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FOREWORD

Tne rescarcn waik ¢ 1scribed in this report was performed by ARA, Inc.,
Waest Covina, Californla, for the Mechanics Division, Directorate of Fngineer-
ing Services, Alr Force Office of Scientific Research, Arlington, Virginla 2220%,
under Contract Number F44620-71-C-0043, The research represents the eleventh
year program and is part of a continuing effert in the study of Inelastic theory of
structures with large deflections and fatigue damage In metals due to cyclic
loadings, The Project Englneer was Dr, Jacob Pomerantz.

The studles prasentad began | February 1972 and were concluded 1 Febru=
ary 1973, Mr, Bernard Mazelsky was the Princlpal Investigator, The main con~
tributer to the study was Dr. 5. R, Lin of ARA, Inc. Mr. §, C, Liu of ARA, Inc,
participated In this program. Professor T. H. Lin of UCLA served as consultant

on the analytical study,
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Part A
Large Deflection of Axisymmatric Shell with Creep Strain

| SUMMARY

- ' A numerical method for anaiyzing large deflections of shalls of revolution

P ‘ under axisymmetric loading with arbitrary creep cheracterlstics s glvin. Creep
straln is treated as an equivalent external loading. Two nonlinear differentlal

r : equations.similar to Relssner's equations are presentad and salved by the Iterative

! scheme and the finite differance approximation, The multiaxial stress=straln=time

p velationshlp is formulated from the emplrieal uniaxial curve based on the second

devidated stress and straln invarlants, Examples are glven for a corrugated tube
sublect to an axlal load at an elevated fempe’rdf_ufe. The results show the hon=
linear effects due to finite strain and creep strain, The method shown may also be

applied to axlsymmetric shells subject to thermal and plastic stralns,

I INTRODUCTION
Recent Inteiast In the design and fabrication of structures at elevated

temperatures hcs led to the Investigation of creep offects in a number of structural

b [2-4] 1581 11

configurations, Analyses of beams " !, columns , and plates

creep have been shown. The large deflection of rectanguiar plates with nonlinear
[0

. Recently the study of the

strain-hardening creep, wes given by Ho and Lin




ineiastic venavior of shells nas become an area of increasing interest. The large
ingiastic aeformaiion of spherical shells has been studied by Pian and his

! Vo e . -
10, 11 . Tre detailed method of caleulating the stresses and deflect-

assacicies
ions of o corrugated tube with finite strain and nonlinear creep has not been found

In the literature, The present study develops such a methed to calculate strasses

at different polnts of an axisymmetric shell under axisymmetric loading such as

corrugated tubes with arbitrary creep characteristics,

Gl W

iamk i Pt g

-y “Inelastic straln gradient has bean shown to have an equivalent effact as

that causad by a distributed body force on the structure f 2]. This methed of ﬂ
o

T o : equivalent load has been used In many analyses of inelastic bending of

7-9, 13, 14, : ]

plates In the present study, the sume concept Is applied to the

2 analysis of a corrugated tube undergolng very large deflection with creep strain,

The nonlinear governing equations are solved by an iterative procedurs. The e 11

numerical results demonstrate the necessary convergence properties of this method,

| BASIC EQUATIONS

Using cyllndrlrcal coordinates r, 8 , z, the middie surface of a shell

of revolution may be represented by the parametric equations:

[ rom= rgo

1
\ Z = 2.3 (1)
so that the parameter g together with the polar angle & are coordinates
on the middle surface, The equation of the deformed middle surface Is taken In
the form q




r = r,-v-b\
q’):.c,-‘:».+\3- {(2)
L = Z,+W

where subscript "o" denotes the quantity referring to the undeformed state. The
displacements u and w are components In the 'adia! direction r and axial
direction z of the shell, respectivaly,and B s the change of slopa

angle &  of the meridians with respect to the z = axls as shown in 'F-Fguro 1.

From geometry, we have

[+
ha

- cos@ ST
(3)

v &l
(%]

- s:'n?

where § Is the distance measured along the meriélqn:! The principal strains at h
the mtddle surface, in the tangential and circumferantial directions, are given

as
(4)

Tha immedicto consequence of the definitions of the components €, and
»

g, s the compatibility equation

K Eq cosp = (1,&, Y wm Ny Ceosdy-cosp) (5)




i g 5 4S J
545 & F
A N\Mo+ Saas ds

}
| |
i
z W\TV
T »~\N - H
lw %
| L..
|l "
r
\ |
{
Figure 1. Nomenclature for Shell Element d
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wnire prime denoies diffeceniiation with respecti o § and where O,
is given in the form

I(' ” -

g y
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(,\o i vy . L

4% 43
Let () be the distance along the noiinal to ine deformed shell surface
from the middle surface. By using Kirchoff's assumprion that normals to the middie
surface rema’n normal to the deformed middle surface, the strain-displccement re-
lation mey be written as

[ = 2 v 0 (o e ) )

gy = € - % (£22..sn%,

By Hooke's law, we have the stresses along principal directions ¢ and & .
E
T =S (&+0%-&-0g)
E T
G; --—;-_—;;-Ce.-.-d@,—éa -)e*)

where E is Young's modulus, b is Poisson's ratio, and, e: and e;
are plastic components (Including creep) of principal stralns, From Equations (7)

and (8), the stress resultants and the sectional moments are found as

~»
, E? _
N, = i ¢ G + 28 ) N‘*z

t

[} /-0" (&, + & )~ ”"z o

< V9
F ’ \

- Et sm s:nf
L R PYTHD) (= il Gar-a )+ M"
I
Sln¢g - Sind ) _?;;_ - .2:
L My = u(;a)[ A g “)]-*IVI“




where § is i iickiawes. Of the shell, and the inelastic terms with subscript " I "

e wefined as follows

. R
Ny = ot (& og ) d
¢ _ 5k} @ - ‘

T 1= et/ ;

/.
N@ =~.§_ .:‘(e:.,.ge:)ds
4 0

E_ (¥ , ¢
Mo,'ﬁ[_ (& ~0&)3 4y

L T2

Consider a differential element cut from a shell of revolution by two adjacent
meridian planes and two sections parpendicular to the meridian as shown in Figure 1.
l.at the stress resultants In radial and axial directions be denoted by H and V, re-

spectively, The equilibrium conditions give

[ (rV) '+ wrp, mo

{ (Y'H)'-OIM,-PNrP“-O ()
(r.vtf)'- XM, o5 + Or (Heinp = Veos$) m D

\

where Pv and "PH are the components of surface load intenslty in the
axiai ond radial directions. The first two of Equatien (11) are the conditions of
force ecuilibrium in the axial and radial directions, while the third equation is
the condition of moment equilibrium.

Arclagous to corresponding Relssner's werk in shells with finite deflection

|5]

but resteicted to smail strain ! , the system of equations (4), (5), (?)and (11) can

be reduced to twe simultaneous equations for the unknown meridian angle change e

eftden s, s i 4P e e i
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ana @ siress function ? defined in terms of ihe horizonta’ resultant H by

Rdxl (i2)

Et

~
i

The resuitant two differential equations are of the following form

P A
R St s (F-F)ese] 7’
i - %‘-{-"?‘ cas;gb.,.p(.;f.asq;_.f.w;gp_ ‘Pl-";"/’)} 7 “+ Ma ‘3
! =_criZ%Sﬂ-ﬂb“‘?-f-9\7‘.{:n¢~'~£5‘lﬂ¢+¢@$¢)a—r—v—
' L J
! ’
i ~XraX nyl OB & (rBy) DoSIn® (rV)
— COSP (=) iH 2 m)
| A ) FroEf YT r Bt
& 1
- Y i< co.:(s,)apssa -o-(g,,,(g [3)5’"?1’ ]
XX, [ N Ny  pNa
_'F-:‘[ I(6051,5-0-9(05‘}’)-—-(ca_;(f,_,_)@5¢)}-y(_£l- ¢’-)
v o,
B a8~ FFesn e /l.-, (L2’ %)
. -) f'o-o Sinfp , >,
-.-{ucp_-r-—(ca:c,u-tassﬁ' )(o.s¢-__ 3P, - 1;0( xxr;’_ N‘) g+.).lr init 37
o
"Flr. SW# — ¢lesd ~ -—((a.n? -3 cosp - y‘&a;96-ﬂ" &’

) {7+ - ,
+-#(W-ws¢-9«szn¢:,9n¢)¢ - 2Ny | ey

— 1 X cos¢p " v H %
== @ R sne + —-—;_"—¢(Cas¢-;)w:¢-9£as¢-£g!)qb'

=4
~ &2 qb.a' Smx/.*.;)u;,,.qb & + x)(/-h’) C(rm(;_,m,;b /z(r—u)c:rJ
FLT2 w“‘ DY 2 res wdiar.. Ly P
Fl W R lstmconi - dcoig L 2] g-:"

P& / ;m¢ _ ¥\ ¢ ,0,( smP , @ _ Daz:w, (rv)’
T i ) Er
[(:m@ G Ieosq, - (/—aasp):mqﬁ] - — ‘)Mo r(/—(oschasgﬁ +(smﬁ (ﬂ)f’"ﬁ

+ (@) + eoso-Deosce~ —Deg - N")q»" +A—,”;,:-.«g -g-:‘_
N
- v+ &£ (wscp o5, ~ oamp-mm Sm’P] Ny,

e ,)omhd{, No,  sind, _ 03" N /2(/-))01
-r(wg,-—-—,:-)?;"'”’( F ol et _—E_‘—_t_"—[ (M& M- M'}

[T T T e e e

-7-



o ' . . o Lo e Y e m e Y o,
L0 WIU DC NGICd Uy Thw saaiasiic VCRNS, refainea in tie CIGRTNGHRG sie O inhe

exiernal loading. in this analysis,

ey
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consiaercd, hence the present analysis is valid only before circum-

ferential buckiing occurs.

Y POLYAXIAL STRESS~STRAIN-TIME RELATIONSH!P OF CREES
To calculate the creep strain, the smooth stress-iime curve nas often been
approximated by a series of finite steps, each of which consists of a consiant

6]

stress pericd followed by an insiantanecus increment of siress . For applying

O

reep test dara unaer constant stresses to the cases of varying siresses, the

2]

mechanicai equation of stafe for uniaxial loading is generalized to!

&7

e¥ = F(r* &*) (i4)

f
for the multiaxial stress state, where the effeciive stress U and the effective

14

. w . . . .
sirain @ are given as, in the case of the axisymmetric shell,

(o]

# L 2 i 2%
(g aﬁ,_(q'q-qg>+0‘¢-*6;] ~
& = Y (i)
3 7 2 s :
€ = (g~ e )+ (g-¢ )+ (g~ )]
The principal creep strein along the ; direction has been denoted by €¢ .
Since creeo strain produces no dilitation,
2 V4
eﬁ T & + & =0 (16)
Zguation {15) reduces to
“ , .t L
q =\ U,}; -+ 0:} - G‘(} 05 ) ¢
(17)
» z ' & N/




. . e - . SN Y
in Gatncremenial Hme interval 4 T, Equation (i4) and (17) give

Ve Lot ee ke

L ag)) *(CJ*AW/"‘(‘ZP""‘WX Ao D) = (G G+ %) o
= £ Feot ey aT

- . . A 4

ine incremental creep strain components, 4€, ond A&y , are assumed to

oe proportional to the corresponding deviatoric siress components:

P
Ae‘,:‘,' = A8 (19)
20~ Gp 20p-To

This is commonly assumed in incremental theory of plasticity L 7]. With known
siresses and creep strains, Equations (18) and (19) give the incremental creep
strain components in an incremental time interval AT . The total creep strain
ct any time is the sum of the creep sirain increments of all the time steps. From
these creep strains, the inclastic terms N‘P; ’ Naz: ’ M‘PI and

- Mg, as given in Equation (10) can be calculated and substituted into Equation

(13), to yield a set of equivclent loading.

\ NUMERICAL PRCCEDURE FOR ANALY ZING CORRUGATED TUBE

We now consider a shell with periodic corrugations. Assuming that the
corrugations are symmetric about their crests or troughs, One period of the
corrugations goes from z =0 to z = 4c, so that the wave length is 4c. Disregarding
end effects, the symmetry of the shell meridians suggesis that we may consider

only half of the period with the following boundary condition:

Il

0

o \
ﬁ ? at Zw O & 2¢C (20)

if we restrict ourself to the problem of corrugated tube subjected to a constant

[ NS PN s



wxiar foud K, Iguation (13) reduces to ihe foiiowing:

7t Gl af =g
P RS+ Asp v BY a7 2 = G

(21)

where

; 11
al-—-—--‘%‘_-[ Xt cosgp o+ v (2 cos¢-——cos¢ @sind)]
!
%

&= FEshe,
‘ ’ ?

- r &,
! as‘-'—-%‘: ""CDS‘P-O-&"P Sln¢) (22)

N
|

,(E#..ﬁ"_‘f’-)

a7= &!')-‘P "'—'(w&?-va-i;f’ J)(OJ¢ rﬁ’n ¢_°(gl‘ 1)“’(.‘/’)?. o(o¢+(/+l),l[:m¢

[O(u:;n¢¢-l_ q{:"oS(P ——-((as¢ JJW.‘N}&‘J’GOS¢-——. )¢

+ -‘-(Olgwu(P ﬂD(SIn¢ Sln¢)(f1 -2 “‘Ur;/ ng = -"’J-t%fﬁ S }

= —f—- sinep eosch *A)(~S'"¢‘—f1”¢ +¢P(o$¢)] 2R‘Et'

e e v e e e e
a8 <
l i
~F

- 9—‘%—' { c/-to.sle)co.“,: -+ (.a,',(g-p dsing )

(L) N N N’ )
-r-s—(‘;— -:?-'(cas‘#q-)a’sq‘l,)-\?‘z‘(‘“% 4..)“_‘,?)]_0((_‘_’}_‘) Q:)

Ru-voeer' K
z* 2TMETL

6054’

(v, s:n¢+1)o(s/n(;;)<?-r 2 """’a‘r.f/ncﬁs’n?

‘f"'FE;' [(s:'np -g )qu‘z-(/-zo.rp)::'m;b]+-‘)—r-‘[(/-m‘4 deosg “'f";‘F‘P)-ﬁ}"ﬂ]

t [ <P_”+ ~—-(casqa Yaosgp ~ L’Co.a¢ - LC/') qb “Wf ] Mq"

m,

k ~lvg's 2 (Cos¢ ~coSP - Vloscp~ '“')¢ -o-———:/m;>]

o Vousm ¢ '4 $m MP No 12 (DY ’
- (—a—- - ) =r DN/——ﬁ’ ) ‘ _E-'—t_-’-[?(mé’,'”‘&)- M‘pzl
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Equation (21) is solved by finite difference and iterative technique as shown in the

foliowing.

On the basis of conventional central difference formulae

Ian‘.-n- 3n - ?Jn' ‘3:‘.—»

s
od RN
wWY¢ e
a\_/
|

2%0e 280
L - g )
where
b = 5- %,

tne differential Equation (21) can be written in finite difference form at any

stations n except at z=o and 2¢,

Jr A??,',,'*'A:?n"'A:?n-o +4;Ln = 3:

L A B Aa B A Bas A St P fue AL = !

-17 -

(23)

(24)



wiere

The supersciipt n denotes the value at the ath station. By eliminating P

n \ 2 o
A = -+ =
r ) B‘M-\( "5‘-\1 aﬁ’) [ )
n ! a ;
Az = FREE E .<1?‘M—| '/‘n)-z.l'*' a:\
R
A:‘ i Z - a,
> Jz\n u-f{:l‘wl ¢ )
2 al
A‘: = ,){ ( N + —)
Aarl At Yige ¢
~ Ly n
As = 3 [T("zﬂ-ﬂ—% )°2J+as‘
Aa Yiney
"
2 &,
A' = Lo -=
e 'g\d <'ﬁo\"’ avm 2 )
A ! 247 a,
Ay = g (o + =)
haer Tt
"
n
- | a 9 _ " n
AS‘ T o0 [_ZZ(.“lm '8“)-24‘]*&8
An Oges
n n

Equation {24) yields:

and

whnere

” n n n
Bl B Do+ B+ B s+ B Jos = G

[4

8= o (8 A D= AT A )

’
s

(25)

’

(26)



71 adi
( n ‘}‘A/’

H Bl = n+y
| o
”
; n r“:n A i Al "
' L, =- m v Ay
‘ 4, 4
{
| et . P
| " b At AZ AT As Ay n
! Dg == et n - n=s + A?
( Rj a;, 45
n n-! n
i B’t = - A.', A; - /’r:/-‘,»;’ - F‘n
L d;b-l R;‘ 9
A=)
n Az As
By = - 223
n=1i
a;
” . n n
» n A, i e on A =1
\ 45 = ?z T Z - 2 Z - d;”-‘ 7,

&,

(28)

Tne set of equations, Equation (26) will be solved by tne procedure equivalent to

soluticn by the method of Gaussian elimination used in other problems of shells

of revoiution

points z=o, 2¢ be denoied by n=o and n=N respectively, so that

@
i

I3 ==
CN 0

L 7°=_7~=0

From symmetry, we also nave

@'l - ?' 3 @N'fl == €N-l
| l- ="7:\ ; Lnm = = -

\

The first of Equation (26) i.e. n=1 is solved for 7| interms 7,

- 13-

18,197 - T .
08, ‘s The elimination technique proceeds as follows: Lei tne two

(29)

(30)

and 73



i I
B,-5

) = ——= (&' -8/ p~3"7) (s1)

This vesul? is substituted into the next equation n=2 and 71 will be found in -
terms of fj and 74_ , and so on. Finaily the last equation of Equation
7oy 2

. . . . L
(26) will determine 7“” , and then with 7“=0 , all of the 75 will

1

we caiculated in reverse order. Accordingly, we may write 7n as
7,, = R, - Pn?ﬂ-n - Q, 7nea (32)

From Equations (29) through (32), we have

[ R =%t . R=0

s,
J-' o= 5~ 8] ; Po=0 (33)

! , B/’ —
W& =35 + Q=0

Substitution of Equation (32) into Equation (26) yields the result:

Rn = .]_;: { 6"- 5-: Rn—l - BJ”(R""J- = Pz Ry >J

;.;;1 - —lé: ( 3:-3:&::-1 + B; Pr-s Baey 0 (34)
3"
L Gn =3 nma

where
D == Bj"- B,q P_' -* BS’, (Pn.l Pn-; - QH-I)

(e

This recurrance relation togetner with the initial values from Equation {33) give

- 14 -



o R and Q& . The last of Eguation (26), n=N-i,

[ [} 1 [ : H
i the R 's s ana $ U P
i TNe A Eys P". Qn - p n_zf n_z n-z

4

and symmetry condition, Equation (30), determine 7N-1 as

Tor = g (
N-1 /-&M-I

[N
(@]
o

wnere R__, and Qn—] are the extension of Equation (34) to n=N-1. With 7~
and 7~,_' known, 7., 7~_3 , =+, 7. ., 7 canbe found
irom Equation (32) ond then cli the §$ can recdily be obtained from Equation
{27). This process is readily programmed for the high speed digital computer.
The stress resultants, meridian strains and dispiacements defined in accordance

wiin Figure ] are obtained from é and ? . as follows

Ne = L (pwse—+ -z—fr-sian)

X

Ng = 57

I

+ (=7 sne+ Horocgp)

N

3

= 27 [N+ Ny = »(Ng+ N )]
(36)

= 27 [Na+ Ng, = D(Ne+Ng)]

L N
3
|

= 0(,(/-'-6%)

= r‘a e‘;m

r""
N
I

T
i

Jf X [C1+ 8,3 sing = sings ]

In the inelastic problem, the loading path is important. The time is
increased in increments in the case of creep deformation, In each step of time

. . »_ ' 10
increment, the initial values of o, P, Q,ﬂ and &, ateach
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SIGTION Gig KAOWN.  Tne 5ircueses Uy , Uy, ¢ oandine strains &, &, e
' . ’ - . - ) - . |

cei. be calcuiated from Equaiions (4), (7), (8) and (I7). The incrementai creep

e T e / o~ J 2 > ' . oo ] AT R I T

sicins 4€, and 4& inanincremenial time inierval 4 cre

w?

).

- s . . \ Sl e a . ¢
ovicined from Equations {i8) and (I9) with given function F ( ¢, €
inclastic stress resultants and sectional momenis are found from Equation (IGi. With

. -~ | Are _» 7 ’
assumea values of \5 and 7 , the cocfficients 4.3 and A s
can be calcuiated. Equation {24) can then be soived for new values of F
and ; . The procedure is repeated until the differences between the
s i b I 9k itnin desired toleran The calculati
uecessive B3 and 75 are within desired tfolerances. The caleuiation can

then be extended to the next time increment. In the following numerical example,

tne tolerance for 4 of 0.01%, was used.
Vi NUMERICAL EXAMPLES

The above procecure is first applied to the static deformation of a corrugated
[20]

tuoe similar to the one jested by Donnell . The meridian consists of circular arcs.

Trne dimensions (Figure 2) are
a =5.331in
b=0.2351in
¢ =0.670in
L t=0.065in
and £ = 30xi0° psi, L =0.3. Figure 3 shows the axial load deflection curve
for tensile and compressi ve loadings. The iinear soluiion checks very well with

- | s 2] . . .
-nat of Clark and Reissner [ ]. it is seen that the corrugated fube under tensile

axiai force is stiffer than undor compressive axial force. This was pointed out by

Famada l22‘, in the eiastic iarge deflection theory of shell of revolution.

The incremental procedure is aiso applied to a 7075-T6 aluminum alloy

-16 =
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Figure 2. Circular Arc Corrugation
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o o : . o , .
corrugtiea fude unaergoing large deformaiion av 600" F,  The geomcivie dimensions

' are same us above. The cpplied axial loud is 2124 ibs.  The uniaxial creep

charactesistics of the material are approximated by the following stress—strain-time-

slaiion:

e = ....g... r AT sk (B7)

! where
L A=5.25 %107 /hr
E 801,92 10"/l
b k= 0.66
B E=5.2x10" psi - :
E’ ' e = total strain.

C= stress in psi
T=time inhour L L
and Polsson's ratlo 7 15 0,32, The creep characteristics are asiumed tc b; the
same In tension and In comprausion. The ﬂr’sf.’f-imt-s Ih_éf@mohf wag tolf.uf.\ to be
0.0001 hr, The subseguent time increment was ihqreésea in each step at cunstant
rata. Thare were 100 fime ncraments to reach the total of 16,66 hours. The
100th time insrement was .'.5050 Hr. “The numbar of finlte difference stations along
the midsurface in half :eriod of corrugution was 49. The number of grid polnts
acioss the thickness was 13, The tolerance used In the presont caleulation was
0.01% for 7 . To obtaln this degree of accuracy, 3 cycles of iteration was
generally found to be sufficient. The computation was carried out onan IBM 360
and the computing time for this creep analysis was within one minute. Figure 4
si.ows the Increase of total axial deflection with time. The variations of the extreme

fioar stresses at two ends at differant instants are shown in Flgures 3 and 6. {
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" CCNCLUSIONS

A numerical method is snown for the creep anclysis of axisymmetric shells
subject to axisymmetric loadings with large deflections. A numerical example
of creep deformation of a corrugated tube under an axial load with finite
deflection is given. Vertical aispiacement and siress distributions of the tube
at different insrants of time after loading are shown. This method may be
extended to analyzing elastic-plastic deformation of shells of revolution with
finite deflection.

[n the numerical exampie of creep analysis, 100 fime increments were used.
The time increment increases from an initial value of 0.0001 hr. to 0.5050 hr. for
the 100th increment. The convergence of the solufion with the number of finite
difference stations along the meridian was found to be good. |t was found that the
use of 25 and 49 finite difference stations gave only 0.2% difference in total axial

derlection. The number of grids across the thickness and time increments used also

provided good convergence.
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Part B

Effect of the Secondary Slip System on Early Fatigue Damage

! SUMMARY

A face-centered-cubic polycrystal under cyclic loading is.considered.
It is snown that slip in the primary slip system causes the resolved shear stress in a
second slip system to increase to the critical value and then this second slip system
siides. Slip in this second slip system greatly increases the rate of the local plastic
strain build-up in theb primary slip system. Hence the occurrence of the second
active slip system may greatly increase rate of extrusion and intrusion commonly

observed in face-centered-cubic metals.

- 24 -



I INTRODUCTION

Fatigue faiiure is characterized by fracture under repeated stress far
beiow the static fracture sirength and usually occurs by the processes of crack
nuclécﬁon, propagation and final rupture. Even though regions near the nucleus
of the crack and along its path of propagation may be highly distorted, material
away from these regions may not show any significant macroscopic plastic deforma-
tion. ln asingle crysial, the fatigue crack often lies along a slip plane. Ewing
and Humphrey [23], studied the formation of cracks by the microscopic observations
of the surface appearance of specimens. Their tesis on Swedish iron revealed that
very few slip lines were produced by the first few thousand cycles but as the test
progressed, more slip lines formed. These slip lines are the intersections of sliding
olanes with the free surface. As stressing continues, bands of slip are produced
and intensified. Slip lines in fatigue specimens were found to be spaced not as
evenly as those in unidirectional loading. Fatigue cracks eventually are formed
in these intense slip bands.

The first quantitative physical theory of fatigue crack nucleation based
or the microsiress field caused by slip was proposed by Lin and lto 24, 25].
The theory was applied to study the influence of sirain-hardening, grain size and
mean stress on early fatigue damage [26’27]. The results show
that the increase of the strain-hardening rate and/or the decrease of the grain
size decreases the rate of early fatigue damage, and the effect of mean stress on
the number of cycles to failure was found to lie between the values predicted by
Gerper's parabola and by the modified Goodman's line.

The Lin-lto theory was in part based on the experimentally observed

formation of slip bands and is briefly reviewed here for reference. The slip lines

formed in forward loading and those formed in reverse loading are very closely

- 25 -



$2UCEd DUt disiineT from ¢ach ofer and occur in e same siip vand, Positive siip
occurs in one siip iine in forward loading and negative slip occurs in a nearby siip
n reverse ioading. Since latiice imperfections exist in all metals, initial

nelerogeneous microsiress fields exist in ail metals. The initial siress field favor-

abie fo this iype of slip formation is clearly one producing resolved shear stresses

iwo thin slices in a most-favorabiy~-oriented crysiai located at ine free surface
nave an initial resolved shear siress field which is positive inslice P and negative
insiice Q . Under tensiie loading, the positive critical shear siress is atiained
and nence siip occurs in P . Since the residual siress field caused by slip is con=
tfinvous, slipin P reiieves the positive resolved snear siress not only in P but
alsoin Q . This helps to keep Q from reaching ine positive critical shear siress
in tensile loading, and aiso increases the riegative resolved shear siress that causes
Q to siide more easily in reverse léading. Wrea the negaiive resolved shear
iress in Q reaches the crifical shear stress in reverse ioacding, slip occurs in Q
und a new residual stress field is produced. Tae new stress field increas s the
ositive resolved shear sivess not only in Q buialsoin P . This increase of

205 iive resolved shear siress in P causes P to siide more easily in the next

ersiie loading.  This process is repeated for every cycle and builds up the local
piasiic strain at these two thinslices, P and Q . The plastic strainin P and
& vends to push out the region beiwcen them and starts an extrusion. If the signs
of initial stress in P and Q are changed, an intrusion instead of extrusion will
oc rnisiated.  Tnus, the continuity of the relief of siress provides a natural gating
mechar m for the monotonic build-up of local plastic strain and no special gating

mecharismm, such as @ specific movement of the Lomer~Cottrell barrier, as proposed

. 28] .
oy Kennedy is necessary.
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" Figure 7. Linelto Fatigue Model
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in Linand .io's caicuiaiion, ii was Gssumed thar oniy the most-favorably-
orienied siip system wouid be activated. This system is referred fo as the primary
siip sysiem. For face-centered-cudic (fec) metals sucn as aiuminum and its alioys,
each crysiai nos four siip pianes wita tnree siip cirections on each plane and hence
rhere ace swelve siip sysiems. During the process of exirusion, the material is
eiongated aiong the direction of the extrusion and hence a tensile siress is developed
in the region beiween P and Q. Similarly, a compressive stress is developed
ciong the direction of an inirusion. This stress will cause other slip systems to
siide. Tne purpose of the present study is to evaluate the slip in these secondary
siip systems during the early stages of fatigue.
iid RESOLVED SHEAR STRESS FIELD CAUSED BY SLIP

Among the different mechanisms of plastic deformation in metals,
crystaliographic siip has been shown to be the principal process of plastic deforma-

(291

tion in face~centered-cubic mefals at low and intermediate temperatures . From

single~crystal tests, it has been shown 130, 31] that slip depends on the resolved shear
siress and is independent of the normal stress on the slip plane. The resolved shear
sivess necessary to initiate or to cause further slip is generally known as the critical
shear siress.  Those slip systems in the crystal with highest resolved shear stress

are called the most-favorabiy-oriented s!ip systems and are the first to reach the
critical shear stress. When the critical shear stress is reached in some region in the
most-{avorabiy-oriented crystal in the body, slip occurs and causes plastic strain.
Should the load be removed after sliding in the region, the slip would remain and
cause a residual stress field. If the load is applied again, assuming no further slip

during this reloading, the residual stress plus the applied aggregate stress, gives

the resultant stress field in the body. To find the residual stress due to localized

- 28 -



siip, the analogy petween the piastic sirain gradient and @ body force in causing
siresses in an elastic medium first shown by Reissner 122] and developed by
Eshe[bylaa] “and Lin{12] i used. Referring to a sef of rectangular axes, let
the plastic sirain tensor due to slip be denoted by éig . The sirain distribution
in a body with plastic strain under external load is the same as that in a purely

elastic body with ine additionc! equivalent body force and surface traction:

"

—. =8 e e.. -
F AR
2 M
TS 2RE Y
where K is the shear modulus, ¥, is the component of the unit surface normal ¥
on x. axis, and subscript after a comma denotes differentiation with respect to

a coordinate variable. The residual stress field of the actual body will be given

as:

whnere z'}s is the stress field caused by lEi and %‘ .
The aggregate considered is of fine grain; grain size being small com-
pored with the total volume of the aggregate. On Figure 7, Xjs Xo cnd Xz are @
set of orthogonal cartesian coordinates, where the x4 axis is parailel to the width
of slices P and Q, and %, axis is normal to the free surface. Since the two
siices P and Q are perallel and the thickness of each slice is much less than
its width, the deformation state can be considered under plane strain. By using
Airy's stress function, the stress distribution caused by a point force in a semi-

infinite plate for plane stress has been givan by Melan {‘34]. Melan's solution

was modified for plane sirain by Tung and Lin 133], This stress function is used

in e calculation of slip strains and stresses in polycrystalline aggregates near the

- 29 -
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k o t .
free suriacc. Let 'C", {£,X) oe the stress at X (X, %) due to g unit
d o

force acting at X=(% .%;) along the direction of X axis, and

CPK“.;&" ) be the corresponding stress function; we have:

2

Kk - 2P
2%
T, (%, %)= ax.
Z;,Ut x)=-._i_‘2& Koo i,2 (3)
i z- 4 R - “Pk
\ i %Xy = oK, 3Ky
where the siress functions are given as
X,
CP (x,X3 = =(prg3(X,= % 3(8,+ 8,5+ ztx ~%,)log -5+ + zpﬁ’i—"‘—'ﬂ"—’-
l
(4)
L ¢1(X,§) nd (P"‘%) (X~ Z)(@,* 8,)+ -%—(X,-;;) log X PX'_XQ_(&_XL)
Xz, X,
and
: S S—
f P=Txen
r 9= pLi=20)
-1 X=X .
J O, = tan == “TEE KT (5)
= = x -Xg -E > E
| G S5 T S0, <7
] X, = (X,-f,)a-,-()(.-)-(.; )i
L X, = (%~ X, S (Xa= Xy Py
I+ should be pointed out that Equations (3) and (4) are valid only when X% X .
Consider @ point x ina crystal that has slid. Let §<m> be normal
to ine slip plane and ? (m) be in the sliding direction of the m'" active slip
system at the source point x, and e'(x, m) be the plastic shear strain caused
by inis siip. This plastic strain, referring to x~=coordinates, is then
]
(6)

e" (X> == I, e"(f,m)
JJ ‘3
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whaere
= Gm3Qm) o+ Fam> 7, “)

ia whicn ?.(m) and 7 (m) denoie the components of unit vecters aiong
] []

; (m) and 7(m) directions, respectively. It is shown in the appendix that

f “ -— ”i‘ - ap - .1 - -
J\ Z;J.(X,x.i %?.‘i—ﬂ)dxl 4%, converges uniformly in ine slid region S, hence by
{

Squations (1) and {6), the siress af field point x caused by a given plastic

sivain distriaution e"(x,m) in the slid region S is given as

balxm)
. = (x, X0 LS80 I di. 8
T'Js(” - 2K m“j'zj X, X ST, X, dk, (8)
S

Tnis integrai, and hence 'C‘-} in the above equation exisis and represents a
s

continuous function on S. In equation (8), the repetition of slip system m
cenofes summaiion over all sliding slip systems af point x while tne subseripis
< and ] range from 1 to 2. The above discussion holds also when the slid
region S s 6 mulii-connacted region where the siip strain is continuous inside

each simply-connected subregion.

Slip in any region depends on iis resoived shear stress. The resolved

: , . th . . .
sheur stress in fhe n o slip sysiem at a fieid point x, caused by slip throughout

ine siid region S, is obtained by transforming the stress 7:.‘ <Xy given by

.

Zguation (8) from ihe (XI’ X )ccoromafes to the \§ ?) coordinates, where

-; (r) is rormal to the slip plane and 7 (n) is along the slip direction of the
oL
o supsystemat x:

Zs (X, n) = "';:'n;d Z;}‘(X) (9)
ia wnich s is defined by Equation (7). The substitution of Equation (8) into
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Zquanon (9) yieids

be X,m) - (IO)

Cyix,no==pum, jf Z}J (X, X0 ax;dx,

h

Leiring 4\¢"2 (X, 5 X, m) --(- . imkﬂ Z"ii (X, %> . tne above equaiion may be
‘ .

wriiten in the following form,

Y, =
Z, (x, ny = -2/4.IA/ (x,n, X,m) e.(" A%, dX, (in)
X

Ii is shown in the appendix that the integral in Equation (A=3) over the
gion S (x) tends to zero as the radius £ of S.(x) appi roaches zero. Hence,

Ecuciion (11) can be written as:

- _ = 2EUTmy = £+ :
$-%
as & — 0

Sirce the integrand in the above equation is regular in the integration domain
S-S, tne area integral can be infegrated by paris and particlly transformed into
a iine integral by means of Green's lemma:
Tyix,n) =~ 24 - [Ny, Emd @z msdi, = Ny(xn, &m) &t x,mydx, ]
S LN B+ T en o] SEm i, 09
¢
+ O¢ef™ as &-—~o0
where [T and 7+ taking counterclockwise as positive, denote surfaces bounding the
regions S and S, respectively. The slip strain in each region of a given slip
orientation is taken to be continuous inside and drops to zero at the boundary. The
iinc inregral in Equation (13) clong |7 vanisnes. For numerical calculation, the
siid region is divided into thin paralielogram regions unless it is otherwise specified.
7o simplify calculations, plastic strain in each grid is assumed to be constant, Let

S. denota' the regionof ¥ th grid, T, the plane surface bounding the grid and
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S be thae grid conitaining S. . Then Eauation (1 3) becomes
[v) 3 E [}

-

" o - - - -
Tix,no = 2K & (x,,m)é N, Tm) 4R, = N (X, 7, T, m)dR ]
&
’ =) = > — e e e
"l')-[’(@ (Xr,fﬂ).g_ {;i‘.'\‘l(xonl X,MJ-*;-)—;;NL(x,nJ xlm)jdxldx)
r
‘
+ 0 as £ —~ 0

. U r » L . - th -
ir. the above, g"(x m) represents the plasiic sirain due toslip in the m™" slip
4

system of the grid §r , whete
Sp= S, = § Hx %>

in wnich the two~dimensiona! step unit funciion H (x, xo) is defined as
e H (x, xo) = ), if x ¢ S,

The repetition of r and m denoies summation over all grids S, and all sliding

siid vysiems ab grid centroid x.. Since the area integrals over the regions S, in
Equation (14) are proper, Green's lemma can be applied to reduce area integrals
b, q. T ) ° &.
o line integrals. The resulting equation becomes
(4 - - -— ....
Cseany = 2pey ’\r-m)é TN (xn R, ms dX, = N, (60, 5m)d%,
T
i+ is clearly seen that ine above integral represents the resolved shear stress at x
Al .
inthe n'" slip system due fo consiant unit plastic strain caused by slip in the
th . . .

w slip system in the region See

If more than one siip system slides ab field point x, the plastic

resoived snear sirain at x in the n‘.h slip system due to slip in different slip

systerns at tho same point x is given as:

" ”
e, (X n)= ‘;i"'i;’"u e (x,m)

- 35 -
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Tho rusiduar resoived snear siress causad Dy piastic sirain in fhe siid region S is
neh.
”
CRéxnd == Tex,n> = 2RE(X,)

Tao sudstitution of Equaiions (16) and (17) into the ubove equation yieids:

ae U
Tatx,n) = = 24 eltx,my Gex,n, X, m )
wnere
Gxn; %, m) = -21- n;; m;; Hix, x, ) -55 [N,(x,n;x,,m)d?,-.\l,(;\',n,. X, m)dX, ]
YN

Tae function G(x, n X ) is cailed the siress infiuence coefficieni of the
!,
. . th . .
residual resolved shear siress at x inthe n slip system due fo a constanf unit
sasiic sirain disivibuiion in the subparallelogram Sr with centroid af X s caused

th . .
siip system.

oy siip in the m
ine polycrystai is subjecied to an aliernaie tension and compression
woading along the xz-axis as shown in Figure 7. Since ine maximum shear
oy H f ‘ ; 450 el &l . at 2 e ' . .
siress occurs in a plane af with the direction of loacing, the primary slip
direciion and tne rormal to the primary slip piane, referred to as the first slip

. . . . . o .
system of tne most favorably oriented crystal at the free surface are at 45~ with

ine Xy -axis:

p ’ I !
{ ¢y = T, w5, o)
Vo= (m.7%.,0)

it has been pointed our that uader cyclic loacing, two distinct closely=spaced

ide. One siice slides curi~g tihz forwerd loading, the neighboring slice
niGls Guniag the reversed ioading. The bulld-up of large local plastic shear strain
v ine primary siip sysiem in these two thin slices, as shown by Lin and ito (24, 25],

cunas to start an exirusion or an intrusion in ino region between these slices. Con-

- 34-

—~
-3
(R}

~ -

(19)

(20)



sequeniiy, an apprecidole direct siress, tension for exirusion and compression for
vhirusion, will oceur in fais region between these slices aiong ine primary slip
aircciion 7\'1) This'direcf sivess gives maximum shear siress along X, direction
! :
on the %o plane, or along Xy cirection on the %] plane. A f.c.c. crystal nas
weive siip systems. Tnis direct sivess causes differant resoived shear stresses in
tne different slip systems. Tne one witn the highest resolved shear siress caused oy
inis airact stress is referred to as the secondary siip system, which should have the
»iip direciion and the normai fo ihe slip picne close o x; and x, axes. To simplify
the numerical calculation, iais secondary slip system is assumed to have the slip
cirection and ine normai to the siip plane along x; and X, axes, i.e.,
$ar = ( o, |, 0D

W 7= i,0,0)
“ne grids are taken to be rectangles for the secondery slip sysiem in the X1 =Xo
aiane, s shown in Figure 8.

To find the stress influence coefficient G(x, n; X s m), the surface
integral in Equation (16) has to be evalucted. The detaii integration of the inte=
goai s given by Lin .{36] . The resuifing expressions are given as foilows:

r é()\,l X,,I)G-KCXIX: X,+-- X""'-"’—)'!'K(X; X; X,+ PRIRS ;"‘)
v Z XK Xy R K e By = B X N XD, Ky -2 0

/ 4 :
<] (XI2" x{‘ l) = -K}_\,x',X‘} X,"l'-‘é ’ K;,-v-%#-g)-# .K;(X,l XJJ X"'f"?', X,"r%-—:-)

\ b [}
'f'zz (xux;,}. X|’ Y 'XJ, +TJ “--Z; (K,,X; I\’q,"?'x‘,-%-'g') (2])
, ’ ’ @
Gx 1, Xpy2 )= = Kj (X, %, )"r"'gz‘(' Xop~+ '§'> + B, (X, %, X'r"%‘ Xy =50

\ g 3
-+ Kj (x‘ox‘J x'r-.z'- XJ’*?) - Kj (x]'XJI. X.’-% 'XAY-§.>

[

é](X, e‘. X,‘ 2)“ —K,,(K,, X;) X,’*Qs,’ x;’*%)'i'n.rtx, x‘ ’ ,x"-g)

-f-&(x, )(.; )(,,-Eﬁ K),*E) K.;‘xl.x& x‘y X,’ €‘>
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L S E ] 4
) = - ~ w W WUTW)  Uruu- V- I U=V S
roBx,x, %50 = ?[- SO X L MG o Y L e ) g

29 .x[ le. X&‘
- L] 2 W) s =3V - (vrw) U=V D
(X, X X . X)= = — -
K: .M, % ) P[ 1_105 2'; -+ P + le X: J
| (22)
] 3 3 a 2 2 a
- - U Urewy 2y U=V
! K3 (X(‘XJ) X,,X;)" P[ X; X, r X:_ J
L : N SN SV i1
B, ¢xox, 8,5 = 2pw -5 + 5 - x5
in which
r U= X- )?l
V = X,+X,
2 w = Xg"-x-; <23)

>
X, = U w

&
\ X, = v w

and, @, o, X and {3 are tne width and thickness of the primary grid and second-
ary grid, respectively,
When ihe thickness of grids is much smaller than its width, i.e., b<& q,

it can be snown that

. b
6()(" I.i yfa 2 == Zb [ Ep(xhx&J xl/*'zq-o xi,"'?) "-2; (xh Xg‘. X,""a'ﬁ‘X"—-f—)J (24)

wnera
K (%, %, %, % ) (25)
2 . : 2 3 2, a
= F [-9—5 +~Lum'v)-r 2V L SUVFU W 2U0v W/ =YW =SV 4v(u.-u)(w-w)]
z, -?l‘ za. K," X:

Tris clearly shows tha linear dependency of the reliel of resolved shear stress on

e olastic strain and the grid thickness "b", Tne same result has been pointed out
37]

by Linana lto However, the present expression of stress influence co-
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cificicat is in @ much simpler form than thai previously given by them.
Y LOCAL PLASTIC STRAIN BUILD~UP UNDER CYCLIC LOADING

The maximum local plastic strain ouild-up at the free surface is used as
ihe criterion for estimating carly fatigue domage. To determine quantitatively this
piastic sirain ouild=up for the fatigue nucleation mechanism, the following proce-
dure is used.

Consider a polycrystalline metal with initial resolved shear stress Ty .

. Before slip occurs, the applied

This metal is subjected to an clternate stress Z;}
[
th

resoived shear siress Z;‘ is uniform. The resolved shear stress at x inthe n

siip system due to the applied cyclic stress is

X n) =+ n,; z;, = Lix,n) T (26)

where L (x, n)is the Schmid factor which gives the ratio of the resolved shear
stress in a particular slip system to the applied load <, .

Under the initial forward loading, the resolved shear stress is TavZ;
Whnean the critical shear stress is reached, plastic sirain occurs and produces residual
resolved shear stress as given by Equation (19). The total resolved shear stress in the

]

n'" slip system at x is the sum of the applied, initial and residual resolved shear stresses:

Zxny= Lixn) T + TlXni~ 2/46(::,:7‘. Xe, ) € (Xp,m) (27)

The repetition of m and r denotes summation over all sliding slip systems in all
siic regions. The initial stress field does not change with loading, so that
LR R,n) . . . .
- =0. The incremental rate of resolved shear siress with respect to
L4

Gpplied loud T, is

de'tx,m (28)

dCex,n) '
= Ltx,n) = a/céfx,nJ Xr, 1) ——

dd.




Those grids in which the magnitude of the rsoived shear stress is less

than the critical shear stress T, are referred to as non-active slip grids. If R,

is one of these slip grids,

| TXp,n> | < & a€'(xg,n)=0 (29)

where %, is the centroid of the grid Rp. In the region currently sliding, the
magnitude of the resolved shear stress equals the critical shear stress. Let Rg be

one of the grids in the sliding region with centroid at x .. It follows
| T,no | = T, lae‘x,nr|>o0 (30)

where n denotes the sliding slip system at X,
The macroscopfc plastic strain of the crystal represents the average
vaive in the erystal L 2]. Since the slip is highly concentrated in the thin

(24, 25]

slices, the macroscopic plastic strain is much less than the local plastic strain .
The rate of strain~hardening in terms of the locai plastic
strain is hence much less than that in terms of macroscopic strain. To simplify the

caiculations, this local strain-nardening is neglected. Then Equation (28) gives

de'te.m
Z}‘ G (Xs,n; X, M) = Ll = L(X,,m) (1)
-4

where x, and x_denote the centroids of sliding regions. This is a set of linear
de txe,m)

4%

eguations with as many non-zero unknowns as there are

eguaiions. The plastic strain increment ae" (xr,m) in the sliding grids for an

increment of applied stress AT, can readily be determined from the value of

_____:[i!x,,m; . Substitution of -—-—-Zez(x"m into Equation (28) yields the rate of

criange of the resolved shear siress at all points. From the known values of  Z(x,n)

at rhe non-active points and the corresponding values of -j—?fﬁ’ , the increments
o
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in €, required for each noa~aciive poini to initiaie siip can be caleuwiatea and

compared. Ine minimum of these required increments in T, is applied, resulfing

ia one additional active point for the next load interval, During reversed ioading,
ine incremental aggregate siress in reverse loading required for a new slip region
;o siide can similarly be found.

It shouid ke noted that the incremental calculation of slip strains and

]
resses under quasi-static cyciic loading outiined in the foregoing is rigorous with=

gl
in the framewoik of ihe discretized foimulation. 1t is also valid for piecewise
iinear strain=nardzsning.

“he exirusion thickness has been observed to be about 0.1 mx (micron)

/

) o I HEK N AR [38] . e ) 1 o .
oy Forsytn and Stuboington , so that the distance between the two slices is
taxen to oe 0.1 rife The thickness of the slices P and Q in Figure 8 is very
small and is assumed to be 0,01 mp The initial stress field in the primary slip

sysiem ot the free surface is assumed o be zero everywhere except in the two

neighboring siices P and Q, in which the initial siress varies linearly with the

+

depin of tha siice, i.e.,

2 X, .
S - inP
Gex1) = ( ~5 =) inQ
o elsewhera

waere the linear dimension, d, of the sliding crystal is taken to be 25 m/( .
To reduce the lengthly computer caleulation, the secondary slip is allowed to
siiae only in the region between two slices P and Q, and up to a distance

0 iR from the free surfoce. 200 grids within this 10 MM distance were taken
ior inis sezondary siip calculation. The sliding of the secondary slip system in
ine inicrior region between P and Q, and beyond 10 M4 from the free sur=

face i5 ioken to have little effect on the plastic strain build-up near the free
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suitace, Tne relief of the resclved shear stress due to piasiic sircin in the sild giid

assumed to be given by that at the centroid of the grid. The build-up of lecal

-
(78

piastic strain in the primary and secondary slip systems is calculated for an applied
cirernating stress of 100 psi aiong X ~direction. The critical shear siress
is taken to oe 53.5 psi, the shear modu!us/u tove 3.85 x '1‘06 psi and the
elastic Poisson's ratio G~ to be 0.3. These values corvespond. approximately to
those for pure aluminum {39].

Tre calculated resolved shear stress distributions under forward loading
at ine 35th cycie with and without considering the secondary slip are shown re-
spaciiveiy in Figures 9 and 10. 1t is interesting to note that, during fatigue loadings,
ihe difference in the residual resolved shear stresses in the slices P and Q near
the iree surface is about corstant for the case with only orimary slip system sliding,
waile tne diiference is steadily increased with both primary and s:condary slip
systerss joinily sliding,

The calculated local plastic sirain in the primary slip system in the
siice P comsidering sliding in the secondary slip system at various cycles of loading
is shown in Figure 11. The local plastic sirain reaches cpproximately 3% at the
iree suriace giid in about 36 cycles. The local plastic strain build-up at the

irnierior end of the thin slice is much slower (only cbout 1/3) than that at the

-y

ol L] - ] . . ]
ree suriace as predicted by Lin and lio (40 . . Hence, in general, fotigue cracks
occur at the free surface before any interior crack has a chance to initiate.

The increase of maximum local plestic strain in the primary slip system

rec susface with and without the sliding of the secondary slip system are

-~ 4
LTI T

(o]
-1y
“w

MY

howin in Figure 12, The buila=~up of the plastic strain in the primary slip system

wiin ihe secondary slip sliding is much faster than that with only primary slip

- 4] -



FREE SURFACE

-~
A Y

P,

-—

NUMBER'S DENOTE STRESS IN'PSI’

L.
;—-Xl
25 my

Sigure 9. Resolved Shear Stress in thc Primary Slip System
Under Forward Loading of 35th Cycle without Secondary Slip
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Figure10. Resolved Shear Stress in the Primary Slip System
Under Forward Loading of 35th Cycie with Secondary Slip
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system siiding. The bullid=up in the latter casc is approximately linear with ine
nURLT Of Cycies,
\Y CONCLUSION

The resolved sncar siress field caused by a uniform distribution of
piastic shear strain in one grid in a semi~infinite medium was obiained in closed
form. T1nis solution in closed form was used to caicuicie the build-up of local
plastic sirain at the free surface, The local sirain-hardening in the siid region is
assuined to be zero. The activation of the second slip system is allowed during the
fatigue cycling. Calculated rasults show that siiding of the primary slip sysiem
increases ine residual resolved shear stress in the secondary siip system monotonically
at @ relatively rapid rate ana helps the secondary slip sysitem to slide at the early
siate of fatigue cycling. The slip in the secondary slip system also affect greatly
the rate of the locai piastic strain build=up in the primary slip system. Tae build-
up of iocal plastic sirain is used as the criterion for estimating early fatigue damage.
rence, the sliding of the secondary siip system increases greaily the rate of fatigue
camage. In those regions where two slip systems are active, ihe total plastic
sivain is the tensor sum of the slip of the two systems. The amcunis of slip in these
iwo systems vary from point to point. The plane of maximum plastic snear strain
cuuscd 0y slip in these two systems varies from point to point. If seems thai the
variation of the orientation of this plane may cause the waviness of slip lines
owserved on specimen 41, 42].

The slip distribution caiculated by the present aralysis satisfy the
coraiiions of compatibility and equilibrium, as well as the dependency of slip on

vhe resoived shear siress throughout the matal for all stages of alternating load.
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Part C

Preiiminary Evaluation of Plasiia Spray
Metal Coatings as ¢ Means for Prolonging Fatigue Life

The nucleation of a fatigue crack generally occurs at the free surface
dua to the large bulld=up of local plastic strain resuiting frem slip at the free surface.
It was experimentally shown that successive alactropolishing the surfaca of a specimen
undergoing fatigue testing will considerably increase the fatigue life, Honce, it
appears that the fatigus |ife of a specimen can be extended if Its surface fatigue
properties are Improved.

One method tHat may accomplish this is to give the specimen surfa:e @
coating which has a higher fatigue life than the specimen itself, This coating must

form a strong molecular bond with the specimen. [t was thought that some plasma

_spray ceatings rﬁlght sdthfy these requir-emen.fs. A brief literature survey was made

on he effect of plasma spray coating on fatigue life of base material, The results
of this survey are briefly summarized as follows.,

Plasmea spray eoatings of Nickel~Aluminide and Carblde typas were found
to adversely affect the fatigue proparties of alumlinum alloy 2024~T4 and ultra~high

1 [43]. The plasma spray process or preparation procedure

sirangth steal, AlS! type H«
nas l1ttle effect on the high cycle endurance Iimlt of aluminum alloy 2024-T4, This
agrees with previous work done by Whittaker {44], Remmel ts [45], and Wolff [46].
However, there Iy some low cycla fatigue life reduction. The high cycle endurance
limit of high strength H=11 stesl heat=treated to 280 ksi tensile strangth was found

to reduce by 15 to 25 percent by the application of plasma sprayed Nickel=Aluminide
ond/or Carblde coatings, with corresponding reduction in low cycle fatigue life.

The same results were found In the plasma coated titanium 6AL=4V and AlS| 9310
staal [47].
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The above plasma spray coalings do not iave beneficial effects on fatigue.

-

Fowever, the fatigue lives of the coating materials under eyelic strain are not
known. The reduction of fatigue life of the base marerial due to the coating may
. ba caused by the low fatigue life of the enating. 'From-CoffiniAAc;on'l law of -.
fatigue, under low cycle faﬂgue loadings, ductile materials nove 'l'on.lger fatigue
lifa mder comtaﬁf'cyclic sfrairlx than the less ductlle ones. A éoéﬂné»bf duc'ﬂlé
.mcterlal well bonded 1o a less ductile base should increase the faﬂguu Ilfa of tho

“base mqfor'al. However, such a metallurgleal process giving parfcct bandl ng OF

s Lty el o e g
300 =T | e o e k1 el L Ak ot L

rh:s coating to such o base material has not been found in the htararuu., For thc', : N

o Imp’ovemant of Faﬂguo properﬂes such ¢ process needs to be- dcvmopod.
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APPENDIX

Let the plastie strain gradient In slid region § be written amn

3‘-%'-5-’-‘-&“-’ O3y for x€S @ xee® (A1)

" whaere ? Is & real number, For f--l ¢"(x, m) would give ¢ logarithmie

| nlingularlty éind becomes Inflnlte @8 x approaches- X, Consider plastlc straln as
- caused by the: displacomont of dlslocaﬂom. Lot the lattice spacing be denoted
"‘.by "A" which Is a finite dmuncc. The chongo of plwtc straln across "A" ls

always finite, Hence —'b-%‘i‘—m ls bounded and e In Equation (A-I) ls greater

than zete, Tho strass Grnn s function Zo) (x,X) at x due to a unit force acﬂng

cat . along x, direction has been shown to be related to the siress funation

| _(Equation 3), It Is ecully §hq{yod through the _cxf:ro:ulops for the stress-function

that , , .
Tl T mO (1xea) for X6S o xwR  (A2)

Lat Sa(x) be o sphere on (x], "2) plone, centared at x with radlus & . |t can
be shown from Equations (A=1) and (A=2) that for x e 5, (x)

f 'C‘)(X.Z) -aTe‘z"-"/di AR, - 0(8 "y 0 o E-=0 (Ae3)
S m kK im /2

This Integral upproaches zero for ?>'I. Slnce P20, thh integral vanishes as

Z==0 . Even though the strass Green's function ?-'q x, %) 1s singular at

x = x, the integrel _£ 'z.',‘ %) “ ”’J){dz converges uniformly in the

slid reglon S,
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