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ABSTRACT 

This report presents a mathematical analysis o1 the methods used for determining 

the effectiveness of radappertization (radiation stcrilizülion) of food. A general theory 

is developed which makes it clear that two interrelated distribution functions, the 

probability of organism death and the probability of can-sterilization, play important parts 

in the process. A critique is given of the Schmidt-Nank method for calculating the 12D 

dose and the implications of the experimental data are studied. Modifications in both 

experimental design and data analysis are proposed. These are evaluated by using them 

to analyze artifical data generated by a fairly realistic computer simulation model. The 

proposed methods give considerably more accurate results than the traditional one, and 

it  is concluded  that the  new  methods appear  promising  for  future  use. 



This report is concerned with the determination of safe sterilization processes for 

canned food, i.e. processes which insure that the food is free of dangerous organisms. 

Although ionizing radiation is the method of sterilization considered here, the mathematical 

procedures described are equally applicable to any method of killing microorganisms in 

food. 

We may summarize the present situation as follows. An expert committee of the 

United Nations Food and Agriculture, World Health Organization and the International 

Atomic Energy Agency has recommended a criterion of safety for radiation-sterilization 

(see [13]), which states that the probability must be no more than 1 x 10"12 that a 

dangerous microorganism (usually Clostridium botulinum) will survive the processing. The 

processing consists of exposing sealed cans of food to a dose of radiation under specified 

conditions, and the dose needed to satisfy the above criterion is called the 12D dose 

or minimal radiation dose (MRD). The 12D dose depends on both the microorganism 

and conditions (temperature, salinity pH, etc.) in the food substrate and is a measure 

of the radiation resistance of the microorganisms. 

The presently accepted procedure for estimating the 12D dose follows the January 

1971 recommendation of the National Academy of Science — National Research Council's 

Advisory Committee to Natick Laboratories on Microbiology of Food. The procedure 

consists of a set of experiments, collectively called an inoculated pack, and a computation 

based on the resulting data. The experiments consist of inoculating cans of food with 

spores of c. botulinum, sealing the cans and exposing them to doses of radiation. Typically, 

107 spores are inoculated in each can, 100 replicate cans are exposed to each dose and 

the deses may range from 0 to 5 megarads in increments of .5 megarads. After irradiation 

all cans are incubated for six months at 30°C. The cans are examined for swelling weekly 

during the first month and monthly thereafter. At the end of incubation cans are tested 

for toxin presence, and all cans showing neither swelling nor toxin are subcultured for 

surviving spores. The computation takes the resulting partial spoilage data (usually based 

on surviving spores) and calculates the 12D dose by using the Schmidt-Nank formula   [2]. 



The purpose of this report are, first, to describe the inadequacies of this procedure, 

and, second, to show that certain changes in both the experimental design and tfie 

calculation will permit a much improved estimate of the 12D dose. We emphasize iwo 

points about the modified procedure. First, worthwhile improvement is obtainable only 

when both the experimental design and the mathematical treatment are changed. Little 

gain in accuracy results from changing either alone. Second, since we are dealing with 

random processes, the 12D estimates depend on a decision about the form of the governing 

distribution function. The modified method greatiy reduces the chance of an incorrect 

decision but does not completely remove it. It is still possible that a wrong decision, 

and hence an inaccurate estimate of the MRD, can result in any particular Inoculated 

pack. 

Some mathematical background is necessary for understanding this report. Most of 

the mathematics has to do with random variables, their associated distribution functions 

and the relations among them. This theory is put forth in Sections II and IV. Section III 

contains the critique of the Schmidt-Nank computation, and the remaining Sections 

describe the modified experimental and computational method and give examples of its 

use 



II.    General Theory 

In this Section we give a simple probabilistic theory of spore sterilization and examine 

the conventional experiments in the light of this theory. The theory brings one main 

difficulty  into clear view and suggests a way of dealing with  it. 

We assume that each spore in a given medium, irradiated under given conditions of 

temperature, pH etc. possesses a unique minimum lethal dose, X. If subjected to a dose 

above X, the spore will be inactivated, i.e. it will be unable to produce toxin and 

descendants; otherwise it will remain dangerous. The lethal dose, X, is a random variable, 

and we assume that it possesses a probability distribution function,  F(x), 

F(x)    =    Probability that X < x, (1) 

and  probability density function, 

f(x)    =    dF(x)/dx. (2) 

Equation (1) means that F(x) is the theoretical fraction of spores inactivated at dose x, 

and describes the behavior of individual spores under the conditions of the test. The 

12D dose, which we call xc, satisfies the equation 

F(xc)    =    Probability that X < xq    =    1   -   [Probability that X  >  xc] 

=     1   -  1CT12 (3) 

In the experiments, n spores (typically n = 106)are put into a can and irradiated 

at the dose x under the test conditions. We say that a can is sterilized if all the spores 

in it are inactivated, and define Zn as the minimum dose at which a can containing n 

spores is sterilized. Different cans will have different Zp—values, hence Zn is a random 

variable, just as X is. The distribution and density functions associated with Zn are (I>n(x), 

and 0n(x), 

$n(x)    =    Probability that Zp  < x (4) 

0n(x)    =    d*n(x)/dx (5) 



Equation  (4) means that ^(x)  is the theoretical fraction of cans sterilized at dose x. 

There is a very important relationship between ^(x) and F(x), which we may derive 

as follows. Let X,, X2/ ... Xn be the lethal doses of the n spores in the can. Since 

Zn  is the sterilizing dose, it is the largest number among X,, X2,  ■■• Xn.    Hence 

Zn«x 

is logically equivalent to 

(X, <x)  and  (X2 < x)  and  -  and(Xn<x) 

From  (3) we have 

*n(x)       =      Probability that Zp < x 

Probability that (X, < x) and (X2 < x) and  ... and  (Xn < x) 

We assume that the resistance of each spore is the same as if it were the only spore 

in the can, i.e. the spores act independently. Then the multiplicative law for the 

probability of  independent events gives 

3>n(x)        =       (Probability that X,  < x)    '    (Probability that X2 < x) ■ 

... ■ (Probability that Xn < x) 

Each spore obeys the same probability distribution,  (1),  hence 

(Probability that X, <x)   = (Probability that X2 <x) 

= ...=(Probability that Xp <x) = F(X) 

Thus finally 

4>(x) =    F(x)    •    F(x)    ■   ... "     F(x).=  [F(x)]n (6) 
^ J 

n   factors 

I 



A somewhat different form of this relation is obtained by re-writing it as 

(|>
n(x) -  {1-[1-F(x)]}n = p -n[1-F(x)] Y (1--n[1-F(x)] Y1 

,-n[1-F(x)] (7) 

a result which is very accurate when n » 1 and 1—F is small, which is almost always 

the situation when we need to know ^(x). Solving (7) for F(x) we obtain with great 

accuracy 

F(x) ** 1 +1  |n cl)  (x) (8) 
n " 

In addition we obtain from  (5) and  (6) 

4>n<x>  =  n [F(x)]n-1f(x). (9) 

Finally, it can be shown, see   e.g. Gumbel [1],that 

$  (x)  «  e-(e"V>      ,       0n(x)  * ane"<V+e"Y) (10) 
n " 

Y = ön
(x-Un) 0D 

where Un, the Characteristic Largest Value, and a» the Extremal Intensity Function, 

are found from 

F(Un)  =   1-n"1      ,     an  =   nf(un)  =  n  dF(Un) (12) 
dx 

The distribution defined by (10) to (12) is called the extreme-value distribution derived 

from the distribution F(x). Formulas (6) and (9) are exact, and (7) and (8) are such 

good approximations that they too may be regarded as exact for all practical purposes. 

Equations (10) are approximations to the exact relations (6) and (9) and are accurate 

when |x—Un| is not too large. The region where (10) is most accurate is the partial 

spoilage range, i.e. the x-values for which €>_(x) is near neither zero nor one. The quantities 

Un and an
-1   are approximate measures,  respectively, of the location and width of the 



partial spoilage range for cans containing n spores.   As n increases, Un (but not necessarily 

an"')  increases, i.e. the partial spoilage range moves outward. 

In the conventional inoculated pack N cans, each containing n spores, are exposed 

to a dose x, and after suitable incubation, counts are made of the number, C(x), of cans 

that are sterilized or clean. Such a pack can be regarded as a sample of N cans, each 

of which has probability of sterilization <f>n(x). It is well-known that the probability 

that exactly £ cans will  be sterilized is given by the binomial   distribution, 

Probability that [C(x) = £ ]   =  [<1>n(x)] & [1-*(X)] N^ (13) 
$!(N-£)! n n 

Moreover, the  best estimate  of <I)n(x)  that can be  obtained  from  the data  is 

4>n(x) = estimate of <I>n(x) = £/N, (14) 

A 
and, if N»1, $n(x) is approximately normally distributed about its mean, <I>n(x), with 

estimated standard deviation 

o*   = [*n (1-4n)/N]% (15) 

To summarize, we obtain from the conventional inoculated pack an experimental 

fraction, (14), of cans sterilized at dose x, and this is the best obtainable estimate of 

4>n(x). If packs are run at several different doses, we obtain several points on an 

experimentally-determined graph of <i>(x). There will be some scatter or noise in this 

graph, much of which is caused by the sampling error (i.e. the fact that $n(x)^4>n(x)) 

although some may also be due to random fluctuation in spore load, n, and dose, x. 

Formula  (15)  is an estimate of the scatter at dose x due to the sampling error. 

Clearly, the inoculated pack provides quite a lot of information about 4)
n(x), especially 

if packs are run at several different doses. However, this information is of little use 

unless it leads to comparable information about F(x), for it is F(x) that enters the 

calculation of the 12D dose in Equation (3). In order to apply Equation (3), we have 

to know both the general form and parameter values of F. We shall see later that it 

is relatively easy to estimate the parameter values of F from data on ^(x) if the general 

form of F is known, but it is not easy to find the general form of F. 
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This seems strange at first glance, for we can find F(x) from (I'n(x) directly by means 

of Equation (8). The difficulty arises because the doses at which $n(x) is known are 

far out on the right-hand tail of the distribution F(x). All probability distributions look 

very much alike in this region, and the scatter in F(x) that arises from the scatter in 

the estimates of $n(x) will make it very difficult to see the small differences between 

distributions. 

This situation is sketched in Figure 1. Consider two distributions, F^(x; a,, a2) 

with general form A and parameters a, and a2, and Fß(x; b, , b2), with general form 

B and parameters b, and b2. Suppose F^ is given. Then, because the general shape 

of Fß is quite similar to F^, for x > 3 parameter values b, and b2 can be found that 

will cause Fg and F^, to be nearly coincident in, say, the range 3.6 < x < 4.3. If 

inoculated packs are run for n = 106, say, and the partial spoilage range is 3.6 < x < 4.3, 

nearly the same partial spoilage results will be obtained from both distributions. Now, 

in real experiments we would know only ^(x) in the partial spoilage range, and we 

could not tell whether the distribution function is F^ with parameters a, and a2 or Fß 

with parameters b, and b2 because both give about the same ^(x) in the partial spoilage 

range. 

Of course this difficulty does not arise if the form of F(x) is known. It is usually 

assumed C3J that F(x) is of simple exponential form. There is some (perhaps inconclusive) 

evidence to support this assumption when the spores are in a model system (i.e. a 

transparent, fluid substrate), see e.g. Anellis £4). In Section III we shall show evidence 

against the assumption when spores are in a food. 

Thus there is a need to determine F(x) from measurements of <I>n(x). Since the 

conventional inoculated pack was not designed for finding the form of F(x), we should 

expect that other experimental designs may be superior for that purpose. Figure 1 shows 

that differences in distributions will be most visible when we have data over a wide range 

in x. The simplest way of obtaining this wide range is to test at several different spore 

loads, i.e. values of n, because the partial spoilage range moves outward as n increases. 

This is shown in Figure 2, where we see that, although F^ and Fß may coincide over 

the partial spoilage range for n = 10fi, they will not also coincide over the partial spoilage 

range for n = 103. Thus, if tests are made at both spore loads, the resulting partial 

spoilage data has a much better chance of showing differences between F^ and Fß than 

would a test at either n = 103   or  106   alone. 

n 



We shall  return to the problem of identifying the form of F(x) and determining 

its parameters in Sections V and VI. 



III.    A Critique of the Schmidt-Nank Calculation 

This Section contains a sketch and critique of the Schmidt- Nank procedure for 

estimating the 12D dose. 

The experimental procedure for a conventional inoculated pack has been described 
A 

in the previous Sections. The resulting data is <f>n(x), see Equation (14), evaluated at 

one or more x-values. The Schmidt-Nank Procedure for estimating the 12D dose is based 

primarily on the assumption that F(x)  is of simple exponential form, 

F(x)    =    1     -    e"Xx (16) 

If N is the number of cans tested at dose x, n is the number of spores in each can 

and R is the total number of surviving spores, then some simple manipulations show that 

xc can be estimated from 

xc  =  12D (17) 

A x 
D    =  (18) 

log, o (Nn) - log10 R 

A 
Here D is the estimated value of D, the decimating dose, i.e. dose at which the probability 

of spore death is 

F(D)    =    9/10 

These formulas are not very useful as they stand because there is no practical way 

to measure R. In the Schmidt-Nank Method this difficulty is overcome by a second 

assumption, namely that exactly one spore survives in every can that is spoiled (not 

sterilized), i.e. 

R = N-* =   |\|(1- X ), (19) 
or, using (14), N 

R = N[1-$(x)], (20) 

if £ out of N cans are sterilized at dose x.   This estimate of R is used in Equation  (18) 
A /K 

and permits the evaluation of D and  hence xc. 



The Schmidt-Nank Formula, (18), has been generally accepted as a simple, standard 

method for estimating the 12D dose. However, in recent years other procedures have 

been suggested as alternatives to the Schmidt-Nank Formula, e.g. (5) and If)). This is 

evidence of growing uneasiness about the accuracy of the method, but no systematic study 

of its validity has appeared.    We shall present one in the ensuing paragraphs. 

The principal criticisms that can be levelled against the Schmidt-Nank Procedure are 

these four (some of which are related to each other). 

(i) The  assumption   of   an   exponential   distribution   may  be 

wrong. 

(ii) The assumption that one spore survives in each can that is 

not sterilized is questionable. 

(iii) The results of using the method on experimental data are 

inconsistent with the assumptions. 

(iv) The procedure  is confusing and unclear. 

We shall examine these criticisms below, but let us begin by recalling that a good 

mathematical theory should be in agreement with observations, clear, as simple as possible 

and should  heighten our understanding of the biological process it describes. 

First, there is much experimental evidence that something is wrong with the 

Schmidt-Nank Formula. For, if it is applied to experimental data at several different 

doses, it gives an estimate of D (and hence xc) derived from each test dose. If the theory 

is correct, the same D should be obtained from each test dose, aside from random 

fluctuations. A typical set of experimental results (5), is reproduced in Table 1. It is 

clear from this and other data C7J, HO, 03 ana" DQ), that the estimate of D increases 

very markedly as x increases. This trend is unambiguous and far too pervasive to be 

attributed to any sort of randomness. It is completely at odds with the theory although 

it is hard to discern whether assumptions (i) or (ii) or both are at fault. This trend 

is also observable in thermal sterilization processes, see [1j. 



Radiation resistance of representative strains of C. botulinum spores in cured Ham 

Strain 

No. of cans 
with viable 

C. botulinum 
Schmidt- Nank 

D -value 

33A 1.0 
1.5 
2.0 
2.5 

17/20 
15/20 
8/20 

1/100 

.148 

.220 
.282 
.288 

77A 1.0 
1.5 
2.0 

16/20 
11/20 
5/20 

.167 

.245 
.309 

12885A 1.0 
1.5 
2.0 
3.0 

19/20 
5/20 
3/20 

1/100 

.149 

.206 

.267 

.346 

4113 .5 
1.0 
1.5 
2.5 

18/20 
13/20 
6/20 

1/100 

.072 

.142 

.203 

.282 

53B .5 
1.0 
1.5 
2.0 

19/20 
14/20 
8/20 
1/20 

.071 

.140 

.203 

.241 
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Second, the assumption (ii) implies a relation between <I>n(x) and F(x) that is different 

from (6). To see this, we notice that assumption (ii) implies that only two outcomes 

of a can-sterilization experiment are possible, namely either (a) the can is sterilized or 

(b) exactly one spore survives in it.    Hence, on this assumption 

1   — $n(x)    = theoretical fraction of cans in which exactly one spore survives. 

Since   N   cans   are   irradiated,   the   total   theoretical   number   of   surviving   spores   is 

N[1   — (I>n(x)]   out of Nn spores exposed.    The fraction of spores surviving is 

N[1   - *n(x)] 
1      —  fraction  of  spores  killed  =   1   —   F(x) 

Nn 

Therefore we would  obtain 

*n(x)   =   1   -  n[1-F(x)]      or     F(x)   =   1   -  n" [1-*n(x)] (21) 

instead of (6), as a consequence of assumption (ii). Equation (6) was derived from the 

reasonable assumption that the minimum sterilizing dose for a can is the minimum lethal 

dose for the most resistant spore in the can. Assumption (ii) therefore gives results that 

disagree with that assumption in general, and must be logically doubtful. 

Moreover, it is clear that the true total number of spores surviving radiation, R, is 

greater than (or equal to) the number N — £, given by Assumption (ii), Equation (19). 

Equation (18) shows that an increase in R causes an increase in D, hence the true D-value 

is larger than that given by (18). However^ the difference between these two D-values 

is usually not very great because almost always R  « Nn. 

Finally the Schmidt-Nank calculation is confusing because in deriving it the authors 

did not give any clear indication that two distinct distributions, F(x) and 4>n(x), are 

involved. The formulas show it, Equations (18) and (20), but the failure to point it 

out explicitly has led others into confusion when trying to modify the calculation. 

For example [5] describes an attempt (by Weibull plotting) to ascertain the form 

of the partial spoilage distribution, i.e. *I>n(x). The conclusion, that the distribution was 

nearly normal, is not inconsistent with the form (10). However, the interpretation was 

marred by a number of confusing statements, evidently arising from failure to distinguish 

F(x)  from 4>n(x). 

12 



Still another example concerns the relation between the LD50 and the D dose. The 

LD50 is commonly called the median of a distribution, and we shall designate it by x^ 

Any distribution, say G(x), possesses a median and a D-value defined by 

G(xh)   =   1/2 

G(D)     =   9/10 

Thus the median and D dose for the can distribution, *n(x), satisfy 

*n(xh) = 1/2     and       *n
(d)   =   9/10 

and the median and D dose for the spore distribution satisfy 

F(xh)   =   1/2      and       Fn(D)   =   9/10. 

For each distribution there is a well-defined relation between the D-dose and the LD50 

dose, xu, and this relation is different for different distributions. However, the relation 

that is commonly used in food-sterilization is between the LD50 of the can distribution, 

3>n(x), and the D of the spore distribution, F(x). Although most writers have derived 

the correct relationships between D and LD50, none has emphasized that they refer to 

two different distributions, probably because they did not clearly perceive that two 

distributions were involved. 

The general relation between  D and x ^ (or LD50) can be found only if F(x) is 

known.    By definition we have 

F(D)   =   9/10 and       <Dn(xh)   =   1/2, 

and from  (8) we obtain 

F(xh)   =   1   +   1  In  (1/2). 
n 

We can solve these relations if F  is known, 

D = P1 (9/10) 

xh= P1  [1  + 1   In (1/2] 
" n 

13 



and obtain 

_D_  _   F1 (9/10)  

xh F-' [1  + 1   In (1/2)] 
n 

For example, if F is of exponential type,  Equation  (16), then 

D   = JL   lne10 

y    _   1       [In  n  -  In   (In  2)] 

D/xh =  1  
logio n - log, 0 -693 

a result which agrees with that given earlier by Schmidt-Nank (12). 

To summarize, the most telling criticism of the Schmidt-Nank computation is that 

its results contradict the assumption that D is a constant. Another valid general criticism 

is that the failure to see that two distributions, rather than one, are involved, can cause 

considerable confusion, as illustrated in the preceding examples. This has undoubtedly 

handicapped attempts to improve on the Schmidt-Nank Procedure. The specific assumption 

(ii),p. 10,is illogical and should be abandoned, but it does not usually cause large errors 

in the estimate of D. The assumption,(i)?of an exponential distribution is cast into doubt 

by the experimental evidence that D  is not constant. 

It appears therefore that both the experimental design of the inoculated pack and 

the procedure for estimating the D-value should be modified. 

14 



DV.   Implications of Experimental Results 

In the preceding Section we have pointed out that many inoculated pack results 

show that D, estimated by Equation (18), increases with an increase in dose, x. There, 

this trend was cited as evidence that the method of estimating D was faulty. In this 

Section we shall see what this trend tells us about the form of F(x) when the general 

theory of Section II is used instead of the presently accepted theory. We shall derive 

a general condition that F(x) must satisfy if it is to cause the observed increase in D. 

Then we shall apply this to the most common forms of distributions, to see which of 

them satisfies the condition. Quite a lot of detailed mathematics is needed in this Section, 

most of which is merely sketched here but is given in Appendix A. 

We begin with Formula (18). The usual Schmidt-Nank Estimate is obtained by 

combining (18) and (20) and simplifying so that 

D    =    x   {   log10   n - log10   [1- ^(x)]} "] 

The theoretical value of D is therefore merely 

D     =    x     { log.o   n  -  logi 0   [1- *(x)]) ~l (22) 

The experimental results, derived from tests in the partial spoilage range, show that D 

almost always increases with x. Therefore we shall study the behavior of the theoretical 

D, given by (22), and see under what conditions it increases throughout the partial spoilage 

range.    The condition that this D increase  is . 

dD/dx    =    2.303    A(x)/B2(x)'    >   0, 

where 

A(x)    =    loge n - loge  [1- *(x)]     -    x     [1- *(x)]_1 (d4>/dx) 

B(x)    =    loge n - loge   [1- 4>(x)], 

and this condition must hold throughout the partial spoilage range. Since B2 (x) is always 

positive, the condition that D increase is equivalent to 

A(x) >0 (23) 

15 



in the partial spoilage range.    The approximate formulas (10) and (11) are accurate in 

the partial spoilage range, and we may use them in analyzing the behavior of Equation (23). 

The details of this analysis are given in Appendix A. The conclusion is that D(x) 

increases monotonically with x in the partial spoilage range if and only if 

%un < Me n. (24) 

The general appearance of D(x) in the partial spoilage range when anUn<logen and «nUn 

> loge n  is shown  in  Figure 3.    As x increases, dD/dx is always positive at the lower 

end of the partial spoilage range, but, if «nUn < ioge n, it reaches a maximum and thereafter 

decreases. 

This tells us several things. First, D always increases at the lower end of the partial 

spoilage range. This agrees with the experiments but does not give us any information 

about F(x). If D also increases in the upper portion of the partial spoilage range, then 

we can conclude that the inequality (24) must be satisfied. Examining the data of Table 1, 

we see a lot of cases where D increases in the upper part of the partial spoilage range, 

and data from other sources (7), (8), (9) and (10) shows the same behavior. We conclude, 

therefore, that under most circumstances the distribution F(x) must be such that the 

inequality (24)  is satisfied. 

We shall now consider several of the common distributions and see whether there 

are parameter values for which (24) is satisfied. The distributions to be studies are listed 

below. 

(i)    Weibull  Distribution 

The distribution function is 

F(x)=   0 x<0 

=   1-exp{- Mv)ß}       x>0 

wherer?> 0 and ß > 0.    From Equations (12) we find 

Mß 
Un = r?(logen) 

(1-/3 ') 
% = (ß/v) (logen) 

16 



and hence 

anUn-logen = (0-1) loge n 

In order that (24) be satisfied, we must have 

ß < 1. 

Now when ß « 1 this distribution reduces to the Exponential Distribution, and when 

ß « 3.3 this distribution resembles a Normal Distribution in the sense that certain moments 

are the same as for a Normal Distribution. We see that an Exponential Distribution barely 

satisfies the inequality (24), indicating that D is nearly at the upper end of the partial 

spoilage range for the Exponential Distribution. In practical terms this means that if 

the distribution is Exponential, the experimentally obtained values of D(x), D(x), may 

fluctuate instead of increasing in the upper part of the partial spoilage range because 

randomness due to sampling and other errors may outweigh the small increases in the 

theoretical D. The situation is illustrated in Figure 4, where we see in the upper sketch 

that D(xj) > ö(x2) because of the randomness in D for an Exponential Distribution. 

This is less likely to happen in cases where Unan <+logen, as illustrated in the lower 

sketch of Figure 4, although it could happen if loge n is only slightly larger than anUn 

for the distribution. 

(ii)    Normal  Distribution 

The Normal Distribution Function is 
x-y2(Mp 

F(x) = —!— e       °      dt 
O(2TT 

and  is rather awkward to analyze because as n becomes large an and Un attain their 

limiting behavior very slowly.    However, an and Un are tabulated in   Gumbel [2], and 

a few simple calculations show that 

anUn > In n      when      n  > 20- 

17 



This result is not too helpful because spores cannot have a truly normal distribution. 

The reason is that we must have F(x)=0 when x<0, i.e. negative doses are impossible. 

Therefore, only normal distributions truncated at x-0 are realistic. The truncation 

introduces extra complication into the evaluation of Un and «n, and we shall omit the 

details for the sake of brevity.    The final  result is the same as before,  i.e. 

«nUn > loge n 

for a normal distribution truncated at x=0. 

(iii) The Lognormal Distribution 

The lognormal distribution has 

F(x)  =0 x < 0 

= Fg[/3 loge(x/7?)]      x > 0, 

where Fn   is the standardized normal distribution function 
9 z 

Fg(z)    =   (2TT)J/2    f eJ/2><2     dx. 

x=_ oo 

If Uq and aq are the Un and ap for the distribution function Fq, then Gumbel shows 

that 

Un   =   ve^ 

«      =   5a_   e'V3 
n ?? 

and therefore 

anUn " 0«g- 
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The lognormal distribution satisfies the condition (24) when 

ßag<logen 

Figure 5 is a graph of the largest acceptable value of ß as a function of n. 

Other distributions, such as the Gamma or Chi—Square distributions, could also be 

studied, but their theory is more difficult than the three we have discussed, and there 

is no compelling reason to think that spores obey those distributions. We shall therefore 

limit ourselves to the three distribution already discussed. 

Of these, the normal distribution can be discarded because it does not lead to 

Schmidt-Nank D-values that increase with x in the partial spoilage range. We come to 

the conclusion that the likeliest candidates for the distribution of spore inactivation doses 

are the Weibull and lognormal distributions, and we shall therefore concentrate on methods 

for deciding which of these is  closer to the true distribution. 
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V.    A New Method for Finding the Distribution Functions and  12D Dose 

In  this Section we shall  present a general method for determining the form and 
A 

parameters of the distribution function F(x) from measurements (I>n(x). The basic idea 

is a very  simple and  familiar one.     We hypothesize that we have a certain form of 
A 

distribution, F, and we subject the data <t> (x) to a transformation which would reduce 

the data plot to a straight line if F were of the assumed form. The straightness (absence 

of curvature) of the plot is a measure of how well the data supports the hypothesis about 

the form of F, and the slope and intercept of the line provide estimates of the parameters 

of the distribution. In practice we usually consider several competing forms of F(x), 

so that we subject the data to several different transformations, one appropriate for each 

of the competing forms. The form whose transformation produces the straightest plot 

is the one which fits the data best. 

We illustrate the procedure by deriving the formulas appropriate to the two strongest 

candidates, the Weibull and   lognormal distributions. 

a.      Basic  Formulas 

When  x>0, the form of the Weibull distribution is 

F(x) =  1 -exp{-   (X/T?W)0W} , 

where T?W and ßw are the parameters.    We combine this with  Equation (8) to obtain 

CP { -  (X/T?W)0W \   =   ~  n~l   loge <t>n exi 

or 

>^w_ (x/%)     - A + logen 

X- - loge(- loge$n) 

We take logarithms again and get 

0W [logex-loge??w]   = loge [A + loge n] 
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From this we see that,  if we define the transformation 

Vw    =    l09e   i   
l09e^ ~ lo9e (~ lo9e *n0 

t        =    logex, 

then we obtain the straight line relation between yw and t, 

Yw     =    ßwx     ~    ^w  lo9e ^w (25) 

provided that F is a Weibull distribution with parameters ßw and 77w.   This is the desired 

tranformation. 

For the lognormal distribution, the form when x>0 is 

F(x)      =  Fg     [ßL  loge  (x/r?L)] 

where ß\   and T7j_ are the parameters.   Omitting the details we find that the transformation 

VL    =    Fg"1   [1+1    loge  cj>n] 

t    =    loge x 

leads to the straight line relation 

yL    =    ßLt - ßL  loge 7?|_, (26) 

if F  is a lognormal distribution with parameters /31    and T?|_. 

In practice we do not know ^(x). In its place we use the quantities <J>n(xm), 

the experimentally obtained fractions of cans sterilized (see Equation (14)), at the test 

doses xm, m = 1, 2, ... M. To decide whether the true F has Weibull or lognormal 

form, we construct two graphs of the data points versus loge x, using Formulas (25) 
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and (26), respectively.    The transformation which produces the straighter graph of the 

data  points corresponds to the likeliest form of F.    Then, if the plot is of the form 

y    =    A    +   B t, 

we obtain the estimated parameters 

ß    =    B (27) 

7?    =    e~
(A/B) (28) 

for whichever distribution has been chosen. The 12D dose, xc,  is   estimated using 

xcw =   T?W  (27.63)(1/^w> . (29) 

if the Weibull   Distribution  has been  selected  and 

$CL   =     #L   e'
7-03454» (30) 

if the   lognormal   has been chosen. 

b.     Experimental  Design 

In theory the above is easy enough but in practice it is often difficult to tell by 

eye which of the two plots is straighter, especially since there is noise (random fluctuations) 

in the data. The discussion in the latter portion of Section II leads us to expect that 

both plots will appear nearly straight if they cover only the range of x corresponding 

to the partial spoilage range for, say, n = TO7. Figure 6 shows this very clearly. It 

contains the two graphs for the case where 4)
n(x) has exactly the theoretical values, $n(x), 

derived from a lognormal distribution with |3|_ = 2 and ?7|_= .2 when n = 107. The 

graph given by the lognormal transformation (the upper set of points in Figure 6) is 

exactly straight. The graph given by the Weibull transformation (the lower set of points) 

is not exactly straight, but the curvature is so slight that it is hard to see which graph 

is straighter. If we were given only the data, we could not tell whether the distribution 

is lognormal with ßL= 2 and T?L= .2 or Weibull with ßw = .664 and ?7W = .0409. 

Moreover, we see from Equation (27) and (28) that the 12D dose is estimated to be 

6.74 if the distribution is lognormal (as it really is) and 6.06 if it is (incorrectly) thought 

22 



to be of Weibull type.   The large difference between these estimates of 12D attests to 

the  importance of finding  the distribution  form correctly. 

The discussion at the end of Section II shows that we can get around this difficulty 

by conducting tests at several different spore loads. This is illustrated in Figure 7, where, 

as in Figure 6, the data is assumed to have exactly the theoretical values derived from 

a lognormal distribution ■ with ß,= 2 and T?L = .2. However, we assume now that the 

partial spoilage data has been taken at three different spore loads, n = 103, 105, 107. 

The upper graph for the lognormal distribution is exactly straight. The curvature in 

the lower graph, although not overwhelming, is rather easily visible, certainly much more 

so than an Figure 6, which is now reproduced as the portion of Figure 7 for n = 107. 

If we examine Figure 7 carefully, we see that the curvature in the Weibull graph 

is more noticeable at smaller values of t than at larger ones. That is, the difference between 

the Weibull and lognormal distributions is easier to see, the lower is the spore load. 

This is in agreement with the idea that different distributions tend to look more alike 

as x becomes larger, hence the differences should be more visible for small x, i.e. at low 

spore loads. This suggests that we should use extremely small spore loads (101 or 102 

spores per can) if we want to see the differences between distributions very clearly. 

However, there are two reasons for not doing so. First it is impractical to measure the 

numbers of spores when very few are present. Second, the extrapolation to find the 

12D dose is very coarse if we have results only for small spore loads. The best compromise 

is to conduct tests at several different spore loads. 

It is not easy to give a simple general rule for deciding how many different spore 

loads, and which spore loads, should be used. The best choice depends on the form 

and parameters of F(x), which are not known before the tests are run. However, usually 

we want the widest possible range in x-values, and hence in spore loads, which means 

that two of the spore loads should be the highest and lowest practicable values, i.e. roughly 

n = 103 and n = 107 because of current experimental limitations. For many practical 

distributions these two spore loads will have partial spoilage ranges that are far apart, 

and it is desirable that the partial spoilage ranges should almost overlap as in Figure 7, 

so it is natural to use an intermediate spore load, n = 10s. Using still more intermediate 

spore loads like n = 104 and 106 will often give partial spoilage ranges that overlap each 

other, which is inefficient. As a general rule, therefore, we suggest using three spore 

loads, n = 103,  105   and  107, as was done in the example of  Figure 7. 
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c.     The Computation Scheme 

In order to choose the likeliest form of F from test data, we have to decide which 

of the two graphs is the straighten We have seen in Figure 7 that, even when tests 

are run at several spore loads, the curvature in the "incorrect" graph may not be great. 
Moreover, in practice the situation will be worse than shown there because of the random 

errors in the data. It is most desirable to have a sensitive analytical test for measuring 
the curvature of the graphs, rather than relying on the unaided eye. 

The computational method consists of approximating the data, using the Least-Squares 

procedure, by means of a second degree polynomial, 

Yw = Aw +  V +  Kwt2 <31> 

YL  = AL+ BLt+- Kl/' (32) 

the data having been first transformed by the appropriate Weibu 11 and lognormal relations, 

Equations (25) and (26). The method (described in Appendix B), gives estimates of the 

constants Aw, Bw, Kw and AL^B^^and also gives the squared sums of errors. S^ and 
S? , of the approximations. The estimates of the parameters are found from Equations (27) 

and  (28), 

£w " Bw #w = e-(Aw/Bw> (33) 

#L   =  BL/ T?L = e-(VBL). (34) 

As measures of the curvatures of the plots, we use 

A/v =  Kw/Sw     P\T  KL/SL- (35) 

If |pw| < IPU'then we conclude that F(x) is a Weibull distribution with parameters given 

by Equations (33) and 12D dose as in Equation (29). If \p\_\ < |$wl, we conclude that 
F(x) is of lognormal form with parameters given by Equation (34) and 12D dose of 

Equation (30). 

The experimental design described in part (b) and the computational scheme outlined 

above are the methods we suggest as replacements for the conventional inoculated pack 
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and Schmidt-Nank Formula. We shall demonstrate the superiority of the proposed method 

in the next Section, but here we wish to caution the reader that, even if the new method 

is used, there is a (usually small) probability that either no conclusion or a wrong conclusion 

about the form of F(x) will be reached. This is inevitable because of the randomness 

in the data and smallness of the differences we are trying to find. We shall discuss this 

probability in the next Section. 
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VI.   Computer Simulation of the Inoculated Pack 

In this Section we describe a Monte-Carlo method for generating artifical but 

reasonably realistic experimental data, like that obtained from both the conventional 

inoculated pack and the revised experiments proposed in Section V. By using this data 

in the Schmidt-Nank Formula and the computation scheme of Section V, we can assess 

the performance of both procedures in a situation where we know what the "true" answers 

are.-    In particular we are concerned with the following, inter-related, questions. 

(i) Does   the   revised   experimental   design   permit   more 

reliable determination of the form of F(x) than the 

conventional design? 

(ii) If so, how reliable is the new method? 

(iii) What are the relative accuracies of the 12D estimates 

obtained   by the new  method  and  the  conventional 

procedure. 

The Monte-Carlo simulation can provide answers to other questions as well, but we 

shall concentrate on the above three. 

a.      Description of the Simulation Model. 

The simulation model is a Fortran IV computer program that generates artifical test 

data.    The user gives the program the following  information 

(i) The function  F(x) 

(ii) The intended spore loads, nlf n2,  ... n(_ 

(iii) The intended doses at each spore load, 

x11( x12, •••  Xj^ at spore load n, 

x21, x2 2, •■■ x2 [<• at spore load n2 

XL1' XL2,  ••• x^ at spore load nL 
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(iv) The number of cans tested at each dose, N. 

(v) The standard deviation in each spore load, 0n,, o^2, ... anl_ 

(vi) The standard  deviation in dose, ox. 

For each can that is tested two random numbers, (normally distributed with zero mean) 

are generated, i.e. the error in spore load and the error in dose. These are added to 

the intended spore load and dose, respectively, to get the dose and spore load at which 

the test is actually run. Equation (6) then gives the theoretical probability that the can 

is sterilized. Another random number, uniformly distributed between zero and one, is 

generated, and the can is taken to be sterilized if this number is less than the theoretical 

probability. 

Counts are made of the numbers of cans sterilized at each dose and spore load, 

and the final totals are printed out. These results are then entered into a program for 

computing the Schmidt-Nank estimate of the 12D dose for each partial spoilage dose, 

as well as a longer program that estimates ßL, 77w, pw, xcw and p^, Vi_> P\_, *CL from 

all the partial spoilage data. Our computation procedure is such that the form of the 

distribution (i.e. Weibull or lognormal) should be that giving the smaller value of \p\. Having 

decided the form of F(x), we then take p\ r? and the 12 D estimate, xc, to be those 

for the chosen distribution. 

The form of F(x) selected by our computation procedure should always agree with 

what we assumed as input (i) if there were no random errors. In reality, of course, 

random errors are always present and will sometimes cause the computation procedure 

to choose the wrong form, leading to a bad estimate of the 12D dose. The probability 

of this mistaken identification of F(x) is one of the main quantities that we want to 

study. 

b.     Description of the Tests. 

Because NLABS was very concerned in this period with radiation resistance of beef 

at —30°C, the main numerical experiments were conducted on a Weibull and a lognormal 

distribution with the following sets of parameters: 

£w    = -856'    ^w   = -1115,  xcw = 5.38 

j3L    = 2.334   7?L    = .2925, xcL = 5.96 
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These are two distributions that roughly imitate the results of a small inoculated pack 

that was carried out at NLABS. We shall take them as typical of their respective 

distribution types for the case where beef is tested at -30°C. 

The basic standard errors in dose and spore load were then taken as 

ax     =     .02x 

n i ri2 ri3 n 

which, since the distribution of these errors is normal, means roughly that the greatest 

error in dose is less than ± 6% of the dose and the greatest error in spore load is less 

than about ± 30% of the spore load. These are typical of the error magnitudes that 

often occur in real  inoculated packs. 

In order to make the numerical experiments as uniform as possible, the main series 

of numerical experiments were run at the doses shown below, 

n    =    107,     x      = 2.6, 2.8, 3.0, 3.2, 3.4, 3.6 

n    =    10s,     x      = 1.7, 1.9, 2.1, 2.3, 2.5, 2.7    (36) 

n    =     103,      x       = .7, .9, 1.1, 1.3, 1.5, 1.7. 

In this series the number of cans, N, at each dose was varied through the values N = 10, 

20, 30 and 40, that is the total number of cans tested in each case varied through 180, 

360, 540 and 720, respectively. We denote these cases as W10, W20, W30 and W40 

when F(x) was given the Weibull form and L10, L20, L30 and L40 when F(x) was given 

the lognormal form. 

Many repetitions of each case were run and counts were made of the instances in 

which the computational procedure correctly identified the distributions F(x). Also in 

two cases records were kept of theestimated12D when the distribution was both correctly 

and incorrectly identified, and statistics were compiled concerning the average and variance 

of the estimated 12D in these cases. From this series of tests it is possible to get an 

idea about how reliably the form of F(x) is identified by the proposed method, and how 

accurate the 12D estimate is, for different numbers of cans tested. 
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Another set of cases was also run, in which N = 120 cans at each dose, a single 

spore load, n = 107, was used and the doses were 

x      = 2.6, 2.8, 3.0, 3.2, 3.4, 3.6. 

These cases were designated W120 or L120 when F(x) was of Weibull or lognormal form 

respectively. If we compare W120 with W40 and L120 with L40 we see that both have 

the same total number of cans (720), and differ only in that W40 contains tests at three 

spore loads with 40 cans at each dose, while W120 contains tests at only one spore load 

with 120 cans at each dose (and similarly for L40 and L120). The comparison of these 

results gives an answer to the question, "Is it more efficient to test a given number of 

cans at different spore loads or to use only a single spore load but a larger number of 

cans at each dose?" 

Finally the special case, designated E40, where the distribution is Weibull with ß = 1 

and r\ - .165 was run with N = 40 cans per dose at the spore loads and doses of 

Formula (35). When ß = 1, the Weibull distribution becomes an exponential, and we 

are therefore testing a case where the Schmidt-Nank method should give its most accurate 

predictions of the 12D dose. 

The results of these cases are described in the next subsection. 

c.      Results of the Artificial Tests 

We first show an example of the data and estimations that result from a typical 

run of case W40. Next we describe the results of the main series of tests, then the 

comparisons of W40 and  L40 with W120 and  L120, and finally case E40. 

A fairly typical set of artificial data for the case Cw (i.e. a Weibull distribution, 

tested at 40 cans/dose) is shown in table 2, which also lists the important estimated 

quantities, including the 12D estimate given by the Schmidt-Nank Formula (18) at each 

dose. Figure 8 presents graphs of yw and yj_, calculated according to Equations (25) 

and  (26). 

Since 

lpwl   = .67 <|pL| = 2.42 
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TABLE 2 

Results of a typical run of case 

Spore \ot./\ Fraction of Schmidt-Nank 
i'i Dose cans sterilized 12D 

107 2.6 0/40 
2.8 10/40 4.72 
3.0 26/40 4.83 
3.2 36/40 4.80 
3.4 38/40 4.92 
3.6 39/40 5.02 

105 1.7 0/40   
1.9 7/40 4.49 
2.1 29/40 4.53 
2.3 33/40 4.79 
2.5 39/40 4.54 
2.7 38/40 5.14 

103 .7 0/40   
.9 4/40 3.55 

1.1 15/40 4.12 
1.3 28/40 4.43 
1.5 36/40 4.50 
1.7 39/40 4.43 

Pw    =    *>     ■ PL =    2.42 

L    =    -876   , 
A 

=    .1187    , xcw    =    5.25 

ßL   =    .4451   , 
A 

*?L =    .2803    , V = 6-42 
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the computation method tells us that the data comes from a Weibull Distribution, which 

is correct. The predicted 12D dose is xcw = 5.25, and we know that the true 12D 

is 5.38, hence in this case the error in the estimated 12D is less than 3%, which is quite 

good. The Schmidt-Nank procedure of course gives no method for determining the 

distribution, (it assumes an exponential form), but it gives estimates of 12D ranging from 

4.72 to 5.02 with average 4.86, if we use only the data for n = 107. This is much 

poorer than the estimate obtained by the proposed method, 5.25. There is considerable 

noise (i.e. scatter) in the plotted points of Figure 8. This makes it a little difficult to 

see that the lognormal graph is more curved than the Weibull plot, but the relative 

magnitudes of pw and pi   give a clear signal  that this is so. 

The results of the main series of tests are shown in Table 3 and Figure 10. These 

give us information about the reliability with which we can determine the form of F(x) 

by using the proposed new procedure. In particular, if we call q the pooled fraction 

of wrong determinations, Figure 9 shows a plot of log! 0 q as a function of log)0 (NJ) 

for NJ = 10, 20, 30 and 40. A straight-line fit to this data is also shown. The principal 

conclusion is that we can reduce q below .1 by taking NJ greater than about 40. However, 

this conclusion is only tentative until  many more cases can be run. 

The 12D estimates in cases W20, L20, W40 and L40 are shown in Table 4. The 

main conclusion is that the method produces good estimates of 12D provided the 

distribution is correctly identified, especially in the cases where NJ = 40. For example, 

the 18 trials of case W40 were all correctly identified as Weibull Distributions. The average 

estimate of 12D was 5.44 (the exact value being 5.38) and the standard deviation was 

.12. Of course, when the estimates are wrong, the results are poor. For instance, the 

four cases of L40 which were wrongly identified as Weibull Distributions had an average 

estimated 12D of 5.01 compared with the exact 12D of 5.96. This is rather bad, but 

even so it is slightly better than the average 12D estimated by the Schmidt-Nank Method 

from the tests at spore load  107, which  is about 4.8. 

The comparison of the cases W40 and L40 with W120 and L120 is very striking 

and is shown in Table 5. The results provide strong evidence that, for the purpose of 

determining the distribution, it is better to test at several different spore loads than to 

test the same total number of cans all at one spore load. The fraction of wrong 

determinations is greater for the tests at one spore  load with about 99% confidence. 
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TABLE 3 

Summary of identifications of spore-distribution 

function in various cases. 

No. of No. of wrong Fraction of wrong 
Case trials determinations determinations 

W10 43 8 .186 
L10 43 15 .349 

Total, 10 86 23 .267 

W20 36 4 .111 
L20 36 8 .222 

Total, 20 72 12 .167 

W30 22 0 0 
L30 21 4 .190 

Total, 30 43 4 .093 

W40 28 0 0 
L40 28 6 .214 

Total, 40 56 6 .107 
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TABLE 4 

Statistics on the estimates of 12D in various cases. 

Correctly No. of Ave. Std. Dev. 
identified trials ofxc=12D ofxc=12D 

Yes 32 5.49 .21 
.34 
.40 

.24 

.17 

.49 

.12 
__0 
.12 

.13 

.16 

.46 

Yes 
No 

Total 

32 

_3_. 
35 

5.49 
6.69 
5.59 

Yes 
No 

Total 

28 
8 

36 

6.19 
5.17 
5.96 

Yes 
No 

Total 

18 
0 

18 

5.44 
0 

5.44 

Yes 
No 

Total 

14 
4 

18 

6.05 
5.01 
5.82 

33 



TABLE 5 

Statistics on wrong identification of distribution functions 

in cases W40, L40, W120 and LI 20. 

Case trials identifications 

W40 18 0/18 
L40 18_ 4/18 
Total 36 4/36 

W120 32 16/32 
L120 32^ 17/32 
Total 64 33/64 



Clearly we obtain much more reliable determinations of the distribution function 

by testing at several different spore loads than at one spore load. But, the results show 

even more than this. In the present example we are trying to decide whether an unknown 

distribution is of Weibull or lognormal form, given that it is one of the two. A pure 

guess, without any tests, would identify the distribution correctly for .50 of the trials. 

We see, therefore, that the tests at one spore load, which give the correct identification 

with a probability that 95% of the time lies between .38 and .64, are insignificantly more 

reliable than just guessing. So far as determining the distribution is concerned, it is an 

almost complete waste of time and money to run tests at one spore load» 

Eight trials of the case E40 were run. Here the distributions F(x) is of Weibull 

type, with ß = 1 and 77 = .165, i.e. it is an exponential distribution whose exact 12D 

value is 4.56. The new method of analysis identified the distribution as of Weibull type 

in all eight cases and gave the following as the average and standard deviation of the 

estimated quantities 

ave. st'd. dev. exact value 

ß .961 .037 1.000 

77 .150 .016 .165 

12D    =    xc 4.73 .150 4.56 

Figure 10 shows the averages and standard deviations of the  12D values estimated by 

the Schmidt-Nank  method for each dose from the data for n =  107. 

Both methods give estimates of 12D that are sufficiently accurate for practical 

purposes. Figure 10 shows that the Schmidt-Nank 12D estimates from the lower end 

of the partial spoilage dose range will tend to be too low. The estimates for x - 3.4 

and 3.6 are not very meaningful because they are based on few partial spoilage points, 

and the effect of noise on those points  is quite severe. 
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Conclusions and Remarks 

In this Section we summarize the main conclusions of this paper. 

(i) The present method of conducting inoculated pack experiments and 

calculating the results can be improved by taking the following steps: 

(ia)       The inoculated pack design should include tests at several 

different spore loads, and 

(ib)       The Schmidt-Nank procedure for analyzing the data should 

be replaced by the method described in Section (V). 

(ii) If this is done, the results of Section  (VI) show tentatively that 

tests of a reasonable number of cans (720) have a rather good 

probability (.9 or better) of correctly identifying the distribution 

functions and accurately estimating the  12D dose. 

(iii) The available experimental  results suggest that the distribution of 

spore resistance is of either Weibull or lognormal type. That does 

not preclude its being of exponential form, which is a special case 

of the Weibull  distribution. 

(iv) In designing the tests it is advantageous to use dose increments that 

are small enough so that four or more partial spoilage data points 

are obtained at each spore load. Increments of .2 megarads, which 

were used in the Monte Carlo simulation, will often accomplish this. 

The errors in the doses may occasionally cause overlapping of the 

ostensible dose regions, but the evidence of the simulation is that 

this is not a serious disadvantage. 

(v) A much more extensive series of Monte Carlo simulations should 

be run, to obtain reliable quantitative estimates of the numbers of 

cans and doses. Then the suggested method should be tried out 

in an actual experiment to see whether the benefits are diluted by 

any practical difficulties. If the experiment is to be a real test 

of the accuracy of the method, it must be carried out under 

conditions where the true distribution function and 12D dose of 

the organism are known. Otherwise there is no way to check the 

results of the new method. 
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(vi) Even under the best of conditions, there is still a (small) probability 

that an inoculated pack will lead to a wrong determination of 

distribution function and a very inaccurate 12D. This is unavoidable. 

(vii) It is plain that the difficulty in this problem stems ultimately from 

the vast extrapolation that has to be done in estimating the MRD. 

Some thought should be given to other experimental approaches, 

or, ultimately, to other safety criteria. 

37 



Acknowledgment 

The author wishes to thank Dr. Jack Hachigian of Hunter College, for the opportunity 

to examine an unpublished manuscript of his, and Mr. S. J. Werkowski of U. S. Army 

Natick Laboratories for several helpful discussions in the early stages of this work. John M. 

Thomas of Battelle Pacific Northwest Laboratories contributed a large number of valuable 

comments on this work also. The author is grateful above all to Mr. Abe Anellis of 

U. S. Army Natick Laboratories for continual guidance, stimulation and a great deal of 

knowledge about the literature on  radiation effects in microbiology. 

38 



ix A:    Proof that D increases when «nUn < loge n. 

In this Appendix we shall derive the condition that must be satisfied in order (see 
Equation (23)), that 

A(x)    =    loge n    -    loge   [1- <f>(x)]   - x  [1- *{x)]~'   (d*/dx)      (A.1) 

be an increasing function of x throughout the partial spoilage range.  In the partial spoilage 
range we shall  use Formulas (10) and  (11), in the forms 

x    =    Un   +     ftn_1V (A.2) 

$    =    exp  (-e"V) (A.3) 

d<E>/dx    =    ane"y $■ (A.4) 

If we combine these with  (A.1) we obtain 

A    =    loge n    +    T    -    WanUn (A.5) 

where 

T    = -loge (1- $)    +    (-y) ^e-Vd-^r1 (A.6) 

W    =    4>e_V (1-  $)_1 (A.7) 

We shall study the  behavior of T and W separately, using the following easily verified 
relations, 

$e"Y * 0 as y ■> -oo (A.8) 

(-y)$e"v * 0 as y ■> -°° (A.9) 

O-fcJrVY > 1      for all    y. (A.10) 
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First we investigate W.    By direct calculation 

dW/dy    =    <I>(1-<1>)-' {   - 1 + e-V (1-<I>)-' }    e"V > 0, (A.11) 

and we see that W increases with y for all y.   As y -> — °°, we have 1— <i> ■> 1, and therefore 

Equations (A.7) and  (A.8) show that 

W * 0     as     y -> -oo. 

As y + +oof we set e = e"v « 1  and obtain 

$ = Q-e «    1_ e    +   f2        =    1  - e(1- f_) 
2 2 

W * e(1-e)/e    =    1  -e'Y 

Hence 

W * 1      as     y   ■*■ oo, 

and W increases monotonically fron zero to   unity as y increases from — °o to +°°. 

The behavior of T is only slightly more complicated.   We may differentiate (A.6) 

and find that 

dT/dy    =   -y dW/dy, (A.12) 

whence  it  is  plain  that T attains a   maximum  at  y = 0 and  has no other extrema. 

Equations (A.9) and (A.6) show that 

T » 0      as     y * -oo. 

As y -> +oof we Set e = e'Y « 1  again and 

T - - m [e (1- « >]   +     (lne>   <1~e> £ 

2 P 

T « - in (1- -)   - e In e * -1 -e In e 
2 2 
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Therefore 

T    •>     0 as     y     ■>     +°°. 

T increases from zero to its maximum value, 

T(0)    =    -  In  [1- *(0)]     =    - In (1- e"1)    =    .459, 

as y increases from — <*> to zero, then T decreases back to zero as y increases from zero 

to +°°. 

Differentiating (A.5), and using (A.11),  (A.12) and (A.2), we get 

dA/dy    =    -    (y    +    anUn) dW/dy    =    - c*n x dW/dy < 0. 

Also, since both T and W tend to zero as y + — °°, 

A + loge n     as     y + — <», i.e. x « Un, 

and, since W * 1   and T ■> 0 as y ■> +°°, 

A + loge n -  <*nlJn      as     y -> +oo, j.e.  x » Un. 

Hence we see that A decreases monotonically from loge n to loge n — anUn as x increases 

through the partial spoilage range. Hence A > 0 everywhere in the partial spoilage range, 

and so D increases   through the partial spoilage range,  if and only if 

«nUn < loge n. 

If 

anUn > l09e n< 

the foregoing discussion shows that D increases at the lower end of the partial spoilage 

range, reaches a maximum somewhere and decreases in the upper part of the range. 
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Appendix B:    The Least-Squares  Polynomial Estimation. 

In this Appendix we present the formulas appropriate for the Least-Square fit of 

a second-degree polynominal to the transformed data, which consists of points (v:, t:) 

j = 1, 2, ..., M. In this presentation we use the familiar ideas of orthogonal 

polynomials. 

The inner product of two functions, f and g, taking the values f: and g: respectively 

at points t = t:, is defined by 

M 
< f,  g >     =    2     f:  gi. 

f and g are said to be orthogonal  if 

< f, g >   =   o. 

Further, in terms of the shifted independent variable 

Xj     =    t|     -    "t 

,    M 
t    =   ivr1 st 

i J 

we define the following constants 

M 

0k 2     XJ K  =   1,  2,  3, 4 

*   =   ß* - ß3
2 ß-21 - ßi ß'h 

Notice that 

ßo     =    M,      ßt     =   0. 

It may be verified that the three polynomials,    0O/  ^   and <j>2, defined below, 
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00 (X)     «      ß0'
% 

0i (x)    =    ß2*1/a   x 

02 (x)     =     XJ/2  {  x2   -  (fr/ft)   x  -  (&/&>)} 

satisfy  the orthogonality conditions 

< 0j,  0k  > = 0 \  ¥= k      ; i  == 0,1,2; k = 0,1,2 

and the normalization conditions 

<0k,0k> =1       k = 0,1,2. 

The second-degree polynomial approximation to the data is given by 

Y   =   C0 00   (X)   +   Cj   0,   (X)   +   C2   02   (X) (B.1) 

and  the values of c0,  c{   and  c2   estimated  by  the   Least-Squares  procedure are 

So  = ßo-y>  5{v, 

ft « J/2     y Ci      =    ß2 2 xjVj 

22     =     X"1/2 ( 2 yjXj
2   - (ß3/ß2) SyjXj - (02/0o)2Vjl 

Thus the best second degree  polynomial approximation in the least-squares sense to the 
given data  is 

y = £0/V
% + 2i/V1/2 x + S2A"Hx2   - (ß3/ß2)x-(ß2/ß0)} 

The curvature measure,  K, used  in  (31), (32) and  (35),  is calculated from 

■       K=I   ÜV-  1   ÜZ-c,X*. (B.2) 
2    dt2 2    dx2 

A 
We see that the curvature  is simply proportional to c2 •     If the data lies on a straight 
line, 

c2    =    0        and K    =    0. 



In that case 

v = c0/v
1/a + c,/r/a (t-t) 

and the constants A and  B that occur in Equation (31)  to  (34) are given  by 

A  =  c0jV
1/2  - c,02

J/2t (B.3) 

B  = c,/V1/2 (B.4) 

To study the errors in this analyses, we define, G; as the error in the approximate 

formula (B.1) at the point t = t:. We assume, as usual, that the Gj are independent, 

normal random variables with zero mean and variance o2. Then the best estimate of 

o2   is given by 

S2   -  (M-3)      L{GJ} 

and this S is the one used in Equations (35). It is known that under these assumptions 

the quantity 

(cj-2j)/S      1 = 0,1,2 

obeys a Student t — distribution with M—3 degrees of freedom. This permits us to make 

confidence interval statements about Cj if we wish to. In particular the central confidence 

interval for K =  c2   X    , for a confidence coefficient (1— a),  is 

*-*£& ± st,_(C(/2). j 

With the aid of this formula we can decide in any practical case whether the difference 

between Kw and KL is meaningful or not. The quantity p, defined in Equation (35), 

is a related  measure of the significant curvature. 
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Fig.  1:    Sketch of two distributions   that nearly coincide in the region 3.6 < x < 4.3. 
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Fig. 2:     Schematic showing partial  spoilage ranges for n = 103   and n = 106 
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Fig- 3:     Schematic behavior of D(x) in partial spoilage range. 
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:ig. 4:     Effect of random noise on plots of D vs x.   The points x mark experimental 
values of D. 
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Fig. 5:     Acceptable range of lognormal constant, ß, as a function of n, 
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Fig. 6:     Graphs   of   lognormal   and Weibull  plots of 
distribution for n = 107. 
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Fig.  7:     Graphs   of   lognormal   and  Weibull  plots  of  data  derived  from  a  loqnormal 
distribution for n =  103,  10s   and  107. 
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Fig. 8:     Weibull and lognormal plots of typical artificial data generated by the simulation 
procedure. 
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Fig. 9:     Logarithmic plot of the expermentai probability of correctly determining  F(x! 



Fig.  10: The 12D estimated by the Schmidt-Nank formula for an Exponential  F(x), 
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