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ABSTRACT*

This report examines some aspects of the problem of allocating
resources in a multiprogrammed computer system. It first investigates
to what extent the users might participate in resource allocation de-
cisions; a system that dynamically determines the prices of services
is advocated. A model is studied which vields a balanced set of pro-
grams in order to get a good simultaneous usage of the available sys-
tem's resources. It also examines how resource utilization figures
can affect the choice of equipment to be used at a computer install-

ation and the choice of a swapping algorithm at system's design time.

*This report reproduces a thesis of the same title submitted to the
Department of Electrical Engineering, Division of Computer Science,
University of Utah, in partial fulfillment of the requirements for
the degree of Doctor of Philosophy.
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CHAPTER I

INTRODUCTION

I.1 The Role of Scheduling or Allocation in Multiprogrammed Computer

Systems.

For several years, computer scientists have been faced with the
task of organizing large information processing systems which many
users may access simultaneously. In these systems, there are a number
of physical resources (cells in core memory, peripherals, ...). At
each moment, some of these resources are allocated to some users (it
is implied that some of these resources are not allocated to anybody,
some others to the system, and finally some of them to many simulta-
neous users--like a shared program segment).

What are the specific problems for these large systems?

1) PROTECTION: A user must he prevented from accessing a re-
crource which is not allocated to him; or, equivalently a user should
"see" only the resources that he is allowed to access. Several solu-
tions which are more or less satisfying have been proposed in the last
few years, detailed accounts of which can be found in [1].

2) DEADLY EMBRACE occurs when two or more processes are mutually
blocking each other, in that each of them is demanding a resource that
another posesses and docs not want to release. The problem of avoiding
deadly embrace has been solved satisfactorily, for instance by Haberman

(2], who assumed that some facts could be known about a user (his maxi-

mum demand for resources) before any resources were allocated to him.
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J) Tho scheduling or ALLOCATION problem itself (to whom thas re-
nources should bLe allocated {f there is any conflist] is cleatly sepa=
rate from the problem of protaction and can he comnletely separated
from the previous problem, because deadly emiirace 18 only lethal for
certain kinds of demands which are not rulevant to the allseator les-
sentially, access to shared tables and shared files).

Problem %3 is relevant to thie study.

1.2 Evolution of the Problea of Allocating Computer fysteis’' Fescurces,

The first computers were run in a batch-processing mode. There
were really two proucesses--the system and a proaram to he rua by a
user. 1f either of them asked for a resource which could not be allo-
cated (for example, too much core memory), the uUser's pProgram vas €ime
ply aborted, and the next one loaded.

Later came the idea of time-slicing the utilization of the entire
set of main resources (core memory, CPU and disk 1/0). At the end of
a time-slice, a user would be deailocated, and another user allowed to
issue requests to the available resources. The entire aystem could Ye
considered as just one big resource. Response time in such simple ays-
tems could be studied by queuing theory.

Another idea was not only to partition the time domain, but also
the space of the resources. One user might have the right to use 10K
of core and half of the CPU time while another might get 5K of core,
half of the CPU time and the disk 1/0. Space-slicing could be done
either independently or concurrently with time-slicing. Again, if a

user should ask for more than the resources which he was allowed to
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authors of schodulers with multilevel priority queues always con-
sidercd the user as passive or inert: all users are equal, and a user
cannot. react to the service he is grtting except by modifyinag his
pattern of requests, or by simply leaving the system. Morcover, the
pricing of computer usage was bhased on tlat rates, which are, as

shown later, not dynamic enough and thereby lead to Josses of effi-
clency [16]).

Another factor which tends to limit the size of computer sys-
tors is the existence of non-linearities in the overhecad. Tf the
total overhead grows faster than a linear function of the sizc of the
syster or the numher of users, therc is a critical sire where it qgets
unbearable. For instance, if there are n processors accessing m
memory banks, the complexity of the cross-bar switch is known to be
propor-ional to n x m[17), and the time to solve conflicts is propor-
tional to log n + loy m, both terms introdncing non-linearitics. As
far as allocation is concerned. our linearity criterion forbids us %o
spend more tipe or computing power to make an individual allocation
du-ision on a larger system. This is a very drastic condition. Note
that rost smart pane replacement algorithms (like least Recently Used
or Dennina's warking set) do not satisfy the criterion, while simple
algorithes (FI11), LIFO) do. lote that the swappina algorithm which
vill be presented in IV.2 does satisfy the linearity criterion, whi le

the ones of V.1 and of Chapter 111 do not.
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CHAPTER 1I

PRICING AND RESOURCE ALLOCATION

II.1 Introduction.

Suppose that a coffee shop was serving ice-cream to people on a
first-come-first-served basis, without asking them to vay for it. As
the news passed through the town, an enormous queue of children wait-
ing to get their ice-cream was formed outside of the shop. Some of
the children, after getting a first ice-cream, were going back to the
end of the queue and waiting for a second one, and so on. When the
shop started asking a quarter of a dollar in exchange for an ice-cream,
the queue vanished.

It seems that computer scientists were slow toc find out that a
computer system is just a service. If it is given for free, there is
a tendency towards misuse and efficiency is lost. I expect this to get
more obvious as the extraordinary growth of the computer industry slows
down.

Allocating resources was defined as solving conflicts between
simultaneous requests for the same facilities. But wouldn't it be
better to just avoid those conflicts by pricing the resources high e-
nough so that the number of them is greatly reduced?

There are two possible philosophies in relating resource allo-
cation to an economic system; they are given here for the case in which
there is only one resource, but they can be generalized to more compli-

cated situationc:
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1) The "a priori" pricing philosophy. The system chooses a
price for the resour . As soon as a customer arrives, he gets the re=~
source, provided that he wants to pay the price and that the resource
is still available. From time to time, prices are adjusted, depending
on variations of the offcr and demand lev:ls. This was advocated, for
instance, by Nielsen [16].

2) The bidding philosophy. Each user submits a bid for a re-
source. At a certain time (chosen by the system), the resource is given
to the highest bidder. 1n Sutherland's yen system [18], the previous
bids are known by all the users. 1In the case of a real-time bidding,
the bids would be secret (essentially to avoid the overhead of letting
the user consult the currently expressed bids). This, however, docs
not mean that the user would pay the full amount of soney that he offer-
ed; in fact, I suggest in I1.2.4 that the user should only be charged
the minimum amount that he would have had to offer to get the resource.

The bidding philosophy has two advantages over a priori pricing
and one drawback:

1) The highest bidder always gets the resource (and not the first
to arrive).

2) The bidding itself automatical}y determines the price to be
charged to the user, so that no price adjustment is necessary.

3) However, with the bidding method, the user doesn't know
whether he is to get the resource until the time arrives for the auction
to be closed.

Note that both philosophies can be combined in the following way.

The system sets a price at a certain level above tlie averaga price at
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which the resnurce is expectad to be sold. A user has the choice of
reserving the resource imnediately vhen he asks for it, at the price
set for it, or taking the chance of waiting until the time has arrived
where, if the resource has not yet been allocated, the bids are ex-

amined and the resource allocated and priced in the second way.

IT.2 User made decisions in a system with decentralized control.

II1.2.1 Some definitions.

Facilities. There are several kinds of resources (or facilities)
in a computer system. For instance, a certain number of bits in a
storage device is one resource, while accessing (writing, reading, or
erecuting) these hits is another resnurce. A picce of software (like a
compiler) can itself be considered as a resource, which can be bought
or rented for money, but in the following developments only the hard-
ware resources will be considered.

liote that anything demanded by the user can be called a resource
(execution of a programmed operator, having a certain program in core
memory, etc...). Ultimately, money is itself a resource; this notion

will be useful in a later section.

User and System. The user 1% not just the human being who pro-

grams the computer; it is an indevendent decision-making entity, com-
posed of the human and his programs, and cven so-called "system's
routines”™ that another part of the user has decided to activate.

The system is a particular user which raakes resource-allocation

decisions. Computcr operators, managers, and bazic systen's proarams



bulong to thoe nystem,

11.2.2 Decisions made which are cclovant to the user.

The sophitsticated user might want to make some decisions which
are ordinarily made by the system. The firav idea wiich comes to
mind 18 that tie useor desires to optimize himsel? relative to his
environment.

Suppose firat that each resource has a price, 18 available in
any amount, ans Lthat thoe user tries to minimize tne unit cost of
running in such a system. Lataer, it will ba scen that, in general,
such a reasoning 18 teo simplistic, because the users deriad is not
small relative o the total amount of rescurves in the syites, [co=-
nomists say that the dumand 18 not atomic.

What are some of the decisions which could be made 1y the user?

1) Size of his working set of pages in first=level morory (in
a paged systam).,

2) Choicva of an utaency (total bic in a bidding system, or
priority lewl in a aysten wire a cost i associated with each nrie
ority luvel),

3) Si2e deksired fer 1/0 wuffora,

4) Fe:iduncy of a Jlven dZeament at a cvrtaln remory level., Raeg-
identy of a file at a cortain mesary lovel,

5) Collecting and eventusl aiving to the system of some statietice
on a proarad ulitch 1s often run, The idea that & wser's knovledge s
inportant in ordoet W0 got hatter paging has Leen atdvocated, for Instarce,

tn (19,22), lenning’s devonssration (12) that his “wirking se'” al-



8

qoritha performs better than L.K.U. (Least kecently tsed), can be
teintarpreted iy caying that the inferioerity of L.K.W. s that it
handles all users in the sane way.

he uscr, as ve have defined 1L, could Alvays call zsome shared
syster’s routine to do nis joh. Movever, this reutine vould vark
under responzilil ity of the user, &nd he would te eharged for the fos
soutcas conzumad bvy thie routine,

she ment subsaction will shov an esarspile of duwv Urads=cffs be=
tween Uhe asaye of =2Jeral FEEaUrcws CM o€ &tk and Serve the uses
to improve Lie rescutcr usage of his grogram, 10 Other Cates, btavs
evar, such trade=of s cannot b trusted to the wtsrs, lecause the
$ame Strategy has o b ueed for all prograns in Y svsten, Soch o

situation 14 analyded In section IV.) (chagter 1¥).

11.2.1 3p ewample shoving trage-offe bmtvesn the wse of sovers)

fesourees by o usee| 3 epe-pans cemellec.

A fictitious eompller hag & parvs (ar searental, each of whieh
has certain characteristics a4 far as the locality ef the provdran te-
ferences 13 concorted,

(1) Syarax analyzer and 14 costaphilceal analyser

200 0f e memory teferetices, ated occuples @.)0 vords

{2) irror estances

2.1y ¢f referoncrs, &4F enrds
(3) tdentifice tasle
157 of teferances, BF words
() Code nd data m;:mu cuttently tonorated

v of references, W words



(5)  Eyntax tahles and semantic rout Tnes

€0r of all references, 8% words

‘These 5 types of scgments have very difforent uroperties:

(1) Each time (1) is accessed, alrast all of its vords are
accested,

(2} 1% accessed very seldor,

(3) has about & to 12 worde of Information rer identifier,
each of vhich 15 accessed alout once or tvice each time the identifier
18 agcessed,

(4) is accesnsed quite randemly: two consecutive accenses are
never contiguous or very close in time, and not always contiquous in
enace,

(%) Accesses to (5) are frequent, but not very correlated in
tine,

The merory ayuntem han 1) fast registers accessed in .1 micro-
second, and 2) core memory accesased in 1 microsecond. The hardware
allovs, for instance, swapping pages of 12 words between the two
levels of memorv, with a renlacement alqorithm of the “"workina set”
tyre of Peter Denning [13). The size of the available memory is
supposed to be larger than what the user micht request.

Assusme that there exists a pricina system for the computer re-
sources, with a nrice pl-lo for a memory cell of tyve 1, and p2=1 for
a t'pe 2 merorv cell, per unit of time. 1In this simnlified model, the
costs of the CiY and of the swapping bus Letween the two memoris are
supposed to ba negligible. This system of prices is suppnsed to be

quite stable, and the user can assume that it will not vary more than



slightly over a rather long period of time. The user has to determipe
optirum residency or swapping strateqics for pagen of his various seq-
ments. This assumes, of coursne, that the hardware is able to recognize,
for each user's segment, which strateqgy should apply to {t.

The detailed computations underlying this example are not shown
here; however, they indicate, with some restrictive hypothesis, that
the optimum strategy has to leave (1) resident in fart registers, (2)
and (4) resident i1n core memory, and (3) and (5) should have pages
swapping betwcen the two levels, with a working set size of about 32
references. If fast memory had been much more expensive (overloaded
system), (2), (3) and (5) should have been resident in core memory.

The point is that it is possible to linearize the average cost of one
reference for a given segment and a given strategy, in the form:
C=C*tap *+ar
where P, and p, are the prices of the resources, and a, and a2 are
coefficients which depend on the chosen strateqy for the segment. This
allows quite fast determination of the best strategies for given costs
of resources, before running the compiler. But let it be stated again
that this optimization job is relevant to the user and not to the sys-
tem (the concept of user, of course, includes programs working for the
user).

Note that if, for the best possible set of strategies, the average
cost of a program reference is too high, the user might decide to delay
his run (the threshold might be a function of the urgency of the job).
In Figure II-1, a strategy is represented by a point whose coordinates

are the resource utilizations of the strategy. Strategy 3 is optimal
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2)

because its cost, which is a linear function of the resource usage,
is minimum. lote that this figure does not pertain to the compiler,

but is just an illustration of some possivle strategics.

11.2.4 Pricing.

Modern ec.nomists like Debreu [21) have shown that a wrong pric-
ing of resources leads to inefficiencies and loss of potential power.

They advocate a system of marginal prices. For instance, if the demand

for computer resources is low during night, the price should bc corre-
spondingly low. If there is just one user on the system (no conflict
in demand), the price should be just equal to the marginal cost of
keeping the system running (the cost of the operators, plus of elec-
tricity).

I believe that the following points characterize a fair system:

l. It will always sell a resource at a marginal cost (see point
t#4) .

2. It does not make any distinction on behalf of the user (name
of the user or previous history). 1In particular, if the user is willing
to pay, there is no reason to penalize him even if he has used many of
the facilities of the system in the recent past. 1In other words, there
is no implicit priority system.

3. The system will never charge more than the user announced he
wanted to pay. Nevertheless, the user might be given the resource at a
price smaller than this maximum.

4. The general rule for allocating resources and charging for

them is the following: the system takes the allocation decision which
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maximizes its profit, but nevertheless it charges the individual user
the minimum amount of moaay that this usvr would have had to offer to
get the resource; all other bids being unchanged.

5. An immediate consequence of rule 4 is that two identical re-
sources will cost “he sai;e at the same time, independent of the users
they are allocated to.

6. If a sharable resource is available during a time-slice,
then any user may use it without any cost to him. This takes care of
the reentrant routines, for which only one user pays at a time (the
first user to get the routine in corc).l

7. Thc system must distinguish between conflicting demands for
a resource (most of the practical cases), and cooperating demands (for
instance, a reentrant piece of code). 1In the latter case, the different
demands are considered as only one, with the maximum amount of money be-
ing the sum of what each user wants independently to spend for this re-
source.

A general idea underlying this thesis is that marginal pricing will
have a good effect:

1) By trying to get better response at a lower price, the users
will increase the system's efficiency rather than woik against it (the
problem of counter-measures has been reviewed in [22]).

2) Statistics will be provided to aid the users in estimating
their chances of getting the desired response for a given amount of

money at vavrious hours of the day.

lA more complex model could be imagined under which the cost of
the resource would be shared by the participating users.
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J) Statistics will show the systems monasers in which equipment
lies a bottle-neck or which ecquipment is not recally needed.

There is another reason for marginal pricing in a system where
the same resource is reallocated very often. Without it a user at an
open auction would automatically arrive at marginal price anyway, by
slightly increasing his bid until he got the resource (or the bid
reached the limit of what he wanted to pay). In any case, the over-
head implied by such a strateyy may be avoided by assuring the user of

a "fair" price even if he immediately submits his maximum bad.

IT1.3 1Indivisibility in space of the user requirements.

The previous paragraph handled cases where the demand could be
considered as being

1) atomic

2) for a resource which could be allocated independently of any
others, and independently of any previous or future allocation of the
same resource.

Alas! This is not true, in general. It is impossible to allo-
cate just 1K of core to a program asking for 3K; better noct tc allocate
any resource at all to that program.

In this section, is considered the indivisibility in space, where
the space considercd is the space of the resources. A given user asks
for a set of resou: ces, for instance, for the duration of a time-slice.
Now, consideir how the system reacts under both the pricing and the
bidding philosophies.

1) Under the pricing philosophy, a user is allocated as soon as
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he ashs for his set of resources, if there ure cnough available re-
sources to satisfy him.
2) Under the bidding strategy, all users are allocated at the
same moment, and the system tries to allocate a set of users in a way
such as to maximize some economic criterion. 1If one tries to achieve

a balance policy (i.e., to allocate an equilibrated set of users, to

better use all the resources), then the bidding philosophy has to be
adopted.

Denning (12) has proposed to formulate the allocation problem as
a 0/1 integer linear programming problem (also known as a multidimen-
sional Knapsack problem). If user #i asks for an amount aij of re-

source #j, then the system has to find a set s of users such that:

b Vs
s 23 =y (73)

where Aj is the available amount of resource j. The econemic criterion

(cost function) has the form:

EREL0N c
i€s

i , where c; is the bid of user #i.
The resources are, for instance, core memory and CPU. Suppose that
one user asks for 25% of the CPU and 50% of core during a certain time
interval, and another user for 70% of the CPU and 40% of the core.
Clearly, if both of them are allocated, they will not take more than
90% of core and 90% of CPU (see figure 2), and thus they can be allo-
cated.

This solution to the space indivisibility problem is not entirely

satisfying, because a compute-bound user might request 100% of the CPU,

ard so should be alone in the system. However, suppose that this user
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Multidimensional Knapsack Allocation
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had enly requested 50% of the CPU tima. Another user could then have
been allocated (for instance an I/0 bound user who requests the CPU
quite seldom). This new solution would be much more optimal. 1In
other words, to use the terminology introduced in ~hapter II, the

progress rates should not Le determined by the users, but by the sys-

tem.

Note that, even if the constraints are satisfied, the allocated
users are not quaranteed the service that they requested. For instance,
suppose there are 2 users, each of which asks for 45% of the CPU and
45% of the disk channel. Together, they ask for only 90% of both re-
sources, but there can not be an a priori expectation that one job will
use the CPU while the other is using the channel. 1If there is really
bad synchronization between the two jobs, they will often both ask for
the CPU at the same time or both for the channel, so that there will be
litile overlap between them. Chapter III of this thesis studies a model
of such situations, and extends Denning's multidimensional Knapsack
formulation to take care of them. Also in chapter III is given an
algorithm to get an approximate solution of the multidimensional Knapsack
under the special circumstances involved. This method of solvina the
Knapsack has the interesting peculiarity of leading to fair prices for
the resources and the sets of resources allocated to the users. In this
way, the system can keep statistics of these prices and use them as
stated above. For thorough treatment of the Knapsack problem, see [23]
and [24].

The "a priori" pricing of resources is also possible in a climate

of space indivisibility. The idea is the following: If there is a cer-
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tain set S of resources available, the system might expect to sell it
at the average price P(S). If a user asks for a set S' of resources,
the system would sell it to him at a price
clL= k[%(S) - P(s - S')]

winere S - S' is the set of resources remaining after resources of set
§' have been allocated, and K is a constant greater than or equal to 1.

The precise function, P(S), has to be determined experimentally,
by adjusting it to observed profits. Suppose, for instance, that therec
are two resources; the CPU and the core. P(x,y) is the average profit
the system will make out of a percentage x of the CPU and y of core.
Clearly, P(x,0) = P(0,y) = O, because it is not possible to sell CPU
without core or conversely core without CPU. An example of such a
function is the cone represented in figure II-3. 1Its equation makes

it homogeneous (first degree) in x and y:

+ b
P(x,y) = Vx y %® 8E LuY

X + g
The coefficients a and b have to be adjusted b, the system from

its own experience.

II1.4 Indivisibilities in time domain and reservations.

As an example of time domain indivisibilities, Suppose the fol-
lowing. A program is in core and uses the CPU. The CPU resource can
be instantly taken from this user, but not the core resource lest the
user's job be destroyed! The user must be left in core at least for
the period of time required to swap him out onto secondary storage.

The problem of reservations is somewhat similar. The user who

comes to a console wants to be sure that he will own the ccnsole for



P(XIY)

Fig. II-3

P(x,y) = (ax + by) e . A

X+y
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at least a one hour period. lle Lid0 wants to be sure that he will get
75K words on the disk for Iv' , filea, and at least I\ of the usage of
a compound resource (C¥' « 10K corel.

It %ill now he shown how this example can be handled by creating
a structure of successive levela of allocation. The following ideas
have to he applied:

1) Partial allocation decisions should be made for several time
intervals, some of which are within some others, hullding a hierarchy
in time. For instance, in our example, the decision of allocating the
console and some part of the disk is made for a one hour interval. Hou-
aever, the decision of allocating the CPU and sore core to a running

=
proqgram is made only for a one second interval,”

15% 1evel A 4 i
rd |
k) level  [HHelEN

of decisions

- tiFce

2) Resources havae to he jpooled in order to allow the user to
buy a percentage of the pool i1n advance (lat level allocaticon), withou®
knowing at that time exactly when he will use Liis buying vower (2nd

level decision).

21 am grateful to Professor Herbert Simon, of Carnegie-‘‘ellon
Uriversity, for having ccanvinced me, {in a orivate discussjor, of the
importance of multi-level scheduling,



The user buys, at vtihe first level, a potential pover te he used

at the second lavel. This potential power can itself he called a money
(or a resource), vuch is only valid for bidding or buyinu at the ﬁ.crc-
ond level and during the time duration for which the first level deci-
sion was made. decause this resource enists in a limited arount only,
the user 1s quaranteed, at the pomenrt he buys (t, that he has a certain
percentage of it, aml thus a guaranteed level of service.

Note that the monsy vhich was used to huy at the first lewl
cannot be usea to buy at the second level., One has first to buy the
intermadiate typm of PoOney.

The structure of allocatien created above s a hierarchy of to-
sources, which takes the form of & tree (figure 11-4). dach resource
can be used exclusively to buy rezources which are under it in the tree,
and only during the time interval for which the allocation was made at
the level above. With each node of the trev is associated a set of
rules, wvhich tell how it can buy or bid for tiw resources vhich are
under it in e tree. Note that some part of a resource night be at
sore node of tho tree, while some other part night be at some other node.
For instance, a part of core memory misht be available to run tize-
shared users vader a certain ¥ind of contract, vhile another patrt of

core might helong to a separate real -tise user,

11.5 More involved cnntracts.

Peal-ti®e users might want to get a certain amount of service be-
fore a particul:ir deadline. Thia can be handled eitker with a biddina

systom, whure the user gradually increases “is b ¢r for systema refource:



POLLARS
can be vsed forever

\
\

%3

wnasey Lol §:4 4
usable only during one space allocated
hour to buy CiU and core || are hour at a tine

COHSOLES
allocated for
one hour

cru 10F CORE NEAORY
allocated for allocated one second
100 :=illigec, at a timw

Fig. 11-4
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when the deadline approaches [25), or with a special contract, where
the system takes the responsibility of finding out whether a given
user can be satisfied within the current structure. Note that the
scheduling method suggested in chapter III can be extended to take

care of such users.
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CHAPTER III

AN ANALYTICAL MODEIL OF SPACE SHARING

III.1 Introduction.

This chapter attempts to show that better schedulers could be
designed if some model of the interferencc3 between users' requests
for facilities were available. A program is a string of referencos4
to certain resources. Whenever a program refercnces a resource which
is already totally allocated, a conflict occurs and the scheduler has
to decide which program will get the resource. It will be shown how
this can be done in a "pseudo-optimal” way by taking into account some
information which can be made available before run-time on the patterns
of the users' requests for facilitigs.5

Sections III.1 and III.2 introduce some of the concepts and ter-
minology used later in the chapter. Section III.3 studies a model of
"worst possible" synchronization between the users' requests for facili-
ties under certain assumptions; among which is the assumption that re-
sources are preemptible and each user has a fixed priority for accessing
a resource (a given user has a different priority for each resource).
In section III.4 the way in which the previous model can be used for

scheduling is examined by formulating the resource allocation problem

3 1 . .

level of conflicts over some period of time.
4 .

demand string

5. ; ' . .
this information, as we shall see, is reclated to the predicted

usage ratios of the various resources by each individuel program in
the system.
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as a Mathematical Programming Problem (finding the maximum of an eco-
nomical function with certain constraints on the variables). Then the
design of an algorithm which yields a nearly optimal solution to the
M. P. problem is given. Section :II.5 compares the model of section
III.3 with models of some other schedulin«g strategies. The possible
fruitfulness and extensions of this study are discussed in III.6 and
ITI.7.

There are some resources, like the CPU, which can he vreemvted
(transferred from one user to another) with less overhead than some
other resources {(like core memory, if the previous user has to be
swapped). This lcads to the idea of having a hierurchy in time of
partial scheduling decisions; some decisions Leing made for smaller
time intervals than others (sce sections II.4 and I1T.4.1). The model
which is studied in section III.3 will be used in section III.4 to re-
late two levels of scheduling. Whenever a decision is made for a long
time interval (macroscheduling), the scheduler takcs into account some
information on the future demand pattern of the user during this time
interval. The macroscheduler then sets some paramcters of the lower
level scheduler (microscheduler).6

Of course, solutions to macroscheduling problems depend on some
information being available on the vatterns of the users' requests for
facilities. Haberman {2] has shown that such information can be useful
in avoiding deadly embrace of processes in a time-shared environment.

This information might b.. provided either by the user himself, or

6 . . .
Note that microscheduling can be done Lv hardware, which, for
instance, resolves conflicting reguests for a memory bark. Then the
software "sets" the hardware.



extrapolated from statistics collected by the system.

What information would be useful? It should be relevant to the
scheduler by permitting computation, for instance, of the maximum
possible "interterence" between different jobs. 1t should be simple
and condensed, because the scheduler has to operate rapidly, and finallw
this information should be easily available and characteristic enough
of a given program that it could be used without any modification for
several runs of the same program with different input data. In this
paper, the information used will be the proportion of usaae of the
various preemptible resources7 over a rather long time interval during
which a job is to run, and the total (maximum) amount of non-precmptible
resources required by the job.

Do we really need macroscheduling separated from microscheduling?
In a recent paper [29], Stevens examines what was wrong with the
Chippewa Operating System; he concludes that there were two flaws.
First, the absence of a macroscheduler: the Chippewa system allocated
resources for an indefinite period of time, without taking into account
the global demand of each job. Thus, there was no guarantee when a job
was allocated, that the job would not ask later for more memory than
was available, and in this case the Chivpewa scheduler did not take
back the resources (CPU,...) already allocated. The second problem of
Chippewa was that I/0 bound jobs, or computc bound jobs, were not re-
cognized as such by the scheduler, and so this informaticn was not taken

into account in assianing priorities for the resources. We will see

Preemptible resources are those allocated by the microscheduler.
For the moment, the reader might imagine the CHU as oprosed to memory.
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that better simultaneity in resource usage and between jobs' progresses
is achieved by assigning a high priority for a resource to a job which

will make little use of this resource.

III.2 Some Definitions.

User: An entity which reguests and seizes resources, and which
might also give some information about its future resource requirements.
In this study, the words user, job, program and process describe the

same concent.

Demand string of a user: A program will be considered as a se-

quence of calls to various preemptible resources: CPU, I/0, ... such
that one and only one resource is called at a time by a given program
{no double buffering, for instance). This limitation could be removed,
but helps to simnlify the presentation.

Let R be the sct of resources. A program is then some strina
rlrz...rk over R, where ri means that the user called nn resource ri as

th

the i resource call. This notion is similar to what Denning used in

more restrictive frameworks to describe page reference strings.

Virtual time of a user: During a certain real time interval ATR,

a4 user will get the resources recuested in his demand string durino a
total interval of time ATV. Ve define A'T‘v as the virtual time interval
corresponding to tiie real time interval ATR' Virtual time of a user
normally runs slower than real time, but if a user werc ° > permanently
have top priority for accessing all resources, then virtual time for
that user would be ecquivalent to i.al time.

The virtual time diagram of a user is a diaaram in which resource
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usage (demand string) is plotted as a function of the virtual time

of that user.

virtual time

Remember that the assumption was made that a program is a nurelv

sequential process.

Observables of the system: Any quantities which are relevant to

our study, among which might be included:
1) The cffective progress rate W, of job #i (working rate). It
is the portion of time user #i was working, divided bLv the total real

time interval over which the measurement was made.

_ Iotal virtual time interval for #i
i total corresponding real time interval

2) The duty factor uj of resource #j (or its proportion of usage):

_ time resoirce #i is used bv and iob
j total real time interval

wi and uj are both dimensionless variables, which are observed
over a certain interval of real time.

3) The cost fuaction (or economic criterion) of the svystem is
another observable. It is assumed to be a weiqhited sum of the rrogress
rates:

E =1L c,w,
i i

where <, characterizes the uraency of user 4i. The precise mean-

ing of c, as a bid will be discussed in section 111.4.5
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III.3 A model hased on fixed nriorities (with vreemotion) for each

user and resource.

III.3.1 Overview of the model.

For each resource, therc is a wriority assianed to each user.

For a given resource, these priorities arr all different (the users
being totally ordered with respect to cach resource). This priority
assignment will not e changed during a certain time interval [0,T)
over which the conflicts between the demand strinas of the various
users are studied. If user #i reguests a resource, he will get it
either if the resource is currentlv idle, or if it is allocated to a
user having lower prioritv for the particular resource (in which case
the lower prioritv user will have to wait for further use of this re-~
source) .

Note that a user dnes not necessarily have the same prioritv for
all resources.

Let aij be the proportion of the virtual time of user i snent on
resource j during the real-time interval [0,T]. The aij's characterize
the needs of the various users for the various resources (for instance,
the degree to which they are compute-bound or I/0-bound). Given th»

virtual time diaaram r(t) of user i, it is trivial to compute his aij's:

4 ( rv)=3) at

3
f

if n= truc
where 4(x) = é 1; n 2 f;;zg
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It will be assumed in the sequel that a fairlv accurate knowledage
of the aij's is available (possibly based on nast exverience of the
programs), but that the precise demand strings and virtual time dia-
grams of each program over the real-time interval [0,T) are not known.

The situation may be characterized by two matrices n x m, where

n is the number of users and m the number of resources:

aij proportion of the virtual time of user i svent on resource j

p.. = integer number representing the priority of user i for re-

1]
source J.

1 <3 <m
0<a,. <1
- %y =
% ,:-1].j = 1 (normalization of the ai for each user)
= =D =
pij DLJ i k

p.. < Py <=> user i has a higher orioritv than k for resource j
*J (lower numbers <=» hiagher nriorities).,

The assumptions are given over a real-time interval [0,T], which
separates the two activations of the macroscheduling aloorithm. If W,
is the progress ratc of user i, this user will cffectively get resource

j allocated during a time

Tw, a,, (by definition of a,, and w, ).
i 1] i9 i

Resource j will be running durina a total amount of time

et u, = Loa,. w, (0 < u., < 1)
i : = N



The overhead of switching a resource from one user to another has been

and will bhe¢ svstematically neqglected in the study of the model.

I111.3.2 Trundamental equations and consenmuences.

It will now be of interest to derive the ecauations describing the
worst possible cases, where the requests are synchronized in an order
such as to get the smallest vossible vrogress rates and the least nos-
sible simultaneous use of the resources available. This is relevant
to the general philosophy that the system should alvavs exnect the
highest amount of conflict within certain computed bounds. Tt should
not oversell itsclf to the uscrs, guaranteeing them a service that it
would cventuallv not be able to give. Even if the system would decide
to take some chances for a greoater expected nrofit, vrobabilistic mode1s
would be dangerous hecause they assume a randomness and absence of
correlation between users which are not gencrallv true. Also, for a
given uscr, the requests do not have a randonr lenath under some distri-
bution, and are not uncorreclated with ecach other. ©f course. the com-
puter could comrute Markovchain coefficients for the demand strings of
the various users and use this information to act a better schedule, but
this scems to exceed the allowable overhead of an allncator.

The following fundamertal equations cxnress that, in the "worst
possible case", a process would hn wait ng for a resource at any time
when this resource is used by another wrocrss n© hicher priority. lHote

that 1-w,l 15 the rate of i.aiting of user 1i.

<



(I11-1) A £ Z a5 Yk (O\<wi$ 1)
S 2') (1£ign)

For given matrices (aij) and (pij), it is Aalways possible to find
virtual time diagrams of the users, which have the usage ratios Diﬁ for
the resources, and such that each job might have the raximum waitina
rate given by equations III-1. Tn other words, i€ the coefficicnts ai_1
are known for cach job, but not the exact virtual time diagrams of the
jobs, it can be said a nriori that the jobs will have vrogress rates at

least egual to the wi's, if and only if the following cauations are

satisfied:

(ITI-2) 1 - wi)/ min ( Z akj W oo l)
j.k
pkj<pij
(Vi 1¢igm
(OéwiSI)

An equivalent form is given in the followina ecuations:

. ] >
(ITI-3) V1, either w, =0 or 1) Wb a}:j W

1 j,k
pkj< Piy
(w3 0)

Equations (I1I-2) define a domain of values for the wi's. Anv
point within this domain can alwavs e reached 17 the system should

. .. 8 . . , . ,
desire it. This domain will bhe called the attainable domain, or

8 . . .

The action to he taken bv the svstem to reach a marticular voint
in this solution space will ba described in scction I77.4. A formal
proof of this statement is not agiven here.
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synonymously the domain of certaintv. Note that esuations (I11I1-2)

imply that:

(I1I-4) 0<u, = E a.,j wi < 1 (0 <w, <1) (R g )

(The reader will find this result easy to nrove).

III.3.3 Definition of the mathematical problem.

The previous model will bhe uscd to find a sot of users o allo-
cate. ELach user qgives to the system:

O
1. his usage ratios for the various preemntible resources: a ’

if°

2. his uraency: cj. A hiagher value of Ci soans a higher uraency,
but also means that the user iz willina to wav more monev in order to
run. It is understood that if a uscr with urgoncy cy agets a nroavess
rate W during a real time interval of length T, then this user is
willing to pay at most

c,w,T
il

to run during this time interval. Pricing stratcaics are studied in
III.4.5.

The mathematical programming problem can be stated in scveral
forms of varying complexity.

1. Given the aij‘s and the ci'S, find the Dijls and the wi's

which maximize the ecconomic criterion (or cost function):

(II1-5) E=1c.w,
while satisfying equations (IIT-2).

Note that the economic criterion chosan is caquivalent to a cri-

and, in the second formulation, his usage of the non-precmntible

resources: b, ..
17



45

terion which would tend to maximize resource usage.  Suppose it is

desired to maximize

L]
e ™

2
[N

(=

where dj is the "weight" or cost of resouarce *49. E can then be
rewritten in the form:

w

B = ? C., W,
b1 1 1)

with:

2. In this scecond formulation, there are two Linls of resources:

the macroresources, G&(which are non—urcnmntiblel‘ Tud allocated b

the macroscheduler), and the microresources, c1(nrnomntihla and allo-

cated by the microscheduler). hij will be called the absolute amount

of macroresource j desired by user i, By contrast, s is the relative

amount (per unit of virtual time) of microrezource i needed by user i,
Now, the mathematical programming prohlem can Hbe exnressed in

the following way:

Find a cet of users 5, and matrices (p,.) and (wi), which maxinizo

id
the economic criterion (cost function):

(111-5) FE = 4 W,

NN B
i€ 1 i

subject to the following constraints:

0 T . .
The non=-precmptible rescurces nicht be, for instance, memorv
cells at various levels orf memorv (core, drum,...).
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11
Y jfﬁ‘ Zbijs‘ghj

fec

Si-o if w =0

where
8, «1 e v o

(111-6) i

Vies, w*Za,w,gl
i 3 el i'j i

pilj(”i’

Bj is the total available amount of nia-precmntile resource #4§,

I11.3.4 Ixamnles.

In this section are given o fow exannles of a avaphical repre-
sentation of the attainable domain in the srare of the wi's, in order
to create a fealing of how the demand strinns: of the j0bs will syn-
chronize. The roader will discover that the "“worst case domain” can
naverthielaess lnad to a 1ot of sinultaneity between the jabs., It wan
verified bv simulation that the jobs do not qgenerallv svnchronize
significantly Letter than the worst casc model oredicte, if there is a

small number of preemptible resources ang 1€ the rriarities are chosen

in a nearlyv ontinal way (see section 1171.4.2),

Jona ]
Jow 2

Examnlc 2. Cpn DX"?'.F‘
B .2
(ﬂl j) = (." ...')
11

The ccuations ‘or jc@® cxrress that anv uscr havina a non=2crvo
nrogress rate {(and thus allocated bv the macros hieduleyr, can fipd tae
space ha nceds in mrmory level #3,
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In thin arrav, a job in o row and a resource is & column., 1=
nource 1 is the CPU, resource 2 is the disk; job 1 is compute hound,
job 2 is more 1/0 Lound.

1. The raximum priority is aiven to iab 1| for all resources:

1 1
‘"n"’(z :z)
Ig wl or: . : wl < :
1 W '8 | NZ - 11
CIRCI | 2

The domain of certainty is defined hv: w_ ¢+ w, = 1, which shows

1 D -

Fauations:

that no parallelism in the use of the rasources i3 obtained in the worst

case (fig. 11I-1).

2. Sunnose that the oriority matrix is:

2 1
tr, 4! “(l :')

Equatinns definina the attainable domain are:

1 3_w1 + .4 w2 wl 0 " 1.4 ‘1 . \
1 > .2 wl W, w, >0 LE w? -\

The attainable domain corresrondz to a nearly eptimal usaze of

the resources:

ul n .8 wl + .4 w2

u2 = 2 wl + 16 wz

u, and u, are maximum at the point:

wl = .65, w2 a RB7 —.ul a2 A7, u:, = .65

In this case, hoth "l and u2 are maximum at the same noint. This,

however, is not a aeneral result, and very comnlicated domains in the

u, snace miaght exist. lNevertheless, solvinn the eauations:

1
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f 1 #
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|
i
gl
|
=

Fig. ITI-1

Domains in the (wl, w2) space for example 1.
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might give a good anproximation of the use of resources in the attain-
able domain.

3. The next case has the priority matrix:

1> .8w +w

Obviously, the attainable domain is worse than with the second
priority assignment, but better than with the first one.

If the objertive function to be maximized is E = Wy + w2

(cl = c2 = 1), then the prioritv assignment #1 vields Hmax =1,

priority assignment #2 yields Emax = 1.52 and nrioritv assianment #3

yieids Emax = 1.15. The solution of the mathematical nrogramming pro-

blem defined in the previous section would be the second nriority

2 1
riy? = 2)

and wl = ,65, w

assignment:

i}
oo}
~3

2

Example 2:
This examnle considers two jobs havina identical average resource

usadge characteristics, but one job seizes each resource during a much

shorter amount of time than the other qob.



Fig. 111-2.1 and III-2.2 show the virtual time diagrams of cach
job. Fig. ITI-2.3 and III-2.4 show how thev synchronize in real-time

under two different priority assignments. The exnected proaress rates

are found to be those given by the "worst casec' model.
For this example:

(540 2 (: )
1 1
(pij) =(2 2) 1> Wy + W

(2 B 04

thus Emax = wl + w2 =] (w1 =l w2 =~ 0).
2 1
(v, .) =( >___ 1 .5 w 1
30\ 2/ s ) (v ) S
thus b = 1,33 (with w, = .67, w, = .67).
max 1 2

Example 1 has a larger attainable domain and a larger Enax than

: . This is due to the

example 2 with the priority assignment <§ 5

fact that the job. of example 1 are complementing each other (one needr
more CPU, the other more I/0), while jobs of examnle 2 have identical

average needs of resources.

III.3.5 Multiprocessor case.

So far only the casec where the resources are not interchanaeable,
and are only susceptible to one activation at a time has been considered.
How the previous model can be extended to the casc where some resources
may have more than one activation at a time will now be studied. Tor
instance, there might be several identical CPU's or identical channels.

The fundamental "worst case" ecuations arc auite complicated.

They are given here without further justification.
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Define qrj by: r = pij =1 = qrj re [1,nl, je [1,m]

qrj is the number of the user having the r-th prioritv for resource 1j.
If resource j has Rj processors (possible simultaneous activations),

the maximum time that user i would spend waiting for resource j in time

interval [0,T] is:

min (——1—— a w )ifr=q >R
k€ ILR,] Ry okl éoe-11 Tn3? g S

Wij=

L 0 if qijSRj

so that the fundamental equations for the attainable domain are:

n

Yieil,n] either 1- v T(i. e
je,m M

0 (always wi>’ 0)
Theorem 1. A smaller domain than the attainable domain defined by the
previous cguations can be defined by equations (ITI-2) where a s has

been replaced by °<i]' = ii_]'_ o

R,
j

Proof: hy choosing the first of the cquantities whose minimum

is Vij:

and T{ij=0<—lli— a,, w if r=q. . § R

hence the theorem.
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By replacing the aij's by the o{'s the multiprocessor case has
been reduced to a monoprocessor case. The accuracy of this annroxima-
tion can be felt even more in the special, but very important case

g S , €= p,, < L e I i =qg,, > R,
where alJ akJ plJ pkJ In that case, if r qu RJ

Wij=_xlz_.

ai. wi
j ie€ll,r-1] Y

and, for r = qij < Rj"?ij = 0, but then the aij's are small
too, because they yield high priorities. This leads to the intuitive
feeling that for this priority assignment and a large number of users
{(n >> Rj), the exact model and the model approximated bv theq(ij's are
very similar to each other.

There is another way of approximating the multiprocessor case by
a monoprocessor case. Suppose resource j to be a single resource (one
activation only), but which works at Rj times its initial speed. The

fundamental equations would then be:

- w! ' '
1=w ?jzk Bey v
’

Py <Py
where B.kj is the normalized value of aij
R,
J
a,.
311
R,
’3' = —
kj a. .,
> =
T R
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The progress rates w'i apoly in a universe where the resources
work faster than initially. The correspondence between wi and wi is

given by:

Thus, the fundamental egquations for the processors working -t

Rj times their initial speed are:

The reader can see that this is a more optimistic estimate than

was given by theorem 1 and the o(ij's.

Example 3.

aij CPU Bus
job 1 .8 .2
job 2 .4 .6
job 3 .2 .8

Suppose that 2 CPU's are availahle. The following priorities

are assigned.

3 1 T o= + + j
(o) N 5 and £ w1 w2 w3 is to
1] 1 3 be maximized.

1. An exact treatment gives the fundamental couations:



>
1> wl

> .2 w1 + w2

yielding the

+ min (.2 w_ +

. + . +
> 2 wl 6 w2 w

56

2 .1 w3)

3

solution (with ecualities):

w1 = ,94 w2 = .81 w3 = ,32
3 ul = ,57 u2 = .93
E = 2,07
max
2. The lower bound method:
= aj s
4, 5 =L cpu Bus
!
job 1 .4 .2 1 2 .1 il 1
job 2 .2 .6 2 1 1 W < 1
job 3 ot .8 2 .6 1 Wy 1
w1 = ,80 w2 = ,80 3 = ,36
is the "best' point of
1 the worst case.
5 ul = ,52 u2 = ,93
E = 1.96
max

3. The "optimistic" approximation with a CPU workina twice as

fast:
6 .2 .1 w1
2 .8 1 n12
.2 .6 .9 w3
thus:

w1 = 1,33 w“ =]
E =

max

Note that w

1 is greater than

A
I

1, which is not surwrising with
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the assumptions. If the constraint wi < 1 is imposed, the optimum

would be:

E = 2.21
max

which is a closer appioximation of the case with two vprocessors.

I11.4 Macroscheduling and microscheduling algorithms under the

previous model.

This section is intended to show how the model of section III.3
can be applied to multi-level scheduling. Section IIT.4.1 shows how
the schedulers look from the users point of view. An attempt is Lhen
made to solve the mathematical programming problem by separating the
assignment of priorities from the computation of the progress rates.

A heuristic for assigning priorities is given and justified in III.4.2.
Once priorities are chosen, the problem is reduced to a multi-dimen-
sional Knapsack problem, for which a heuristical solution is pronosed
in IT1.4.3. Section II1I1.4.4 summarizes the results, and TII.4.5 shows
how the users could be charged at "marginal prices"; the prices for

services being determined in connection with the algorithm of III.4.3.3.

I11.4.1 Combining two levels (in time) of schedulina.

When designing an operating system, one of the major difficulties
is to partition the concepts involved. This requires, in warticular,
the separation of tasks which are loosely connected, and the implemen-

-

g 12 ,
tation of them as separate processes of the system. It is assumed

2_. . . . . .

This can be achieved with a hierarchical structure such as the
one proposed by Dijkstra [26], with a communication svstem between
processes [27].
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here that thiec following decisions and strateaies are independent from
resource allocation (or scheduling), oxcept that thev mav provide in-
formation or requests for the scheduler, but thoy should not be con-

fused with scheduling activities:

1. Page replacoment algorithms in a comruter with naged memory.
Which page should be extracted tfrom memorv?  Should the size of the
working set of paqes he changed? 3Should there Y anv prepaaing?

These decisions can be made bv the proaramner, or wv the svstem,
but in any casc they zoncern nrogram ontimization and not system
optimizatinn (insofar as it can be said that the system is not improved
by improving the users' programs running under it).

2. Decidinag on the “"exteornal™ vrioritics of jobs. Some fjobs
are more urgent than others. This might be deecided either bv the svs-
tem or by the user (which is wiliing to »ay more to act his job ox-
ecuted soon). Lixternal wriority can be reduced to the cconomic cri-
terion of the price offered by the user rer unit computation »f his
job, which i3 then fed into the scheduler, and 2i11 serve the scheduler
in order to build its own outimization critevion,

3. Statistics to he usced bv the scheduler or hv the paging
algorithm or to comnute external »viorities. can theoretically be
considered to be collected inderendently of those dacision-making
processes.13

A scheduler will be considrred tr be a mechanism usinag the

followinag information:

-
“If the user wants to collect such ctatistics, he will have
to pay for the resources involved in the svvini trocese,
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l. On ecach program: some information about the kind of service
wanted bv the program, either on a lona term ranac, or because of a
current request for a facility. The aij's of section IIT.3 were an
example of such long term range information.

2. The economic "bid" of each joh, characterirzing its "external
urgency.

3. The resources available to the system,

I believe that sowe schaduline should he done for intervals of
various duration of time. Tor instance, microscheduling, as dafined
in the sequel, might he done for pericds in millisoconds, macroschaeduling
for periods in hundreds of milliseconds, while schedulina of taves
should be done for minutes, and sone real time users mav not want to
use the system at all unless they are assurad of gcttinag some minimum
guaranteced resource usage during a whole hour.

A scheduler decides to allocate some rewources to some users, and
chooses parameters to he fed into the "lower leovel" schednler (which

handles smaller time intervals).

Microscheduling and Macroscheduling.

Examples will now be given of liow some usual allocation decisions
can be split between two scliedulers working at di“fercnt levele of time
intervals. These examples arce summarized i1n table 177-1. Resources
allécated by the low-level scheduler (microscheduler) are said to b
precmptible, and those allocated by the macroscheduler are said to Le

non-preemptible.'14

4 Cyss . . :

Preemptibility is, of course, a relative notion (and not ahso-
lute). It can just be stated that some resourceo are more preem: tible
than others,if thn overhead to allocate them is smaller,




Current Computer

Systems

é(/

future Comruter

Systems

Macroscheduling

Alleocation of

core memory

KNllocation of core
memorv and

“ast reaisters

Time between

macro-decisions

Microscheduling

10 millisec.

Conflicts of accesses
to drum and disk
Allocation of CPU

and fas. reaistors

M location of Cru
conflicts in swarnina
‘ntween central cove

and fast recisters

Time between

microdecisions

= 10 millisec.

= 100 microseconds

Tahle T1I-1

Examples of macro and micro scheduling
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Macrorcheduling can refer to those schedulina overations which
are related to the allocation of central memory. The time interval
between two macrodecisions would he rather larage (greater than 100
milliseconds on most systems). Microscheduling would concern the allo-
cation of the arithmetic and control unit: and of some fast busses,
to programs which are already esscentially oresent in central memory.
For instance, the decision of what <oh is allocated -i=ceas to the drum
for page-in and nage-out operatinns botween drum and main core memory
is a microscheduling decision in‘current comruter avstems where the
programs are kept in core while raging takes nlace. I future comnuter
systems, this kind of paging will most nrobablv he revlaced bv 2 paaing
between two fast levels of memorv, like on the 360/85,

I prefer the words "microscheduling” and "racroscheduline" to
"microaueuina” and "macrc.jueuina" [5], because the latter sugaqest the
use of FIFO queuecs bv the scheduling algorithm, which is a practice
that this chapter preciselv tries to discredit. ‘lote that, in our term-
inology, "scheduling" and "allocating" are synonvmous.

The macroscheduler receives the nredicted prohahle usaae ratios,
aij' and the urgency, cyv for each user #i who wants to run. "Then the
macroscheduler will solve the Mathematical Proarammina problem (defined
in ITI.3.3). nNaving determined the set of nsers to be allocated durina
a certain real-time interval of length 7T, and the matrices (pii) and
(wi) for the users in this set, the macroschedulrr assures that the
non-preemntible resources will be allocated to Lhosa users, and transfers
the values of (pij) and (wj) to the microschedulnr.

The microscheduler controls the access of the users to the vreo-



emptible resources, by applying the priorities which were determincd
by tile macroscheduler. It also stops a user #i if this user runs more
than a time wiT. ¥inally, it prevents the uscrs from exceeding their
. . 15
predicted resource usage ratios.
Sections T11.4.2 and I1I.4.3 will "= devoted to the solution of

the M.P. problem by the macroscheduler.

I11.4.2 Assignment of priorities.

It is interesting to trv to find a nrioritv assignment (pij)
before determining the progress rates (wi) which ontimize the cost
function E = & cy W,

111.4.2.1 A case where a given assignment of priorities can

certainly be imnroved.

Let Dp be called the attainable domain under priority assignment
P. It will now be shown that the assignment to each job of a set of
the same priorities for all resources is a wrong choice, which can al-
ways be improved. Consider the followinc theorem:
Theorem 2: Let P be a priority assiqgnment in which pij < pi'i for all

j. 1If, for some j, B = p,. + 1,then there exists another assignment

ivg T Pij

P' which is the same as P except that Dij and 2 are interchanaed,

"9
such that Dp, properly contains Dp.
In other words, any point in the snace of observables which

satisfies equations (III-2) under assignment P, will satisfy (IT1I-2)

under priority assignment P'.

5 . . . . :
See section I11.4.4 for a precise sketch of the microscheduling
algorithm.
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Corollary: the maximum of the cost function16 under priority

assignment P' will be greater than or equal to its maximum under P.

The proof of the theorem is given in aprendix A. The theorem

is quite weak, but at least it shows that a pricrity assionment like

the following can certainly be improved:

i e

i L e
L

I11.4.2.2 Two cases where it is known how to assign priorities.

1. The users are competing on one resourcc onlv.

There might be more preemptible resources in the svstem, but

for each of the other resources there is no more than one user who

might ask for it.

In this case, the fundamental eguations take the form:

Vi€l , either w, =0 or 1-w3y 2 a_ w (0w, € 1)

is to he maximized.

Theorem 3: The ontimal priority assignment, P, is such that:

a, ., a, .
X 1] kJ
Py <Py & ) < )

The proof is sketched in avpendix B.

or economic criterion.
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2. There is a finite number of users and resources, but the

Eijls are infinitely small (of the first order).

Under these assumptions, l—wi is a first order, infin.tely

small number. Thus:

l-wisz}_( akj

and:
- "N
e Z i %kj
i,j.,k

The question of which priority system makes n—Em x the smallest

a

possible, still exists. The following theorem solves the problem:

Theorem 4: The optimal priority assignment P is such that, for any

resource j and any users i and 1i',

a, . ai'j
g c, < c.,

plj<pl'3 i l

Proof:

n- E'max ~ :§ i akj



6%
Thus, the problem of finding the optimal priorities can, in this case,
be solved for each resource independently from the values of the aij's

and pij's for the other resources. Theorem 3 can then be apnlied, and

gives the optimum priority assignment for each resource.

The general problem of assigning priorities is generally quite
complicated. Using the results of sections I17.4.2.1 and JII.4.2.2,
suggests the following heuristic:

1. Assign priorities so that:
aiﬁ
o B g . (:'. ——— <._.._.._
Py < Py >

2. Try to improve this priority assignment bv using theorem 2.
This improvement can be achieved in a time proportional to m x n.
This priority assignment is not alwavs optimal, as shown by the

following counter-example:

Example 4: 3 resources, 2 jobs.

a. ) = (-3 3 A4
i3” (.31 .e .09

It is desired to optimize Wyt W, The preceeding method leads to the

2

following assignment of prioritics:

e D N
i 2 2 1

The optimum is LONR I P 1.384. However, with the priority
assignment:
2 1 2
g o = (1 2 1)
the optimum would be: w, + w_, = 1.477.
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This example clearly shows that the "good" priority assionmént
is not always optimal. The major advantage of this method of assiqgning

priorities is simplicitv.

I11.4.3 Assignment of values for the progress rates_wi.

Once the pij's have been determined, it is desirable to determine
optimum values for the nrogress rates in order to maximize E while sat-
isfying equations (III-2).

I11.4.3.1 The 0/1 integer linear programminag problem.

Now the mathematical programming vroblem which was defined in
part 2 nf section III1.3.3 will be considered: maximize (III-5) sub-
ject to the constraints (III-6) (excepot that the nij's have already
been determined).

This mathematical programming problem is not a 0/1 integer linear
programming problem, but it is convenient to consider it as such (de-
termine the values of the Gi's equal to 0 or 1l). Note that the aij's
and the bij's are all positive (they represent the needs of the users
for preemptible and non-preemptible resources).

The 0/1 integer linear proaramming nrohlem has benn reviewed in
[23). Of particular interest to us are the studies in [24,28]). The
idea is to find a nearly ontimal set of users to be allocated
(6i = 0 or 1) by ordering the usecrs according to some criterion which
will be called "decreasing desirabilities”, and to trv to allocate
them (satisfy the constraints). starting with the user havine the high-

est desirahility.
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I11.4.3.2 A first algorithm,

The jobs are supposed to be already ordered by decreasing ex-
ternal priorities. It is then nccessary to decide ahout the wi's for
the jobs. For instance, suppose el .5 for the high priority jobs.

A wi too close to 1 might strongly degraue the possible service for
other jobs, bv obliging the system to give a hich internal prioritv
for all resources to the job which has a high extrrnal priority. This
would lead, as has been seen, to a poor utilization of the resources.

If a set S of jebs is allocated in memorv, i+ has to satisfy
equations (ITI-3) and (III-6) (with 6i = 1 if i€5, di = 0 otherwise).

A procedure to find the maximal set of users fitting into avail-
able resources would take the following steps:

Step 1: Take the highest priority user:; put him in set S'.

Step 2: Check whether $' is an allowable set: first assign the

priorities pij Vies' , according to the rule

plj < pkj €= > 1] < k‘]

where the ci's are in the same order as the external nriorities.
Then check eguations (111-3, and ITI-6) for set &'. 1f they all check,
go to step 3, else go to step 4.

Step 3: 5 « 8'; go to step 4,

Sten 4: Define S' as including all users of 3, plus the hichest
priority user not yet handled. If there are no mora users to handle,
the algorithm stops, else go to sten 1.

Using the above nrocedure a maximum allowable set of users has

been found, cach of which has a requested quarantecd service. The



computations can be done so that the time reauired bv the algorithm
is: t=Amn+ Bmn loa(n). The nxloa(n) term expressed the time to

- a,. . i
sort the cuantities ~ij (to determine the priorities).

C.
1

Set of users with non-guaranteced service.

Assume that the non~-preemptible resources are not saturated after
having applied the previous macrnscheduling alagorithm. Some other
users might then be allocated with prioritics lower (for cach pre-
emptible resource) than the lowest prinrity of the users of set §. The
guaranteed service of users of set 3 will not be affected by these
additional ("Marginal") users. !l will be the sct of marainal users.

Prioritics in set M are determinnd accordina to the same criteria
as in set S. Of course, the resource usaac will not be as agood as if
the priorities had been determined optimally for the entire set M + S.
Our solution respects the external priorities of the users, while

maximizing the svstem's efficiency.

Example 5: There arc 2 CPU's but only one bus (or channel).

aij CPU 1/0 wi decided 1Y allocated
job 1 .4 .6 5
joh 2 .3 7 55
job 3 5] 2 a0
job 4 al) 1 3
joh 5 .8 2 o5
jobh 6 36 4 15

These 6 candidates arc in the order of their external nriorities.

There is no constraint due to non-preemntible resources in this example.

The regler can verify that the algorithm (with c, = 1, \f i) will

accent jobs 1 and 2, reject 3, and accert 4 and 5. This is intuitivelw
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a good choice because 1, 2, 3 are I/0 bound while the others are compute

bound. S = {1,2,4,5 ) M= 23,6} , and the priority assignments are:

Catnd

3

g

]
AW hH N
NS W

/

Note that job 3 would have been accepted if Wy S

signment gives the resource usagc u = .0, = &,

cru - P Y0

.4. This as-

which could he

improved by solving equations (III-2) (eaualitiecs) for the wi's with

the pij

Comments:

's that were just computed.

1) When deciding about the desirahilities of the
external priorities and not a more precise cuantitative
their urgencies werc taken into account.

2) Clearly, if the wi's were computed,instead of
arbitrarily decided bhefore the alagorithm started,a more

could have been obtained.

II1.4.3.3 A more general algorithm.

The following algorithm attempts to find a neAarly
to the problem. It works in two steps:
1) Get an approximate solution by optimizing the
criterion (III-5) with the following constraints:
b, .
VieB 2 =i ¢

A
ies ®j

Vied Zaijwisl

ies

(I11-7)

jobs, onlv the

measure of

just being

optimal solution

optimal solution

cconomic
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The constraints for the resources of set ® are identical in
equations (ITI-6) and (III-7). The constraints concerning the resources
of setcx are, however, weaker in equations (III-6) than in equations

(ITI-7). The latter just express the best possible case (where no

unnecessary interference between jobs would happen), however, this
method is used because equations (III-7) are casier to manipulate than
equations (III-6) and a more refined solution will be attained later.
This first step is essentially intended to eliminate from further con-
sideration the jobs which should certainly not be scheduled (for which
w, = 0).

i )

To get a good approximate solution of this mathematical prooramming
problem (III-7), it is not necessary to use an cnumerative method of
search. A faster method which gives a good approximate solution works
as follows:

] o= g . . 17 . T

Assign an initial weight Kj to resource j. Assign an initial
w, to job i. Compute the desirability for each job:

c,
i

i }E b,. K., + EE a,. w, K,

jed 7 je@ '

Sort the jobs according to their desirabilitics. Starting with

the one of highest desirability, compute whether the job can he allo-
cated or not, tha* is, if eauations (III-7) can he satisfied with S
consisting of the jobs which have alreadv been allocated and of the 4ob
which is a candidate to be added. Whether the job has been allocated

or not, try the next one.

7 e , . . , .
The initial weights when the microscheduler is activated miaht
be the final weights obtained at its previous activation.
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When all the jobs have been examined, comvute a new weight as-
signment (the Kj's) and the new wi's according to the princivle that a
job having larger di should have a larger W and that a resource for
which the corresponding equation (III-7) had its left side much smaller
than 1, should have its weight decreased.

. . , 18
This entire process can be repecated 2 or 3 times.
2) Having determined the set S, a better approximation of the

wi's can be determined by solving equations (IT1-8), with

= 5 < a,. , D n o
pij < pi'j = dij/ci 11,]/c1,
(I11-8) 1=w + Z ai'j Wo Vies
j e
pi.j< P4

If any of the wi's of the solution is newative, this wo is re-
moved from set S, and equations (III-8) are solved again. nhs shown,
equations (III-7) gave a set of users to be allocated which could be
somewhat too large. Eliminating some users from this set in some cases,
yields a nearly optimal set to satisfy eauations (III-6) while maxim-

izing E given by equation (III—S).18

III.4.4 & summary of the pronosed schedulina method.

1) Macroscheduling: It has been shown how, agiven the aiﬁ's,

bij's and ci's, the macroscheduler determines the nij's and wi‘s and

This algorithm has been programmed and checked for several
examples, for vario.s numbers of usars and resources. It alwavs
worked satisfactorily. Note that the choice of the rule used to
get a new sct of weights is cssential to obtain a fast converagence.
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transmits them to the microscheduler. It also allocates the non-
preemptible resources for a period of time T.

2) Micioscheduling: the microscheduler keeps track of the usage

of preemptible resources by the allocated users. If user i uses re-

source j during more than a time

then job i is punished in the sense that its prioritv pij for this re-
~ource is changed to a priority lower than any job which had not ex-
ceeded its quantum on the resource. This method assures that a job
which accurately estimated its needs will be served at least as weli
as promised.

This changing of priorities bv the microscheduler does not affect
the previsions of the mathematical model (which assumed that the micro-
scheduler did not touch the priorities but onlv inforce them), for
priorities are only changed when a user exceeds his allowed aquantum on

a resource.

III.4.5 Pricing.

The determination of prices is, to a large extent, a consequence
of the scheduling strategy. In the approach taken, a user agreed to
pay at most a price c W, to get a progress rate W and if he pronosed
a larger c; he agot higher priority.

However, the system should charge the various jobs beina allo-
cated more or less uniformly. It should not just chiarae the maximum
possible to each job, hecause otherwise the jobs would start with very
low ci's and then increase them slowly until thev were scheduled, thus

leading to a gqreater overhead. The marginal theory of pricins theoret-
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ically requiraes the system to charge user i exactly C|iwi' where C'ii c,
is the lowest bid that the user would have had to offer to get allo-
cated. Unfortunately, this definition would lead to very complicated
computations. I suggest here a few alternative methods.

1) 1If I is the first job which was skipped (not allocated) when
the jobs were scanned in order of decreasing desirabilities in the firest
step of the macroscheduling algorithm, and if v, the effective progress
rate for job i, charge job i:

p, =min (c, , c,;) xw, x T
it i i

A
2) If jobs having estimated their aij’s incorrectlv are to be
penalized, and if job i has effectively used an amount rij of resource j,

he is charged:
r..
p., =min (¢, , ¢,) x max b—él)
i A i a, .
ij
3) A unit cost for resource j could also have heen comnuted:
“j = Kj dZ' where [ is the first job not allocated
and Kj the weight of resource j, as computed by the macroschedulina

algorithm, If job i uses resource j during a time rij' he could be

charged:

It is useful to have some prices for resources, so that:

1) A new coming user can by immediate insvection of the prices
determine whether he wants to get on the svstem or not.

2) On the long range, the comouter center staff might determine
the needs to install or remove facilities (sce lielsen [16]).

The variations of -the uj's in time should probably he smoothed
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for those purposes.

II1I.5 Models of other priority systems.

IIT.5.1 The equivpriority case without preemntion.

In this "no-priority case", a user seizing a resource will never
he preempted and will not lose the resource until he decides to release
it. The situation may lead to almost no parallelism in the comnutations.

The worst case equations are:

(111-9)  Yieq1,n] 13w, + & 'a.. w
! 774 K#i kj 'k

J

In the situation of example #3, this gives the following vroaress

rates:
w1 = 16, w2 = .32, w3 = ,64

so that the overlap of activity is small:

overlap = Wy + W, + W, -1 = 12%

Theorem 5: The attainable domain DN of the no-priority system is nro-
perly contained in the attainable domain D"J of any priority system.
Proof: comnare equations (III-2) and (III-9). The latter imoly
the former.
Therefore the no-priority case is uninteresting, and should be

avoided in any actual system design.

III.5.2 The eaquipriority case with precmntion.

This case would also be called the case of "Randomly turning"
priorities. The model is characterized by the followina microscheduling

method:

Tnie time is divided into very short intervals, and the vrinrity of



the users for the various resources is changing from one interval to
the other, cycling so that each user spends thc same amount of time in
each priority level. Typically, the time between two priority change:.
might be 100 microseconds and is small compared to thre interval between
two allocation reaquests of iobs to the microscheduler. YNevertheless,
assume that this method does not introduce any additioral overhead.

A random number generator might be used at the beginning of eact
time interval, to generate the job priorities during this interval.
This would insure that there is no regular pattern of one job spending
most of the time at a higher prioritv than another, as hanpens with a
circular permutation.

The ideca of such a microscheduling algorithm has the following
justifications:

1) The hardware could allow time-sharing of a CPU or a channel
on very short time-sliices, however, we don't know whether this would be
a good practice.

2) It is desirable to assure a user of a certain percentage of
use of some resources, under any circumstances. Time-slicina on a very
short time basis miacht seem a natural wav to do it. If user i is assured
of having the top priority on resource j durino a portion of time Aj AT
where AT is some small interval of time, then, with the aij's defined

oreviously, his progress rate will be at least

However, a much higher "lower bound" estimate for the wi's can
be computed. After having done it, these new "worst case"” equations will

be compared to equations (III-2) and it will be shown that, under some
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assumptions, the "turning priorities microschedulina" performs poorer
than a fixed prio:r'' - algorithm with the pij's well chosen. This re-
sult has been checked by simulation, and the followina discussion
attempts to establish a theoretical justification.

Under this new model, if k users compete for some resource, each
one will get it during a portion of the time 1/k. Consider resource I o
User i will seize it during a period T aijwi' In the worst possible
case, the maximum overlap of requests occurs on resource j. Thus, the

time spent by user i waiting for resource j ic less than or equal to

Z: min (a

a,. w, T)
k # i S

kjwk T,

This points out that if a job k asks for less time on resource j
«ian job i, the maximun time spent by job i waiting for resource j be-

cause of job k will be T a .w If, on the other hand, aijwiT<a

k3" k4K

job i will wait for resource j because of job k at most during a time

9 3 14 -
aijwiT' (see fig. 111-3).

The worst case equations are thus:

(I1I-10) lzwi + Z min ( akj L aij wi ) Vie[l,n]
3 1%

These equations define the attainable domain with turning priorities.

EEEEEEE_Q’ For every point in the attainable domain defined by eauations
(III-10), there exists a priority system in which this noint is attainable
according to equations (III-2).

Proof: Define this prioritv system by:

<=> <
Pij < Pxj A9 Y1 S Ay Yy



T k (job number)

Fig. III-3: Time spent by the jobs on resource j

and maximum interference of job i with other jobs.

7
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Assume that, for a given j, the aii's are all different. Then
obviously, equations (III-10) imply equations (TI1-2) for this system,
which are:

Viell,n) 1)w.+z a . w
7 i ] 3 'k

A3k 354%s
This theorem is reassuring bhecause it says that whatever a user
is assured of doing under a turning prioritv system, he is also assured
of doing under a fixed priority systenm.
However, the following theorem can be proved under some restrictive

assumptions:

Theorem 7:

If one of the following is true:

1) There are only 2 jobs (and any number of resources).

2) There is any number of ijobhs, but comoetition is limited to
one resource only; then there exists a priority svstem whose attainable

domain includes the domain defined by:

< <=> a.. < .
Piy ° Pyy 5 g

The proof is shown in appendix B.

Theorems 6 and 7 show that a fixed priority system should, to a
certain extent, be preferred to a random prioritv system (which is it-
self better than no preemptibility at all). Tf a resource has the pro-
perty that it can be preempted without anv other additional future loss
of time, then the available information on the jobs can be used to
assign priorities for the resources, and a "good"” choice is to assign

the resource to the job which has the least need for it (after having
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weighted these needs by the external urgencies of the jobs, which leads
a

i

to the quantities

I1I.6 Problems for further research.

1) Continuous macroschedulina: Instead of applving the macro-
algorithm at regular time intervels, find a simplified macroalgorithm
to be applied each time a job previously running deactivates itself
voluntarily, or when a job changes its external priority, or even
when the swapvoing channel is idle. Jobs might be scheduled or un-
scheduled just using the desirabilities which have already been
computed, but it might also be desirable to recompute the plj's, the
K.'s, the di's and the wi's.

2) Extend the models to include processes using more than one
resource at a time. For instance, Fig. III-4 shows the virtual time

diagram of a user who initiates I/0 and swapning at the same time:

4 Resources

CPU |
I."O l | .
| 1
Swan=oil; | I
o e i | L""T |
Swap-~ L ] | i |
I |

memory (20K; | | | :

memory (2K)

Virtual time

Figure II1I-4

Another characteristic of our hypothetical job is that it does

not need all its memory resource continuously (a buffer of 2K is enouagh
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during I/0 completion). Could this knowledge bhe taken care of?

Solving this problem would be especially useful for future
computer systems where the cost of arithmetic and control units is ex-
pected to decrease much more than the cost of central memories.

3) Find models of "probable" performancec as well as "worst case"
models. .

4) Which information other than aij's or the bij's on the jobs
would be relevant to an allocation algorithm?

For instance, the exact virtual time at which a job will place a
request might be available for some johs while being comnletely out of
the question for others.

5) How much would the results of the model he affected by slight

errors in the predictions?

III.7 Conclusion.

My initial effort was applied to separate problems which are
usually handled together in a very intricate manner: 1) Schedulina:
2) Paging algorithms; 3) Deciding external priorities of users 4) Col-
lecting information about the average probable nceds for resources of a
specific joh. Pricing, however, should not be a question separated from
scheduling. The problems of protection and of deadlv embrace had already
been separated from the others in previous works. Ry nartitionina the
difficulty, I bhelicve that the way to better scientific understanding
of shared combuter systems stands open.

The previous scheduling algorithms and models applv in comouter

systems where the shared facilities can either be preempted with very
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little overhead (CPU, busses bhetween two levels of fast memory), or
cannot be reallocated without a great amount of overhead (memorv).
The y do not apnly, however, in cases where a resource can be preempted
but the delay imposed on the preempted job is greater than the time
during which the preemption occured. This would be the case if, for
instance, a job is swapped from the drum into memorv, but if at a
certain moment it can't get one of the pages because another job has a
higher vriority to get a page from this zector of the drum, then the
preempted job will have to wait an entire revolution of the drum before
the opportunity to get the missing page is remeated, and the cost of
having a set of pages idling in memory during all that time is of course
important. 1In such a case, the right strateav might be to avoid pre-
emption, and to decide what to do bv computing a "desirabilitv ratio"
for each possible scheduling operation (ratio of the urgency by the total
cost of the resources involved). (sece section IV.4).

It is my belief that the scheduling techniaues described in this
chapter will be especially useful for scheduling of real-time users, who

want to have the assurance of getting a certain percentage of usage of

the resources of the machine before they start working.

Other investigations of multileveled schedulina are still necessary.
I believe that queuing theory gets ecnormously comnlicated too ramidly
when the number of servers and the complexity of the queucina strategy
increase. Simulation is a fast way of testing whether some almnorithm is
workable, but is not more than a predictive technicue. It does not seem
to be likely in the future that a scheduler will first simulate the

situation before making a decision. Analytical approaches are almost all
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that are left to improve schedulers in the future with the certainty

that the designed algorithm will wori almost optimally in all cases.
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CHAPTER IV
SWAPPING ALGORITIIMS

In this chapter a study is made of swapping algorithms for a
computer with two levels of memory: drum and core. Pre-paging takes
place before a program uses the CPU, an entire working set of pages
of this program is swapped into core. Section IV.l presents the
Berkeley or Van Tuyl algorithm, which was developed under the direc-
tion of Butler Lampson at Berkeley. Then, by contrast, another swapp-
ing algorithm is presented in section IV.2. T then explain why I
think that the latter algorithm is much more approoriate than the
former, especially for future computer systems. Resource utilizations
of users programs under both algorithms are compared in section IV.3.
Finally, section IV.4 gives some indications as to how a drum to core
system should be scheduled if the swapping algorithm of section IV.2
is used.

The various notations used in this chapter are completely inde-

pendent from those used in the previous chapters.

Iv.1 The Swapping Algoritam of Van Tuyl.

{10) describes a swapping algorithm between drum and core which
was intended for the BCC-1 computcr.l9 The system has essentially four

resources:

lglt was initially designed for the SCC 6700 computer.
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a) one CPU

b) core memory

c¢) drum (capacity supposed to be infinite)

d) a channel between core and drum
A program might be in four possible states:

1) on the drum,

2) being brought into core,

3) in core, waiting for or using the CPU, or waiting for an
absent page,

4) beinq swapped out of core, to the drum.

An "external scheduler" decides which programs are candidates to
be brought into core, and among those which are in core, which one gets
the CPU, or which are candidates to be swapped out.

A program is considered to be in core when a certain set of pages
is in core (this set might be the entire program). Programs are sup-
posed to be small enough so that their pages can be retrieved entirely
in one drum rotation (if there is not conflict). A conflict occurs if
two programs, while both are being brought in, happen to have a padge on
the same sector of the drum.

The swapper is an algorithm which has to docide, at each sector
of the drum, which page should be transferred. It might do either a
recad, or a write. With Van Tuyl's algorithm (hiereafter called "the
Berkeley algoritim"), pages which are not dirty (not written on while
in core), do not need to be written on *he drum. Van Tuyl simulated
his algorithm with the assumption that halt of the pages cf each pro-

gram are dirtied while in core.
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Table I1V-1

Decisions of the Swapper in the Berkeley Algorithm

A process that the scheduler has decided to run is put on the
swap in list (or read list) if and only if:
Pages queued in + pages of process to gueue in - free core < G
(where © is a system dependent constant), and raages queued out <
free slots on read sector list,
Drum command:
a) If no read to do and at least one write to do then write
out, exit.
b) Compute, {f conflict (many processes requesting to read a
page in on the same sector), for 11l vrocesses on the read lise:
Cost of process = time to completo readn x (1ePC)

viere BC = number of pages of the procwss in core

A > & pages a process may have (s 1a the sase for all

process, like 3 was previously).,
c) 1f there is a free page in core then read *he pane of the
Ioweast cost process, exit,
d) 1Y cost of read * ! or no pase coan Le releassod in cete, then
45 a »rite glie ol the e 6! the loweet ot orovess, evit,
A page 14 toleases) A1

]r.wg 1o cote belamming 19 A proves y SN that

oval (fﬂ;) * eant (g,.)

|
casy Ip,) » ¢ont (;ﬂ.vp;f-e

whate B 1 e beat tead” process, sl P 1o ot et progeease

castidate o swsr i
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A complete description of the swavper operations is given in
table 1IV-1.

Note that the swapper does not "look ahead." When the drum is
positioned at a certain sector, the swapper ignores which pages will
be candidate to he swapped in on later soctors. This is a reasonable
choice because the algorithm is already quite complicated, and one may
wonder whether all the decisions of table IV-1 can bo made by a micro-

progr. mmed processor during the time of one puje read (1 milliscecond).

IV.2 Another swapping algorithm,

The main idea of this new seapping algoritam {s to swap cont 13u-

ouzly in time the pages which belona to the Working S0t of a vrogram

wilich has to Le brought in or out of core, Contrary to the Rorkeley
algorithm, all of the pages are swapped out (and not only the direy
pages). Thian somewhat increases the channel utilization, byt results
in big savings 18 memory. The reasor for these savines §s that a amall
proaran can niow Lie brought intn core in much less than an entire drus
tovnlution since 1Ls panes occuty oanliguous sectors of the drum, A
progran 13 Cwacn o be svanped 1n because 1t haw a hioh external pri-
ority anil because 118 set of pages 1s aAlut to rearys the drum heads,
70 avold Uw pazziol Ity that such 3 strategy woald tndefinitely dolay
e rusning of some Jaby, the schodaler must Do tde “in advanc” wileh
3o ahould b wvapoent in ar aut during a drun prvelu® lon (ane oot 1o
i7.40,

Narte st Whi: hew AIBAFLTN comeideratly timmlifies the Lact @f

e susppet. Thete is anly =se job s e Swagpodl In 3% 2 Uloe, 6¢ o
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job to be swapped out. As long as the swapping (in or out) of the
current job is not completely finished, there is no possible conflict,
and thus the next page to he transferred is always obvious. When the
swapping of a job is completed, the next job to br swapped must be
selected. It can be any job in core if a swan-out is desired; other-
wise, a job must be chosen by the schedvler to be swapped in such that
its first drum sector has not yet arrived at the read heads. Wwhen
initiating a swap-in operation, thore must be an assurance that enough
free core is available. The problem of determining which job will be

swapped in or out, will be studied in section 1V.4.

IV.3 Comparison of tne resource utilization undier both algorithms.

To simplify, suppose that there is just one CPU and one drum.
Then, there are three important resources: the CPl), the core memory,
and the drum-to-core channel. The drum memory is supposed not to be
saturated under normal conditions, The utilization of these three
resources is computed by a program, during an entire cycle (swap-in,
compute, swap-out). Those utilizations will be normalized in time-
utilization of the entire resource. For instance, if the core memory
size is !4, the use of an amouat m of core durina time t is normalized

to A mamory utilization of gt.

¥hile computing the resource utilizationsn, aome simplifying ascump-
tions are made. {he stronqgeat of them is to nealect the increased uti-
112ation of marary and chanmel due to conflicte in the Berkeley aluor-
1thn, kemoving this particuler assumption strenithons the cenclusions

wiiich feollow evesn mmare.
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The following definitions will aid in the discussion:

S number of sectors on one drum revolution
P number of pages of a program ( g of them dirty)
M size of core memory

T time spent by the CPU on a program, while it is in core

S and P both have a time dimension. In these computations, the

time unit is thec time to read one sector from the drum (1l millisecond
on the BCC-1). The resource utilizations are shown in table I1V-2,

o . . . B . !
The channel utilization time is EP in the first algorithm, com-

pared to 2P in the second, due to the fact that the dirty pages ere not
swapped out in the first algorithm.

Memory utilization is computed as a space-time product (see fiqure

IV-2). With the Berkeley algorithm, for instance, the progran is

brought into corc in one drum revolution (time S), handled in time T by
3 K] : . .

the CPU, and swapped out in time 3 P (in the first phase of this swap-

out, the clean pages, which do nnt need to be swappred, are replaced by
another program's paqes; in the second phase, the g dirtv pages are
swapped, at a rate of one page per two scctors, the other sector time
being given to a rrad). The total resource utilization of a program is
now defined as the maximum of the three rc¢source utilizations (channel,

core and CpU):

For algorithm k1

M . E,-l: rs ‘S- [ 2
) \}
U, = max (T, L 0 ; ")

1

For algoritha #2;

.
= max T, PT e 2%, 2r)

. “
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The Berkeley algorithm was simulated by Van Tuyl under various assump-

32

tions, among them, P = 10 pages, S = 32 milliseconds (or pages), M

pages and T = 10 milliseconds. Table IV-2 shows that U1 = 15 < U2

with these data, so that the 1lst algorithm really behaves better than

20

the second algorithm, and the bottleneck really lies in the channel.
If the memory size and the specd of the channel are decreased to P = 5,
S =64, M = 10, and T = 10, the second algorithm performs much better
than the first one: U1 = 23 > U2 = 10, and the bottleneck of the first
algorithm lies in the memory.

Now follows a study of how the resource utilization would change
if the characteristics cf the available hardware were to chanae.

The size of the memory, M, the length of a drum revolution, S,

or tne handwidth of the channel, B could be varied. B was subvosed to

be eqaal to 1 in the previous computations. More aenerally:

L 82,5 p?
U, =max| T T 28 p o
1 ’ 2 B

b

2
P‘l‘+2% -
- & RS TR
U2 max | T mn m

1) Effect of bandwidth,

Figure IV-3 shows the effact of bandwidth. TFor high bandwidth,
algorithm %2 performs hetter than algorithm #1, as expected. tote
that this is not true if T were high (in which case both aleorithma
would he CPU bound); but the assumption is made that CPU's are actting
fastor and cheaner, and are not the critical resources of modern com-

puter systens.
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2) Effect of drum rotation time.

Figure IV-4 shows how, when the drum rotation time increases,
algorithm #1 looses efficiency, but algorithm #2 does not degrade at
all. This is due to the fact that the memory utilization by algorithm
#2 is independent on S. This will allow the possible use of slow,

cheap drums in future computer systems.

3) Effect of a change of the relative cost of core memory

versus cost of other resources.

In figure TV-5, it can be seen that if the core memory size de-
creases, the sccond algorithm does not get memory bound as rapidly as
the first one. This will be helpful if memory is the critical resource

in the future.

Demand paging. If a page is missing, the normal strateqy under

algorithm #1, is to leave the program in core while the page is being
brought in. But, with algorithm #2, if enouah bandwidth is availahle,
it is cheaper to swap the entire working set of the program back onto
the drum, to bring the missing page into core, and then to swap the
working set in again when it arrives under the read heads of the drum.
Tie same considerations apply for a short 1/0 operation.

A final word 13 recessary about the accuracy of thete resource
usage estimates. Jt was assumed that there would be no conflict: in
other words, for each suctor of the drum, there is 2ero or one paaqe
transferred, hut never pages of twn differeat jaohs both wanting to he
transferred. Possible conflicts tend to increase sneetimes considerably

the resource usage (memory and channel) for alonritha #1, whnse actual
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behaviour can be much more resource consuming than the figures show.
This would lead to a preference for algorithm #2 ecven more than was

previously computed.

IV.4 Scheduling a computer system under the algorithm of section IV.3.

The scheduling problem considered here, consists of deciding
which job, at a given time, is to be swapped into core, out of core,

or to occupy the CPU.

IV.4.1 Scheduling Criterion.

For user i, we suppose to be known:
1) his bid Ci.
2) his requested CPU utilization time Ti'
Ci is the bid for an entire cycle of swap-in, CPU usage during
an interval Ti’ and swap-out.
An additional constraint is that a job can only be swapped in
when its sectors on the drum pass under the read heads.

The system's criterion for s-~heduling is to maximize

where § is a set of users which can be run over a given time interval.

IV.4.2 Jobs Desirabilities.

1t is desirable tn allocate jobs in a way such as to get a balance
of resource usage (to swap, for instance, a larae-sized job while a
small-sized job with a large Ti occupies core).

To get such a balanced set of jobs, prices are first assigned

to the basic resources:
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The desirability of job i is thern:
C

d =

i
1 i

2 + 4 Y
%ru Poru * "on Pen t Cuan Vs

where = '

U are the resource utilizations of job i, which are

%en’ S

given in table IV-2, as functions of the characteristics of the job.

IV.4.3 Job scheduling over a time-interval.

No justification is given here to the alaori'hm which follows.
However, the reader will recognize it as a variation »f an algorithm
of chapter 1I11I.

For a given time-interval [tl, tzl, a schedule is computed by the
following procedure. As nearly as possible, jobs are allocated in
order of decreasing desirabilities. A job can be scheduled for swapn-
ing if its pages on the drum do not share any common sector with any
job already scheduled for swapping, and if the jobs for which alloca-
tion has already heen decided, leave enough memory for the new job to
1) be brought in, 2) wait for the CPU, 3) run, 4) wait for the channel,
and 5) swap out.

After the schedule has been workcd out for this time interval,
the new prices of resources are computed as a function of the old prices
and the idle time of the resources. The scheduling alqorithm is acti-
vated once every (tz—tl) units of time. This miaht bLe typically a

drum rotation time,
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AFFIMDIX A

FROGE OF THRCMEN 2,

tpuations (211-0) can Ve written, vusder eriority assiosment #):

a=1) u
v‘eﬁ“.ﬁ'. w z Y 3 V,‘o ﬁ ! o s 3
oy L} %
vin ¥, « 2 Moy for v o0, ama ¥, =0
" e€l1.n)
Paoat s
Undet prioeitr avuliamment %
L3
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Lo Z A, teber, mal 2
LA sty ¢ e
'i'!‘ *‘:n
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epatiss *) of (A=),

11 Nete when fae k40 and b 200, 00 e emeions et B oL
butimyss Uhe gt ideiting 6F Uimde Dbk fulalivs Y& ~10het Ml ) o Yol §°
B g hied dedy fied O6 Ay tuehitie, THiE S mbust fos B of

4s3) Tof % # 4 5 % 2 3°,
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2)  Me have Y" . ri'P! }0“ = k'vr 54

““o = 0, Y'.| = ], x.H' = "’ €1, X.I'i & 4” <

. X°'.,,. L !..k. for any +°) this proves eauation #)°
ef A=),
1 Fimally, tu 1E shown that equation 1 af (4=2) 15 melied
by egiation #1° of (A=1). For V' # | and 4* 2 ;°, 5'“, ;gl,“ hw s
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3. Mow, eciviously, any nrioritv assignerent different from the
optimal priority assionmant of theorem 3, I8 such that there exist
Wwo uters { and ie) such thae,

"1y " "oy - !

amd 2135 D
‘4 €10

Thus any pirlerity astigarent pem=trivally different from the

e of thearen ) can be Improved.



/16

APPENDIX C

PROOF OF THEORE!. 7.

1) There are only 2 jobs.

Before proving the theorem, the following lemma will be proved:

Lemma: if )\12, )\21, w1 and w2 are positive numbers less than

1, then equations

(c-1) (1+. ) v +>\21 w, <1
(C-2) A12 Wy (1 + >\21) Wy < 1
imply

(c-3) W+ )\12 ¢ Nyy) ¥y <1
Proof:

equation (C-3) is achieved bv multiplying equation (C-1)

by (1 - )\ 12), equation (C-2) by >\12, and adding.

Proof of the theorem: Assume that VJ, i#k <=>a, 45 # akj' It

must be shown that cquations (ITI-10) imply equations (C-4):

(c-4) 1}" ¥ Z akj K
ak)<‘-‘1j

Equations (111-10) may be rewritten as equations (C-1) and (C-2)

with:

)‘u' Zu' %k
l V‘d

3”3



that

4

in S whose progress ratio is less than w

111
According to the lemma, this implies equation (C-3); now note
2 2 S >‘ij *in

K
;< Ay

so that equations (C-4) are verified.

2) There is only one resource.

It must be shown that equations (C-5) imply eauations (C-6):

(C-5) Viel(1l,n] , wi+Zmin(aiwi,akwk)\<1
k#i
( C-6) Vie[l.n]. w, + Z a w {1
i k ™~
<34

Consider the set S of jobs such that k€S <=> akwk> aw, .
Does there exist a job k'€ S such that wk,>wi?
a) vyes, there does. Then choose k' such that there is no job

K and greater than wi. Then

equation #k' of (C-5) implies equation #i of (C-6).

b) there is no such k'. This means thathes, wk< wi, and

ak>ai. Thus equation #i of (C-5) implies equation #i of (C-6).

3) Note that the theorem is not valid for any number of jobs and

) any number of resources, as shown by the followino counter-example:
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.25 .25 .25 .25
.24 .76

(a,.) = .24 .76

.24 .76

The progress rates Vol Nor, w, = w3 =W, = Vg .875, satisfy

equationg (ITI-10), but not equations(III-2).

However, I suspect that the ontimum of 2: w. is alwavs higher
i j

with equationS(III-2) than with the constraints of eaquations(II1-10).



