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FOREWORD

The rescarch wL,,•: 6 !.;,ri.b•,., in tr, is report was performed by ARA, I nc.,

West Covina, California, for the Mechanics Division, Directorate of Engineer-

ing Services, Air Force Office of Scientific Research, Arlington, Virginia 22209,

under Contract Number F44620-71-C-0043. The research represents the eleventh

year program and is part of a continuing effort in the study of inelastic theory of

structures with large deflections and fatigue damage In metals due to cyclic

loadings. The Project Engineer was Dr. Jacob Pomerantz.

The studies presented began I February 1972 and were concluded 1 Febru-

ary 1973. Mr. Bernard Mazelsky was the Principal Investigator. The main con-

tributor to the study was Dr. S. R. Lin of ARA, Inc. Mr. S. C. Llu of ARA, Inc.

participated In this program. Professor T. H. Lin of UCLA served as consultant

on the analytical study.
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Part A

Large Deflection of Axisymmstric Shell with Creep Strain

I SUMMARY

A numerical method for anayzing large deflectlons of shalls of revolution

' under axisymmetric loading with arbitrary creep chcracterlistics is given. Creep

strain is treated as an equivalent external loading. Two nonlinear differential

equations .similar to Reissner's equations are presented and solved by the Iterative

scheme and the finite difference approximation. The multlaxial stress-strain-time

•'lationship Is formulated from the empirical uniaxial curve based on the second

deviated stress and strain invariants. Examples are given for a corrugated tube

sublect to an axial load at an elevated temperature. The results thow the non-

"linear effeacts due to finite strain and creep strain. The method shown may also be

applied to oxisymmetric shells subject to thermal and plastic strains.

II INTRODUCTION

Recent Intel at In the design and fabrication of structures at elevated

temperatures has led to the investigation of creep effects In a number of structural

configurations. Analyses of beams il ], columns [2-41, and plateo 15-81 with

creep have been shown. The large deflection of rectangular plates with nonlinear

strain-hardening creep, was given by Ho and Lin 191. Recently the study of the

i-,



ir.niostic oeicivior o1 5halJs ý,as become or. area of ircreusing interest. The large

inelot'ic deforma.ion of sphar'col shells has been studied by Pion and his

QC76occteý !"I Ta derailed -nethoc; of caic'1c;ang the stresses and deflect-

ions of a corrugated twbe with finite strain and nonlinear creep has not been found

In the literature. The present study devwlops such a rrethod to calculate stresses

at different points of an oxisymmetric shell under axisymmetric loading such as

corrugated tubes with arbltraoy creep characteristics.

Inelastic strain gradient has been shown to have an equivalent effect as

that caous by a distributed body force on the structure This method of

equivalent load has been used In many analyses of inelastic bending of
Plat 7-9 14]. In the present study, the sume concept Is applied to the

analysis of a corrugated tube undergoing very large deflection with creep strain.

The nonlinear governing equations are solved by an Iterative procedure. The

numerical results demonstrate the necessary convergence properties of this method.

IIll BASIC EQUATIONS

Using cylindrical coordinates r, 9 , z, the middle surface of a shell

of revolution may be represented by the parametric equations:

f r - r (

Z- Z.CV) )

so that the parameter , together with the polar angle 9 are coordinates

on the middle surface. The equation of the deformed middle surface Is taken In

the form

"2-



C?(2)

where subscript "o" denotes the quantity referring to the unceformed state. The

displacements u and w are components In :he odial direction r ano axial

direction z of the shell, respectlvelytand • is the change of 61op.

angle 4 of the meridians with respect to the z - axis as shown in Figure 1.

From geometry, we hove

r{ : .;,.L . (3)

where S Is the distance measured along the mercilton. The-principal stroins at

the mtddle surface, in the tangential and circumferential directions, are given'.

(4)

The immeclicto consequence of the definitions of the components 9, and

2,p a is the compatibility equation

k, 160 ,Cox.- r.•,, ' e, Desu•. r &S A ( 4 )
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Figure 1. Nomeanclature for Shell Element
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wi-,i,,re prime denotes di Lu,,fliiO;, with respec! .o Q Vid where C O (

is given in the ;orm

L et be the distance along the nor.nal to ;he deFormed shell surface

from the mijdl¢e surfaca. 6.y using Klrchoff's assurnprion that normals to the middle

surface ramoaln norma. to the deformed middle surface, the strain-displacement re-

lotion may be written as

in r
By Hooke's law, we have the stresses along principal directions 4 and •

where E is Young's modulus, 0 is Poisson's ratio, and, Q; and Oý

are plastic components (Including creep) of principal strains. From Equations (7)

and (8), the stress, resultants and the sectional moments ore found as

A44,_ so NO
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r f ;r ,:.s- ,i .,•o h she', and the e.,elastic terms with subscript

asOw

r 'Wi

- 1 j1

:14 L I ýCý -- 1.

010

Con~idet a differential element cut from a shell of revolution by two adjacent
meridian planes and two sections perpendicular to the mneridion as shown in Figure 1. .

LIe the stress resultants in radial and axial directions be denoted by H and V, re-

spectlvely. The equilibrium condition5 give

g rV-. ot r? ,

L rv)'- H (M i -- r. -De MO -t-sO r

where and are the components of surface load intensity in the

axia; ord radial directions. The first two of Equation (11) are the conditions of

Force ecuilibrium in the axial and rdial dlirections, while the third equation is

thu condition of moment equilibrium.

Analogoos to corresponding Relssner's work in shells with finite deflection

bo. restricted to small btraln 15] the system of equations (4), (5), (9) and (11) can

be reduced to two simultaneous equations for the unknown meridian angle change

. 6-



c siress functor deinecd in termns of -he hor~zonto' resultant ; by,

rH 2)

The resultant two differentlal equations are of. the followin@ formn

rE, 
9>NI I

r re I

rr

r r
r a r'P, ac ;,) rVr

' r~ Et r F

r. Z r

I~~~ PC~cs~

r ceV
*i 4 r e.tf - -

+oc r__ 5;r

+ -Lce ) 0
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.b5v uo ro .d i , ,, : c .. c tr , rt I n.c it', l ccn--nuicj ,*d • v of t~

o csr• eq,,ivalera roar, odcitionaI se�uc, oex.ernai loadinc,. in rhis analys,

no ýucklin it, cons icercl, hence the presenr analysis is valid only before circum-

feruntiai buckling occurs.

N POLYAXIAL STLESS-STRAI N-TI ME RELAT ONSHIP OF CREEP

To calculate the creep strain, the smooth stress-time curve has often boen

approximated by a series of finite steps, each of which consists of a constant

i61stress period followed by an instantaneous increment of stress . For applying
creeo test dora under constant stresses to the cases of varying stresses, the

mz.cnancai equation of state "or uniaxial loading is generalized to [1 2]

iti4

for the multiaxial stress state, where the effective stress and the effective

strain •j are given as, in the case of the axisymmetric shell,

(5)

The prircipal creep strcin along the direction has been denoted by eo

Since creep strain produces no dilitation,

0 16

zquation (15) reduces 'o

IL Y 17)

e 02-ie - q

-8-



,n o r. ,r~c .,t.ln,, .ti in t-ýrva l /, T, Eq ua rio n (1 4 ) c nd (I7 ) o iv e

11 ;L2Q J assme to. YZ

Tne incremental creep strain components, Ae% and d4ý are assumed to

oe p.oportional to the corresponding dcviatoric stress components:

4_ (19)

This is commonly assumed in incremental theory of plasticity 1 With known

stresses and creep strains, Equations (18) and (19) give the incremental creep

strain components in an incremental time interval AT . The total creep strain

at any time is the sum of the creep s;rain increments of all the time steps. From

these creep strains, the inelastic terms Nz , N9z , Mo17 and

Mg z as given in Equation (10) can be calculated and substituted into Equation

(13), to yield a set of equivalent loading.

V NUMER, CAL PROCEDURE FOR ANALYZING CORRUGATED TUBE

We now consider a shell with periodic corrugations. Assuming that the

corrugations are symmetric about their crests or troughs. One period of the

corrugations goes from z = 0 to z = 4c, so that the wave length is 4c. Disregarding

end effects, the symmetry of the shell meridians suggests that we may consider

only half of the period with the following boundary condition:

(
at z- 0 2C (20)

if we restrict ourself to the problem of corrugated tube subjected to a constant

-9-



CdXc.. K , Equationi '13) rE;-uces lo -he foi iowinig:

Z = (21

+~~ a-1'

Where

A'

r r.

1(22

r r~ S O 4~

C r

r [-r. ri7C WSO~

cii V. + Co -. 4 e0

Aj~

0(O

V 5K
ra t& ýTL t

-ý 1O



Ec, ua'ion (21) is solved by finte difference and iterative technique as shown in the

J I 'ing.

On the basis of conventional central difference formulae

d("r') dfl 4f41r,

1 (23)

where

A. - - •°.,

.Ile differential Equation (21) can be written in finite difference form at any

statlons n except at z=o and 2c,

r A2 ,-, A2 e,.., -A-7A"7I + an (N24

-(24)
L 4 + A 7 Az, All



A, = .--~ ý-- • *•

A4- = z

Ar = 2 5

- r.a 1 (a".-~-

AE t( 2 5)

7.he superscript n denotes the value at the n hstation. By eliminating 5

Eq~uation (24) yields:

~ -47' (26)

and

•,37
( ,, " - A.,7 -A "?-A 3 ?_, ) (27)

where

-12-



= -)
A' A,

L a,• g:, A2i a-A2 A.

Ia h Af

A? = a" -T'•",

The set of equations, Equation (26),will be so! ved by the procedure equivalent to

solution by the meth'od of Gaussian elimination used in other problems of shells

oi revolution [18,19].* Th'e elimination technique proceeds as follows: Let the two

points z=o, 2c be denoted by n=o and n=N respectively, so that

{ ;:=>:=~(29 )

prom symmetry, we also have

f = -- - ,4-t(30)
A 2- , -

K

The first of Eqouation (26)i.e. n=l is solved for 7, in terms eq. and to

-13-



.n su, ssubstituted into the next equation n=2 and will be found in

Terms of ,93 and c4. , and so on. Finaily the last equation of Equation

\.26) wl determine - n then with = , all of the will

be calculated in reverse order. Accordlng9y, we may write as

? = Rn - p , , (32)

From Equations (29) through (32), we have

e7 I

SR -

,, P. = 0 (33)

Substitution of Equation (32) into Equation (26) yields the result:

P,, sa,, - R4"0,7-1 B- P4_, -, (34))

Q" =" z>. n -,a, --;,-

where

Thi.s rtcorrance relation toge'ther with the initial values from Equation (33) give

- 14-



.:1 the R1 's, Pn s and Qn'S up ro R P and Q n. The last of Equation (26), nr-N-1,n ,'!,-2" r-2 n2

and symmetry condition, Equation (30), determine C4-1 Cs

-I -- -I (35

wnere R, and Q are the extension of Equa.tion (34) to n=N-1. WithI- n-1 ?A

and -, known, ?.-. , , "" , can be found

rrom Equation (32) and then all the 8 I can recdiliy be obtained from Equation

(27). This process is readily programmed for the high speed digital computer.

The stress resultants, meridian strains and displacements defined in accordance

w!4h Figure I are obtained from and 2 as follows

~ K

r 17
I _ I ,_

(36)

In the inelastic problem, the loading path is important. The time is

ir'cr;ased in increments in the case of creep deformation. In each step of time

irncrement, the initial values of r '/, •f and at each

-15-



CC:;. cilcu:oie" frornm Equ s (4), (7), (3) arc (17). The incremental creep

;rcins z and z in an incremenial time interval z' T are

o$)c..ncd from Equatiorb (ja) and (19) with Civen function F ( rp , e ).

inelastic stress resultants and sectional moments are found from Equation (Ic;. With

assumed values of § and , the coefficients a. . and A; S'

can be calculated. Equation (24) can then be solved for new values of

and . The procedure is repeated until the differences between the

successive r, and no are within desired tolerances. The calculation can

then be extended to the next time increment. In the following numerical example,

the tolerance for 'I of 0.01 %, was used.

Vi NUMERICAL EXAMLE.S

The above procecure is first applied to the static deformation of a corrugatea

.u;e similar to the one tested by Donnell [20]. The meridian consists of circular arcs.

The dimensions (Figure 2) are

[ a 5.33 in

b =0. 235 in

Ic =0.670 in

t =0. 065 in

and E = 3xI06 psi, L) =0.3. Figure 3 shows the axial load deflection curve

for tensile and compressive loadings. The inear solution checks very well with

,-nat of Clark and Reissner f21]. It is seen that thE corrugated tube under tensile

ax:ai force is stiffer than under compressive axial force. This was pointed out by

-Hcnada '22' in the e'aotic iarge deflection theory of shell of revolution.

The incremental procedure is also applied to a 7075-T6 aluminum alloy

-16-
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co.-.uýmcaa ;-,z~e unde~olnoj large dciformaicion cwv 6000 F. Thew ýeomet.1cc dinensions

C.' $rne 05 :1bove. The cpplie-d axial :oad 11 2124 lbs. Tho urnicxicil creep

c.; ac st~c of the rnic,-ioI are approximnated by the following stres-Otrain- time-

where

A a 5. 25 -x 1 0'7/hr

B ."1. 92 x 10,3i n 2/lb

kma0.66

Eu5.2xlO psi

aet total strain..

ir - stress in psi

T time in~hour

and. Potisson's ratio W is 0. 32. The creep characteristics are assumedl to. be thea

some In tension and In compression. The first tirm, Increment was token tro be

0.0001 hr. The subsequent time incremenit was increasea in each step at constant

rate. There were 100 ti me I narements to reach the total of 16. 66 hoUrs. The

100th time Inurerment was 05050 hr. The number of finite difference stations along

the midcsurface in half period of corrugation was 49. The number of grid points

ac~oss the thickness was 13. The tolerance used in the presornt calculation was

0.01% for q7 . To obtain this degree of accuracy, 3 cycles of iteration was

gvneraily found to be sufficient. The computation was carried out Onan IBM 360

and the computing time for this creep analysis was within one minute. Figure 4

s,-.ows the Increase of total axial deflection with time. The variations of thea extreme

fiber stresses at two ends -3t differant instants are Ahown In Figures 5 and 6.

-19-
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V, CCNCLUSIONS

A numerical method is shown for the creep anclysis of axisymmetric shells

subTect to cxisymmet,'ic loadings with large deflections. A numerical example

of creep deformation of a corrugated tube under an axial load with finite

deflection is given. Vertical aispiacement and stress distributions of the tube

at different instants of time after loading are shown. This method may be

extended to analyzing elastic-plastic deformation of shells of revolution with

finite deflection.

In the numerical example of creep analysis, 100 time increments were used.

The time increment increases from an initial value of 0.0001 hr. to 3.5050 hr. for

the 100th increment. The convergence of the solution with the number of finite

difference stations along the meridian was found to be good. It was Found that the

use of 25 and 49 finite difference stations gave only 0.2% difference in total axial

deflection. The number of grids across the thickness and time increments used also

provided good convergence.

- 23-



Part B

Effect of the Secondary Slip System on Early Fatigue Damage

SUMMARY

A face-centered-cubic polycrystal under cyclic loading is considered.

It is shown that slip in the primary slip system causes the resolved shear stress in a

second slip system to increase to the critical value and then this second slip system

s.lides. Slip in this second slip system greatly increases the rate of the local plastic

strain build-up in the primary slip system. Hence the occurrence of the second

active slip system may greatly increase rate of extrusion and intrusion commonly

observed in face-centered-cubic metals.

- 24-



1 INTRODUCTiON

Fatigue failire is characterized by fracture under repeated stress for

beiow the static fracture strength and usually occurs by the processes of crack

nucleation, propagation and final rupture. Even though regions near the nucleus

of the crack and along its path of propagation may be highly distorted, material

away from these regions may not show any significant macroscopic plastic deforma-

Hon. In a single crystal, the fatigue crack often lies along a slip plane. Ewing

and Humphrey [23, studied the formation of cracks by the microscopic observations

of the surface appearance of specimens. Their tests on Swedish iron revealed that

very few slip lines were produced by the first few thousand cycles but as the test

progressed, more slip lines formed. These slip lines are the intersections of sliding

planes with the free surface. As stressing continues, bands of slip are produced

and intensified. Slip lines in fatigue specimens were found to be spaced not as

evenly as those in unidirectional loading. Fatigue cracks eventually are formed

in these i ntense slip bands.

The first*quantitative physical theory of fatigue crack nucleation based

on the microstress field caused by slip was proposed by Lin and Ito [24, 251

The theory was applied to study the influence of strain-hardening, grain size and

mean stress on early fatigue damage [26,27]. Th. results show

that the increase of tl-e strain-hardening rate and/or the decrease of the grain

size decreases the rate of early fatigue damage, and the effect of mean stress on

the number of cycles to failure was found to lie between the values predicted by

Gerber's parabola and by the modified Goodman's line.

The Lin-Ito theory was in part based on the experimentally observed

iormricaion of slip bands and is briefly reviewed here for reference. The slip lines

formed in forward loading and those formed in reverse loading are very closely

- 25-



Soac'c Qu; cs;incr 1CoMt eact, orer cand occur in iný same si;p 'and. Positive slip

occurs in one slip line in forwar6 loading and negative slip occurs in a nearby slip

:.-.a, in reverse ioad:ng. Since 'Qtkice imperfections exist in all metals, initial

... ero.geneous microsiress fields exist in alt metals. The initial stress field favor-

obde to this Iype of slip formation is clearly one producing resolved shear stresses

of opposite sign in two closely spaced, parallel thin slices. As shown in Figure 7,

two th;n slices in a most-favoraby-oriented cryst'l located at the free surace

have an initial resolved shear stress field which is positive in slice P and negative

ir, silce Q . Under tensile loading, the positive critical shear stress is attained

and hence slip occurs in P . Since the residual stress field coused by slip is con-

tinuous, slip in P relieves the positive resolved shear stress not only in P but

-aso in Q . ThIs helps to keep Q from reaching the positive critical shear stress

in tensile loading, and also increases the negative resolved shear stress that causes

Q to slide more easily in reverse loading. When the negative resolved shear

-tress in Q reaches the critical shear stress in reverse ;oading, slip occurs in Q

Qn.. a new residua. stress field is produced. The new stress field increao.s the

positive resolved shear stress not only in Q bu' also in P . This increase of

;o;tive resolved shear stress in P causes P to side more easily in the next

;•r.siic loading. This process is repeated for every cycle and builds up the local

p~aosic strain at these two thin slices, P and Q . The plastic strain in P and

Q raends to push out the region beiw.en them and starts an extrusion. If the signs

o: ;nir;al stress in P and Q are changed, an '.ntrusion nstead of extrusion will

,:n; tiated. Thus, the continu.ty of the relief of stress provides a natural gating

:m for the monotonic build-up of local plastic strain and no special gating

rrwcr.onism, such as a specific movement of the Lomer-Cottrell barrier, as proposed

•7 Kenncdy 128• is necessary.

- 26-
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In Lrn ana l;o s cac•ton, ii wos csumeA thc.7 on0y the niosr-favorably-

or"riiad sip sy,, woud "e activated. This system is ,referred to as the primary

slip sysem. For face-cer,erei-cub7c (fcc) metals suc?, as oaurnrinum and its ao;oys,

,cch crystal hcas "our siip p~anes w•rh three slip c.:ructions on each plane and hence

tertý aie ;weive s',p sysr•,ms. During the process o: extrusion, the material is

eloogated aionG the direct:on of the extrusion and hence a tensile stress is developed

in the reg~oi between ? and Q. Similarly, a compressive stress is developed

aiong the direction of an intrusion. This stress will cause other slip systems to

siide. The purpose of the present study is to evaluate ,he slip in these secondary

silp systems during the early stages of fatigue.

i i RESOLVED SHEAR STRESS FIELD CAUSED BY SLIP

Among the different mechanisms of plastic deformation in metals,

crystallographic slip has been shown to be the principal process of plastic deforma-

:on in face-centered-cubic metals at low and intermediate temperatures [29] From

single-crystal tests, it has been shown [30,31] that slip depends on the resolved shear

stress and is independent of the normal stress on the slip plane. The resolved shear

stress necessary to initiate or to cause further slip is generally known as the critical

sniear stress. Those slip systems in the crystal with highest resolved shear stress

are called the most-favorably-oriented slTp systems and are the first to reach the

critical shear stress. When the critical shear stress is reached in some region in the

most-favorably-oriented crystal in the body, slip occurs and causes plastic strain.

Should the load be removed after sliding in the region, the slip would remain and

cause a residual stress field. If the load is applied again, assuming no further slip

during this reloading, the residual stress plus the applied aggregate stress, gives

the resultant stress field in the body. To find the residual stress due to localized
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saiip, the analogy between the plostic strain gradient and a body force in causing
[3•2] addvlpdb

stresses in an elastic medium first shown by Reissner and developed by

• shelby 3 3 ] "and LinU12] is used. Referring to a set of rectangular axes, let

the plastic strain tensor due to slip be denoted by e.. . The s'rain distribution

in a body wilth plastic strain under external load is the same as that in a purely

elastic body with the additional equivalent body force and surface traction:

FiI

where ,g is the shear modulus, ý- is the component of the unit surface normal 0

on xi axis, and subscript after a comma denotes differentiation with respect to

a coordinate variable. The residual stress field of the actual body will be given

as:

4r i zp Re? (2)

where Z ;ý$ is the stress field caused by Fi and T.

The aggregate considered is of fine grain; grain size being small com-

pared with the total volume of the aggregate. On Figure 7, Xl1 x2 and x3 are a

set of orthogonal cartesian coordinates, where the x3 axis is parallel to the width

of slices P and Q , and xI axis is normal to the free surface. Since the two

slices P and Q are parallel and the thickness of each slice is much less than

its width, the deformation state can be considered under plane strain. By using

Airy's stress function, the stress distribution caused by a point force in a semi-

infiniie plate for plane stress has been given by Melon j34]. Melon's solution

wa5 modified for plane strain by Tung and Lin [35]. This stress function is used

in rhio calculation of slip strains and stresses in polycrystalline aggregates near the
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k
rue surf'ace. Let C.. (;(,'Z) be the stress at X (X , X?) due to a unit

force acting at W - •),i ) along the direction of xk axis, and

.x, W,) be the corresponding stress function; we have:

k = Pi

where the stress functions are given as

- (4)

and

r -
x,=-x, - 7 C , <

Is' should be pointed out that Equations (3) and (4) are valid only when x, x

Consider a point x in a crystal that has slid. Let (m) be normal

to the slip plane and 7Cm) be in the sliding direction of the mth active slip

system at the source point x, and P'"(;, m) be the plastic shear strain caused

by this sip. This plastic strain, referring to x.-coordirntes, is then

-n e"( (6)
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;,I wa.•ch (.m) anc• 7 (.n) deno-e the components of unit vectors along

(n.) and (cm) directions, respectively. It 7s shown in the appendix that

• -=----.-4Z• converges unriformly in the slid region S, hence by

.quations (1) and (6), the stress at field point x caused by a g9ven plastic

strain disrbution e"(x,m) in the slid region S is given as

S Z/9 M;( .kX5. Wd~"c..s • = -z m ,.o.•- _ d... ij d (8)

S

T7-,is ;ntegrao, and hence -C in the above equation exists and represents a

continuous function on S . In equation (8), the repetition of slip system rn

cdenotes sumrration over all sliding slip systems at point x while the subscripts

k and 2 range from 1 to 2. The above discussion holds also when the slid

Sr.jcjon S ;s a rmulti-connected region where the slip strain is continuous inside

each simply-connected subregion.

Slip in any region depends on its resolved shear stress. The resolved

th.seor sr;ess in the n silp system at a fieid point x, caused by slip throughout

;:'.e s,;d region S, is obtained by transforming the stress "C;* (x) given by

Ecqu"'aion (8) from the (xI, x2 ) coordinates to the , )n coordinates, where

jn) is norrrail to the slip plane and (n) is along the slip direction of the

r, sip system oa'x:

Zs ( x, n, - " q" nl j &) (9)

in which r,. ii s defined by Equation (7). The substitution of Equation (8) into
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, 'on (9) yiels

_CXSX C Xn.) -,Adr/7,, (10)

K
Lat;ing Ný Ix, n; x, m) = .. mik k "x, a) , the above equation may be

wr.ten In the following form,

(~AJ ZM. (11)

li is shown in the appendix that the integral in Equation (A-3) over the

reg.on S, W) tends to zero as the radius C of S. cx) approaches zero. Hence,

c.,uc &!on (I I) can be written as:

Z e xn. 4(xn > z ll'Z d,ý Cc~" '12)

Since the integrand in the above equation is regular in the integration domain

S - S tne area integral can be integrated by parts and partirlly transformed into

a *.no intOegral by means of Green's lemma:

Zjcx, n) - NY, rn d - n. sn,) e UM~dxj,J
r-z• r l "

OV, ; W) -I 3=N, U P~ ZM(13)

whur3 F" and ' , taking counterclockwise as positive, denote surfaces bounding the

rujiors S and Sk respectively. The slip strain in each region of a given slip

orientation is taken to be continuous inside and drops to zero at the boundary. The

ne iýnegral in Equation (13) along F vanishes. For numerical calculation, the

.iid region is divided into thin parallelogram regions unless it is otherwise specified.

7s0im.:Aify calculations, plastic strain in each -rid is assumed "o be constant. Lat

S c enote'the region of rth grid, ". the plane surface bounding the grid and
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S 0' thQ irid conbeaining S00 Then E&uction (3ý becomes

.X. __r)!~ W 00

, th
nt, the a0ove, e"(xr, m) represents the plastic strain due to slip in the m slip

system of the grid Sr , whete

in which the .Nwo-dimens&onaI step unit function H (x, x0 ) is defined as

r H(x, xo) if x • ,.

H (x, x ) if x s..

The rapetltion of r and m denotes summation over all grids Sr and all sliding
?i;• -y,ý;ems at grid centrold xr. Since the crea integrals over the regions S in

r
Ecilt~on (14) ore proper, Green's lemma can be applied to reduce area integrals

to :e i:ntegrals. The resulting equation becomes

.,r / X m4; (16)

s cicarly seen that the above integral represents the resolved shear stress at x

;n the n .n slip system due to constant unit plastic strain caused by slip in the

r., tslp system in the region 5ro

If more than one slip system slides at field point x, the plastic
, , th

;eCo0ved sheGr strain at x in the n slip system due to slip in different slip

zystenr, s at the same point x is given as:

•e(xn) 4 n.nf)m e x×m) (i7)
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. %,, a r,•I, resolved s6',neQ srress caused'/ P.stic stri n thne siid region S is

ub.54,1u u oun of Equa•ions (16) and (17) ;nto the above equation yields:

zi n - ((r M 0 ',/ý ,M(9)

where

xn.x,, m.L n r. H x (20)

"T'he funcr, on G(x, n;Xr, m) is caled the stress inr";uence coefficient of the

residual resolved shear stress at x in the nr. slip system due to a constant un"t

oas'ic strain distribution in the subparallelogram Sr with centrod at caused

6y :;ip in the m s51psy ystem.

The polycrystal is sublected to an alternate tI-ension and compression
1Oi~ d. n Iax 2.-axis as shw -.

,oc, ng ,along the x a~ s hown in Fgure 7. Since the maximum shear

stress occurs in a plane at 450 with the direction of loading, the primary slip

6;rectior. and the normal to the primary slip plane, referred to as the first slip

•ystirn of &he most favorably oriented crystal at the free surface are at 450 with

I 2 -axVs:

0)
S¢ , a)

" hcs been pointed our that under cyclic loading, two distinct closely-spaced

.. cu4 sie. One sice sldes duri-.g t,.- forward loading, the neighboring slice

;, durn the reversed jiocing. The build-up of large local plastic shear strain

Primcry slip system in -,he two thin slices, as shown by Lin and Ito [24,25]

. .to starn an extrusion or an intrusion in tho region between these slices. Con-
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ir, appreciable C;drect stress, tension for extrusCon and compression for

,:uon, will occur in this rejion between these sl'ces along ihe primary slip

ojirc-ion % (i). This direct si'ress gives maximurn shear st'ress along x direction

on ,ie x2 plane, or along x2 cirection on the x, plane. A f. c. c. crystal has

;Wava s'0p systems. This direct stress causes different resoived shear stresses in

.ha 6':fferent s!ip systems. The one with the highest resolved shear stress caused by

-his 6iract stress is referred to0 as the secondary slip system, which should have the

•ip direction and the normal to the slip plane cdose to x. and x 2 axes. To simplify

theD numerical calculation, this secondary slip system is assumed to have the slip

c;4rectzon and the normal to the slip plane along x. and x2 axes, i.e.,

"[ 'W = ( 0, 0 )

";,nh grids are takean to be rectangles for the secondcry slip system in the xI-x2

pana, cs shown in Figure 8.

To fi•nd the stress influence coefficient G(x, n; xr, m), the surface

"---Qr' l 7n) Equation (16) has to be evalucted. The detail integration of the inte-
,cl ;• g.ven by Lin [36] . The resu'ting expressions are given as follows:

+.r2, j),•

-t-~X, )(a a.~- ay)-~4x~ ~)

47(Xy j Xr, Z X" xa= - •v,, x -35, -X. X,-; X,.r- X%-
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-- ~~-, A / -f- I an -uWJ a

Z U(-W; U' ZUW-6K. VCV+W) /)(U-')

6 £ 
(22)

Z3 (IXa.XJ,Xj 2 4a z )A

in which

r X

ary grid, respectively.

When the thickness o. grids is much smalier than its width, i.e., b < a,

;t Ca.) 6a shown that

whc= X -) 
(2 5)

X.1 j ;W, (25)

i 4/ .U*U 2VV-id SV4&,vcAW

anm;, clearly shows the linear dependency of the relief of resolved shear stress on

strain and the grid thickness b ". The same result has been pointed out
?h;3 -clary s howlver he preseny expression of stress influence co-

/ i n ad "ro • However, he 37 e
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,if"" i....is ;n a much simpler Form than thcu" previously given by them.

IV LOCAL PLASTIC STRAIN BUILD-UP UNDER CYCLIC LOADING

The maximum local plastic strain build-up at the free surface is used as

.i'e cri.terion for estimating early fatigue damage. To determine quantitatively this

pGs'.c straon build-up for the fatigue nucleation mechanism, the following proce-

Qure is used.

Consider a polycrystalline metal with initial resolved shear stress Zr..

Ths metal is subjected to an alternate stress Z.. . Before slip occurs, the applied

th
reso:ved shear stress Z is uniform. The resolved shear stress at x in the n

A
slip system due to the applied cyclic stress is

Z ( , n = L n. r.. - , o n z,(26)

where L (x, n) is the Schmid factor which gives the ratio of the resolved shear

stress in a particular slip system to the applied load -C.

Under the initial forward loading, the resolved shear stress is Z .

When the critical shear stress is reached, plastic strain occurs and produces residual

resolved shear stress as given by Equation (19). The total resolved shear stress in the

th
r, slip system at x is the sum of the applied, initial and residual resolved shear stresses:

"Zcx.nj L. ., X '_1X,,j - 4 47W,4 Xr. J,,m "(xrM,) (27)

"The repetition of m and r denotes summation over all sliding slip systems in all

siic regions. The initial stress field does not change with loading, so that

= 0. The incremental rate of resolved shear stress with respect to

applied load C•C is

Lix.ni - (28)
0/- . /
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Those grids in which ihe magnitude of •he r...OiVod Sihear stress is less

than the critical shear stress Z7, are referred to as non-active slip grids. If R0

;s one of these slip grids,

I < n(?f1)< Z' 0 (29)

where x is the centroid of the grid R . In the region currently sliding, thep P

magnitude of the resolved shear stress equals the critical shear stress. Let RS be

one of the grids in the sliding region with centroid at xs It follows

j Z(Xs. n) I C, , I .e& ,neJ n -o (30)

where n denotes the sliding slip system at x5.

The macroscopic plastic strain of the crystal represents the ovwrage

value in the crystal 21 Since the slip is highly concentrated in the thin

slices, the macroscopic plastic strain is much less than the local plastic strain [24,25]

The rate of strain-hardening in terms of the !oci' plastic

strain is hence much less than that in terms of macroscopic strain. To simplify the

caiculations, this local strain-hardening is neglected. Then Equation (28) gives

Se%,,rn, L ~(31)

where x and xr denote the centroids of sliding regions. This is a set of linear

equations with as many non-zero unknowns de"(xr,.,,) as there are
44-,,

ea, o;ions. The plastic strain increment 4,e" (xr, m) in the sliding grids for an

incremernt of applied stress A-Z* can readily be determined from the value of

. Substitution of de .x,,n into Equation (28) yields the rate of

criange of the resolved shear stress at all points. From the known values of Z(x,rn)

ar -he non-activ'e points and the corresponding values of . the increments
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i,; .7 o r arad for each non-act'ive poini" to initia.,e slip can be cclcuiated and

compared. The minimum o4 these required incremrents in 2. is applied, resulting

on ane add;rional active poInt for the next loac; interval. During reversed loading,

;i;-e incremental aggregate stress in reverse loading required for a new slip region

.o s'iae can •rmilarly be found.

It should I-e noted that the incremental calculation of slip strains and

stresses under qtsl-statlic cyclic loading outlined in the foregoing is rigorous with-

in the frarnewoik of she discretfizedl i*;.;ulation. It is also valid for piecewise

i near stral n-l'ardeni ng.

"The extrusion thickness has been observed to be about 0. 1 •'/ (micron)
by Fr~yt ani Stbblnton[38]yt so that the distance between the two slices is

I 'en. 'o be 0. 1 nvi . The thickness of the sl.ces P and Q in Figure 8 is very

sall and 7s assumed to be 0.01 rnlý . The 7natial stress field in the primary slip

system at the free surface is assumed to be zero everywhere except in the two

neighboring s.'ces P and Q, in which the initial stress varies linearly with the

dep,'t of thj slice, i.e.,

in

Z'(X,i I in Q

0 elsewhere
where the lineor di,-mension, d, of 14he sliding crystal is taken to be 25 ,', .

,o reduce ;ha lengthiy computer calculation, the secondary slip is allowed to

only in the reGion between two slices P and Q, and up to a distance

0. . from ,6he fre surfcce. 200 grids within this 10 m//x distance were taken

CO, ;.?.is seCondary slip calculation. The sliding of the secondary slip system in

S;r,-;zrior rcolan between P and Q, and beyond 10 m/,s from the free sur-

-ace .s taken to have little effect on the plastic strain build-up near the free
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•urracc. •ha rel'ief oF the csolved shear stress due to pasrc strcn In - sic .rid

is assumed to be given by that at the centroid of the grid. Tht build-up oi local

casr c strain in the primary and secondary slup systerms is calculated for an applied

;e~rrnating stress of' 100 psi along x2 -direction- Tho critical shear sores,

Ts taken to be 53.5 psi, the &hear modulusp. to Se 3.85 x I0 psI and the

eiastic Poisson's ratio U- to be 0.3. These values correspond approximately to

those for pure aluminum '391.

T?,e calculated resolved shear stress distributions under forward loading

at 'In, 35t4n cycla with and without considering the secondary slip are shown re-

spec'ively In Figures 9 andlO. It is interestirig to notei that, during fatigue loadings,

Me 6ifference in the residual resolved shear stresses in the slices P and Q near

th-e free surface Is about constant for the case w,th only primary slip system sliding,

while the difference is steadily increased with both primary and t i.condary slip

systaers jor.ntiy sliding.

The calculated local plastic strcin in the primary slip system in the

.. ,ce ? considering sliding in the secondary slip system at various cycles of loading

;s shown in Figure 11. The local plastic strain reaches approximately 3% at the

,ee surrace Gr'd in about 36 cycles. The local plastic strain build-up at the

:r.terior end of the thin slice is much slower (only about 1/3) than that at the

'rau surface as predicted by Lin and Ito . Hence, in general, fatig,'e cracks

occur at the free surface before any interior crack has a chance to initiate.

The increase of rraximum local plcstic strain in the primary slip system

c. ii-,e irece suriace with and without the sliding of the secondary slip system are

ý•,kvir, in Figure 12. The build-up of the plastic strain in the primary slip system

w ;h' ' (, secondary slip sliding is much faster than that with only primary slip
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; sS. 7111 aus d- upn 'Ihe 11..e ss se ,,Is GpJro×&r, aet'y lne ar with "

I uio.r oa cycles.

V CONCLUSION

The resolved shear stress field caused by a uniform distribution of

pistic shear strain in one grid in a semi-infinite medium was obtained in closed

iorm. This solution in closed form was used to calculate the build-up of local

plastic strain at the free surface. The local strain-hardening in the slid region is

assumed to be zero. The activation of the second slip system is allowed during the

fcltgue cycling. Calculated results show that sliding of the primary slip system

increases the residual resolved shear stress in the secondary sip system monotonically

ot a relatively rapid rate and helps the secondary slip system to slide at the early

state of fatigue cycling. The slip in the secondary slip system also affect greatly
.he rat'e of the local plastic strain build-up in the primary slip system. The build-

up of local plastic strain is used as the criterion for estimating early fatigue damage.

- the sl;4ing of the secondary sip system increases greatly she rate of fatigue

crar.agea. In those regions where two slip systems are active, the total plastic

•.-a;n ;s the tensor sum of the slip of the two systems. The amounts of slip in these

two bysterms vory from point to point. The plane of maximum plastic shear strain

causi.d b, slip in these two systems varies from point to point. It seems that the

variation of the orientation of this plane may cause the waviness of slip lines
[41,421

oiserved on specimen

The slip distribution caiculated by the present analysis satisfy the

concations of compatibility and equilibrium, as well as the dependency of slip on

;-.Q resoived shear stress throughout the metal for all staGes of alternating load.
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Port C

Preliminary Evaluation of Plasiia Spray
Metal Coatln~1 s a. a Means for Prolonging Fatigue Life

The nucleation of a fatigue crack generally occurs at the free surface

due to the large build-up of local plastic strain resulting from slip at the free surface.

It was experimentally shown that successive electropolishing the surface of a specimen

undergoing fatigue testing will considerably increase the fatigue life. Honce, it

appeacis that the fatigue life of a specimen can be extended if Its surface fatigue

.. " properties are Improved.

One method that may accomplish this Is to give the specimen surfa:-- a

coating which has a higher fatigue life than the specimen itself. This coating must

form a strong molecular bond with the specimen. It was thought that some plasma

spray coatings might satisfy these requirements. A brief literature survey was made

on 1he effect of plasma spray coating on fatigue life of bose material. The results

of this survey are briefly summarized as follows.

Plasma spray coatings of Nickel-Aluminide and Carbide types were found

to adversely affect the fatigue properties of aluminum lloy 2024-T4 and ultra-high

strength steel, AISI type H-.11 [43]1 The plasma spray process or pieparatlon procedure

has little effect on the high cycle endurance limit of aluminum alloy 2024T4. This

aorees with previous work done by Whittaker 441 Remmelts [451, and Wolff 146.

However, there is some low cycle fatigue life reduction. The high cycle endurance

limit of high strength H-i1 steel heat-treated to 280 kal tensile strength was found

to reduce by 15 to 25 percent by the application of plasma sprayed Nickel-Al uminide

ond/or Carbide coatings, with corresponding reduction In low cycle fatigue life.

The same results were found In the plasma coated titanium 6AL-4V and AISI 9310

steel 1471.
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The above plas'ma Spray coat nGs do not !havm beneficial effects on fatigue.

however, the fatigue livos oi the coating materials under cyclic strain are not

known. The reduction of fatipue life of the base material due tý. tht; voatirng may

bo caused by the low fatigue life of the coating. From, Coff i ni-Meson's law of.

fatieue, under low cycle fatigue loadings,, ductile materilols flc'vd longer fatigue

life u.,der constant cyclic strain than the less ductile ones. A coating--of ductilea

miaterial well-bonded to a less ductile base sho'ild Increase the Tatigue-1ife of the

ýbas* mnoter'lal Howevor,''.-ch a metallurgical process giving perfectt.bon~tng 01

this -coating to such a base material has not been found In the literature. For the
f.iji

li-4pirvement of fatigue properties such c process needs to be dleveloped.
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APPENDIX

Let the plastic strain gradient In slid region S be written as:

-- i;Ixw;If for as (A-)

where i .a real number. For ?Sol1 e0(igm) would give a logarithmic. -.

nsingularity a'nd becomes Infinite as x approaches•, Cinsider plastic strain as

caused by the displacement of dislocations. Let the lattice spacing be denoted

".by" A" which Is a finiti distance. The change of plastl strain across "A". is

always finite. Hence Is bounded and in Equation (A-1) Is greater

than zero. The stress Green's function (Qi (0) at x due to a unit force acting'

at ;. along xk direction has been shown to be related to the streu function

(Equation 3). It 1, easily observed through the expressions for the strou:function

that

, ( Z Jr•C,' ,-O cI g M ) for X4S as 9-a-W (A-2)

Let S,(x) be a sphere on (xit x2 ) plone, centered at x with radius & I it can

be shown from Equations (A-1) and (A-2) that for xi S (x)

J . ex..24 d);,- . 0.- as -o (A)

This integral approaches zero for ? >-1. Since ý>0, this Integral vanishes as

•-o . Even though the stress Green's function Is singular at

x the Inteli a, i h d converges uniformly In the

slid region S.
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