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ABSTRACT* 

This report examines some aspects of the problem of allocating 

resources in a multiprogrammed computer system.  It first investigates 

to what extent the users might participate in resource allocation de- 

cisions; a system that dynamically determines the prices of services 

is advocated, A model is studied which yields a balanced set of pro- 

grams in order to get a good simultaneous usage of the available sys- 

tem's resources.  It also examines how resource utilization figures 

can affect the choice of equipment to be used at a computer install- 

ation and the choice of a swapping algorithm at system's design time. 

*This report reproduces a thesis of the same title submitted to the 
Department of Electrical Engineering, Division of Computer Science, 
University of Utah, in partial fulfillment of the reguirements for 
the degree of Doctor of Philosophy. 
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CHAPTER I 

INTRODUCTION 

I•1  The Role of Scheduling or Allocation in MultJprogrammed OogBUtar 

Systems. 

For several years, computer scientists have been faced with the 

task of organizing large information processing systems which many 

users may access simultaneously.  In these systems, there arc a number 

of physical resources (cells in core memory, peripherals, ...).  At 

each moment, some of these resources are allocated to some users (it 

is  implied that some of these resources are not allocated to anybody, 

some others to the system, and finally some of them to many simulta- 

neous users—like a shared program segment). 

What are the specific problems for these larae systems? 

1) PROTECTION:  A user must be prevented from accessing a re- 

source which is not alloc ted to him; or, equivalently a user should 

"see" only the resources that he is allowed to access. Several solu- 

tions which are more or less satisfying have been proposed in the last 

few years, detailed accounts of which can bo found in [1]. 

2) DEADLY EMBRACE occurs when two or more processes are mutually 

blocking each other, in that each of them is demanding a resource that 

another posesses and doos not want to release. The problem of avoiding 

deadly embrace has been solved satisfactorily, for instance by Habernun 

[2], who assumed that some facts could be known about a user (his maxi- 

mum demand for resources) before any resources were allocated to him. 



3)  Th- schoduUn9 or ALLOCATION pioblMi ItMtf ItO «tM» KlM r*- 

•ourc«« should bo alloc«tod if thor« i« «ny confli || t« cU«tly «OMI- 

rato fro« th« prnble« of protection «nd can Ix* coiinUtoly «optir«««- • 

fro« th« proviou» problm. boctuM deadly •Hirtm  tt only loth«! for 

c«rt«in kind» of dvtund« which «r«* not r«l«v«nt to tfe» «lloc«tor !«•- 

WtilUfi accoas to snared tables and shared ftlesl. 

rroblen ■} is relevant to this study. 

I• 2  Evolutton of the Problen of Allocating conoater »yst»*^* »»*o<tfcee. 

The first casputers were run in a batch •processing node. There 

were really two processes—the syste« and a proor^Mi to be run by a 

user. If either of then asked for a resource which could not be allo- 

cated (for exsnple. too nuch core ncnoryl, the user's proaran waa sin- 

ply aborted, and the neat one loaded. 

Latnr cana the idea of tine-slicinq the utilisation of the entire 

set of mem resources (core nenory. CPU and disk I/O). At the end of 

a time-slice, a user would be deallocated, and another us*r allowed to 

issue requests to the available resources. Vic  entire systen could be 

considered as just one biq resource. Response time In such simple sy*- 

tems could be studied by queuing theory. 

Another idea w.is not only to partition the tine donain. but also 

the space of the resources. One user mqht have the nqht to use 10K 

of core and half of tue (.TU time while another miqht qot 5K of core, 

half of the CPU time« and the disk I/O. Space-H 11 cinq could be done 

either independently or concurrently with timo-ulictnq.  Aqaln, if a 

user should ask for more than the resources which he was allowed to 



I« III* 

ciMfif• mm f«ftitMM«f 

tfw lyii» #•#•• %• «ItoMtt M liimwii y^f» «f «•#• it t« *• •■ 

wiUtoto» b«i Utu MtAiAi »t !»• «ntiMtiy *ii«ff«Mi tMf« •# ■•" 

•MNM   tf«rttU«U •! UW  HHMHtlf «MTf    UM« AMHMA Mi M I»« 

l<M •! MVtAf « ••#• #MMt f«Mlti«ua«l  «M •»*#• «f • «Mff «MMK 

•M to m\0tmm4 fey ti» lyni «M» mi 1m «II. »^ «Mli iapiM M 

I« f^tUtlMUAf «f UW   r»IOWHM.  M   *•   it Will   t««»f M 

ir «pui iinrim» ••••if to** •• i—tnwwui.   rat 

IMUM«.  M|r«M tlMt « «Mf flfcMM f«f«Mt  V»   fM»l-IM«lltf «f UM 

•«lftU»| COf« RMWfy«  Mi «Ml   I«  «MM M MMllMto M tM —|  «I 

MlcH tM fM«Mt Mf* IMM4.    r*mm» If « fM WttllUCMJi   Uloff MMt 

JMS MM W Mk  fM MM*  tMy «MlM*« M* X*  «•< •• • M»«lt mm* 

Of  IM «MtM*«  MMMOM Mttl4 M 141« Mtll   IM  UffM  !• M«I4  IM- 

•MM MM« Of  It«  MM.     K» ««Did «MM  IMfflCl«MIM.   li  t« MMMAM 

M «llOCat«  Uw •flltr«  •*! Of  tM«MBBI   M « Mol«.   r«lMff KfcM  »« «Uv- 

e«t* ««cti rvtowrc*-  tnMfvftdMitly.    Mt« Ü»«l ^«rutn« cMonr i» «lM«4y 

teo «««k to «iMlys« Uli» «ttuAttofi. 

h Mwfltct «ri««« Mo« two or «er« «««r« «iMlMMMtly «MMt to 

UM tM •««• rvtoarc«.    fecM««Uii« e«n M dfftMd M tM «rt of »olvinq 

•uch conflict!.    TM »eMdulrr hm* to «olw ii««»it«t« conflict» tby 

9ivin9 to «on« user « priority ovur th« otherti «nd tuniMt« tM pro«- 

«hility of future conflict«« without n«ce»««rily reducing this proMI'il- 

ity to «ero (which would le«d to rejection of *any nwi-currently can* 

flictiiuf re«|uefttt). 



•f mm mm** pMfM».   It i* MI ptMikt«» i-t #«»<«»••• «• 

H» CM M « «l*t «lllh»g|  fIVtftf »Ml MM MMM if MM if M 

•t.    A NWMt dfilMll«   '-*•■•   rtM •»«  l«il«t*l»«lliiM  •• IM um 

CHk  11   I« Ml  WMM^Ii M IMMMtf UM MÜ IM MM MMfy Wtl.- - 

MM p—i   i< «»tYl«« M» Mftrf ««MIMIM« ID» 

Ut M» M Mp» MM.    A mm* «Ml MM M M« M IM IflMH Mlf 

If M MB M MlWii «f MVIM MM pMJIM «t  IM «IM Mt ftli  fllM. 

M< A MffMM Mi«««« M IM <90 Mi MM MMffV  fM Ikli M%«IMIM» 

IM •  foil Mi MM Mit«<* 

{■«M» MMf MM» MMI «MM   I«  Ml MM MMÜMM« MMffMMl   IM 

IMIMM.   M  IMBM  MMItM«   IM  MM   M»4M   of  «•fftTIM.     IM M«*t«l 

•M»MllM ri^b**«*  fo»  «*• if*«-«» I«  I«  flM A Ml «f M«n* «Mil WN 

MtrtM fwt«^«t. 4 MM cwiirMl. •«* ih«i Men oMlffAct in tiw Ml MM 

M fully »««IAIIM rvM^AlM» or «ny pcA***»!«- i^iur»» of MOM tM*»*if,. 

S«M 0 Ml  M«ll M MllOd « COMtUbl»  Ml Of  ctmitOttlO.     fot O ft MO 

•ytM* IMM vMii» MB» cootMcto or MI of Moiroci« for Mitti it kmm* 

hom to etiMk m*r c«M>oilotliiy.    This etoolM • »tructoffv of pMtiOlo 

conirocio.    A 9MI of ooMrn »ctiodttlora U to n««* o »irueiur« of coo- 

IfMlS  WttlOh  Would M   «4   riCtl   «R   pMtlbl*.   ätvA  rOAfttJbty   »Vlfl   ostMdibl«. 



• m m« Wim «f 4m» »UM» M ptrtiMl« 

.♦ 

•..«„<(•« »^  I»«  •*««»,   ||  M#te|   •!«• ftp«««»  I 

I*!« far Mwt% «mvtat MIW. 

»i aif «ill tM «II«» 

II »» flM»«to MP» IkM it I» 

•f ift» 

t.l 

MMiaton •# 

•• »»I«*«!«! «• «•• «f 

«AUMf  f I«l4 «tti A» «M  li«W 

9fim «All  tft,   fW   tM««MV.  I« mftlMt»   •»•   «««•••' 

f««l ti*» «wf«. aai «• «itUlli tfM CPV «itliMf !«• f«f 

tot   It «III   «ttlflrlAlIf «»tCTM«» W «Hi«» CtM«  • «Mt 

r«kCtl«l Of «lift |MM M» «f VMMNM«    Ifc» ty»*«« <»»H»iH «III i 

•f «Mr»«, tiui e»r««iik ftift4i mi ^infi^i mt ««ff«i« taww» «t ••#«»• 

WPMH ttitopU» tot «Me* llit »yftto« to» H«« 4Niift«tol* fi»W • §••• 

MRtol« Ittii'Off ilWM»  >>■■—— «ttllMIK«.   I    If 111   II««* 

MHWI 

«NIC«i  MUtollWI*» toWM« —Wf lilt ^ «to «ItaMIM» 

to totolto. «to MMlMtt«« to «to «II«C««I«M «ltoti«to»< 

•w« cntictM« iwr«. «iiOMfh it «Ml« «T««« to to*«i«l« to ««t 



If» in« •■»•it«« «yviM«.    iMUui* « 

fitwti«iI« tfpoii»«»»« »• ptvMBMl t4wr«i« nor« oaapUMty 

I« All«H«»U*  «M •»-•#•   »«   »•  '/»MWI^I» tO «OMlfeff HOki Ite «Mr «Mi« 

m Mi «MM rMtlMfiM«  If« «llMMIM i»^t«l«M. 

•T wyi«f M «M^Ut^ly MIMM« MM M»^M«I m «f «M «MPM«?*« 

■HMNM* «Si if M«Mptl«f M Mit IM Mfttly «MllMt« IIMMBU   f 

*• MM« « MMIJiff^ll ^tlMMtlM MMMItt.  %*•%   I« 

M*4«   iM IMM ««fy M«ll ptffl, OT «M M#   l«M   t«MI*« f«f 

U» M»lff H»»**"»» i» M«   •••'   '"  *•   r»fMMMltv  l*MlMi I« 

»■^■»iiMM.     MMMff*  iMT  tMf« PMP— «Alu» «M tm •#!«••  II   I« 

«MlfMl» «Mi ttW liHI—■!  i» Ml« M laftlMM 11» «tlMMlM «I- 

tm 109 • ■«»rifi •• M» MM «f 

UkM UMM U « «Mil MftM «f 

Ml«» MMM» «IMB»«   l»9 «Mlf» MMIM  Cl 

MM* M^IIM«. til« iaaitia« rvMiM«. M«.. 1. 

(»•«••«ff* n«wn»iM MM M« «f «ssfr UU«M M M«My« M«PMM tv* 

M»«f«M»  •••!    AA «*M|>* <** *•* l#«i»-«tt« «III fc» «l««l l«Mt|  1« 

MM «tM mi « «M^MM «MHl**   IHMIIM   11.91. 

A ff««t«« «f UM «»«I   1WHM MIlNii H «MlMI« «f 



l.l.l   äSLfiÄjaSSÄÜfil- 

taf»ffw»cMi      Indutirt«! tehtduUm Hl 

itwory et letwiuUif f4| 

NMI of Whm «tttitM ef Mtofelu* tu«« to«*« 4ow 1« Of«r««tcw»t 

for üw problMi nf • jote nkidi «m lo b» r«» in » «.««91» itfw 

of IM Aopo oa» io oitiwr lopetod or «rtiiiroryt.   m« m*m*t of 

It UM»  flOIM.  Mi tlM»  ||«# «fwM   Of 0 ftVOO   Mit  IO 0 flOM #M^ 

ao kooMO io oiOMeo.   A fob wro»# rfrto« (opotf pmmt iknmß in» Mio 

HMO OOOOt.    HW «I» !•  «»  flOi O MOo^il«   • -f4»f   I« «OIC* 

10 fOlOf tO UMitO • M   |C00t • 00t* MOIMOM«   for tOtUOtO« 

U-   ffWfOt» IIOO OIWOl Of O }00 io «tw oyotoM. 

fW ptooton oot olto ooto taoMtftfMoi wttm ••• *<f< toot «oi«o 

10 lOflOII».     IWf Off tot »■»Otf tpOOti IO «It».  «o4  |«M   •«< 

iotitiict io««o otoit ftr ffootoroo»!        ^ -«>«> «MOtlioo ii*«irM«»« 

•OlOt <INt flffttl   Mü 

ootto, tootf totif• to ytoM ftoi rvtolto. 

toolftit* to to witotli of tto oorly itn mwf tottritt ttv* »mm 

v »* in •%w§ft DT 0 MWlilOtUtO Of •IfOittlltO 

rtttit totlfttt* t |»o  iQtp tioi of ortbtoo «Otfo ttbo tytl» 

Mit tOtf^.     A IfH^I  •«*** «f «01« *IM f« N»  fOOOi  iO  1*1. 

Ifct ruow it « • My %o tolot to »»Mt oo0>t. ootfo oll «Mt oo tto» 

•r*«t or to tr%ivttr M t ffintrn tfo porfoctlv kotto.   tt t» Mfi to 

ooot4 Oo ott4 for rotl-tiot witmi ttmialto». 



I.).3   fofWMJUatm of Quiiti^ Throry. 

Tt* settc^ulifMi of tiP»-«h«r«d eaaputcr «vttMK HM b—n »tudivd 

l« tlM lifht of «luvttln« th«ery.    twiM* of such mthads c«n b» found 

m |i«7|.   Hit« ^protBh is not Mti«fyin« IWC«MW« it «fipli«« only to 

«•r> «lopl* probl«««.   Nont of tit* tin» thn «ytteo I« rndnwd to )u«t 

on« frocnptitoto r—onrot U CTV or • dirti, ond « «kiM>l« ntrato^v Im** 

Ml moiMd Mbinl. or PI Cmrrrrnwid iMMromdl I« »todtodi ihr ronpwK** 

Uao of tlw •/•^«M to « «nor Ao «ott« to »«if th» unifan rrtoorw 

for « rortoin itno portod. It conpotod.   1»—r ntt4*ooioo or» rfcoioorlv 

of on »rip to oor protlna, kooMM 11» holtlo ooc^f of a wgdifn con- 

polor ayn— or» tno «IMO of tnr moor ion md t»«» MMvidtn of U* 

«IMMWU rotkor «MO tfco apMd of tH» CfO*n. 

•MO «Mt UM OOtlMr dMO OOt MllOM thOt  «tOUvtlCO OO tfc» 

•MtiM «Mr*» wlig*fr «wold bo otod MHM «rootiof • r<r*o«»tc» «no- 

olonritiM.   tMll ttotittiro CM kr OMT «oofol to r* 

of o lyofi focod oitb « dtrtuo not o* M»rt dfonfe* «ad 

M «ptorMoa M iMtiol inrdwoi« OMfioorotion fM • toapMor inottllo* 

tieoi khmmmi» <• >»««• o immmt» ollodotlno oloorilt 

onaaptiMM of tlw «Mt« «MrattrnMiw 04«ii IMMT 

l.l.l 

I «MM  IMO OMMMt  •OttOtO 

«••♦• «ad « «vrtoia coofiaorottM of aval I« I« « tnartii 

t**«tf« or« «olid only in tft* eama fM Mil * if« •lau        *• ^«n 

taa iMaor - f r^ronrataa «aato offoct «Maid ha flw«Md la aa 



Iwm ttMt li U ittnerAlly inpeuMMa to etMCli th» afrert of «äCII of 

Chan for •over«1    «t« of v«lu»4 of th* othom*    Jh» root tlniiwr of 

ttiwUiioR 1« to loao eontrot of th* ctm* md *tt*e\ r«t4t toownir« 

matt m wmrmw «IMII of ro««!««. MM IA oi«tfit*rrfof thooo rooult«. 

Mr* «MI«, it I* kcllovtd tlioi •MNilttii'i HMMM to of froai Holo IN 

«IMW*IWI «i Mt««l lioriMro »«o(i#«rolla» vkidi «tit •fftelMftlf rM 

• dMMA MMflo ot t'#Oi«r«o># Iwt »«t I A «olircf I*I« « •«"^tolio« «lonr* 

ItlMI «4llfil Mk IM OffMll«» *** t*w f%*' 

I.I 4 

it lot «tiorit*** fffini •• for trv •• 

««• <-f i««t ooo «Mpa^t t■»-«»».   «MMfttltv« it •* t%» 

CM no |t|. for io*t40oof • OMoti«»« M i« tto «oro IMMII otili 

llfll, or m» «tiliootioo of «to rtMooot »olmio I lo*olo or 

Mn.ltli.   tut« f***m*9 %• roooi«wo« to I« 'frlttrol.* 

too oNotitM» ■ittfwi ito *tilio«Uoo mn 9m**nU**   flm ***** 

UM» pfOMMo« io loolorU ^fnni»! Ill.tll. «nif* will Oo 

inoorni io «o^ttoo It.I. 

Ito tr<oAI# vitli MM tlM««Mriw» M4*t* I« «tot ttof «<MM4O 

MMIMIM M tflO OOt Of   MM IM^Ml* *• tOO «tort  tNrO  |0.|4|. 

Moy MMM to MO4 fm OMO#OIIM if «to oio t\ to Mt WIOMM OMO 

•r 



I»» 

It 1« «orUiMmU to briefly »»ntian • wry t«eUtt>4 ^prn«cti 

uM« by « t«« «t UCLA.    AMolutvty «vtrythiiM «nout th» ptantm** 

MlMviottr it ■lypoaid to to trnwn «id «ynttociMd in « dirvetM «ir^fti. 

Ml to «bit itfonMtiM. ievtt  UM tttoitt ■toory «Ml trrooMter tllo- 

ttUtt fat t protr«» rtMMltf It t Miltl|»t'v«t««*f  ^y«t«i.    tblt it «I 

MMnpIt of taw t «Mf totld «toiMt* bit «it retnurct tllttetit« f^r « 

ttt«i MivitttMM. tot tto «toFl* of Eitoi«« t«tft tot ttflil**ifftoto 

to olio» it» fitoiwi 9i t tol«wtol to« of «ttt^ oiitoot «WJIM« 

li. 

1.4 

t tolloto «to« ttor* *• *** nmrnt thy t ttor «Mold tot«i »• 

it «to tutoitt tlloMtlto toottioot.   IM» lto«ti to»toti  .iot 

«tot too to otbiooto.   Itofr oro ttwot ully too «fRpvototooi 

li   Ito «tor «to Mto «to totimoM fc.ioM»lf, or« 

II   to o« «ito «to tyott« «nt lotofWMi^t too« bit too to* 

if, «Ml pnootbl» tfto *tfft bi««iio tto «MI of «orioM* 

•   U«    It   Mt«   %hm    •Mfl«tOtt. 

MwoM toly oorry toot« coofflieft, tto «rr «» otototf 

O «MM   fftM tMMpDlltlto  ***   M^ail«  OMfilO«.   M   It 

to «tottol turn by lottoiot t iwt^to «y%t««.   If o «tor O«H» 

of t tortoi« rootorot. to tot to p«y «or». 

Ito ttorot«r «yt«to it «too oHMldtrto to o «otbt« of to»o«itt. 

Moot, it» «Mr« bi^ for «MO »itolt rctoono m MOO MI «f 

fM t Mtioi «f tiM.   Ito tyttM ««old «HMOM l«Mlf to t 

tot of bidtor» It ortor to o^tuoiM it« JM |ff»i  'for iMtiWt« tto 



MM of tlM ■ocTto* bultl*   Th0 pricM ot ntmmn m»li b» <l»t<»rwinri 

tf/MMMllV Hy ih» ftm, m « fwi.tia« of itw IOMI «iMwily of *»• 

1**  KW»)««» U   »•»•» C«Mp>lieM«4 Hl Ulli of  IMllVI»llllllll«t« 

■fcSÄ ds M»t   tll«* «IIOMtlM «f  rtlBül«"  *   U»H   HiWIlW  ff«i «Mb 

la «Mpi^f It.   A MUtn» I« «lw prtfMMi IMP MrwiwiiM 

MM MI •# «tt«»»l» «ntffMM t«r tt» mm» 

Cll^Mr III «««!««• • *•*! iWl* M* «t « «Ml IM fM4tetlM 

•f Mt MMM «f  fMM» MKfllfl MM « «MUtft IIM iMMMl. MOMI» 

IM I« taHH» «#MI  IM MAMIMT •* IM MM«1 

«M«!   |*  '««M I« Ml « MtMM4 Ml M «i 

•f IM  MfMKMIM M M «IMM •• IM M%*MllM «iMtHM 

If*******  ^ '   ***f*  IHWMI  M MIT IMMI4M.     If   II   I* IM «MOll- 

HMUI MMM» jWIII mm\\ I   If IM MMl1«i« tM •#M'#llM 

4IMM4.     If tM IftfMMtIM «MM fM«» feMMTIMT I* IM 

•liMt#t  II *M*I M •# MMi Ml».     I «tM»   • «" «M t  |fMw*«|«MM 

Mt MfMifMÜ«f MtfMMUMl MM I* tft«% IM MMMt pfMMMttl • «C 

M«*IM • fMM»'«   •IV«»M *  *t^|» MMMFi *"   t*wH   II   Mkl4 Mff% MM 

MMttllV It f»*l   • IM» "*  r«l«M «MMMM *r»l«M» ttMt MM» tM|tllM 

pMMff MtM M Mttl   fM MftMtetlM. 

Ol^Hf |V    ■Mmi  UM* M  «tVlM*« «MIM UM« IM ptlMt tf 

MfiM» »itM tf MMty M4 MMMMI MtIM« Mt hHp it Mt MMM tf 

« IM^fm «iMriUM.    fM «MTriM tlMTll^M  Mt MMIili   i* I «   If * 

tf CtTMtl  iMMto   I« prtCM »f   rMlltllt« «ti «Mff**  4MMIM.     OMH" 

nr tUo tllMirtiM hm MMM IIM fUtMnrt of » tUm MMTV CM M 



1/ 

•T mtonMtUMi MI—ml pw WM «f iin»}. 

Milt« i«r»tM Urn p&fm *t IIU* UHMI«, %hm »-•*»♦ «.«tr  »>Mi»>r 

UM»« IM fM* tat* «or« K«»tiMil ■! > IWMMM 4M UM 

IM9MS9.    aWMMV*  t —pMt UMt«»r   IV !• M MTV 

f mmf*** m M^MI ■ftiMM* «l»%i *>«* UM» MiMUt lit« m4 

tit. ii««|it «M« UM« Uiiiiir lt.   im* u »• «M *f MT MM!« 

•liWOIMI «iMttltiMM. 

I 4» «M tUlJ» IHM«   t  *MM »»IfMl "flf pl^lll «f MlMAriMM 

•«'•«••n.   TM t*M <Mr—r mt «IM UMIH I«h4 

to 

II 

• tlMMIM «UMm «• k» «Mi I* 

•f pNtokl»     •*«««««  «•"MM^MMMS I» •••Mttol. 

WhMtlMI MMtS «f CM«««* PMMMCM wilt to 

If »wtar«4 «*M 4kiS«r«f IMI IHMiIlM» 4M>MI1*4 Wl«ll UMM ««MMMMI 

|«*«lkly «IMMA wiUi to» to «to «f'««f4Mili«y #f l«r«r «!»»»•*• 

II»« »f xfmm, 

tor IM«MM»> MM •••r«»- ftvtnm mm • ■■»»#■« c«npM#t »»iton 

•MM MMk MM» tor it* mmntt man «ton for n« rrrwMw MMT.    t»»» 

to MUM «• i« 4MM»«—«to tin «ft« f<ii««rt». MM« MWMMM will MM B H 

tmt t»f* *MMry «Ml «too man tii«»r«««i«».   to m vum ymmt , ti i* , 

Mi toM ii«or«4Hi« to QMiiiMr««» rffon* 1« krvrimt «M Cto*» i^i*r «It 

«M «in», IM« M *t*»l6 tu« «o %f «r* fM« 
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flw ION» MI*» of tto Cfu't IM» m**imr mim***Mtom,    it Is 

«Mtla« fMSibl« ta mm man cnwuuttw» f«M»r in «».|#r to MI «n op- 

ttMP «llMMia« «f «to ruMTOM.    t» « bin mmmtf ftm. m* oro- 

MMW iMirwpiimwwt for «oro riMii*ilii¥l eooM bo «Mirstod to 

MtoAiIlM«    ^MM* MMotlft* •tftmmim* **\l m» iMi^r fiMd to b» •» 

•IOrl# «• MttllOWt fWIWI.     II   It HMMMblO to 4**^R« thmt  it will 

to ptMibl«. for mum   •• «• Ml«» « luwor ornwonoiM oroKi«« |f ro«i 

tio* to »Mrf to «t a festtoff «r^lolo ««ntb MM» <«OM bouritiir««. 

9m «Mt «# «M bit «MM MI 4f«* on f«tt. tot tbo «not nf m 

mmm !• ■^wtti to turiwi «MMiAmMy.   in otbo» «nr4>. tlw ***** 

«I4t». of tbo MMnr «ill iMroot».   ibio I» *m i~ tbo §*-*% of uro» 

—It loMtrttif.   MM «t Tft «oooriot «lit rootto» «äfft« toi tV «o- 

tiMi» tiM of «• It« Mlbli mil bt «Mi:«r tb«i ttot of t tort tvtol*. 

Ibit otMi4tr«tioa »tti<it «Mb of «bt nMMMn for #Mp>tf tv. 

t* Ibttt tolot I» b» • trtoi twwtrl» io»1i«iM>itr^ m «^.«M 

Itff^t MtMHot «vttOMf   tortt tvttott orootot ttotrtl t*Motttt«t m 

partlotljM «t ttttt ton» 4«'« %*•-    »    ^ »> «t«4 frt t^ov «Mr«. 

T»"Otttit«llr« lor«» tour««*» «ttiaMi »NrMtM «l«^ N« or«*»tr»4 11 roiutr 

«b»iff rttfru    «ctM to «or« folly «till««! «Hot t*i»r» 1* t IOTM 

«Mtor of *i«oli«o«n«* «••f«. «ior» to» irrt til M «tt«« m tt» 4»m**)f 

tar rti««rtti «to «a»««b«t oliotottM.   •*»• M    * *.«! «•«< «ill i« 

^MTI-S»* <<« «MH «wf «til OM  «|| tl« torvio» ••*ilnir« fr««» t»» Mt 

iMMbi»» «tat b» fo««i t« tb» «tllor cnNMtor.   bbtt «III hm lb» nmM- 

bilttv of fttrtio» tat« rnrtta« of •&# vmm\m i» »ifm?   Tdr ««ot 

«■»bt t» ba«» v« ft»« bit «Ittotl tocbiMt «or%«.    m «it»! «l«n I« i» 

« b«rry aM «apt«« * «•« tottot f »»«at» t-t t««tia» aoro for i*.   Tb» 



authors of Kc:h.-.lulers with  multilevel  priority quoues  always  con- 

•. i '"f  1  tho  uaor  as passive or  inert:     all  users  are equal,   and a user 

cannot   react  to the service he  ib  q^ttinq except by modifyinq his 

pattern of  requests,  or by sinply  leavinq  the system.     Moreover,   the 

pricinn of computer uaaqe was  based on   Mat  rates, which  arc,   as 

Shown  later,  not dynamic enouqh and thereby  lead to  losses  of effi- 

ciency MM. 

Another  factor which  tends  to  limit  the  si^c of  computer sys- 

toM 1« the oKlatcnco of non-linearities   In  kh« overhead.     Tf the 

total ovorho.i'l «irow»  faster than a  linear  function of  the  »im of  the 

tyatom or  the number of users,   tliero  is  a  critical   size where   it  qets 

tftbearablc.    Por  instance,  if there are n processo'-s acctMing   n 

■emry bank«,  the complexity of the cross-bar switch  is known to be 

proportional   t^ n x mini,   and the time  to solve  conflicts  is propor- 

tional   to  loq n ♦  lo<| m, both  terms  introducng non-1 ineari ti-s.     As 

far M allocitmn it concerned, our linearity criterion  forbids us  to 

•(*>nd «ore tit»» or computinq power to make an individual  Bllocatlon 

dkninlon on a  larqer «yatcm.    This  it a very drastic condition.     Note 

that wo** «mart  pan"  replacm^nt  algorithms   (like least   Recently Used 

or Oennlna's w^rkinq »ot)  do not  satisfy the  cnUrion, whil     simple 

alqorlthM   fFtn,  LIFO)   do.     Note  that  the swappitui algorithm whi   h 

vill be pretentnd in  IV.2 does satisfy  the  linearity criterion, while 

the one* of  IV.1 and of Chapter III do not. 
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CHAPTER II 

PRICING AND RESOURCE ALLOCATION 

II.1 Introduction. 

Suppose that a coffee shop was serving ice-cream to people on a 

first-come-first-served basis, without asking them to nay for it.  As 

the news passed through the town, an enormous queue of children wait- 

ing to get their ice-cream was formed outside of the shop.  Some of 

the children, after getting a first ice-cream, were going back to the 

end of the queue and waiting for a second one, and so on. When the 

shop started asking a quarter of a dollar in exchange for an ice-cream, 

the queue vanished. 

It seems that computer scientists were slow to find out that a 

computer system is just a service.  If it is given for free, there is 

a tendency towards misuse and efficiency is lost.  I expect this to get 

more obvious as the extraordinary growth of the computer industry slows 

down. 

Allocating resources was defined as solving conflicts between 

simultaneous requests for the same facilities.  But wouldn't it be 

bettor to just avoid those conflicts by pricing the resources high e- 

nough so that the number of them is greatly reduced? 

There are two possible philosophies in relating resource allo- 

cation to an economic system; they are given here for the case in which 

there is only one resource, but they can be generalized to more compli- 

cated situations: 
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1) The "a priori" pricing philosophy.  The system chooses a 

price for the resour  .  As soon as a customer arrives, he gets the re- 

source, provided that he wants to pay the price and that the resource 

is still available.  From time to time, prices arc adjusted, depending 

on variations of the offer and demand levels.  This was advocated, for 

instance, by Nielsen [16]. 

2) The bidding philosophy.  Each user submits a bid for a re- 

source.  At a certain time (chosen by the system) , the resourro ir; given 

to the highest bidder.  In Sutherland's yen system [181, the previous 

bids are known by all the users.  In the case of a real-time bidding, 

the bids would bo secret (essentially to avoid the overhead of letting 

the user consult the currently expressed bids).  This, however, does 

not mean that the user would pay the full amount o4.   ■ <>ncy  that he offer- 

ed; in fact, I suggest in II.2.4 that the user should only be charged 

the minimum amount that he would have had to offer to get the resource. 

The bidding philosophy has two advantages over a priori pricing 

and one drawback: 

1) The highest bidder always gets the resource (and not the first 

to irrive). 

2) The bidding itself automatically determines the price to be 

charcjCd to the usor, so that no price adjustment is necessary. 

3) However, with the bidding method, the uier doesn't know 

whether lie is to get the resource until the timo arrives for the auction 

to be closed. 

Note that both philosophies can be combined in the following way. 

The system sets a price at i certain level above the avor.ig,? price at 
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which the resource in expected to be sold.  A user has the choice of 

reecrvinq the resource iimneduitolv when he asks for it, at the price» 

set for it, or taking the chance of waiting until the time has arrived 

where, if the resource has not yet been allocated, the bidf are ex- 

amined and the resource allocated and priced in the second way. 

II.2 User mode decisions in a system with decentralized control. 

II.2.1 Some definitions. 

Facilitins.  There arc several kinds of resources (or facilities) 

in a computer system. For instance, a certain nurf*>er of bit* in a 

storage device ir; one resource, while accessing (writing, reading, or 

executing) those bits is another re-.ource.  A piece of software (like a 

compiler) can It—H be considered as a resource, which can be bought 

or rented for money, but in the following development« only the hard- 

ware resources will be considered. 

tlote that anything demanded by the user can bo called a resource 

(execution of a programnod operator, having a certain program in cor« 

memory, etc.). Ultimately, money is itself a resource) this notion 

will be useful In a later section. 

User and System. The user is not Just the human being who pro- 

grams the computer; it Is an tndctendent drciston-makint cnttt/. COM- 

posed of the human and Ms projrams, end even so-called "system's 

routines" that another part of the user has decided to activate. 

The system is a | articular user which nakes resource-allocation 

decisions. Computer operators, managers, and basic system's proarai** 
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balonq to the /#lvm. 

11.2.2 D>ci«ion» mado whtcii TO rclovnt to tt>» u—r. 

Tho sophmttcatm) user might w«nt to Hak«« MMC dvriaiont which 

«re ordinarily naJc by tho ayrttm. The first ide» w'.ach coa»* to 

■Ind i« that |IM utnr datiro^ to otitlfitxo htnial? r<*lAtivr to hi« 

environment. 

Suppose first that each resource haa a price, is available in 

any amount, ni that tlw uacr trios to minimix* IIM unit r\<.«t of 

running in such a system. Later, it will be seen that, in general, 

such a reasoninq is too simpliMtic, because the u«<*rs der «nd is not 

small relative to tho tot4l «mount of resources In the aytte«. eco- 

nomists say that tho demand is not «treiic. 

What are some of the decisions which c -ild i-o made ly the user? 

1) Site of his working set of pages in first-level m^ectry tin 

a paged system). 

2) Choit>j of an urtirncy (total biü in a bidding system, or 

priority lev. I in 4 «ystet MhtM a coat Is associated wtt*- each ptft« 

onty Ivvel). 

it Site deitred f«r I/O oaffera. 

4) Re MMMV of -i liven «etment at a Wfftiia wwmorv tev>*l. Rea- 

idenry of a ttK at a certain nk*mnry level. 

&) ColUctini and eventual givit.i to the system of aom»* statistic« 

•*i a rroqram wind» is often run. Tho idea MMI a user's fennwledge la 

ir^ortant in ertkt to get hotter t>*qltH h** been advocated, for Instance, 

in (1 i,2ol. t.nn.og*« demons*ratmn |13| that his "wtrktne set" al- 
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«oriUM p»rf.»nK* li»tt#r tluui L.II.U.    turnt »M^Mly t*—4lt «M b» 

r9int«rpr«t*4 üy ^tyliM Uut th« tnr»narliy of Uli.O. U ÜMI  U 

hMdU« «II tt««r« in th» •«■• ««y. 

Tb»  IMor*   «• «M IWW» <l**flMd   lt.   COttia  «l««y%  Ml!  MM»  «feM«4 

•yvtM*« routino to do Als   job.    MmoMff, tHU root IM Mold Mrb 

uiMior rMtoMii.ility of the OMf. «MM Mold M MofMd for tM M- 

•oorco« COMUM^ oy thi« mot in». 

?hO MM  «ObMttttM «III  «bM M OMOTlo Of HM trO*r-»ffS M» 

covon Uio «MM of   «iorol IM>MK«I COO M kaooo MM! OOMO IAW «MT 

to loproM tbo IMMCW «MM of bio pMfrM.    In oVwr COMO. boo- 

0Mrf MM tfo<b»-off» eoonot J« trottM to tbo «MM. MMM> tH* 

•M« »trotofy no» it. b* tt*o4 for oil proorM» in t»«o OMtoo.   Socb o 

tltOOtlM  I«   MMlyMJ   IA MCtlM   IV. I   IctMft"   IVI • 

ll.a.l     M OMMlO  MWOIM  tMM-«ff» l>»t«MO  t»» JBi_of_igMtOi 

to«oofcoo b» o OMt     • QMIMM WTiJ£f> 

A flctiti«Mi oM^ilot bM * M«» *or  noon AMI > ««eb of Ml«b 

AM MrtoiA cAorortorlAtlM M f«r M Wio lor«litv of tbo prMTM to- 

fcroocoo  10 OMMtACd. 

11)    IVAt« MolyoM oM 1^    MMMblMl Moly^r 

20% of tbo Mo^ry MfoMAMO. «od ocmptM •.!< 

t«l    ttror MM0M0 

9.1% of f of or MOM» 4« «ord« 

III    IMonfifr tMlo 

l%» of roforoAM«* IR oord« 

141   OMt *M dot« ««»fMAt« mrrootly ooMr«tod 

4» Of  MfoMAMA* «« 
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40% of «II r«r«r*iw«ft» M 

UMM 9 typ«« ef MfMMit« !•«•• ¥»ry tfiffervnt t»roiwrtlMi 

111    iMh UM II) I« «ccMMd. »Xmtmt «II of it« «ord« «r« 

tat    i« «coiini vtrv Mldop. 

fit    It«* «hottt • to I** word« of infonMtian r«r t<Wntt't«r. 

««eh of «4iieh I« «cc«»—d «tmut one« or twlc« o«ch tino th* irtcntlfier 

141    1« 4CCO«M4 quit« r«ndr«i1yt    two con«ecuttve «rc«a««a «r« 

ir contlvjom or v«ry clo«« in Um, «nd not Always contttuous in 

(5)    Acc«««9« to (S) «r« froquent. but not vorv eorrclu.d in 

tlM. 

TM Maory «yntan h«» 1)  f««t r«qi*tnrii «iccompd in .1 micro- 

second* «nd 2)  cor« WKMtf «cr«n»od  In 1 mlcro««p..nn«l.    Th* hardware 

«now*, for in«t«nc«, swnpplnn rw» of 12 word» bftweon th»   two 

l«v«l» of Mfinrv, with A reol«co«cnt «Iqonthra of th«« "workinn set" 

tyr« of ^t^r tvtnntnq  113].    The »iSEO of the  -«v^'labln mfmory it 

fluppotad to b« larqer than what the user ninht r^nucst. 

Aatuae that therr «Kiata  i rricina sv^tem for the computer ro- 

aource«, with « prlcj p.^lO for a nenorv cell of tytK» 1, nnd P0=1   for 

« t^'p« 2 ««»orv coll, per unxt of time.     In thi«? simplified model,   the 

coats of th*» at) and of the awappinq bua Letwron the  two nonori -s are 

«upt«sed to bo noillqibla.    This system of prices  is SUDJosed to be 

qulta atable,  and the user can assume that  it will not varv mon; than 
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tliqhtly over « r«th«r lon^ pvrlod of ttwa,    Ttt« UM* has to «letwrmiw* 

optt»M ratitency or «wapplnq ttrato^lrt for p«^«« of hi« various ••q- 

Mnts. This «••UBes« of courae, tnat th« hardware is abla to racogntae. 

for «ach ua«r*« aaqwnt, which «trataqy should apply to it. 

Th« d«tail«d covputattons undorlyin« this «xanplo ar« not shown 

h«r«t haw«v«r> ta«y indlcst«. with some restrictive hypothssii, that 

th« optimum strategy has to lc.iv» (1) r«sid«nt in fart r«qiit«rtt (2) 

and (4) raiidont in cor« memory, and (3) and (S) should have paqes 

swapping bstween th« two levels, with a working set siz« of about 32 

referercos.  If fast memory had been much more expensiv« (overloaded 

system), (2),   12)  and (S) should have been resident in core memory. 

The point is that it is possible to linearize the average cost of one 

reference for a given segment and a given strateqy» in the form: 

C 3 C0 + «1 Pl + a2 P2 

where p. and p are the prices of the resources, and a. and a are 

coefficients- which depend on the chosen strategy for the segment. This 

allows quite fait determination of the best Btrateqies for given costs 

of resources, before running thf compiler.  But lot it be stated again 

that this optimization job is relevant to the user and not to the sys- 

tem (the concept of user, of course, includes protjr^ms working for the 

user). 

Note that if, for the best possible set of strategies, the averaqe 

cost of a program reference is too high, the user might decide to delay 

his run (the threshold might be a function of the urgency of the job). 

In Figure II-l, a strategy is represented by a point whose coordinates 

are the resource utilizations of the strategy.  Strategy 3 is optimal 
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Resource #1 

Fig. li-l 

Trade-offs between several possible strateqirs 

Strategy #3 is optimal (lowest cost) 

The parallel lines join points of equal cost- 
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its coat, which U « liM«r function of th« resource «»«90, 

Is mnim«.    Mote Uist thts fiqure does not pertsin to the compiler, 

tout Is just sn itlustrstion of soao posai^le strsteqies. 

II.2.4    Pricing. 

Nodorn oc'iioml»tt like Dotoreu (21] have «hown that a wrong pric- 

ing of resources leads to inefficloncios and loss of potential power. 

They advocate a system of marginal prices. For instance. If the demand 

for coiif>uter resources is low during night, the price should be corre- 

spondingly low.  If thure is just one user on the system (no conflict 

in demand), the price should be just equal to the mantinal cost of 

keeping the- system running (the cost of the operators, plus of elec- 

tricity) . 

I believe that the following points characterize a fair system: 

1. It will always sell a resource at a marginal cost (see point 

2. It does not make any distinction on behalf of the user (name 

of the user or previous history) .  In particular, if the user is willincj 

to pay, there is no reason to penalize him even if he has used many of 

the facilities of the system in the recent past.  In other words, there 

is no implicit priority system. 

3. The system will never charge more than the user announced he 

wanted to pay.  Nevertheless, the user might be given the resource at a 

price smaller than this maximum. 

4. The general rule for allocating resources and charging for 

them is the following: the system takes the allocation decision which 
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MxialsM ic« profit, but novrrthcluitk it charqos tho individual ui.-t 

the minimum «mount of mo.i »y that this user would have had to offer to 

get the resource) all other bids being unchanqod. 

5. An invnodiato consequence of rule 4 is that two identical re- 

sources will cost *.he sate at the sonu time, indcpi'tidrnt of tho users 

they are allocated to. 

6. If a sharable resource is available during a time-slice, 

then any user may use it without any cost to him.  This takes care of 

the reentrant routines, for which only one user pays at a time (the 

first user to get the routine in core). 

7. The system must distinguish betwoen conflicting demands for 

a resource (most of the practical cases), and couperating demands (for 

instance, a reentrant piect of code).  In the latter case, the different 

demands are considered as only one, with the maximum amount of money be- 

ing the sum of what each user wants independently to spend for this re- 

source. 

A general idea underlying this thems is that marginal pricing will 

have a good effect: 

1) By trying to get bettor response at a lower price, the users 

will increase the system's efficiency rather than wo.K against it (the 

problem of counter-measures has been reviewed in [22]). 

2) Statistics will be provided to aid the users in estimating 

their chances of getting the desired response for a given amount of 

money at various hours of the day. 

A more complex model could be imagined under which the cost of 
the resource would be shared by the participating users. 
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3) Statistics will show the systems mans'.urs in which equipment 

lies s bottle-neck or which equipment is not rosily needed. 

There is another reason for marginal pricing in a system where 

the same resource is reallocated vury often. Without it a user at an 

open auction would automatically arrive .it. marqinal price anyway, by 

slightly increasing his bid until hv  got the resource (or the bid 

reached the limit of what he wanted to pay). In any case, the over- 

head implied by such a strategy may be avoided by assuring the user of 

a "fair" price even if he immediately submits his maximum bid. 

II.3 Indivisibility in space of the user requirements. 

The previous paragraph handled cases where the demand could be 

considered as being 

1) atomic 

2) for a resource which could be allocated independently of any 

others, and independently of any previous or future allocation of the 

same resource. 

Alas I This is not true, in general.  It is impossible to allo- 

cate just IK of core to a program asking for 3K; better not to allocate 

any resource at all to that program. 

In this section, is considered the indivisibility in space, where 

the space considered is the space of the resources.  A given user asks 

for a set of resou;ces, for instance, for the duration of a time-slice. 

Now, considei how the system reacts under both the pricing and the 

bidding philosophies. 

i)  Under the pricing philosophy, a user is allocated as soon as 
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he «»Ks for his tot of rosourcet« if thoro fere enough «VAilabl« i< - 

sources to satisfy him. 

2)  Under the bidding strategy, all users are allocated at the 

same moment, and the system tries to allocate a sot of users in a way 

such as to maximize some economic criterion. If one tries to achieve 

a balance policy (i.e., to allocate an equilibrated set of users, to 

better use all the resources), then the bidding philosophy has  to be 

adopted. 

Danning [12] has proposed to formulate the allocation problem as 

a 0/1 integer linear programming problem (also known as a multidimen- 

sional Knapsack problem).  If user #i asks for an amount a.. of re- 

source #j, then the system has to find a set d of users such that: 

i«s  »ij i *j    ftJ 

where A, is the available amount of resource j. The economic criterion 
D 

(cost function) has the form: 

E = Z   C 
i  , where c. is the bid of user #i. 

1CS i 

The resources are, for instance, core memory and CPU.  Suppose that 

one user asks for 25% of the CPU and 50% of core during a certain time 

interval, and another user for 70% of the CPU and 40% of the core. 

Clearly, if both of them are allocated, they will not take more than 

90% of core and 90% of CPU (see figure 2), and thus they can be allo- 

cated. 

This solution to the space indivisibility problem is not entirely 

satisfying, because a compute-bound user might request 100% of the CPU, 

and so should be alone in the system.  However, suppose that this user 
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Cor« 

CPU 

Fig. II-2 

Multidimensional Knapsack Allocation 
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had «-.nly requested 50% of the CPU time. Another user could then have 

been allocated (for instance an I/O bound user who requests the CPU 

quite seldom). This new solution would be much more optimal.  In 

other words, to use the terminology introduced in chapter II, the 

progress rates should not be determined by tho users, but oy the sys- 

tem. 

Note that, even if the constraints are satisfied, the allocated 

users are not guaranteed the service that ..hey requested.  For instance, 

suppose there are 2 users, each of which asks for 45%  of the CPU and 

45% of the disk channel.  Together, they ask for only 90% of both re- 

sources, but there can not be an a priori expectation that one job will 

use the CPU while the other is using the channel.  If there is really 

bad synchronization between the two jobs, they will often both ask for 

the CPU at the same time or both for the channel, so that there will be 

little overlap between them.  Chapter III of this thesis studies a model 

of such situations, and extends Denning's multidimensional Knapsack 

formulation to take care of them.  Also in chapter III is given an 

algorithm to get an approximate solution of the multidimensional Knapsack 

under the special circumstances involved.  This method of solving the 

Knapsack has the interesting peculiarity of leading to fair pricct; for 

the resources and the sots of resources allocated to the users.  In this 

way, the system can keep statistics of these prices and use them as 

stated above.  For thorough treatment of the Knapsack problem, see [23] 

and [24]. 

The "a priori" pricing of resources is also possible in a climate 

of space indivisibility.  The idea is the following:  If there is a cer- 
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tain set S of resources available, the system might expect to sell it 

at the average price P(S).  If a user asks for a set S* of resources, 

the system would sell it to him at a price 

c = k fpte) - P{S - S')] 

where S - S1 is the set of resources remaining after resources of set 

S' have been allocated, and K is a constant greater than or equal to 1. 

The precise function, P(S), has to be determined experimentally, 

by adjusting it to observed profits.  Suppose, for instance, that there? 

are two resources; the CPU and the core.  P(x,y) is the average profit 

the system will make out of a percentage x of the  CPU and y of core. 

Clearly, P(x,0) = P(0,y) = 0, because it is not possible to sell CPU 

without core or conversely core without CPU.  An example of such a 

function is the cone represented in figure 11-3.  Its equation makes 

it homogeneous (first degree) in x and y: 

r, /  »    \f ax + by p(x,y) =    Vx y     «     —7 

The coefficients a and b have to be adjusted b     the  system from 

its own experience. 

II.4 Indivisibilities in time domain and reservations. 

As an example of time domain indivisibilities, suppose the fol- 

lowing.  A program is in core and uses the CPU.  The CPU resource can 

be instantly taken from this user, but not the core resource lest the 

user's job be destroyed!  The user must be left in core at least for 

the period of time required to swap him out onto secondary storage. 

The problem of reservations is somewhat similar.  The user who 

comes to a console wants to be sure that he will own the console for 



P(x,y) 

. y 

Fiq.   II-3 

P(x,y)   =   (ax  + by) /xy_ 
x+Y 
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at least • on« hour period. He .t*o «£nt« to be sure thet he will eet 

75K words on the disk for K  files, and at least 1% of the usage of 

a conpound resource I Chi' • I OK core). 

It will now be shown how this exaaple can be handled by creatino 

a structure of successive levels of allocation. The following ideas 

have to be applied> 

1) Partial allocation decisions should be pad« for several tine 

intervals, sons of which are within sooe others, bulldina a hierarchy 

in tine. For instance, in our oxaaple, the decision of allocttine the 

console and sooe part of the disk is «ade for a one hour interval. How- 

ever, the decision of allocatine the CPU and aone core to a runnine 

program is n.idr onlv for a one second int<>rv.il.' 

l%t  level 

2  level 

3  level 
of decisions 

) > t I t M—I > » M » « t 

HlllSlUilMt 

til 

2)  Resources have to he pooled in order to allow the user to 

buy a pcrccntaqn of the pool in advance (1st Icvrl allocation), without 

knowing at tnat time exactly when he will use his buying rowrr (2nd 

level decision). 

I an grateful to ProfesHur Herbert Sinon, of Carnegie-Mellon 
University, for hiving convinced me, in a private «iiecussior, of the 
importance of multi-level schedulina. 
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TtM IMHH ibity«« «t ««• first l*«*t. « pofnli»! t<U9t  to b* UM4 

•t UM Moond l«vtl. Till« potMtiAl romt c*n n*0\t  b* e«U»d « «oiwy 

lor « rosottrcol. «h»eh is only vslid for bidding or boytno st UM» toc- 

otid lovol «nd durin« tho no» duration for «ditch tho first lovol docl- 

sion WAS Md«. ■sesuss this rosoores oslsts in s Um tod soount only, 

tho ssor ts i|usr«ntood, st tho ncwsnt ho boys it. that ho has a eortain 

psrcontaqo of it, and thus s «uarantood lovol of sorvtos. 

Mots that tho nonoy Ailch waa usod to buy st tno first lovol 

cannot bo «BOO to hoy at tho socond loosl. Ons has first to buy tho 

intorasdiato tfpm of nonoy. 

Tho strueturo of silocation croatod above ta a hiorarchy of ro- 

tourcos. which takos tho for* of a troo Cfi^uro lt-4). iMch rosourco 

can bo usod «sclusivoly to buy rosourcos uhleh aro undsr It in tho troo. 

and only dun09 t:to uns intorvsl for uh*ch tho allocation oas nadr at 

th« lovol a^ov«. with oach nods of tho trot: is aasociatod a sot of 

rulos. whtcn tell boo it can buy or bid for the rosnurcos idiirh aro 

under it in »ho troo. Moto thst tm*  port of a rosourco night bo at 

sor« node of the troo. uhllo sons other part otoNt bo st sons other nods, 

for instance, a part of cors n»eory maht b^ «vail^le to run tino- 

shsrod users ffidsr a certain ».nd of contract, »mil«» another part of 

core night bslonq to a separate real-tine user. 

II.S Wore involved contracts. 

llosl-tf«o users night want to get s certain «wunt of service bo- 

fore s particular deadline. Thi« can be handle«! eithet with a blddino 

systan. whore tho u*er grsduslly incroaaes his be* lof systens PMMNM 
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cMi b* us«d forever 
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\ 

ttMbl« only during on« 
hour to buy CTU «nd ooro 

\ 
DISK 

•OMO  «llOCAtod 
or« hour «t a tin» 

CONSftLCS 
*llor*rn«i for 
uno hour 

if 

•lloc«t«d for 
100 BllllMN?. 

I OK COM: Kt^'RY 
ollocated on« sooond 
at a tiw 

fn.  11-4 
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whon the deadline approaches [25], or with a special contract, where 

the system takes the responsibility of findinq out whether a given 

user can bo satisfied within the current structure.  Note that the 

scheduling method suggested in chaoter III can be extended to take 

car-! of such users. 
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CHAPTER III 

AN ANALYTICAL MODEL OF SPACE SHARING 

III.l Introduction. 

This chapter attempts to show that better schedulers could be 

designed if some model of the interference between users' requests 

4 
for facilities were available.  A program is a string of references 

to certain resources.  Whenever a program references a resource which 

is already totally allocated, a conflict occurs and the scheduler his 

to decide which program will get the resource.  It will be shown how 

this can be done in a "pseudo-optimal" way by taking into account some 

information which can be made available before run-time on the patterns 

...   5 
of the users' requests for facilities. 

Sections III.l and III.2 introduce some of the concepts and ter- 

minology used later in the chapter.  Section III.3 studies a model of 

"worst possible" synchronization between the users' requests for facili- 

ties under certain assumptions; among which is the assumption that re- 

sources are preemptible and each user has a fixed priority for accessing 

a resource (a given user has a different priority for each resource). 

In section III.4 the way in which the previous model can be used for 

scheduling is examined by formulating the resource allocation problem 

level of conflicts over some period of time. 

4 
demand string 

this information, as we shall see, is related to the predicted 
usage ratios of the various resources by each individual prograrr, in 
the system. 
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as a Mathematical Programming Problem (finding the maximum oi an eco- 

nomical function with certain constraints on the variables). Then the 

design of an algorithm which yields a nearly optimal solution to the 

M. P. problem is giveu. lÄction ill.5 compares the model of section 

III.3 with models of some other scheduling strategies. The possible 

fruitfulness and extensions of this study are discuased in III.6 and 

III.7. 

There arc some resources, like the CPU, which can bo preempted 

(transferred from one user to another) with less overhead than some 

other resources (like core memorv, if the previous user has to be 

swapped).  This loads to the idea of having a hierarchy in time of 

partial scheduling decisions; some decisions being made for smaller 

time intervals than others (see sections II.4 and 111.4.1).  The model 

which is studied in section III.3 will bo used in section III.4 to re- 

late two levels of scheduling.  Whenever a decision is made for a long 

time interval (macroscheduling), the scheduler takes into account some 

information on the future demand pattern of the user during this time 

interval.  The macroschedulor then sets some parameters of the lower 

, 6 
level scheduler (microscheduler). 

Of course, solutions to macroscheduling problems depend on some 

information being available on the patterns of the users' requests for 

facilities.  Haberman [2] has shown that such information can be useful 

in avoiding deadly embrace of processes in a time-shared environment-. 

This information might b. provided either by the user himself, or 

Mote that microscheduling can be done by hardware, which, for 
instance, resolves conflicting requests for a memory bank. Then the 
software "sets" the hardware. 
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extrapolated from statistics collected by the system. 

What information wou.ld bo useful?  It should be relevant to the 

scheduler by permitting computation, for instance, of the maximum 

possible "intenorence" between different jobs.  It should be simple 

and condensed, because the schedulnr has to operate rapidly, and finally 

this information should be easily available and characteristic enough 

of a given program that it could be used without any modification for 

several runs of the same program with different. Input data.  In this 

paper, the information used will be the proportion of usaao of the 

7 
various preemptible resources  over a rather long time interval during 

which a job is to run, and the total (maximum) amount of non-preemptible 

resources required by the job. 

Do we really need macroscheduling separated from microschedu.ling? 

In a recent paper [29], Stevens examines what was wrong with the 

Chippewa Operating System; he concludes that there were two flaws. 

First, the absence of a macroscheduler:  the Chippewa system allocated 

resources for an indefinite period of time, without taking into account 

the global demand of each job.  Thus, there was no auarantee when a job 

was allocated, that the job would not ask later for more memory than 

was available, and in this case the Chippewa scheduler did not take 

back the resources (CPU,...) already allocated.  The second problem of 

Chippewa was that I/O bound jobs, or compute bound jobs, wore1 not re- 

cognized as such by the scheduler, and so th i-: information was not taken 

into account in assigning priorities ror the resources.  We will see 

7 
Preemptible resources are those allocated by the microqcheduler. 

For the moment, the reader might imagine the CPU as opposed to memory. 
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that better simultaneity in resource usaqo and between jobr,' progresses 

is achieved by assigning a high priority for a resource to a job which 

will make little use of this resource. 

III.2  Some Definitions. 

User:  An entity which requests and seizes resources, and which 

might also give some information about its future resource requirements. 

In this study, the words user, job, program and process describe the 

same concept. 

Demand string of a user:  A program will be considered as a se- 

quence of calls to various preemptible resources:  CPU, I/O, ... such 

that one and only one resource is called at a time by a given program 

(no double buffering, for instance).  This limitation could be removed, 

but helps to simplify the presentation. 

Let R be the set of resources.  A program is then some string 

r,r„...r, over F., where r. means that the user called ^n resource r, as 
1 2   k i 1 

the i  resource call.  This notion is similar to what Denning used in 

more restrictive frameworks to describe page reference strings. 

Virtual time of a user:  During a certain real time interval AT , 

a user will get the resources requested in his demand string during a 

total interval of time AT .  We define AT as the virtual time interval 

corresponding to tiio real time interval AT .  Virtual time of a user 

normally runs '.lower than real time, but if a user were  1 permanently 

have top priority for accessing all resources, then virtual time for 

that user would be equivalent to ijal time. 

The virtual time diagram of a user is a diaaram in which resource 
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usage (demand striruj) is plotted as a function of the virtual time 

of that user. 

C.P.U 

Disk 

Drum 

virtual tine 

Remember that the assumption was made that a program i.s a purely 

sequential process. 

Observahles of the system: Any quantities which are relevant to 

our study, among which might be included: 

1)  The effective progress rate w. of job *fi (working rate).  It 

is the portion of time user #i was working, divided by the total real 

time interval over which the measurement was made. 

total virtual time interval for #i 
w, = 
i  total corresponding real time interval 

2)  The duty factor u. of resource #;j (or its proportion of usage): 

u. 
1 

time resource #i is used by and iob 
total real time interval 

w. and u. are both dimensionless variables, which are observed 

over a certain interval of real time. 

3) The cost function (or economic criterion) of the system is 

another observable.  It is assumed to be a weighted sum of the progress 

rates: 

E = E c.w. 
i i i 

where c, characterizrs the urnency of user #i.  The precise mean- 

ing of c. as a bid will he  discussed in section 111,4.5. 
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111. 3 A modo L based on fixed nrioritios (with iircompti.on) for each 

user and resourco. 

III.3.1 Overview of the model. 

For each resource, there is a priority assiqncd to each user. 

For a given resource, these priorities are all diffnrent (the users 

being totally ordered with resnect to each  resource).  This priority 

assignment will not he  changed during a certain time interval [0,1"] 

over which the conflicts between the demand strings of the various 

users are studied.  If user #i requests a resource, he will get it 

either if the resource is currently idle, or if it is allocated to a 

user having lower priority for the particular resource' (in which case 

the lower priority user will have to wait for further use of this re- 

source) . 

Note that a user does not necessarily have the same prior it'.' for 

all resources. 

Let a, . be the proportion of the virtual time of user i soent. on 

resource i during the real-time interval [0,T].  The a, .'s characterize 

the needs of the various users for the various resources (for instance, 

the degree to which they are compute-bound or I/0-bounJ).  Given the 

virtual time diaaram r(t) of user i, it is trivial to comnute his a, 'S: 
1 j 

/ 
1 ( r(t)=j )  dt 

te [t .    ,t     ] 
min  max 

1] 

t      - t , max        mm 

where d(x) 
1 if n = true 
0 if n = false 
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It will bo assumed In the soquol that a fairly accurate knowledao 

of the a. .'s is available (possibly basod on nast oxneriencc of.  the 
1.3 

programs), but that the precise demand strings and virtual tine dia- 

grams of each program over the real-time interval [0,T] are not known. 

The situation may be characterized tay two matrices n x m, where 

n is the number of users and m the number of resources: 

a.. = proportion of the virtual tine of user i snent on resource i 
lj 

n. . - inteqer numbe?- renresantina the nriority of user 1 for re- 

source j. 

1 <_ i ■_ n 

1 ^_ j   <_ \n 

0 < a. . •' 1 
- il - 

Z    a. . = 1 (normalization of the a. . for each user) 
3  ij il 

p. . = n, , <m*     i  - k 
ij   kj 

p. . / p, . <«=>  ur.er i   has a hiqher orioritv than k for resource i i i   k j —'  
(lower numbers ■'-•• higher orioril ies) . 

The assumptions are given over a real-time interval [0,T], which 

separates the two activations of the macroscheduling alaorithn.  If w, 

is the progress rate of user i, this user will effectively get resource 

j allocated during a time 

T w, a,.        (by definition or a,, and w,), 
ii] ' n      1 

Resource j will be running durino a total amount of time 

T u. = Z     T v.'.   a. . 
1 1    1  IT 

thus: 
u . = .r. a. . w, (0 < u . < 1) 

j   i ij i _  , - 
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and, as a conseaucnce 6f S a.. • 1 
3  ^ 

E w. ■ X u, 
I i  5 j 

The overhead of switching a resource from one user to another has been 

and will b< systematical.lv neqlected in the study of the mode] . 

ITi.3.2 Fundamental equations and consequences. 

It will now be of interest to dorivo the equations describing the 

worst possible cases, where the rsquests arc synchronized in an order 

such as to qet the smallest possible progress rates and the least pos- 

sible simultaneous use of the resources available.  This .is relevant 

to the general philosophy that the svstcm should always expect the 

highest amount of conflict within certain computed bounds.  It should 

not oversell itself to the users, guaranteeing then a service that it 

would eventuallv not be able to aivo.  Even if the system would decide 

to take some chances for a greater expected profit, probabilistic modi Is 

would be dangerous because they assume a randomness and absence of 

correlation between users which are not generally true.  Also, for a 

given user, the requests do not have a random length under «one distri- 

bution, and are not uncnrrelated with each other.  Of course, the com- 

puter could comi ute Marl-ovc'aain coefficients tor  the demand Strings of 

the various users and use this information to get a better schedule, but 

this seems to exceed the allowable overhead of an allocator. 

The following fundamental equations express that, in the "worst 

possible case", a process would be wait ng for a resource at any time 

when this resource is used by another process or hinner priority.  Note 

that 1-w. is the rate of v.aitinf of user i. 
i 
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(III-l)        1 - w.   ^  ^_    ak . wk (O^w.^1) 

For qivGn matrices (a. ,) and (p, .), it is always possible to find 
tj      rij 

virtual time diagrams of the users, which have the usage ratios a, . for 
ij 

the resources, and such that each job might have the maximuBl waiting 

rate given bv eouations III-l.  Tn other words, if the coefficients a, . 
n 

are known for cachi job, but not the exact virtun.l time diaqrams of tlie 

jobs, it can bo said a priori that the jobs will have progress rates at 

least equal to the w.'s, if and only if the following equations are 

satisfied: 

(III-2)        1 - w.^ min (    21   ak. w^  , 1 j 

Pkj'<Pij 

( V i:  l^i^n) 

( 0^w.$l ) 

An equivalent form is given in the following equationsi 

(III-3) V i, either w. = ü or !> w + ^_   CL . w, 

(w > 0) 

pkj<pij 

Equations (III-2) define a domain of values for the w.'s.  Anv 

point within this domain can alwavs be reached if the syateffl should 

Q 

desire it.  This domain will ho called the attainable domain, or 

g 
The action to be taken by the System to reach a particular ooint 

in this solution space will be described in section III.4. A forml 
proof of this statement is not given here. 
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synonymously the domain of cortaintv.  Noto that onuations (I11-2) 

imply that: 

(111-4)        0 < U. ■ E a., w, '■ 1    (0 < w, < 1)   (] < i < m) 
- j  i ij  i -        - i -       -  _ 

(The reader will find this result easy to nrove). 

HI, 1,3 Defini.tion of the mathetnatieal prohlem. 

The previous model will ho  used to find a 3et of users to allo- 

cate.  Each user qives to the system: 

9 
1. his usaoe ratios for the various preenntible resources!  a,..' •   • n 

2. his uroencv: c, . A higher valu.; of c. moans a hierher uroencVi 

but also means that the user is willinn to oav more money in ordter to 

run.  It is understood that if a user with urqencv c, nets a prooress 

rate w. duri na a re.Tl time interval of lemith T, then this user is 
i 

willing to pay at most 

c , w, T 
i i 

to run during this time interval,  Pricinq strategies arc studied in 

III.4.5. 

The mathematical programming problem can he stated in several 

forms of Varying complexity. 

1.  Given the a, .'s and the c.'s, find the n. ,'s and the w.'s 

which maximize the economic criterion (or cost function): 

(III-5)        E • 2 c.w, 

while satisfying equations (IIT-2) . 

Note that the economic criterion chosen is eguivalant to a cri- 

9 
and, in the second formulation, his usage of the non-preomntible 

resources : b. . . 
ij 
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torion which would tund to maximiz»j rMOVKM u;.i«|o.  «»unposo it is 

dnsired to mnximizr« 

K " >: d. u. 
i  ^  1 

where d. is the "woiaht" or cost of rosourcr '•i. E can thon ho 

rewritten in the form: 

B ■ " C. w, 
i  i  i 

with: 

c -  '- i\  , d. 
i  * tl j 

2.     In  this  -u'cond  fornul.it ion,   thcrr   ir.'  two kindfl of  resources; 

tlie macrnrcso'ircos , (^T) (wliic.h *re non-"reemiitil !>•       TK!   illor.it-vl by 

the macro.schcdulcv) ,   and  tiio wtctOf i»OWfc»S» ^L(ofPW^tihlo and allo- 

cated by  the r,i croschoduler) .     h.     will be  called  tiu   .t'.solut" arount i ,   

of macrorpsour;';  i  dosirt-d by Tisrr  i.     Pv centra st,  a. .   is tht  i'-lative 

amount   (per unit of virtual time)  of nieror«aoure0  i nxnltifl bv n-^r  i. 

How,   the  mathematical  programminq {troblen can bo MpfMS*4  in 

the  following way: 

Find a  r>>t of  userj  3,   and matrices   (i . ,1   and   (w. ) ,  whirii -iaxin;7': 
■ 11 I 

the economic criterion   (eott  function)i 

(III-5) B • ii w 
ic       1      .1 

subject to the  followinq cotuitraiiita< 

10 
Tlie  non-preemptibb;  rnscirces niqht be,   for   instrmco,  momor" 

cells at various lovols of momcrv (core, drum,...). 
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(in-6) 

V  5€Ä#    Zb    S   ^. 
'   iff *'   ■        J 

whcro / «    -o   if   .A. 

I   Dj ' 1    if   w^ 

Vi€8  , 

11 

pi'j<pii 

B. I« tlic tot-il available amount of n »n-prrwrn^tt^lc retouro »1. 

III.3.4 rxamplpw. 

In this section arc« givm .• few rxan^le:* of «■» araphical repre- 

sentation of the attain.1l•l', do'Min in the snaei ^r th» w 's, in order 

to create a foilino of how the d-rur.d strim.-» of t!.o v'>n will syn- 

chronise.  Th»« reader will diiicovor that tht   "wr**  c-ise domain" can 

novortheloss l^ad to a lot of sinult.meity '»etwern the 1o!>s.  It war 

verified bv simulation that the iohs do not qrnernllv synchronize 

significantly Letter than the worst caic  mod^l nro^irt«, i* there \     a 

small number of preemptible VMOiMfOM Wld i?  the priorities ar^ chosen 

in d nenrlv ontinil way (see unction I IT.4.2). 

Example 1. 

(a ) - 
11 

CPU DISK 
JOP 1 
jow 2 

11. 
The c;rtu,it.inns for jefi fxt ress thnt -inv u'-- r 'i.winn I nnn-z«-ro 

iroqros1? r^t»- (.md thus .Tlloc-it"-! bv the macrfi«;-V'iulrr, nn 'ind tho 
space ho noeil'; In rrtiory level *]. 



In thin rtrrnv, A lol» in .1 rrrs »md a rpt.ourcr is a column. !••- 

•ourc« 1 is t'ao cm, resource 2 in the dtsk> 1nh 1 in enmoutr '.xnind, 

job 2 is «ore I/O '.>ound. 

1. Th« maxtmum priority is niven to in'» I for all resources: 

The donain of certainty is defined l.vt w ♦ w ^ 1, whi-h shows 

that no parallelism in th«> use of the resources !• obtained in the worst- 

case (fig.  III-l). 

2. Sutmose that the orioritv mattix is: 

Rquationsi 

v(! .') 
Equations defining t!io attiiinablo domam oro: 

^4 M* 1 "" «r; 
I  >_ .2 w    •♦ w w-j 'L ^ 0 m ■■ 0 

The attainable domain corrosr^ondrt tn a n^irlv optimal  ua.itie of 

the resources: 

u.   ■  .R w    *   .4 w 

u. ■  .2 w,   *  IG w, 2 12 

u.  and u    am maxinun at thn iKiint; 

w    «   .f>S,  w. ■  .87   "♦ u    ■   .R7,  u^ .6". 

In this case, both u and u_ are maximum at th*  s^mo point.  Thi^, 

however, is not I oenoral result, and verv co-^rl icatc". domains in the 

u, space mioht exist,  r.'ovcrtholess, solving the oouatinns: 



H$ 

f/J / attainable domain 

' //, (equations (III-2)) 

(p. .) =  1 2 
1-,    2 1 

Fig. III-l 

Domains in the (w , w ) space for example 1. 
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Vi,   l = w. + /_  a,.w. 

Pkj<Pij 

might give a good approximation of the use of resources in the attain- 

able domain. 

3.  The next case has the priority matrix: 

(t "V ■ (1 I) 
1 j> w + .6 wo 

1   >_ .8 w    + w 

Obviously, the attainable domain is worse than with the second 

priority assiqnment, but better than with the first one. 

If the objective function to be maximized is E = w + w 

(c, = c„ = 1), then the prioritv assignment #1 vialds E   ■ 1, 
12 max 

priority assiqnment $2  yields E   = 1.52 and nrioritv assignment #3 ■     ■' max 

yields E   ■ 1»15.  The solution of the mathematical nroarammina pro- 
max 

blem defined in the previous section would be the second nriority 

assignment: 

^■(i o 
and w = ,(J5,  w = .87. 

Example 2: 

This example considers two jobs havim Identical averaqe resource 

usage characteristics, but one job seizes each resource during a much 

shorter amount of time than the other job. 
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Fiq. 111-2.1 and 111-2.2  ;;how the virtual time diaqrams of each 

job.  Fig. III-2.3 and III-2.4 show how thov synchronize in real-time 

under two different priority assignments.  The oxnected proaress rates 

are found to be those given by the "worst case" model. 

For this example: 

^3 > =(2   2)     ^"^"a 

thus E   = w. + w = 1  (w = 1 , w = 0) . 
max   12       I £ 

thus C   = 1.33  (with w, •> .67, w ■ .67). 
max 1       «^ 

Example 1 has a larger attainable domain and a larger E   than 

example 2 with the priority assignment L A.     This is due to the 

fact that the job., of example 1 are complementinq each other (one need- 

more CPU, the other more 1/0), while jobs of examnle 2 have identical 

average needs of resources. 

III.3.5 Multiprocessor case. 

So far only the case whore the resources are not interchangeable, 

and are only susceptible to one activation at a time has been considered, 

How the previous model can be extended tc the case where some resources 

may have more than one activation at a time will now be studied.  For 

instance, there night be several identical CPU's or .idnntical channels. 

The fundamental "worst case" equations are quite complicated. 

They are given here without further justification. 



Si 

CPU 

virtual time 
usor 1. 

Fiq. IH-2.ll Virtual time diaqram of usor 1, 

resources 

CPU 

I/O 

virtual time 
user 2. 

Fig. III-2.2; Virtual tine diaqram of user 



resources 

CPU, user 1 

CPU, user 2 

I/O, user 1 

I/O, user 2 

SV 

L . .. _ 

roal time 

Fig. TIT-2.3: Real timo diagram; (p .) = j ^ 

A 
CPU, user 1 

CPU, user 2 

I/O, user 1 
I/O, user 2 

resources 

real time 

Fig. III-2.4: Real time diagram; (p..) 
1 2 
2 1 

user waitinq for the resource 

users seizing the resource 
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Define q , by:  r = p., <=> i = q ,     r e [l,n], je [l,m] 

q . if? the number of the user havinq the r-th orioritv for resource i. 
rj 

If resource j has R. processors (possible simultaneous activations), 

the maximum time that user i would spend waiting for resource j in time 

interval [0,T] is: 

f Win I r—r / aw ) 
keil.R.l  ^  Rj -k+1      mÄTr-ll    'S.j5      "mj / 

if r=q..> R^ 
11 mfclK,r-ij     Ttij'       *mj  ' ^ 

0       if    q. .<R. 

so that the  fundamental equations  for the attainable domain are: 

V i 6 [l,n]    either    1 - w. f 'l • •      —     w-   ^ 0 (always w. ^ 0) 1 jetl.m] '^3       i x 

Theorem 1. A smaller domain than the attainable domain defined by the 

previous equations can be defined by equations (ITI-2) where a. . has 

been reolaced by o<. , =  i-j . 
IT   —- 

1 

u^., 
Proof: by choosing the first of the cuantitios whose minimum 

3 

and 

7\      i -IT äL—   a. . w.      if r = q. . > R. 
J    ]  1 6[l,r-l] 

^■-^^i-kr 51    a. . w.  if r= q. . <; R. 
3  1 C- [l,r-l] 

hence the theorem. 
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By replacing the a..'s by the cK's the multiprocessor case has 

been reduced to a monoprocessor case.  The accuracy of this apnroxima- 

tion can be felt even more in the special, but very important case 

where a. . < a, , <=> p. . < p, . .  In that case, if r = q. . > R : 
ID   k^    'ij  ^k] Mij   j 

• . = —z- /_   a. . w. 
13  Rj i ffer-l] 13 1 

and, for r = q..< R.."V. .  = 0,  but then the a. .'s are small ij -  j Tij lj 

too, because they yield high priorities. This leads to the intuitive 

feeling that for this priority assignment and a larqe number of users 

(n >> R,), the exact model and the model approximated bv theo<..'s are 

very similar to each other. 

There is another way of approximating the multiprocessor case by 

a monoprocessor case.  Suppose resource j to be a single resource (one 

activation only), but which works at R. times its initial speed. The 

fundamental eauations would then be: 

- w: %S   /3•   w; 

pkj<pij 

where 8' . is the normalized value of  ii 

3 

'3kj 

R. 

7 Rr 
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The progress rates w'  apply in a universe where the resources 

work faster than initially.  The correspondence between w' and w is 
i     i 

given by: 

w: = w,  >   in 
i   i C—-** 

3 Rj 

Thus, the fundamental equations for the processors workinq at 

R. times their initial speed are: 

Vi , 
\j   R   i ^  j,k    R 

The reader can see that this is a more ontimistic estimate than 

was given by theorem 1 and the o^ . .'s. 
ID 

Examole 3. 

ai: CPU Bus 

job  1 .8 .2 

job 2 .4 .6 

job  3 .2 .8 

Suppose that 2 CPU's are available.  The following priorities 

are assigned. 

(n.   )  =   i a    2 
a   3j 

and    F = w    + w    + w    is  to 

' s 'l>- >      ■> f be naximizod. 

1.     An exact treatment gives  the  fundamental  c-rfuations; 
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1 >_ w + min (.2 w + .1 w ) 

1 ^ .2 w + w 

1 > .2 w, + .6 w,+ w, 
-    1      2   3 

yielding the solution (with ooualities) 

W. ■ .94 W2 = •81 

\ "x ' •»' u2 = •93 

E 2 .07 
max 

2.  The lower bound method: 

32 

"V aij 
CPU Bus 

/' 
.2 job 1 .4 .2 .1 

job 2 .2 .6 
2 

1 .1 

job 3 .1 .8 \2 .6 1 

w = .80  w = .80  w = .36 

2 Ul = •52  U2 = '** 

is the "best" point of 
the worst case. 

fast: 

E   = 1.96 
max 

3.  The "optimistic" approximation with a CPU workina twice as 

,6  .2  .1\ /w. 

thus i 

..' • ft • i ! I w2 ll i 

v.2  .6  .9/ \w. 

w = 1.33  w9 = .88  w = .21 

E   = 2.44 
max 

Note that w is greater than 1, which is not surorisina with 
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the assumptions.  If the constraint w. < 1 is imposed, the optimum 

would be: 

w = 1  w = .97  w = .24 

E   =2.21 
max 

which is a closer approximation of the case with two orocessors. 

II1.4 Macroscheduling and microscheduling algorithms under the 

previous model. 

This section is intended to show how tho model of section III.3 

can be applied to multi-level scheduling.  Section III.4.1 shows how 

the schedulers look from the users point of view.  An attempt is i.hen 

made to solve the mathematical programming problem by separating the 

assignment of priorities from the computation of the progress rates. 

A heuristic for assigning priorities is given and justified in III.4.2. 

Once priorities are chosen, the problem is reduced to a multi-dimen- 

sional Knapsack problem, for which a heurdstical solution is pronosed 

in III.4.3.  Section III.4.4 summarizes the results, and Til.4.5 shows 

how the users could be charged at "marginal pric&s"; the prices for 

services being determined in connection with the algorithm of III.4.3.3, 

III.4.1 Combining two levels (in time) of scheduling. 

When designing an operating system, one of the maior difficulties 

is to partition the concepts involved.  This requires, in particular, 

the separation of tasks which are loosely connected, and the imnlcien- 

Uation of them as separate processes of the system. "     it is assumed 

12 
This can be achieved with a hierarchical structure such as the 

one proposed by Diikstra [26] , with a communication system between 
processes [27]. 



hero that tha followinq decisions and strategies are independent from 

resource allocation (or scheduling)» except that thev mav provide in- 

formation or requests for the scheduler, but thev should not be con- 

fused with scheduling activities: 

1. Page replacement algorithms in a computer with paged memory. 

Which page should be extracted from meraorv? Should the sizn of the 

working set of pages be changed.-' Should there be   any prepaging? 

These decisions can be made by the proqramner, or by the system, 

but in any case they concern program optimisation and not system 

optimization (insofar as it can be said that the system is not imnroved 

by improvinq the users' programs running under it), 

2. Decidina on the "external" priorities of jobs.  Some jobs 

are more urgent than others.  This might be decided either by the sys- 

tem or by the user (which is willina to pay more to get his job ex- 

ecuted soon).  External priority can bo reduced to the economic cri- 

terion of the price offered bv the user per unit computation of his 

job, which is then fed into the scheduler, and ■/ill serve the scheduler 

in order to build its own optimiaation criterion. 

3. statistics to be used by the schedulm or bv the paoinq 

algorithm or to compute external nrtorities, can theoretically be 

considered to bo collected Independently or those decision-making 

13 
processes. 

A scheduler will be considered to be a mechanism usina the 

followinq Information! 

I 3 
If the user wants to collect such statistics, he will have 

to pay <"or the resources Involved ir. the spying process, 



1. On each program:  somo information about, the kind of service 

wanted by the proqran, either on a lonn term iMnno, or because of a 

current roouest for a facility.  The a. . ' r; of section ITT.3 were an 

example of such long term range information. 

2. The economic "bid" of each job, characterising its "external" 

urgency. 

3. The re sources availablo fa   the Byatom. 

i believe that some scheduling should be done for intervals of 

various duration of time. Tor instance, microschcduling, as defined 

in the sequel, might, be done for periods in fnillisecond», rncoscheduling 

for periods in hundreds of milliseconds, while scheduling of tapes 

should be done for minutes, and sOffla real time u^crs may not v/ant to 

use the system at all unless they are assured of ncttina ROKm  minimvim 

guaranteed resource usage darin'; a whole hour. 

A scheduler decides to allocate some resources to some users, and 

chooses parameters to be fed into the "lower level" scheduler (which 

handles smaller time intervals). 

Microscheduling and Macroscheduling. 

Examples will now be given of how some usual allocation decisions 

can be split between two schedulers workin1, at di•feront levels of time 

intervals. These examples arc; summariged in table ITT-1. Resources 

allocated by the low-level scheduler (microscheduler) ire said to b.; 

preemptible, and those allocated by the macroschodulor arc1 said to ba 

non-preemptible. 

14 
Freonptibility is, of course, a relative notion (and not abso- 

lute). Tt can just be stated that some resources are more preemrtiblo 
than others,if the overhead to allocate then Is smaller. 
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Macroschedulinq 

Time betv/et-n 

macro-decisinns 

Microscheduling 

Current Comnutor 

Systems 

Allocatinn of 

core ripnory 

Time between 

microdncisions 

1 SPC. 

Conflicts of access« 

to drum and di^k 

Allocation of CPU 

and fast reiisLers 

10 mill isr>c. 

Future Coneutex 

Systems 

Mlocation of core 

m"morv and 

fast   rrtfinters 

]0 mil Lsi 

Allocation of CPU 

conflicts  in  swa?'nina 

■ctw'.fn central core 
and   fast  ronister"-, 

100 microseconds 

Table  III-l 

Tüxamoles of macro and micro «ehedu] Lno 
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Macror-'netful inq can rofor to those ichodulina oncrations which 

are related to the allncation of crentral memorv.  Tht.' time interval 

between two macrodocisions would be rather laron (qrr-.nter th.m 100 

milliseconds on most systems). Microschodul.nn would concern the allo- 

cation of tho arithmetic and control unii-; tnd of somn  fast luisson, 

to programs w'nicli are already nssenti.il Iv nresont in „entral mom^rv. 

For instance, the daeiaion of what -oh is Rllocatttd 'i-cer.-: to the drum 

for paqe-in ind ^aqo-out operatloiM Imtween drum and :-. »in cor^ memorv 

is a microsc'i!cdul inq decision In'currant comoutet S'/atona wh. to  the 

programs are ker t in core While waning takes tdac'-'.  In Future computer 

systems, this kind of naqinq will most probably be-replacad bv a D.uiina 

between two fast levels of memory, like on tha 160./85! 

I prefer the words "microschcduling" an^i "r.icro^cheduli nc-" to 

"microqueuinn" and "macre lueuina" [5] , becau.so the latter Kuqnest the 

use of FIFO quauea bv the aehedulinq algorithm, which la a practice 

that this chanter prcciselv tries to dltcredit.  Note that, in our term- 

inology, "schedulinq" and "allocating" are synonvmnus. 

The macroschedulor receives the predicted probable usaqo ratios, 

a.,, and tlio urqency, c, for nach user fi who wants to run.  Then the 

mäcroGcheduler will solve the '■Vithenatical Prooramnlnn oroble-n (defined 

in III. 3.3).  I'avinq determined tlie set of uaora to be Allocated durin«:: 

a certain real-time interval of lenqth 7, and t'ü.1 matrtcea (p, .) and 
1 i 

(w ) for the users in this set., the MCroaeheduler assures that the 

non-preonntible resources will bo allocated to thoaa irerr., and transfers 

the values of (r .) and (w. ) to the Rlicroachedulor« 

The mlcroachedular controls the acceaa of the usara to the ore- 
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emptible reKcurcer;, by npplyinq feha priorities wliich woro detprminod 

by tho macror.diodulor.  It also stops a u;;or fi if this u.sor runs norc 

than a time w.T.  Finally, it prevents tho users from excooding their 

15 
predicted resource usage ratios. 

Sections TIT.4.2 and III.4.3 will 'ig devoted to the solution of 

the M.P. problem by the macroscheduler. 

11T.4.2 Assignment of priori ties. 

It is interesting to try to find a priority assignment (p..) 

before determining the progress rates (v,, ) which ontimize the cost 

function E - Y. c.   w. . 
i  i 

III.4.2.1 A case where a given assignment oF priorities can 

certainly be imnrovod. 

Let D be called the attainable domain under priority assiqnment 
P 

S.     It will now be shown that the assignment to each job of a set of 

the same priorities for all resources is a wrona choice, which can al- 

ways be improved.  Consider tho following theorem: 

Theorem 2:  Let £ be a prioritv assignment in which o, . < p., . for all 

i.  If, for some i, p.,. - p. .   + I»than there exists another assignment 

P' which is the same as P except that n, . and p.,, arc Interchanged, 

such that D , oroperly contains D . 
p' " P 

In other words, any point in the smco of observables which 

satisfies equations (ITI-2) undor assiqnment P , will satisfy (TTT-2) 

under priority assignment P'. 

15 
Sec section ITT. 4.4 for a precise sketch of the microschedul.ina 

algorithm. 
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16 
Corollary:  the maximum of the cost function  under priority 

assignment P' will be greater than or equal to its maximum under P. 

The proof of the theorem is given in appendix A.  The theorem 

is quite weak, but at least it shows that a priority assignment like 

the following can certainly be improved: 

(V 

III.4.2.2 Two cases where it is known how to assign priorities. 

1.  The users arc competing on one resourco nnlv. 

There might be more preemptible resourcos in the system, but 

for each of the other resources there is no more than one user who 

might ask for it. 

In this case, the fundamental equations take the form: 

V i € T n] ,  either w = 0 or 1 - w. > T  a, . w, (0 ^w < 1) 
k    J 

Pkj<Pij 

where j is the critical resource, and: 

E = £ c.w. 
i i i 

is to be maximized. 

Theorem 3;  The optimal priority assignment, P, is such that: 

a. .    a, . 
P. <P       <=>      -21   <  -^i PijSPkj     ^       c.  ^ r 

i      k 

The proof is sketched in anpendix B. 

16 ... or economic criterion. 
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2.  There is a finite number of users and resources, but, the 

a..'s are infinitely small (of the first order). 
-JO *  

Under these assumptions, 1-w, is a first order, infin.'tely 

small number.  Thus: 

1     ft   kD 

p
kj<pij 

and: 

n - E    f^     ^       c. a, . 
max     i JT^,   i k^ 

pkj<p1j 

The question of which priority system makes n-E   the smallest 

possible, still exists.  The following theorem solves the problem: 

Theorem 4;  The optimal priority assignment P is such that, for any 

resource j and any users i and i', 

J       J i        i* 

Proof: 

n-E    r^/  2 Z_   c. a max     t-r T—,    i k] D    i,k 
Pkj<Pij 
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Thus, the problem of finding the optimal priorities can, in this case, 

be solved for each resource independently from the values of the a  's 
Ü 

and p..'s for the other resources.  Theorem 3 can then be apnlied, and 

gives the optimum priority assignment for each resource. 

III.4.2.3 General case. 

The general problem of assigning priorities is qenerally guite 

complicated. Using the results of sections III.4.2.1 and III.4.2.2, 

suggests the following heuristic: 

1. Assign priorities so that: 

a. .   a 
p..<p &     -ii^jy 

2. Try to improve this priority assiinmnnt by usimt theorem 2. 

This improvement can be achieve! in a time proportional to m x n. 

This priority assignment Is not always optimal, as shown by the 

following counter-example: 

Example 4:  3 resources, 2 jobs. 

,   .    1.3       .3   .4 
{aii'   =  1.31  .6   .09 

It is desired to optimize w + w .  The proceeding method loads to the 

following assignment of prioritiesi 

'    V  |a   I   l] 
T; e optimum is w + w  = 1,384,  However, with the priority 

assignment: 

" '  1  2 
^ =  ^1  2  1 

the optimum would be:  W. + w = 1.477. 
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This example clearly shows that the "good" priority assionment 

is not always optimal.  The major advantaqe of this method of asr.iqninq 

priorities is simplicitv. 

III.4.3 Assignment of values for the progress rates w . 

Once the p..'s have been determined, it is desirable to determine 

optimum values for the orogress rates in order to raaximiao R while sat- 

isfying equations (ITI--2). 

III.4.3.1 The 0/1 integer linear programnina problem. 

Now the mathematical proqramminq problem which was defined in 

part 2 of section III.3.3 will be considered:  maxini-e (III-5) sub- 

ject to the constraints (III-6) (exceot that the o..'s have already 

been determined). 

This mathematical proqramminq problem is not a 0/1 integer linear 

programming problem, but it is convenient to consider it as such (de- 

termine the values of the S.'s nnual to 0 or 1).  Note that the a..'s 
i- in 

and the b,.'s are all positive (they represent the needs of the users 

for preemptible and non-preemptible resources). 

The 0/1 integer linear proqramminq problem has been reviewed in 

[23].  Of particular interest to u^ are the studies in [24,28].  The 

idea is to find a nearly ontimal set of users to be allocated 

((5. = 0 or 1) by ordering the users accordinq to some criterion which 

will be called "decreasinq desirabilities", and to trv to allocate 

them (satisfy the constraints), starting with the user havinn the high- 

est desirability. 
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111.4.3.2 A figst algorithmi 

The jobs  are supposed to be already ordered by decreasing ex- 

ternal priorities.  It is then necessary to decide about the w.'s for 

the jobs.  For instance, suppose w. = .5 for the high priority jobs. 

A w. too close to 1 miaht strongly degrao? * he possible service for 

other jobs, bv obliging the system to give a hi oh intornal oriority 

for all resources to the job which has a high extcrna] priority.  This 

would lead, as has been seen, to a poor utilisation of the resources. 

If a sot S of jobs is allocated in menorv, it has to satisfv 

equations (iri-l) and (III--6) (with 5, = 1 if US, 6 =0 otherwise). 

A procedure to find the maximal set of users fitting into avail- 

able resources would take the following stops: 

Step 1:  Take the highest nriority user; put hin in set S'. 

Step 2:  Check whether S' is an allowable set:  first assign the 

priorities p. , yies', according to the rule 

a. .    a 
p. . ^ P. ,       IT     ki Hj < bk: <->  —— <   -~-,~ 

Cl     Ck 

wliere the c.'s  are in the same order as the external oriorities. 
i 

Then check equations (III-3, and ITI-6) for sot S'.  If th^y all cVieck, 

go to step 3, else go to step 4. 

Step 31  S ' S'; go to Step 4. 

Step 4:  Define S1 as including all users of 3,   plus the hiahest 

priority user not yet handled.  Tf there are no more users to handle, 

the algorithm stops, else go to step 1. 

Using the above procedure a maximum allowable set of users has 

been found, each of which has a requested guaranteed service.  The 



computations can be done so that the time reauired bv the alqoritlrn 

is:     t=Amn+Bmn lDo(n).     The nxloo(n)   term expressed the time  to 

sort the quantities  i]  (to determine the priorities). 
c. 

Set of users with non-guaranteed service. 

Assume that the non-preemptiblo resources are not saturated after 

having applied the previous macrnschedulino algorithm«  Some other 

users might then be allocator] with priorities lower (for each pre- 

emptible resource) than the lowest priority of the users of set S.  The 

guaranteed service of users of set S will not be affectttd by these 

additional ("Mar^inril") users.  M v/i]1 be the set of narninal users. 

Priorities in set M are determined accordina to the same criteria 

as in set S. Of course, the resource usagn will not he as aood as if 

the priorities had been deternined optifliallv for the entire set M + S. 

Our solution respects the external priorities of the users, while 

maximizing the system's efficiency. 

Example 5:  There are 2 CPU's but only one bur,   (or channel). 

a. . CPU I/O w. decided 
i 

i'" a] located 

job 1 .4 .6 .5 
job 2 .3 .7 .5 
job 3 .5 r 

■ -j .5 
job 4 .9 .i .*> 
job 5 .8 . 2 .5 
job 6 .6 .4 .5 

Those G candidates arr in the order of their external nriorities. 

There is no constraint due to non-preenntiblo resources in this example. 

The r' i l-r can verify that the alqorithm (with c. = 1, \j i)   will 

accent johs 1 and 2, reject 3, and accent: 4 and 5.  This is intuitivolv 
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a good choice because 1,2,3 are I/O bound while the others are comnute 

bound.  S =<1,2,4,5>M =J3,6V, and the priority assignment s are; 

V ■ 

'2 ,1 
1 4 
5 6 
4 1 
3 2 

* 6 5 
/ 

Note that job 3 would have been accepted if w  < .4. This as- 

signment gives the resource usage u  . = .G, u . = .&, which could be 

improved by solving equations (.111-2) (cnualitios) for the w.'s with 

the p..'s that were just computed. 

Commentsi 

1) When deciding about the desirabilities o^ the jobs, onlv the 

external priorities and not a more precise quantitative measure of 

their urgencies were taken into account. 

2) Clearly, if the w.'s were computed,instead of just being 

arbitrarily decided before the algorithm started,a more optimal solution 

could have been obtained. 

III.4.3.3 A more general algorithm. 

The following algorithm attempts to find a nearly optimal solution 

to the problem.  It works in two steps: 

1)  Got an approximate solution by ontimizinq the economic 

criterion (III-5) with the followinq constraints: 

v j#«   r^ ^ 
(III-7) 

ifis Bj 

v jea    Z ^^^i 
i es   ~2 
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The constraints for the resources of sot (ft are identical in 

equations (.TTI-6) and (III-7) . The constraints concerninq the resources 

of set G[ are, however, weaker in equations (III-6) than in equations 

(III-7).  The latter just express the best possible case (where no 

unnecessary interference between jobs would happen), however, this 

method is used because equations (III-7) are easier to manipulate than 

equations (III-6) and a more refined solution will be attained later. 

This first step is essentially intended to eliminate from further con- 

sideration the jobs which should certainly not be scheduled (for which 

w. =0). 

To get a good approximate solution of this mathematical nrocrramminq 

problem (III-7) , it is not necessary to use an onunorative method of 

search.  A faster method which gives a good approximate solution works 

as follows: 

] 7 
Assign an initial weight K. to resource j.   Assign an initial 

w. to job i.  Compute the desirability for each job: 

c. 
d. = 

Z  b  K + 2. a. . w. K, 
ji4 1D  D   jtai:  1  ^ 

Sort the jobs according to their desirabilities.  Starting with 

the one of highest desirability, compute whether the job can be allo- 

cated or not, thai* is, if oauetions (III-7) can be satisfied with S 

consisting of the jobs which have alreadv been allocated and of the job 

which is a candidate to be added. Whether the job has been allocated 

or not, try the next one. 

17 
The initial weights when the microscheiuler is activated minht 

be the final weights obtained at its previous activation. 
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When all the jobs have been examined, comoute a new weiqbt as- 

signment (the K.'s) and the new w.'s according to the nrinciple that a 

job having larger d, should have a larger w. , and that a resource for 

which the corresponding equation (III-7) had its left sido much smaller 

than 1, should have its weight decreased. 

Ifi 
This entire process can be repeated 2 or 3 times. 

2)  Having determined the set S, a bettor approximation of the 

w, 's can be determined by solving equations (III-fi), with 

p. .   <  p.. .     < = >   a. ./c.   <  a,. ./c 

(III-8) 1  - w    +    Z       ai.-i  wi. V   i6S 
1      j6(]L    1 D    x 

Pi'j<Pij 

If any of the w.'s of the solution is neaative, this w. is re- 
i i 

moved from set S, and equations (III-8) are solved aaain. 'is shown, 

equations (III-7) gave a set of users to be allocated which could he 

somewhat too large.  Eliminating some users from this set in some cases, 

yields a nearly optimal set to satisfy equations (TIT-G) while maxim- 

18 
izing E given by equation (III-5) . 

III.4.4 A summary of the proposed schedulino method. 

1)  Macroscheduling:  It has been shown how, niven the a.,'s, 
 —- i j 

b.,'s and c.'s, the macroschedulor determines the o..'a and w.'s and 
Ij       1 n       i 

18 
This algorithm has been proorammod and checked for several 

examples, for various numl^ers of usirs and resources.  It alwavs 
worked satisfactorily.  Note that the choice of-' the rule used to 
get a new sot of weights is essential to obtain a fast converaonce. 
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transmits them to the microscheduler.  It also allocates the non- 

preemptible resources for a period of time T. 

2)  Micioscheduling:  the microscheduler keeps track of the u-;aqe 

of preemptible resources by the allocated users.  If user i uses re- 

source j during more than a time 

w.a. .T 

then job i is punished in the sense that its priority p^. for this re- 

source is changed to a priority lower than any -job which had not ex- 

ceeded its quantum on the resource.  This method assures that a job 

which accurately estimated its needs will be served at least as well 

as promised. 

This changing of priorities bv the microscheduler does not affect 

the previsions of the mathematical model (which assumed that the micro- 

scheduler did not touch the priorities but onlv inforce them), for 

priorities are only changed when a user exceeds his allowed quantum on 

a resource. 

III.4.5 Pricing. 

The determination of prices is, to a large extent, a consequence 

of the scheduling strategy.  In the approach taken, a user agreed to 

pay at most a price c.w, to get a progress rate W. , and if he nrooosed 

a larger c. he not higher priority. 

However, the system should charge the various johs beina allo- 

cated more or less uniformly. It. should not just charge the maximum 

possible to each job, because otherwise the jobs would start with verv 

low c 's and then increase them slowly until thev were scheduled, thus 
i 

leading to a greater overhead.  The marginal theory o^ nricino thcoret- 
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ically requiros the syLtem to charqp user i exactlv c'.w., where c1,^ c- 

is the lowest bid that the user would have had to offer to qet allo- 

cated.  Unfortunately, this definition would lead to very complicated 

computations.  I suqqest here a few alternative nothods. 

1) If I  is the first job which was skipped (not allocated) when 

the jobs were scanned in order of decreasinq desirabilities in the firFt 

step of the macroschedulinq alqorithm, and if w. the effective Droqresn 

rate for job i, charqe job i: 

n. = min (c, , c.) x w. x T 
'i        i   i    i 

2) If -iobs having estimated their a. .'s incorrectlv are to be 

penalized, and if job i has effectively used an amount: r. , of resource j, 

he is charqed: 
r. . 

p, = min (c. , c.) x max ( ) 
j.        I        i a. . 

ij 

3) A unit cost for resource j could also have been comnuted: 

u. = K, d.,, where I  is the first job not allocated 
j   3 I 

and K. the weiqht of resource j, as computed by the macroschedulinn 

alqorithm.  If job i uses resource j durinq a time r. ., he could be 

charqed: 

pi = min ( c. wi , 2. ^ , V.   ) 

j 

It is useful to have some prices for resources, so that: 

1) A new cominq user can by immediate insonction of the prices 

determine whether he wants to qet on the system or not. 

2) On the lonq ranqe, the computer center staff miqht determine 

the needs to install or remove facilities (see Nielsen 116]). 

The variations of the u.'s in time should probably he smoothed 
j 
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for those purposes. 

III.5 Models of other priority systems. 

IIT.5.1 The equiprioiity case without preemntion. 

In this "no-priority case", a user soizinq a resource will never 

bo preempted and will not lose the resource until ho decides to release 

it. The situation may lead to almost no parallelism in the comnutationa. 

The worst case equations are: 

(111-9)  ii%il,n] f l^w. + Z   v  wk 
k^i  3 

j 

In the situation of example #3, this gives the followina oroaress 

rates: 

w = 16, w2 = .32, w = .64 

so that the overlap of activity is small: 

overlap = w-i + w^ + w -1 = 12% 

Theorem 5:  The attainable domain D.. of the no-priority system is nro- 
  N 

perly contained in the attainable domain D of any priority system. 

Proof:  compare equations (III-2) and (III-9).  The latter imolv 

the former. 

Therefore the no-priority case is uninteresting, and should be 

avoided in any actual system design. 

III.5.2 The equipriority case with preemntion. 

This case would also be called the case of "Randomly turning" 

priorities.  The model is characterized by the followina microschedulinq 

method: 

Trie time is divided into very short interval1:, and the nrioritv of 
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the users for the various resources is changing from one interval to 

the other, cycling so that each user spends the same amount ot time ii 

each priority level.  Typically, the time between two priority change; 

might be 100 microseconds and is small compared to the interval between 

two allocation requests ot jobs to the microschod^ler.  Nevertheless, 

assume that this method does not introduce any additional overhead. 

A random number generator miaht be used at the boqinning of eacl 

time interval, to generate the job nriorities during this interval. 

This would insure that there is no regular pattern of one job snnnding 

most of the time at a higher prioritv th.^n another, as happens with a 

circular permutation. 

The idea of such a microscheduling algorithm has the following 

justifications: 

1) The hardware could allow time-sharing of a CPU or a channel 

on very short time-slices, however, we don't know whether this would be 

a good practice. 

2) It is desirable to assuro a user of a cortain percentage of 

use of some resources, under any circumstances.  Time-slicinn on a very 

short time basis miaht seem a natural wav to do it.  If user i is assured 

of having the top priority on resource j durino a portion of time X . AT 

where AT is some small interval of time, then, with the a. .'s defined 

nreviously, his orogress rate will be at least 

w. = run    
: a. , 

IT 

However, a much higher "lower bound" estimate for the w.'s can 

be computed.  After having done it, these new "worst case" equations will 

be comnared to eauations (III-2) and it will be shown that, under some 
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assuniptions, the "turning priorities microschedulincr" performs poorer 

than a fixed priori'  algorithm with the p..'s well chosen. This re- 

sult has been checked by simulation, and the following discussion 

attempts to establish a theoretical justification. 

Under this new model, if k users compete for some resource, each 

one will get it during a portion of the time 1/k.  Consider resource j. 

User i will seize it during a period T a..w..  m the worst possible 

case, the maximum overlap of requests occurs on resource j. Thus, the 

time spent by user i waiting for resource j ia less than or equal to 

Z_   min (a .w, T, a.. w. T) 
k ^ i        kT k    1.1  i 

This points out that if a job k asks for less time on resource j 

Jiim job i, the maximun time spent by job i waiting for resource j be- 

cause of job k will be T aw.  If, on the other hand. a. .w.T<a w T, K3 * ij i  kj k ' 

job i will wait for resource j because of job k at most durina a tine 

a^w.T.  (see fig. 111-3). 

The worst case equations are thus: 

(111-10)       1>yWi +  £ min ( a^  ^ ( ^^ ^ ) Vife[1,n] 

j' (w.^ 0) 

These equations define the attainable domain with turning priorities. 

Theorem 6;  For every point in the attainable do-nain defined by eouations 

(111-10), there exists a priority system in which this point is attainable 

according to equations (III-2). 

Proof:  Define this prioritv svstem by: 

iJ   KD i]  i   k")  k 



n 

k   (job nurnbe it) 

S 
1 akj wk .... y   - r 

Fig. III-3: Time spent by the jobs on resource j 

and maximum interference of job i with other jobs 
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Assume that, for a given j, the a,.'s are all different.  Then 

obviously, equations (111-10) imply equations (TIT-2) for this system, 

which are: 

Vi€U,n]       1 >w + £  a  w 
Y    1   k^.    JO  K 

a, .w, < a, ,w. 

This theorem is reassuring because it says t lat whatever a user 

is assured of doing under a turning priority system, he is also assured 

of doing under a fixed priority system. 

However, the following theorem can be proved under some restrictive 

assumptions: 

Theorem 7; 

If one of the following is true: 

1) There are only 2 jobs (and any number of resources). 

2) There is any number of jobs, but comoetition is limited to 

one resource only; then there exists a priority system whose attainable 

domain includes the domain defined by: 

p. . "^ p. .  <=>  a. . < a, . 

The proof is shown in appendix B. 

Theorems 6 and 7 show that a fixed priority system should, to a 

certain extent, be preferred to a random orioritv system (which is it- 

self better than no preemptibi lity at all).  If i\  resource has the pro- 

perty that it can be preempted without anv other additional future loss 

of time, then the available information on the -jobs can be used to 

assign priorities for the resources, and a "aood" choice is to assign 

the resource to the iob which has the least need for it (after h^vina 
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weighted these needs by the external urgencies of tho jobs, which leads 

to the quantities 
a. 
i' 

III.6 Problems for further research. 

1) Continuous macroscheduling:  Instead of applving the macro- 

algorithm at regular time intervals, find a simplified macroalgorithm 

to be applied each time a job previously runnina deactivates itself 

voluntarily, or when a job changes its external prioritv, or even 

when the swapping channel is idle.  Jobs might be scheduled or un- 

scheduled just using the desirabilities which have already been 

computed, but it might also be desirable to recompute the p. .'s, the 

K.'s, the d.'s and the w.'s. 

2) Extend the models to include processes using more than one 

resource at a time. For instance, Fig. III-4 shows the virtual time 

diagram of a use?' who initiates I/O and swapning at the same time: 

i Resources 

CPU 

I'O 

Swan-oyt' 

Swap-iji 

memory (20K; 

memory (2K) 

1   I 
I   I 
, I 

Virtual time 

Figure III-4 

Another characteristic of our hypothetical job is that it does 

not need all its memory resource continuously (a buffer of 2K is enouah 
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during I/O completion).  Could this knowledge he taken care of? 

Solving this problem would be especially useful for future 

computer systems where the cost of arithmetic and control units is ex- 

pected to decrease much more than the cost of central memories. 

3) Find models of "probable" performance as well as "worst case" 

models. 

4) Which information other than a, 's or the b, .'s on the jobs 

would be relevant to an allocation algorithm? 

For instance, the exact virtual time at which a job will place a 

request might be available for some jobs whiüe bcinq completely out of 

the question for others. 

5) How much would the results of the model be affected by slight 

errors in the predictions? 

III.7 Conclusion. 

My initial effort was applied to separate problems which are 

usually handled together in a very intricate manner:  1)  Scheduling; 

2)  Paging algorithms; 3) Deciding external priorities of users 4)  Col- 

lecting information about the average probable needs for resources of a 

specific job.  Pricing, however, should not bo a question separated from 

scheduling.  The problems of protection and of deadly embrace had already 

been separated from the others in previous work--:.  Ry nartitionina the 

difficulty, I believe that the way to better sclontific understanding 

of shared computer systems stands open. 

The previous scheduling algorithms and models apnlv in computer 

systems where the shared facilities can either be preempted with very 
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little overhead (CPU, busses between two levels of fast memory), or 

cannot be reallocated without a great amount of overhead (memorv). 

Thev do not apnly, however, in cases whore a resource can be preempted 

but the delay imposed on the preempted job is great®» than the time 

during which the preemption occured.  This would be the case if, for 

instance, a job is swapped from the drum into momnrv, but if at a 

certain moment it can't get one of the oages because another job has a 

higher priority to get a page from this sector of the drum, then the 

preempted job will have to wait an entire revolution of the drum before 

the opportunity to get the missing page is reneatcd, and the cost of 

having a set of pages idling in memory durinq all that time is of course 

important.  In such a case, the right strateqv might be to avoid pre- 

emption, and to decide what to do bv computing a "desirabilitv ratio" 

for each possible scheduling operation (ratio of the urqencv bv the total 

cost of the resources involved).  (see section IV.4). 

It is my belief that the scheduling techninuos described in this 

chapter will be especially useful for scheduling of real-time users, wlK3 

want to have the assurance of getting a certain percentage of usage of 

the resources of the machine before they start working. 

Other investigations of multileveled schedulina are still necessary. 

I believe that queuing theory gets enormously comnlicatod too ranidly 

when the number of servers and the complexity of the queueinn strategy 

increase.  Simulation is a fast way of testing whether some algorithm is 

workable, but is not more than a predictive technique.  It does not seem 

to be likely in the future that a scheduler will first simulate the 

situation before making a decision.  Analytical approaches are almost all 
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that are left to improve schedulers in the future with the certainty 

that the designed algorithm will wor» almost optimally in all cases. 



Sß 

CHAPTER IV 

SWAPPING ALGORITHMS 

In this chapter a study is made of swapping algorithms for a 

computer with two levels of memory:  drum and core.  Pre-paginq takes 

place before a program uses the CPU, an entire working set of pages 

of this program is swapped into core.  Section IV.I presents the 

Berkeley or Van Tuyl algorithm, which was developed under the direc- 

tion of Butler Lampson at Berkeley.  Then, by contrast, another swapp- 

ing algorithm is presented in section IV.2.  1 then explain why I 

think that the latter algorithm is much more appropriate than the 

former, especially for future computer systems.  Resource utilizations 

of users programs under both algorithms are compared in section IV.3. 

Finally, section IV.4 gives some indications as to how a drum to core 

system should be scheduled if the swapping algorithm of section IV.2 

is used. 

The various notations used in this chapter are completely inde- 

pendent from those used in the previous chapters. 

IV.1 The Swapping Algorithm of Van Tuyl. 

llO] describes a swapping algorithm between drum and core which 

19 
was intended for the BCC-1 computer.  The system has essentially four 

resources: 

19 
It was initially designed for the SCC 6700 computer, 
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a) one CPU 

b) core memory 

c) drum (capacity supposed to be infinite) 

d) a channel between core and drum 

A program might be in four possible states: 

1) on the drum, 

2) being brought into core, 

3) in core, waiting for or using the CPU, or waiting for an 

absent page, 

4) being swapped out of core, to the drum. 

An "external scheduler" decides which programs are candidates to 

be brought into core, and among those which arc in core, which one gets 

the CPU, or which are candidates to be swapped out. 

A program is considered to be in core when a certain set of pages 

is in core (this set might be the entire program). Programs are sup- 

posed to be small enough so that their pages can be retrieved entirely 

in one drum rotation (if there is not conflict). A conflict occurs if 

two orograms, while both are being brought in, happen to have a page on 

the same sector of the drum. 

The swappor is an algorithm which har; to decide, at nach  sector 

of the drum, which page should be transferred.  It might do either a 

read, or a write.  With Van Tuyl's algorithm (hereafter called "tlv^ 

Berkeley algorithm"), pages which are not dirty (not written on while 

in core) , do not need to be written on feha drum. Van Tuyl simulated 

his algorithm with the assumption that halt of the pages cf each pro- 

gram are dirtied while in core. 
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Table IV-1 

Decisions of the Swapper in the Berkeley Algorithm 

1. A process that the scheduler has decided to run is put on the 

swap in list (or road list) if and only if: 

Pages queued in ♦ pages of proress to uuruo in - free core < t> 

(where .' is a system dependent constant) , and fMoca queued out * 

free slots on road sector list. 

2. Dr ir command: 

a) j^f no road to do and at least one write to do then write 

out, exit. 

b) Conputo, if conflict (nanM proccnaoa r^quoaimq to read a 

paqo In on tho aan« ■■star}« for ill pgWMMM on the read Itatt 

Coat of pioceaa ■ tine t» coaplato road» x li-PT) 

where P«: ■ nuMUor of paqo« of the pror«>«a in core 

1 1 • P««l»* • pree««a «ay haw* d I« the «am» for all 

pvoccaa* Ilka i wa« pr^wtowalyl. 

c) I£ therw la a fraa paqe ia ear* than rr »1 »h« pa«* af th» 

lowaat coat pracaaa, exit. 

4) If coat of r*ad * « or aa paa* caa It* »««Iraawd in care. Warn 

da a writ«» yla* r^ad th* pMan or the laaa*! MM r«f*<**». *«II . 

I.  A pao» i« rK*l*aawd ^f 

ia eat» iwlaaaia* to a ptoeaoa r. »or- IHM I 
<i*m\ %%A  * roa«   I«  I 

•aat Ipjl • en*f ipi.^ptf1^ 

•    iJkt •awat taal* ■»■■■■» aad ^ t^» tat »1 

I aaar »a 
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A completo description of the swanper oporatlons is given in 

table 1V-1. 

Dote that the swapper does not "look ahc.id." When the drum in 

positioned at a certain sector, the swapper ignores which pages will 

be candidate to IM swapped in on later B«etors.  Tnis is | reisonoble 

choice because the algorithm is already quite complicated, and one ray 

wonder whether all the decisions of table IV-1 can b. made by a micro- 

progr mnod procossor during the tino of one t .. ^ reid (I milliserond). 

IV.2 Anotiv.'r swapping algorithm. 

Tho mnm  MM of  thi» m-w Hrfapping ilgorn.im is to swap con» t ?u- 

ou«ly in ttw   tun pagn» which beloni to »hr Workin'i S.«t of a progr.im 

Witich has to bo brou«|lit   in or «ut of corn.    Contrary to tho P"rk«lev 

algonthn. all of th« paqrs ar« twapfwd out  (.ind no^ only the dirty 

paqos).    This siswwliat  inrroaso» th" ch.innet uttlixition, but  rmult« 

in big Mivin't«  «n ••■ory.    Th«   reason for thew navinos Is that a «Mli 

progran can now i«e brout^it  into rorr in auch less than an sntlr^ drun 

r»«olation sine« it« paggs occupy contigur«» sr^ tot* of th» drun.    A 

pr^grap i* r'n^'n to bm MMpfrt m Mcaass it UJ* a high rstenut pri- 

ority Mid bgcawM its Mt of pMM I« at» ,•   • . NMk tit» drw heads. 

It» «Mid th* pHtlbAUty Hurt «udh a strategy «s>«uld iMfoftmiplv .«-lay 

tfc» nmiiM of *am yem, IM MhtAilvr PUSI   »-   • k "ig advtn^  * «  K-*. 

H*» Mould lag «Mppgi tu or ^«< d4tlirt a dfNT' rt^>iu*iMi i**r MI inn 

IV.dl. 

«Mt  tills mm «IfMIIM»  «Mlo»r*« -   iwllfl»«   I*'   fa*»   of 

t.    IMr» i« «ftty tM |M t« b» MwH'^d i« »• a tiWt M «M 

^ 
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job to be swapped out.  As long as the swapping (in or out) of the 

current job is not completely finished, there is no possible conflict, 

and thur. thi.' next, page to he transferred is nlw.iyj; obvious.  When the 

uwapping of a job i:; completed, the next job to bo swapped must be 

selected.  It can be any job in core if a  swan-out is desired; other- 

wise, a job must be chosen by the schedvler to be swapped in such that 

its first drum '-.ector has not yet arrived at the r»vid heads. When 

initiating » swap-in operation, thire must be an assurance that enough 

free coro is available.  The problem of determininq which job will be 

swapped in or out, will be studied in section l\'.A. 

IV.3 Comparison of the rosourco utilization un ler both algorithms. 

To simplify, Hupposc that thoro is iust one CPU and one drum. 

TtA^n, there are throo important resources:  the CPit, the coro memory, 

and the drum-to-core channel. The drum memo-y in supposed not to Lo 

saturated under normal conuirions. The utilization of those three 

resources is computed by a proqram, during an entire cycle (swap-in, 

compute, **ap-out). Those utilisations will he normalized in tiin<>- 

utilisation of the entire resource. For instanc- , if the core memory 

site ts M, the use of an amount m of core dunna time t in  normalised 

to a Mnory utilisation of - t. 

Mhile computinq the resource utDlsatinnn, some simplifvtnq ainump- 

tftOM ere nedo. She etronqe«« of them is to nerthct th»« increased utt- 

liiatton of Memory ana channel due to conflicts in th»* Berkel«*/ al<inr» 

Ithn. taNevlfrt thi« particular assumption stremth^na tin* c« nrlusiiMis 

«diich folio» evmn 
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The following definitions will aid in the discussion: 

S number of sectors on one drum revolution 
p 

P  number of pages of a program ( - of them dirty) 

M size of core memory 

T time spent by the CPU on a program, while it is in core 

S and P both have a time dimension. In these computations, the 

time unit is thu time to read one Mctot from the drum (i millisecond 

on the BCC-1).  The resource utilizations are shown In table IV-2. 

The channel utilization time is -P in thr first algorithm, com- 

pared to 2P in the second, duo to thr fact that the dirty pages erv  not 

swapped out in the first algorithm. 

Memory utilization is computed as a space-time product (see ;iqurc 

IV-2).  With the Berkeley algorithm, for inst.inco, the prograr is 

brought into cor«- in one drum revolution (time S) , handled in time T by 

the CPU, and ".wapped out in time sf (in the first phase of this swap- 

out, the clean pages, which do n^t need to bo «vvipned, arc replaced by 

another program's paqost in the second phase, the - tlirtv pages aro 

swapped, a»- ■ rat« of one page per two sectors, the oth<»r sector time 

being given to a rrad). The total resource utilization of a program is 

now defined as the naxlmum of the three resource utiliratlons (channel, 

core and CPU): 

For algorithm Mi 

r? ♦ * ♦ i ta      , 
Uj - max (T,  ^p-i , ~  D 

For algortth« 121 

U- ■ WUM  ;T, rr ♦ 2t2 , 2r) I M 



a io 

O        Vf c 
rH   LD   O   "H 

II      II      II      II 

F- a. w E 

o 
in 

O   O   «N  fM 
r( i-t ro ro 

II    II    II    II 

E- a w s 

o 
P4 

O 
rH 

in 

c 
0 

•H o 
Hi 
N 

•M 
ft 
•H a 
p 
■ 
o 

1 
1 

t- 

N 
0. 

n|oo 

♦ •^ 
a. 

8 
u 
§ I E 

>. 
IM 
r, 

l 
| 
H 

o     «a 
i-i in ^o H 

ii   H   n   ii 

ic<   0,   U)   T. 

o 
r-H 

c 
rH 

o 

O  O  IN  (N 
i-i rH n o 

II   II   11   II 

Er"   ß.  CT.  E 

o 
t-4 

(T. Q 
(N 

c 
0 

■H ü 
N 

•H 
■-I 

M 
D 
01 R i 
3 
0 
«1 

1 

H 

(N 

+ • - «N 

R
es

ou
rc

e 

P 
o h 
1. 

« ■ 
C ■ 1 

•H 
^ 
0 

fN r 
^! r-t 

m 
c h 
tfl 

r—1 4-J 
S1 0 
in 0 
1: .r 1 4J 

•H fe 
u r. 
a 0 
Q< V 

f-* •p 
4 0 

J1 

CP 
r o •»-* J" 

fN VI 

> r« 4J 
M 1 fO 

0) 1* 

rH a' f. I £ 
H •H 

N v. 
.n 8. 
c f-i 

0 f) 
tm 
*J >. 
ffl o 
N l-< 

•w Cl 

o 
Ü 

o 
w 
c 

t> 

0. 
0 



■It 

I 

CM 

w 

X 

/ 
m 
3 
t. r. o v 

■ a 

«A 

i 

0- 

X 

H 

> 
C H 

•rl 
fl c 
E 0 
0 ■H 

"tj 4-' 
u 

W c 
0 w 
n 
Bt u-l 
n ■ Ü 

1 
E 

E= £ 
■ H JJ 
4J 

h 
o 0 
£ 
4-1 

"3 
c 

•H 1 
4.J (0 9 
D i 
0 G w 
1 n • t-J 

a, 
1 B ■ 
S il •^ 
«I b 

i/l »—' 
ü c ■ A 

*J "J 
3 o *» 
Q. r: i 
H o 
0 M4 AJ 
Ü > • r-4 

c 0 
0 r 

c •»4 ^^ 
1 

^ 

0. N > 
n •^ '; 
^ ^-1 1-1 
H ■M «' 

*■' M 
3 k. 

1 
>• re 
L 1 ;i 

ei T' 1 
• § 
u c 
0 4: 
Ü 

N 

M 

•4 

** • 
&■ « 

■ M •• 
u. w 

^^ 



92 

The Berkeley algorithm was simulated by Van Tuyl under various assump- 

tions, among them, P = 10 pages, S = 32 milliseconds (or pages), M = 32 

pages and T = 10 milliseconds.  Table IV-2 shows that U = 15 < U = 20 

with these data, so that the 1st algorithm really behaves better than 

the second algorithm, and the bottleneck really lies in the channel. 

If the memory size and the spcod of the channel are decreased to P = 5, 

S = 64, :■' = 10, and T = 10, tho second algorithm performs much better 

than the first one:  U = 23 > U = 10, and tho bottleneck of the first 

algorithm lies in the memory. 

Now follows a study of how the rosourc; utilization would chanqe 

if the characteristics of the available hardware were to chanae. 

The size of the memory, M, the length of a drum revolution, 8| 

or the bandwidth of the channel, B could be varied.  B va*  supposed to 

be equal to 1 in the previous computations. More rioncrally: 

/ n.        2   8 Ü  , 3  ! ] Ul * maX ^T'  B    2  B j 

H2 

0t.-«(T,!l^iI't|J 
I) Effect of handwnitli. 

Piqure IV-3 shows the offcrt of ban<)width. For high b.inlwidth, 

algorithm »2 ptrform« bettor than algorithm •!, as ox;«ct«'d.  Not«- 

that thi«; it m»t tru« if T were high (in which case b^th alonnthm«» 

would b« CPU bound)} but the assumption is mdo th.it (TU'«« are netting 

faster and ehoarcr, and arc not the critical resources of »enl^rn com- 

puter systems. 
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2) Effect of drum rotation time. 

Figure IV-4 shows how, whon the drum rotation time increases, 

algorithm #1 looses efficiency, but algorithm #2 does not degrade at 

all.  This is due to the fact that the memory utilization by algorithm 

#2 is independent on S.  This will allow the possible use of slow, 

cheap drums in future computer systems. 

3) Effect of a change of the relative cont of core memory 

versus cost of other resources. 

In figure TV-5, it can be seen that if the core memory size de- 

creases, the second algorithm does not get memory bound as rapidly as 

the first one.  This will be helpful if memory i^. the critical resource 

in the future. 

Demand paging.  If a page is missing, thr  normal stiateny under 

algorithm #1, is to leave the program in core while the page is being 

brought in.  But, with algorithm #2, if cnouah bandwidth is availaMe, 

it is cheaper to swap the entire working sot of the nrogram bark onto 

the drum, to bring the misslnq page into core, and then to swap the 

working sot in aaain whon it arrives under the road head;« of the drum. 

Tii« same conr.idorattons apply for a short I/O oi>eration. 

A final word !•* necessary about the accuracy of tho^e resource 

usag« estimates.  It w«.« assumed that there would bo no conflict» in 

other words, for each *.. "»or of the drum, thfro »n «cro or one rate 

transferred, but never page« of two different ioM noth wanting to bo 

transferred. Potstul* conflict» tend to inrrea«»«» snvctime« cnnstderablv 

the resource uurr (awnory and channel I for alinnfhm «l, whose actual 
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behaviour can be much more resource consuming than the figures show. 

This would lead to a preference for algorithm #2 even more than was 

previously computed. 

IV.4 Scheduling a computer system under the algorithn of section IV.3. 

The scheduling problem considered here, consists of deciding 

which job, at a given time, is to be swapped into core, out of core, 

or to occupy the CPU. 

IV.4.1 Scheduling Criterion. 

r'or user i, we suppose to be known: 

1) his bid C.. 

2) his requested CPU utilization time T. . 

C. is the bid for an entire cycle of swap-in, CPU usage during 

an internal T., and swap-out. 

An additional constraint is that a job cm only be swapped in 

when its sectors on the drum pass under the rend heads. 

The system's criterion for ^"heduling is to maximize 

E = Z C, 
iCS 

where S is a set of users which can be run over a given time interval. 

IV.4.2 Jobs Desirabilities. 

It is desirable to allocate jobs in a way such as to get a balance 

of resource usage (to swap, for instance, a larno-sized job while a 

small-sized job with a large T. occupies core). 

To get such a balanced set of jobs, prices are first assigned 

to the basic resources: 



'CPU 

»CM 

MM 

The desirability of Job i it thor.t 

i   a   i'   ♦ i  P  ♦ a   p 
CPU  CPU    CM  CM    MKM  M'V 

where aUj-i *ai,   X^.  are the resource utilization« of job i, *#hlcb are 

given in table IV-2, as functions of the characteristic« of th« job. 

IV.4. 3 Job sclu'Qullng over a time-intorval. 

No justification is qWun here to the alaori hsn which follow». 

However, the reador will rocoqnir.e it as a vari.ifion ■-f an alaorithm 

of chapter III. 

For a givtn time-interval [t.,  t  ].  a schodulo is computed by the 

followinq procedure.  As nearly as possible, jdbt  are allocated in 

order of decreasinq dosiraiDili ties.  A job can be scheduled for swapp- 

ing if its paqcs on the drum do not share any romnon sector with any 

job already scheduled for swappinq, and if the jobs for which alloca- 

tion has already been decided, leave enouqh ncmory for the new job to 

1) be brought in, 2) wait for the CPU, 3^ run, 4) wut for the channel, 

and 'J) swan out. 

After the schedule has been worked out foi thi« tinv; interval, 

the new prices of resources are computed as ■ function of the old prices 

and the idle time of the resources.  The schedulinq aiqorithm is acti- 

vated once every (t^-t^ units of time.  This miciht b« typically a 

drum rotation tine. 
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1.    MOM. obviously. «ny mrioruv Mt'ofwont different from th» 

OHIM«! Pfiority McioraMnt of xhßorvm i,  !• «uch th«t ther* »xltt 

tMO QUffl l 4Md 1*1 «uctt that I 

Uli« *mf priority —•Ipwooi noo-trivAlty aiformt fro« tho 

of mwrw I «M M MprooM. 
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APPENDIX C 

PROOF OF THEOkr;; 7. 

1)  There are only 2 jobs. 

Before provinq the theorem, the following lemma will be proved: 

Lorma:     if   Ajji X21' Wl and W2 are Positive numbers less than 

1» then equations 

(C-l)      (1 ♦ \12) w1 ♦ X21 w2 < 1 

(C-2)      X12 w1 + (1 + X21) w2 < 1 

imply 

<C-3)     w1 . ( X12+ X21) w2 < 1 

Proof:  equation (C-3) is achieved bv multiplyino equation (C-l) 

by (I - X 12). equation (C-2) by \  , and adding. 

Proof of tho theorem:  Assume that V j. i ^ k <=> a  * a  .  It 
ij   kj 

must be shown that equations (ITI-10) imply equations (C-4): 

(C-4)     ^»4 ♦  21  ^ *k 

Equations (III-10) may bo  rewritten an oquntions (C-l) and (r-2) 

witht 

Z.  a. 

•ikWi<ajkWj 



Ill 

According to the lemma, this implies equation (C-3); now note 

that 

a., < a., 

so that equations (C-4) are verified. 

2) There is only one resource. 

It must be shown that equations (C-5) imply equations (C-6): 

( C-5 )     Vie[lfn] , wi + X «"-n < ^ «i ' ^ wk > ^ ! 
k^i 

( C-6 )     Vi t [l,n] , wi +  51  ^ wk ^ 
1 

k  i 

Consider the set S of jobs such that kes <=> aw > a.w. . 

Does there exist a job k'c S such that w >w.? 

a) yes, there does. Then choose k' such that there is no job 

in S whose progress ratio is less than w , and greater than w. . Then 

equation ttk' of (C-5) implies equation fti of (C-6). 

b) there is no such k'. This means thatvkes, w^ «; ' and 

a >a..  Thus equation #i of (C-5) implies equation #i of (C-6). 

3) Note that the theorem is not valid for any number of jobs and 

any number of resources, as shown by the following counter-example: 
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.25 ,25 ,25 

.76 

(a,.) - .24 .76 

.24 .76 

,24 ,7b 

The progress rates w = .5, w2 = w3 = w4 = w,. .875, satisfy 

equations(III-10), but not equations(III-2). 

However, I suspect that tho optimum of 2. vr is alwavs hiqher 
i 

with equationS(lIl-2) than with the constraints of equations(111-10) . 


