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A DECISION PROCEDURE FOR THE FIRST ORDER THEORY
OF REAL ADLITION WITH ORDER
by

Jeanne Ferrante and Charles Rlckoff+
Spring 1973

1. 1Introduction. In this paper we exhibit an efficient decision proce=
dure for the theory of the real numbers with + (plus) and < (less than).
Of course, as stated in a paper by Hodes [1], who also gives such a proce-
dure, the decidability of the theory in question is a consequence of Tarski's
theorem that the real numbers under +, ¢ (times) and < is decidable; howewer,
Tarski's procedure is far from efficient for the restricted theory we are
interested in. We propose to exhibit a procedure which, as it turns out,
is nearly optimal in computational efficiemey. Fischer [2] shows that there
is a constant ¢ > 0 such that any nondeterministic Turing machine which

decides real addition (even without order) requires for almost every n

vime 2°"  to decide some sentences of length n. We exhibit a deterministic

procedure for addition on the ordered set of real numbers which uses space
Zdn, d a constant, and time zzgn’ g a constant, to decide sentences of length
n. Thus, there appears to be a gap of approximately one exponential

between the upper and lower time bounds. But since the upper bound is
deterministic and the lower bound is nondeterministic, this gap should be
viewed in the light of & long-standing, unproved conjecture of sutomata theory

which states that nondeterministic time t is equel in power to deterministic

t
time 2,

Work reported here {s supported by Project VAC, sn MIT resesrch program
sponsored by the Advanced Research Projects Agency, Department of Defense,
under Office of Yaval Nesearch Contrect Jamber NO0014=70-A<0362-0006 and

the Netioma! Science Toundation under contreact mamber G100-4)27. Reproduc -
tien in vhele or in part {s permitied for amy purpose of the U.S. Covermment.




The procedure we give replaces unbounded quantifiers by quantifiers
ranging over a finite set of rationals; truth of the sentence in the
real numbers will thus be determined by checking finitely many instances
of a matrix. In order to prove the correctness of our procedure, we
first exhibit an elimination-cf-quantifiers procedure with the important
feature that it does ot require the sentence to be put in disjunctive
normal form at each elimination of quantifiers,

In section 2 we define the language under consideration. 1In section
3 we give our elimination-of-quantifiers procedure. Our method
utilizes an idea used by Cooper [3] in deciding integral addition. 1In
section 4 we show, via an analysis of section 3, that each quantifier
in a formula can be replaced by a suitably bou ‘ied quantifier, and then
show that the desired space bound can be achieved. 1In section 5 we

renark on iafther applications of our methods.

2. Notation. We consider the following language:

Variables xo.xl,xlo,...
(with subscripts written

in binary)
Integral constants 0,1,%W,1%,...

(written {n binary)
Propositional constants T, F
U'nary symbol - (minus)

Binary symwbols “ * *%, / (less than, equal, plus, divided by)

and the vsual logical symbole =, A, v, “WE ().

‘megation, conjunction, disjunction, for all, there
eviste, parentheses)




Terms are of the form

ai'bi signed
(ai/bi) Yy integral constants,
i

0

bi £ 0, Yy distinct variables, 1If tis t2 denote terms, then t, < t

1 2
and t, = t, are atomic formulas. We will assume that to begin with, and

prior to each elimination of quantifiers, all etomie formula are of
the form t >0 or t = 8. We use the usual definifions of formula and
sentence.

Now let S be the set of those sentences in the above language
which are true when the quantifiers range cver the real numbers, with
integral constants interpreted in the obvious way, < interpreted as the
usual order on the real nq?@ers, = as equality, +, - and / as ordinary
real addition, minus, and division. We propose to exhibit a decision

procedure for S(that is, an algorithmic procedure for deciding whether o

an arbitrary sentence in our ianguage is in § or not) such that if B is

a sentence of lenmgth n, the algorithm determines in space 2dn' d a
.",.}
constant, whether or not B € S, .2

3, Eliminatfon of Quantifiers. We assume we have a formula

i, B(x‘,...,xn). where B(xl,...,xn)is a quantifier-free formula
containing only the variables xp..,xn free. We will exhibit a quantifier-

free formula B'(x_,...,x )vhich is equivalent to Exl B(x!.....xn) in
n

the theory S.




The procedure is as follows:

"Solve for xl" in each atomic formula. i.e. replace each atomic

formula involving X3 by an equivalent one of the form

x, <t (1)
u <x (2)

X, =V (3)

where t, u, v are terms not containing X; Let C(xl,...,xn) denote
the result of solving for Xy in each atomic formula of B(xl,...,xn)
containing g Thus, B(xl,..,xn) will be replaced by an equivalent
formula C(xl,...,xn),C(xl,...,xn)a Boolean combination of atomic

formulas of forms (1), (2), and (3) involving X0 and atomic formulas

not involving X

We now make the following definjtions:
-

Given C(xl,...,xn)to get C_m(C+m):
el
replace Xy <t in C by T f F
u < x1 F T
v = x1 F F

Clearly, for any real numbers Toreeuls and r, a sufficiently small
real number, C(rl,...,rn)and C_m(rz..."rn)are equivalent. A

similar statement can be made for C+m for T, sufficiently large.




-

Let U be the set of terms t, u, v in the atomic formulas of type
(1), (2) and (3) occurring in C(xl,...,xn). We now claim
?xl C(xl,...,xn) is equivalent to

LS ¥ C+m \/ C((w+z) /2, xZ""'xn)'
w,z €U

Proof: Suppose we are given real numbers rz,...xn.

(=) Suppose C V C v \/ C((w+2)/2, r,,ee.sT Jis true.
<o s w,z €U 2 .
?

I1f one of the disjuncts C((w+z)/2, rz....rn)is true, so is

Exl C(xl,rz.L.,ru). So suppose one of the first two disjuncts is
true, say C__. (The proof for Cio is similar). Then since we can
pick r

1 sufficiently small so C(rl,....rn)is equivalent to C o

Hxl C(xl, r2,...,rn)is true,

& !
(=) Suppose %, C(xl,r?...,rn) is true.

Let tP""tm be the distinct real numbers, in increasing order,
corresponding to the terms in U which are obtained by substituting
Tyreonl for Kpson o . Since Hxl C(xl,rz...,rn)is true, there is
a real number ry such that C(rl,...,rn)is true. Now, r1 must

satisfy a specific order relation with respect to the numbers

t t . That is, exactly one of the following must hold:

prove st

(a) r, < Tt

1
(b) tm < r,
(¢) r, = ti for some 1 < 1 < m.
(d) ti < r1 < ti+1,for some 1 <{ < m-1,



It is then clear that if r also satisfies the same specific order
relations w.r.t. tl"'"tn as rl. C(r, rz...,rn)il true., But 1if (a)

holds, C_ﬂ must be true, if (b) holds C, must be true, if (c) holds

o
C((ti+ti)/2, r2,...,rn)mu3t hold, and in case (d) C((ti+ti+l)/2, r2,...,rn)
must be true.

It should be noted that this procedure will work just as well for
rational addition with <. 1In fact, the procedure works for any divisible,
torsion-free, ordered abelian group. We need the divisibility to solve
for Xy the torsion-free requirement makes this solution for Xy unique.
Thus, in particular, any two divisible, torsion-free ordered abelian

groups are elementarily equivalent. We henceforth assume we are dealing

with the rationals,

4, Bounds on the Procedure. The purpose of this section is to show

the desired space bound can be attained. In order to do this, we want

to compute a space bound on the elimination of quantifiers procedure

given in section 3.

It should be noted that we are using as our model of computation the

deterministic, one tape Turing machine; space bounds, or the number of

tape squares used by the Turing machine, are given as a function of n,

T

the length of the sentence the machine is deciding. As is widely known,

this model is not restristive for bounds as large as exponential since

it can gimulate a multitape or nondeterministic machine in space at most




the square of the space required by the more powerful model [4). Of
course we describe our procedure informally, leaving it to the reader
toconvinee himself that straightforward implementation of our procedure
on a Turing machine would achieve the claimed bounds on time and space.
We now compute the amount of space it would take to eliminate
quantifiers in a formula E of length m, with Sy the size of the largest
integral constant in E, £ the number of quantifiers in E. Our analysis
is similar to that given by Oppen [5] for Cooper's decision procedure
for Integral Addition. We first put E in prenex normal form using the
standard algorithm but always choosing variables with the shortest
subscripts possible, obtaining E', Note that E' is of length < m log m.
This is so because there are at most m occurrences of variables, and
thus any subscript of a variable in E will be increased in length by
a factor of at most log m, Note that the prenex normal form procedure
does not change the number of quantifiers or the size of constants,
and so E' has £ quantifiers and largest integral constant of size 8y
Now, let D be a formula. Let D' be the formula gotten by applying
the elimination-of-quantifiers procedure to Ix D. Let n(n') denote
the length of D(D'). Let s(s') be the size of the largest integer
constant in D(D'). To compute n' from n, note that "solving for x"
involves dividing through in each atom by the coefficient ol x; instead
of appearing once, each such coefficient can appear n times. Thus,

the length of the formula Ix F gotten from Ix D by solving for x, is at




most n2. The substitution procedure involves increasing the length to
at most n2(3(2n + 2)n2), because for each of the at most n2 pairs of
terms (w,z) we must write F((w+z)/2), and then ollect terms. To collect
terms we have to add up 3 coefficients whose integers are each of
length < 2n + 1 to éet a total whose integers are of length < 3(2n + 1) + 2,
so that the size can go up by a factor of at most 3(2n + 2). We must
also write the formulas F+m, F__ of length at most 2n. Thus,
n' < 2n + n2(3(2n + 2)n2) < 10ns < n9.

Wo now compute s' in terms of s. Again, since "solving for x"
involves dividing through in each atom by the coefficient of x, which
is limited in numerator and denominator by s, the largest constant
becomes at most 32. The substitution procedure involves dividing by
2 and collecting like coefficients. Since in each atom gotten via the
substitution process there cun be at most three occurreﬁces of the
variable y(y # x) and ‘the three coefficients in question are limited in
numerator and denominator by size 252, their sum is limited in like
manner by 3(252)3. Thus 8' < 2486 < s11 (if s =2 2).

Let n, be the length of the largest formula D gotten from the

formula E' by elimination of quantifiers; let s_., be the size of the

E'
larges* integral constant similarly obtained. Since deciding E'

requires £ eliminations of quantifiers,

J/
ng, S (m log m)9 and

L

11
S s (sO) s if Sy > 2, 1

ST L A _.,._.._._Aﬁ__‘-_...__‘_..___.._J




and since it is not hard to see that the storage required for bockkeeping

is no longer than the size of the largest expansion, to decide E' takes
£

at most space (m log m)9 . Therefore, we need at most pen space, s
a constant independent of m, to decide formulas of length m. It should

also be noted that the time bound is of the same order; that is,

29"
2 » ¢ @ constant, time is at most needed to perform the elimination-

of-quantifiers procedure. We need especially the fact that the size
4
of the largest constant grows no larger than so2 , P a constant

independent of m, £ and So’ in deciding formulas of length m with £

quantifiers and Jargest integral constant of size < s if's. 2 2,

0’ 0

Definition. A rational number r is limited by the positive integer k

{ff r = a/b in lowest terms, and |a| = k, |b] < k. A quantifier Tx or
7x is limited by the positive integer k, written Ix < k or Vx < k, if

instead of ranging over all rationals, the quantifier ranges over all

rationals limited by the positive integer k. Note that if r. and r

1 2

are rational numbers limited by the positive integers Ve Wy, respectively,

then ry + r, is limited by 2(w1°w2).

~

T emmna . a constant ¢ > 0 such that for all £, 1 and w., W.,...,%

0" 1 i
i IR R wj is a positive integer, Yo = 1, and Qx ¥F(x, yl,...,yi) is

if for

a formula with ¢ quantifiersﬁwhere Q is Y or 73, with largest integral constart

K > i v oL s
g Sg > 2 and rr...;i are any rational numbers limited by w,, e

1

respectively, then Qx F(x, r,,...,r;) is true {ff

1

5 (1+1)
Qx < so“ (wo‘--wi) b Xy rl,...xi\ is true.
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Proof. Consider F(x,yl,...,yi)with < £ quantifiers. By the results
of section 3, we can replace F(x,yl,...,yi)by an equivalent quantifier-

free formula B(x,y,,,,yi), such that all rational constants appearing

pe L
in B are .imited by so » P a constant independent of £ and F. Thus
it will be sufficient to show Qx B(x,rl,...,ri)true iff
act 4 2
Qx < 5 (wo---wi) B(x, rl,...,ri).

We can assume, without loss of generality, that Q fs 3. Consider
Ix B(x,rl,...,ri) By the ~ecults of section 3, if such an x exists,
then it is either less than all such terms appearing in the above formula
after solving for x; or greater than all such terms; or equal to one;
or can be assumed to be the average of two of them. We therefore calculate
a limit for the terms appearing in 3x B(x,rl,...,ri)after solving for x.
Consider any such term t, ¢t = i (a,/b

-
J=1
coefficient of x we divide by to solve for x. Thus t {s limited by

)(l/a)rj, where a is the

[ Pl 4 JpI421
2 (so ) (wo---wi) < 5 ("0."w1)' Thus (t+u)/2, t, u any

pl+21 2

two such terms as above, is lim{ted by 2(:0 wo...wl) <

o PI+2142 2 pla2{42 )2
5, (wo---wl) . Thus we can limit x by % (vo-nw1 +1

2c(Hi) 2
< 5 ("0°.°wl) » € & constant, vhere the 1 must be sdded to handle

the cases where x {s either less than or greater then all such terms.

zc(ldl) 2

Thus Zx B(x,rl,....rl\ll equivalent to 3x < % (vo-'ovl) B(x,rl....,r’




We can now state:

Theorem. Let ¢ be the constant of the previous lemma,
Qlyl"’prp F(y]b,,,,by)be 4 sentence in prengx normal form with largest integral

cl ct
s > 2, Let w, = s £ 2

2
constants < So 0 1 0 s Vsl " s0 (vl...vk) .

Then, Qq yy... szt F(yl....,ykﬁs true 1ff Qy y; s w ... szl £ v, F(y],...,yp)

is true.

Proof. Immediate, from the previous lemma,

We now have:

Iheorem. = a constant d > 0, and a decision procedure for rational

addition with <, such that to decide a sentence B of length n takes at

most Zdn space,

Proof. let B be a sentence of length n with largest integral constant
< '0’ Let B' be {ts equivalent prenex normal form of length at most
n log n. Then, using the above theorem, B’ = Qly‘ v T Q'y‘ F(yr...y')

is true {ff Qlyl S PREY Q’y‘ v, F(yl,....y') i{s true, v, defined as above.

3l-l

We now wish to show vl - 'l . But {t {s easy to see 'k#l - "k

)

since v =W (v *oey v )2 o [w (v, *oen )? . 2 )

kel " ViM% 1My Ty e T e,

)b. 2cl )l-l
and thus v“, g "l « Thus v‘ - (co ) » This (s the largest

bound ve emcounter (n limiting the quantifiers of B°,




¥

We thus must evaluate the matrix of B', of length at most n log n,

ck 3£-1 2c'n
at rationals limited by (s0 ) = 2 , ¢' a constant, since s

is 1imited by 2" and £ < n. But then the obvious checking procedure
in which integral constants are written in binary notation takes space
at most 2dn, d a constant.

The upper bound on the decision procedure thus obtained should

be compared to the lower bound obtained by Fischer ([2].

5. Applications. The idea of deciding truth in a particular theory,

as outlined above, can be applied to many other theories, thereby
obtaining procedures of considerable computational efficiency. That

is, given a particular theory, one gives an elimination-of-quantificcs
procedure, analyzes it to see how'"larze" constants can grow, and uses
this analysis and the elimination-of-quantifiers procedure in a manner
similar to that given sbove to limit quantifiers to range cver finite
sets instead of an infinite domain. In particular, we can use the
quite efficient elimination-of-quantifiers procelure given by Cooper [3)

for deciding truth in the first order theory of the follovirg language 1:

Integral constants o L W, 11, ...
Uerry symbol o (minus)
Simary symbols <, », 4, |. (less then, equals,

plus, divides)
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and the usual variables and logical symbols, where terms are of the

k
form Z a,y, +a » a8, signed integral censtants, y, distinct variables;
-1 174 k+1* i i

atomic formulas are of the form ¢, <t , t, =

) gty =t,and n | t)» nan

1 t2 terms,

If we use the analysis of Cooper's procedure by Oppen [5] as stated

integral constant, t

below, we can derive a further result on an upper bound on space for

deciding this theory. We first state:

Definition. An integer n is limited by the positive integer k if
’nl £ k.

A Juantifier Qx, where Q {s Y or 7, in L is limited by the pesitive
k, written Qx < k, if instead of ranging over all integers, it ranges

over all {ntegers limited by k.

Theorem. (Oppen): = a comstant e > 0 such that if Cooper's eliminat{on-

of-quantifiers procedurc is applied to a sentence with integral constants
{mited ty the positive {nteger 85 % 2 2, and { quantifiers, the size

of any {ntegral constant appearing at any point of the procedure {s

el
22
o .

We can nov state:

limited by a

Lewma 8 corstant { > 0 such that given Tx F(x, y‘.....y’) vith {ntegral

comtants linited by the positive (nteger s > 2 and | quantifiers,

o' "o
and (ntegers Pysee oy linited by the positive Integer v, (v = ) §( | = 0




2f(i+£)
, 2 ¢
then Tx F(x,nl,..;,ni)is true iff Ix < 8, (wel) F(x, nl’f'f’ni)

Proof. Using the previous theorem, Cooper's procedure, and an analysis

similar to that given for real addition.

cf
Theorem. 7 a constant g > 0 such that if Q1 Xy oo Qz X, B(xl....,xz)

1s in prenex ncrmal form with integral constants 1imited by the positive

integer S5 2 2, B quantifier-free, then lel rh szt B(xl,...,xz) is true

2g£+1 2g£+i 2g£+t
2 _ 2 2
1ff lel € 5, "'Qixi & 80 ...szt £ 'O B(xl""'xl)'

Proof. Apply the previous lemma.

It 1s then clear tnat:

Theorem. = a constant h > 0, and a decis;on procedure for integral

addition with <, such that to decide a sentence of length n takes at

2h'n
moset 2 space.

This theorem should be compared to that obtained by Fischer and

Rabin [2]):

Theorem. (Fischer awd Rabin): = a constant 3§ > 0 such that any non-
deterministic Turing machine which dec{des integral addition (even

n
vithout order) requires for almost every n time 22’ to decide some

sentences of Jemgth n.
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