
AD-760 546

AN ANALYTICAL APPROACH TO COMPUTER
SYSTEMS SCHEDULING

Robert Mahl

Utah University

Prepared for:

Rome Air Development Center
Defense Advanced Reeeaich Projects Agency

Ju ie 1970

DISTRIBUTIO BY

KM©
I

I 1 KMITWIT
i» :m\

DISCLAIMER NOTICE

THIS DOCUMENT IS THE BEST

QUALITY AVAILABLE.

COPY FURNISHED CONTAINED

A SIGNIFICANT NUMBER OF

PAGES WHICH DO NOT

REPRODUCE LEGIBLY.

Q
RADC-TR-7J.)07
Technical Report
June 1970

to

iO AN ANAIYT1CAI APPROACH TO COMPUTER SYSTEMS SCHtOULlHG

CO
University of Utah

MH Spottsorttd by
^k OafMM Advanced iMMrch Projacts Agaacy _
^ AtPA Ordar Ma. 129 ' \J D^CV *

Ayyraaad far pabUc ral
dlacrlbattaa aalUlcad.

Md taaclaalaaa ait ■laid la Uta
af Ua «aUwra mA ■>■■» MC ka lataryracad
fa^raMMU« UM affUl«! rallclaa, aUhar a^raaaad ar lapUad.
af cka 0»raaaa liiiMili ■■■■atifc frajaata Acaacv ar Ua 0. f.

NAtiONAl ftCNMCAl
MIOVMAi-ON MtVlCt

Caa*
A- Pawa Sti1*"»1» C >■!■ ■ ■ l

C* M.,. A« r»«a Ha«« Mr» Ta*»

>

UNCLASSIFIED
fircurily CI»iti»c«Hon

DOCUMENT CONTROL DATA -R&D
flgfuf/f» rlmnlllrmlion nl Ulla, hixly i,l mhitrmi I mnd tndrtinf »nnotKtlon miisl hr mntmrad whmn Ih» ovtrmll ttpgil It , lafllltd)

i oxi&iN» lino »c TiviT v ,Cor»i..r«(» «ufhor; * ~~" Ij«. RtroHi »truRiTv CL»bjinc»iiciN

Uiüversity of Utalj
Salt hake City, Utah 84112

t Mf POM T T I tI I

Unclassified
ih. CROUP

AN ANALYTICAL AJ'PRDACH TO CfMn/TLR SYSTUIS SGÜiimiNG

« Ottrmimrivt tort* (T p» ol r»poH mnd /ndnaiv* c/at*i>

f *u *Mon>>i r^ixf naiti«, inTjdl« indiat /«»i (wm»/-'

kibcrt MaJil

June 197U
M <OHlm»t ' ft l.»«N» HO

/\F30 (002) 4277
» •■o^te » NO

'• »O» »t NO Oi • • .r« ■•

S •.■!■. -.• i 4«r •*•* IM«B*M* Mai awi k« aaair1"« •»'•

KAÜC-TR./J-lu;
»••t»l«w*><>N «• • • tWI«. •

Approved for public release; Ulstrihutinn unlmttcd.

' ••••-•-••••-•••• Honitored by
%rr«y Kesselatn
ftAüC (ISCC). GAFB. NY IMII
AC itt»)iO.;ol8

TTfTTTrr

Defense Advanced Re*e«rcft ProJecU Aqer'y
wun DC ^UiO)

ThU rrpen CAJMJW» tcm aspect» of the probtcM nf allocating ixMurcc^ in
a nilti-pnvr«M«l coK|4it«r »yatan. If nrv invtattgate» to t4iat cjitent the
user» eight participate in resource allocation Jecttions; a systaM that Uvtuancnlly
Jetemuwt tht prices of servicas i» Ahrocatod. A mxkl i» »tudiod which yield»
a Ulanceä »et of prograM in onlcr to get a joru «iMultaneous usa«e of the
4vailahie *y»t«ft*» resource«. It also cmanine» liow rvsnurte ■rlllMUlH finite»
«an affect the choice of eiauiaant to he used at a ctequter installation and the
ihoue of a PflVPlng algoriUe« at ty»iaM'i desijpi tiiv.

DO ~I473 mi

Security CUnlftcitton

K Ev wonof

lirapliics

Comimtcr (Implucs

UCUSSIFIIJ)

AN ANALYTICAL APPROACH TO COMPUTER SYSTEMS SCHEDULING

Robert Mahl

Contractor: University of Utah
Contract Number: AF30(602)-4277
Effective Date of Contract: 20 May 1966
Contract Expiration Date: 3Ü November 197U
Amount of Contract: $10,535, 198.5A
Program Code Number: 0030

Principal Investip.aror: Thomas G. Stockh-m, Jr.
Phone: 801 581-822A

Project Engineer: Murrav Kesselman
Phone: 315 3 30-2018

Approved for public release;
diatribution unlimited.

Thin reaearrh W.IH supported by the
Defenae Advnncid Reseat cli Pro left»
Agency of the Department of Def. nn.
and wan mtnitored by Murrav ^'eaaelmaii
RADC (ISCE), GAPB, NY 11441 under
Contract AP30(602)-4277.

l\'

AN ANALYTICU APPROACH TO COMPUTER SYSTEMS SCHEDULING

PUBLICATION REVIEW

This technical report hcr^ hoen reviewed and is ap| ovcd

MURRAY Ki^sy™
RACC Proiect Engineer

M

ACKNOWLEDGMENTS

I am especially grateful to Dr. David C. Evans, of the University

of Utah, who has patiently directed my research, restoring my confidence

in many hours of frustration.

Dr. Jean-Yves Leclerc, of France, convincod me in 1967 that com-

puter systems can be studied scientifically. As such, I consider him

as the origin of my vocation.

Many thanks to friends, professors and students of the University

of Utah, among them Denis D. Seror (with whom I had numerous fruitful

discussions), and Duane B. Call, who helped to improve the wording and

the comprehensibility of this document.

I also appreciate the relevant critics and comments which were

made on earlier versions of this paper, especially those of Pjy A. Keir

and of Peter J. Denning.

U

TABLE OF CONTENTS

Acknowledgments ii

Abstract vii

Chapter I Introduction 1

1.1- The role of scheduling or allocation
in multiprogrammed computer svstcms. ... 1

1.2- Evolution of the problem of allocating
computer systems' resources 2

1.3- What is wrong with the current approaches
to resource allocation? 5

1.3.1- Job Shop Scheduling 7

1.3.2- Current Status of Queuing Theory. . 8

1.3.3- Simulation Methods 8

1.3.4- Heuristic Approaches n

1.4- Organization of the Thesis]n

1.5- Trends in future computer systems 12

Chapter II Pricing and Resource Allocation 15

11.1- Introduction 15

11.2- User made decisions in I svsten with
decentralized control 17

11.2.1- Some definitions 17

11.2.2- Di'Cinions made which «re rel-
evant to the u-ter 18

11.2.3- An cxamnle showlno tradr-off«
botvh-on the u^c of several re-
source«! by a user 1Q

11.2.4- Priclnq 23

ill

11.3- Indivisibility in space 25

11.4- Indivisibilities in the time domain
and reservations 29

II. 5- More involved contracts 32

Chapter III An Analytical Model of Space Sharing ^5

111.1- Introduction 35

111.2- Some definitions ^

Til.3- A model based on fixed priorities (with
nreomotion) for each usnr and resource.. . 40

III.3.1- overview of the mode] 40

III. 3.2- Fundamt'-al equationf and
consequences 42

III. 3.3- Definition of tho mathematical
problem 44

III.3.4- Examples «

III. 3.5- Multiprocessor Case ^

II1.4- Macroschedulinn and microschedulino
alfjoritl.irs under the ; rcvious model. . . . ',7

III.4.1- Combinina two lovnls (in time)
of schedulim ^

II1.4.2- Assi'inmcnt of rriorittcs ■

III.4.2.1- A ca«so whcr^ a
qiven assignment of rriontieB
can ccrtainlv be improved ^

IT 1.4.2.2- Two r.isf ; w>»or^ we
know how to aRslnn priorities.. . ft

I IT. 4.2. 3- General ea«" r''

III.4.3- A^Hitnnent o* valuei lor th»»
pronrr*.« raten w ••

tv

111.4.3.1- The 0/1 integer
linear proqramminq problem. ... 66

111.4.3.2- A first algorithm. . . 67

111.4.3.3- A more general
algorithm .69

111.4.4- A summary of the proposed
scheduling method. B 71

111.4.5- Pricing 72

111.5- Models of other priority systems. ... 74

111.5.1- The equipriority case without
preemption. 74

111.5.2- The equipriority case with
preemption 74

111.6- Problems for further research. 79

111.7- Conclusion 80

Chapter IV Swapping Algorithms 83

IV.1- The swappina algorithm of Van Tuyl 83

IV.2- Anot'ier swapping algorithm 87

IV.3- Comparison of the resource utilization
under both algorithms 8«

Demand paging 93

IV.4- Scheduling a computer svstem under
the algorithm of section 4.3 97

IV.4.1- Schcdulino criterion 91

IV.4.2- Jobs denirabllitiot «7

tV.4.3- Jnj tch*dulino over a ti»*-
Interval 9«

Chapter V Ooncloaion and ProblM« for rurtfwr •••♦are*«. . . Ml

List of references 102

Appendix A. Proof of theorem 2 105

Appendix B. Proof of theorem 3 107

Appendix C. Proof of theorem 7 110

vl

ABSTRACT*

This report examines some aspects of the problem of allocating

resources in a multiprogrammed computer system. It first investigates

to what extent the users might participate in resource allocation de-

cisions; a system that dynamically determines the prices of services

is advocated, A model is studied which yields a balanced set of pro-

grams in order to get a good simultaneous usage of the available sys-

tem's resources. It also examines how resource utilization figures

can affect the choice of equipment to be used at a computer install-

ation and the choice of a swapping algorithm at system's design time.

*This report reproduces a thesis of the same title submitted to the
Department of Electrical Engineering, Division of Computer Science,
University of Utah, in partial fulfillment of the reguirements for
the degree of Doctor of Philosophy.

Vll

CHAPTER I

INTRODUCTION

I•1 The Role of Scheduling or Allocation in MultJprogrammed OogBUtar

Systems.

For several years, computer scientists have been faced with the

task of organizing large information processing systems which many

users may access simultaneously. In these systems, there arc a number

of physical resources (cells in core memory, peripherals, ...). At

each moment, some of these resources are allocated to some users (it

is implied that some of these resources are not allocated to anybody,

some others to the system, and finally some of them to many simulta-

neous users—like a shared program segment).

What are the specific problems for these larae systems?

1) PROTECTION: A user must be prevented from accessing a re-

source which is not alloc ted to him; or, equivalently a user should

"see" only the resources that he is allowed to access. Several solu-

tions which are more or less satisfying have been proposed in the last

few years, detailed accounts of which can bo found in [1].

2) DEADLY EMBRACE occurs when two or more processes are mutually

blocking each other, in that each of them is demanding a resource that

another posesses and doos not want to release. The problem of avoiding

deadly embrace has been solved satisfactorily, for instance by Habernun

[2], who assumed that some facts could be known about a user (his maxi-

mum demand for resources) before any resources were allocated to him.

3) Th- schoduUn9 or ALLOCATION pioblMi ItMtf ItO «tM» KlM r*-

•ourc«« should bo alloc«tod if thor« i« «ny confli || t« cU«tly «OMI-

rato fro« th« prnble« of protection «nd can Ix* coiinUtoly «optir«««- •

fro« th« proviou» problm. boctuM deadly •Hirtm tt only loth«! for

c«rt«in kind» of dvtund« which «r«* not r«l«v«nt to tfe» «lloc«tor !«•-

WtilUfi accoas to snared tables and shared ftlesl.

rroblen ■} is relevant to this study.

I• 2 Evolutton of the Problen of Allocating conoater »yst»*^* »»*o<tfcee.

The first casputers were run in a batch •processing node. There

were really two processes—the syste« and a proor^Mi to be run by a

user. If either of then asked for a resource which could not be allo-

cated (for exsnple. too nuch core ncnoryl, the user's proaran waa sin-

ply aborted, and the neat one loaded.

Latnr cana the idea of tine-slicinq the utilisation of the entire

set of mem resources (core nenory. CPU and disk I/O). At the end of

a time-slice, a user would be deallocated, and another us*r allowed to

issue requests to the available resources. Vic entire systen could be

considered as just one biq resource. Response time In such simple sy*-

tems could be studied by queuing theory.

Another idea w.is not only to partition the tine donain. but also

the space of the resources. One user mqht have the nqht to use 10K

of core and half of tue (.TU time while another miqht qot 5K of core,

half of the CPU time« and the disk I/O. Space-H 11 cinq could be done

either independently or concurrently with timo-ulictnq. Aqaln, if a

user should ask for more than the resources which he was allowed to

I« III*

ciMfif• mm f«ftitMM«f

tfw lyii» #•#•• %• «ItoMtt M liimwii y^f» «f «•#• it t« *• •■

wiUtoto» b«i Utu MtAiAi »t !»• «ntiMtiy *ii«ff«Mi tMf« •# ■•"

•MNM tf«rttU«U •! UW HHMHtlf «MTf UM« AMHMA Mi M I»«

l<M •! MVtAf « ••#• #MMt f«Mlti«ua«l «M •»*#• «f • «Mff «MMK

•M to m\0tmm4 fey ti» lyni «M» mi 1m «II. »^ «Mli iapiM M

I« f^tUtlMUAf «f UW r»IOWHM. M *• it Will t««»f M

ir «pui iinrim» ••••if to** •• i—tnwwui. rat

IMUM«. M|r«M tlMt « «Mf flfcMM f«f«Mt V» fM»l-IM«lltf «f UM

•«lftU»| COf« RMWfy« Mi «Ml I« «MM M MMllMto M tM —| «I

MlcH tM fM«Mt Mf* IMM4. r*mm» If « fM WttllUCMJi Uloff MMt

JMS MM W Mk fM MM* tMy «MlM*« M* X* «•< •• • M»«lt mm*

Of IM «MtM*« MMMOM Mttl4 M 141« Mtll IM UffM !• M«I4 IM-

•MM MM« Of It« MM. K» ««Did «MM IMfflCl«MIM. li t« MMMAM

M «llOCat« Uw •flltr« •*! Of tM«MBBI M « Mol«. r«lMff KfcM »« «Uv-

e«t* ««cti rvtowrc*- tnMfvftdMitly. Mt« Ü»«l ^«rutn« cMonr i» «lM«4y

teo «««k to «iMlys« Uli» «ttuAttofi.

h Mwfltct «ri««« Mo« two or «er« «««r« «iMlMMMtly «MMt to

UM tM •««• rvtoarc«. fecM««Uii« e«n M dfftMd M tM «rt of »olvinq

•uch conflict!. TM »eMdulrr hm* to «olw ii««»it«t« conflict» tby

9ivin9 to «on« user « priority ovur th« otherti «nd tuniMt« tM pro«-

«hility of future conflict«« without n«ce»««rily reducing this proMI'il-

ity to «ero (which would le«d to rejection of *any nwi-currently can*

flictiiuf re«|uefttt).

•f mm mm** pMfM». It i* MI ptMikt«» i-t #«»<«»••• «•

H» CM M « «l*t «lllh»g| fIVtftf »Ml MM MMM if MM if M

•t. A NWMt dfilMll« '-*•■• rtM •»« l«il«t*l»«lliiM •• IM um

CHk 11 I« Ml WMM^Ii M IMMMtf UM MÜ IM MM MMfy Wtl.- -

MM p—i i< «»tYl«« M» Mftrf ««MIMIM« ID»

Ut M» M Mp» MM. A mm* «Ml MM M M« M IM IflMH Mlf

If M MB M MlWii «f MVIM MM pMJIM «t IM «IM Mt ftli fllM.

M< A MffMM Mi«««« M IM <90 Mi MM MMffV fM Ikli M%«IMIM»

IM • foil Mi MM Mit«<*

{■«M» MMf MM» MMI «MM I« Ml MM MMÜMM« MMffMMl IM

IMIMM. M IMBM MMItM« IM MM M»4M of «•fftTIM. IM M«*t«l

•M»MllM ri^b**«* fo» «*• if*«-«» I« I« flM A Ml «f M«n* «Mil WN

MtrtM fwt«^«t. 4 MM cwiirMl. •«* ih«i Men oMlffAct in tiw Ml MM

M fully »««IAIIM rvM^AlM» or «ny pcA***»!«- i^iur»» of MOM tM*»*if,.

S«M 0 Ml M«ll M MllOd « COMtUbl» Ml Of ctmitOttlO. fot O ft MO

•ytM* IMM vMii» MB» cootMcto or MI of Moiroci« for Mitti it kmm*

hom to etiMk m*r c«M>oilotliiy. This etoolM • »tructoffv of pMtiOlo

conirocio. A 9MI of ooMrn »ctiodttlora U to n««* o »irueiur« of coo-

IfMlS WttlOh Would M «4 riCtl «R pMtlbl*. ätvA rOAfttJbty »Vlfl ostMdibl«.

• m m« Wim «f 4m» »UM» M ptrtiMl«

.♦

•..«„<(•« »^ I»« •*««», || M#te| •!«• ftp«««» I

I*!« far Mwt% «mvtat MIW.

»i aif «ill tM «II«»

II »» flM»«to MP» IkM it I»

•f ift»

t.l

MMiaton •#

•• »»I«*«!«! «• «•• «f

«AUMf f I«l4 «tti A» «M li«W

9fim «All tft, fW tM««MV. I« mftlMt» •»• «««•••'

f««l ti*» «wf«. aai «• «itUlli tfM CPV «itliMf !«• f«f

tot It «III «ttlflrlAlIf «»tCTM«» W «Hi«» CtM« • «Mt

r«kCtl«l Of «lift |MM M» «f VMMNM« Ifc» ty»*«« <»»H»iH «III i

•f «Mr»«, tiui e»r««iik ftift4i mi ^infi^i mt ««ff«i« taww» «t ••#«»•

WPMH ttitopU» tot «Me* llit »yftto« to» H«« 4Niift«tol* fi»W • §•••

MRtol« Ittii'Off ilWM» >>■■—— «ttllMIK«. I If 111 II««*

MHWI

«NIC«i MUtollWI*» toWM« —Wf lilt ^ «to «ItaMIM»

to totolto. «to MMlMtt«« to «to «II«C««I«M «ltoti«to»<

•w« cntictM« iwr«. «iiOMfh it «Ml« «T««« to to*«i«l« to ««t

If» in« •■»•it«« «yviM«. iMUui* «

fitwti«iI« tfpoii»«»»« »• ptvMBMl t4wr«i« nor« oaapUMty

I« All«H«»U* «M •»-•#• »« »• '/»MWI^I» tO «OMlfeff HOki Ite «Mr «Mi«

m Mi «MM rMtlMfiM« If« «llMMIM i»^t«l«M.

•T wyi«f M «M^Ut^ly MIMM« MM M»^M«I m «f «M «MPM«?*«

■HMNM* «Si if M«Mptl«f M Mit IM Mfttly «MllMt« IIMMBU f

• MM« « MMIJiff^ll ^tlMMtlM MMMItt. %•% I«

M*4« iM IMM ««fy M«ll ptffl, OT «M M# l«M t«MI*« f«f

U» M»lff H»»**"»» i» M« •••' '" *• r»fMMMltv l*MlMi I«

»■^■»iiMM. MMMff* iMT tMf« PMP— «Alu» «M tm •#!«•• II I«

«MlfMl» «Mi ttW liHI—■! i» Ml« M laftlMM 11» «tlMMlM «I-

tm 109 • ■«»rifi •• M» MM «f

UkM UMM U « «Mil MftM «f

Ml«» MMM» «IMB»« l»9 «Mlf» MMIM Cl

MM* M^IIM«. til« iaaitia« rvMiM«. M«.. 1.

(»•«••«ff* n«wn»iM MM M« «f «ssfr UU«M M M«My« M«PMM tv*

M»«f«M» •••! AA «*M|>* <** *•* l#«i»-«tt« «III fc» «l««l l«Mt| 1«

MM «tM mi « «M^MM «MHl** IHMIIM 11.91.

A ff««t«« «f UM «»«I 1WHM MIlNii H «MlMI« «f

l.l.l äSLfiÄjaSSÄÜfil-

taf»ffw»cMi Indutirt«! tehtduUm Hl

itwory et letwiuUif f4|

NMI of Whm «tttitM ef Mtofelu* tu«« to«*« 4ow 1« Of«r««tcw»t

for üw problMi nf • jote nkidi «m lo b» r«» in » «.««91» itfw

of IM Aopo oa» io oitiwr lopetod or «rtiiiroryt. m« m*m*t of

It UM» flOIM. Mi tlM» ||«# «fwM Of 0 ftVOO Mit IO 0 flOM #M^

ao kooMO io oiOMeo. A fob wro»# rfrto« (opotf pmmt iknmß in» Mio

HMO OOOOt. HW «I» !• «» flOi O MOo^il« • -f4»f I« «OIC*

10 fOlOf tO UMitO • M |C00t • 00t* MOIMOM« for tOtUOtO«

U- ffWfOt» IIOO OIWOl Of O }00 io «tw oyotoM.

fW ptooton oot olto ooto taoMtftfMoi wttm ••• *<f< toot «oi«o

10 lOflOII». IWf Off tot »■»Otf tpOOti IO «It». «o4 |«M •«<

iotitiict io««o otoit ftr ffootoroo»! ^ -«>«> «MOtlioo ii*«irM«»«

•OlOt <INt flffttl Mü

ootto, tootf totif• to ytoM ftoi rvtolto.

toolftit* to to witotli of tto oorly itn mwf tottritt ttv* »mm

v »* in •%w§ft DT 0 MWlilOtUtO Of •IfOittlltO

rtttit totlfttt* t |»o iQtp tioi of ortbtoo «Otfo ttbo tytl»

Mit tOtf^. A IfH^I •«*** «f «01« *IM f« N» fOOOi iO 1*1.

Ifct ruow it « • My %o tolot to »»Mt oo0>t. ootfo oll «Mt oo tto»

•r*«t or to tr%ivttr M t ffintrn tfo porfoctlv kotto. tt t» Mfi to

ooot4 Oo ott4 for rotl-tiot witmi ttmialto».

I.).3 fofWMJUatm of Quiiti^ Throry.

Tt* settc^ulifMi of tiP»-«h«r«d eaaputcr «vttMK HM b—n »tudivd

l« tlM lifht of «luvttln« th«ery. twiM* of such mthads c«n b» found

m |i«7|. Hit« ^protBh is not Mti«fyin« IWC«MW« it «fipli«« only to

«•r> «lopl* probl«««. Nont of tit* tin» thn «ytteo I« rndnwd to)u«t

on« frocnptitoto r—onrot U CTV or • dirti, ond « «kiM>l« ntrato^v Im**

Ml moiMd Mbinl. or PI Cmrrrrnwid iMMromdl I« »todtodi ihr ronpwK**

Uao of tlw •/•^«M to « «nor Ao «ott« to »«if th» unifan rrtoorw

for « rortoin itno portod. It conpotod. 1»—r ntt4*ooioo or» rfcoioorlv

of on »rip to oor protlna, kooMM 11» holtlo ooc^f of a wgdifn con-

polor ayn— or» tno «IMO of tnr moor ion md t»«» MMvidtn of U*

«IMMWU rotkor «MO tfco apMd of tH» CfO*n.

•MO «Mt UM OOtlMr dMO OOt MllOM thOt «tOUvtlCO OO tfc»

•MtiM «Mr*» wlig*fr «wold bo otod MHM «rootiof • r<r*o«»tc» «no-

olonritiM. tMll ttotittiro CM kr OMT «oofol to r*

of o lyofi focod oitb « dtrtuo not o* M»rt dfonfe* «ad

M «ptorMoa M iMtiol inrdwoi« OMfioorotion fM • toapMor inottllo*

tieoi khmmmi» <• >»««• o immmt» ollodotlno oloorilt

onaaptiMM of tlw «Mt« «MrattrnMiw 04«ii IMMT

l.l.l

I «MM IMO OMMMt •OttOtO

«••♦• «ad « «vrtoia coofiaorottM of aval I« I« « tnartii

t**«tf« or« «olid only in tft* eama fM Mil * if« •lau *• ^«n

taa iMaor - f r^ronrataa «aato offoct «Maid ha flw«Md la aa

Iwm ttMt li U ittnerAlly inpeuMMa to etMCli th» afrert of «äCII of

Chan for •over«1 «t« of v«lu»4 of th* othom* Jh» root tlniiwr of

ttiwUiioR 1« to loao eontrot of th* ctm* md *tt*e\ r«t4t toownir«

matt m wmrmw «IMII of ro««!««. MM IA oi«tfit*rrfof thooo rooult«.

Mr* «MI«, it I* kcllovtd tlioi •MNilttii'i HMMM to of froai Holo IN

«IMW*IWI «i Mt««l lioriMro »«o(i#«rolla» vkidi «tit •fftelMftlf rM

• dMMA MMflo ot t'#Oi«r«o># Iwt »«t I A «olircf I*I« « •«"^tolio« «lonr*

ItlMI «4llfil Mk IM OffMll«» *** t*w f%*'

I.I 4

it lot «tiorit*** fffini •• for trv ••

««• <-f i««t ooo «Mpa^t t■»-«»». «MMfttltv« it •* t%»

CM no |t|. for io*t40oof • OMoti«»« M i« tto «oro IMMII otili

llfll, or m» «tiliootioo of «to rtMooot »olmio I lo*olo or

Mn.ltli. tut« f***m*9 %• roooi«wo« to I« 'frlttrol.*

too oNotitM» ■ittfwi ito *tilio«Uoo mn 9m**nU** flm *****

UM» pfOMMo« io loolorU ^fnni»! Ill.tll. «nif* will Oo

inoorni io «o^ttoo It.I.

Ito tr<oAI# vitli MM tlM««Mriw» M4*t* I« «tot ttof «<MM4O

MMIMIM M tflO OOt Of MM IM^Ml* *• tOO «tort tNrO |0.|4|.

Moy MMM to MO4 fm OMO#OIIM if «to oio t\ to Mt WIOMM OMO

•r

I»»

It 1« «orUiMmU to briefly »»ntian • wry t«eUtt>4 ^prn«cti

uM« by « t«« «t UCLA. AMolutvty «vtrythiiM «nout th» ptantm**

MlMviottr it ■lypoaid to to trnwn «id «ynttociMd in « dirvetM «ir^fti.

Ml to «bit itfonMtiM. ievtt UM tttoitt ■toory «Ml trrooMter tllo-

ttUtt fat t protr«» rtMMltf It t Miltl|»t'v«t««*f ^y«t«i. tblt it «I

MMnpIt of taw t «Mf totld «toiMt* bit «it retnurct tllttetit« f^r «

ttt«i MivitttMM. tot tto «toFl* of Eitoi«« t«tft tot ttflil**ifftoto

to olio» it» fitoiwi 9i t tol«wtol to« of «ttt^ oiitoot «WJIM«

li.

1.4

t tolloto «to« ttor* *• *** nmrnt thy t ttor «Mold tot«i »•

it «to tutoitt tlloMtlto toottioot. IM» lto«ti to»toti .iot

«tot too to otbiooto. Itofr oro ttwot ully too «fRpvototooi

li Ito «tor «to Mto «to totimoM fc.ioM»lf, or«

II to o« «ito «to tyott« «nt lotofWMi^t too« bit too to*

if, «Ml pnootbl» tfto *tfft bi««iio tto «MI of «orioM*

• U« It Mt« %hm •Mfl«tOtt.

MwoM toly oorry toot« coofflieft, tto «rr «» otototf

O «MM fftM tMMpDlltlto *** M^ail« OMfilO«. M It

to «tottol turn by lottoiot t iwt^to «y%t««. If o «tor O«H»

of t tortoi« rootorot. to tot to p«y «or».

Ito ttorot«r «yt«to it «too oHMldtrto to o «otbt« of to»o«itt.

Moot, it» «Mr« bi^ for «MO »itolt rctoono m MOO MI «f

fM t Mtioi «f tiM. Ito tyttM ««old «HMOM l«Mlf to t

tot of bidtor» It ortor to o^tuoiM it« JM |ff»i 'for iMtiWt« tto

MM of tlM ■ocTto* bultl* Th0 pricM ot ntmmn m»li b» <l»t<»rwinri

tf/MMMllV Hy ih» ftm, m « fwi.tia« of itw IOMI «iMwily of *»•

1** KW»)««» U »•»•» C«Mp>lieM«4 Hl Ulli of IMllVI»llllllll«t«

■fcSÄ ds M»t tll«* «IIOMtlM «f rtlBül«" * U»H HiWIlW ff«i «Mb

la «Mpi^f It. A MUtn» I« «lw prtfMMi IMP MrwiwiiM

MM MI •# «tt«»»l» «ntffMM t«r tt» mm»

Cll^Mr III «««!««• • *•*! iWl* M* «t « «Ml IM fM4tetlM

•f Mt MMM «f fMM» MKfllfl MM « «MUtft IIM iMMMl. MOMI»

IM I« taHH» «#MI IM MAMIMT •* IM MM«1

«M«! |* '««M I« Ml « MtMM4 Ml M «i

•f IM MfMKMIM M M «IMM •• IM M%*MllM «iMtHM

If******* ^ ' ***f* IHWMI M MIT IMMI4M. If II I* IM «MOll-

HMUI MMM» jWIII mm\\ I If IM MMl1«i« tM •#M'#llM

4IMM4. If tM IftfMMtIM «MM fM«» feMMTIMT I* IM

•liMt#t II *M*I M •# MMi Ml». I «tM» • «" «M t |fMw*«|«MM

Mt MfMifMÜ«f MtfMMUMl MM I* tft«% IM MMMt pfMMMttl • «C

M«*IM • fMM»'« •IV«»M * *t^|» MMMFi *" t*wH II Mkl4 Mff% MM

MMttllV It f»*l • IM» "* r«l«M «MMMM *r»l«M» ttMt MM» tM|tllM

pMMff MtM M Mttl fM MftMtetlM.

Ol^Hf |V ■Mmi UM* M «tVlM*« «MIM UM« IM ptlMt tf

MfiM» »itM tf MMty M4 MMMMI MtIM« Mt hHp it Mt MMM tf

« IM^fm «iMriUM. fM «MTriM tlMTll^M Mt MMIili i* I « If *

tf CtTMtl iMMto I« prtCM »f rMlltllt« «ti «Mff** 4MMIM. OMH"

nr tUo tllMirtiM hm MMM IIM fUtMnrt of » tUm MMTV CM M

1/

•T mtonMtUMi MI—ml pw WM «f iin»}.

Milt« i«r»tM Urn p&fm *t IIU* UHMI«, %hm »-•*»♦ «.«tr »>Mi»>r

UM»« IM fM* tat* «or« K«»tiMil ■! > IWMMM 4M UM

IM9MS9. aWMMV* t —pMt UMt«»r IV !• M MTV

f mmf*** m M^MI ■ftiMM* «l»%i *>«* UM» MiMUt lit« m4

tit. ii««|it «M« UM« Uiiiiir lt. im* u »• «M *f MT MM!«

•liWOIMI «iMttltiMM.

I 4» «M tUlJ» IHM« t *MM »»IfMl "flf pl^lll «f MlMAriMM

•«'•«••n. TM t*M <Mr—r mt «IM UMIH I«h4

to

II

• tlMMIM «UMm «• k» «Mi I*

•f pNtokl» •*««««« «•"MM^MMMS I» •••Mttol.

WhMtlMI MMtS «f CM«««* PMMMCM wilt to

If »wtar«4 «*M 4kiS«r«f IMI IHMiIlM» 4M>MI1*4 Wl«ll UMM ««MMMMI

|«*«lkly «IMMA wiUi to» to «to «f'««f4Mili«y #f l«r«r «!»»»•*•

II»« »f xfmm,

tor IM«MM»> MM •••r«»- ftvtnm mm • ■■»»#■« c«npM#t »»iton

•MM MMk MM» tor it* mmntt man «ton for n« rrrwMw MMT. t»»»

to MUM «• i« 4MM»«—«to tin «ft« f<ii««rt». MM« MWMMM will MM B H

tmt t»f* *MMry «Ml «too man tii«»r«««i«». to m vum ymmt , ti i* ,

Mi toM ii«or«4Hi« to QMiiiMr««» rffon* 1« krvrimt «M Cto*» i^i*r «It

«M «in», IM« M *t*»l6 tu« «o %f «r* fM«

11

flw ION» MI*» of tto Cfu't IM» m**imr mim***Mtom, it Is

«Mtla« fMSibl« ta mm man cnwuuttw» f«M»r in «».|#r to MI «n op-

ttMP «llMMia« «f «to ruMTOM. t» « bin mmmtf ftm. m* oro-

MMW iMirwpiimwwt for «oro riMii*ilii¥l eooM bo «Mirstod to

MtoAiIlM« ^MM* MMotlft* •tftmmim* **\l m» iMi^r fiMd to b» •»

•IOrl# «• MttllOWt fWIWI. II It HMMMblO to 4**^R« thmt it will

to ptMibl«. for mum •• «• Ml«» « luwor ornwonoiM oroKi«« |f ro«i

tio* to »Mrf to «t a festtoff «r^lolo ««ntb MM» <«OM bouritiir««.

9m «Mt «# «M bit «MM MI 4f«* on f«tt. tot tbo «not nf m

mmm !• ■^wtti to turiwi «MMiAmMy. in otbo» «nr4>. tlw *****

«I4t». of tbo MMnr «ill iMroot». ibio I» *m i~ tbo §*-*% of uro»

—It loMtrttif. MM «t Tft «oooriot «lit rootto» «äfft« toi tV «o-

tiMi» tiM of «• It« Mlbli mil bt «Mi:«r tb«i ttot of t tort tvtol*.

Ibit otMi4tr«tioa »tti<it «Mb of «bt nMMMn for #Mp>tf tv.

t* Ibttt tolot I» b» • trtoi twwtrl» io»1i«iM>itr^ m «^.«M

Itff^t MtMHot «vttOMf tortt tvttott orootot ttotrtl t*Motttt«t m

partlotljM «t ttttt ton» 4«'« %*•- » ^ »> «t«4 frt t^ov «Mr«.

T»"Otttit«llr« lor«» tour««*» «ttiaMi »NrMtM «l«^ N« or«*»tr»4 11 roiutr

«b»iff rttfru «ctM to «or« folly «till««! «Hot t*i»r» 1* t IOTM

«Mtor of *i«oli«o«n«* «••f«. «ior» to» irrt til M «tt«« m tt» 4»m**)f

tar rti««rtti «to «a»««b«t oliotottM. •*»• M * *.«! «•«< «ill i«

^MTI-S»* <<« «MH «wf «til OM «|| tl« torvio» ••*ilnir« fr««» t»» Mt

iMMbi»» «tat b» fo««i t« tb» «tllor cnNMtor. bbtt «III hm lb» nmM-

bilttv of fttrtio» tat« rnrtta« of •&# vmm\m i» »ifm? Tdr ««ot

«■»bt t» ba«» v« ft»« bit «Ittotl tocbiMt «or%«. m «it»! «l«n I« i»

« b«rry aM «apt«« * «•« tottot f »»«at» t-t t««tia» aoro for i*. Tb»

authors of Kc:h.-.lulers with multilevel priority quoues always con-

•. i '"f 1 tho uaor as passive or inert: all users are equal, and a user

cannot react to the service he ib q^ttinq except by modifyinq his

pattern of requests, or by sinply leavinq the system. Moreover, the

pricinn of computer uaaqe was based on Mat rates, which arc, as

Shown later, not dynamic enouqh and thereby lead to losses of effi-

ciency MM.

Another factor which tends to limit the si^c of computer sys-

toM 1« the oKlatcnco of non-linearities In kh« overhead. Tf the

total ovorho.i'l «irow» faster than a linear function of the »im of the

tyatom or the number of users, tliero is a critical size where it qets

tftbearablc. Por instance, if there are n processo'-s acctMing n

■emry bank«, the complexity of the cross-bar switch is known to be

proportional t^ n x mini, and the time to solve conflicts is propor-

tional to loq n ♦ lo<| m, both terms introducng non-1 ineari ti-s. As

far M allocitmn it concerned, our linearity criterion forbids us to

•(*>nd «ore tit»» or computinq power to make an individual Bllocatlon

dkninlon on a larqer «yatcm. This it a very drastic condition. Note

that wo** «mart pan" replacm^nt algorithms (like least Recently Used

or Oennlna's w^rkinq »ot) do not satisfy the cnUrion, whil simple

alqorlthM fFtn, LIFO) do. Note that the swappitui algorithm whi h

vill be pretentnd in IV.2 does satisfy the linearity criterion, while

the one* of IV.1 and of Chapter III do not.

/r

CHAPTER II

PRICING AND RESOURCE ALLOCATION

II.1 Introduction.

Suppose that a coffee shop was serving ice-cream to people on a

first-come-first-served basis, without asking them to nay for it. As

the news passed through the town, an enormous queue of children wait-

ing to get their ice-cream was formed outside of the shop. Some of

the children, after getting a first ice-cream, were going back to the

end of the queue and waiting for a second one, and so on. When the

shop started asking a quarter of a dollar in exchange for an ice-cream,

the queue vanished.

It seems that computer scientists were slow to find out that a

computer system is just a service. If it is given for free, there is

a tendency towards misuse and efficiency is lost. I expect this to get

more obvious as the extraordinary growth of the computer industry slows

down.

Allocating resources was defined as solving conflicts between

simultaneous requests for the same facilities. But wouldn't it be

bettor to just avoid those conflicts by pricing the resources high e-

nough so that the number of them is greatly reduced?

There are two possible philosophies in relating resource allo-

cation to an economic system; they are given here for the case in which

there is only one resource, but they can be generalized to more compli-

cated situations:

16

1) The "a priori" pricing philosophy. The system chooses a

price for the resour . As soon as a customer arrives, he gets the re-

source, provided that he wants to pay the price and that the resource

is still available. From time to time, prices arc adjusted, depending

on variations of the offer and demand levels. This was advocated, for

instance, by Nielsen [16].

2) The bidding philosophy. Each user submits a bid for a re-

source. At a certain time (chosen by the system) , the resourro ir; given

to the highest bidder. In Sutherland's yen system [181, the previous

bids are known by all the users. In the case of a real-time bidding,

the bids would bo secret (essentially to avoid the overhead of letting

the user consult the currently expressed bids). This, however, does

not mean that the user would pay the full amount o4. ■ <>ncy that he offer-

ed; in fact, I suggest in II.2.4 that the user should only be charged

the minimum amount that he would have had to offer to get the resource.

The bidding philosophy has two advantages over a priori pricing

and one drawback:

1) The highest bidder always gets the resource (and not the first

to irrive).

2) The bidding itself automatically determines the price to be

charcjCd to the usor, so that no price adjustment is necessary.

3) However, with the bidding method, the uier doesn't know

whether lie is to get the resource until the timo arrives for the auction

to be closed.

Note that both philosophies can be combined in the following way.

The system sets a price at i certain level above the avor.ig,? price at

17

which the resource in expected to be sold. A user has the choice of

reecrvinq the resource iimneduitolv when he asks for it, at the price»

set for it, or taking the chance of waiting until the time has arrived

where, if the resource has not yet been allocated, the bidf are ex-

amined and the resource allocated and priced in the second way.

II.2 User mode decisions in a system with decentralized control.

II.2.1 Some definitions.

Facilitins. There arc several kinds of resources (or facilities)

in a computer system. For instance, a certain nurf*>er of bit* in a

storage device ir; one resource, while accessing (writing, reading, or

executing) those bits is another re-.ource. A piece of software (like a

compiler) can It—H be considered as a resource, which can be bought

or rented for money, but in the following development« only the hard-

ware resources will be considered.

tlote that anything demanded by the user can bo called a resource

(execution of a programnod operator, having a certain program in cor«

memory, etc.). Ultimately, money is itself a resource) this notion

will be useful In a later section.

User and System. The user is not Just the human being who pro-

grams the computer; it Is an tndctendent drciston-makint cnttt/. COM-

posed of the human and Ms projrams, end even so-called "system's

routines" that another part of the user has decided to activate.

The system is a | articular user which nakes resource-allocation

decisions. Computer operators, managers, and basic system's proarai**

II

balonq to the /#lvm.

11.2.2 D>ci«ion» mado whtcii TO rclovnt to tt>» u—r.

Tho sophmttcatm) user might w«nt to Hak«« MMC dvriaiont which

«re ordinarily naJc by tho ayrttm. The first ide» w'.ach coa»* to

■Ind i« that |IM utnr datiro^ to otitlfitxo htnial? r<*lAtivr to hi«

environment.

Suppose first that each resource haa a price, is available in

any amount, ni that tlw uacr trios to minimix* IIM unit r\<.«t of

running in such a system. Later, it will be seen that, in general,

such a reasoninq is too simpliMtic, because the u«<*rs der «nd is not

small relative to tho tot4l «mount of resources In the aytte«. eco-

nomists say that tho demand is not «treiic.

What are some of the decisions which c -ild i-o made ly the user?

1) Site of his working set of pages in first-level m^ectry tin

a paged system).

2) Choit>j of an urtirncy (total biü in a bidding system, or

priority lev. I in 4 «ystet MhtM a coat Is associated wtt*- each ptft«

onty Ivvel).

it Site deitred f«r I/O oaffera.

4) Re MMMV of -i liven «etment at a Wfftiia wwmorv tev>*l. Rea-

idenry of a ttK at a certain nk*mnry level.

&) ColUctini and eventual givit.i to the system of aom»* statistic«

•*i a rroqram wind» is often run. Tho idea MMI a user's fennwledge la

ir^ortant in ertkt to get hotter t>*qltH h** been advocated, for Instance,

in (1 i,2ol. t.nn.og*« demons*ratmn |13| that his "wtrktne set" al-

ü

«oriUM p»rf.»nK* li»tt#r tluui L.II.U. turnt »M^Mly t*—4lt «M b»

r9int«rpr«t*4 üy ^tyliM Uut th« tnr»narliy of Uli.O. U ÜMI U

hMdU« «II tt««r« in th» •«■• ««y.

Tb» IMor* «• «M IWW» <l**flMd lt. COttia «l««y% Ml! MM» «feM«4

•yvtM*« routino to do Als job. MmoMff, tHU root IM Mold Mrb

uiMior rMtoMii.ility of the OMf. «MM Mold M MofMd for tM M-

•oorco« COMUM^ oy thi« mot in».

?hO MM «ObMttttM «III «bM M OMOTlo Of HM trO*r-»ffS M»

covon Uio «MM of «iorol IM>MK«I COO M kaooo MM! OOMO IAW «MT

to loproM tbo IMMCW «MM of bio pMfrM. In oVwr COMO. boo-

0Mrf MM tfo<b»-off» eoonot J« trottM to tbo «MM. MMM> tH*

•M« »trotofy no» it. b* tt*o4 for oil proorM» in t»«o OMtoo. Socb o

tltOOtlM I« MMlyMJ IA MCtlM IV. I IctMft" IVI •

ll.a.l M OMMlO MWOIM tMM-«ff» l>»t«MO t»» JBi_of_igMtOi

to«oofcoo b» o OMt • QMIMM WTiJ£f>

A flctiti«Mi oM^ilot bM * M«» *or noon AMI > ««eb of Ml«b

AM MrtoiA cAorortorlAtlM M f«r M Wio lor«litv of tbo prMTM to-

fcroocoo 10 OMMtACd.

11) IVAt« MolyoM oM 1^ MMMblMl Moly^r

20% of tbo Mo^ry MfoMAMO. «od ocmptM •.!<

t«l ttror MM0M0

9.1% of f of or MOM» 4« «ord«

III IMonfifr tMlo

l%» of roforoAM«* IR oord«

141 OMt *M dot« ««»fMAt« mrrootly ooMr«tod

4» Of MfoMAMA* ««

ja

40% of «II r«r«r*iw«ft» M

UMM 9 typ«« ef MfMMit« !•«•• ¥»ry tfiffervnt t»roiwrtlMi

111 iMh UM II) I« «ccMMd. »Xmtmt «II of it« «ord« «r«

tat i« «coiini vtrv Mldop.

fit It«* «hottt • to I** word« of infonMtian r«r t<Wntt't«r.

««eh of «4iieh I« «cc«»—d «tmut one« or twlc« o«ch tino th* irtcntlfier

141 1« 4CCO«M4 quit« r«ndr«i1yt two con«ecuttve «rc«a««a «r«

ir contlvjom or v«ry clo«« in Um, «nd not Always contttuous in

(5) Acc«««9« to (S) «r« froquent. but not vorv eorrclu.d in

tlM.

TM Maory «yntan h«» 1) f««t r«qi*tnrii «iccompd in .1 micro-

second* «nd 2) cor« WKMtf «cr«n»od In 1 mlcro««p..nn«l. Th* hardware

«now*, for in«t«nc«, swnpplnn rw» of 12 word» bftweon th» two

l«v«l» of Mfinrv, with A reol«co«cnt «Iqonthra of th«« "workinn set"

tyr« of ^t^r tvtnntnq 113]. The »iSEO of the -«v^'labln mfmory it

fluppotad to b« larqer than what the user ninht r^nucst.

Aatuae that therr «Kiata i rricina sv^tem for the computer ro-

aource«, with « prlcj p.^lO for a nenorv cell of tytK» 1, nnd P0=1 for

« t^'p« 2 ««»orv coll, per unxt of time. In thi«? simplified model, the

coats of th*» at) and of the awappinq bua Letwron the two nonori -s are

«upt«sed to bo noillqibla. This system of prices is SUDJosed to be

qulta atable, and the user can assume that it will not varv mon; than

21

tliqhtly over « r«th«r lon^ pvrlod of ttwa, Ttt« UM* has to «letwrmiw*

optt»M ratitency or «wapplnq ttrato^lrt for p«^«« of hi« various ••q-

Mnts. This «••UBes« of courae, tnat th« hardware is abla to racogntae.

for «ach ua«r*« aaqwnt, which «trataqy should apply to it.

Th« d«tail«d covputattons undorlyin« this «xanplo ar« not shown

h«r«t haw«v«r> ta«y indlcst«. with some restrictive hypothssii, that

th« optimum strategy has to lc.iv» (1) r«sid«nt in fart r«qiit«rtt (2)

and (4) raiidont in cor« memory, and (3) and (S) should have paqes

swapping bstween th« two levels, with a working set siz« of about 32

referercos. If fast memory had been much more expensiv« (overloaded

system), (2), 12) and (S) should have been resident in core memory.

The point is that it is possible to linearize the average cost of one

reference for a given segment and a given strateqy» in the form:

C 3 C0 + «1 Pl + a2 P2

where p. and p are the prices of the resources, and a. and a are

coefficients- which depend on the chosen strategy for the segment. This

allows quite fait determination of the best Btrateqies for given costs

of resources, before running thf compiler. But lot it be stated again

that this optimization job is relevant to the user and not to the sys-

tem (the concept of user, of course, includes protjr^ms working for the

user).

Note that if, for the best possible set of strategies, the averaqe

cost of a program reference is too high, the user might decide to delay

his run (the threshold might be a function of the urgency of the job).

In Figure II-l, a strategy is represented by a point whose coordinates

are the resource utilizations of the strategy. Strategy 3 is optimal

n

•2

Resource #1

Fig. li-l

Trade-offs between several possible strateqirs

Strategy #3 is optimal (lowest cost)

The parallel lines join points of equal cost-

3)

its coat, which U « liM«r function of th« resource «»«90,

Is mnim«. Mote Uist thts fiqure does not pertsin to the compiler,

tout Is just sn itlustrstion of soao posai^le strsteqies.

II.2.4 Pricing.

Nodorn oc'iioml»tt like Dotoreu (21] have «hown that a wrong pric-

ing of resources leads to inefficloncios and loss of potential power.

They advocate a system of marginal prices. For instance. If the demand

for coiif>uter resources is low during night, the price should be corre-

spondingly low. If thure is just one user on the system (no conflict

in demand), the price should be just equal to the mantinal cost of

keeping the- system running (the cost of the operators, plus of elec-

tricity) .

I believe that the following points characterize a fair system:

1. It will always sell a resource at a marginal cost (see point

2. It does not make any distinction on behalf of the user (name

of the user or previous history) . In particular, if the user is willincj

to pay, there is no reason to penalize him even if he has used many of

the facilities of the system in the recent past. In other words, there

is no implicit priority system.

3. The system will never charge more than the user announced he

wanted to pay. Nevertheless, the user might be given the resource at a

price smaller than this maximum.

4. The general rule for allocating resources and charging for

them is the following: the system takes the allocation decision which

24

MxialsM ic« profit, but novrrthcluitk it charqos tho individual ui.-t

the minimum «mount of mo.i »y that this user would have had to offer to

get the resource) all other bids being unchanqod.

5. An invnodiato consequence of rule 4 is that two identical re-

sources will cost *.he sate at the sonu time, indcpi'tidrnt of tho users

they are allocated to.

6. If a sharable resource is available during a time-slice,

then any user may use it without any cost to him. This takes care of

the reentrant routines, for which only one user pays at a time (the

first user to get the routine in core).

7. The system must distinguish betwoen conflicting demands for

a resource (most of the practical cases), and couperating demands (for

instance, a reentrant piect of code). In the latter case, the different

demands are considered as only one, with the maximum amount of money be-

ing the sum of what each user wants independently to spend for this re-

source.

A general idea underlying this thems is that marginal pricing will

have a good effect:

1) By trying to get bettor response at a lower price, the users

will increase the system's efficiency rather than wo.K against it (the

problem of counter-measures has been reviewed in [22]).

2) Statistics will be provided to aid the users in estimating

their chances of getting the desired response for a given amount of

money at various hours of the day.

A more complex model could be imagined under which the cost of
the resource would be shared by the participating users.

2%

3) Statistics will show the systems mans'.urs in which equipment

lies s bottle-neck or which equipment is not rosily needed.

There is another reason for marginal pricing in a system where

the same resource is reallocated vury often. Without it a user at an

open auction would automatically arrive .it. marqinal price anyway, by

slightly increasing his bid until hv got the resource (or the bid

reached the limit of what he wanted to pay). In any case, the over-

head implied by such a strategy may be avoided by assuring the user of

a "fair" price even if he immediately submits his maximum bid.

II.3 Indivisibility in space of the user requirements.

The previous paragraph handled cases where the demand could be

considered as being

1) atomic

2) for a resource which could be allocated independently of any

others, and independently of any previous or future allocation of the

same resource.

Alas I This is not true, in general. It is impossible to allo-

cate just IK of core to a program asking for 3K; better not to allocate

any resource at all to that program.

In this section, is considered the indivisibility in space, where

the space considered is the space of the resources. A given user asks

for a set of resou;ces, for instance, for the duration of a time-slice.

Now, considei how the system reacts under both the pricing and the

bidding philosophies.

i) Under the pricing philosophy, a user is allocated as soon as

M

he «»Ks for his tot of rosourcet« if thoro fere enough «VAilabl« i< -

sources to satisfy him.

2) Under the bidding strategy, all users are allocated at the

same moment, and the system tries to allocate a sot of users in a way

such as to maximize some economic criterion. If one tries to achieve

a balance policy (i.e., to allocate an equilibrated set of users, to

better use all the resources), then the bidding philosophy has to be

adopted.

Danning [12] has proposed to formulate the allocation problem as

a 0/1 integer linear programming problem (also known as a multidimen-

sional Knapsack problem). If user #i asks for an amount a.. of re-

source #j, then the system has to find a set d of users such that:

i«s »ij i *j ftJ

where A, is the available amount of resource j. The economic criterion
D

(cost function) has the form:

E = Z C
i , where c. is the bid of user #i.

1CS i

The resources are, for instance, core memory and CPU. Suppose that

one user asks for 25% of the CPU and 50% of core during a certain time

interval, and another user for 70% of the CPU and 40% of the core.

Clearly, if both of them are allocated, they will not take more than

90% of core and 90% of CPU (see figure 2), and thus they can be allo-

cated.

This solution to the space indivisibility problem is not entirely

satisfying, because a compute-bound user might request 100% of the CPU,

and so should be alone in the system. However, suppose that this user

11

Cor«

CPU

Fig. II-2

Multidimensional Knapsack Allocation

28

had «-.nly requested 50% of the CPU time. Another user could then have

been allocated (for instance an I/O bound user who requests the CPU

quite seldom). This new solution would be much more optimal. In

other words, to use the terminology introduced in chapter II, the

progress rates should not be determined by tho users, but oy the sys-

tem.

Note that, even if the constraints are satisfied, the allocated

users are not guaranteed the service that ..hey requested. For instance,

suppose there are 2 users, each of which asks for 45% of the CPU and

45% of the disk channel. Together, they ask for only 90% of both re-

sources, but there can not be an a priori expectation that one job will

use the CPU while the other is using the channel. If there is really

bad synchronization between the two jobs, they will often both ask for

the CPU at the same time or both for the channel, so that there will be

little overlap between them. Chapter III of this thesis studies a model

of such situations, and extends Denning's multidimensional Knapsack

formulation to take care of them. Also in chapter III is given an

algorithm to get an approximate solution of the multidimensional Knapsack

under the special circumstances involved. This method of solving the

Knapsack has the interesting peculiarity of leading to fair pricct; for

the resources and the sots of resources allocated to the users. In this

way, the system can keep statistics of these prices and use them as

stated above. For thorough treatment of the Knapsack problem, see [23]

and [24].

The "a priori" pricing of resources is also possible in a climate

of space indivisibility. The idea is the following: If there is a cer-

29

tain set S of resources available, the system might expect to sell it

at the average price P(S). If a user asks for a set S* of resources,

the system would sell it to him at a price

c = k fpte) - P{S - S')]

where S - S1 is the set of resources remaining after resources of set

S' have been allocated, and K is a constant greater than or equal to 1.

The precise function, P(S), has to be determined experimentally,

by adjusting it to observed profits. Suppose, for instance, that there?

are two resources; the CPU and the core. P(x,y) is the average profit

the system will make out of a percentage x of the CPU and y of core.

Clearly, P(x,0) = P(0,y) = 0, because it is not possible to sell CPU

without core or conversely core without CPU. An example of such a

function is the cone represented in figure 11-3. Its equation makes

it homogeneous (first degree) in x and y:

r, / » \f ax + by p(x,y) = Vx y « —7

The coefficients a and b have to be adjusted b the system from

its own experience.

II.4 Indivisibilities in time domain and reservations.

As an example of time domain indivisibilities, suppose the fol-

lowing. A program is in core and uses the CPU. The CPU resource can

be instantly taken from this user, but not the core resource lest the

user's job be destroyed! The user must be left in core at least for

the period of time required to swap him out onto secondary storage.

The problem of reservations is somewhat similar. The user who

comes to a console wants to be sure that he will own the console for

P(x,y)

. y

Fiq. II-3

P(x,y) = (ax + by) /xy_
x+Y

11

at least • on« hour period. He .t*o «£nt« to be sure thet he will eet

75K words on the disk for K files, and at least 1% of the usage of

a conpound resource I Chi' • I OK core).

It will now be shown how this exaaple can be handled by creatino

a structure of successive levels of allocation. The following ideas

have to be applied>

1) Partial allocation decisions should be pad« for several tine

intervals, sons of which are within sooe others, bulldina a hierarchy

in tine. For instance, in our oxaaple, the decision of allocttine the

console and sooe part of the disk is «ade for a one hour interval. How-

ever, the decision of allocatine the CPU and aone core to a runnine

program is n.idr onlv for a one second int<>rv.il.'

l%t level

2 level

3 level
of decisions

) > t I t M—I > » M » « t

HlllSlUilMt

til

2) Resources have to he pooled in order to allow the user to

buy a pcrccntaqn of the pool in advance (1st Icvrl allocation), without

knowing at tnat time exactly when he will use his buying rowrr (2nd

level decision).

I an grateful to ProfesHur Herbert Sinon, of Carnegie-Mellon
University, for hiving convinced me, in a private «iiecussior, of the
importance of multi-level schedulina.

12

TtM IMHH ibity«« «t ««• first l*«*t. « pofnli»! t<U9t to b* UM4

•t UM Moond l«vtl. Till« potMtiAl romt c*n n*0\t b* e«U»d « «oiwy

lor « rosottrcol. «h»eh is only vslid for bidding or boytno st UM» toc-

otid lovol «nd durin« tho no» duration for «ditch tho first lovol docl-

sion WAS Md«. ■sesuss this rosoores oslsts in s Um tod soount only,

tho ssor ts i|usr«ntood, st tho ncwsnt ho boys it. that ho has a eortain

psrcontaqo of it, and thus s «uarantood lovol of sorvtos.

Mots that tho nonoy Ailch waa usod to buy st tno first lovol

cannot bo «BOO to hoy at tho socond loosl. Ons has first to buy tho

intorasdiato tfpm of nonoy.

Tho strueturo of silocation croatod above ta a hiorarchy of ro-

tourcos. which takos tho for* of a troo Cfi^uro lt-4). iMch rosourco

can bo usod «sclusivoly to buy rosourcos uhleh aro undsr It in tho troo.

and only dun09 t:to uns intorvsl for uh*ch tho allocation oas nadr at

th« lovol a^ov«. with oach nods of tho trot: is aasociatod a sot of

rulos. whtcn tell boo it can buy or bid for the rosnurcos idiirh aro

under it in »ho troo. Moto thst tm* port of a rosourco night bo at

sor« node of the troo. uhllo sons other part otoNt bo st sons other nods,

for instance, a part of cors n»eory maht b^ «vail^le to run tino-

shsrod users ffidsr a certain ».nd of contract, »mil«» another part of

core night bslonq to a separate real-tine user.

II.S Wore involved contracts.

llosl-tf«o users night want to get s certain «wunt of service bo-

fore s particular deadline. Thi« can be handle«! eithet with a blddino

systan. whore tho u*er grsduslly incroaaes his be* lof systens PMMNM

3)

nnUAM

cMi b* us«d forever

/

\

ttMbl« only during on«
hour to buy CTU «nd ooro

\
DISK

•OMO «llOCAtod
or« hour «t a tin»

CONSftLCS
*llor*rn«i for
uno hour

if

•lloc«t«d for
100 BllllMN?.

I OK COM: Kt^'RY
ollocated on« sooond
at a tiw

fn. 11-4

34

whon the deadline approaches [25], or with a special contract, where

the system takes the responsibility of findinq out whether a given

user can bo satisfied within the current structure. Note that the

scheduling method suggested in chaoter III can be extended to take

car-! of such users.

HTf J.H|»'Wi>.' w^l"1"-i .f'^'Hf" ■' "" ' UIH.i1»-—»»—■»»»— l.i II HI»WWPI,»H..II"»'1H> Win -iTWHI|ii»W«HWr'>l'»H«i"»l"l'l ■■■w- .i»»!».!«.!.!). m »>■ ini|n IM.'1'''!1 H1—"'■W I' ■» w^pfp

l^

CHAPTER III

AN ANALYTICAL MODEL OF SPACE SHARING

III.l Introduction.

This chapter attempts to show that better schedulers could be

designed if some model of the interference between users' requests

4
for facilities were available. A program is a string of references

to certain resources. Whenever a program references a resource which

is already totally allocated, a conflict occurs and the scheduler his

to decide which program will get the resource. It will be shown how

this can be done in a "pseudo-optimal" way by taking into account some

information which can be made available before run-time on the patterns

... 5
of the users' requests for facilities.

Sections III.l and III.2 introduce some of the concepts and ter-

minology used later in the chapter. Section III.3 studies a model of

"worst possible" synchronization between the users' requests for facili-

ties under certain assumptions; among which is the assumption that re-

sources are preemptible and each user has a fixed priority for accessing

a resource (a given user has a different priority for each resource).

In section III.4 the way in which the previous model can be used for

scheduling is examined by formulating the resource allocation problem

level of conflicts over some period of time.

4
demand string

this information, as we shall see, is related to the predicted
usage ratios of the various resources by each individual prograrr, in
the system.

36

as a Mathematical Programming Problem (finding the maximum oi an eco-

nomical function with certain constraints on the variables). Then the

design of an algorithm which yields a nearly optimal solution to the

M. P. problem is giveu. lÄction ill.5 compares the model of section

III.3 with models of some other scheduling strategies. The possible

fruitfulness and extensions of this study are discuased in III.6 and

III.7.

There arc some resources, like the CPU, which can bo preempted

(transferred from one user to another) with less overhead than some

other resources (like core memorv, if the previous user has to be

swapped). This loads to the idea of having a hierarchy in time of

partial scheduling decisions; some decisions being made for smaller

time intervals than others (see sections II.4 and 111.4.1). The model

which is studied in section III.3 will bo used in section III.4 to re-

late two levels of scheduling. Whenever a decision is made for a long

time interval (macroscheduling), the scheduler takes into account some

information on the future demand pattern of the user during this time

interval. The macroschedulor then sets some parameters of the lower

, 6
level scheduler (microscheduler).

Of course, solutions to macroscheduling problems depend on some

information being available on the patterns of the users' requests for

facilities. Haberman [2] has shown that such information can be useful

in avoiding deadly embrace of processes in a time-shared environment-.

This information might b. provided either by the user himself, or

Mote that microscheduling can be done by hardware, which, for
instance, resolves conflicting requests for a memory bank. Then the
software "sets" the hardware.

37

extrapolated from statistics collected by the system.

What information wou.ld bo useful? It should be relevant to the

scheduler by permitting computation, for instance, of the maximum

possible "intenorence" between different jobs. It should be simple

and condensed, because the schedulnr has to operate rapidly, and finally

this information should be easily available and characteristic enough

of a given program that it could be used without any modification for

several runs of the same program with different. Input data. In this

paper, the information used will be the proportion of usaao of the

7
various preemptible resources over a rather long time interval during

which a job is to run, and the total (maximum) amount of non-preemptible

resources required by the job.

Do we really need macroscheduling separated from microschedu.ling?

In a recent paper [29], Stevens examines what was wrong with the

Chippewa Operating System; he concludes that there were two flaws.

First, the absence of a macroscheduler: the Chippewa system allocated

resources for an indefinite period of time, without taking into account

the global demand of each job. Thus, there was no auarantee when a job

was allocated, that the job would not ask later for more memory than

was available, and in this case the Chippewa scheduler did not take

back the resources (CPU,...) already allocated. The second problem of

Chippewa was that I/O bound jobs, or compute bound jobs, wore1 not re-

cognized as such by the scheduler, and so th i-: information was not taken

into account in assigning priorities ror the resources. We will see

7
Preemptible resources are those allocated by the microqcheduler.

For the moment, the reader might imagine the CPU as opposed to memory.

2B

that better simultaneity in resource usaqo and between jobr,' progresses

is achieved by assigning a high priority for a resource to a job which

will make little use of this resource.

III.2 Some Definitions.

User: An entity which requests and seizes resources, and which

might also give some information about its future resource requirements.

In this study, the words user, job, program and process describe the

same concept.

Demand string of a user: A program will be considered as a se-

quence of calls to various preemptible resources: CPU, I/O, ... such

that one and only one resource is called at a time by a given program

(no double buffering, for instance). This limitation could be removed,

but helps to simplify the presentation.

Let R be the set of resources. A program is then some string

r,r„...r, over F., where r. means that the user called ^n resource r, as
1 2 k i 1

the i resource call. This notion is similar to what Denning used in

more restrictive frameworks to describe page reference strings.

Virtual time of a user: During a certain real time interval AT ,

a user will get the resources requested in his demand string during a

total interval of time AT . We define AT as the virtual time interval

corresponding to tiio real time interval AT . Virtual time of a user

normally runs '.lower than real time, but if a user were 1 permanently

have top priority for accessing all resources, then virtual time for

that user would be equivalent to ijal time.

The virtual time diagram of a user is a diaaram in which resource

30

usage (demand striruj) is plotted as a function of the virtual time

of that user.

C.P.U

Disk

Drum

virtual tine

Remember that the assumption was made that a program i.s a purely

sequential process.

Observahles of the system: Any quantities which are relevant to

our study, among which might be included:

1) The effective progress rate w. of job *fi (working rate). It

is the portion of time user #i was working, divided by the total real

time interval over which the measurement was made.

total virtual time interval for #i
w, =
i total corresponding real time interval

2) The duty factor u. of resource #;j (or its proportion of usage):

u.
1

time resource #i is used by and iob
total real time interval

w. and u. are both dimensionless variables, which are observed

over a certain interval of real time.

3) The cost function (or economic criterion) of the system is

another observable. It is assumed to be a weighted sum of the progress

rates:

E = E c.w.
i i i

where c, characterizrs the urnency of user #i. The precise mean-

ing of c. as a bid will he discussed in section 111,4.5.

40

111. 3 A modo L based on fixed nrioritios (with iircompti.on) for each

user and resourco.

III.3.1 Overview of the model.

For each resource, there is a priority assiqncd to each user.

For a given resource, these priorities are all diffnrent (the users

being totally ordered with resnect to each resource). This priority

assignment will not he changed during a certain time interval [0,1"]

over which the conflicts between the demand strings of the various

users are studied. If user #i requests a resource, he will get it

either if the resource is currently idle, or if it is allocated to a

user having lower priority for the particular resource' (in which case

the lower priority user will have to wait for further use of this re-

source) .

Note that a user does not necessarily have the same prior it'.' for

all resources.

Let a, . be the proportion of the virtual time of user i soent. on

resource i during the real-time interval [0,T]. The a, .'s characterize

the needs of the various users for the various resources (for instance,

the degree to which they are compute-bound or I/0-bounJ). Given the

virtual time diaaram r(t) of user i, it is trivial to comnute his a, 'S:
1 j

/
1 (r(t)=j) dt

te [t . ,t]
min max

1]

t - t , max mm

where d(x)
1 if n = true
0 if n = false

41

It will bo assumed In the soquol that a fairly accurate knowledao

of the a. .'s is available (possibly basod on nast oxneriencc of. the
1.3

programs), but that the precise demand strings and virtual tine dia-

grams of each program over the real-time interval [0,T] are not known.

The situation may be characterized tay two matrices n x m, where

n is the number of users and m the number of resources:

a.. = proportion of the virtual tine of user i snent on resource i
lj

n. . - inteqer numbe?- renresantina the nriority of user 1 for re-

source j.

1 <_ i ■_ n

1 ^_ j <_ \n

0 < a. . •' 1
- il -

Z a. . = 1 (normalization of the a. . for each user)
3 ij il

p. . = n, , <m* i - k
ij kj

p. . / p, . <«=> ur.er i has a hiqher orioritv than k for resource i i i k j —'
(lower numbers ■'-•• higher orioril ies) .

The assumptions are given over a real-time interval [0,T], which

separates the two activations of the macroscheduling alaorithn. If w,

is the progress rate of user i, this user will effectively get resource

j allocated during a time

T w, a,. (by definition or a,, and w,),
ii] ' n 1

Resource j will be running durino a total amount of time

T u. = Z T v.'. a. .
1 1 1 IT

thus:
u . = .r. a. . w, (0 < u . < 1)

j i ij i _ , -

42

and, as a conseaucnce 6f S a.. • 1
3 ^

E w. ■ X u,
I i 5 j

The overhead of switching a resource from one user to another has been

and will b< systematical.lv neqlected in the study of the mode] .

ITi.3.2 Fundamental equations and consequences.

It will now be of interest to dorivo the equations describing the

worst possible cases, where the rsquests arc synchronized in an order

such as to qet the smallest possible progress rates and the least pos-

sible simultaneous use of the resources available. This .is relevant

to the general philosophy that the svstcm should always expect the

highest amount of conflict within certain computed bounds. It should

not oversell itself to the users, guaranteeing then a service that it

would eventuallv not be able to aivo. Even if the system would decide

to take some chances for a greater expected profit, probabilistic modi Is

would be dangerous because they assume a randomness and absence of

correlation between users which are not generally true. Also, for a

given user, the requests do not have a random length under «one distri-

bution, and are not uncnrrelated with each other. Of course, the com-

puter could comi ute Marl-ovc'aain coefficients tor the demand Strings of

the various users and use this information to get a better schedule, but

this seems to exceed the allowable overhead of an allocator.

The following fundamental equations express that, in the "worst

possible case", a process would be wait ng for a resource at any time

when this resource is used by another process or hinner priority. Note

that 1-w. is the rate of v.aitinf of user i.
i

4.1

(III-l) 1 - w. ^ ^_ ak . wk (O^w.^1)

For qivGn matrices (a. ,) and (p, .), it is always possible to find
tj rij

virtual time diagrams of the users, which have the usage ratios a, . for
ij

the resources, and such that each job might have the maximuBl waiting

rate given bv eouations III-l. Tn other words, if the coefficients a, .
n

are known for cachi job, but not the exact virtun.l time diaqrams of tlie

jobs, it can bo said a priori that the jobs will have progress rates at

least equal to the w.'s, if and only if the following equations are

satisfied:

(III-2) 1 - w.^ min (21 ak. w^ , 1 j

Pkj'<Pij

(V i: l^i^n)

(0^w.$l)

An equivalent form is given in the following equationsi

(III-3) V i, either w. = ü or !> w + ^_ CL . w,

(w > 0)

pkj<pij

Equations (III-2) define a domain of values for the w.'s. Anv

point within this domain can alwavs be reached if the syateffl should

Q

desire it. This domain will ho called the attainable domain, or

g
The action to be taken by the System to reach a particular ooint

in this solution space will be described in section III.4. A forml
proof of this statement is not given here.

44

synonymously the domain of cortaintv. Noto that onuations (I11-2)

imply that:

(111-4) 0 < U. ■ E a., w, '■ 1 (0 < w, < 1) (] < i < m)
- j i ij i - - i - - _

(The reader will find this result easy to nrove).

HI, 1,3 Defini.tion of the mathetnatieal prohlem.

The previous model will ho used to find a 3et of users to allo-

cate. Each user qives to the system:

9
1. his usaoe ratios for the various preenntible resources! a,..' • • n

2. his uroencv: c, . A higher valu.; of c. moans a hierher uroencVi

but also means that the user is willinn to oav more money in ordter to

run. It is understood that if a user with urqencv c, nets a prooress

rate w. duri na a re.Tl time interval of lemith T, then this user is
i

willing to pay at most

c , w, T
i i

to run during this time interval, Pricinq strategies arc studied in

III.4.5.

The mathematical programming problem can he stated in several

forms of Varying complexity.

1. Given the a, .'s and the c.'s, find the n. ,'s and the w.'s

which maximize the economic criterion (or cost function):

(III-5) E • 2 c.w,

while satisfying equations (IIT-2) .

Note that the economic criterion chosen is eguivalant to a cri-

9
and, in the second formulation, his usage of the non-preomntible

resources : b. . .
ij

4S

torion which would tund to maximiz»j rMOVKM u;.i«|o. «»unposo it is

dnsired to mnximizr«

K " >: d. u.
i ^ 1

where d. is the "woiaht" or cost of rosourcr '•i. E can thon ho

rewritten in the form:

B ■ " C. w,
i i i

with:

c - '- i\ , d.
i * tl j

2. In this -u'cond fornul.it ion, thcrr ir.' two kindfl of resources;

tlie macrnrcso'ircos , (^T) (wliic.h *re non-"reemiitil !>• TK! illor.it-vl by

the macro.schcdulcv) , and tiio wtctOf i»OWfc»S» ^L(ofPW^tihlo and allo-

cated by the r,i croschoduler) . h. will be called tiu .t'.solut" arount i ,

of macrorpsour;'; i dosirt-d by Tisrr i. Pv centra st, a. . is tht i'-lative

amount (per unit of virtual time) of nieror«aoure0 i nxnltifl bv n-^r i.

How, the mathematical programminq {troblen can bo MpfMS*4 in

the following way:

Find a r>>t of userj 3, and matrices (i . ,1 and (w.) , whirii -iaxin;7':
■ 11 I

the economic criterion (eott function)i

(III-5) B • ii w
ic 1 .1

subject to the followinq cotuitraiiita<

10
Tlie non-preemptibb; rnscirces niqht be, for instrmco, momor"

cells at various lovols of momcrv (core, drum,...).

4'

(in-6)

V 5€Ä# Zb S ^.
' iff *' ■ J

whcro / « -o if .A.

I Dj ' 1 if w^

Vi€8 ,

11

pi'j<pii

B. I« tlic tot-il available amount of n »n-prrwrn^tt^lc retouro »1.

III.3.4 rxamplpw.

In this section arc« givm .• few rxan^le:* of «■» araphical repre-

sentation of the attain.1l•l', do'Min in the snaei ^r th» w 's, in order

to create a foilino of how the d-rur.d strim.-» of t!.o v'>n will syn-

chronise. Th»« reader will diiicovor that tht "wr** c-ise domain" can

novortheloss l^ad to a lot of sinult.meity '»etwern the 1o!>s. It war

verified bv simulation that the iohs do not qrnernllv synchronize

significantly Letter than the worst caic mod^l nro^irt«, i* there \ a

small number of preemptible VMOiMfOM Wld i? the priorities ar^ chosen

in d nenrlv ontinil way (see unction I IT.4.2).

Example 1.

(a) -
11

CPU DISK
JOP 1
jow 2

11.
The c;rtu,it.inns for jefi fxt ress thnt -inv u'-- r 'i.winn I nnn-z«-ro

iroqros1? r^t»- (.md thus .Tlloc-it"-! bv the macrfi«;-V'iulrr, nn 'ind tho
space ho noeil'; In rrtiory level *].

In thin rtrrnv, A lol» in .1 rrrs »md a rpt.ourcr is a column. !••-

•ourc« 1 is t'ao cm, resource 2 in the dtsk> 1nh 1 in enmoutr '.xnind,

job 2 is «ore I/O '.>ound.

1. Th« maxtmum priority is niven to in'» I for all resources:

The donain of certainty is defined l.vt w ♦ w ^ 1, whi-h shows

that no parallelism in th«> use of the resources !• obtained in the worst-

case (fig. III-l).

2. Sutmose that the orioritv mattix is:

Rquationsi

v(! .')
Equations defining t!io attiiinablo domam oro:

^4 M* 1 "" «r;
I >_ .2 w •♦ w w-j 'L ^ 0 m ■■ 0

The attainable domain corrosr^ondrt tn a n^irlv optimal ua.itie of

the resources:

u. ■ .R w * .4 w

u. ■ .2 w, * IG w, 2 12

u. and u am maxinun at thn iKiint;

w « .f>S, w. ■ .87 "♦ u ■ .R7, u^ .6".

In this case, both u and u_ are maximum at th* s^mo point. Thi^,

however, is not I oenoral result, and verv co-^rl icatc". domains in the

u, space mioht exist, r.'ovcrtholess, solving the oouatinns:

H$

f/J / attainable domain

' //, (equations (III-2))

(p. .) = 1 2
1-, 2 1

Fig. III-l

Domains in the (w , w) space for example 1.

49

Vi, l = w. + /_ a,.w.

Pkj<Pij

might give a good approximation of the use of resources in the attain-

able domain.

3. The next case has the priority matrix:

(t "V ■ (1 I)
1 j> w + .6 wo

1 >_ .8 w + w

Obviously, the attainable domain is worse than with the second

priority assiqnment, but better than with the first one.

If the objective function to be maximized is E = w + w

(c, = c„ = 1), then the prioritv assignment #1 vialds E ■ 1,
12 max

priority assiqnment $2 yields E = 1.52 and nrioritv assignment #3 ■ ■' max

yields E ■ 1»15. The solution of the mathematical nroarammina pro-
max

blem defined in the previous section would be the second nriority

assignment:

^■(i o
and w = ,(J5, w = .87.

Example 2:

This example considers two jobs havim Identical averaqe resource

usage characteristics, but one job seizes each resource during a much

shorter amount of time than the other job.

50

Fiq. 111-2.1 and 111-2.2 ;;how the virtual time diaqrams of each

job. Fig. III-2.3 and III-2.4 show how thov synchronize in real-time

under two different priority assignments. The oxnected proaress rates

are found to be those given by the "worst case" model.

For this example:

^3 > =(2 2) ^"^"a

thus E = w. + w = 1 (w = 1 , w = 0) .
max 12 I £

thus C = 1.33 (with w, •> .67, w ■ .67).
max 1 «^

Example 1 has a larger attainable domain and a larger E than

example 2 with the priority assignment L A. This is due to the

fact that the job., of example 1 are complementinq each other (one need-

more CPU, the other more 1/0), while jobs of examnle 2 have identical

average needs of resources.

III.3.5 Multiprocessor case.

So far only the case whore the resources are not interchangeable,

and are only susceptible to one activation at a time has been considered,

How the previous model can be extended tc the case where some resources

may have more than one activation at a time will now be studied. For

instance, there night be several identical CPU's or .idnntical channels.

The fundamental "worst case" equations are quite complicated.

They are given here without further justification.

Si

CPU

virtual time
usor 1.

Fiq. IH-2.ll Virtual time diaqram of usor 1,

resources

CPU

I/O

virtual time
user 2.

Fig. III-2.2; Virtual tine diaqram of user

resources

CPU, user 1

CPU, user 2

I/O, user 1

I/O, user 2

SV

L . .. _

roal time

Fig. TIT-2.3: Real timo diagram; (p .) = j ^

A
CPU, user 1

CPU, user 2

I/O, user 1
I/O, user 2

resources

real time

Fig. III-2.4: Real time diagram; (p..)
1 2
2 1

user waitinq for the resource

users seizing the resource

5^

Define q , by: r = p., <=> i = q , r e [l,n], je [l,m]

q . if? the number of the user havinq the r-th orioritv for resource i.
rj

If resource j has R. processors (possible simultaneous activations),

the maximum time that user i would spend waiting for resource j in time

interval [0,T] is:

f Win I r—r / aw)
keil.R.l ^ Rj -k+1 mÄTr-ll 'S.j5 "mj /

if r=q..> R^
11 mfclK,r-ij Ttij' *mj ' ^

0 if q. .<R.

so that the fundamental equations for the attainable domain are:

V i 6 [l,n] either 1 - w. f 'l • • — w- ^ 0 (always w. ^ 0) 1 jetl.m] '^3 i x

Theorem 1. A smaller domain than the attainable domain defined by the

previous equations can be defined by equations (ITI-2) where a. . has

been reolaced by o<. , = i-j .
IT —-

1

u^.,
Proof: by choosing the first of the cuantitios whose minimum

3

and

7\ i -IT äL— a. . w. if r = q. . > R.
J] 1 6[l,r-l]

^■-^^i-kr 51 a. . w. if r= q. . <; R.
3 1 C- [l,r-l]

hence the theorem.

54

By replacing the a..'s by the cK's the multiprocessor case has

been reduced to a monoprocessor case. The accuracy of this apnroxima-

tion can be felt even more in the special, but very important case

where a. . < a, , <=> p. . < p, . . In that case, if r = q. . > R :
ID k^ 'ij ^k] Mij j

• . = —z- /_ a. . w.
13 Rj i ffer-l] 13 1

and, for r = q..< R.."V. . = 0, but then the a. .'s are small ij - j Tij lj

too, because they yield high priorities. This leads to the intuitive

feeling that for this priority assignment and a larqe number of users

(n >> R,), the exact model and the model approximated bv theo<..'s are

very similar to each other.

There is another way of approximating the multiprocessor case by

a monoprocessor case. Suppose resource j to be a single resource (one

activation only), but which works at R. times its initial speed. The

fundamental eauations would then be:

- w: %S /3• w;

pkj<pij

where 8' . is the normalized value of ii

3

'3kj

R.

7 Rr

55

The progress rates w' apply in a universe where the resources

work faster than initially. The correspondence between w' and w is
i i

given by:

w: = w, > in
i i C—-**

3 Rj

Thus, the fundamental equations for the processors workinq at

R. times their initial speed are:

Vi ,
\j R i ^ j,k R

The reader can see that this is a more ontimistic estimate than

was given by theorem 1 and the o^ . .'s.
ID

Examole 3.

ai: CPU Bus

job 1 .8 .2

job 2 .4 .6

job 3 .2 .8

Suppose that 2 CPU's are available. The following priorities

are assigned.

(n.) = i a 2
a 3j

and F = w + w + w is to

' s 'l>- > ■> f be naximizod.

1. An exact treatment gives the fundamental c-rfuations;

56

1 >_ w + min (.2 w + .1 w)

1 ^ .2 w + w

1 > .2 w, + .6 w,+ w,
- 1 2 3

yielding the solution (with ooualities)

W. ■ .94 W2 = •81

\ "x ' •»' u2 = •93

E 2 .07
max

2. The lower bound method:

32

"V aij
CPU Bus

/'
.2 job 1 .4 .2 .1

job 2 .2 .6
2

1 .1

job 3 .1 .8 \2 .6 1

w = .80 w = .80 w = .36

2 Ul = •52 U2 = '**

is the "best" point of
the worst case.

fast:

E = 1.96
max

3. The "optimistic" approximation with a CPU workina twice as

,6 .2 .1\ /w.

thus i

..' • ft • i ! I w2 ll i

v.2 .6 .9/ \w.

w = 1.33 w9 = .88 w = .21

E = 2.44
max

Note that w is greater than 1, which is not surorisina with

57

the assumptions. If the constraint w. < 1 is imposed, the optimum

would be:

w = 1 w = .97 w = .24

E =2.21
max

which is a closer approximation of the case with two orocessors.

II1.4 Macroscheduling and microscheduling algorithms under the

previous model.

This section is intended to show how tho model of section III.3

can be applied to multi-level scheduling. Section III.4.1 shows how

the schedulers look from the users point of view. An attempt is i.hen

made to solve the mathematical programming problem by separating the

assignment of priorities from the computation of the progress rates.

A heuristic for assigning priorities is given and justified in III.4.2.

Once priorities are chosen, the problem is reduced to a multi-dimen-

sional Knapsack problem, for which a heurdstical solution is pronosed

in III.4.3. Section III.4.4 summarizes the results, and Til.4.5 shows

how the users could be charged at "marginal pric&s"; the prices for

services being determined in connection with the algorithm of III.4.3.3,

III.4.1 Combining two levels (in time) of scheduling.

When designing an operating system, one of the maior difficulties

is to partition the concepts involved. This requires, in particular,

the separation of tasks which are loosely connected, and the imnlcien-

Uation of them as separate processes of the system. " it is assumed

12
This can be achieved with a hierarchical structure such as the

one proposed by Diikstra [26] , with a communication system between
processes [27].

hero that tha followinq decisions and strategies are independent from

resource allocation (or scheduling)» except that thev mav provide in-

formation or requests for the scheduler, but thev should not be con-

fused with scheduling activities:

1. Page replacement algorithms in a computer with paged memory.

Which page should be extracted from meraorv? Should the sizn of the

working set of pages be changed.-' Should there be any prepaging?

These decisions can be made by the proqramner, or by the system,

but in any case they concern program optimisation and not system

optimization (insofar as it can be said that the system is not imnroved

by improvinq the users' programs running under it),

2. Decidina on the "external" priorities of jobs. Some jobs

are more urgent than others. This might be decided either by the sys-

tem or by the user (which is willina to pay more to get his job ex-

ecuted soon). External priority can bo reduced to the economic cri-

terion of the price offered bv the user per unit computation of his

job, which is then fed into the scheduler, and ■/ill serve the scheduler

in order to build its own optimiaation criterion.

3. statistics to be used by the schedulm or bv the paoinq

algorithm or to compute external nrtorities, can theoretically be

considered to bo collected Independently or those decision-making

13
processes.

A scheduler will be considered to be a mechanism usina the

followinq Information!

I 3
If the user wants to collect such statistics, he will have

to pay <"or the resources Involved ir. the spying process,

1. On each program: somo information about, the kind of service

wanted by the proqran, either on a lonn term iMnno, or because of a

current roouest for a facility. The a. . ' r; of section ITT.3 were an

example of such long term range information.

2. The economic "bid" of each job, characterising its "external"

urgency.

3. The re sources availablo fa the Byatom.

i believe that some scheduling should be done for intervals of

various duration of time. Tor instance, microschcduling, as defined

in the sequel, might, be done for periods in fnillisecond», rncoscheduling

for periods in hundreds of milliseconds, while scheduling of tapes

should be done for minutes, and sOffla real time u^crs may not v/ant to

use the system at all unless they are assured of ncttina ROKm minimvim

guaranteed resource usage darin'; a whole hour.

A scheduler decides to allocate some resources to some users, and

chooses parameters to be fed into the "lower level" scheduler (which

handles smaller time intervals).

Microscheduling and Macroscheduling.

Examples will now be given of how some usual allocation decisions

can be split between two schedulers workin1, at di•feront levels of time

intervals. These examples arc; summariged in table ITT-1. Resources

allocated by the low-level scheduler (microscheduler) ire said to b.;

preemptible, and those allocated by the macroschodulor arc1 said to ba

non-preemptible.

14
Freonptibility is, of course, a relative notion (and not abso-

lute). Tt can just be stated that some resources are more preemrtiblo
than others,if the overhead to allocate then Is smaller.

(sü

Macroschedulinq

Time betv/et-n

macro-decisinns

Microscheduling

Current Comnutor

Systems

Allocatinn of

core ripnory

Time between

microdncisions

1 SPC.

Conflicts of access«

to drum and di^k

Allocation of CPU

and fast reiisLers

10 mill isr>c.

Future Coneutex

Systems

Mlocation of core

m"morv and

fast rrtfinters

]0 mil Lsi

Allocation of CPU

conflicts in swa?'nina

■ctw'.fn central core
and fast ronister"-,

100 microseconds

Table III-l

Tüxamoles of macro and micro «ehedu] Lno

r.i

Macror-'netful inq can rofor to those ichodulina oncrations which

are related to the allncation of crentral memorv. Tht.' time interval

between two macrodocisions would be rather laron (qrr-.nter th.m 100

milliseconds on most systems). Microschodul.nn would concern the allo-

cation of tho arithmetic and control unii-; tnd of somn fast luisson,

to programs w'nicli are already nssenti.il Iv nresont in „entral mom^rv.

For instance, the daeiaion of what -oh is Rllocatttd 'i-cer.-: to the drum

for paqe-in ind ^aqo-out operatloiM Imtween drum and :-. »in cor^ memorv

is a microsc'i!cdul inq decision In'currant comoutet S'/atona wh. to the

programs are ker t in core While waning takes tdac'-'. In Future computer

systems, this kind of naqinq will most probably be-replacad bv a D.uiina

between two fast levels of memory, like on tha 160./85!

I prefer the words "microschcduling" an^i "r.icro^cheduli nc-" to

"microqueuinn" and "macre lueuina" [5] , becau.so the latter Kuqnest the

use of FIFO quauea bv the aehedulinq algorithm, which la a practice

that this chanter prcciselv tries to dltcredit. Note that, in our term-

inology, "schedulinq" and "allocating" are synonvmnus.

The macroschedulor receives the predicted probable usaqo ratios,

a.,, and tlio urqency, c, for nach user fi who wants to run. Then the

mäcroGcheduler will solve the '■Vithenatical Prooramnlnn oroble-n (defined

in III. 3.3). I'avinq determined tlie set of uaora to be Allocated durin«::

a certain real-time interval of lenqth 7, and t'ü.1 matrtcea (p, .) and
1 i

(w) for the users in this set., the MCroaeheduler assures that the

non-preonntible resources will bo allocated to thoaa irerr., and transfers

the values of (r .) and (w.) to the Rlicroachedulor«

The mlcroachedular controls the acceaa of the usara to the ore-

62

emptible reKcurcer;, by npplyinq feha priorities wliich woro detprminod

by tho macror.diodulor. It also stops a u;;or fi if this u.sor runs norc

than a time w.T. Finally, it prevents tho users from excooding their

15
predicted resource usage ratios.

Sections TIT.4.2 and III.4.3 will 'ig devoted to the solution of

the M.P. problem by the macroscheduler.

11T.4.2 Assignment of priori ties.

It is interesting to try to find a priority assignment (p..)

before determining the progress rates (v,,) which ontimize the cost

function E - Y. c. w. .
i i

III.4.2.1 A case where a given assignment oF priorities can

certainly be imnrovod.

Let D be called the attainable domain under priority assiqnment
P

S. It will now be shown that the assignment to each job of a set of

the same priorities for all resources is a wrona choice, which can al-

ways be improved. Consider tho following theorem:

Theorem 2: Let £ be a prioritv assignment in which o, . < p., . for all

i. If, for some i, p.,. - p. . + I»than there exists another assignment

P' which is the same as P except that n, . and p.,, arc Interchanged,

such that D , oroperly contains D .
p' " P

In other words, any point in the smco of observables which

satisfies equations (ITI-2) undor assiqnment P , will satisfy (TTT-2)

under priority assignment P'.

15
Sec section ITT. 4.4 for a precise sketch of the microschedul.ina

algorithm.

63

16
Corollary: the maximum of the cost function under priority

assignment P' will be greater than or equal to its maximum under P.

The proof of the theorem is given in appendix A. The theorem

is quite weak, but at least it shows that a priority assignment like

the following can certainly be improved:

(V

III.4.2.2 Two cases where it is known how to assign priorities.

1. The users arc competing on one resourco nnlv.

There might be more preemptible resourcos in the system, but

for each of the other resources there is no more than one user who

might ask for it.

In this case, the fundamental equations take the form:

V i € T n] , either w = 0 or 1 - w. > T a, . w, (0 ^w < 1)
k J

Pkj<Pij

where j is the critical resource, and:

E = £ c.w.
i i i

is to be maximized.

Theorem 3; The optimal priority assignment, P, is such that:

a. . a, .
P. <P <=> -21 < -^i PijSPkj ^ c. ^ r

i k

The proof is sketched in anpendix B.

16 ... or economic criterion.

64

2. There is a finite number of users and resources, but, the

a..'s are infinitely small (of the first order).
-JO *

Under these assumptions, 1-w, is a first order, infin.'tely

small number. Thus:

1 ft kD

p
kj<pij

and:

n - E f^ ^ c. a, .
max i JT^, i k^

pkj<p1j

The question of which priority system makes n-E the smallest

possible, still exists. The following theorem solves the problem:

Theorem 4; The optimal priority assignment P is such that, for any

resource j and any users i and i',

J J i i*

Proof:

n-E r^/ 2 Z_ c. a max t-r T—, i k] D i,k
Pkj<Pij

65

Thus, the problem of finding the optimal priorities can, in this case,

be solved for each resource independently from the values of the a 's
Ü

and p..'s for the other resources. Theorem 3 can then be apnlied, and

gives the optimum priority assignment for each resource.

III.4.2.3 General case.

The general problem of assigning priorities is qenerally guite

complicated. Using the results of sections III.4.2.1 and III.4.2.2,

suggests the following heuristic:

1. Assign priorities so that:

a. . a
p..<p & -ii^jy

2. Try to improve this priority assiinmnnt by usimt theorem 2.

This improvement can be achieve! in a time proportional to m x n.

This priority assignment Is not always optimal, as shown by the

following counter-example:

Example 4: 3 resources, 2 jobs.

, . 1.3 .3 .4
{aii' = 1.31 .6 .09

It is desired to optimize w + w . The proceeding method loads to the

following assignment of prioritiesi

' V |a I l]
T; e optimum is w + w = 1,384, However, with the priority

assignment:

" ' 1 2
^ = ^1 2 1

the optimum would be: W. + w = 1.477.

66

This example clearly shows that the "good" priority assionment

is not always optimal. The major advantaqe of this method of asr.iqninq

priorities is simplicitv.

III.4.3 Assignment of values for the progress rates w .

Once the p..'s have been determined, it is desirable to determine

optimum values for the orogress rates in order to raaximiao R while sat-

isfying equations (ITI--2).

III.4.3.1 The 0/1 integer linear programnina problem.

Now the mathematical proqramminq problem which was defined in

part 2 of section III.3.3 will be considered: maxini-e (III-5) sub-

ject to the constraints (III-6) (exceot that the o..'s have already

been determined).

This mathematical proqramminq problem is not a 0/1 integer linear

programming problem, but it is convenient to consider it as such (de-

termine the values of the S.'s nnual to 0 or 1). Note that the a..'s
i- in

and the b,.'s are all positive (they represent the needs of the users

for preemptible and non-preemptible resources).

The 0/1 integer linear proqramminq problem has been reviewed in

[23]. Of particular interest to u^ are the studies in [24,28]. The

idea is to find a nearly ontimal set of users to be allocated

((5. = 0 or 1) by ordering the users accordinq to some criterion which

will be called "decreasinq desirabilities", and to trv to allocate

them (satisfy the constraints), starting with the user havinn the high-

est desirability.

67

111.4.3.2 A figst algorithmi

The jobs are supposed to be already ordered by decreasing ex-

ternal priorities. It is then necessary to decide about the w.'s for

the jobs. For instance, suppose w. = .5 for the high priority jobs.

A w. too close to 1 miaht strongly degrao? * he possible service for

other jobs, bv obliging the system to give a hi oh intornal oriority

for all resources to the job which has a high extcrna] priority. This

would lead, as has been seen, to a poor utilisation of the resources.

If a sot S of jobs is allocated in menorv, it has to satisfv

equations (iri-l) and (III--6) (with 5, = 1 if US, 6 =0 otherwise).

A procedure to find the maximal set of users fitting into avail-

able resources would take the following stops:

Step 1: Take the highest nriority user; put hin in set S'.

Step 2: Check whether S' is an allowable set: first assign the

priorities p. , yies', according to the rule

a. . a
p. . ^ P. , IT ki Hj < bk: <-> —— < -~-,~

Cl Ck

wliere the c.'s are in the same order as the external oriorities.
i

Then check equations (III-3, and ITI-6) for sot S'. If th^y all cVieck,

go to step 3, else go to step 4.

Step 31 S ' S'; go to Step 4.

Step 4: Define S1 as including all users of 3, plus the hiahest

priority user not yet handled. Tf there are no more users to handle,

the algorithm stops, else go to step 1.

Using the above procedure a maximum allowable set of users has

been found, each of which has a requested guaranteed service. The

computations can be done so that the time reauired bv the alqoritlrn

is: t=Amn+Bmn lDo(n). The nxloo(n) term expressed the time to

sort the quantities i] (to determine the priorities).
c.

Set of users with non-guaranteed service.

Assume that the non-preemptiblo resources are not saturated after

having applied the previous macrnschedulino algorithm« Some other

users might then be allocator] with priorities lower (for each pre-

emptible resource) than the lowest priority of the users of set S. The

guaranteed service of users of set S will not be affectttd by these

additional ("Mar^inril") users. M v/i]1 be the set of narninal users.

Priorities in set M are determined accordina to the same criteria

as in set S. Of course, the resource usagn will not he as aood as if

the priorities had been deternined optifliallv for the entire set M + S.

Our solution respects the external priorities of the users, while

maximizing the system's efficiency.

Example 5: There are 2 CPU's but only one bur, (or channel).

a. . CPU I/O w. decided
i

i'" a] located

job 1 .4 .6 .5
job 2 .3 .7 .5
job 3 .5 r

■ -j .5
job 4 .9 .i .*>
job 5 .8 . 2 .5
job 6 .6 .4 .5

Those G candidates arr in the order of their external nriorities.

There is no constraint due to non-preenntiblo resources in this example.

The r' i l-r can verify that the alqorithm (with c. = 1, \j i) will

accent johs 1 and 2, reject 3, and accent: 4 and 5. This is intuitivolv

69

a good choice because 1,2,3 are I/O bound while the others are comnute

bound. S =<1,2,4,5>M =J3,6V, and the priority assignment s are;

V ■

'2 ,1
1 4
5 6
4 1
3 2

* 6 5
/

Note that job 3 would have been accepted if w < .4. This as-

signment gives the resource usage u . = .G, u . = .&, which could be

improved by solving equations (.111-2) (cnualitios) for the w.'s with

the p..'s that were just computed.

Commentsi

1) When deciding about the desirabilities o^ the jobs, onlv the

external priorities and not a more precise quantitative measure of

their urgencies were taken into account.

2) Clearly, if the w.'s were computed,instead of just being

arbitrarily decided before the algorithm started,a more optimal solution

could have been obtained.

III.4.3.3 A more general algorithm.

The following algorithm attempts to find a nearly optimal solution

to the problem. It works in two steps:

1) Got an approximate solution by ontimizinq the economic

criterion (III-5) with the followinq constraints:

v j#« r^ ^
(III-7)

ifis Bj

v jea Z ^^^i
i es ~2

70

The constraints for the resources of sot (ft are identical in

equations (.TTI-6) and (III-7) . The constraints concerninq the resources

of set G[are, however, weaker in equations (III-6) than in equations

(III-7). The latter just express the best possible case (where no

unnecessary interference between jobs would happen), however, this

method is used because equations (III-7) are easier to manipulate than

equations (III-6) and a more refined solution will be attained later.

This first step is essentially intended to eliminate from further con-

sideration the jobs which should certainly not be scheduled (for which

w. =0).

To get a good approximate solution of this mathematical nrocrramminq

problem (III-7) , it is not necessary to use an onunorative method of

search. A faster method which gives a good approximate solution works

as follows:

] 7
Assign an initial weight K. to resource j. Assign an initial

w. to job i. Compute the desirability for each job:

c.
d. =

Z b K + 2. a. . w. K,
ji4 1D D jtai: 1 ^

Sort the jobs according to their desirabilities. Starting with

the one of highest desirability, compute whether the job can be allo-

cated or not, thai* is, if oauetions (III-7) can be satisfied with S

consisting of the jobs which have alreadv been allocated and of the job

which is a candidate to be added. Whether the job has been allocated

or not, try the next one.

17
The initial weights when the microscheiuler is activated minht

be the final weights obtained at its previous activation.

71

When all the jobs have been examined, comoute a new weiqbt as-

signment (the K.'s) and the new w.'s according to the nrinciple that a

job having larger d, should have a larger w. , and that a resource for

which the corresponding equation (III-7) had its left sido much smaller

than 1, should have its weight decreased.

Ifi
This entire process can be repeated 2 or 3 times.

2) Having determined the set S, a bettor approximation of the

w, 's can be determined by solving equations (III-fi), with

p. . < p.. . < = > a. ./c. < a,. ./c

(III-8) 1 - w + Z ai.-i wi. V i6S
1 j6(]L 1 D x

Pi'j<Pij

If any of the w.'s of the solution is neaative, this w. is re-
i i

moved from set S, and equations (III-8) are solved aaain. 'is shown,

equations (III-7) gave a set of users to be allocated which could he

somewhat too large. Eliminating some users from this set in some cases,

yields a nearly optimal set to satisfy equations (TIT-G) while maxim-

18
izing E given by equation (III-5) .

III.4.4 A summary of the proposed schedulino method.

1) Macroscheduling: It has been shown how, niven the a.,'s,
 —- i j

b.,'s and c.'s, the macroschedulor determines the o..'a and w.'s and
Ij 1 n i

18
This algorithm has been proorammod and checked for several

examples, for various numl^ers of usirs and resources. It alwavs
worked satisfactorily. Note that the choice of-' the rule used to
get a new sot of weights is essential to obtain a fast converaonce.

12

transmits them to the microscheduler. It also allocates the non-

preemptible resources for a period of time T.

2) Micioscheduling: the microscheduler keeps track of the u-;aqe

of preemptible resources by the allocated users. If user i uses re-

source j during more than a time

w.a. .T

then job i is punished in the sense that its priority p^. for this re-

source is changed to a priority lower than any -job which had not ex-

ceeded its quantum on the resource. This method assures that a job

which accurately estimated its needs will be served at least as well

as promised.

This changing of priorities bv the microscheduler does not affect

the previsions of the mathematical model (which assumed that the micro-

scheduler did not touch the priorities but onlv inforce them), for

priorities are only changed when a user exceeds his allowed quantum on

a resource.

III.4.5 Pricing.

The determination of prices is, to a large extent, a consequence

of the scheduling strategy. In the approach taken, a user agreed to

pay at most a price c.w, to get a progress rate W. , and if he nrooosed

a larger c. he not higher priority.

However, the system should charge the various johs beina allo-

cated more or less uniformly. It. should not just charge the maximum

possible to each job, because otherwise the jobs would start with verv

low c 's and then increase them slowly until thev were scheduled, thus
i

leading to a greater overhead. The marginal theory o^ nricino thcoret-

73

ically requiros the syLtem to charqp user i exactlv c'.w., where c1,^ c-

is the lowest bid that the user would have had to offer to qet allo-

cated. Unfortunately, this definition would lead to very complicated

computations. I suqqest here a few alternative nothods.

1) If I is the first job which was skipped (not allocated) when

the jobs were scanned in order of decreasinq desirabilities in the firFt

step of the macroschedulinq alqorithm, and if w. the effective Droqresn

rate for job i, charqe job i:

n. = min (c, , c.) x w. x T
'i i i i

2) If -iobs having estimated their a. .'s incorrectlv are to be

penalized, and if job i has effectively used an amount: r. , of resource j,

he is charqed:
r. .

p, = min (c. , c.) x max ()
j. I i a. .

ij

3) A unit cost for resource j could also have been comnuted:

u. = K, d.,, where I is the first job not allocated
j 3 I

and K. the weiqht of resource j, as computed by the macroschedulinn

alqorithm. If job i uses resource j durinq a time r. ., he could be

charqed:

pi = min (c. wi , 2. ^ , V.)

j

It is useful to have some prices for resources, so that:

1) A new cominq user can by immediate insonction of the prices

determine whether he wants to qet on the system or not.

2) On the lonq ranqe, the computer center staff miqht determine

the needs to install or remove facilities (see Nielsen 116]).

The variations of the u.'s in time should probably he smoothed
j

74

for those purposes.

III.5 Models of other priority systems.

IIT.5.1 The equiprioiity case without preemntion.

In this "no-priority case", a user soizinq a resource will never

bo preempted and will not lose the resource until ho decides to release

it. The situation may lead to almost no parallelism in the comnutationa.

The worst case equations are:

(111-9) ii%il,n] f l^w. + Z v wk
k^i 3

j

In the situation of example #3, this gives the followina oroaress

rates:

w = 16, w2 = .32, w = .64

so that the overlap of activity is small:

overlap = w-i + w^ + w -1 = 12%

Theorem 5: The attainable domain D.. of the no-priority system is nro-
 N

perly contained in the attainable domain D of any priority system.

Proof: compare equations (III-2) and (III-9). The latter imolv

the former.

Therefore the no-priority case is uninteresting, and should be

avoided in any actual system design.

III.5.2 The equipriority case with preemntion.

This case would also be called the case of "Randomly turning"

priorities. The model is characterized by the followina microschedulinq

method:

Trie time is divided into very short interval1:, and the nrioritv of

75

the users for the various resources is changing from one interval to

the other, cycling so that each user spends the same amount ot time ii

each priority level. Typically, the time between two priority change;

might be 100 microseconds and is small compared to the interval between

two allocation requests ot jobs to the microschod^ler. Nevertheless,

assume that this method does not introduce any additional overhead.

A random number generator miaht be used at the boqinning of eacl

time interval, to generate the job nriorities during this interval.

This would insure that there is no regular pattern of one job snnnding

most of the time at a higher prioritv th.^n another, as happens with a

circular permutation.

The idea of such a microscheduling algorithm has the following

justifications:

1) The hardware could allow time-sharing of a CPU or a channel

on very short time-slices, however, we don't know whether this would be

a good practice.

2) It is desirable to assuro a user of a cortain percentage of

use of some resources, under any circumstances. Time-slicinn on a very

short time basis miaht seem a natural wav to do it. If user i is assured

of having the top priority on resource j durino a portion of time X . AT

where AT is some small interval of time, then, with the a. .'s defined

nreviously, his orogress rate will be at least

w. = run
: a. ,

IT

However, a much higher "lower bound" estimate for the w.'s can

be computed. After having done it, these new "worst case" equations will

be comnared to eauations (III-2) and it will be shown that, under some

76

assuniptions, the "turning priorities microschedulincr" performs poorer

than a fixed priori' algorithm with the p..'s well chosen. This re-

sult has been checked by simulation, and the following discussion

attempts to establish a theoretical justification.

Under this new model, if k users compete for some resource, each

one will get it during a portion of the time 1/k. Consider resource j.

User i will seize it during a period T a..w.. m the worst possible

case, the maximum overlap of requests occurs on resource j. Thus, the

time spent by user i waiting for resource j ia less than or equal to

Z_ min (a .w, T, a.. w. T)
k ^ i kT k 1.1 i

This points out that if a job k asks for less time on resource j

Jiim job i, the maximun time spent by job i waiting for resource j be-

cause of job k will be T aw. If, on the other hand. a. .w.T<a w T, K3 * ij i kj k '

job i will wait for resource j because of job k at most durina a tine

a^w.T. (see fig. 111-3).

The worst case equations are thus:

(111-10) 1>yWi + £ min (a^ ^ (^^ ^) Vife[1,n]

j' (w.^ 0)

These equations define the attainable domain with turning priorities.

Theorem 6; For every point in the attainable do-nain defined by eouations

(111-10), there exists a priority system in which this point is attainable

according to equations (III-2).

Proof: Define this prioritv svstem by:

iJ KD i] i k") k

n

k (job nurnbe it)

S
1 akj wk y - r

Fig. III-3: Time spent by the jobs on resource j

and maximum interference of job i with other jobs

78

Assume that, for a given j, the a,.'s are all different. Then

obviously, equations (111-10) imply equations (TIT-2) for this system,

which are:

Vi€U,n] 1 >w + £ a w
Y 1 k^. JO K

a, .w, < a, ,w.

This theorem is reassuring because it says t lat whatever a user

is assured of doing under a turning priority system, he is also assured

of doing under a fixed priority system.

However, the following theorem can be proved under some restrictive

assumptions:

Theorem 7;

If one of the following is true:

1) There are only 2 jobs (and any number of resources).

2) There is any number of jobs, but comoetition is limited to

one resource only; then there exists a priority system whose attainable

domain includes the domain defined by:

p. . "^ p. . <=> a. . < a, .

The proof is shown in appendix B.

Theorems 6 and 7 show that a fixed priority system should, to a

certain extent, be preferred to a random orioritv system (which is it-

self better than no preemptibi lity at all). If i\ resource has the pro-

perty that it can be preempted without anv other additional future loss

of time, then the available information on the -jobs can be used to

assign priorities for the resources, and a "aood" choice is to assign

the resource to the iob which has the least need for it (after h^vina

79

weighted these needs by the external urgencies of tho jobs, which leads

to the quantities
a.
i'

III.6 Problems for further research.

1) Continuous macroscheduling: Instead of applving the macro-

algorithm at regular time intervals, find a simplified macroalgorithm

to be applied each time a job previously runnina deactivates itself

voluntarily, or when a job changes its external prioritv, or even

when the swapping channel is idle. Jobs might be scheduled or un-

scheduled just using the desirabilities which have already been

computed, but it might also be desirable to recompute the p. .'s, the

K.'s, the d.'s and the w.'s.

2) Extend the models to include processes using more than one

resource at a time. For instance, Fig. III-4 shows the virtual time

diagram of a use?' who initiates I/O and swapning at the same time:

i Resources

CPU

I'O

Swan-oyt'

Swap-iji

memory (20K;

memory (2K)

1 I
I I
, I

Virtual time

Figure III-4

Another characteristic of our hypothetical job is that it does

not need all its memory resource continuously (a buffer of 2K is enouah

80

during I/O completion). Could this knowledge he taken care of?

Solving this problem would be especially useful for future

computer systems where the cost of arithmetic and control units is ex-

pected to decrease much more than the cost of central memories.

3) Find models of "probable" performance as well as "worst case"

models.

4) Which information other than a, 's or the b, .'s on the jobs

would be relevant to an allocation algorithm?

For instance, the exact virtual time at which a job will place a

request might be available for some jobs whiüe bcinq completely out of

the question for others.

5) How much would the results of the model be affected by slight

errors in the predictions?

III.7 Conclusion.

My initial effort was applied to separate problems which are

usually handled together in a very intricate manner: 1) Scheduling;

2) Paging algorithms; 3) Deciding external priorities of users 4) Col-

lecting information about the average probable needs for resources of a

specific job. Pricing, however, should not bo a question separated from

scheduling. The problems of protection and of deadly embrace had already

been separated from the others in previous work--:. Ry nartitionina the

difficulty, I believe that the way to better sclontific understanding

of shared computer systems stands open.

The previous scheduling algorithms and models apnlv in computer

systems where the shared facilities can either be preempted with very

81

little overhead (CPU, busses between two levels of fast memory), or

cannot be reallocated without a great amount of overhead (memorv).

Thev do not apnly, however, in cases whore a resource can be preempted

but the delay imposed on the preempted job is great®» than the time

during which the preemption occured. This would be the case if, for

instance, a job is swapped from the drum into momnrv, but if at a

certain moment it can't get one of the oages because another job has a

higher priority to get a page from this sector of the drum, then the

preempted job will have to wait an entire revolution of the drum before

the opportunity to get the missing page is reneatcd, and the cost of

having a set of pages idling in memory durinq all that time is of course

important. In such a case, the right strateqv might be to avoid pre-

emption, and to decide what to do bv computing a "desirabilitv ratio"

for each possible scheduling operation (ratio of the urqencv bv the total

cost of the resources involved). (see section IV.4).

It is my belief that the scheduling techninuos described in this

chapter will be especially useful for scheduling of real-time users, wlK3

want to have the assurance of getting a certain percentage of usage of

the resources of the machine before they start working.

Other investigations of multileveled schedulina are still necessary.

I believe that queuing theory gets enormously comnlicatod too ranidly

when the number of servers and the complexity of the queueinn strategy

increase. Simulation is a fast way of testing whether some algorithm is

workable, but is not more than a predictive technique. It does not seem

to be likely in the future that a scheduler will first simulate the

situation before making a decision. Analytical approaches are almost all

82

that are left to improve schedulers in the future with the certainty

that the designed algorithm will wor» almost optimally in all cases.

Sß

CHAPTER IV

SWAPPING ALGORITHMS

In this chapter a study is made of swapping algorithms for a

computer with two levels of memory: drum and core. Pre-paginq takes

place before a program uses the CPU, an entire working set of pages

of this program is swapped into core. Section IV.I presents the

Berkeley or Van Tuyl algorithm, which was developed under the direc-

tion of Butler Lampson at Berkeley. Then, by contrast, another swapp-

ing algorithm is presented in section IV.2. 1 then explain why I

think that the latter algorithm is much more appropriate than the

former, especially for future computer systems. Resource utilizations

of users programs under both algorithms are compared in section IV.3.

Finally, section IV.4 gives some indications as to how a drum to core

system should be scheduled if the swapping algorithm of section IV.2

is used.

The various notations used in this chapter are completely inde-

pendent from those used in the previous chapters.

IV.1 The Swapping Algorithm of Van Tuyl.

llO] describes a swapping algorithm between drum and core which

19
was intended for the BCC-1 computer. The system has essentially four

resources:

19
It was initially designed for the SCC 6700 computer,

84

a) one CPU

b) core memory

c) drum (capacity supposed to be infinite)

d) a channel between core and drum

A program might be in four possible states:

1) on the drum,

2) being brought into core,

3) in core, waiting for or using the CPU, or waiting for an

absent page,

4) being swapped out of core, to the drum.

An "external scheduler" decides which programs are candidates to

be brought into core, and among those which arc in core, which one gets

the CPU, or which are candidates to be swapped out.

A program is considered to be in core when a certain set of pages

is in core (this set might be the entire program). Programs are sup-

posed to be small enough so that their pages can be retrieved entirely

in one drum rotation (if there is not conflict). A conflict occurs if

two orograms, while both are being brought in, happen to have a page on

the same sector of the drum.

The swappor is an algorithm which har; to decide, at nach sector

of the drum, which page should be transferred. It might do either a

read, or a write. With Van Tuyl's algorithm (hereafter called "tlv^

Berkeley algorithm"), pages which are not dirty (not written on while

in core) , do not need to be written on feha drum. Van Tuyl simulated

his algorithm with the assumption that halt of the pages cf each pro-

gram are dirtied while in core.

w

paged

core

momory

road-writu^/
heads/

V N

ono paqo p9t sector

prtMrtMisnr

fl->. IV-1

u

Table IV-1

Decisions of the Swapper in the Berkeley Algorithm

1. A process that the scheduler has decided to run is put on the

swap in list (or road list) if and only if:

Pages queued in ♦ pages of proress to uuruo in - free core < t>

(where .' is a system dependent constant) , and fMoca queued out *

free slots on road sector list.

2. Dr ir command:

a) j^f no road to do and at least one write to do then write

out, exit.

b) Conputo, if conflict (nanM proccnaoa r^quoaimq to read a

paqo In on tho aan« ■■star}« for ill pgWMMM on the read Itatt

Coat of pioceaa ■ tine t» coaplato road» x li-PT)

where P«: ■ nuMUor of paqo« of the pror«>«a in core

1 1 • P««l»* • pree««a «ay haw* d I« the «am» for all

pvoccaa* Ilka i wa« pr^wtowalyl.

c) I£ therw la a fraa paqe ia ear* than rr »1 »h« pa«* af th»

lowaat coat pracaaa, exit.

4) If coat of r*ad * « or aa paa* caa It* »««Iraawd in care. Warn

da a writ«» yla* r^ad th* pMan or the laaa*! MM r«f*<**». *«II .

I. A pao» i« rK*l*aawd ^f

ia eat» iwlaaaia* to a ptoeaoa r. »or- IHM I
<i*m\ %%A * roa« I« I

•aat Ipjl • en*f ipi.^ptf1^

• iJkt •awat taal* ■»■■■■» aad ^ t^» tat »1

I aaar »a

R7

A completo description of the swanper oporatlons is given in

table 1V-1.

Dote that the swapper does not "look ahc.id." When the drum in

positioned at a certain sector, the swapper ignores which pages will

be candidate to IM swapped in on later B«etors. Tnis is | reisonoble

choice because the algorithm is already quite complicated, and one ray

wonder whether all the decisions of table IV-1 can b. made by a micro-

progr mnod procossor during the tino of one t .. ^ reid (I milliserond).

IV.2 Anotiv.'r swapping algorithm.

Tho mnm MM of thi» m-w Hrfapping ilgorn.im is to swap con» t ?u-

ou«ly in ttw tun pagn» which beloni to »hr Workin'i S.«t of a progr.im

Witich has to bo brou«|lit in or «ut of corn. Contrary to tho P"rk«lev

algonthn. all of th« paqrs ar« twapfwd out (.ind no^ only the dirty

paqos). This siswwliat inrroaso» th" ch.innet uttlixition, but rmult«

in big Mivin't« «n ••■ory. Th« reason for thew navinos Is that a «Mli

progran can now i«e brout^it into rorr in auch less than an sntlr^ drun

r»«olation sine« it« paggs occupy contigur«» sr^ tot* of th» drun. A

pr^grap i* r'n^'n to bm MMpfrt m Mcaass it UJ* a high rstenut pri-

ority Mid bgcawM its Mt of pMM I« at» ,• • . NMk tit» drw heads.

It» «Mid th* pHtlbAUty Hurt «udh a strategy «s>«uld iMfoftmiplv .«-lay

tfc» nmiiM of *am yem, IM MhtAilvr PUSI »- • k "ig advtn^ * « K-*.

H*» Mould lag «Mppgi tu or ^«< d4tlirt a dfNT' rt^>iu*iMi i**r MI inn

IV.dl.

«Mt tills mm «IfMIIM» «Mlo»r*« - iwllfl»« I*' fa*» of

t. IMr» i« «ftty tM |M t« b» MwH'^d i« »• a tiWt M «M

^

8f)

job to be swapped out. As long as the swapping (in or out) of the

current job is not completely finished, there is no possible conflict,

and thur. thi.' next, page to he transferred is nlw.iyj; obvious. When the

uwapping of a job i:; completed, the next job to bo swapped must be

selected. It can be any job in core if a swan-out is desired; other-

wise, a job must be chosen by the schedvler to be swapped in such that

its first drum '-.ector has not yet arrived at the r»vid heads. When

initiating » swap-in operation, thire must be an assurance that enough

free coro is available. The problem of determininq which job will be

swapped in or out, will be studied in section l\'.A.

IV.3 Comparison of the rosourco utilization un ler both algorithms.

To simplify, Hupposc that thoro is iust one CPU and one drum.

TtA^n, there are throo important resources: the CPit, the coro memory,

and the drum-to-core channel. The drum memo-y in supposed not to Lo

saturated under normal conuirions. The utilization of those three

resources is computed by a proqram, during an entire cycle (swap-in,

compute, **ap-out). Those utilisations will he normalized in tiin<>-

utilisation of the entire resource. For instanc- , if the core memory

site ts M, the use of an amount m of core dunna time t in normalised

to a Mnory utilisation of - t.

Mhile computinq the resource utDlsatinnn, some simplifvtnq ainump-

tftOM ere nedo. She etronqe«« of them is to nerthct th»« increased utt-

liiatton of Memory ana channel due to conflicts in th»* Berkel«*/ al<inr»

Ithn. taNevlfrt thi« particular assumption stremth^na tin* c« nrlusiiMis

«diich folio» evmn

89

The following definitions will aid in the discussion:

S number of sectors on one drum revolution
p

P number of pages of a program (- of them dirty)

M size of core memory

T time spent by the CPU on a program, while it is in core

S and P both have a time dimension. In these computations, the

time unit is thu time to read one Mctot from the drum (i millisecond

on the BCC-1). The resource utilizations are shown In table IV-2.

The channel utilization time is -P in thr first algorithm, com-

pared to 2P in the second, duo to thr fact that the dirty pages erv not

swapped out in the first algorithm.

Memory utilization is computed as a space-time product (see ;iqurc

IV-2). With the Berkeley algorithm, for inst.inco, the prograr is

brought into cor«- in one drum revolution (time S) , handled in time T by

the CPU, and ".wapped out in time sf (in the first phase of this swap-

out, the clean pages, which do n^t need to bo «vvipned, arc replaced by

another program's paqost in the second phase, the - tlirtv pages aro

swapped, a»- ■ rat« of one page per two sectors, the oth<»r sector time

being given to a rrad). The total resource utilization of a program is

now defined as the naxlmum of the three resource utiliratlons (channel,

core and CPU):

For algorithm Mi

r? ♦ * ♦ i ta ,
Uj - max (T, ^p-i , ~ D

For algortth« 121

U- ■ WUM ;T, rr ♦ 2t2 , 2r) I M

a io

O Vf c
rH LD O "H

II II II II

F- a. w E

o
in

O O «N fM
r(i-t ro ro

II II II II

E- a w s

o
P4

O
rH

in

c
0

•H o
Hi
N

•M
ft
•H a
p
■
o

1
1

t-

N
0.

n|oo

♦ •^
a.

8
u
§ I E

>.
IM
r,

l
|
H

o «a
i-i in ^o H

ii H n ii

ic< 0, U) T.

o
r-H

c
rH

o

O O IN (N
i-i rH n o

II II 11 II

Er" ß. CT. E

o
t-4

(T. Q
(N

c
0

■H ü
N

•H
■-I

M
D
01 R i
3
0
«1

1

H

(N

+ • - «N

R
es

ou
rc

e

P
o h
1.

« ■
C ■ 1

•H
^
0

fN r
^! r-t

m
c h
tfl

r—1 4-J
S1 0
in 0
1: .r 1 4J

•H fe
u r.
a 0
Q< V

f-* •p
4 0

J1

CP
r o •»-* J"

fN VI

> r« 4J
M 1 fO

0) 1*

rH a' f. I £
H •H

N v.
.n 8.
c f-i

0 f)
tm
*J >.
ffl o
N l-<

•w Cl

o
Ü

o
w
c

t>

0.
0

■It

I

CM

w

X

/
m
3
t. r. o v

■ a

«A

i

0-

X

H

>
C H

•rl
fl c
E 0
0 ■H

"tj 4-'
u

W c
0 w
n
Bt u-l
n ■ Ü

1
E

E= £
■ H JJ
4J

h
o 0
£
4-1

"3
c

•H 1
4.J (0 9
D i
0 G w
1 n • t-J

a,
1 B ■
S il •^
«I b

i/l »—'
ü c ■ A

*J "J
3 o *»
Q. r: i
H o
0 M4 AJ
Ü > • r-4

c 0
0 r

c •»4 ^^
1

^

0. N >
n •^ ';
^ ^-1 1-1
H ■M «'

*■' M
3 k.

1
>• re
L 1 ;i

ei T' 1
• §
u c
0 4:
Ü

N

M

•4

** •
&■ «

■ M ••
u. w

^^

92

The Berkeley algorithm was simulated by Van Tuyl under various assump-

tions, among them, P = 10 pages, S = 32 milliseconds (or pages), M = 32

pages and T = 10 milliseconds. Table IV-2 shows that U = 15 < U = 20

with these data, so that the 1st algorithm really behaves better than

the second algorithm, and the bottleneck really lies in the channel.

If the memory size and the spcod of the channel are decreased to P = 5,

S = 64, :■' = 10, and T = 10, tho second algorithm performs much better

than the first one: U = 23 > U = 10, and tho bottleneck of the first

algorithm lies in the memory.

Now follows a study of how the rosourc; utilization would chanqe

if the characteristics of the available hardware were to chanae.

The size of the memory, M, the length of a drum revolution, 8|

or the bandwidth of the channel, B could be varied. B va* supposed to

be equal to 1 in the previous computations. More rioncrally:

/ n. 2 8 Ü , 3 !] Ul * maX ^T' B 2 B j

H2

0t.-«(T,!l^iI't|J
I) Effect of handwnitli.

Piqure IV-3 shows the offcrt of ban<)width. For high b.inlwidth,

algorithm »2 ptrform« bettor than algorithm •!, as ox;«ct«'d. Not«-

that thi«; it m»t tru« if T were high (in which case b^th alonnthm«»

would b« CPU bound)} but the assumption is mdo th.it (TU'«« are netting

faster and ehoarcr, and arc not the critical resources of »enl^rn com-

puter systems.

93

2) Effect of drum rotation time.

Figure IV-4 shows how, whon the drum rotation time increases,

algorithm #1 looses efficiency, but algorithm #2 does not degrade at

all. This is due to the fact that the memory utilization by algorithm

#2 is independent on S. This will allow the possible use of slow,

cheap drums in future computer systems.

3) Effect of a change of the relative cont of core memory

versus cost of other resources.

In figure TV-5, it can be seen that if the core memory size de-

creases, the second algorithm does not get memory bound as rapidly as

the first one. This will be helpful if memory i^. the critical resource

in the future.

Demand paging. If a page is missing, thr normal stiateny under

algorithm #1, is to leave the program in core while the page is being

brought in. But, with algorithm #2, if cnouah bandwidth is availaMe,

it is cheaper to swap the entire working sot of the nrogram bark onto

the drum, to bring the misslnq page into core, and then to swap the

working sot in aaain whon it arrives under the road head;« of the drum.

Tii« same conr.idorattons apply for a short I/O oi>eration.

A final word !•* necessary about the accuracy of tho^e resource

usag« estimates. It w«.« assumed that there would bo no conflict» in

other words, for each *.. "»or of the drum, thfro »n «cro or one rate

transferred, but never page« of two different ioM noth wanting to bo

transferred. Potstul* conflict» tend to inrrea«»«» snvctime« cnnstderablv

the resource uurr (awnory and channel I for alinnfhm «l, whose actual

u

o
H

II II n II

C, H r CQ

a
«
i«

£ c
4J
t' c
•H 5
? •H

ro T) ü
I g A
> IT3 N
M .0

l-l
■ lH ■ r<

Ü> 0 4->
•H ? E iJ

u 11
«I C

(M h
IM n
U 0

f/

(0

ii ii ii n
a* H r m

li

5

fN

cc

O

CP
0
b &.

Q) 1 (0 •a
■p

0 c
0 c

•H 0
+J •H

^r fl +J
i •P nj
> 0 N
M u •H

D> 9 4J
•H b 9
[X. «8

11
IM V
0

3
V 0
V $ i c

44 u
U.4
M

ITS
4J
0

c
c

iH .-I n M<

II II II II

OK t* t/) CQ

O

/ r
I

i

I

D !

o

M
&
0
g
DJ

0) fl
N

■M 14 1

W 0

S». c
y 0
0 •H

in e. ■p
1 Gl i
> i N
H •H

C iH
• •H •r<

XT ra +J
•H F. 3
Cn

UJ 0)
0

4J 3
U 0
HI U)

«w (U
ttH u
M

co LTI in

97

behaviour can be much more resource consuming than the figures show.

This would lead to a preference for algorithm #2 even more than was

previously computed.

IV.4 Scheduling a computer system under the algorithn of section IV.3.

The scheduling problem considered here, consists of deciding

which job, at a given time, is to be swapped into core, out of core,

or to occupy the CPU.

IV.4.1 Scheduling Criterion.

r'or user i, we suppose to be known:

1) his bid C..

2) his requested CPU utilization time T. .

C. is the bid for an entire cycle of swap-in, CPU usage during

an internal T., and swap-out.

An additional constraint is that a job cm only be swapped in

when its sectors on the drum pass under the rend heads.

The system's criterion for ^"heduling is to maximize

E = Z C,
iCS

where S is a set of users which can be run over a given time interval.

IV.4.2 Jobs Desirabilities.

It is desirable to allocate jobs in a way such as to get a balance

of resource usage (to swap, for instance, a larno-sized job while a

small-sized job with a large T. occupies core).

To get such a balanced set of jobs, prices are first assigned

to the basic resources:

'CPU

»CM

MM

The desirability of Job i it thor.t

i a i' ♦ i P ♦ a p
CPU CPU CM CM MKM M'V

where aUj-i *ai, X^. are the resource utilization« of job i, *#hlcb are

given in table IV-2, as functions of the characteristic« of th« job.

IV.4. 3 Job sclu'Qullng over a time-intorval.

No justification is qWun here to the alaori hsn which follow».

However, the reador will rocoqnir.e it as a vari.ifion ■-f an alaorithm

of chapter III.

For a givtn time-interval [t., t]. a schodulo is computed by the

followinq procedure. As nearly as possible, jdbt are allocated in

order of decreasinq dosiraiDili ties. A job can be scheduled for swapp-

ing if its paqcs on the drum do not share any romnon sector with any

job already scheduled for swappinq, and if the jobs for which alloca-

tion has already been decided, leave enouqh ncmory for the new job to

1) be brought in, 2) wait for the CPU, 3^ run, 4) wut for the channel,

and 'J) swan out.

After the schedule has been worked out foi thi« tinv; interval,

the new prices of resources are computed as ■ function of the old prices

and the idle time of the resources. The schedulinq aiqorithm is acti-

vated once every (t^-t^ units of time. This miciht b« typically a

drum rotation tine.

tJMt th# tin* %ptnn if ihm «l«nrUM» i* tri«<»fticM«t IA

n le« n • k. «(h#r» k U • COMIMI «id n to« n %H* 9%m

to »ort in« dMirM»iUiiM of ttm \dbm OMdt4«i« t<» f*m.

v.

IM« pmr *m IMMI i««i«i MM MV« •»

1} fiwliAf « mlMiiii an «T m*n to mr» •«•iftMtW

fMllltlM. Mi

itiw ^iiifuinf for • fivHi huimn 9m*imi*itm «Ar« tk* «vtKM »•

iniinii

Th« «lloeation rvoblM» «towla wtM apMi for ff«ifi*wr tmmwth, t

«u90««t tlM folliwin« poft«ihl* dir«rt*«Mt

11 0—IwÜl Mt«**« th* vmr M4 tl» «««tw It mmt*4 I«

tnt«r««tin«i to 4*«i(m « IIMMUMW» ihr«***! «^Slch f»*» ««»»r e««l<J »M»»M

hit linoMlodM atevt hl» tmorai» Char«»« tMt n *in*\4 «■«* «M'ul t«» thr

•ystcfl«** rMourc« «lloc«tarl. 1hl« IMWWMW t*^iM rw*rvM tr*l*-©'t»

.MtwMfi U» «<ount of mmy th4» h» wMt* to «IOM «id ih« ftw«»«' H*

!■ «olnq to oot, «tc... Aleno thoa» MM lln**, t ^«14 ♦* tnton»*tlnt

to f »nd out rw>ro ahout «tfi»!» ttay« o» »«Mlvitot th»» «trttcturo of «

proqrvi and Its ch«r«ct«jrUtic« for «lloc«tinn.

2) Stnicturlnq tho resourc« allocation. Vfr* vmt nor«» aM wort

co^plicAtad contractn with tho •y«ta*. «^ilcV «h^uld au.trantoa tht« »f

aettinq Üi« «ervico that thov OK|>«ct. «idrr cl i««»#* of non«lMr c«»ntr»r»

»houl'J be investt--4tQd.

I'll

It m«tM. «AM l« tf» •##•«« •* • 9**\m mmnmn m UP

P*0 MlMNPM« Mrt «• M» ■MM**» »ff in—» yl «M MSI4 f«iv WIM*

•Mil« tar «MBlIMM «MlffMMV

Hi

uitT or •rntnm

I.

I.

4.

t.

f.

••

9.

Mi

II.

I« I« TIWWMPHW CBMIpM. IMWlMl
• rffVlMt M*. ^li*». ff^tl B*«*l4

. A.«. I M »win«» «f m/itom «Milcci«.
||t9 mav I«MI. iv>-iit.

MMi f. «t ftl.
Cliff», «.J., 19*1.

nvM-IC* Mil. 'All«<

II Mimitor.

•• 4»«»l«ri«9 «i «Mlvii« pf«
||. I* mm, I ««I. &!«-«••.

llM«f
•f

MNMOT' *

||.% Mt» m»l.

A» «IwtIfM I . .«« ffWM «t^»

»»l%M. MIM» *
MUM «I « •* «I I

IP. «•»•

U.

■ mill * *'in-«** «»-Ila»
«rt |fA9 tartai JMM

•ll«f<«ll«« I« ««If IM
•i. »wm Mr. «.i.?.. •"«•'»i«^

i>

101

14. fmlolMl. ftatort R. Md Grtfwmn, Mrt«n J. An «wilytic«! wMnt
of iMliipr«Mr«MMd ^MTUIIIM. froe. AFirt l'**» IfiritM Joint

OMforMO». Vol. M. Arir« rrooo, l*ntv«|e. M^Tp-Tat.

1%. iav»t. tuiitol t-iorr«. «ttwory #ll«<,««i"o in c««niitor «vftte*».
Roport «o. 0«-17 irh.o. 1*'«ia}. cmmt*r fciooco MmoruiMd.
O.C.L.A.. Jon* t<

14. HiottM« WDr— R. rtoatblf tHririm. «n af>»«mdi to Mo «llneotioo
off no^^Hoi r«*««*»«*«. R»«^. ATtot I44t »«it „tMini r«MM»r
OMlffOffOOCO« Vol. 11* flWOOOO B0S4 CO*« tlM^alOOOM« O.C.. PO.
MI-MI.

IMO »49. M.I.T. Rroloot <*?.

It. ■oilnflioi, IOM. A «vnmB wartet lo ■■■mi tio». fiR*Jffll il*
4 CJM» 14441 44>»4*t.

14. iNHo« ■MOMO •• asi OOAIOMOO. frim a. OtOWA» MiMrtovr 10
o |Mf* 'O ooo.iiiiwoi. rror ATtrt 1444 4ftto« Jotot O—»Ul Oaoff..
144. n. Hl—im 4M4 CO.. MMktiWtoo. O.C. •». I9I4-I4IS.

— ■»■ «M iwnu'll. fiMMOi fAOlOO IO 4>ff"M «tlO». fffOt. fPtf*
l«44 iotio« AMOt r»w» .i.« OMfofMMO. INI. H« Hmwwono foaA CO..
HMklonoo. O.e.. pp. |a||-lo:4.

<l. 4Wtii. rifll'l tf TliM *** *»••■» * ***• *» ♦*•*. !**••

I. f .4. OOi flOlOOOfO. IM COOiOm OAA^'ABHOO OPttOii Mi
tAoif «ooNOffo*«*«t«o. Rroo. ATtff I4MI fotioo Jmot coapstor

»• ^»1. M. 1IMB00O tW4 Cl».. «MfclOOtOO. O.C. »O. Il t

L. Ot Ol. 400l«*M •• AlOTtll^ ff«* tfcO 4/1
Q.ll »m, lot*». Ml til«

• fttvti 4. *»iMMlt *m to» tolotti
4/1 MMP044I «f4>|««K. '9rtm too. 14.1

144^». 4M4||

M. ftol«r«i4. L. «»tlMO ortoioo lor vmm ^ ■ • ■*. MKIL.*"^.!
»II l^'l. 144-ltO.

14. 4lA04f4« Milt «. Hw Otfoomo off *"»•' «.III«
r too Opomno» «o 'O^rotioo •v*«»*» »rioritl»*.

IT. HtOMO. OHOt PriOAO. 1»o oxlPOi mi « ooM«
Q.4 CAoril 1494« 214-Mt.

104

M. Ivtiwtt, »muh III. <fefwr«liwd U«r«n9« Multiplier wthod for
telvinq frtih.mm o* vptimm <»lle*-*ti«»n of roM*ireo«. Ooor. »»*. U,.)
Otoy-JUM IMI). W^417.

M. ttcvoM, Davi4 f. On ovorconifM hinh-rrlorltv nar«lvtt« in ouln-

. t

>fl A

MOOT eriMOMN 2.

tt^MtlotM It 11-11 CM b« writtM. «««»r »rl^mr «MI«IIMWIII •!•

lA-ll i

f€ll.i»| w

»••I ♦* ^ » ^

t%A» • 2. ^. *jr » # %•. MiV* • |

•f IÄ-II. «MM-f fW % • I. «Mi «tMN If^llWI ••* «f I4<|t I4»«|IM

»«• «I «f IÄ-II.

II «M» t*M tor % * i «a* » * i*. i« i« mmmm «Iwi V^. «I^,.

• ptiarttuw •» Una» !• f«l«ii«v %m ••%!»? Mb • «r 1» I*

«,« ,P..* ^1 ».»^ H ^.f .,,^f,. ?* , pBMM '-"•" ■ R ri

«A*|l f«» » # I ««4 % # I*.

IM

» *.h^. ftt. r^. *.„. i^,.,

It flMllr. U I« •hO^* (MI »tMtlfl« N «• IA-9t !• Il»|IM

rii^Wi...

r-.i •»• I.-I

M

Of vmtmm 1.

I. OaiM • «I«M f«i«rm mm mm** IM« •«•MMTIIV «MUMII«

UW MSUMP •fit« «iMiMi «AM IM MMM'* ••!*• MllSf^l

«*!• MB to JI IMi Mtll« inr «to liMPfl

V l«|l.«*l '.•••2>%

Vl«N*>l.%| •. ••

a. tr to» M

•M «1«M to°

.,. .1 - v •■ • .„•

im

V • " ••n' ■
V • i • •

•«' " ' «.-i.,'

•.*•

M «ill MM i» *mm AM if I Mi Ml »«VIM f*tMIII*«

»MMUV MtlMMM MB MTtMAtV «« IM«M»I M

M» prtMItMl «f I Mi 1*1 IM MMMM |.

»M^ i«» MfM pMMIt* MtlMMM. «I« MlM «t

Sm * Vi Vi ' * %i ' %%
«hl «M»t «!V MMSi MtlMMMl

•••••••Wl ^Ml-*..!'

f. «.« I#MI.: * •!.! »M IJ <li:
*• 'MI

119

1. MOM. obviously. «ny mrioruv Mt'ofwont different from th»

OHIM«! Pfiority McioraMnt of xhßorvm i, !• «uch th«t ther* »xltt

tMO QUffl l 4Md 1*1 «uctt that I

Uli« *mf priority —•Ipwooi noo-trivAlty aiformt fro« tho

of mwrw I «M M MprooM.

Ilö

APPENDIX C

PROOF OF THEOkr;; 7.

1) There are only 2 jobs.

Before provinq the theorem, the following lemma will be proved:

Lorma: if Ajji X21' Wl and W2 are Positive numbers less than

1» then equations

(C-l) (1 ♦ \12) w1 ♦ X21 w2 < 1

(C-2) X12 w1 + (1 + X21) w2 < 1

imply

<C-3) w1 . (X12+ X21) w2 < 1

Proof: equation (C-3) is achieved bv multiplyino equation (C-l)

by (I - X 12). equation (C-2) by \ , and adding.

Proof of tho theorem: Assume that V j. i ^ k <=> a * a . It
ij kj

must be shown that equations (ITI-10) imply equations (C-4):

(C-4) ^»4 ♦ 21 ^ *k

Equations (III-10) may bo rewritten an oquntions (C-l) and (r-2)

witht

Z. a.

•ikWi<ajkWj

Ill

According to the lemma, this implies equation (C-3); now note

that

a., < a.,

so that equations (C-4) are verified.

2) There is only one resource.

It must be shown that equations (C-5) imply equations (C-6):

(C-5) Vie[lfn] , wi + X «"-n < ^ «i ' ^ wk > ^ !
k^i

(C-6) Vi t [l,n] , wi + 51 ^ wk ^
1

k i

Consider the set S of jobs such that kes <=> aw > a.w. .

Does there exist a job k'c S such that w >w.?

a) yes, there does. Then choose k' such that there is no job

in S whose progress ratio is less than w , and greater than w. . Then

equation ttk' of (C-5) implies equation fti of (C-6).

b) there is no such k'. This means thatvkes, w^ «; ' and

a >a.. Thus equation #i of (C-5) implies equation #i of (C-6).

3) Note that the theorem is not valid for any number of jobs and

any number of resources, as shown by the following counter-example:

112

.25 ,25 ,25

.76

(a,.) - .24 .76

.24 .76

,24 ,7b

The progress rates w = .5, w2 = w3 = w4 = w,. .875, satisfy

equations(III-10), but not equations(III-2).

However, I suspect that tho optimum of 2. vr is alwavs hiqher
i

with equationS(lIl-2) than with the constraints of equations(111-10) .

