The prices of tesourees vould be determired
dynanicaldy by the systen, as a funitien of e load fleasity of do-
LT3 N

™he pealilen 12 1ater conplieatod beoanie of Indivizibllities,
which 4c o5 allov alloeatien af resou e ¢ Ladiee tadent |y Fran eanh
Glhat aml inderendently (ton provioes) lodat im. . Thwak geset oo
are svedied [n muacter (1. & seheme 13 2@ prcdEd (8 21 0WEt ettt
the st @7 aAllovahle Conirame tet tie youe,

Compter 01 stwloes & Mole] Whigh hax s v sl Vhe peeiiet fal
of 1ne anwent of Fotary guafiot owne 3 werlaie 1T (tMarva], Wheteln
sRMEUNIAS 12 bomwa, o gt Lhe bebaridus @f The wrete® gegaram, T
prediotive Adde] 1 weed T 9rt 3 bulatied et ol geer, Neds (Ran
Ve ehIien @f The Iafasmalion 1o le Gives 10 e oyl ing ol i®wn
RN e wEerE® Srwgtane 1& desy IMeertant, 1T 10 e o eetedis
cated, e tfcypars bedehes gurrliotableg (T Yoo detal led, e et Byine
et 100 @mplicated, If the (afnenating Sewt Tof st Jhaviont i tae
sinple, 11 Ga't b of muih belp., | taibe 2 ehtiew, and § lavestioatal
thie Satperpending fatbebad Loal Mol b, Wit e oot sal greacowsti & of
LM 3 speien”s ALPAPINNE irnhlc eatuph o ThaT 10 Coull vk oo
annl Sl 1y 18 teal Lite oo Felvwte emtmgled syeiope obhErm Some Cangelies
pavet coakl be speat fop Schwdalios,

hagter 07 smahiase hidw, al sPetam’e droign L, the prl s s
Parious bindt of doviey bl chante] devices cas N ls in Ue i of
a seappiag al9srithm, Tve s ting alasritine sre comrated In Lhe Jisg®
of currsat trends 12 prices af facilities asd waces® datls, C(hastér

IV alae 1llustratas Yww access tine (latenry) of a <law merory cas Ie

teadod faf i wadvidth (Smivast of infermation aveasced par vl of 1ine),
Wile Larning the pajed of Lhie thereis, thee redder nNay Sle@oper
thay ke 9sla inle niate peactical amd partiowlar &0t tons e Qe
Ghaples vt I hifeate, Nowever, | engedt Ohatad ¥ U8 e Aoge
tesil |y asewgces) by setual Spstone’ desi wete Yhas aetey (10, ani
it 05, Viself, Mmere VA ebagtar §1, Sfa 10t eme af ay paale
1o 19 dectepns The Std Letveeh Yheiay wd DM feReat ol LmE |6 fe smpe o
Al iotat 1en 2] 504) Uhie,
§ode pmt clatd Ut b i salved et peotlel of seleriyl s
CoMplat spetams, The Jast werfed of Ahe Reeis PN salEd tvee peDe

Elame ad dovdele WRi0h vO5ER be sl JerEal At ind,

t.$ Domasls \a FOLSER SOMOBEE Soetghc, B, At reievisgd 1e Spi:

Lt ingt i

Ve dueidhitg tuitptfe o] Moo i sthemos v b gerd jo fulate
g, a3 avgtenmte af gtvivaile hoatdente Bevi] Pmemts e seaentjal,
10 MighE be Tt ke fprobaat iy cmttE of fertals sesearoes will e
gteally tabered anil alioratien crapilen: asraclated wilh hese tetepce:
emld pornihly simpal Eaniah e o the ATl lity of et s sty
tieas ol Lhean,

For Iadtatge, Uhe Avwtadn (todfal om a Cottenl Cominglet sweloh
eDite fach Mote for jla MmaTEeY wEade has fof 103 Lendwaser weetr . This
1# olam 1O bo Arfwdluated 16 the futwre, wees trodeand will wie poes
ANl mete "emary anel 3150 ot Inlorattion. &3 3 CORSNTROe, {1 1 jeea
and less Important Uy Gdnventrate efferte In hewsing e CPU's pusy all

the tite, byl ve wonld Jike o spoate fast owmrery,

1l

™e 1ee rrioe ef e CIMI's has another seasecuence. It is
sc1ting feasihle 1o use aere compriling power In arder 1o get an -
Uimar allooation of the resources., tn A 119 comouter system, ane nros-
euisgr (M eroprogrammed for nare flemibility) eould Lo dedicated to
sehvedal ine. Ve, schedulitn strategle: #i1] ne lanmer mead 1o e an
sinede ad maltileve] meeuss, 11 13 peaseadile te stagg that 12 i)
b possible, for cand 2, 18 salve 4 Jimese senoranmias feohlen 1¢ real
time I Geder 10 wet 3 letter eCw dule WITh come oot heurjelicel,

Thie @aat of san LIV dides rat degps wn Fash, lae he goen of an
Agnnd | epacted 1o dgrnate oo iderat by, fn atdee wanlde, the apts
WME of e Mendey WHl] Jattnase. Thie 1t dwe o the advest ef |aree
#oale Immration, TWE e ML tederies il renlare core, and the o
el #lde ef w B midyls will e araller tam that of 3 core mdyle,
Thiz comniderat imn, prewides Mgk 64 the M1 jeat jre far chiaptee 1YV,

fe Wete sulng 16 Lo 2 Yeemd Towards fatiymss) ol of Cwaride
latgs eortwllet wpttemn? Lathe twileme tresent severs] pdrant ases: In
fatlionisr 1o $tate larwe deta baere 19 b ohatad by pamy wsere,
Thevtet i@l lv, Lasim c@mpater srilans Lhamld 36 he sreferred o raae
INEi Y Phcoutghe Ml b miare Fally wtd)) oot ey (tere 1o 2 Jatws
uriet 6f cirllavengs wlerz, Siefe The Jeper) i les 1 the demond
for restutim: aen amhenibatl eliMmetad, Byt 1% fisa) test wil) e
whellet the ahall wier wil) wst al) the Eervioe Carilities from e bis
fathite thet ho found 2y e aralior comuter., Wit wi1] de the poan) -
By of roserving sére pattian 6f S sachine 18 adranrs® The ysed
wvasla 5 Naov drw fart Bl Viriaal maghine worts, e BIaNL alen be Bn

A hurtty and ewtect O @ot betiet fespente by tavias fare for 10, The

14

authors of schodulers with multilevel priority queues always con-
sidercd the user as passive or inert: all users are equal, and a user
cannot. react to the service he is grtting except by modifyinag his
pattern of requests, or by simply leaving the system. Morcover, the
pricing of computer usage was bhased on tlat rates, which are, as

shown later, not dynamic enough and thereby lead to Josses of effi-
clency [16]).

Another factor which tends to limit the size of computer sys-
tors is the existence of non-linearities in the overhecad. Tf the
total overhead grows faster than a linear function of the sizc of the
syster or the numher of users, therc is a critical sire where it qgets
unbearable. For instance, if there are n processors accessing m
memory banks, the complexity of the cross-bar switch is known to be
propor-ional to n x m[17), and the time to solve conflicts is propor-
tional to log n + loy m, both terms introdncing non-linearitics. As
far as allocation is concerned. our linearity criterion forbids us %o
spend more tipe or computing power to make an individual allocation
du-ision on a larger system. This is a very drastic condition. Note
that rost smart pane replacement algorithms (like least Recently Used
or Dennina's warking set) do not satisfy the criterion, while simple
algorithes (FI11), LIFO) do. lote that the swappina algorithm which
vill be presented in IV.2 does satisfy the linearity criterion, whi le

the ones of V.1 and of Chapter 111 do not.

/5

CHAPTER 1I

PRICING AND RESOURCE ALLOCATION

II.1 Introduction.

Suppose that a coffee shop was serving ice-cream to people on a
first-come-first-served basis, without asking them to vay for it. As
the news passed through the town, an enormous queue of children wait-
ing to get their ice-cream was formed outside of the shop. Some of
the children, after getting a first ice-cream, were going back to the
end of the queue and waiting for a second one, and so on. When the
shop started asking a quarter of a dollar in exchange for an ice-cream,
the queue vanished.

It seems that computer scientists were slow toc find out that a
computer system is just a service. If it is given for free, there is
a tendency towards misuse and efficiency is lost. I expect this to get
more obvious as the extraordinary growth of the computer industry slows
down.

Allocating resources was defined as solving conflicts between
simultaneous requests for the same facilities. But wouldn't it be
better to just avoid those conflicts by pricing the resources high e-
nough so that the number of them is greatly reduced?

There are two possible philosophies in relating resource allo-
cation to an economic system; they are given here for the case in which
there is only one resource, but they can be generalized to more compli-

cated situationc:

16

1) The "a priori" pricing philosophy. The system chooses a
price for the resour . As soon as a customer arrives, he gets the re=~
source, provided that he wants to pay the price and that the resource
is still available. From time to time, prices are adjusted, depending
on variations of the offcr and demand lev:ls. This was advocated, for
instance, by Nielsen [16].

2) The bidding philosophy. Each user submits a bid for a re-
source. At a certain time (chosen by the system), the resource is given
to the highest bidder. 1n Sutherland's yen system [18], the previous
bids are known by all the users. 1In the case of a real-time bidding,
the bids would be secret (essentially to avoid the overhead of letting
the user consult the currently expressed bids). This, however, docs
not mean that the user would pay the full amount of soney that he offer-
ed; in fact, I suggest in I1.2.4 that the user should only be charged
the minimum amount that he would have had to offer to get the resource.

The bidding philosophy has two advantages over a priori pricing
and one drawback:

1) The highest bidder always gets the resource (and not the first
to arrive).

2) The bidding itself automatical}y determines the price to be
charged to the user, so that no price adjustment is necessary.

3) However, with the bidding method, the user doesn't know
whether he is to get the resource until the time arrives for the auction
to be closed.

Note that both philosophies can be combined in the following way.

The system sets a price at a certain level above tlie averaga price at

17

which the resnurce is expectad to be sold. A user has the choice of
reserving the resource imnediately vhen he asks for it, at the price
set for it, or taking the chance of waiting until the time has arrived
where, if the resource has not yet been allocated, the bids are ex-

amined and the resource allocated and priced in the second way.

IT.2 User made decisions in a system with decentralized control.

II1.2.1 Some definitions.

Facilities. There are several kinds of resources (or facilities)
in a computer system. For instance, a certain number of bits in a
storage device is one resource, while accessing (writing, reading, or
erecuting) these hits is another resnurce. A picce of software (like a
compiler) can itself be considered as a resource, which can be bought
or rented for money, but in the following developments only the hard-
ware resources will be considered.

liote that anything demanded by the user can be called a resource
(execution of a programmed operator, having a certain program in core
memory, etc...). Ultimately, money is itself a resource; this notion

will be useful in a later section.

User and System. The user 1% not just the human being who pro-

grams the computer; it is an indevendent decision-making entity, com-
posed of the human and his programs, and cven so-called "system's
routines”™ that another part of the user has decided to activate.

The system is a particular user which raakes resource-allocation

decisions. Computcr operators, managers, and bazic systen's proarams

bulong to thoe nystem,

11.2.2 Decisions made which are cclovant to the user.

The sophitsticated user might want to make some decisions which
are ordinarily made by the system. The firav idea wiich comes to
mind 18 that tie useor desires to optimize himsel? relative to his
environment.

Suppose firat that each resource has a price, 18 available in
any amount, ans Lthat thoe user tries to minimize tne unit cost of
running in such a system. Lataer, it will ba scen that, in general,
such a reasoning 18 teo simplistic, because the users deriad is not
small relative o the total amount of rescurves in the syites, [co=-
nomists say that the dumand 18 not atomic.

What are some of the decisions which could be made 1y the user?

1) Size of his working set of pages in first=level morory (in
a paged systam).,

2) Choicva of an utaency (total bic in a bidding system, or
priority lewl in a aysten wire a cost i associated with each nrie
ority luvel),

3) Si2e deksired fer 1/0 wuffora,

4) Fe:iduncy of a Jlven dZeament at a cvrtaln remory level., Raeg-
identy of a file at a cortain mesary lovel,

5) Collecting and eventusl aiving to the system of some statietice
on a proarad ulitch 1s often run, The idea that & wser's knovledge s
inportant in ordoet W0 got hatter paging has Leen atdvocated, for Instarce,

tn (19,22), lenning’s devonssration (12) that his “wirking se'” al-

8

qoritha performs better than L.K.U. (Least kecently tsed), can be
teintarpreted iy caying that the inferioerity of L.K.W. s that it
handles all users in the sane way.

he uscr, as ve have defined 1L, could Alvays call zsome shared
syster’s routine to do nis joh. Movever, this reutine vould vark
under responzilil ity of the user, &nd he would te eharged for the fos
soutcas conzumad bvy thie routine,

she ment subsaction will shov an esarspile of duwv Urads=cffs be=
tween Uhe asaye of =2Jeral FEEaUrcws CM o€ &tk and Serve the uses
to improve Lie rescutcr usage of his grogram, 10 Other Cates, btavs
evar, such trade=of s cannot b trusted to the wtsrs, lecause the
$ame Strategy has o b ueed for all prograns in Y svsten, Soch o

situation 14 analyded In section IV.) (chagter 1¥).

11.2.1 3p ewample shoving trage-offe bmtvesn the wse of sovers)

fesourees by o usee| 3 epe-pans cemellec.

A fictitious eompller hag & parvs (ar searental, each of whieh
has certain characteristics a4 far as the locality ef the provdran te-
ferences 13 concorted,

(1) Syarax analyzer and 14 costaphilceal analyser

200 0f e memory teferetices, ated occuples @.)0 vords

{2) irror estances

2.1y ¢f referoncrs, &4F enrds
(3) tdentifice tasle
157 of teferances, BF words
() Code nd data m;:mu cuttently tonorated

v of references, W words

(5) Eyntax tahles and semantic rout Tnes

€0r of all references, 8% words

‘These 5 types of scgments have very difforent uroperties:

(1) Each time (1) is accessed, alrast all of its vords are
accested,

(2} 1% accessed very seldor,

(3) has about & to 12 worde of Information rer identifier,
each of vhich 15 accessed alout once or tvice each time the identifier
18 agcessed,

(4) is accesnsed quite randemly: two consecutive accenses are
never contiguous or very close in time, and not always contiquous in
enace,

(%) Accesses to (5) are frequent, but not very correlated in
tine,

The merory ayuntem han 1) fast registers accessed in .1 micro-
second, and 2) core memory accesased in 1 microsecond. The hardware
allovs, for instance, swapping pages of 12 words between the two
levels of memorv, with a renlacement alqorithm of the “"workina set”
tyre of Peter Denning [13). The size of the available memory is
supposed to be larger than what the user micht request.

Assusme that there exists a pricina system for the computer re-
sources, with a nrice pl-lo for a memory cell of tyve 1, and p2=1 for
a t'pe 2 merorv cell, per unit of time. 1In this simnlified model, the
costs of the CiY and of the swapping bus Letween the two memoris are
supposed to ba negligible. This system of prices is suppnsed to be

quite stable, and the user can assume that it will not vary more than

slightly over a rather long period of time. The user has to determipe
optirum residency or swapping strateqics for pagen of his various seq-
ments. This assumes, of coursne, that the hardware is able to recognize,
for each user's segment, which strateqgy should apply to {t.

The detailed computations underlying this example are not shown
here; however, they indicate, with some restrictive hypothesis, that
the optimum strategy has to leave (1) resident in fart registers, (2)
and (4) resident i1n core memory, and (3) and (5) should have pages
swapping betwcen the two levels, with a working set size of about 32
references. If fast memory had been much more expensive (overloaded
system), (2), (3) and (5) should have been resident in core memory.

The point is that it is possible to linearize the average cost of one
reference for a given segment and a given strategy, in the form:
C=C*tap *+ar
where P, and p, are the prices of the resources, and a, and a2 are
coefficients which depend on the chosen strateqy for the segment. This
allows quite fast determination of the best strategies for given costs
of resources, before running the compiler. But let it be stated again
that this optimization job is relevant to the user and not to the sys-
tem (the concept of user, of course, includes programs working for the
user).

Note that if, for the best possible set of strategies, the average
cost of a program reference is too high, the user might decide to delay
his run (the threshold might be a function of the urgency of the job).
In Figure II-1, a strategy is represented by a point whose coordinates

are the resource utilizations of the strategy. Strategy 3 is optimal

Red .ce M2

4’
Resource #1

Fig., I1-1

Trade-offs between several possible strategies
Strateqy #3 is optimal (lowest cost)

The parallel lines join points of equal cost.

2)

because its cost, which is a linear function of the resource usage,
is minimum. lote that this figure does not pertain to the compiler,

but is just an illustration of some possivle strategics.

11.2.4 Pricing.

Modern ec.nomists like Debreu [21) have shown that a wrong pric-
ing of resources leads to inefficiencies and loss of potential power.

They advocate a system of marginal prices. For instance, if the demand

for computer resources is low during night, the price should bc corre-
spondingly low. If there is just one user on the system (no conflict
in demand), the price should be just equal to the marginal cost of
keeping the system running (the cost of the operators, plus of elec-
tricity).

I believe that the following points characterize a fair system:

l. It will always sell a resource at a marginal cost (see point
t#4) .

2. It does not make any distinction on behalf of the user (name
of the user or previous history). 1In particular, if the user is willing
to pay, there is no reason to penalize him even if he has used many of
the facilities of the system in the recent past. 1In other words, there
is no implicit priority system.

3. The system will never charge more than the user announced he
wanted to pay. Nevertheless, the user might be given the resource at a
price smaller than this maximum.

4. The general rule for allocating resources and charging for

them is the following: the system takes the allocation decision which

24

maximizes its profit, but nevertheless it charges the individual user
the minimum amount of moaay that this usvr would have had to offer to
get the resource; all other bids being unchanged.

5. An immediate consequence of rule 4 is that two identical re-
sources will cost “he sai;e at the same time, independent of the users
they are allocated to.

6. If a sharable resource is available during a time-slice,
then any user may use it without any cost to him. This takes care of
the reentrant routines, for which only one user pays at a time (the
first user to get the routine in corc).l

7. Thc system must distinguish between conflicting demands for
a resource (most of the practical cases), and cooperating demands (for
instance, a reentrant piece of code). 1In the latter case, the different
demands are considered as only one, with the maximum amount of money be-
ing the sum of what each user wants independently to spend for this re-
source.

A general idea underlying this thesis is that marginal pricing will
have a good effect:

1) By trying to get better response at a lower price, the users
will increase the system's efficiency rather than woik against it (the
problem of counter-measures has been reviewed in [22]).

2) Statistics will be provided to aid the users in estimating
their chances of getting the desired response for a given amount of

money at vavrious hours of the day.

lA more complex model could be imagined under which the cost of
the resource would be shared by the participating users.

'3
(T,]

J) Statistics will show the systems monasers in which equipment
lies a bottle-neck or which ecquipment is not recally needed.

There is another reason for marginal pricing in a system where
the same resource is reallocated very often. Without it a user at an
open auction would automatically arrive at marginal price anyway, by
slightly increasing his bid until he got the resource (or the bid
reached the limit of what he wanted to pay). In any case, the over-
head implied by such a strateyy may be avoided by assuring the user of

a "fair" price even if he immediately submits his maximum bad.

IT1.3 1Indivisibility in space of the user requirements.

The previous paragraph handled cases where the demand could be
considered as being

1) atomic

2) for a resource which could be allocated independently of any
others, and independently of any previous or future allocation of the
same resource.

Alas! This is not true, in general. It is impossible to allo-
cate just 1K of core to a program asking for 3K; better noct tc allocate
any resource at all to that program.

In this section, is considered the indivisibility in space, where
the space considercd is the space of the resources. A given user asks
for a set of resou: ces, for instance, for the duration of a time-slice.
Now, consideir how the system reacts under both the pricing and the
bidding philosophies.

1) Under the pricing philosophy, a user is allocated as soon as

26
he ashs for his set of resources, if there ure cnough available re-
sources to satisfy him.
2) Under the bidding strategy, all users are allocated at the
same moment, and the system tries to allocate a set of users in a way
such as to maximize some economic criterion. 1If one tries to achieve

a balance policy (i.e., to allocate an equilibrated set of users, to

better use all the resources), then the bidding philosophy has to be
adopted.

Denning (12) has proposed to formulate the allocation problem as
a 0/1 integer linear programming problem (also known as a multidimen-
sional Knapsack problem). If user #i asks for an amount aij of re-

source #j, then the system has to find a set s of users such that:

b Vs
s 23 =y (73)

where Aj is the available amount of resource j. The econemic criterion

(cost function) has the form:

EREL0N c
i€s

i , where c; is the bid of user #i.
The resources are, for instance, core memory and CPU. Suppose that
one user asks for 25% of the CPU and 50% of core during a certain time
interval, and another user for 70% of the CPU and 40% of the core.
Clearly, if both of them are allocated, they will not take more than
90% of core and 90% of CPU (see figure 2), and thus they can be allo-
cated.

This solution to the space indivisibility problem is not entirely

satisfying, because a compute-bound user might request 100% of the CPU,

ard so should be alone in the system. However, suppose that this user

Core

A : ay
>

Fig. II-2

Multidimensional Knapsack Allocation

28

had enly requested 50% of the CPU tima. Another user could then have
been allocated (for instance an I/0 bound user who requests the CPU
quite seldom). This new solution would be much more optimal. 1In
other words, to use the terminology introduced in ~hapter II, the

progress rates should not Le determined by the users, but by the sys-

tem.

Note that, even if the constraints are satisfied, the allocated
users are not quaranteed the service that they requested. For instance,
suppose there are 2 users, each of which asks for 45% of the CPU and
45% of the disk channel. Together, they ask for only 90% of both re-
sources, but there can not be an a priori expectation that one job will
use the CPU while the other is using the channel. 1If there is really
bad synchronization between the two jobs, they will often both ask for
the CPU at the same time or both for the channel, so that there will be
litile overlap between them. Chapter III of this thesis studies a model
of such situations, and extends Denning's multidimensional Knapsack
formulation to take care of them. Also in chapter III is given an
algorithm to get an approximate solution of the multidimensional Knapsack
under the special circumstances involved. This method of solvina the
Knapsack has the interesting peculiarity of leading to fair prices for
the resources and the sets of resources allocated to the users. In this
way, the system can keep statistics of these prices and use them as
stated above. For thorough treatment of the Knapsack problem, see [23]
and [24].

The "a priori" pricing of resources is also possible in a climate

of space indivisibility. The idea is the following: If there is a cer-

29

tain set S of resources available, the system might expect to sell it
at the average price P(S). If a user asks for a set S' of resources,
the system would sell it to him at a price
clL= k[%(S) - P(s - S')]

winere S - S' is the set of resources remaining after resources of set
§' have been allocated, and K is a constant greater than or equal to 1.

The precise function, P(S), has to be determined experimentally,
by adjusting it to observed profits. Suppose, for instance, that therec
are two resources; the CPU and the core. P(x,y) is the average profit
the system will make out of a percentage x of the CPU and y of core.
Clearly, P(x,0) = P(0,y) = O, because it is not possible to sell CPU
without core or conversely core without CPU. An example of such a
function is the cone represented in figure II-3. 1Its equation makes

it homogeneous (first degree) in x and y:

+ b
P(x,y) = Vx y %® 8E LuY

X + g
The coefficients a and b have to be adjusted b, the system from

its own experience.

II1.4 Indivisibilities in time domain and reservations.

As an example of time domain indivisibilities, Suppose the fol-
lowing. A program is in core and uses the CPU. The CPU resource can
be instantly taken from this user, but not the core resource lest the
user's job be destroyed! The user must be left in core at least for
the period of time required to swap him out onto secondary storage.

The problem of reservations is somewhat similar. The user who

comes to a console wants to be sure that he will own the ccnsole for

P(XIY)

Fig. II-3

P(x,y) = (ax + by) e . A

X+y

n

at least a one hour period. lle Lid0 wants to be sure that he will get
75K words on the disk for Iv' , filea, and at least I\ of the usage of
a compound resource (C¥' « 10K corel.

It %ill now he shown how this example can be handled by creating
a structure of successive levela of allocation. The following ideas
have to he applied:

1) Partial allocation decisions should be made for several time
intervals, some of which are within some others, hullding a hierarchy
in time. For instance, in our example, the decision of allocating the
console and some part of the disk is made for a one hour interval. Hou-
aever, the decision of allocating the CPU and sore core to a running

=
proqgram is made only for a one second interval,”

15% 1evel A 4 i
rd |
k) level [HHelEN

of decisions

- tiFce

2) Resources havae to he jpooled in order to allow the user to
buy a percentage of the pool i1n advance (lat level allocaticon), withou®
knowing at that time exactly when he will use Liis buying vower (2nd

level decision).

21 am grateful to Professor Herbert Simon, of Carnegie-‘‘ellon
Uriversity, for having ccanvinced me, {in a orivate discussjor, of the
importance of multi-level scheduling,

The user buys, at vtihe first level, a potential pover te he used

at the second lavel. This potential power can itself he called a money
(or a resource), vuch is only valid for bidding or buyinu at the ﬁ.crc-
ond level and during the time duration for which the first level deci-
sion was made. decause this resource enists in a limited arount only,
the user 1s quaranteed, at the pomenrt he buys (t, that he has a certain
percentage of it, aml thus a guaranteed level of service.

Note that the monsy vhich was used to huy at the first lewl
cannot be usea to buy at the second level., One has first to buy the
intermadiate typm of PoOney.

The structure of allocatien created above s a hierarchy of to-
sources, which takes the form of & tree (figure 11-4). dach resource
can be used exclusively to buy rezources which are under it in the tree,
and only during the time interval for which the allocation was made at
the level above. With each node of the trev is associated a set of
rules, wvhich tell how it can buy or bid for tiw resources vhich are
under it in e tree. Note that some part of a resource night be at
sore node of tho tree, while some other part night be at some other node.
For instance, a part of core memory misht be available to run tize-
shared users vader a certain ¥ind of contract, vhile another patrt of

core might helong to a separate real -tise user,

11.5 More involved cnntracts.

Peal-ti®e users might want to get a certain amount of service be-
fore a particul:ir deadline. Thia can be handled eitker with a biddina

systom, whure the user gradually increases “is b ¢r for systema refource:

POLLARS
can be vsed forever

\
\

%3

wnasey Lol §:4 4
usable only during one space allocated
hour to buy CiU and core || are hour at a tine

COHSOLES
allocated for
one hour

cru 10F CORE NEAORY
allocated for allocated one second
100 :=illigec, at a timw

Fig. 11-4

34

when the deadline approaches [25), or with a special contract, where
the system takes the responsibility of finding out whether a given
user can be satisfied within the current structure. Note that the
scheduling method suggested in chapter III can be extended to take

care of such users.

O T Pl Dy . tiaf o Ak dpn it & Pt vl) A A, Al bl il (0 Lol ki CTILTY. TEYNER T el i i Lol S rvw
_ L

CHAPTER III

AN ANALYTICAL MODEIL OF SPACE SHARING

III.1 Introduction.

This chapter attempts to show that better schedulers could be
designed if some model of the interferencc3 between users' requests
for facilities were available. A program is a string of referencos4
to certain resources. Whenever a program refercnces a resource which
is already totally allocated, a conflict occurs and the scheduler has
to decide which program will get the resource. It will be shown how
this can be done in a "pseudo-optimal” way by taking into account some
information which can be made available before run-time on the patterns
of the users' requests for facilitigs.5

Sections III.1 and III.2 introduce some of the concepts and ter-
minology used later in the chapter. Section III.3 studies a model of
"worst possible" synchronization between the users' requests for facili-
ties under certain assumptions; among which is the assumption that re-
sources are preemptible and each user has a fixed priority for accessing
a resource (a given user has a different priority for each resource).
In section III.4 the way in which the previous model can be used for

scheduling is examined by formulating the resource allocation problem

3 1 . .

level of conflicts over some period of time.
4 .

demand string

5. ; ' . .
this information, as we shall see, is reclated to the predicted

usage ratios of the various resources by each individuel program in
the system.

36

as a Mathematical Programming Problem (finding the maximum of an eco-
nomical function with certain constraints on the variables). Then the
design of an algorithm which yields a nearly optimal solution to the
M. P. problem is given. Section :II.5 compares the model of section
III.3 with models of some other schedulin«g strategies. The possible
fruitfulness and extensions of this study are discussed in III.6 and
ITI.7.

There are some resources, like the CPU, which can he vreemvted
(transferred from one user to another) with less overhead than some
other resources {(like core memory, if the previous user has to be
swapped). This lcads to the idea of having a hierurchy in time of
partial scheduling decisions; some decisions Leing made for smaller
time intervals than others (sce sections II.4 and I1T.4.1). The model
which is studied in section III.3 will be used in section III.4 to re-
late two levels of scheduling. Whenever a decision is made for a long
time interval (macroscheduling), the scheduler takcs into account some
information on the future demand pattern of the user during this time
interval. The macroscheduler then sets some paramcters of the lower
level scheduler (microscheduler).6

Of course, solutions to macroscheduling problems depend on some
information being available on the vatterns of the users' requests for
facilities. Haberman {2] has shown that such information can be useful
in avoiding deadly embrace of processes in a time-shared environment.

This information might b.. provided either by the user himself, or

6 . . .
Note that microscheduling can be done Lv hardware, which, for
instance, resolves conflicting reguests for a memory bark. Then the
software "sets" the hardware.

extrapolated from statistics collected by the system.

What information would be useful? It should be relevant to the
scheduler by permitting computation, for instance, of the maximum
possible "interterence" between different jobs. 1t should be simple
and condensed, because the scheduler has to operate rapidly, and finallw
this information should be easily available and characteristic enough
of a given program that it could be used without any modification for
several runs of the same program with different input data. In this
paper, the information used will be the proportion of usaae of the
various preemptible resources7 over a rather long time interval during
which a job is to run, and the total (maximum) amount of non-precmptible
resources required by the job.

Do we really need macroscheduling separated from microscheduling?
In a recent paper [29], Stevens examines what was wrong with the
Chippewa Operating System; he concludes that there were two flaws.
First, the absence of a macroscheduler: the Chippewa system allocated
resources for an indefinite period of time, without taking into account
the global demand of each job. Thus, there was no guarantee when a job
was allocated, that the job would not ask later for more memory than
was available, and in this case the Chivpewa scheduler did not take
back the resources (CPU,...) already allocated. The second problem of
Chippewa was that I/0 bound jobs, or computc bound jobs, were not re-
cognized as such by the scheduler, and so this informaticn was not taken

into account in assianing priorities for the resources. We will see

Preemptible resources are those allocated by the microscheduler.
For the moment, the reader might imagine the CHU as oprosed to memory.

3Q

that better simultaneity in resource usage and between jobs' progresses
is achieved by assigning a high priority for a resource to a job which

will make little use of this resource.

III.2 Some Definitions.

User: An entity which reguests and seizes resources, and which
might also give some information about its future resource requirements.
In this study, the words user, job, program and process describe the

same concent.

Demand string of a user: A program will be considered as a se-

quence of calls to various preemptible resources: CPU, I/0, ... such
that one and only one resource is called at a time by a given program
{no double buffering, for instance). This limitation could be removed,
but helps to simnlify the presentation.

Let R be the sct of resources. A program is then some strina
rlrz...rk over R, where ri means that the user called nn resource ri as

th

the i resource call. This notion is similar to what Denning used in

more restrictive frameworks to describe page reference strings.

Virtual time of a user: During a certain real time interval ATR,

a4 user will get the resources recuested in his demand string durino a
total interval of time ATV. Ve define A'T‘v as the virtual time interval
corresponding to tiie real time interval ATR' Virtual time of a user
normally runs slower than real time, but if a user werc ° > permanently
have top priority for accessing all resources, then virtual time for
that user would be ecquivalent to i.al time.

The virtual time diagram of a user is a diaaram in which resource

39

usage (demand string) is plotted as a function of the virtual time

of that user.

virtual time

Remember that the assumption was made that a program is a nurelv

sequential process.

Observables of the system: Any quantities which are relevant to

our study, among which might be included:
1) The cffective progress rate W, of job #i (working rate). It
is the portion of time user #i was working, divided bLv the total real

time interval over which the measurement was made.

_ Iotal virtual time interval for #i
i total corresponding real time interval

2) The duty factor uj of resource #j (or its proportion of usage):

_ time resoirce #i is used bv and iob
j total real time interval

wi and uj are both dimensionless variables, which are observed
over a certain interval of real time.

3) The cost fuaction (or economic criterion) of the svystem is
another observable. It is assumed to be a weiqhited sum of the rrogress
rates:

E =1L c,w,
i i

where <, characterizes the uraency of user 4i. The precise mean-

ing of c, as a bid will be discussed in section 111.4.5

an

III.3 A model hased on fixed nriorities (with vreemotion) for each

user and resource.

III.3.1 Overview of the model.

For each resource, therc is a wriority assianed to each user.

For a given resource, these priorities arr all different (the users
being totally ordered with respect to cach resource). This priority
assignment will not e changed during a certain time interval [0,T)
over which the conflicts between the demand strinas of the various
users are studied. If user #i reguests a resource, he will get it
either if the resource is currentlv idle, or if it is allocated to a
user having lower prioritv for the particular resource (in which case
the lower prioritv user will have to wait for further use of this re-~
source) .

Note that a user dnes not necessarily have the same prioritv for
all resources.

Let aij be the proportion of the virtual time of user i snent on
resource j during the real-time interval [0,T]. The aij's characterize
the needs of the various users for the various resources (for instance,
the degree to which they are compute-bound or I/0-bound). Given th»

virtual time diaaram r(t) of user i, it is trivial to compute his aij's:

4 (rv)=3) at

3
f

if n= truc
where 4(x) = é 1; n 2 f;;zg

41

It will be assumed in the sequel that a fairlv accurate knowledage
of the aij's is available (possibly based on nast exverience of the
programs), but that the precise demand strings and virtual time dia-
grams of each program over the real-time interval [0,T) are not known.

The situation may be characterized by two matrices n x m, where

n is the number of users and m the number of resources:

aij proportion of the virtual time of user i svent on resource j

p.. = integer number representing the priority of user i for re-

1]
source J.

1 <3 <m
0<a,. <1
- %y =
% ,:-1].j = 1 (normalization of the ai for each user)
= =D =
pij DLJ i k

p.. < Py <=> user i has a higher orioritv than k for resource j
*J (lower numbers <=» hiagher nriorities).,

The assumptions are given over a real-time interval [0,T], which
separates the two activations of the macroscheduling aloorithm. If W,
is the progress ratc of user i, this user will cffectively get resource

j allocated during a time

Tw, a,, (by definition of a,, and w,).
i 1] i9 i

Resource j will be running durina a total amount of time

et u, = Loa,. w, (0 < u., < 1)
i : = N

The overhead of switching a resource from one user to another has been

and will bhe¢ svstematically neqglected in the study of the model.

I111.3.2 Trundamental equations and consenmuences.

It will now be of interest to derive the ecauations describing the
worst possible cases, where the requests are synchronized in an order
such as to get the smallest vossible vrogress rates and the least nos-
sible simultaneous use of the resources available. This is relevant
to the general philosophy that the system should alvavs exnect the
highest amount of conflict within certain computed bounds. Tt should
not oversell itsclf to the uscrs, guaranteeing them a service that it
would cventuallv not be able to give. Even if the system would decide
to take some chances for a greoater expected nrofit, vrobabilistic mode1s
would be dangerous hecause they assume a randomness and absence of
correlation between users which are not gencrallv true. Also, for a
given uscr, the requests do not have a randonr lenath under some distri-
bution, and are not uncorreclated with ecach other. ©f course. the com-
puter could comrute Markovchain coefficients for the demand strings of
the various users and use this information to act a better schedule, but
this scems to exceed the allowable overhead of an allncator.

The following fundamertal equations cxnress that, in the "worst
possible case", a process would hn wait ng for a resource at any time
when this resource is used by another wrocrss n© hicher priority. lHote

that 1-w,l 15 the rate of i.aiting of user 1i.

<

(I11-1) A £ Z a5 Yk (O\<wi$ 1)
S 2') (1£ign)

For given matrices (aij) and (pij), it is Aalways possible to find
virtual time diagrams of the users, which have the usage ratios Diﬁ for
the resources, and such that each job might have the raximum waitina
rate given by equations III-1. Tn other words, i€ the coefficicnts ai_1
are known for cach job, but not the exact virtual time diagrams of the
jobs, it can be said a nriori that the jobs will have vrogress rates at

least egual to the wi's, if and only if the following cauations are

satisfied:

(ITI-2) 1 - wi)/ min (Z akj W oo l)
j.k
pkj<pij
(Vi 1¢igm
(OéwiSI)

An equivalent form is given in the followina ecuations:

.] >
(ITI-3) V1, either w, =0 or 1) Wb a}:j W

1 j,k
pkj< Piy
(w3 0)

Equations (I1I-2) define a domain of values for the wi's. Anv
point within this domain can alwavs e reached 17 the system should

. .. 8 . . , . ,
desire it. This domain will bhe called the attainable domain, or

8 . . .

The action to he taken bv the svstem to reach a marticular voint
in this solution space will ba described in scction I77.4. A formal
proof of this statement is not agiven here.

44

synonymously the domain of certaintv. Note that esuations (I11I1-2)

imply that:

(I1I-4) 0<u, = E a.,j wi < 1 (0 <w, <1) (R g)

(The reader will find this result easy to nrove).

III.3.3 Definition of the mathematical problem.

The previous model will bhe uscd to find a sot of users o allo-
cate. ELach user qgives to the system:

O
1. his usage ratios for the various preemntible resources: a ’

if°

2. his uraency: cj. A hiagher value of Ci soans a higher uraency,
but also means that the user iz willina to wav more monev in order to
run. It is understood that if a uscr with urgoncy cy agets a nroavess
rate W during a real time interval of length T, then this user is
willing to pay at most

c,w,T
il

to run during this time interval. Pricing stratcaics are studied in
III.4.5.

The mathematical programming problem can be stated in scveral
forms of varying complexity.

1. Given the aij‘s and the ci'S, find the Dijls and the wi's

which maximize the ecconomic criterion (or cost function):

(II1-5) E=1c.w,
while satisfying equations (IIT-2).

Note that the economic criterion chosan is caquivalent to a cri-

and, in the second formulation, his usage of the non-precmntible

resources: b, ..
17

45

terion which would tend to maximize resource usage. Suppose it is

desired to maximize

L]
e ™

2
[N

(=

where dj is the "weight" or cost of resouarce *49. E can then be
rewritten in the form:

w

B = ? C., W,
b1 1 1)

with:

2. In this scecond formulation, there are two Linls of resources:

the macroresources, G&(which are non—urcnmntiblel‘ Tud allocated b

the macroscheduler), and the microresources, c1(nrnomntihla and allo-

cated by the microscheduler). hij will be called the absolute amount

of macroresource j desired by user i, By contrast, s is the relative

amount (per unit of virtual time) of microrezource i needed by user i,
Now, the mathematical programming prohlem can Hbe exnressed in

the following way:

Find a cet of users 5, and matrices (p,.) and (wi), which maxinizo

id
the economic criterion (cost function):

(111-5) FE = 4 W,

NN B
i€ 1 i

subject to the following constraints:

0 T . .
The non=-precmptible rescurces nicht be, for instance, memorv
cells at various levels orf memorv (core, drum,...).

4

11
Y jfﬁ‘ Zbijs‘ghj

fec

Si-o if w =0

where
8, «1 e v o

(111-6) i

Vies, w*Za,w,gl
i 3 el i'j i

pilj(”i’

Bj is the total available amount of nia-precmntile resource #4§,

I11.3.4 Ixamnles.

In this section are given o fow exannles of a avaphical repre-
sentation of the attainable domain in the srare of the wi's, in order
to create a fealing of how the demand strinns: of the j0bs will syn-
chronize. The roader will discover that the "“worst case domain” can
naverthielaess lnad to a 1ot of sinultaneity between the jabs., It wan
verified bv simulation that the jobs do not qgenerallv svnchronize
significantly Letter than the worst casc model oredicte, if there is a

small number of preemptible resources ang 1€ the rriarities are chosen

in a nearlyv ontinal way (see section 1171.4.2),

Jona]
Jow 2

Examnlc 2. Cpn DX"?'.F‘
B .2
(ﬂl j) = (." ...')
11

The ccuations ‘or jc@® cxrress that anv uscr havina a non=2crvo
nrogress rate {(and thus allocated bv the macros hieduleyr, can fipd tae
space ha nceds in mrmory level #3,

47

In thin arrav, a job in o row and a resource is & column., 1=
nource 1 is the CPU, resource 2 is the disk; job 1 is compute hound,
job 2 is more 1/0 Lound.

1. The raximum priority is aiven to iab 1| for all resources:

1 1
‘"n"’(z :z)
Ig wl or: . : wl < :
1 W '8 | NZ - 11
CIRCI | 2

The domain of certainty is defined hv: w_ ¢+ w, = 1, which shows

1 D -

Fauations:

that no parallelism in the use of the rasources i3 obtained in the worst

case (fig. 11I-1).

2. Sunnose that the oriority matrix is:

2 1
tr, 4! “(l :')

Equatinns definina the attainable domain are:

1 3_w1 + .4 w2 wl 0 " 1.4 ‘1 . \
1 > .2 wl W, w, >0 LE w? -\

The attainable domain corresrondz to a nearly eptimal usaze of

the resources:

ul n .8 wl + .4 w2

u2 = 2 wl + 16 wz

u, and u, are maximum at the point:

wl = .65, w2 a RB7 —.ul a2 A7, u:, = .65

In this case, hoth "l and u2 are maximum at the same noint. This,

however, is not a aeneral result, and very comnlicated domains in the

u, snace miaght exist. lNevertheless, solvinn the eauations:

1

b .
i N —
LHED - - ,*H
N
™,
B = u1+u2f1+5:
W
=35 i = £
tniyd = (l 1)
f 1 #
[}
|
i
gl
|
=

Fig. ITI-1

Domains in the (wl, w2) space for example 1.

49

might give a good anproximation of the use of resources in the attain-
able domain.

3. The next case has the priority matrix:

1> .8w +w

Obviously, the attainable domain is worse than with the second
priority assignment, but better than with the first one.

If the objertive function to be maximized is E = Wy + w2

(cl = c2 = 1), then the prioritv assignment #1 vields Hmax =1,

priority assignment #2 yields Emax = 1.52 and nrioritv assianment #3

yieids Emax = 1.15. The solution of the mathematical nrogramming pro-

blem defined in the previous section would be the second nriority

2 1
riy? = 2)

and wl = ,65, w

assignment:

i}
oo}
~3

2

Example 2:
This examnle considers two jobs havina identical average resource

usadge characteristics, but one job seizes each resource during a much

shorter amount of time than the other qob.

Fig. 111-2.1 and III-2.2 show the virtual time diagrams of cach
job. Fig. ITI-2.3 and III-2.4 show how thev synchronize in real-time

under two different priority assignments. The exnected proaress rates

are found to be those given by the "worst casec' model.
For this example:

(540 2 (:)
1 1
(pij) =(2 2) 1> Wy + W

(2 B 04

thus Emax = wl + w2 =] (w1 =l w2 =~ 0).
2 1
(v, .) =(>___ 1 .5 w 1
30\ 2/ s) (v) S
thus b = 1,33 (with w, = .67, w, = .67).
max 1 2

Example 1 has a larger attainable domain and a larger Enax than

: . This is due to the

example 2 with the priority assignment <§ 5

fact that the job. of example 1 are complementing each other (one needr
more CPU, the other more I/0), while jobs of examnle 2 have identical

average needs of resources.

III.3.5 Multiprocessor case.

So far only the casec where the resources are not interchanaeable,
and are only susceptible to one activation at a time has been considered.
How the previous model can be extended to the casc where some resources
may have more than one activation at a time will now be studied. Tor
instance, there might be several identical CPU's or identical channels.

The fundamental "worst case" ecuations arc auite complicated.

They are given here without further justification.

J

A IBEE0NECOE

CPU

I/0

>

virtual time
user 1.

Fig. ITI-2.1: Virtual time diaqram of user 1.

é resources

CPU R —

I1/0

e

virtual time
user 2.

Fig. III-2.2: Virtual time diagram of user 2.

CPU, user 1
CPU, user 2

I1/0, user 1

I/0, user

CPU, user

CPU, user

I/0, user
I/0, user

------ u

u

A resources

SV

z L

——— >

real time
Fig. IIT-2.3: Real time diagram: (nij) = l l
A resources
1 —————-— ——
5 |
l - - - - -— -
2 — =
[t :;.
real time
1
Fig. III-2.4: Real ti ; L) = s
ig ea me diagram (plj) 2 1

ser waiting for the resource

sers seizing the resource

53

Define qrj by: r = pij =1 = qrj re [1,nl, je [1,m]

qrj is the number of the user having the r-th prioritv for resource 1j.
If resource j has Rj processors (possible simultaneous activations),

the maximum time that user i would spend waiting for resource j in time

interval [0,T] is:

min (——1—— a w)ifr=q >R
k€ ILR,] Ry okl éoe-11 Tn3? g S

Wij=

L 0 if qijSRj

so that the fundamental equations for the attainable domain are:

n

Yieil,n] either 1- v T(i. e
je,m M

0 (always wi>’ 0)
Theorem 1. A smaller domain than the attainable domain defined by the
previous cguations can be defined by equations (ITI-2) where a s has

been replaced by °<i]' = ii_]'_ o

R,
j

Proof: hy choosing the first of the cquantities whose minimum

is Vij:

and T{ij=0<—lli— a,, w if r=q. . § R

hence the theorem.

54

By replacing the aij's by the o{'s the multiprocessor case has
been reduced to a monoprocessor case. The accuracy of this annroxima-
tion can be felt even more in the special, but very important case

g S , €= p,, < L e I i =qg,, > R,
where alJ akJ plJ pkJ In that case, if r qu RJ

Wij=_xlz_.

ai. wi
j ie€ll,r-1] Y

and, for r = qij < Rj"?ij = 0, but then the aij's are small
too, because they yield high priorities. This leads to the intuitive
feeling that for this priority assignment and a large number of users
{(n >> Rj), the exact model and the model approximated bv theq(ij's are
very similar to each other.

There is another way of approximating the multiprocessor case by
a monoprocessor case. Suppose resource j to be a single resource (one
activation only), but which works at Rj times its initial speed. The

fundamental equations would then be:

- w! ' '
1=w ?jzk Bey v
’

Py <Py
where B.kj is the normalized value of aij
R,
J
a,.
311
R,
’3' = —
kj a. .,
> =
T R

55

The progress rates w'i apoly in a universe where the resources
work faster than initially. The correspondence between wi and wi is

given by:

Thus, the fundamental egquations for the processors working -t

Rj times their initial speed are:

The reader can see that this is a more optimistic estimate than

was given by theorem 1 and the o(ij's.

Example 3.

aij CPU Bus
job 1 .8 .2
job 2 .4 .6
job 3 .2 .8

Suppose that 2 CPU's are availahle. The following priorities

are assigned.

3 1 T o= + + j
(o) N 5 and £ w1 w2 w3 is to
1] 1 3 be maximized.

1. An exact treatment gives the fundamental couations:

>
1> wl

> .2 w1 + w2

yielding the

+ min (.2 w_ +

. + . +
> 2 wl 6 w2 w

56

2 .1 w3)

3

solution (with ecualities):

w1 = ,94 w2 = .81 w3 = ,32
3 ul = ,57 u2 = .93
E = 2,07
max
2. The lower bound method:
= aj s
4, 5 =L cpu Bus
!
job 1 .4 .2 1 2 .1 il 1
job 2 .2 .6 2 1 1 W < 1
job 3 ot .8 2 .6 1 Wy 1
w1 = ,80 w2 = ,80 3 = ,36
is the "best' point of
1 the worst case.
5 ul = ,52 u2 = ,93
E = 1.96
max

3. The "optimistic" approximation with a CPU workina twice as

fast:
6 .2 .1 w1
2 .8 1 n12
.2 .6 .9 w3
thus:

w1 = 1,33 w“ =]
E =

max

Note that w

1 is greater than

A
I

1, which is not surwrising with

57

the assumptions. If the constraint wi < 1 is imposed, the optimum

would be:

E = 2.21
max

which is a closer appioximation of the case with two vprocessors.

I11.4 Macroscheduling and microscheduling algorithms under the

previous model.

This section is intended to show how the model of section III.3
can be applied to multi-level scheduling. Section IIT.4.1 shows how
the schedulers look from the users point of view. An attempt is Lhen
made to solve the mathematical programming problem by separating the
assignment of priorities from the computation of the progress rates.

A heuristic for assigning priorities is given and justified in III.4.2.
Once priorities are chosen, the problem is reduced to a multi-dimen-
sional Knapsack problem, for which a heuristical solution is pronosed
in IT1.4.3. Section II1I1.4.4 summarizes the results, and TII.4.5 shows
how the users could be charged at "marginal prices"; the prices for

services being determined in connection with the algorithm of III.4.3.3.

I11.4.1 Combining two levels (in time) of schedulina.

When designing an operating system, one of the major difficulties
is to partition the concepts involved. This requires, in warticular,
the separation of tasks which are loosely connected, and the implemen-

-

g 12 ,
tation of them as separate processes of the system. It is assumed

2_.

This can be achieved with a hierarchical structure such as the
one proposed by Dijkstra [26], with a communication svstem between
processes [27].

57

here that thiec following decisions and strateaies are independent from
resource allocation (or scheduling), oxcept that thev mav provide in-
formation or requests for the scheduler, but thoy should not be con-

fused with scheduling activities:

1. Page replacoment algorithms in a comruter with naged memory.
Which page should be extracted tfrom memorv? Should the size of the
working set of paqes he changed? 3Should there Y anv prepaaing?

These decisions can be made bv the proaramner, or wv the svstem,
but in any casc they zoncern nrogram ontimization and not system
optimizatinn (insofar as it can be said that the system is not improved
by improving the users' programs running under it).

2. Decidinag on the “"exteornal™ vrioritics of jobs. Some fjobs
are more urgent than others. This might be deecided either bv the svs-
tem or by the user (which is wiliing to »ay more to act his job ox-
ecuted soon). Lixternal wriority can be reduced to the cconomic cri-
terion of the price offered by the user rer unit computation »f his
job, which i3 then fed into the scheduler, and 2i11 serve the scheduler
in order to build its own outimization critevion,

3. Statistics to he usced bv the scheduler or hv the paging
algorithm or to comnute external »viorities. can theoretically be
considered to be collected inderendently of those dacision-making
processes.13

A scheduler will be considrred tr be a mechanism usinag the

followinag information:

-
“If the user wants to collect such ctatistics, he will have
to pay for the resources involved in the svvini trocese,

‘:)"

l. On ecach program: some information about the kind of service
wanted bv the program, either on a lona term ranac, or because of a
current request for a facility. The aij's of section IIT.3 were an
example of such long term range information.

2. The economic "bid" of each joh, characterirzing its "external
urgency.

3. The resources available to the system,

I believe that sowe schaduline should he done for intervals of
various duration of time. Tor instance, microscheduling, as dafined
in the sequel, might he done for pericds in millisoconds, macroschaeduling
for periods in hundreds of milliseconds, while schedulina of taves
should be done for minutes, and sone real time users mav not want to
use the system at all unless they are assurad of gcttinag some minimum
guaranteced resource usage during a whole hour.

A scheduler decides to allocate some rewources to some users, and
chooses parameters to he fed into the "lower leovel" schednler (which

handles smaller time intervals).

Microscheduling and Macroscheduling.

Examples will now be given of liow some usual allocation decisions
can be split between two scliedulers working at di“fercnt levele of time
intervals. These examples arce summarized i1n table 177-1. Resources
allécated by the low-level scheduler (microscheduler) are said to b
precmptible, and those allocated by the macroscheduler are said to Le

non-preemptible.'14

4 Cyss . . :

Preemptibility is, of course, a relative notion (and not ahso-
lute). It can just be stated that some resourceo are more preem: tible
than others,if thn overhead to allocate them is smaller,

Current Computer

Systems

é(/

future Comruter

Systems

Macroscheduling

Alleocation of

core memory

KNllocation of core
memorv and

“ast reaisters

Time between

macro-decisions

Microscheduling

10 millisec.

Conflicts of accesses
to drum and disk
Allocation of CPU

and fas. reaistors

M location of Cru
conflicts in swarnina
‘ntween central cove

and fast recisters

Time between

microdecisions

= 10 millisec.

= 100 microseconds

Tahle T1I-1

Examples of macro and micro scheduling

61

Macrorcheduling can refer to those schedulina overations which
are related to the allocation of central memory. The time interval
between two macrodecisions would he rather larage (greater than 100
milliseconds on most systems). Microscheduling would concern the allo-
cation of the arithmetic and control unit: and of some fast busses,
to programs which are already esscentially oresent in central memory.
For instance, the decision of what <oh is allocated -i=ceas to the drum
for page-in and nage-out operatinns botween drum and main core memory
is a microscheduling decision in‘current comruter avstems where the
programs are kept in core while raging takes nlace. I future comnuter
systems, this kind of paging will most nrobablv he revlaced bv 2 paaing
between two fast levels of memorv, like on the 360/85,

I prefer the words "microscheduling” and "racroscheduline" to
"microaueuina” and "macrc.jueuina" [5], because the latter sugaqest the
use of FIFO queuecs bv the scheduling algorithm, which is a practice
that this chapter preciselv tries to discredit. ‘lote that, in our term-
inology, "scheduling" and "allocating" are synonvmous.

The macroscheduler receives the nredicted prohahle usaae ratios,
aij' and the urgency, cyv for each user #i who wants to run. "Then the
macroscheduler will solve the Mathematical Proarammina problem (defined
in ITI.3.3). nNaving determined the set of nsers to be allocated durina
a certain real-time interval of length 7T, and the matrices (pii) and
(wi) for the users in this set, the macroschedulrr assures that the
non-preemntible resources will be allocated to Lhosa users, and transfers
the values of (pij) and (wj) to the microschedulnr.

The microscheduler controls the access of the users to the vreo-

emptible resources, by applying the priorities which were determincd
by tile macroscheduler. It also stops a user #i if this user runs more
than a time wiT. ¥inally, it prevents the uscrs from exceeding their
. . 15
predicted resource usage ratios.
Sections T11.4.2 and I1I.4.3 will "= devoted to the solution of

the M.P. problem by the macroscheduler.

I11.4.2 Assignment of priorities.

It is interesting to trv to find a nrioritv assignment (pij)
before determining the progress rates (wi) which ontimize the cost
function E = & cy W,

111.4.2.1 A case where a given assignment of priorities can

certainly be imnroved.

Let Dp be called the attainable domain under priority assignment
P. It will now be shown that the assignment to each job of a set of
the same priorities for all resources is a wrong choice, which can al-
ways be improved. Consider the followinc theorem:
Theorem 2: Let P be a priority assiqgnment in which pij < pi'i for all

j. 1If, for some j, B = p,. + 1,then there exists another assignment

ivg T Pij

P' which is the same as P except that Dij and 2 are interchanaed,

"9
such that Dp, properly contains Dp.
In other words, any point in the snace of observables which

satisfies equations (III-2) under assignment P, will satisfy (IT1I-2)

under priority assignment P'.

5 :
See section I11.4.4 for a precise sketch of the microscheduling
algorithm.

63

Corollary: the maximum of the cost function16 under priority

assignment P' will be greater than or equal to its maximum under P.

The proof of the theorem is given in aprendix A. The theorem

is quite weak, but at least it shows that a pricrity assionment like

the following can certainly be improved:

i e

i L e
L

I11.4.2.2 Two cases where it is known how to assign priorities.

1. The users are competing on one resourcc onlv.

There might be more preemptible resources in the svstem, but

for each of the other resources there is no more than one user who

might ask for it.

In this case, the fundamental eguations take the form:

Vi€l , either w, =0 or 1-w3y 2 a_ w (0w, € 1)

is to he maximized.

Theorem 3: The ontimal priority assignment, P, is such that:

a, ., a, .
X 1] kJ
Py <Py &) <)

The proof is sketched in avpendix B.

or economic criterion.

64

2. There is a finite number of users and resources, but the

Eijls are infinitely small (of the first order).

Under these assumptions, l—wi is a first order, infin.tely

small number. Thus:

l-wisz}_(akj

and:
- "N
e Z i %kj
i,j.,k

The question of which priority system makes n—Em x the smallest

a

possible, still exists. The following theorem solves the problem:

Theorem 4: The optimal priority assignment P is such that, for any

resource j and any users i and 1i',

a, . ai'j
g c, < c.,

plj<pl'3 i l

Proof:

n- E'max ~ :§ i akj

6%
Thus, the problem of finding the optimal priorities can, in this case,
be solved for each resource independently from the values of the aij's

and pij's for the other resources. Theorem 3 can then be apnlied, and

gives the optimum priority assignment for each resource.

The general problem of assigning priorities is generally quite
complicated. Using the results of sections I17.4.2.1 and JII.4.2.2,
suggests the following heuristic:

1. Assign priorities so that:
aiﬁ
o B g . (:'. ——— <._.._.._
Py < Py >

2. Try to improve this priority assignment bv using theorem 2.
This improvement can be achieved in a time proportional to m x n.
This priority assignment is not alwavs optimal, as shown by the

following counter-example:

Example 4: 3 resources, 2 jobs.

a.) = (-3 3 A4
i3” (.31 .e .09

It is desired to optimize Wyt W, The preceeding method leads to the

2

following assignment of prioritics:

e D N
i 2 2 1

The optimum is LONR I P 1.384. However, with the priority
assignment:
2 1 2
g o = (1 2 1)
the optimum would be: w, + w_, = 1.477.

66

This example clearly shows that the "good" priority assionmént
is not always optimal. The major advantage of this method of assiqgning

priorities is simplicitv.

I11.4.3 Assignment of values for the progress rates_wi.

Once the pij's have been determined, it is desirable to determine
optimum values for the nrogress rates in order to maximize E while sat-
isfying equations (III-2).

I11.4.3.1 The 0/1 integer linear programminag problem.

Now the mathematical programming vroblem which was defined in
part 2 nf section III1.3.3 will be considered: maximize (III-5) sub-
ject to the constraints (III-6) (excepot that the nij's have already
been determined).

This mathematical programming problem is not a 0/1 integer linear
programming problem, but it is convenient to consider it as such (de-
termine the values of the Gi's equal to 0 or 1l). Note that the aij's
and the bij's are all positive (they represent the needs of the users
for preemptible and non-preemptible resources).

The 0/1 integer linear proaramming nrohlem has benn reviewed in
[23). Of particular interest to us are the studies in [24,28]). The
idea is to find a nearly ontimal set of users to be allocated
(6i = 0 or 1) by ordering the usecrs according to some criterion which
will be called "decreasing desirabilities”, and to trv to allocate
them (satisfy the constraints). starting with the user havine the high-

est desirahility.

67

I11.4.3.2 A first algorithm,

The jobs are supposed to be already ordered by decreasing ex-
ternal priorities. It is then nccessary to decide ahout the wi's for
the jobs. For instance, suppose el .5 for the high priority jobs.

A wi too close to 1 might strongly degraue the possible service for
other jobs, bv obliging the system to give a hich internal prioritv
for all resources to the job which has a high extrrnal priority. This
would lead, as has been seen, to a poor utilization of the resources.

If a set S of jebs is allocated in memorv, i+ has to satisfy
equations (ITI-3) and (III-6) (with 6i = 1 if i€5, di = 0 otherwise).

A procedure to find the maximal set of users fitting into avail-
able resources would take the following steps:

Step 1: Take the highest priority user:; put him in set S'.

Step 2: Check whether $' is an allowable set: first assign the

priorities pij Vies' , according to the rule

plj < pkj €= > 1] < k‘]

where the ci's are in the same order as the external nriorities.
Then check eguations (111-3, and ITI-6) for set &'. 1f they all check,
go to step 3, else go to step 4.

Step 3: 5 « 8'; go to step 4,

Sten 4: Define S' as including all users of 3, plus the hichest
priority user not yet handled. If there are no mora users to handle,
the algorithm stops, else go to sten 1.

Using the above nrocedure a maximum allowable set of users has

been found, cach of which has a requested quarantecd service. The

computations can be done so that the time reauired bv the algorithm
is: t=Amn+ Bmn loa(n). The nxloa(n) term expressed the time to

- a,. . i
sort the cuantities ~ij (to determine the priorities).

C.
1

Set of users with non-guaranteced service.

Assume that the non~-preemptible resources are not saturated after
having applied the previous macrnscheduling alagorithm. Some other
users might then be allocated with prioritics lower (for cach pre-
emptible resource) than the lowest prinrity of the users of set §. The
guaranteed service of users of set 3 will not be affected by these
additional ("Marginal") users. !l will be the sct of marainal users.

Prioritics in set M are determinnd accordina to the same criteria
as in set S. Of course, the resource usaac will not be as agood as if
the priorities had been determined optimally for the entire set M + S.
Our solution respects the external priorities of the users, while

maximizing the svstem's efficiency.

Example 5: There arc 2 CPU's but only one bus (or channel).

aij CPU 1/0 wi decided 1Y allocated
job 1 .4 .6 5
joh 2 .3 7 55
job 3 5] 2 a0
job 4 al) 1 3
joh 5 .8 2 o5
jobh 6 36 4 15

These 6 candidates arc in the order of their external nriorities.

There is no constraint due to non-preemntible resources in this example.

The regler can verify that the algorithm (with c, = 1, \f i) will

accent jobs 1 and 2, reject 3, and accert 4 and 5. This is intuitivelw

69

a good choice because 1, 2, 3 are I/0 bound while the others are compute

bound. S = {1,2,4,5) M= 23,6} , and the priority assignments are:

Catnd

3

g

]
AW hH N
NS W

/

Note that job 3 would have been accepted if Wy S

signment gives the resource usagc u = .0, = &,

cru - P Y0

.4. This as-

which could he

improved by solving equations (III-2) (eaualitiecs) for the wi's with

the pij

Comments:

's that were just computed.

1) When deciding about the desirahilities of the
external priorities and not a more precise cuantitative
their urgencies werc taken into account.

2) Clearly, if the wi's were computed,instead of
arbitrarily decided bhefore the alagorithm started,a more

could have been obtained.

II1.4.3.3 A more general algorithm.

The following algorithm attempts to find a neAarly
to the problem. It works in two steps:
1) Get an approximate solution by optimizing the
criterion (III-5) with the following constraints:
b, .
VieB 2 =i ¢

A
ies ®j

Vied Zaijwisl

ies

(I11-7)

jobs, onlv the

measure of

just being

optimal solution

optimal solution

cconomic

70

The constraints for the resources of set ® are identical in
equations (ITI-6) and (III-7). The constraints concerning the resources
of setcx are, however, weaker in equations (III-6) than in equations

(ITI-7). The latter just express the best possible case (where no

unnecessary interference between jobs would happen), however, this
method is used because equations (III-7) are casier to manipulate than
equations (III-6) and a more refined solution will be attained later.
This first step is essentially intended to eliminate from further con-
sideration the jobs which should certainly not be scheduled (for which
w, = 0).

i)

To get a good approximate solution of this mathematical prooramming
problem (III-7), it is not necessary to use an cnumerative method of
search. A faster method which gives a good approximate solution works
as follows:

] o= g . . 17 . T

Assign an initial weight Kj to resource j. Assign an initial
w, to job i. Compute the desirability for each job:

c,
i

i }E b,. K., + EE a,. w, K,

jed 7 je@ '

Sort the jobs according to their desirabilitics. Starting with

the one of highest desirability, compute whether the job can he allo-
cated or not, tha* is, if eauations (III-7) can he satisfied with S
consisting of the jobs which have alreadv been allocated and of the 4ob
which is a candidate to be added. Whether the job has been allocated

or not, try the next one.

7 e , . . , .
The initial weights when the microscheduler is activated miaht
be the final weights obtained at its previous activation.

71

When all the jobs have been examined, comvute a new weight as-
signment (the Kj's) and the new wi's according to the princivle that a
job having larger di should have a larger W and that a resource for
which the corresponding equation (III-7) had its left side much smaller
than 1, should have its weight decreased.

. . , 18
This entire process can be repecated 2 or 3 times.
2) Having determined the set S, a better approximation of the

wi's can be determined by solving equations (IT1-8), with

= 5 < a,. , D n o
pij < pi'j = dij/ci 11,]/c1,
(I11-8) 1=w + Z ai'j Wo Vies
j e
pi.j< P4

If any of the wi's of the solution is newative, this wo is re-
moved from set S, and equations (III-8) are solved again. nhs shown,
equations (III-7) gave a set of users to be allocated which could be
somewhat too large. Eliminating some users from this set in some cases,
yields a nearly optimal set to satisfy eauations (III-6) while maxim-

izing E given by equation (III—S).18

III.4.4 & summary of the pronosed schedulina method.

1) Macroscheduling: It has been shown how, agiven the aiﬁ's,

bij's and ci's, the macroscheduler determines the nij's and wi‘s and

This algorithm has been programmed and checked for several
examples, for vario.s numbers of usars and resources. It alwavs
worked satisfactorily. Note that the choice of the rule used to
get a new sct of weights is cssential to obtain a fast converagence.

72

transmits them to the microscheduler. It also allocates the non-
preemptible resources for a period of time T.

2) Micioscheduling: the microscheduler keeps track of the usage

of preemptible resources by the allocated users. If user i uses re-

source j during more than a time

then job i is punished in the sense that its prioritv pij for this re-
~ource is changed to a priority lower than any job which had not ex-
ceeded its quantum on the resource. This method assures that a job
which accurately estimated its needs will be served at least as weli
as promised.

This changing of priorities bv the microscheduler does not affect
the previsions of the mathematical model (which assumed that the micro-
scheduler did not touch the priorities but onlv inforce them), for
priorities are only changed when a user exceeds his allowed aquantum on

a resource.

III.4.5 Pricing.

The determination of prices is, to a large extent, a consequence
of the scheduling strategy. In the approach taken, a user agreed to
pay at most a price c W, to get a progress rate W and if he pronosed
a larger c; he agot higher priority.

However, the system should charge the various jobs beina allo-
cated more or less uniformly. It should not just chiarae the maximum
possible to each job, hecause otherwise the jobs would start with very
low ci's and then increase them slowly until thev were scheduled, thus

leading to a gqreater overhead. The marginal theory of pricins theoret-

73

ically requiraes the system to charge user i exactly C|iwi' where C'ii c,
is the lowest bid that the user would have had to offer to get allo-
cated. Unfortunately, this definition would lead to very complicated
computations. I suggest here a few alternative methods.

1) 1If I is the first job which was skipped (not allocated) when
the jobs were scanned in order of decreasing desirabilities in the firest
step of the macroscheduling algorithm, and if v, the effective progress
rate for job i, charge job i:

p, =min (c, , c,;) xw, x T
it i i

A
2) If jobs having estimated their aij’s incorrectlv are to be
penalized, and if job i has effectively used an amount rij of resource j,

he is charged:
r..
p., =min (¢, , ¢,) x max b—él)
i A i a, .
ij
3) A unit cost for resource j could also have heen comnuted:
“j = Kj dZ' where [is the first job not allocated
and Kj the weight of resource j, as computed by the macroschedulina

algorithm, If job i uses resource j during a time rij' he could be

charged:

It is useful to have some prices for resources, so that:

1) A new coming user can by immediate insvection of the prices
determine whether he wants to get on the svstem or not.

2) On the long range, the comouter center staff might determine
the needs to install or remove facilities (sce lielsen [16]).

The variations of -the uj's in time should probably he smoothed

74

for those purposes.

II1I.5 Models of other priority systems.

IIT.5.1 The equivpriority case without preemntion.

In this "no-priority case", a user seizing a resource will never
he preempted and will not lose the resource until he decides to release
it. The situation may lead to almost no parallelism in the comnutations.

The worst case equations are:

(111-9) Yieq1,n] 13w, + & 'a.. w
! 774 K#i kj 'k

J

In the situation of example #3, this gives the following vroaress

rates:
w1 = 16, w2 = .32, w3 = ,64

so that the overlap of activity is small:

overlap = Wy + W, + W, -1 = 12%

Theorem 5: The attainable domain DN of the no-priority system is nro-
perly contained in the attainable domain D"J of any priority system.
Proof: comnare equations (III-2) and (III-9). The latter imoly
the former.
Therefore the no-priority case is uninteresting, and should be

avoided in any actual system design.

III.5.2 The eaquipriority case with precmntion.

This case would also be called the case of "Randomly turning"
priorities. The model is characterized by the followina microscheduling

method:

Tnie time is divided into very short intervals, and the vrinrity of

the users for the various resources is changing from one interval to
the other, cycling so that each user spends thc same amount of time in
each priority level. Typically, the time between two priority change:.
might be 100 microseconds and is small compared to thre interval between
two allocation reaquests of iobs to the microscheduler. YNevertheless,
assume that this method does not introduce any additioral overhead.

A random number generator might be used at the beginning of eact
time interval, to generate the job priorities during this interval.
This would insure that there is no regular pattern of one job spending
most of the time at a higher prioritv than another, as hanpens with a
circular permutation.

The ideca of such a microscheduling algorithm has the following
justifications:

1) The hardware could allow time-sharing of a CPU or a channel
on very short time-sliices, however, we don't know whether this would be
a good practice.

2) It is desirable to assure a user of a certain percentage of
use of some resources, under any circumstances. Time-slicina on a very
short time basis miacht seem a natural wav to do it. If user i is assured
of having the top priority on resource j durino a portion of time Aj AT
where AT is some small interval of time, then, with the aij's defined

oreviously, his progress rate will be at least

However, a much higher "lower bound" estimate for the wi's can
be computed. After having done it, these new "worst case"” equations will

be compared to equations (III-2) and it will be shown that, under some

76

assumptions, the "turning priorities microschedulina" performs poorer
than a fixed prio:r'' - algorithm with the pij's well chosen. This re-
sult has been checked by simulation, and the followina discussion
attempts to establish a theoretical justification.

Under this new model, if k users compete for some resource, each
one will get it during a portion of the time 1/k. Consider resource I o
User i will seize it during a period T aijwi' In the worst possible
case, the maximum overlap of requests occurs on resource j. Thus, the

time spent by user i waiting for resource j ic less than or equal to

Z: min (a

a,. w, T)
k # i S

kjwk T,

This points out that if a job k asks for less time on resource j
«ian job i, the maximun time spent by job i waiting for resource j be-

cause of job k will be T a .w If, on the other hand, aijwiT<a

k3" k4K

job i will wait for resource j because of job k at most during a time

9 3 14 -
aijwiT' (see fig. 111-3).

The worst case equations are thus:

(I1I-10) lzwi + Z min (akj L aij wi) Vie[l,n]
3 1%

These equations define the attainable domain with turning priorities.

EEEEEEE_Q’ For every point in the attainable domain defined by eauations
(III-10), there exists a priority system in which this noint is attainable
according to equations (III-2).

Proof: Define this prioritv system by:

<=> <
Pij < Pxj A9 Y1 S Ay Yy

T k (job number)

Fig. III-3: Time spent by the jobs on resource j

and maximum interference of job i with other jobs.

7

78
Assume that, for a given j, the aii's are all different. Then
obviously, equations (III-10) imply equations (TI1-2) for this system,
which are:

Viell,n) 1)w.+z a . w
7 i] 3 'k

A3k 354%s
This theorem is reassuring bhecause it says that whatever a user
is assured of doing under a turning prioritv system, he is also assured
of doing under a fixed priority systenm.
However, the following theorem can be proved under some restrictive

assumptions:

Theorem 7:

If one of the following is true:

1) There are only 2 jobs (and any number of resources).

2) There is any number of ijobhs, but comoetition is limited to
one resource only; then there exists a priority svstem whose attainable

domain includes the domain defined by:

< <=> a.. < .
Piy ° Pyy 5 g

The proof is shown in appendix B.

Theorems 6 and 7 show that a fixed priority system should, to a
certain extent, be preferred to a random prioritv system (which is it-
self better than no preemptibility at all). Tf a resource has the pro-
perty that it can be preempted without anv other additional future loss
of time, then the available information on the jobs can be used to
assign priorities for the resources, and a "good"” choice is to assign

the resource to the job which has the least need for it (after having

79

weighted these needs by the external urgencies of the jobs, which leads
a

i

to the quantities

I1I.6 Problems for further research.

1) Continuous macroschedulina: Instead of applving the macro-
algorithm at regular time intervels, find a simplified macroalgorithm
to be applied each time a job previously running deactivates itself
voluntarily, or when a job changes its external priority, or even
when the swapvoing channel is idle. Jobs might be scheduled or un-
scheduled just using the desirabilities which have already been
computed, but it might also be desirable to recompute the plj's, the
K.'s, the di's and the wi's.

2) Extend the models to include processes using more than one
resource at a time. For instance, Fig. III-4 shows the virtual time

diagram of a user who initiates I/0 and swapning at the same time:

4 Resources

CPU |
I."O l | .
| 1
Swan=oil; | I
o e i | L""T |
Swap-~ L] | i |
I |

memory (20K; | | | :

memory (2K)

Virtual time

Figure II1I-4

Another characteristic of our hypothetical job is that it does

not need all its memory resource continuously (a buffer of 2K is enouagh

80

during I/0 completion). Could this knowledge bhe taken care of?

Solving this problem would be especially useful for future
computer systems where the cost of arithmetic and control units is ex-
pected to decrease much more than the cost of central memories.

3) Find models of "probable" performancec as well as "worst case"
models. .

4) Which information other than aij's or the bij's on the jobs
would be relevant to an allocation algorithm?

For instance, the exact virtual time at which a job will place a
request might be available for some johs while being comnletely out of
the question for others.

5) How much would the results of the model he affected by slight

errors in the predictions?

III.7 Conclusion.

My initial effort was applied to separate problems which are
usually handled together in a very intricate manner: 1) Schedulina:
2) Paging algorithms; 3) Deciding external priorities of users 4) Col-
lecting information about the average probable nceds for resources of a
specific joh. Pricing, however, should not be a question separated from
scheduling. The problems of protection and of deadlv embrace had already
been separated from the others in previous works. Ry nartitionina the
difficulty, I bhelicve that the way to better scientific understanding
of shared combuter systems stands open.

The previous scheduling algorithms and models applv in comouter

systems where the shared facilities can either be preempted with very

81

little overhead (CPU, busses bhetween two levels of fast memory), or
cannot be reallocated without a great amount of overhead (memorv).
The y do not apnly, however, in cases where a resource can be preempted
but the delay imposed on the preempted job is greater than the time
during which the preemption occured. This would be the case if, for
instance, a job is swapped from the drum into memorv, but if at a
certain moment it can't get one of the pages because another job has a
higher vriority to get a page from this zector of the drum, then the
preempted job will have to wait an entire revolution of the drum before
the opportunity to get the missing page is remeated, and the cost of
having a set of pages idling in memory during all that time is of course
important. 1In such a case, the right strateav might be to avoid pre-
emption, and to decide what to do bv computing a "desirabilitv ratio"
for each possible scheduling operation (ratio of the urgency by the total
cost of the resources involved). (sece section IV.4).

It is my belief that the scheduling techniaues described in this
chapter will be especially useful for scheduling of real-time users, who

want to have the assurance of getting a certain percentage of usage of

the resources of the machine before they start working.

Other investigations of multileveled schedulina are still necessary.
I believe that queuing theory gets ecnormously comnlicated too ramidly
when the number of servers and the complexity of the queucina strategy
increase. Simulation is a fast way of testing whether some almnorithm is
workable, but is not more than a predictive technicue. It does not seem
to be likely in the future that a scheduler will first simulate the

situation before making a decision. Analytical approaches are almost all

82

that are left to improve schedulers in the future with the certainty

that the designed algorithm will wori almost optimally in all cases.

94

CHAPTER IV
SWAPPING ALGORITIIMS

In this chapter a study is made of swapping algorithms for a
computer with two levels of memory: drum and core. Pre-paging takes
place before a program uses the CPU, an entire working set of pages
of this program is swapped into core. Section IV.l presents the
Berkeley or Van Tuyl algorithm, which was developed under the direc-
tion of Butler Lampson at Berkeley. Then, by contrast, another swapp-
ing algorithm is presented in section IV.2. T then explain why I
think that the latter algorithm is much more approoriate than the
former, especially for future computer systems. Resource utilizations
of users programs under both algorithms are compared in section IV.3.
Finally, section IV.4 gives some indications as to how a drum to core
system should be scheduled if the swapping algorithm of section IV.2
is used.

The various notations used in this chapter are completely inde-

pendent from those used in the previous chapters.

Iv.1 The Swapping Algoritam of Van Tuyl.

{10) describes a swapping algorithm between drum and core which
was intended for the BCC-1 computcr.l9 The system has essentially four

resources:

lglt was initially designed for the SCC 6700 computer.

84

a) one CPU

b) core memory

c¢) drum (capacity supposed to be infinite)

d) a channel between core and drum
A program might be in four possible states:

1) on the drum,

2) being brought into core,

3) in core, waiting for or using the CPU, or waiting for an
absent page,

4) beinq swapped out of core, to the drum.

An "external scheduler" decides which programs are candidates to
be brought into core, and among those which are in core, which one gets
the CPU, or which are candidates to be swapped out.

A program is considered to be in core when a certain set of pages
is in core (this set might be the entire program). Programs are sup-
posed to be small enough so that their pages can be retrieved entirely
in one drum rotation (if there is not conflict). A conflict occurs if
two programs, while both are being brought in, happen to have a padge on
the same sector of the drum.

The swapper is an algorithm which has to docide, at each sector
of the drum, which page should be transferred. It might do either a
recad, or a write. With Van Tuyl's algorithm (hiereafter called "the
Berkeley algoritim"), pages which are not dirty (not written on while
in core), do not need to be written on *he drum. Van Tuyl simulated
his algorithm with the assumption that halt of the pages cf each pro-

gram are dirtied while in core.

.
pa'ged
core

memo ry

55

NS \
AN
read-write/
heads
drum
chanpol '.:? one page per sector
drus
comuind
."-,\
\ ._
\

picroprograresed
procoessor

f‘l-pa =‘&'“'

A haghly simplified ropresentation 6f the C=1

3.

Table I1V-1

Decisions of the Swapper in the Berkeley Algorithm

A process that the scheduler has decided to run is put on the
swap in list (or read list) if and only if:
Pages queued in + pages of process to gueue in - free core < G
(where © is a system dependent constant), and raages queued out <
free slots on read sector list,
Drum command:
a) If no read to do and at least one write to do then write
out, exit.
b) Compute, {f conflict (many processes requesting to read a
page in on the same sector), for 11l vrocesses on the read lise:
Cost of process = time to completo readn x (1ePC)

viere BC = number of pages of the procwss in core

A > & pages a process may have (s 1a the sase for all

process, like 3 was previously).,
c) 1f there is a free page in core then read *he pane of the
Ioweast cost process, exit,
d) 1Y cost of read * ! or no pase coan Le releassod in cete, then
45 a »rite glie ol the e 6! the loweet ot orovess, evit,
A page 14 toleases) A1

]r.wg 1o cote belamming 19 A proves y SN that

oval (fﬂ;) * eant (g,.)

|
casy Ip,) » ¢ont (;ﬂ.vp;f-e

whate B 1 e beat tead” process, sl P 1o ot et progeease

castidate o swsr i

87

A complete description of the swavper operations is given in
table 1IV-1.

Note that the swapper does not "look ahead." When the drum is
positioned at a certain sector, the swapper ignores which pages will
be candidate to he swapped in on later soctors. This is a reasonable
choice because the algorithm is already quite complicated, and one may
wonder whether all the decisions of table IV-1 can bo made by a micro-

progr. mmed processor during the time of one puje read (1 milliscecond).

IV.2 Another swapping algorithm,

The main idea of this new seapping algoritam {s to swap cont 13u-

ouzly in time the pages which belona to the Working S0t of a vrogram

wilich has to Le brought in or out of core, Contrary to the Rorkeley
algorithm, all of the pages are swapped out (and not only the direy
pages). Thian somewhat increases the channel utilization, byt results
in big savings 18 memory. The reasor for these savines §s that a amall
proaran can niow Lie brought intn core in much less than an entire drus
tovnlution since 1Ls panes occuty oanliguous sectors of the drum, A
progran 13 Cwacn o be svanped 1n because 1t haw a hioh external pri-
ority anil because 118 set of pages 1s aAlut to rearys the drum heads,
70 avold Uw pazziol Ity that such 3 strategy woald tndefinitely dolay
e rusning of some Jaby, the schodaler must Do tde “in advanc” wileh
3o ahould b wvapoent in ar aut during a drun prvelu® lon (ane oot 1o
i7.40,

Narte st Whi: hew AIBAFLTN comeideratly timmlifies the Lact @f

e susppet. Thete is anly =se job s e Swagpodl In 3% 2 Uloe, 6¢ o

88

job to be swapped out. As long as the swapping (in or out) of the
current job is not completely finished, there is no possible conflict,
and thus the next page to he transferred is always obvious. When the
swapping of a job is completed, the next job to br swapped must be
selected. It can be any job in core if a swan-out is desired; other-
wise, a job must be chosen by the schedvler to be swapped in such that
its first drum sector has not yet arrived at the read heads. Wwhen
initiating a swap-in operation, thore must be an assurance that enough
free core is available. The problem of determining which job will be

swapped in or out, will be studied in section 1V.4.

IV.3 Comparison of tne resource utilization undier both algorithms.

To simplify, suppose that there is just one CPU and one drum.
Then, there are three important resources: the CPl), the core memory,
and the drum-to-core channel. The drum memory is supposed not to be
saturated under normal conditions, The utilization of these three
resources is computed by a program, during an entire cycle (swap-in,
compute, swap-out). Those utilizations will be normalized in time-
utilization of the entire resource. For instance, if the core memory
size is !4, the use of an amouat m of core durina time t is normalized

to A mamory utilization of gt.

¥hile computing the resource utilizationsn, aome simplifying ascump-
tions are made. {he stronqgeat of them is to nealect the increased uti-
112ation of marary and chanmel due to conflicte in the Berkeley aluor-
1thn, kemoving this particuler assumption strenithons the cenclusions

wiiich feollow evesn mmare.

89

The following definitions will aid in the discussion:

S number of sectors on one drum revolution
P number of pages of a program (g of them dirty)
M size of core memory

T time spent by the CPU on a program, while it is in core

S and P both have a time dimension. In these computations, the

time unit is thec time to read one sector from the drum (1l millisecond
on the BCC-1). The resource utilizations are shown in table I1V-2,

o . . . B . !
The channel utilization time is EP in the first algorithm, com-

pared to 2P in the second, due to the fact that the dirty pages ere not
swapped out in the first algorithm.

Memory utilization is computed as a space-time product (see fiqure

IV-2). With the Berkeley algorithm, for instance, the progran is

brought into corc in one drum revolution (time S), handled in time T by
3 K] : . .

the CPU, and swapped out in time 3 P (in the first phase of this swap-

out, the clean pages, which do nnt need to be swappred, are replaced by
another program's paqes; in the second phase, the g dirtv pages are
swapped, at a rate of one page per two scctors, the other sector time
being given to a rrad). The total resource utilization of a program is
now defined as the maximum of the three rc¢source utilizations (channel,

core and CpU):

For algorithm k1

M . E,-l: rs ‘S- [2
) \}
U, = max (T, L 0 ; ")

1

For algoritha #2;

.
= max T, PT e 2%, 2r)

. “

Yo

UY3ITIObTE IBY3I> 92Ul ‘wO33I0y I P fWYITIOO[T A570:108 oYl ‘GOl oyl IV

4 pue [y suylTacbie buiddevms sul AG UOTIIEZTI[TIL SDINCSHE
Z-Al d1qey
ot 4 dz jouueyd
"
"0t © NmN PR Jacwow
01 o1 i)
0T = W g = I
¥9 = S Ze = s S .
= & o = 4 UOTILZITTIN SDINOSDH $02n0OSIE
0T = & 0T = 1
S*L St a & foureyd
€
1 ,
£€c o1 8 z Aacuow
N&N +oc t id
o1 ot R A add
0T = | ¢ = 1
¥o = ¢ ¢t = S
G =4d ol = 4 UOTITLZTITIN 824NOSIY 90an0sdg
o1 = & 0T = 1

9

€°AI UOTI3D95 3O WYIiiohle &Yl S1 ‘#O1SC f.U3TICL[v ABLOMALE HUYZ UMOLS £1 <03 o103

UTBWOD D0RAS-BWIZ DYJ UT BSIE UR ST PIraTA UOIJEZTTTIIN AiomSu 230D -4 513

v

3no-dems a3ndwod ul-gess
- b4 [e - -
d XL <
-
aury,
dowig t
INO-CPrNMS s3nduwod ul-cess
- - X x > - -
: d z/a oL s
1
-

SWTL

tw

[

92

The Berkeley algorithm was simulated by Van Tuyl under various assump-

32

tions, among them, P = 10 pages, S = 32 milliseconds (or pages), M

pages and T = 10 milliseconds. Table IV-2 shows that U1 = 15 < U2

with these data, so that the 1lst algorithm really behaves better than

20

the second algorithm, and the bottleneck really lies in the channel.
If the memory size and the specd of the channel are decreased to P = 5,
S =64, M = 10, and T = 10, the second algorithm performs much better
than the first one: U1 = 23 > U2 = 10, and the bottleneck of the first
algorithm lies in the memory.

Now follows a study of how the resource utilization would change
if the characteristics cf the available hardware were to chanae.

The size of the memory, M, the length of a drum revolution, S,

or tne handwidth of the channel, B could be varied. B was subvosed to

be eqaal to 1 in the previous computations. More aenerally:

L 82,5 p?
U, =max| T T 28 p o
1 ’ 2 B

b

2
P‘l‘+2% -
- & RS TR
U2 max | T mn m

1) Effect of bandwidth,

Figure IV-3 shows the effact of bandwidth. TFor high bandwidth,
algorithm %2 performs hetter than algorithm #1, as expected. tote
that this is not true if T were high (in which case both aleorithma
would he CPU bound); but the assumption is made that CPU's are actting
fastor and cheaner, and are not the critical resources of modern com-

puter systens.

93

2) Effect of drum rotation time.

Figure IV-4 shows how, when the drum rotation time increases,
algorithm #1 looses efficiency, but algorithm #2 does not degrade at
all. This is due to the fact that the memory utilization by algorithm
#2 is independent on S. This will allow the possible use of slow,

cheap drums in future computer systems.

3) Effect of a change of the relative cost of core memory

versus cost of other resources.

In figure TV-5, it can be seen that if the core memory size de-
creases, the sccond algorithm does not get memory bound as rapidly as
the first one. This will be helpful if memory is the critical resource

in the future.

Demand paging. If a page is missing, the normal strateqy under

algorithm #1, is to leave the program in core while the page is being
brought in. But, with algorithm #2, if enouah bandwidth is availahle,
it is cheaper to swap the entire working set of the program back onto
the drum, to bring the missing page into core, and then to swap the
working set in again when it arrives under the read heads of the drum.
Tie same considerations apply for a short 1/0 operation.

A final word 13 recessary about the accuracy of thete resource
usage estimates. Jt was assumed that there would be no conflict: in
other words, for each suctor of the drum, there is 2ero or one paaqe
transferred, hut never pages of twn differeat jaohs both wanting to he
transferred. Possible conflicts tend to increase sneetimes considerably

the resource usage (memory and channel) for alonritha #1, whnse actual

ik

wribozd ¥ JO UOT3IBZTTI3N SSINOSHA P30 UO

UIPTMEURG 30 329333

£-Al1 °*b1g
8 bz |
e _
|
TE WYITICBTY o
-
B
o
Reirod |
— S e, -
IR =) 1oty Punog — e pumos
Fomae =] =
. T auuwrya
el = Jl.f
llll.
i ﬂﬁ -
. —
|j.l
nn -~
ZE = S 1 .
Z€ = L
1=2
0T = 4

st

75

wexrboid e yo UOT3IPZTITIIN S3INCSHGI [P0 UC

SWI3 UOT3B301 umip 3JO 309333

=

v-AI "bTg

&1

(e
4

n

punog Axowsw

ptnog Tauueyd zZ# wy3ztaobiy

B+ = m

oY)

B e O ——

punog jsuueyd T# WYITIODTV

——— e i am— et ——— — cme ——

A

0s

wexboXd B JO UOTIPZITTIIN 92INOSDI TRIOZ UO

8Z1s Xxouwiswi UTPW JO 23IDDIIH

|
i
_

S-AT °b14
Lt Z1 o1
“ !
:
| ~ |sce
e e et TR . —
Ce gy yIohTy S . S
.r-.J.
£ E-
WAER T n._.-n-._.____. T 5
g9
S
rH. -
d 81
N

97

behaviour can be much more resource consuming than the figures show.
This would lead to a preference for algorithm #2 ecven more than was

previously computed.

IV.4 Scheduling a computer system under the algorithm of section IV.3.

The scheduling problem considered here, consists of deciding
which job, at a given time, is to be swapped into core, out of core,

or to occupy the CPU.

IV.4.1 Scheduling Criterion.

For user i, we suppose to be known:
1) his bid Ci.
2) his requested CPU utilization time Ti'
Ci is the bid for an entire cycle of swap-in, CPU usage during
an interval Ti’ and swap-out.
An additional constraint is that a job can only be swapped in
when its sectors on the drum pass under the read heads.

The system's criterion for s-~heduling is to maximize

where § is a set of users which can be run over a given time interval.

IV.4.2 Jobs Desirabilities.

1t is desirable tn allocate jobs in a way such as to get a balance
of resource usage (to swap, for instance, a larae-sized job while a
small-sized job with a large Ti occupies core).

To get such a balanced set of jobs, prices are first assigned

to the basic resources:

i
cpu

)
'C“

r’M M

The desirability of job i is thern:
C

d =

i
1 i

2 + 4 Y
%ru Poru * "on Pen t Cuan Vs

where = '

U are the resource utilizations of job i, which are

%en’ S

given in table IV-2, as functions of the characteristics of the job.

IV.4.3 Job scheduling over a time-interval.

No justification is given here to the alaori'hm which follows.
However, the reader will recognize it as a variation »f an algorithm
of chapter 1I11I.

For a given time-interval [tl, tzl, a schedule is computed by the
following procedure. As nearly as possible, jobs are allocated in
order of decreasing desirabilities. A job can be scheduled for swapn-
ing if its pages on the drum do not share any common sector with any
job already scheduled for swapping, and if the jobs for which alloca-
tion has already heen decided, leave enough memory for the new job to
1) be brought in, 2) wait for the CPU, 3) run, 4) wait for the channel,
and 5) swap out.

After the schedule has been workcd out for this time interval,
the new prices of resources are computed as a function of the old prices
and the idle time of the resources. The scheduling alqorithm is acti-
vated once every (tz—tl) units of time. This miaht bLe typically a

drum rotation time,

%

Hote that the Lime sg=nt by the alearithn 1& propartional te
nlog n s k, vhere k (v A constant amd n leg n the Tine peceeiatry

to sort the desiravllities of (he jols candidate 1» tum,

1§

CWAETHR 4

CONCLANE IO ANG FROBLAMS FOR FURTRER AR “IANIw

Tl e paset Mas Invest Iasted sore wird of

1) @tting U Gasf (@ participate in 150 o) o 18 of cwltal ae
TREOFEI%,

) fieding o balaseed st of whers 29 moge efflciently wate
thede facilities, asd

3 iapreviee Girrest Swatning Alanrittne, asd fiadien o aleaes
Lt aptrotiti ate for 3 gives hatduare coRfiddeation whey Ue spitan je
desioned,

™he allneation probler stamds wide epma for futther tescarch, |
supsest the follavine pondihle directioms:

1) Cosmunication between the user and the svcter . 1t vomld be
interesting to desion a lansuane thremmd Wilch the user could rancoss
his knowledge about his orogran (hostng that 1t vould b= uvseful to the
systen's resource allocater). This lancuate weuld cwrress trads-offs
betwwen the asount of money tha® he wants to spend anid the resvonse he
{s goinga to ge%, etc... Alena theze same linen, 1t vould he interecting
to find out rore about gimple ways of asalvainy the =tructure of a
program and its charactaristics for allocation,

2) Structuring the resource allocatien., Users vant rore and more
complicated contracts with the aystem, shiich shculd auarantne thes of
aetting the service that thay expect. Wider clasgea of roseible contracts

should be investinated.

1
3 ritiss, Wt 1% Ghe effeey @f & fICIMS AL enudtade GR Whe
et ‘3 belasiogs s aa The ereten®s effjejencyl @av coagdd Fale o lees

b Aetatasd casi e for Eams) ho ot @nmtiagy s’

e

¥.

4.

5.

&,

2,

1,

i

1.

1.

né

LIST OF SrFEsEmeEs

Namim, B0, (et rodestion 1o Time=Shar e Orcents, Teclnieal
FeGpreds buprg? g6, MVé8, Frotest po. YOI, Srel] fievelesmens
Comprery (L Pasmddy 1900,

Babwtmas, At. Fressntion of spsten deadlochs, Comrnl gat) any
ef Yo A (2.7 (ily 1990, 37)=pld,

Weth, Aehas Fo ot al. jadesacris] Sehedelisg. Frestice Mall, *s2le-
womi Cliffs, N.J., 1IN,

Cmany, Wamvr 51 2 M1lder. Thaoaes ;i frtenbalimd, Aobif) e
M-“f. B w b) Ml , iop olpgaatite, JET

Lativmn , Bisie | M. Pooadart Leine 60 puln e some smmet comagless,
Frodress o6 dew inriag s ssaletic seedivtion & Und, Conp,
ACE L. 17 Flimw. 30690, @¥8EMe,

Sphewte, Linwr, The niske] ind of Mabomaihjas Istarartive systeoms,
Rapiet A, €90, Distasrtmend of BEmbbm o, Teivereity 8F Okicows,
depn, Imd,

Wlimmay, "% A ssrvey of ssdlviieal Viseatage ine melels,
QERASS Barwers 1. 7 U bR, IS0

Wallare, Y.L end esen, Bl Dearee of sullicrserammias L base
" denand epetemn, e, RCF 1.8 thaee PR, W e,

-lﬂ. A, vl Pmsamr, C.f, Poatic atresest sl [t |6 Eolpnd ot
pehens, e BW L)LY P 1M, Sedagee,

Yar Turl., whort Weed, S Ll une 1Nn Fag eme feis Bla TN dewn
U gutw, D ghual P s, ST Al eart #2Re) Umie . of ol i oepnge
M prrradey,

paytet, Llien, L pemmitem of lomat gnn artmbe Cap @R | sasee Gnie | oy
Spmt gt ion ak » shel |l dmmewter, Feer, BT Y Bew s Jeges
Cotioptong (matepudedn, Vul, ¥, Thamess oo v, Meahismton, 0,0,
s 1T,

Craditeg, Petar F. Dearpprm ablosat ol Iy Pt isttyess gannanss
apveame, (NN, Themie), Freleet WA, Ro1.0.. Canbeides, T,
Mg e

Seemding, Pelet f, The wigtlas Set medls] foe cemete oA Balavicge .

Conin, S5 1. % Oty WS, A3,

14.

16,

17,

M B

v

2.

103

Fenichel), hobiart K, and Grossman, Adeian 0. or analytical eedol
of miltiproaranmed comgrating, Proe, AFLPE 149 Spcing Joint
Computer Conferente, VYol, M, AYIFS Press, YMentvale, vy 717=221,

fisvet, Danlel Ilefre, Memdry allocation In compaler Ev&tnwa,
Feport po. (8«17 (.0, Th-si8), Commter Fclance Penartaent,
UeColioAe s June 106,

BielEen, Hoeran B, Vlexible sricien: a0 artenarh o the allozaties
6f compnlor feisgrees, FPeoe, MFIRE (948 Fall 2o)st Commwiter
Confetence, Yel,)], Thomsen Book Co,, Mavl,iemtay, 0.C., 1%,
S21=%21.

Fatil, Suhae €, Nseetver, Mruser arbites. Coamytlion SEENCLNres,
ﬁim WP H:o 2.1.7. "'ﬂﬂiiﬂ el ,

Suther land, [vam, 3 TUTUMEE marted In eereater tine, Cown, AOX 11,
6 fiemns 1945) &8)=450.

Frove, Pagtara €, and CuEtavsen, Framces €, Frerrawm Whawwioet 10
A gl) e tonmeRt, PFror WIFE %8 Saring Jolst Comptes Conf,,
Wl 27, Thomeen Sadhk CQn., Washisien, 0.C., %o, 1919062,

Fachmens gl basdell, Oopead pading 16 ferceestjvr, Preg, XY
1e Speing Seist Compatet Comfeqimee, W), 53, Momame, Bask Co,,
Visohl agt@m, LoCo. e 1011=1004,

Gmipe, Pusewy of Vialur, Sohe Miley & S, %ew Ynpk, 199,

Catinar, F.0, wid Fleisesoss, L. Comogles aohefiy] jae methinds and
Phel ¢ Cuwtetnmasgsns, Cewr, MIET (W e Soq.ms Seiat Compites
(aategesns, ¥mi, 37, fm Wk Cw,, Vasthimstan, D,0,, v, 1i=7),

_lﬂ -II. ‘I'O et #'l ﬁilﬂtli ot ,ﬁ'-ﬁ"!”v— M !'M o,' o B EnEe RN AR
peablen. Comn, MW 1).02 (Pec. Pwe, S¥Raedl,

Tmimgerteny . Tartin B oand Tesx, Tuwid B, "ridede fgr 1%r an)ot jon
of the mglticfie-naimmal O7) Gaaveask spredon, “Ere, dee. 14.)
|t fubrwar) 1>y, #2191

Elsistorn, L, Srtimes bribise fae gmpe see |t imm, Tgaer, Bee, (4,0
Clarot=tag i | 1 ®), Wledia,

P eten, felugme W, The ELFpEtuse ot URET e R e el AR A S EFalan,
Froamitad 51 1he Cyanes iyt oh SR sl (s B9a® o we Bf i §o Jo
Gst) i Sfeuee, Prasmete , Twlanse fof, MY,

Msdyomt, Pomlat Bpingh, The dwiowe &f & Mol logmerarm b Seten,

Gl A0 3.4 Gawril) 1930 2240,

28,

M.

1n4

Everett, luagh 111, Ceneralized lagrange multiplier method for
snlving prohiems of optimun allecation of resources, Oner, kes. 11,)
(Hay=June 194)), 398-417.

Stevens, David I, On overcoming hiah=priority varalveis in multi-

programing systems, a case historv. Comm. ACY 11.R (Maust 1948),
519-5%11,

S
o

AFFIMDIX A

FROGE OF THRCMEN 2,

tpuations (211-0) can Ve written, vusder eriority assiosment #):

a=1) u
v‘eﬁ“.ﬁ'. w z Y 3 V,‘o ﬁ ! o s 3
oy L} %
vin ¥, « 2 Moy for v o0, ama ¥, =0
" e€l1.n)
Paoat s
Undet prioeitr avuliamment %
L3
1%=29 Vie (Vom), =iudne “Zq !‘“.M‘. Clerw +60
Lo Z A, teber, mal 2
LA sty ¢ e
'i'!‘ *‘:n

I @all te orowmd 1A @pedtion B &f (2:1) 1w lice cpastion M
of (h=3), emtund for & » 4, sl Thad aquatins #3° of (A1) Jnis) bee
epatiss *) of (A=),

11 Nete when fae k40 and b 200, 00 e emeions et B oL
butimyss Uhe gt ideiting 6F Uimde Dbk fulalivs Y& ~10het Ml) o Yol §°
B g hied dedy fied O6 Ay tuehitie, THiE S mbust fos B of

4s3) Tof % # 4 5 % 2 3°,

106
2) Me have Y" . ri'P! }0“ = k'vr 54

““o = 0, Y'.| =], x.H' = "’ €1, X.I'i & 4” <

. X°'.,,. L !..k. for any +°) this proves eauation #)°
ef A=),
1 Fimally, tu 1E shown that equation 1 af (4=2) 15 melied
by egiation #1° of (A=1). For V' # | and 4* 2 ;°, 5'“, ;gl,“ hw s

CAagey N.’ 4 ga') ’ ﬁ.ig‘| . P.'.‘
Yiae V2%
\f0'| =] = '&".'

167

AT B

FROOF OF TeiOwie),

Tre peenf 1a Gi%en in three Farts:

1. Usnider 2 Siven seiaqily Aiannast (409 ssomesstliv entinall,

e pawinee &f § 13 ohlaisms] wWhios e CIrdsese ator St el

VI o SYhee w'fo [74 v!él={_ .;‘,w'*t
ﬁu(&"i.

(his o be parnad exsil~ by e peades)

A% » Edmibytwerie, §1 G b abwgthed WhEE The Bbale e mgRte fud)

% il & wimp et ¢ e oqeg.l‘ogh,mﬁ

Vigitea®) w‘lélc‘z «aqw\
¢ i

Vi€is°21.4) w, =0

T, U e Mube ats Sulbwsed e abewe ARSNE | e Bhe Geessese

tatee ste S1en b9

e, =3

b
v;egcﬁa

vt‘-ﬂ-a !!I-abnl

e

By '] -s”) [I an) =22z (] = ﬁﬁh'.”
Yat e * ’
”,,-, +0

1 wildl mow b Aewm hat 1 wwd wsese) and L) Rawims Geiar il e

n” - 'ﬁ"'d = |, satijely
@ »
Al oy debed
€ €inl

WA, QR S INA LY AR ENREIE Eak Endtaia)Y S (0 @Bl by wws
@ANEiAR Ui pr i itice 6F | aid Y] 0 seawmEs ¥,
Fawmafc Gndst Whe FReeN prime it skl dmiPend , e ewlas ofF Bl

0T DR Liin, o1 A M ieh)¢

. " L LI L L 7 L
) - .Qa ssee .@. “'.' Q..' XIX) 9’_"m
adid wiRed AN IEEmAE b | Yhteas o

[] - N] ® ™ . ™ ‘“‘. ata w ? €
o e T TEL LSRR P PRI

‘t‘:!‘t.i \ AR AN BYAL
Pt -
e * P’y - o s o
aow * Foae M Y e, M
= C%'ﬁ."‘ . “.‘I'H. Bt‘." - ""i.'.‘"
" Unsi”l = N
& Yhate

'] . s s g : es o ®
Cran " Fone et T Bla T U ¢ 5"""*"
| 1=}

119

3. Mow, eciviously, any nrioritv assignerent different from the
optimal priority assionmant of theorem 3, I8 such that there exist
Wwo uters { and ie) such thae,

"1y " "oy - !

amd 2135 D
‘4 €10

Thus any pirlerity astigarent pem=trivally different from the

e of thearen) can be Improved.

/16

APPENDIX C

PROOF OF THEORE!. 7.

1) There are only 2 jobs.

Before proving the theorem, the following lemma will be proved:

Lemma: if)\12,)\21, w1 and w2 are positive numbers less than

1, then equations

(c-1) (1+.) v +>\21 w, <1
(C-2) A12 Wy (1 + >\21) Wy < 1
imply

(c-3) W+)\12 ¢ Nyy) ¥y <1
Proof:

equation (C-3) is achieved bv multiplying equation (C-1)

by (1 -)\ 12), equation (C-2) by >\12, and adding.

Proof of the theorem: Assume that VJ, i#k <=>a, 45 # akj' It

must be shown that cquations (ITI-10) imply equations (C-4):

(c-4) 1}" ¥ Z akj K
ak)<‘-‘1j

Equations (111-10) may be rewritten as equations (C-1) and (C-2)

with:

)‘u' Zu' %k
l V‘d

3”3

that

4

in S whose progress ratio is less than w

111
According to the lemma, this implies equation (C-3); now note
2 2 S >‘ij *in

K
;< Ay

so that equations (C-4) are verified.

2) There is only one resource.

It must be shown that equations (C-5) imply eauations (C-6):

(C-5) Viel(1l,n] , wi+Zmin(aiwi,akwk)\<1
k#i
(C-6) Vie[l.n]. w, + Z a w {1
i k ™~
<34

Consider the set S of jobs such that k€S <=> akwk> aw, .
Does there exist a job k'€ S such that wk,>wi?
a) vyes, there does. Then choose k' such that there is no job

K and greater than wi. Then

equation #k' of (C-5) implies equation #i of (C-6).

b) there is no such k'. This means thathes, wk< wi, and

ak>ai. Thus equation #i of (C-5) implies equation #i of (C-6).

3) Note that the theorem is not valid for any number of jobs and

) any number of resources, as shown by the followino counter-example:

112

.25 .25 .25 .25
.24 .76

(a,.) = .24 .76

.24 .76

The progress rates Vol Nor, w, = w3 =W, = Vg .875, satisfy

equationg (ITI-10), but not equations(III-2).

However, I suspect that the ontimum of 2: w. is alwavs higher
i j

with equationS(III-2) than with the constraints of eaquations(II1-10).

