AD-760 130

THE ABSORPTION BY H20 BETWEEN 1630 AND 2245/cm (6.13 - 4.44 MICROMETER)

Darrell E. Burch, et al

Philco-Ford Corporation

Prepared for:

Air Force Cambridge Research Laboratories Defense Advanced Research Projects Agency

January 1973

DISTRIBUTED BY:

5285 Port Royal Road, Springfield Va. 22151

AFCRL-TR-73-0092

U- 5090

THE ABSORPTION BY H₂O BETWEEN 1630 AND 2245 cm⁻¹ (6.13 - 4.44 μm)

by

Darrell E. Burch David A. Gryvnak John D. Pembrook

Philco-Ford Corporation Aeronutronic Division Ford Road Newport Beach, California 92663

Contract No. F19628-73-C-0011 Project No. 8692

Semi-Annual Technical Report No. 1

January 1973

Contract Monitor: Robert A. McClatchey Optical Physics Laboratory

Approved for public release; distribution unlimited

Sponsored by Defense Advanced Research Projects Agency ARPA Order No. 1366 Monitored by AIR FORCE CAMBRIDGE RESEARCH LABORATORIES AIR FORCE SYSTEMS COMMAND UNITED STATES AIR FORCE BEDFORD, MASSACHUSETTS 01730

> Reproduced by NATIONAL TECHNICAL INFORMATION SERVICE U S Department of Commerce Springfield VA 22151

AD 760130

	23503 TENTENNANDER TENTENNA	fetfiat.	8224	75
ET DE DE D	ET ET ET.ET.ET.ET.EXEMPLET.ET.E.ES	101728	240.1	2
ET LITETTERANNELITETT COLES	ET COLESCIENT COLES		1	1. 1. 13
		 	í	Call Control of
		TY CO	. GUT	11.1
Δ				6 I

1

ARPA Order No. 1366 Program Code No. 2E50 Contractor: Philco-Ford Corporation Effective Date of Contract: 15 March 1973 Contract No. F19628-73-C-0011

Principal Investigator and Phone No. Dr. Darrell E. Burch/714 640-1500

AFCRL Project Scientist and Phone No. Dr. Robert A. McClatchey/617 861-3224

Qualified requestors may obtain additional copies from the Defense Documentation Center. All others should apply to the National Technical Information Service.

the start with a start attract of fifte, that a start i and the	NTROL DATA - R & D is annotation must be entered when the overall reput is classified.
Philco-Ford Corporation	28. REPORT SECURITY CLASSIFICATION
Aeronutronic Division	Unclassified
Newport Beach, California 92663	20. GROUP
NEPONT TITLE	
THE ABSORPTION BY H ₂ O BETWEEN 1630 AND 2	245 cm ⁻¹ (6.13 - 4.44 μ m)
Scientific. Interim.	
Darrell E. Burch	
David A. Gryvnak	
John D. Pembrook	
REPORT DATE	74. TOTAL NO OF PAGES 10 ND OF REES
January 1973	28 15
F19628-73-C-0011 ARPA Order No. 1366	98. ORIGINATOR'S REPORT NUMBER(S)
	U- 5090
^b Project, Task, Work Unit Nos. 8692 n/a n/a	Semi-Annual Technical Report No. 1
8692 n/a n/a DoD Element 62301D	9b. OTHER REPORT NO(5) (Any other numbers that may be excepted
	mis report)
DoD Subelement n/a	AFCRL-TR-73-0092
DISTRIBUTION STATEMENT	
A - Approved for public release; distribu	ition unlimited.
This research was sponsored by the Defens Advanced Research Projects Agency.	se A: Force Cambridge Research Laboratories L. G. Hanscom Field (OP) Bedford, Massachusetts 01730
wide range or pressures with temperature	the have been obtained for samples covering
arameters indicates that the extreme wing	more than 1 cm ⁻¹ from the point of absorp- culated values based on published line is of H ₂ O lines absorb more than Lorentz- f-width. The continuum absorption decreases
ine absorption results from lines centered ion. Comparison of the results with calc arameters indicates that the extreme wing haped lines of the same intensity and hal ith increasing temperature at a faster ra ine shapes.	more than 1 cm ⁻¹ from the point of absorp- culated values based on published line is of H ₂ O lines absorb more than Lorentz- f-width. The continuum absorption decreases
ion. Comparison of the results with calc arameters indicates that the extreme wing haped lines of the same intensity and hal ith increasing temperature at a faster ra	more than 1 cm ⁻¹ from the point of absorp- culated values based on published line is of H ₂ O lines absorb more than Lorentz- f-width. The continuum absorption decreases

KEY CORDS	LIN				LIN	
	ROLE		ROLE		NOLE	
H ₂ O						
Atmospheric Transmission						
Absorption						
Continuum Absorption						
					1	
		9	6	·		
		1				
ja			LASSIFI			
/ ~~		Security	Classifi	cation		

AFCRL-TR-73-0092

U-5090

THE ABSORPTION BY 11_0 BETWEEN 1630 AND 2245 cm⁻¹ (6.13 - 4.44 µm)

by

Darrell E. Burch David A. Gryvnak John D. Pembrook

Philco-Ford Corporation Aeronutronic Division Ford Road Newport Beach, California 92663

Contract No. F19628-73-C-0011 Project No. 8692

Semi-Annual Technical Report No. 1

January 1973

Contract Monitor: Robert A. McClatchey Optical Physics Laboratory

Approved for public release; distribution unlimited

Sponsored by Defense Advanced Research Projects Agency ARPA Order No. 1366 Monitored by AIR FORCE CAMBRIDGE RESEARCH LABORATORIES AIR FORCE SYSTEMS COMMAND UNITED STATES AIR FORCE BEDFORD, MASSACHUSETTS 01730

TABLE OF CONTENTS

Section		Page
1	INTRODUCTION	I - i
	Background	I-I 1-2
2	SPECTRAL TRANSMITTANCE FROM 1860 TO 2230 cm ⁻¹	2-1
	Fig. 2-1, Spectral curves of transmittance from 1860 to 1953 cm ⁻¹ for 2 pure samples of H ₂ O	2-2
	Fig. 2-2, Spectral curves of transmittance from 1953 to 2049 cm ⁻¹ for 2 pure H ₂ O samples Fig. 2-3, Spectral curves of transmittance from 2049 to 2143 cm ⁻¹ for 2 pure H ₂ O samples	2-3
	2049 to 2143 cm ⁻¹ for 2 pure H_2O samples Fig. 2-4. Spectral curves of transmittance from	2-4
	Fig. 2-4, Spectral curves of transmittance from 2143 to 2243 cm ⁻¹ for 2 pure H ₂ O samples Fig. 2-5, Spectral curves of transmittance from	2 - 5
	Fig. 2-5, Spectral curves of transmittance from 1840 to 1900 cm ⁻¹ for 3 pure H ₂ O samples Fig. 2-6, Spectral curve of transmittance from	2-6
	1900 to 1963 for 3 pure samples of H ₂ O Fig. 2-7. Spectral curve of transmittance from	2-7
	1963 to 2015 cm^{-1} for 3 pure H ₂ O samples.	2- 8
	Fig. 2-8, Spectral curves of transmittance from 2015 to 2080 cm ⁻¹ for 3 pure H ₂ O samples Fig. 2-9, Spectral curve of transmittance between	2-9
	2055 and 2230 cm ⁻¹	2 -1 0
	Table 2-1, Integrated Absorptance for Pure H ₂ O	2-11

iii

Preceding page blank

TABLE OF CONTENTS (Cont.)

Section		Page
3	CONTINUUM ABSORPTION	3-1
	Fig. 3-1, Plots of (-1/u) for T vs p at 1978.6 cm ⁻¹ for H ₂ O at 352 K and 428 K	3-3
	Table 3-1, Self-Broadening and N ₂ -Broadening Coefficients for Different Temperatures	3-4
	Influence of Nitrogen-Broadening on the Continuum	3-5
	Fig. 3-2, Spectral curves showing a comparison of self-broadened and N ₂ -broadened H ₂ O lines	3-6
4	REFERENCES	4-1

SECTION 1

INTRODUCTION

Background

The parameters of nearly all of the H₂O lines of significance in the spectral region 1630 - 2245 cm⁻¹ covered by this report have been tabulated by Benedict and Calfee. The tabulated parameters for each line are: line center v_o , intensity S, half-width α normalized for air at 1 atm pressure, and the value E'' of the lower energy level involved in the transition. The latter parameter is required in order to calculate the intensity at a temperature different from the standard temperature for which the parameters apply. A combined experimental-theoretical approach was used to determine the parameters. Detailed comparisons with experimental results have not yet been made for all of the individual lines, but there is generally good agreement over intervals several cm⁻¹ wide.

Many very strong H_2O lines occur throughout this region, particularly from 1630 to approximately 2000 cm⁻¹, so that the average transmittance is quite low over lower atmospheric paths of a few hundred meters. Although the average transmittance is low, the transmittance may be appreciable in a few "gaps" or narrow "windows" separated by a few cm⁻¹ from any very strong lines. The invention of the CO laser has created new interest in these small windows because they coincide with many of the laser lines. Obviously, the performance of the CO laser for communications depends strongly on the atmospheric attenuation. Long et al² have recently used a CO laser as a radiant energy source to study the transmission of synthetic atmospheres of $H_2O - N_2$ contained in a multiple-pass absorption cell. The emphasis was on several of the narrow windows between approximately 1840 and 1990 cm⁻¹. Long et al have compared many of their experimental results with calculated results based on the Lorentz line

shape and the line parameters published by Benedict et al. In nearly every case, the observed absorptance was greater than the calculated value, sometimes by as much as a factor of 3. Rice,³ using a different method of measuring the attenuation of CO-laser radiant energy by H_2O , has also found poor agreement with calculated results.

The present laboratory investigation was undertaken to check the experimental results of Long et al and to provide additional data from which the continuum absorption could be determined and compared to the calculated results. The discrepancy between the observed and calculated values cannot be explained. It also seems unlikely that errors in the intensities or half-widths are large enough to cause such large errors in the calculated absorptance. Furthermore, it is not probable that the "extra" absorption in this spectral region is due to an H_O:H_O dimer as has been suggested as the primary cause of H₂O continuum absorption between 8 and 12 um. The most probable explanation involves a deviation from the Lorentz line shape in the extreme wings (v-v greater than approximately 10 cm⁻¹) of the lines. Preliminary analysis of our data indicate that the lack of knowledge about the shapes of the wings of the lines accounts largely for the inability to calculate the absorption reliably. Further analysis of the data, many of which are shown in Sections 2 and 3, will provide additional information on the accuracy of the published values of S and α° . It is also anticipated that these data along with other data⁴, 5, 6, 7 on H₂O absorption in windows will provide better in-sight into the behavior of the wings of lines.

Symbols, Units, and Definitions

At the pressures involved in the present study, the H_2O vapor density is proportional to its partial pressure p so that the absorber thickness u of a sample is given by

$$u(molecules/cm2) = 2.69 \times 10^{1.9} p(atm) L(cm) (273/\theta)$$

= 7.34 x 10²¹ pL/ θ . (1-1)

The true transmittance that would be observed with infinite resolving power is given by

$$T' = \exp(-u\kappa), \quad \text{or} \quad (-1/u) \ln T' = \kappa, \quad (1-2)$$

where κ is the absorption coefficient. Because of the finite slitwidth of a spectrometer and possible variations in κ with wavenumber due to line structure, the observed transmittance T may differ from T' at the same wavenumber. The quantity T represents a weighted average of T' over the interval passed by the spectrometer.

1-2

The intrinsic absorption coefficient due to a single collisionbroadened absorption line at a point within a few cm⁻¹ of the line center, v_o , is probably given adequately by the Lorentz shape:

$$k = \frac{s}{\pi} \frac{\alpha}{(v - v_{0})^{2} + \alpha^{2}}.$$
 (1-3)

The line intensity $S = \int kdv$ is essentially independent of pressure for the conditions of the present study. It has been shown 8, 8, 9, 20 that for v-v greater than a few cm⁻¹, the Lorentz equation may require modification. One method is to employ a factor X, which is a function of $(v-v_0)$, so that Eq. (1-3) becomes

$$\mathbf{k} = \mathbf{k}_{\mathrm{L}} \times = \frac{\mathbf{S}}{\pi} \frac{\mathbf{a} \times \mathbf{v}}{\left(\mathbf{v} - \mathbf{v}_{\mathrm{a}}\right)^{2} \div \mathbf{a}^{2}}, \qquad (1-4)$$

where k denotes the value given by the Lorentz coefficient. The value of X is approximately equal to unity for small $|v-v_0|$, but may be quite different for large $|v-v_0|$. For example, X << 1 for the extreme wings of CO_2 lines, but the data presented below indicates X > 1 for H₂O lines.

The half-width α is proportional to pressure so that k is, in turn, proportional to pressure in the extreme wings where $|v-v_0| >> \alpha$. It follows from Eq. (1-4) that the wing-absorption coefficient C due to the extreme wings of several lines is equal to the sum of all the k's due to the individual lines and is proportional to pressure, (C = C⁰ p). Since wing absorption changes slowly with wavenumber, it is frequently called continuum absorption.

Continuum absorption may also arise from dimers, ¹¹ such as $H_2O:H_2O$, or from pressure-induced bands. These two types of continuum have the same pressure dependence as absorption by line wings; therefore, it is not necessary to determine which is the source of the absorption being measured. In the following discussions, we refer to it as wing absorption, although it is possible that some dimer absorption or pressure-induced absorption also occurs. The absorption coefficient due to local lines whose centers occur within a few cm⁻¹ of the point of observation is denoted by κ (local). This quantity may vary rapidly with wavenumber and depends on pressure as indicated by Eq. (1-3) because of collision-broadening of the absorption lines. At a given wavenumber, there may be absorption by local lines as well as by continuum. Therefore, for a pure H₂O sample, the total absorption coefficient κ in Eq. (1-2) is given by

$$\kappa = \kappa(local) + C_{e} = \kappa(local) + C_{e}^{0}p. \qquad (1-5)$$

1-3

The normalized continuum coefficient C_s^o is the value of C_s when p = 1 atm. The subscript s denotes self-broadening of the lines. Since u is proportional to pL, $(-l_{rec}T)$ due to continuum is proportional to p^2L .

For a mixture of $H_2O + N_2$, such as several of those used in the present study, Eq. (1-5) must be modified to account for the broadening of the H_2O lines by N_2 .

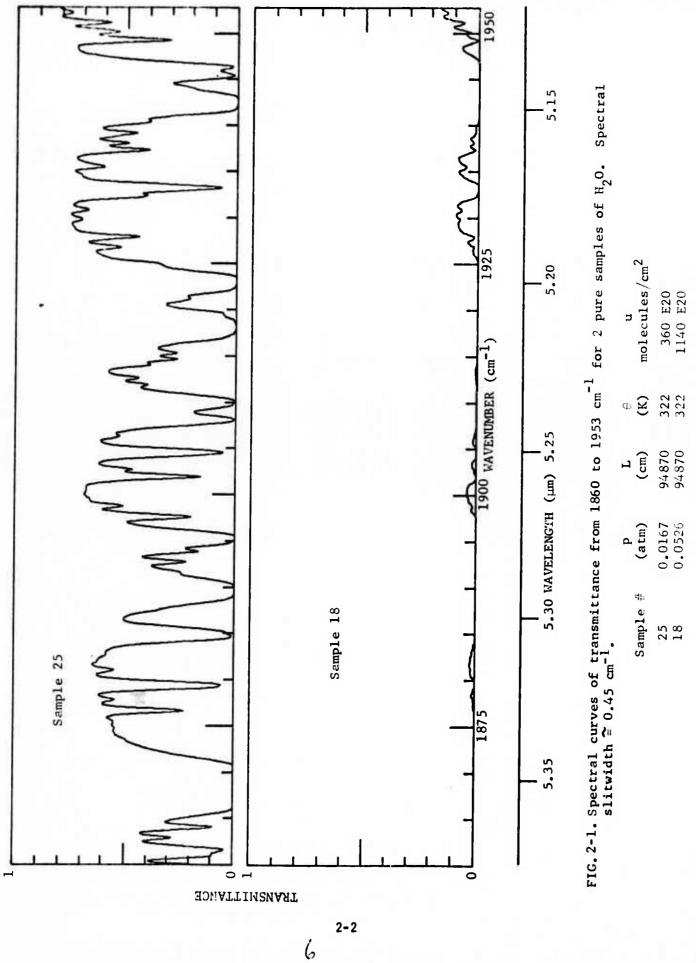
$$\kappa = \kappa(local) + C_{s}^{o} p + C_{N_{2}}^{o} P_{N_{2}},$$
 (1-6)

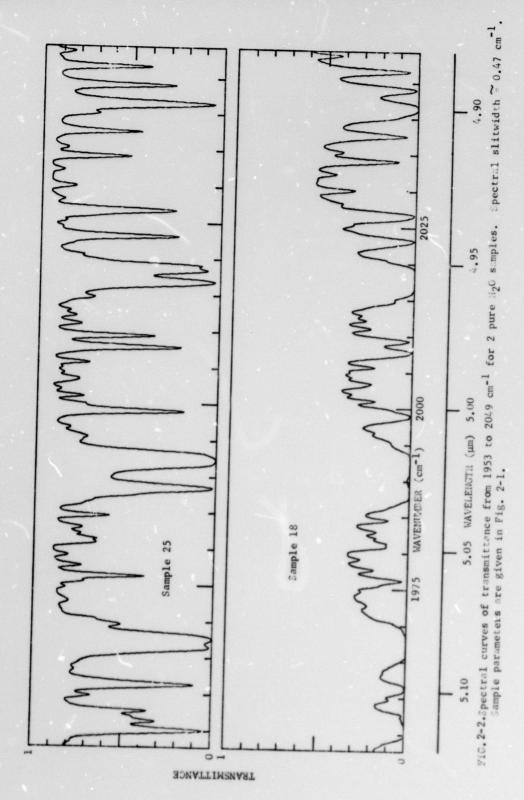
where p_{N_2} is the partial pressure of N_2 .

The equivalent pressure P_e given by the following equation is a convenient parameter when dealing with H₂O absorption by mixtures of H₂O in N₂ or in air, which is approximately 80% N₂:

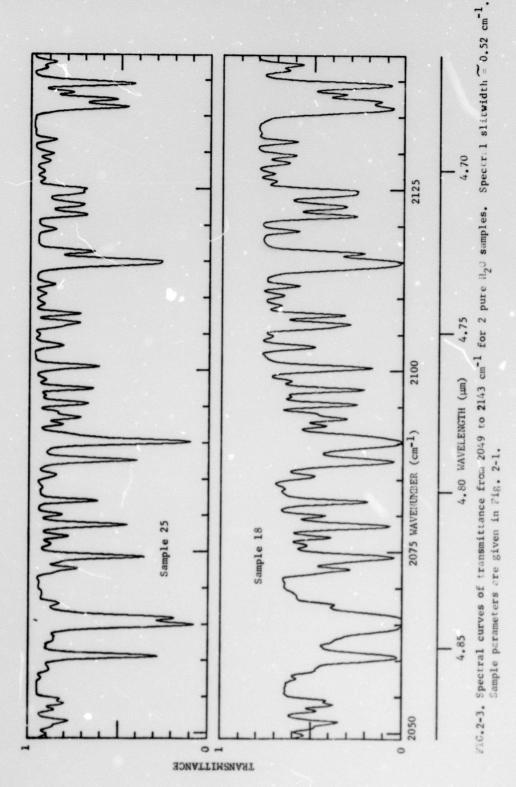
$$P_e = Ep + P_{N_2} = (B-1) p + P,$$
 (1-7)

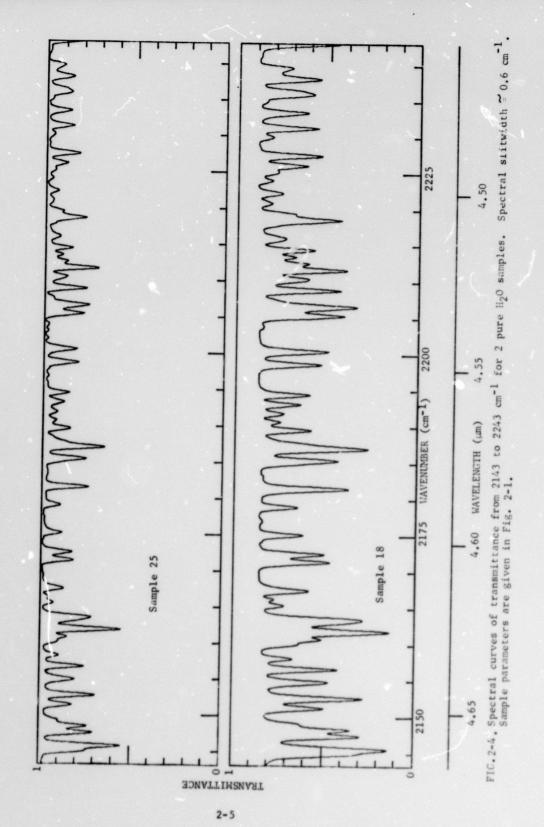
where P is the total pressure. B is the ratio of the self-broadening ability to the broadening ability of N₂, i.e., C_s^O/C_N^O . We note that P_e approximates P for dilute mixtures of H₂O in N₂ 2 (p \ll p_N). Values of C_s^O and C_N^O and B are given in Table 3-1 for selected N₂^O values wavenumbers ² at different sample temperatures,

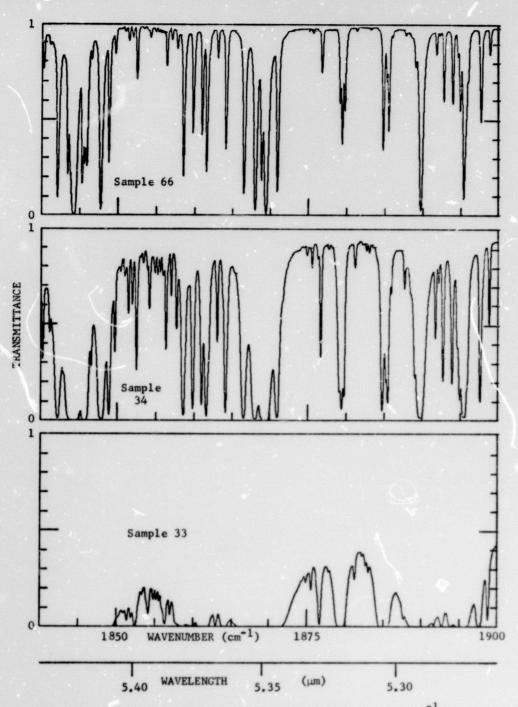

SECTION 2

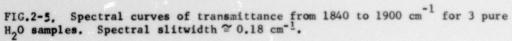

SPECTRAL TRANSMITTANCE FROM 1860 TO 2230 cm⁻¹

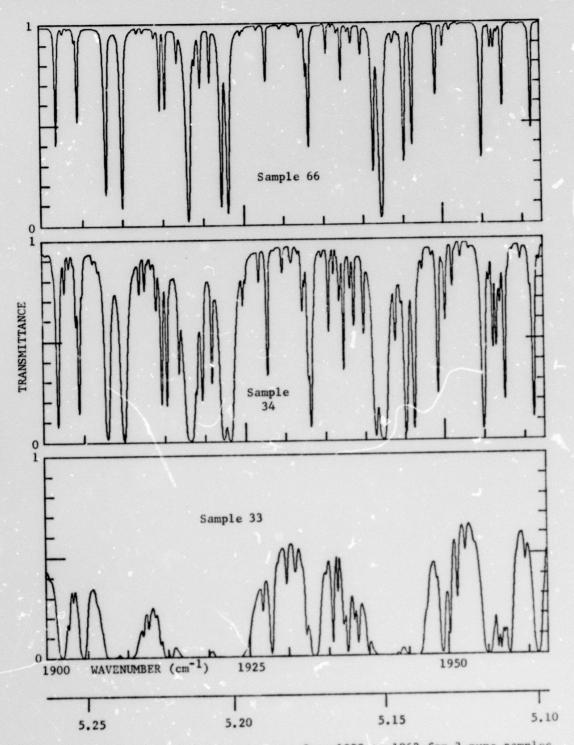
Figures 2-1 through 2-4 show spectral curves of transmittance from 1860 to 2243 cm⁻¹ for two pure samples of H_20 at a temperature of 322 K. The spectral slitwidth varied from 0.45 to 0.6 cm⁻¹. The two samples were contained in a multiple-pass absorption cell adjusted to 32 passes for a path length of 948.7 meters. After the spectrum of each sample was scanned, a background curve was obtained with the cell evacuated. It was difficult to determine accurately the position of the background curve (corresponding to 100% transmittance) relative to the sample spectrum because of drift during the scanning time of 2-3 hours. In order to position the background curves the following procedure was followed.

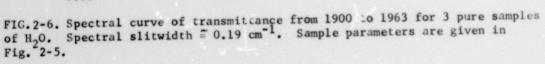

Spectral curves were scanned over 8 selected narrow windows for a variety of pure H_2O samples at different pressures. The time required to obtain these data was short enough that the drift in detector signal could be accounted for. The quantity $(-1/u) \int_w T$ was plotted against p for the point of maximum transmittance in each window (See Fig. 3-1). These curves were used to modify the background curves relative to the curves for Samples 25 and 18. For wavenumber calibration, more than 55 H_2O absorption lines were identified from a paper by Benedict, Claassen, and Shaw¹² and their positions were determined from a listing by Benedict and Calfee.¹

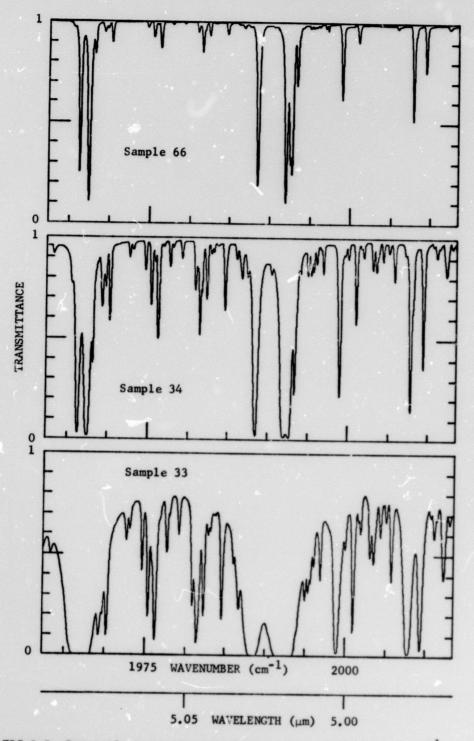

Figures 2-5 through 2-9 show transmittance spectra for 4 pure H₂O samples at 428 K contained in a multiple-pass cell adjusted for 4 and 32 passes. Background curves were fitted to the sample curves by the method described in the previous paragraph. Table 2-1 lists values of the integrated absorptance $\int A(\nu) d\nu$ for the samples represented in Figs. 2-1 through 2-9, $(A(\nu) = 1 - T(\nu))$.

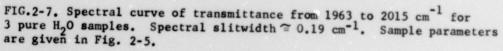












Sample #	p atm	L cm	θ K	molecu	les/cm ²	1
66	0.05	416	428	3.58	E20	
34	0.05	3291	428	28.2	E20	
33	0.2	3291	428	113	E20	

12

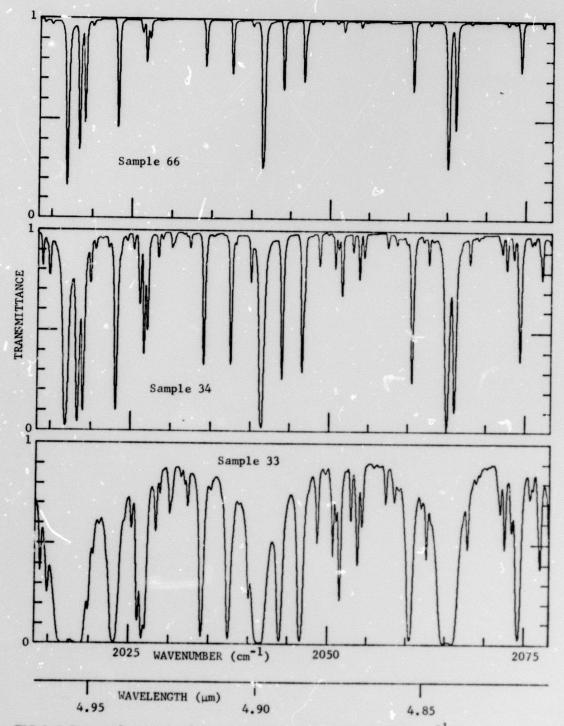


FIG.2-8.Spectral curves of transmittance from 2015 to 2080 cm⁻¹ for 3 pure H_2^0 samples. Spectral slitwidth \cong 0.20 cm⁻¹. Sample parameters are given in Fig. 2-5.

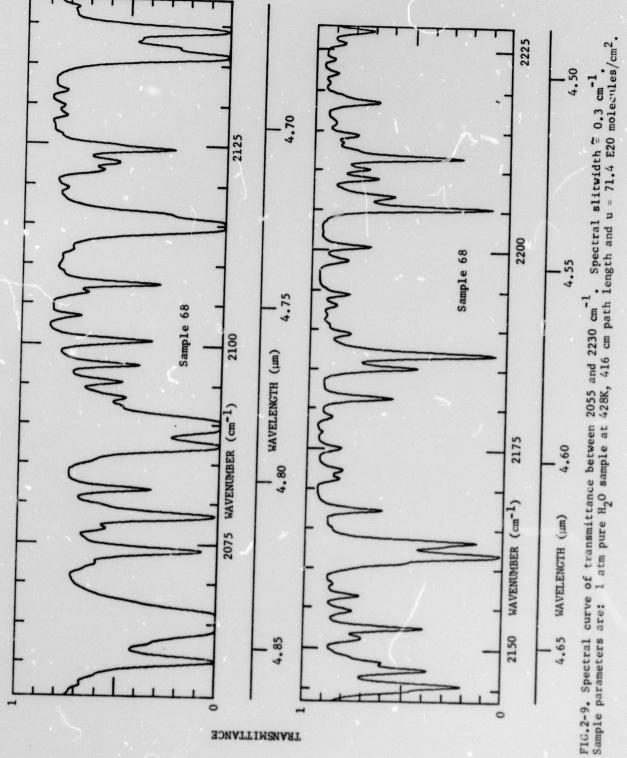


TABLE 2-1

INTECRATED ABSORPTANCE FOR PURE $\mathrm{H_2O}$ $\int_{\mathrm{V}}^{\mathrm{V}} \mathbf{A}(\mathrm{v}) \mathrm{dv}~(\mathrm{cm^{-1}})$

18 25 322 322 00 10,0526 0,0167	1960					193.673 101.291 196.777 102.506			203.153 104.339 205.415 105.256			211.820 107.468 213.036 107.682					226.559 112.247			231.276 113.315 223.184 113.987				240.076 115.989				246.369 117.530						
68 428 1.0 71.4 F20	V'(cm ⁻¹)=2056			11.308	15.681	22.397	24.050	25.290	26.726	31.116	33.015	34.789	38.640	000-04	42.065	141.44	46.925	48 100	48.639	51.305	51.851	52.283	54.556	55.899	600°00	166.95								
	v(cm ⁻¹)		3506	2080	2085	2095	2100	2105	2115	7170	2125	2135	2145		2155	2160	2165 2170	2175	2180	2190	C612	2200	2210	2215 2220	3776	2230	2235	2243						
25 322 0.0167 360 720	19,00				0 3.765	8.665	12.082	10.300	21.440		28.487	34.810	42.385	16 676	48.511	50.723	56.983	60.025	61.712	65.965	070.70	70.535	72.880	75.350	80.148	80.920	82.533 83.404	86.799	88.013	89.182	90.692	93.697	94.370	96.325
18 322 0.0526 1140 E20	1860			') '	5.000	10.000	15.000	24.924	29.924	, 	39.876	49.792	59.778	64. 772	69.566	74.327	84.115	88.997	93.516 98.229	102.865		115.589	119.599	129.197	133.493	136.972	141.145	149.715	153.662	157.123	163.206			179.316
68 428 1.0 71.4 E20	2056																															-		5.609
68 428 0.05 3.58 E20	1840	0 2.124	3.915	4.142	5.649	1.608	8.399 8.957	9.241	10.822	11 507	11.990	12.736	14.30/	15.470	15.600 5 an7	10.119	17.382	17.971	18.540	.9.722	19.572	19.644	20.141	21.163	21.325	21.382	21.686	22.516	22.729	22.959	23. 595	23, 724	23.778	24.115
34 428 0.05 28.2 E20	1840	0 3.866	7.708	8.899 10.927	13.235		20.453	21.452	25.947	27.766	29.046	32.359	35.334	38.111	39.739	40.709	43.572	45.176	47.164	50.150	50.470	50.927	52.801	55.122	55.783	57.006	57.351	816.40	60,184 60.808	61.161	62.837	62.264	63.718	185.581
428 0.2 113 E20	V [*] (cm ⁻)=1840	0 5.000	566.6 14. 404	19.216	24.143 29.132	13 660	37.807	41.639	51.301	55.643	59.723	68.674	13.637	78.591	85.467	89.349	94.293	98.411 101.280	105.054	112.821	114.749	116.734	123.065	127.637	130.411	135.225	137.267		144.722			155.888		
€(K) P (atm) u (molecules ⁻¹ cm ²)		1845	1850 1855	1860	1865	1875	1880	1885 1890	1895	1900	1910	1915	0727	1925	1935	1940		1950	1265	1970	1975	1985	1990	6441	2000 2005				2030			2050 1		

2-11

SECTION 3

CONTINUUM ABSORPTION

Two different methods were used to obtain data on the continuum for self-broadening in the narrow windows. In the first method, a sample of H_2O vapor was placed in the cell and several narrow spectral intervals containing a window were scanned. Additional H_2O was added and the narrow intervals were re-scanned. The process was repeated for 3 to 5 pressures, requiring approximately four hours for a series of measurements. In the second method a single narrow interval was studied at a time. The sample was added to its maximum pressure as quickly as possible and the transmittance was measured. Transmittance was measured at four or five pressures as the pressure was decreased, with about 20 minutes required to make the series of measurements over a single interval. Data obtained by the second method were more self-consistent than the others. The results obtained by the two methods did not agree as well as expected, although the discrepancies were smaller than those observed in a previous study of the 2400-2900 cm⁻¹ region.

Only the first method was practical for samples contained in the large absorption cell. The cell is so large that it takes a lot of H_2O and a long time to introduce a sample. The large vacuum pump used with the long cell vibrates the cell so that the mirrors must be readjusted each time the pump is operated. It is difficult to exactly duplicate the previous alignment, so it is impractical to use the same background curve for different samples obtained by removing a portion of the previous sample. Therefore, samples were changed by adding H_2O to the previous one. Only 7 short spectral intervals were scanned by this method when using the long cell. The scans were repeated a few times for each sample to allow averaging. Several of the measurements were repeated by evacuating the cell and introducing a new H_2O sample.

3-1

The second method was used for samples contained in the small multiplepass cell. The cell is small enough that only a few minutes are required to fill the cell. The pump used to evacuate the cell is connected to it by rubber tubing and does not cause vibrations that affect the optical alignment.

Determining the continuum coefficients for pure H₂O involved the application of Eqs. (1-2) and (1-5) to transmittance values observed at the points of maximum transmittance in the short spectral interval scans. We plotted values of $(-1/u) l_w$ T at a given wavenumber versus p for a fixed temperature and path length. In accordance with the discussion of Eq. (1-5), we expect the plotted points to fall on a straight line that intersects the p = 0 line at κ (local) and has a slope equal to C₀. Two typical plots are shown in Fig. 3-1 for 1978.6 cm⁻¹. This wavenumber is very close to one of the CO laser lines studied by Long et al.² The straight line fits the points well and passes near the origin. This result is expected for continuum absorption with little contribution due to local lines. Similar results were obtained at other wavenumbers and for samples at other temperatures.

Values of the continuum coefficient, C_8^0 , for self-broadening are listed in Table 3-1 for four different temperatures and several wavenumbers. The symbol L adjacent to some of the wavenumber listings indicates that some local-line absorption had to be accounted for in order to determine the continuum coefficient at that position. The 322 K samples were contained in the long absorption cell; the others were in the short cell. A long path length was needed at 322 K in order to produce a measurable absorptance because the maximum H₂O pressure was limited to approximately 0.07 atm by the H₂O vapor pressure.

Several factors contribute to the errors in the results. One of the most important is the error in the assumed 100% transmittance curves (background). This error is obviously most series when the absorptance is small. Noise, or short term fluctuations, also contribute. Additional uncertainty arises from errors in accounting for the local line absorption and the influence of the finite slitwidth of the spectrometer. The estimated errors are \pm 5% for the majority of the values listed in Table 3-1. These results were obtained from plots of $(-1/u) l_w$ T vs p that contain several points. Values of C_8° in the table with an estimated error of \pm 10% result from either of two types of data. Some result from plots of $(-1/u) l_w$ T vs p with considerable scatter, or with only two or three points. Other values are based on the transmittance curves shown in Section 2. The majority of the values listed for 322 K were obtained from the transmittance curves of Samples 25 and 18.

3-2

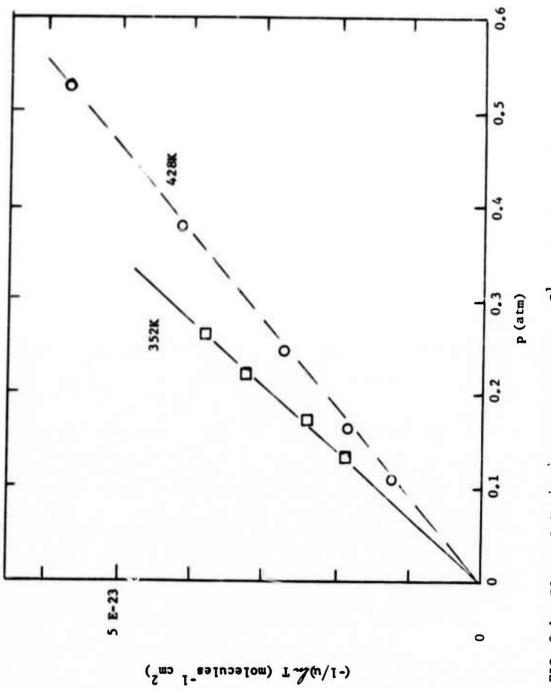


FIG. 3-1. Plots of (-1/u) k.T vs p at 1978.6 cm⁻¹ for H₂O at 352 K and 428 K.

18

		Multip	ly all value	es by 10-24	molecules	cm ² atm ⁻¹				
V		c°,				CN2		1	$B = C_s^o / C_{N_2}^o$	
1	428 K	353 K	322 К	308 K	428 K	353 K	308 K	428 K	. 353 К	308K
1630.5		5040		8640						
1665.5	1	6120		10000		871	1040		5.8	8.3
1691.5		8410		11900		1100	1360		5.6	7.4
1725.2		4250		6770		1 500	1820		5.6	6.5
1765.0					1	696	723		6.1	9.4
.,05.0	1	4570		5350	1	695	688		6.6	7.8
1786.5		2810		34 20		419	425		6.7	0 1
1814.5		1490		1890	{	195	190 *		0.7	8.1
1839.8	1	1780		2160					7.7	9.9
1854.6 L	583	845			02.1	283	297 *		6.3	6.9
1882.0 L	419	560	724 *:		83.1	90		7.0	9.3	
	4.0	500	124 .		57.0	58		7.3	9.6	
1900.0	371		619 *					6.5		
1905.6	488	600	808 *		84.5	91.5		5.8	6.6	
1920.5	1640		1900 1		296				0.0	
1927.1	433		654 *		2.90			5.5		
1929.2	281	342	478 *		42.9	41.0		6.6	8.4	
1931.3	285	372	498 *							
1948.2	344	312			46.4	37.7 *		6.2	9.9	
			514 *		1					
1952.6 L	199	247	284		29.7	26.3 *		6.7	9.4	
1959.0	222		342 *			2013		0.7	7.4	
1962.8	238	283	392 🕸			39.5 *			7.2	
1974.0	118		204		16.7					
978.5	108	144	190 *			10 5 4		7.1		
983.8 L	139		218 *		13.7	12.5 *		7.9	11.5	
990.0 L	766		905 *							
997.4					159			4.8		
397.4	164		222 *		27.5			6.0		
2002.3 L	93.1		157 *							
2006.4 L	139		172 *							
008, 8 L	272		330 *							
011.8 L	122		172 *							
029.3	61.8	77.7	105 *			(a .h				
					_	6.2 *			12.5	
036.1	80.7		110 🕸		12.2			6.6		
045.3	125		137 *					010		
055.5	40.4		72.5 *		5.55 *			7 0		
056.0	39.1		74.8		J. J. "			7.3		
071.1	43.1	52	70.5 *		6 65 4					
		~~	10.5		6.65 *	4.5 *		6.5	11.5	
083.6 L	37.8	42.5	59.3 *			3.8 *			11.2	
102.4 L	20.2		35.0			2.0			11.2	
109.6 L	22.6		47.9 *		3.0 *					
130.7 L	18	20	37.1 *			1 9 4		7.5		
133.0	21.1		38.2		1.9 *	1.7 *		9.5	11.8	
169.8			05							
	8.8		25.1 *		1.2 *			7.3		
196.7	7.0	11.8 *	23.2 *		. 86 **	0.58 ***		8.1	20	
223.3 L	7.9		20							
290.0			17.9							

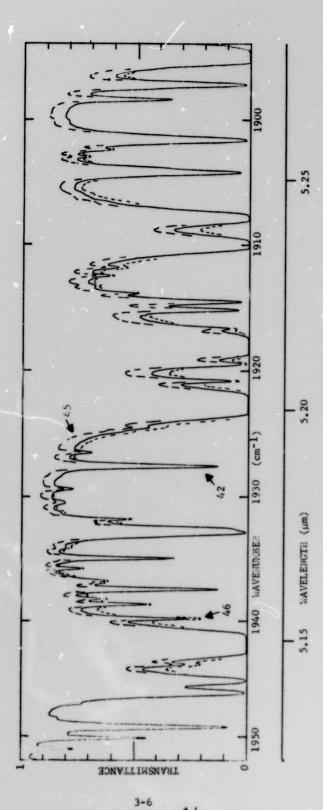
TABLE 3-1

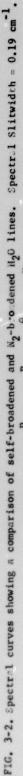
SELF-BROADENING AND N2 BROADENING COEFFICIENTS FOR DIFFERENT TEMPERATURES

Estimated errors for C_{g}^{0} and $C_{N_{2}}^{0}$ are \pm 5% except for values marked * and ** which indicate \pm 10% and \pm 20%, respectively. Errors in B depend on the associated values of C_{g}^{0} and $C_{N_{2}}^{0}$.

3-4

Influence of Nitrogen-Broadening on the Continuum


The earth's atmosphere contains much more N_2 and O_2 than H_2O so that the broadening of H_2O lines by N_2 and O_2 is generally more important than the self-broadening. Furthermore, the N_2 concentration is approximately 4 times that of O_2 and the continuum coefficient C_O^{O} is not expected to be greatly different from C_N^{O} . Therefore, C_N^{O} can 2 probably be used for air in the place of a N_2 more accurate 2 weighted average of C_N^{O} and $C_{O_2}^{O}$. No data were obtained with O_2 .


In a typical measurement of C_N^0 the spectrometer was adjusted to one of the narrow windows where the N2 continuum absorption dominates over the local-line absorption. A sample of H₂O was added to the cell until the transmittance dropped to about 80%. A spectrum was scanned over the window, and N₂ was added in steps to produce transmittance of about 60, 45, 30, and 20%. The transmittance was measured at each pressure after the sample had mixed for several minutes. The total operation for all the pressures required between 20 and 30 minutes for a single window. We plotted (-1/u) ($l_m T - l_m T''$) versus p_N, where T'' is the transmittance of the pure H₂O sample. In accordance 2 with Eq. (1-6) the points fell on a straight line drawn through the origin with a slope of C_N^O. The values obtained for three different temperatures are given in 2 Table 3-1. The estimated errors for C_N^O are as high as 20% at some wavenumbers because the increase in N2 absorption resulting from the N₂ was very small. The large errors were assigned to the values that were determined from ($l_m T'' - l_m T'' < 0.05$. The three right-hand columns in Table 3-1 list values of B = C_N^O/C_N^O for three different temperatures.

In previous studies^{6,13} we have found B to occur between 4 and 6 at wavenumbers where most of the absorption is due to lines centered within 5 or 10 cm⁻¹. As can be seen in Table 3-1, values of B for the continuum may extend to higher values. The wider variation can probably be attributed to differences in the distances from the centers of the lines producing most of the absorption. At 1920.5 cm⁻¹, for example, where the strong nearby lines are responsible for most of the absorption, B has a relatively low value of 5.5. In contrast, no strong lines occur within several cm⁻¹ of 1978.5 cm⁻¹; therefore, a large fraction of the continuum at this point is probably due to lines centered more than 10 cm⁻¹ away. The corresponding value of B is much larger, 7.9 at 428 K and 11.5 at 353 K.

Variations in B are shown graphically by the curves of transmittance in Fig. 3-2. Sample 42 consists of pure H_2O in the small multiple-pass cell adjusted for a path length of 8.26 meters. For Sample 45 the cell was adjusted to 32.9 meters, and 0.0486 atm of H_2O was introduced to match the absorber thickness of Sample 42; then N_2 was added to 0.5 atmospheres. To produce Sample 45, N_2 was added to Sample 45 to a total pressure of 1 atm. Portions of two of the curves have been omitted where

3-5

molecules/cm ²	27.6 E20	27.6 E20	27.6 E20
ры	428	428	428
ätin	0.195	0.5	1.0
et n	0.195	0.0486	0.0486
Sample #	42	45.	46

-6 21

they are nearly coincident with the curve for Sample 42. All three samples have the same absorber thickness; therefore, any differences in the curves are due to differences in line width or shape. In the case of Sample 42 the lines are entirely self broadened, whereas the lines in Sample 45 and 46 are partially self broadened and partially N₂ broadened. If the N₂-broadened lines had exactly the same shape as the self-broadened lines, we would be able to adjust the N₂ pressure in a sample such as Sample 45 or 46 so that its spectral curve was coincident with that of Sample 42. Inspection of Fig. 3-2 shows that this is not possible. For example, near 1900 and 1930 cm⁻¹, Sample 46 nearly matches Sample 42. By substituting the corresponding pressures in Eq. (1-7), we can show that this corresponds to B = 6.5. At the transmittance maxima near 1909 and 1919 cm⁻¹, the value of B found by interpolation is very close to 5. At other points within the spectral interval shown where the curves are not too steep to measure accurately, the corresponding values of B lie

Data similar to those shown in Fig. 3-2 were obtained in other portions of the spectra. As indicated in Table 3-1, larger values of B were observed in some of the windows at higher wavenumbers. Generally $B \cong 5$ at places where most of the absorption can be attributed to lines centered within 5-10 cm⁻¹. The value of B is consistently greater than 5 at points where a large fraction of the continuum results from lines centered more than 10 cm⁻¹ away. This result is consistent with previous work by Palmer¹⁴ in the 250-500 cm⁻¹ region and with other work⁴, 5, 7, 15 in the 8-12 μ m window and the 4 μ m window.

The variation in B can be explained on the basis of a difference in the shapes of the extreme wings of N₂-broadened and self-broadened H₂O lines. Within about 5 or 10 cm⁻¹ of the centers, both types of lines apparently have similar shapes with the normalized half-width α^{O} about 5 times as great for self-broadened lines as for N₂-broadened ones. However, beyond 5 or 10 cm⁻¹ from the centers, the absorption by selfbroadened lines relative to N₂-broadened ones is apparently greater than it is near the centers. This corresponds to a larger value of χ (in Eq.(1-4)) for the wings of self-broadened H₂O lines than for N₂-broadened lines.

Values of C_s^o at a given wavenumber are seen from Table 3-1 to decrease with increasing temperature. The temperature dependence generally cannot be explained by changes in the intensities and widths of the lines. Line widths decrease with increasing temperature, but not at sufficiently fast rate to account for the changes in C_s^o . Throughout most of the spectral region studied, the intensities of the lines increase with increasing temperature, an effect opposite to that required to explain the temperature dependence of C_s^o . The most probable explanation is a change in the shapes of the wings of the lines that can be represented by a decrease in \times with increasing temperature. The largest

3-7

relative changes in C_s^o occur at wavenumbers where a significant portion of the absorption is due to distant lines. Thus, we conclude that the relative temperature dependence of χ increases with increasing $|\gamma - \gamma_o|$.

At most of the wavenumbers investigated, C_N^o also decreases with increasing temperature. At those places where N_2 this does not occur, the dependence can probably be explained by the increased intensities of the lines producing the absorption. The results generally indicate that χ for N_2 -broadened lines also decreases with increasing temperature, but at a slower rate than self-broadened lines. This accounts for the decrease in B with increasing temperature.

Long et al² have measured the absorption coefficients at several wavenumbers for relatively dilute samples of H_2O in N_2 at 1 atm total pressure. Their experimental values are from about 1.2 to 3 times as great as values calculated by using the line parameters of Benedict and Calfee¹ and the Lorentz line shape. The ratio of the experimental to the calculated values is generally less at points where the nearby lines $(|v \cdot v_0| < 10 \text{ cm}^{-1})$ contribute most of the absorption than it is at points where the absorption is due primarily to distant lines. At wavenumbers where direct comparisons can be made with room temperature data, we find good agreement between our values and the results of Long et al. At other wavenumbers where we have data only at elevated temperatures, we extrapolated curves of C_s^O and C_N^O to room temperature and, again, found good agreement with Long et al. N_2 These results imply that the wings of N_2 -broadened H_2O lines are "super-Lorentzian"; i.e., they absorb more than Lorentz lines having the same intensities and widths. (X > 1 in Eq. (1-4).)

In summary, the results indicate that \times is greater for the wings of self-broadened H₂O lines than for N₂-broadened ones, and that it is greater than unity for both types at the temperatures studied. Furthermore, the ratio of \times for self-broadened lines to that for N₂-broadened ones increase with increasing distance from the line centers and with decreasing temperature.

SECTION 4

REFERENCES

- 1. W. S. Benedict and R. F. Calfee, ESSA Professional Paper 2, June 1967.
- 2. R. K. Long, F. S. Mills, G. L. Trusty, and D. F. Ford, Oral Paper presented at the Fall Meeting of the Opt. Soc. Am., October 1972.
- D. K. Rice, "Absorption Measurements of Carbon Dioxide Laser Radiation by Water Vapor," Northrop Corporation Report #NLSD72-11R, Contract No. N00014-72-C-1043, ARPA Order #1806, July 1972.
- K. J. Bignell, F. Saiedy, and P. A. Sheppard, J. Opt. Soc. Am. <u>53</u>, 446 (1963).
- 5. K. J. Bignell, Quart. J. Roy. Met. Soc. 96, 390 (1970).
- D. E. Burch, D. A. Gryvnak, and J. D. Pembrook, "Investigation of the Absorption of Infrared Radiation by Atmospheric Gases: Water, Nitrogen, Nitrous Oxide," Aeronutronic Report U-4897, Contract No. F19628-69-C-0263, January 1971.
- D. E. Burch, Philco-Ford Publication U-4784, Contract No. F19628-69-C-0263, January 1970.
- D. E. Burch, D. A. Gryvnak, R. R. Patty, and Charlotte Bartky, "The Shapes of Collision-Broadened CO₂ Absorption Lines,"Aeronutronic Report U-3203, Contract NOnr 3560(00), 31 August 1968.
- 9. B. H. Winters, S. Silverman, and W. S. Benedict, J. Quant. Spectry Radiative Transfer <u>4</u>, 527 (1964).
- D. E. Burch, D. A. Gryvnak, and J. D. Pembrook, "Investigation of the Absorption of Infrared Radiation by Atmospheric Gases," Aeronutronic Report U-4829, Contract No. F19628-69-C-0263, June 1970.
- P. Varanasi, S. Chou, and S. S. Penner, J. Quant. Spectry Radiative Transfer 8, 1537 (1968).
- W. S. Benedict, H. H. Claassen, J. H. Shaw, J. Research Nat'l Bur. Standards, Vol. <u>49</u>, No. 2, 91 (1952).

4-1

REFERENCES (Cont.)

- D. E. Burch and D. A. Gryvnak, "Absorption by H₂O Between 5045-14,485 cm⁻¹ (0.09-1.98 microns)," Aeronutronic Report U-3704, Contract No. NOnr 3560(00), ARPA Order No. 237, Amendment #23/1-3-66, July 1966.
- 14. C. H. Palmer, Jr., J. Opt. Soc. Am. 50, 1232 (1960).
- 15. R. K. Long, J. H. McCoy, D. B. Rensch, Appl. Opt. 8, 1471 (1969).