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A DECISION PROCEDURE FOR THE FIRST ORDER THEORY 

OF REAL ADDITION WITH ORDER 

by 

Jeanne Ferrante and Charles Rackoff 

Spring 1973 

1.     Introduction.     In this paper we exhibit an efficient decision proce- 

dure  for  the theory of the real numbers with + (plus)  and < (less  than). 

Of course,  as stated in a paper by Hodes   [1], who also gives such a proce- 

dure,   the decidability of the theory in question is a consequence of Tarski's 

theorem that the real  numbers under +,   •   (times)  and < is decidable;  however, 

Tarski's procedure is  far  from efficient  for the restricted theory we are 

interested  in.    We propose  to exhibit a procedure which,  as it turns out, 

is nearly optimal  in computational efficiaacy.     Fischer   [2]   shows  that there 

is a constant c > 0 such that any nondeterministic Turing machine which 

decides real addition (even without order)  requires  for almost every n 

time I to decide some sentences of length n.    We exhibit a deterministic 

procedure  for addition on the ordered set of real numbers which uses space 

dn 9gn 
2     ,  d a constant,  and  time 2^     ,  g a constant,   to decide sentences of length 

n.     Thus,   there appears  to be a gap of approximately one exponential 

between the upper and  lower  time bounds.    But since  the upper bound la 

determlnlatlc and the  lower  bound  is  nondeterministic,   this gap should be 

viewed  in the light of a long-standing,  unproved conjecture of autonata theory 

which states that nondetenelnlttlc Claa t it equal  In power  to deteralnittlc 

.t- J«. 

Work reported here is eufportad by frolect ^AC. an «IT  reeearch protraa 
•poaeore* by ih« ktfmU ■aeMrch fre)ects A«aaty. OepartMM of De feme, 
wider nffue of towl Maaarcli Coatract Mater MMOU-TO-A-OMl-OOO* •* 
ike ItoilMMl SalMM f«M<aciM «atfer caacraci wm*m CJOO-4117. 
x\— la «*•!• m la pan  la aaf«it«ai far a«r parpaaa af tta 0.1. 
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The procedure we give replaces unbounded quantifiers by quantifiers 

ranging over a finite set of rationals;   truth of the sentence in the 

real  numbers will  thus be determined by checking  finitely many instances 

of a matrix.     In order to prove the correctness of our procedure, we 

first exhibit an elimination-of-quantiflers procedure with the important 

feature that  it does not requite the sentence to be put  in disjunctive 

normal  form at each elimination of quantifiers. 

In section 2 we define the  language under consideration.     In section 

3 we give our elimlnatlon-of-quantlfiers procedure.     Our method 

utilizes an idea used by Cooper   [3]  in deciding integral addition.    In 

section 4 we show,  via an analysis of section 3,   that each quantifier 

in a  formula can be replaced  by a  suitably bou-ied quantifier,  and  then 

show that  the desired space bound can be achieved.     In section 5 we 

renark on fm-ther applications of our methods. 

2.     Nnfation.    We consider  the   following language: 

Variables x .x,.x 
(with subscripts written u 

in binary) 
• 

Integral constants 0,1,10.11,... 
(written in binary) 

Propositlonal constants    T,F 

i nary symbol                          . (mlm») 

Rlnary syifcolt                   ^ .t 4,  /    (UM ih^ ^^ p^ 4lvi494 ^ 

•wd ih« usual  lotlc«! symbols -\ A. v. Y, f. (.>. 

(MMtlM. cMiMtiiM. iUJwitlM,  f«r «11. tlm 
•«IM*. parMtlMM*) 



Terms are of  the  form 

1=0 
(VV ^i 

ab    signed 

Integral constants, 

b. 4  0, y. distinct variables.  If t., t?  denote terms, then t < t 

and t^ = t9 are atomic formulas. II« will assume that to begin with, and 

prior to each elimination of qunnttlficr», «U *tomlc formula are of 

the fonn t > 0 or t = 6. We use the usual definitions of formula and 

sentence. 

Now let S be the set of those sentences in the above language 

which are true when the quantifiers ringe c"er the real numbers, with 

integral constants interpreted in the obvious way, < Interpreted as the 

usual order on the real robbers, = as equality, +, - and / as ordinary 

real addition, minus, and division.  We propose to exhibit a decislOT' 

procedure for S(that is, an algorithmic procedure for deciding whether 

an arbitrary sentence in our language is in S or not) such that if B is 

a sentence of length n, the algorithm determines in space 2dn, d a 

constant, whether or not B € S. «a» t 
i'     nircinatlon of Quantifier».     We aHsisne we have a  formula 

■«I  ^Xjf.,«  ), where B(x.....,x > I« a quantifier-free  formula 

containl« only the variabUs *r-'Pn fr»#.    U« will exhibit a quantlfltr« 

fr— foraula B,(«2 x^trtilch ia äquivalent to 2x1 B(x1 x )  In 

thm tlMory I. 

~ 

A 



The procedure Is as followi: 

1.  "Solve for x^' in each atomic formula,  i.e. replace each atomic 

formula Involving x. by an equivalent one of the form 

x1 < t (1) 

u < x1 (2) 

x1 = v   (3) 

where t, u, v are terms not containing x..  Let C(x x ) denote 1        in 
the result of solving for x. in each atomic formula of |(x„.,«.s ) 

In 
containing x^     Thus,  B(x.t..ts )   will be replaced by an equivalent 

formula C(x1,...,x ) ,C(x  ,.. .,x )a Boolean combination of atomic 

formulas of  forms  (1),   (2),  and  (3)  involving x  ,  and atomic  formulas 

not  involving x1. 

2.      We now make the  following definitions: 

Given CCXT x ) to get C     (C    ): 

replace x.  < t  in C  by T 

u    < x] F 

v    = Xj F 

Clearly,   for any real  numbers r2,...Jr  ,  and r.  a sufficiently small 

real   mimber.  Crr1 
r

n>ani c.eD<r2 r ^ are equivalent.     A 

■imllar statement can be made  for C       for r.  sufficiently  large. 
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3.  Let i: be the set of terns t, u, v in the atomic formulas of type 

(I), (2) and (3) occurring In C(x.,...,x ). We now claim 
l n 

^x. C(x,,...,x )  Is equivalent  to 
1 1 n 

C     v c 
-00 +00 

V      C((wfa)/2.  x2 xn). 
w,z € U 

Proof:  Suppose we are given real numbers r ,.. .,r . 
2    n 

(••}  Suppose C  ^ C.  v   V    C((w+s)/2, r0,...,r Hs true. 
-00       +00 /- ,, i 

W,Z t U 

If one of the disjuncts C((w+z)/2,  r^. ..»r Hs true,  so is 

2x    C(x.. ,r^... ,r ).  So suppose one of the  first two disjuncts is 

true,   say C    .     (The proof for C      is similar).    Then since we can 
'    -00 r +00 

pick r, sufficiently small so C(r,....,r )is equivalent to C  , 
1 in -oo 

Sx. CCx-, r ,...,r )is true. 
1   12   ' n 

(=£>■)  Suppose b. CCx^r«. ...r ; is true. 
1    1  ^r   ' n 

Let t-. ...t be the distinct real numbers, in increasing order, 
1   m 

corresponding to the terms in \\  which are obtained by substituting 

r0,...,r  for x.,...^ .  Since 3x, CCs..'***«' ^8 true, there is i- n     ^n li^n 

a real number r1 such that C(r.»••«•( ) is true.  Now, r. must 
i in l 

satisfy a specific order relation with respect to the numbers 

(■••••(t •  That is, exactly one of the following must hold: 
l     m 

(a) 

(b) 

(O 

(d) 

'1^1 

t < r. 
m   1 

r, = t  for some 1 C i C ■■ 

t < r < t  ., f or some 1 <  I < m-1. 



It It then clear that  if r aleo eatliflef the same specific order 

relations w.r.t.   t.,...^    as r.,  C(r,  r_...,r )is true.    But  if (a) 
in 1 ? n 

holds,  C      must be true,   if  (b)  holds C^    must be true,   if  (c)  holds 

C((t +t  )/2,  r r )must hold,  and  Incase  (d) C((ti+tJ^1)/2,  r.,....r  ) 
i    i * n i    i+i £ n 

must  be  true. 

It should be noted  that  this  procedure will work just as well   for 

rational addition with <.     In fact,   the procedure works  for any divisible, 

torsion-free, ordered abellan group.     We need  the divisibility  to solve 

for x  *,   the torsion-free requirement makes  this solution for x1  unique. 

Thus,   in particular,  any  two divisible,   tors ion-f reft ordered abelian 

groups are elementarily equivalent.    We henceforth assume we are dealing 

with  the rationals. 

4.     Bounds on the Procedure.     The purpose of this section Is  to show 

the desired  space bound can be attained.     In order to do this,  we want 

to compute a space bound on the elimination of quantifiers procedure 

given  In section 3. 

It  should be noted that we are using as our model of computation the 

deterministic,  one tape Turing machine;  space bounds,  or  the number of 

tape squares used by the Turing machine,  are given as a function of n, 

the  length of the sentence the machine is deciding.    As is widely known, 

this model  is  not restristlve   for bounds as  large as exponential  since 

it can simulate a multitape or  nondetermlnlstic machine in space at most 



the square of the spare required by the more powerful model   (4).    Of 

course we describe our procedure Informally,   leaving  It  to the reader 

tooonvlnce   himself that straightforward implementation of our procedure 

on a Turing machine would achieve    the claimed bounds on time and space. 

We now compute  the amount of space it would  take to eliminate 

quantifiers   in a  formula | of length m. with s0  the size of the  largest 

integral  constant  in E.   | the number of quantifiers  in E.    Our analysis 

is similar  to  that given by Oppen  [51   for Cooper's decision procedure 

for  Integral  Addition.    We  first put E  in prenex normal   form using the 

standard algorithm but always choosing variables with the shortest 

subscripts  possible,  obtaining E'.     Note  that I«   is of length «: m log m. 

This  is  so because  there are at most m occurrences of variables,  and 

thus any subscript of a variable  in I    will  be increased  in length by 

a  factor of at most  log m.     Note  that  the prenex normal  form procedure 

does not change  the number of quantifiers or  the size of constants, 

and  so E'  has  I quantifiers and  largest  integral constant of size |  . 

Now,   let  D be a  formula.    Let D'  be the  formula gotten by applying 

the elimination-of-quantlfiers procedure to 3x D.     Let nCn')  denote 

the length of 0(0').     Let s(s')  be the size of the  largest integer 

constant  in 0(0').     To compute n'   from n,   note  that "solving  for x" 

involves dividing  through  in each atom by the coefficient of x;  Instead 

of appearing once,   each such coefficient can appear n times.    Thus, 

the  length of  the   fon.mla  Ix F gotten from 3x D by solving  for x,   Li  at 
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2 
most n .     The substitution procedure  involves increasing the length to 

2 2 2 
at most n (3(2n + 2)n ),  because  for each of the at most n    pairs of 

terms  (w,z) we must write F((w+2)/2),   and  then - ollect terms.     To collect 

terms we have to add up 3 coefficients whose integers are each of 

length s 2n + 1 to get a total whose  integers are of length s 3(2n + 1) + 2, 

so that  the size can go up by a factor of at most 3(2n +2).    We must 

also write  the  formulas  F,   ,  F      of  length at most  2n.     Thus, 
■ft»     -00 ^ ' 

n' ^ 2n 4 n2(3(2n + 2)n2) ^ 10n5 < n9. 

W.-» now compute s' in terms of s.  Again, since "solving for x" 

involves dividing through in each atom by the coefficient of x, which 

is limited in numerator and denominator by s, the largest constant 

2 
becomes at most s .  The substitution procedure involves dividing by 

2 and collecting like coefficients.  Since in each atom gotten via the 

substitution process there can be at most three occurrences of the 

variable y(y ^ x) and •**»« three coefficients in question are limited in 

2 
numerator and denominator by size 2s , their sum is limited in like 

2 3 6   11 
manner by 3(2s ) ,  Thus s' <: 24s <: s   (if s s 2), 

Let IL,! be the length of the largest formula D gotten from the 

formula E' by elimination of quantifiers; let s , be the size of the 

larges' integral constant similarly obtained.  Since deciding E' 

requires I eliminations of quantifiers, 

rv,,  ^  (m lof ra) and 

I 

V   *   <*o> ' if "cr 2' 
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and  since  it   is  not  hard  to see  that  the storage required   for  bookkeeping 

is no longer  than the size of the largest expansion,   to decide E'   takes 

at most space  (m  log m)     .     Therefore,  we  need  at most  228*m space,    s 

a constant  independent of m,   to decide  formulas  of  length m.     It  should 

also be  noted  that   the  time bound  is of the  same order;   that  is, 

q.m- 
,   q a constant,   time is at most  needed  to perform the elimination- 

of-quantifiers procedure.    We need especially the  fact  that  the size 

of  the  largest constant  grows  no  larger  than s*       ,   p a constant 

independent  of m,   £ and  s   ,   in deciding  formulas  of  length ■ with I 

quantifiers  and   largest  integral  constant of size ^ s^,   if s    £ 2. 
0 0 

Definition.     A rational   number r  is  limited by  the positive  integer k 

iff r = a/b in  lowest  terms,  and   |a|   1 k,   [b]   ^ k.     A quantifier ?x or 

Vx is  limited  by   the positive  integer k,  written 3x ^ k or Vx <: k,   if 

instead of ranging over Ml  rationals,   f.he quantifier  ranges over all 

rationals  limited  by  the positive  integer k.     Note  that  if r.  and r 

are rational   numbers  livited  by  the positive   Integers w  t  w,,,   respectively, 

then r,  + r     is   limited  by 2(w »w ). 

1 Sgg■     ' a constant  c > 0 such  that   for all   {.,   1  and w  ,  w ,..,,w    U  for 

j   =  1,. ..i, w     is  a  positive  integer,  »U ■ I,   and  Qx  l-(x,  y. f)   ie 

a  formula with   I  quantifiersJwhere Q i'. T or ^ with largest  Integral constarr 

s
0«   so ^  2 anc'  rv,-*'ri  ftre any rational   numbers   limited  by «.••.•i«,, 

respectively,   then Qx  F(\,  r. t.)   I»   true   Iff 
i 

,c(t+i) 
Qx ^ ar (w    ••w )""  i   x,,  r.,...pr  >   is  true. 

o i l 
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Proof.     Consider  F(x,y1,...,yi)wlth s l quantifiers.     By  the results 

of section 3, we can replace FCx.y^... .y^by an equivalent quantifier- 

free formula B(x,y,.. »^,     such that all rational constants appearing 

2p-X 
in B are  .united  by  s0 ,   p a constant  independent» of I and F.     Thus 

it will be  sufficient  to show Qx B(x,r  ,...,r  )true  iff 

.c'l 
Qx s s^0- (WJJ.-.W^2 B(x,  r1,...>r1). 

We can assume, without loss of generality, that Q is 3.  Consider 

3x B(x,r1,...,ri). By tk*> results of section 3, if such an x exists, 

then it is either less than all such terms appearing in the above formula 

after solving for x; or greater than all such terms; or equal to one; 

or can be assumed to be the average of two of them.  We therefore calculate 

a limit for the terms appearing in 3x B(x,r ,...,r)after solving for x. 

i 
Consider any such term t.  t - E (a /b )(l/a)r , where a 1« the 

J-l  J  J      J 
coefficient of x we divide by to solve for x.  Thu« t is limited by 

i      ,P'+1  I 2P'+21 
2 (80    )   fiy«»^) < s0     (w^MWj).  Thua (t4u)/2, t, u any 

,pe*2l        2 
two such term« as above, is limited by 2(s       w ...w )  < 

tM*tMI 2 .PU2142 

■o (V*','i)   *   Thui w* can ll"lt * ^ "o ^•••"i'4 l 

2c^-H) 2 
< "o (V*,,'l)   • c • co»»««ant, where  eh«  1 «uat be added to handle 

the cases where » la either  less than or ffMCer  Chan all such tenu. 

^      . ,e(Nl» 2 
Thus 2K i(x,r1 r^i« equivalent to Is < «^ %••••,) •(«.», r,». 
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We can now state: 

Theorem,     let  c  be  the  constant of  the previous   lemma, 

^\yV"^fy!  F^y-, •'•• »y;)be a  sentene§  in pretax  non»al  form with  largest   Integra] 

constants  * BQ,   *Q >  2.     Let ^  = sQ
2    ,  wk+1  =  SQ

2
'   (v}---v^

2. 

Then.  Q,  y,...  Q£y£  F(y1 y^Hs  true  iff Qj]^ <« ...  Q^  ". V}  F<y^ y  ) 

is  true. 

Proof.  Immediate, from the previous lemmn. 

We now have: 

Theorem.     | a constant  d > 0,   and a decision procedure   for  rational 

addition with <-,   such  that  to decide a sentence  B of  ler«th n takes at 

most  2      space. 

SlSSi.    Itt  B be a  sentence of UnRth n with  largest   Integral  constant 

t SQ.     Let B*  be  its equivalent  prenex normal   for» of  lei«th at «ott 

n log n.    Then, using the above theoresi, B*  - 0lyl   ... Qp    Tiy^..^ ) 

is true iff Q^j < «#l  ... Q^ < w# F(yx y^  1. tru«, w1 dsftnsd as above. 

We now wish Co show «»|  • «», .     But  it  is easy  to see i»k4l • w^ 

si«. wk4l . «,'-,••-,., v2 • 'vvv/ ]\ '\ \2' \ 

,k ^1    ,1-1 
and thus w^,  • w|    .     TIMM »*, • <»0      > •    Tilt»  is  rW  tersest 

we enceuncer  I« Italtigg the guaMKters of •*. 

• 
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We  thus must  evaluate  the matrix of B',   of  length at most  n log  n, 

2c£      1.-1 c'n 
at  rationals   limited  by   (s0       ) =2 ,   c*   a constant,   since s 

is   limited by 2     and  I z n.     But  then the obvious  checking  procedure 

in which Integral  constants are written in binary notation takes space 

«dn     . at most  2     ,   d  a  constant. 

The upper bound  on the decision procedure  thus obtained should 

be compared  to   the   lower  bound obtained by  Fischer   (2). 

5.    Application«.     The  idea of deciding  truth  in a particular  theory, 

as outlined above,  can be applied  to many other  theories,   thereby 

obtaining procedures  of considerable computational  efficiency.    That 

is,  given a particular  theory,  one gives an ellinlnatlon-of-quantlfte»e 

procedure, analycas  it to sac how "large" constants can %r<M, «nd uses 

this analysis and  the ellsilnai lon-of-ouant i f iers  procedure  In a manner 

slallar to that given above to Halt quantifier«  tu range ever finite 

eata  instead of an infinite dosMin.    In particular, we can use the 

quit« afflclant el lalnstlon-of-quam If lers proca:ura given by Cooper  (1| 

for «Ucldlm truth  In tha first order theory at the followli« larvuage I: 

Intogral conetants 0,   1,   10.   II.  ... 

Wmey «ntol • (wimm} 

•iMry ey^ola <, •, ♦,   |.     Moaa than. «««als. 

pi««, divide«) 
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and   the usual  variables  and   logical  symbols,  where  terms  are of  the 

k 
form    Z      a    y   + a,    ,,   a     atgned  integral constants,  y.   distinct variables; 

atomiic   fanrmuilas are of  the   form c    < t  ,   t    =  t    and  n   j   t   ,   n an 

int integral  constant,   t   ,   t     terms. 

If we use  the analysis  of Cooper's  procedure by Oppen   151   as  stated 

below, we can derive a  further result on an upper  bound on space  for 

deciding  this   theory.     We   first   state: 

Definition.     An integer  n is   limited by the positive  integer k  if 

Inl   ■- k. 

A ;u«ntifler Qx, »»here Q  U V or 1,  in L  is  Ifmlted by  the pasitlve 

k,  written Qx «s k.   If instead of ringing over all   Integers,   it  r«i«ei 

over all   Integers  limited by k. 

Theorem.     (oppen):    | a conaiant  e > 0 such that  if Cooper's elimlnatlon- 

uf-quantlfiars procedure  is applied to a sentence with  integral constants 

llaltti by the positive  InteRer s0, ^ 2 2( and 1 quantifiers,  the site 

of any Inrecral conatant appearli« at any point of the procedure is 

lliatted by a0 

We can MM state 

' ä C«WI«M  I ■* 0 auch that ttvM U f(u, yl y ) vtcti lnt«tral 

MM  il*it«d by tfc* »Mlilvo inteter a^ •0 > 2 ««i f «MMifiara. 

a«l iMetoffs ^••eA   li»li«4 by tb« pMiiiv« latagor w.  <« •  I if  i • Ot 
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2 
then Tx FCx.n^...,^) is true  iff^x ^ 80

Z (wl)   F(x,   ■•,...,/) 

Proof.     Using  the previous  theorem,  Cooper's procedure,  and an analysis 

similar   to  that given for   real  addition. 

Theorem.     | a constant g > 0 such  that  If Q    x     ...   Q    x    B(x  ...^c.) 

Is  in prenex  ncrmal   form with  Integral  constants  limited by  the positive 

integer  s0 ^ 2,  B quantifier-free,   then Q^ ...  Q?x£ B(x1 x )   is  true 

28«+l 2gm 28£+Je 

iffQlXl^802 •••Vl^fl02 •••V£S802 B^,....*,). 

Proof.     Apply  the  previous   lerrm*. 

It  is  then clear  tn«t: 

Theorem.    3 a constant h > 0,  and a dacU&on procedur«  for inttgral 

addition with <,  tuch that  to decide a «antanca of lai«th n takes at 

»h'n 
nost 2 space. 

Thli thaoraa ahould ba co^>arad to that obtainad by Flachar and 

Rabin |2|: 

'.;_.-_.      riscKar  •,.' labla 4 mMM   1      I *^>-  t»..t  «m- mm 

dacar«lnlic(c Turl* «aeblna «f»-«ch dacldaa  lnta«ral addition (avan 

wltlMMt ordar.  ra^ulraa for alaoat avary a tlaa 72** to dactda aoM 

aantanraa of lamtti a. 
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