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I. INTRODUCTION

In earlier reports (1, 2), a method for calculat;ag the thermal

resoonse due to intensive heating was described. The present report

describes extensions and applications of the method to other laser

heating problems. In the second chapter, a general critericn for or.e
dimensional heating under the assumption that the melt is instantaneously

removed will be developed. 7.'he predictionsof a simple analytical

solution for radial conduction dre com'ined with these results in the
cnird chapter to produce a method for estimating from a single curvethe mielt through time for any arbitrary combination of flux, :pot size,

thickness and material. In the fourb,: chapter, melt throuqh time* is computed

for cne case of #.omplete retention of the melt until vaporization occurs,

Some predictions for neating due to a large single pulse -

will be presented in the fif tn chapter and compared with the results of

experiments featuring large single pulses.
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II. A CRITERIOI FOR ONE DIMEIISIONAL MELTING-OF SOLIDS

The question of the flux (or power level) required to generate one-

dimensional (axial) melting is particularly significant in the design

and interpretation of experiments on laser effects. Radial heat conduc-

tion has been found to make the interpretation of some experimental re-

suits difficult. The fo;iiing analysis leads to a criterion for one-

dimensionality which, it is hoped, will prove useftl in the design of

experiments.

We assume that a melting front moves at a constant speed V through

a slab of material having thermal properties K, p and Cp, and a melting

temperature T.. Material at distances greater than some length S will

essentially be at an ambient temperature To r i.e.,

• -- --._ T (w -T o / ( m -T o ) _A ( 1

We assume that the heat flow can be regarded as one dimeiiional (axia-)
if the depth of heating is small compared to the width, or if

S/oG< (2)

where o is scne characteristic dimension of the heated region, and l is

assumed to be independent of flux intensity and thermal properties. In

essence, we assume one-dimensionality if temperature changes take place

over distances much less than the dimension of the heated area. If the

heat flow is one dimensional, the heat conduction equation reduces to
32T a T(3A.

ax2 at

where the diffusivity, ; is defined by

K K- (4)

and x is taken to be normal to the surfaces of the slab. In terms of 3

2 i



coordinate system moving with the front, i.e.,
z - x-Vt (5)

Equation (2) b::omes

2T

3Z2  aZ

which has the solution
T -To + (Tm-To~je-

v /  (7)

From 1, n

,- Vic i n (l/c) (8)

One dimensional axial heat flow may also exist in a sheet so thin

as to be of nearly uniform temperature, i.e., if the characteristic dimen-

sion, a, of the heated region is large compared with L, the thickness, or

i/aM (9)M is a dimensionless number, assumed to be independent of material prof

erties. More generally then, we expect that the heat flow will be pre-

dominantly axial (nr one dinensional), if either of inequalities 1 and 9

are satisfied, or if a new inequality combining the two is satisfied, i.e.,

if
L6/02<M* (10)

where M* is assumed to be independent of flux intensity aid thermal

prope-ties.

The steady speed, V, at which the liquid-solid interface moves may

be readily determined from a heat balance. In any time At, a thickness

Az of material at a temperature arbitrarily close (c) to the ambient temp-

erature T0 enters the heated layer. During that time increment, a like

amount of materiai is melted. Thus, for any unit area, a thickness Az

is raised from the ambient te melting temperature, and underqoes phase

* . transformation.

3



The heat required 'is supplied by the absorbed intensity Ip., and a simple

heat balance on a unit area subject to the peak Intensity yields

IpaAt- [Cp(Tm -To),,LmJpaz

where L. is the heat of fusion. Thus if Ipa (the peak absorbed energy

per unit area per unit time) is constant, the speed at which the liquid-

solid Interface penetrates the solid portion at the point of maximm t

intensity is given by

V a Az Ipa (12)
At p[Cp(T.-To)+L,]

Substituting this result., and Equation 8 into inequality 10, we find
tS0(CT - 0 .L (13)
1O [Cp('Tm-T°)+Lm] <(13)n(li)

paMO

If we assume the beam profile to be Gaussian and axi-symmetric, the

distribution of absorbed intensity is

I(r) - er 2/(202) (14)

the total power absorbed is given by

P 2W02 1pa (15)

and inequality 13 may be written as

Pa > m* (16)

~41
This furnishes a theoretical basis for the criterion for one dimensional

axial heat flow deduced in earlier wirk [2] from the results of computer

experiments on magnesium where m* *ias found to be 40 KW/cm.

Equation 13 suggests, however, the existence of a single constant, a

dimensionless power ror unit thickness, applicable to any material. Let

Pla Pa (1?)1
anda 2i.p[Lm4 Cp(T-T)J

&III-.U a -2'tn(l/c') I*(18l)



Then the criterion for one dimensional melting -tecoes

P a > Pa* (19)

The assumption of somne profile other than Gaussian (e.g., a "flat-top1',

could affect at most the inerical value of the dimensionless Pt,*"

Equation 13 may be written in another form, through the use of the

time tI required for complete melt through under the one-dimensional

condition. The_ required time is obtained from a one-dimensional heat

balance as 2
[Cp(TC1-To)+LU],t

ti a I- - (20)
1paA

Substituting into 13 leaves a dimensionless parameter known as a

Fourier number.

l'D 1/mI/c) (21)U-Z
We have seen that the cfnditios necessary for one-dimensional meling

are met if a Fourier nuber, defined through

F atl/o 2  (22)

is less than some critical value, or if the dimensionless power per unit

thickness, defined through Equation 17 and related to the Fourier number

through
7, 2s

F (3
is greeter than some critical value. It is at this point unproven that

the critical value of these dimensioniess parawters are independent of

material properties, although the results given e-rlier far Magnesium
are a satisfactory indication that the criticar value of the par- eter P..

is independent of the flux intensity, dimensions of thr hedZed area, and

sample thickness.



!n ceder to ascertair, if tht critical v'.lae ofCP~ tlie ditansier.-lss
absortd P9*- Per unit thickiess, is ligepende,'t of matrfal

cZ1a16ictO-PS using t?* Previousl~y descrited nmeel~-g feUtd %" u&4_wr-

taken. Material properties% &s qlgi .i Table wre -Assomd, With re-

s;uits As 4given in Table 21. in all caseS. a disk25~d trb 1c
t~;ek vas div' into 20 an rrns w,~ 10 layers. The param-4r a

describing Me ga.sas ee te o e.2 .Thrs~ #

pOotted, in dimensionyess fonm as ifigure 1, and suggest thzat for #b-
sorbed dimensionler.- powev per uwt thickm~ss of 70 er greater, the

zelting tine wrill !" within IV. of the Ytsae calculated~ frm the *me-

dimntuital heat ballaebe j~qa!'4 r-)
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Taule I

r THERMAL PROPERTIES OF SEVERAL MIATr,,IALS

p mK c p TM

;lt-eri a, gn J~I e/gm Jol/cmKo) ol
gm*K

Al120 3.6 1070 .104 .855 2313

A'(imi,i;n 2.73 .175 1.84 1.0 911

Maynesiuxn 1.77 332 .96 1.04 905

stair less
Steel 7.9 29i .24 .42 1700

Ti Lan i rv 4.4? 390 .145 .77 1900
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Table 1I

COMPUTED MELT THROUGH TIMES FOR VARIOUS LEVELS OF ABSORBED FLUX
Flux

Material (watts/cm tm-sec ti-sec

A1203  1000 1.4197 1.084
2000 .6226 .5418
3000 .3985 .3612
5000 .232 .2167
10000 .1140 .1084
30000 .0377 .03612

A!uminum 2000 .3131 .1371
3000 .1518 .09137
5000 .0733 .05482
10000 .0318 .02741

MagnesIum 1000 .4128 .1712
1500 .1962 .1141
2000 .1266 .0856
3000 .0737 .05706
5000 .0402 .03424
10000 .0188 .0171
30000 .0061 .00571

Stainless Steel 1000 1.1068 .6936
3000 .270 .2312
5000 .1532 .1387
10000 0742 .06936
30000 .0244 .02312

TitanIum 300 9.098 2.3'13
"1000 I.o - .7185
3000 .2/i .2395
5000 .,57 .1437
10000 .078 .07185
30000 .J255 .02395

Ig
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III. M*ELTING TIMES AT LOW POWER

Up to this point, only the times necessary for complete melt

through have been considered for cases where the incident flux is

relatively high, i.e. the heat transfer primarily axial. Further

insight may be gained through consideration of the other extreme,
.4 4

i.e. assuming that the heat flow is primarily radial.

Carslaw and Jaeger3have given the temperatures distribution

in a solid due to the application of a flux Q per unit area applied

over the interior of a cylindrical hole in a infinite domain. The

temperature is

- 2 t) J.(ur)Yl(uR)-Yo(ur)J1 (uR) du (24)
0 wk 0 J12(uR) + Y12(uR) u2

where R is the radius of the hole

K is the diffusivity

k the conductivity

J and Y are bessel functions of first and second kind

and To is the initial temperature
3

For large values of time, an approximation is

TTo : .. tn ,±t + , i_ +R r
o 2k C r2  2,ct Cr2  4rt 2

where C - eY - 1.781, This approximation has been used to predict relting times

for thin sheets exposed to sn:all lasers. 4 Retaining only the first term leaves

T-Te =9i!,.n 4-t (26)2~k



as an approximate temperature in a thin sheet. In order to apply this

solution to the problem of laser melting, we assume a uniform flux of

intensely Fo to be applied over a radius R on a sheet of thickness A. For

a small t, we assume the temperature under the beam (i.e. r<R) to be

uniform and equal to the temperature at R. For moderate valueof flux,

we assume a quasi steady temperature under the boam, viz., that the transient

term may be -;sregad'e-1 Hence, a heat balance on the mass under the

spot read!

4 2
F -AR 2wR *t(27)

where Q is the radial flux, as in Equations 24 and 26. Using Equation 26 we then

have as a temperature distribution

Titt) O +R2 F  kn 4t
T(rt) T0 + ton <r<R (28s)

4kt CR2

T(r,t) TO + 2 -- n - on r>R (28b)
4kt Cr2

it should be noted that certaiA assumptions made in the development

of this result are not completely cGnsistent. The assumption; of long

time and low intensity are not compatible with the neglect of losses

due to convection and radiation, hence the temDeratures predicted bv 28b are

at best upper bounds, and melting times which might be predicted are

lower bounds.

Such melting times may be estimated from Eouation ?8a as

tn. = _1 2 e 4k (Trn.To) (29)

4< FR2

0



Thi." melting time can be compared with that predicted for one dimen-

sional axial flow with instantaneous remnoval,

t -  I+Cp(T -T°) (30)

hence

t 4wexp [ ](31)
ti 14 P [I + Lp(m.T)

k )r
where

1. A 2 (32)
, " ,, ,[L +Cp(T-7o)

The dimensionless power per unit thickness is again seen to characterize

the melting time ratio. For small P , a becomes large. For large PI,

(33)- 41r

bot the assumption of one dirensional radial flow is inapplicable in this renime.

Equation 31 has a mimimum at

P 4- (34)

SCp(T -To)

when
CP 4Ce (35)>-, mi n =--4 -"
S1 + m

; C p(T m-T )

and should not be used for values of Pt abov2 that given by Equation 31.

The previous results were deduced under the assumption of a

12
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IM7

"flat-top" beam profile. For a Gaussian beam, the assumption that

the material under the beam (R 2a) melts uniformly is somewhat

questionable, but will enable comparison with the results obtained by

the numerical method. Equation 27 then reads

L IF OR' Q2wRt (36)
20

. { and Equation 29 becomes

t m  C2 exp (TnTo) (37)tii, OC (37)2

Atormalizinaby the one dimensional melt through time (Equation 20) and

introducing the dimensionless power per unit thickness for a gaussian

b e a P z X = ~o 
( 3 8 )

IK= +C (T T )J(A

leaves

4w

t1  2 P exp -1 L (39)

g. Cp(Tm-To,

A minimum again occurs at the value of P, which make the exponent of Equation

39 unity, and leaves

2ce 41r

Omin = LC at Pt = , (40)
) l + LM "

Cp(Tm-To) C (TM-To)

The parameter 1 + I /C p(T m- ) ranges from 1.613 in the case of alumninum

to 1.31b in the case of Titanium, with intermediate values of 1.537 for

ma,esium and 1.453 in the c.se nf stainlest steel. Tikini 1.5 as a

representative value introducps an a, ,rnn ;r.tnn tniivalent to-r i0 uncertainLies

in the di'lr si,, Ivi , Pfn.,- per unit t1hic'iie.s ,no
13
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the upper solid curve of Figure 2 is found to result. The lower solidk curve is a reproduction of the results given as Figure 1, and the dashed

curve presents a smooth interpolation joining the two solid segments.

The resulting composite curve is suggested as d mcans of rapidly

estimating the time reauired for complete melt through, together with the

definition of dimensionless novier per unit thickness (Equation 3)3) and

the one dimensional melt through time (Equation 20).

As noted earlier, these results were obtained under the assumption

that no heat is lost to the surroundings. If heat is lost from each

unit area by connection and radiation, then the temperature must satisfy

the differential equation I
kV2T = pC 1T + 2h(T-To) + 2ca 2 U 4 -To') (41)f~ ~at

where To is the temperature of the surroundings, h is the surface heat

t.aansfer coefficient, e is the emissivity and o is the Stephan-Boltzman

constant. An approximate solution for the radially synmetric steady state

temperature distribution can be obtained by setting

h* h + 4ca T4ve (42)

which yields

T2T0 +A1 0 (/T +)AI + g Ko ( ) (43) II
where a h* is a Giot number and i and K, are modified Bessel functions

k 0
of the first and second kind. For small arqume.'s the followinq aunroxma-

ticns may be used:

1 I5 1:



o(Z)  -n z (44a)

KI(Z) I/z (44b)

Assuming a flux F is again uniformly distributed over a circle

of radius R, and a quasi steady temperature to exist in the region under the

spot, then a heat balance on rateri3l under the spot gives

Fw2  2irRt (-k~ 1  (452.R -k a (45)

3 r !R

Solving for the constants A and B, we find A =0 as the temperatures must

remain finite at large r and

FOR

I2k, K1(,r8 R/h) (46)

The steady state temperature distribution, asymptotically annroached at

large time is

T =  FoR K(ZO R/9)+ T0 for r ;R and T = T(R) for r P. (47)2k/2 K1 (v2' Rp,) "

For V71- R/. << 1, the asymptotic values may be used to obtain

T(R) FOR Ln!- or (48)

T(R) TO + £- Tm-To + tn L (49)
21 Cp ,Rrr',

The critical power per unit thickness required to bring the area under

a uniform beam to the melting temperature is therefore

P 2W (50)
Pt crit ()I + i n t1R 52"a

16
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An identical result is obtained for a oaussian beam of radius

R = 2a. At lower values of power per unit thickness, melting

will not be achieved. For values not substantially above the critical value,

the times predicted by the method described in the previous section

(orany other method which ignores losses) will be much increased.

17
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IV. RET:NTION AND MAPORIZATIONl OF MELT

In the preceding sections, the time required for complete melt-

through under a Gaussian distribution was considered and compared with

the times which would be required assuming one dimensional heat conduc-

tion. The assumption of complete removal of the melted material may be

justified under conditions of strong air flow, but the alternative, i.e.,

r olten material retained as a liquid until the vaporization temperature

is reached, should also be considered.

For this study, the finite element coniputer program, as described

earlier, was modified. The specific heat was taken to be constant below

TL, the temperature below which the material is solid, and above TU, the

temperature at which the material becomes liquid. The first phase change

(melting) was accounted for by assuming an effective specific heat Cp

over the ir Itlng range, i.e., Jetween the lower and upper rpelting tempera-

tures. The heat of fusion is assumed to be added uniformly over the

melting range rather than at a fixed, single melting temperature. Let

SCp C for T T or T > To  (51)

and
C = CPO + LM/(TU-TL for TL < T <TU  (52)

where Lm is the heat of fusion. The second phase change, vaporization at

a temperature T. was handled as n;elting was treated in the original

program, i.e., the finite increment of mass is assumed to remain at Tv

until the entire heat of vaporization is absorbed. At this time, the

entire cell is assumed to be instantaneously removed.

18



Table III

PHASE TRAJSFORMATION PROPERTIES FOR SEVERAL MATERIALS

Material T LV LvIL*
OK OK oX Joui es/g.

Aluminum 916 930 2873 10492 28.e

Magnesium 878 905 1380 5852 17.3

Stainless 1673 1728 3273 6360 21.9 4
Steel

Titanium 180', 1900 3550 CI20 22.6

19



Pelt-through timzs we~re co~pzted for Mhe fcmr materials Jitaraft.,4 Mffluznm, Stainless Steel and Yagnesium, Mhe Gaussian tL-an was ass~wA

t o h a v e a d i a c a t e r ( 4 ) o f . 6 4 c i i a n d t h e s . ,-n ! e t h i c k e s s a s a s s u n d 4
to be W~ ca. For Pagnesium, Stainess Steel ard T'Ntanim, Cht decsty,

specific heat, conductlovity anid heat of fusion t'ere taken. as given

oreviously (Table 1), while thc pro~'rties of alusiniw= were taken to

Lt -39.4Joules/q~r. Oter tlhtrl properties wer taken os given in I_

Tabe 11.Cnprted welt-throw_1% times(t, * imatwchherr

sraereaches th*pe r -~ aprta ,)wr optd- r

cxared WAth ti, the time ich wouicd. be required for ote-imlensirmal

heating with cooplet removzl ct 4t?,.e sm itns5ity- 17"~ resualtsar

tabulated in Table IV and~ Owna graphically in Ficure 3, witw'e the ratio

of reit-through times is~ given as a functioni of disawrslonless pooer per

unit thickness. The solid line is the average of the results for all

m~aterials given in Figure 1, and represents relting with instcus

welt removal. Frou Figure 3 it can be see-. that the rttafned melt

causei; only a slight increase in xelt-thrigh time emttl a critical value

oIf Oicansionless pomer per unit thickums. is .eached. It is interesttn

to note that Whs valtue -.s c.sxarable te Mhat rtqrired for- o."-4izensional

heating. At larger values of Pt's, the tim~e ratio increases, as rare and

mtore of the inciewt. enrg-y is asted* in evaporatica of Ue r~elt. In

t.his -ase, Lhe riesults for all caterials do not fall on a single crwe.

This car. b-: attributed to tt* fact t.at the ratio of hezt of vzprization

to heat of fusion is not the sa=- fcr alf miterials (Table 111). The r-

suits in Figure 3 can be seen to ba: crticered as the ratio of heats,.



7 7 7 7 -'T. 7; ' -o: -4

.Table IV

COMPUTED MELT THROUGH TIMES FOR SEVERAL MATERIALS

Material I -Kw/cm2  tm-sec t1-secPa t'e

Titanium S 2.122 1.151.8 1.069 .7192
1.807 .57S4

2 .3755 .2877
5 .160 .1151

10 .0965 .057S4
20 .0750 .02877
30 .0640 .01918
50 .0505 .01151
100 .0318 .005754

Magnesium 1 .2833 .1373
2 .0996 .06863
5 .0355 .02745
10 .0184 .01373
20 .0112 .006863
30 .0096 .004575
50 .0081 .002745
100 .0059 .00137

Stainless Steel 1 .8688 .5629
2 .3736 .2814
s .149 .1126
10 .0820 .05629
2P .056 .02814
30 .0496 .01876
50 .0423 .01126

100 .0302 .005629
200 .0192 .002814

Aluminum 2 .228 .1062
3 .1166 .07081
5 .0591 .04249

10 .0273 .02124
20 .0140 .01062
50 .00622 .004249
100 .0035 .002124
200 .0024 .001062
500 .0019 .0004249
800 .0017 .000266

21
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These results suggest tht varvorization effects in a fully retained

melt first become significint at a value of power per unit thickness

which is comparable to that required to achic e one-dimensional axial

heat flow. Consequently, it is to bc :.xpected that th.i heat conduction

aspects of laser material interaction problems niay b? treated as one

dimensional in the regime where vaporization is significant. Converiely,

it is .o be expected that the vaporization of retained melt will be

niigible in cases where radial conduction is significant.

AU

-A 23



V. MELTING AID VAPORIZATION DUE TO A SINGLE PULSE

The computer program as modified to model two dimensional

heating and melting with the melt being retained throuoh to complete

vaporization was further modified to treat single or repeated pulses.

For pulses long compared to the time steps used in the finite element

method, the method is anplicable during the duration of a oulse which

is constant or which increases in intensity with time. In order to

analyze the heat trans:er and melting which occurs after the incident

energy is set to zero or reduced siqnificntly (as at the end of a

pulse), accuunt must lie taKen of the fact that the temperature of

certain cells will decrease as time progresses. A cell which, at the

cessation of heat addition, was in the process of vaporizing must either

f? be assumed to "give up" as heat flowing into other cells that portion of

the heat of vaporization which had been supplied cr else must be assumeO

to partially vaporize. The latter anoroach was found to lead to smoother

and more consistent results in the cases considered, Dart'cularly when the

thickness was divided into only ten layers. A nulse with a lonn, slcwly

diminishing "tail" would reouire special treatment, as the material under

the beam may lose energy by conduction faster than sun)lied by the

incident radiation. Repeated pulses present no difficulty once the program

is modified to permit "coolinq down" between pulses. In all cases considered

here, the pulse was assumed to be of uniform intensity for the duration

of the single pulse.

Limited calcul.,*,ons were performed
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for .08 cm thick sheets of aluminum and titanium, assumina qausslan

beam profiles of a - .179 and .228 cm and material Properties as given

in the previous section. Various absorbed intensities were assumed in

temporally uniform pulse of .005 seconds duration. Twenty divisions

jthrough the thickness were used in all cases.

The results obtained for aluminum showed that no vaporization is

to be expected. The peak absorbed intensity reouired to produce melting

to various depths is shown in Fig. 4. Little dependence on soot size

was found, as is evidenced by the results from a one dimensional calculation

shown for comparison.

In the case of Titanium (Figure 5) the sheet is found to be

partially melted and partially vaporized by the beam. The portion melted

is seen to increase rapidly with intensity until the threshold for

vaporization occurs. Above this intensity, a fairly uniform melt thickness

(about .008 cm in this case) is found in front of the vaporization depth.

These limited results suggest that the spot size is not critical, narticularly

in regard to the prediction of the vanorization denth.

These calculations were compared with experimental data obtained from

the Air Force t-leapons Laboratory in order to determine an average value

for the absorbtivity. If a gaussian profile is assumed, the comnarison

suggests an absorbtivity of 6.9% for the experiment on aluminum in vacuum

and values of 13.7% and 9.2% respectively for the two experiments on
Titanium in air. The beam shape in these experiments would, however, have

a pronounced effect on the results of this comparlson. Absorbtivlties of

twice there values would have been necessary if thK bean was "flat," %whih n
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the observed depths of melting and vaporization would be possible with

a loter absorbtivity if the vaporization and melting occured at a local

"hot-spot" in the beam. These limited results do suggest, however, a

method for determining absorbtivity if the ieam profile is well charac-

terized.
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VI. COiNCLUSIOUS

Further theoretical studies of laser induced melting and vaporization

using the finite element numerical method previously described have

shown the method to be adaptable to several new problems.

Principal new results are as follows:

(1) A single curve has been developed which permits the estimation

of time required to produce melt-through by a continuous beam of gaussian

profile even for cases where radial conduction is substantial. The melt-

through time was shown to be a unique multiple of the time required for

one dimensional melting at the same intensity, where the multiple is a

function only of a certain dimensionless power per unit thickness,

independent of intensity, spot siz; and material.

(2) A simple analytical resilt was developed which shows that for

values of dimensionless power per unit thickness below a critical value

(which does depend on material, spot size and thickness) melting of thin

sheets cannot be produced.

(3)At high values of dimensionless power per unit thickness, all

problems may be treated as ene dimensional (axial) heat conduction. The

critical value is about P a = 70.

(4) It is particularly significant that the geometrical condition

necessary for one dimensionality is not a ratio of spot dimension to

thickness, but rather a ratio of spot area (dimension squared) to thick-

* A ness.

(5) The value of power per unit thickness necessary to produce one

dimensional axial heat conduction is also aporoximately the threshold

where vaporization effects first become significant. At higher values V
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ofP a the dimensionless power per unit thickness, large amounts of

Input energy serve only to produce vaporization of the melt.

(6) The method was also found applicable to the pediction of t,e deqree of

melting and vaporization due to single pulses of high intensity and

provides a method for estimating absorbtivities if the melt depth due to

awell characterized pulse Is known.
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