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ABSTRACT

‘We consider a fractional flow model of a graded manpowar systea
and develop algorithms for calculating optimsl control policies
in four situations: (1) finite time horizons with no constraints
on staff distributions, (11) finite time horizon with constraints
‘on final staff distribution, (11.1.) infinite horizon with con-
straints on staff distribution and (4v) probleas with a nonsta-
tionary transient stage and an infinite stationary stage. In
each case results developed in solving the simpler problems are
useful in analyzing more complicated situations.

In addition to providing computational procedures we apply the

algorithms to a three rank model and discuss the possible uses
and limictations of our procedure.



INTRODUCTION

This paper studies a fractional flow model of a graded manpower system.

A useful mathematical programming procedure for evaluation of alternate policles
i3 presented, and some illustrative examples given.

The model is designed as an aggregate planning device; it is not decigned
to specify hiring and promotion policy in an exact sense, but to assist in
answering questions of the following sort: (i) How should the growth of a new
organization be scheduled? (i1i) What are the costs of institutional restric-
tions on staff? (iii) How would the system react to a change in promotion
policy? (iv) What is the relation between the cost of operation and the rate
of growth? (v) What impact would a wage increase have on the cost of future
operations?

An extended discussion of similar models in manpower planning can be found
in Bartholomew [1]). This paper follows Bartholomew [2] in the basic model struc-
ture and search for optimal policies.

Although models of this type are often called Markov models, we bclieve
this name is misleading. The Markov interpretation implies there is a stochastic
decision rule that governs promotion policy for each individual in the system.
We must either assume that all individuals are the same and face the same sto-
chastic promotion mechanism or that different classes of individuals face dif-
ferent promotion possibilities and that the given promotion matrix can describe
the aggregate behavior of all classes. Both of these assumptions are difficult

to defend. In addition, if the coefficients P truly represent probabilities,

1)
then the variances of random variables such as the number of years in the system,
and the total salary received should be meaningful. Our rough calculations have

indicated that these variances are far too large to be consistent with observed



behavior. Therefore we prefer the deterministic fractional flow interpretation
of the wodel. The organization as a ratter of policy decides to promote a
{raction of people in rank 1 to rank 2 each year. Our model is designed to
explore the consequences of that policy decision.

The system has n ranks 1,2, ..., n. In perlod t the n vector
x(t) = [xl(t), TOH xn(t)] describes the distribution of manpower among the
ranks. We assume the initial distribution x(0) 1is known. An n X n pro-
motion matrix P governs transitions within the system, where Pij is the
fraction of workers in rank 1 who move to rank j . We generally assume
that P 1is independent of t . This assumption is crucial for the infinite
horizon cases in Section III and part of IV. 1In Sections I and II, however,

P can vary with t .

The system hiring policy is described by the n-vector u(t) = [ul(t), Scor un(t)]
where uj(t) is the number of new appointments in rank j made during period ¢t .
We shall assume throughout that u(t) 1is nonnegative: there is no firing. We
adopt the convention that these new workers start work in period t + 1 , there-
fore

n
x, (e +1) = ] x (t)P

+ u,(t) .
] 1=1 1] B

In matrix notation
(1) x(t + 1) = x(t)P + u(t) .

Equation (1) is the system's Law of Motion.
We assume the system grows at rate (0 - 1) . We have expansion, no growth,
or contractionas 6 >1, 6=1,0r 0<1l. Let e be an n dimension column

vector with each component equal to one. At time ¢t the growth constraint is
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x(t)e = etx(O)e for t>1.

Alternate growth constraints are possible. For example, let f Dbe an n
dimension column vector with fi equal to the total annual institutional finan-
clal support given to a worker in rank 1 ., Then x(t)f gives the total man-

power budget in period t . The growth constraint could also read
(2) x(t)f = 6°x(0)f for t > 1

to reflect a changing manpower budget. A strict cost interpretation for (2) is

not necessary: for example f, could represent some measure of the productivity

i
of rank 1 staff members. In that case, condition (2) would give the total system

th

productivity requirement for the t  period.

In the optimization models described below our objective is a linear function

of the state vector x(t) of staff distribution and the control vector u(t) of
new appointments. Throughout we interpret this objective as the cost of system
operations. There are two reasons for this: first it eases the exposition,
second it is a useful criterion. The minimum cost of system operations is a
lower bound on the cost that could be incurred using any other policy. It is
reasonable to assume that the institution's personnel policy will depart from
the minimum cost policy indicated by our model. However, knowledge of the mini-
mum cost policy also grovideg a direction of policy change, if the institution
desires to change policies and reduce costs. As with the growth constraint (2),
alternative interpretations of the linear objective are allowable. We could,
for example, use the objective function to measure productivity, and seek to
maxrimize it subject to budgetary or size restrictions. In essence, all the

results in this paper would carry over in this case.

In Section I we introduce a finite horizon planning problem with no constraints

on the staff distribution and develop an efficient dynamic programming procedure

to solve this problem. Section II considers a slight generalization of the firite

b
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horizon planning problem: coustraints are placed on the final distribution

x(T) . This pcoblem is solved using generalized linear programming, where the
dynamic programming algorithm described in Section I 1s the column generating
subproblem. Section III considers infinite horizon p 'oblems and computes lower
bounds on the optimal value. We obtain asymptotically optimal stationary linear
decision rules. This easily implemented policy is optimal if the resulting se-
quence of staff distributions x(t) does not violate the system constraint. In
Section IV the theory of Sections II and III are blended together to examine an
infinite horizon planning problem that combines a T year transient stage and
an indefinite stationary stage. As in Section III we are able to derive lower
bounds on the optimal value of this two stage planning problem.

We solved the problems presented in Sections I-IV using a dynamic program-
ming and generalized linear programming. All of these problems could have been
attacked directly by solving larger linear programs., We took the dynamic pro-
gramming generalized LP approach for several reasons. Our analysis of the |
problem developed in exactly the way our results are presented. We first de-
veloped the DP procedure to study the free end point problem, and then found
that these results could be used to help solve the more‘complicated problens
with terminal constraints. We feel that the generalized LP approach is a
more natural way to analyze the problems presented in Sections II and IV since
it focuses attention on propeéties of sets in the n dimension space of staff
distributions. In addition, the dynamic programming procedure is efficient and
application of generalized LP is new and of independent 1n£ereat. Our compu-~
tations were done interactively, and we frequently changed the data and policy
environment to examine the effects of these changes on appointment policies and
staff distributions. The compact form of the data storage needed in the gener-
alized LP approach saved us from regenerating large arrays each time the prob-

lem was changed.



We did not test each method to see which was numerically more efficicent on
a set of test problems. That type of analysis seemed far removed from the pur-
pose of the paper. We were, however, satisfied with the speed and storage re-
quirements of the approach we selected.

In Section V we examine a three state university planning model and give
two examples of how the theory developed in Sections I-IV can be used. The
example's small size is consistent with the purpose of the model. The organi:
zatioﬁ's policy is as much determined by the growth factor € , and the promo-
tion matrix P as the hiring policy u(t) . A small model allows us to do
extensive sensitivity analysis to determine the effects of changing 6 , P,
and other system parameters. A reader interested in the model's value as an
aid to decisionmakers can turn directly to Section V without reading further.

The following definitions and notations are used. The symbol A means

"is defined to be". Given the vector f with fi > 0 we say
A t
5, = {x(t) | x(t)f = 6"xf,x(t) > 0}

where x 1is the initial distribution. St is the set of possible distribution
at time t , assuming a growth rate of (0 - 1) 1in each period, and So s S .
Let R(x) g {y | y > xP,yf = 6xf} . Starting at x , R(x) 1is the set of

poiuts that can be reached in one period. For amy t and set AC St

R(A) 8 U R(x) ={y | y e R(x),x € A} .
x€A

R(A) 1is the set of points that can be reached in one period from the set A .

Let RI(A) s R(A) , and for ¢t >2,
RE) = RS (A)) .

Rt(A) is the set of points that can be reached from A 1in exactly t periods.



Let
A
E={y | oy > yP,y > 0} .

If yeE, then x(t) = ety is a sequence that obeys the size constraint (2)

and the law of motion (1) with u(t) = 6y - yP . Note that E = {y | 8y € R(y),y > 0
In Section III we designate the promotion matrix as Q and the growth factor

as § . This allows us to distinguish the transient and stationary promotion ma-

trices and growth rates when they are united in Section IV. We denote the empty

set a8 ¢ , and use cl for closure and ri for relative interior.
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I. MINIMUM COST OPERATION: FINITE TIME

HORIZON - NO TERMINAL CONSTRAILNTS.

This section develops an efficient method for minimizing the cost of
operations over a T year horizon with no terminal constraints.

The distribution x(t) follows the law of motion described in the intro-
duction with the quantity x(t)f growing at a constant rate 6 - 1 . The present
value of cost incurred in period t 1is x(t)c(t) + u(t)d(t) . There is a
reward x(T)q (perhaps zero) attached to the terminal distribution x(T) .
The present value of all costs is thus

T-1
J x(t)e(t) + u(t)d(t) - x(T)q .
t=0
We assume the current distribution x(0) = x is known.
The problem is
T-1

(1) Minimize Z x(t)c(t) + u(t)d(t) - x(T)q
t=0

Subject to

x(t + 1) = x(t)P + u(t)
x(t)f = thf
u(t) 20 t=20,1,2, ..., T-1

x(0) »x>0

The first set of constraints is the law of motion that describes distribution
changes over time. The second set of constraints indicates that the quantity
x(t)f grows at a ponstant rate (6 - 1) . The third set of constraints says
that no firing takes place.

Note that



x(t + 1)f = x(t)Pf + u(t)f = Ox(t)f

Thus u(t)f = x(t)[6I - P]Jf . Let v = [8I -~ P]Jf . Our solution procedure
below assumas v t8 strictly positive and P > 0 . When f = e , constraint
u(t)e = x(t)v = x(t)e(® - 1) + x(t)(I - P)e , says the number of people hired
is equal to the number that leave, x(t)(I - P)e , plus the number needed to
increase size, (8 - 1l)x(t)e .

Although we shall not work out the details, the analysis below is still
valid if P 1is a function P(t) of time and v(L) = [6I - P(t)]f 1is strictly
positive for all t .

Problem (1) can be solved with an efficient dynamic programming technique.
For 8 = 0,1,2 ... T define V(x,8) to be the optimal value of

T-1

(2) Minimize ¥ x(t)e(t) + u(t)d(t) - x(T)q
te=s

Subject to x(t + 1) = x(t)P + u(r)
u(t)f = x(t)v
u(t) >0 t =g,8+l, ..., T-1
x(8) =x>0 given

Note that V(x,0) 1is the optimal value of (1) as a function of the
initial conditions x(0) = x and that V(x,T) = -xq . The optimal value function
obeys the usual dynamic programming principle of optimality.
3) V(x,t) = xc(t) + Min [ud(t) + V(P + u,t + 1)]

uf=xv
u:O

Assume V(x,t + 1) = xh(t + 1)



a linear function.
For ¢t = T- 1,h(T) = =q . Thus this assumption is valid for ¢t =T - 1.

Then equation (3) becomes
(6) V(x,t) = x[c(t) + Ph(t + 1)) + Min [u(d(t) + h(t + 1))]

ufexv

u0
Since v > 0 , xv is strictly positive for any semi-positive x . Thus the
linear program in this functional equation has a trivial solution. Let =(t)

be the index such that

[4(e) + bee + D1 [d(e) + b(e + )],
- Min
£a(e) 1=1,2,...,N £

(5) ne

The optimal solution to the linear program in (4) is

(0 1 145
LR | AT
£

Therefore
V(x,t) = x{c(t) + Ph(t + 1)} + xvn .
Set
(6) h(t) = c(t) + Ph(t + 1) + nv .
By this constructive induction we have demonstrated

Theorem 1:

The optimal solution of problem (1) is to set

%Z 1f 1 = w(t)
i
uy (£) = :
0 otherwise
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The index n(t) and the vector h(t) are calculated recursively from (5),
(6), and the initial conditicn h(T) = -q .

A morc general analysis of this no terminal constraint model can be found
in Section 1 of [7]. The case of nondecreasing size is treated and a particu-
lar class of problems is shown to have a closed form solution. However, we wish
to use this model as a building block in solving more detailed problems with
terminal constraints.

It is possible, by eliminating the variables x(t) from prcblem (1), to
express (1) as a linear program with T equality constraints and n x T variables.
In choosing the dynamic programming approacn to the solution of problem (1), we
considered several possible advantages and disadvantages of the two methods.
First, it must be understood that we were doing interactive computations. The
interactive approach is most useful if the programs allow us to quickly analyze
the effects of alternate policies or data inputs. In other words we could change
P,f,c,d, x(0), and q easily and resolve the problem. The dynamic pro~
gram offered greater flexibility in changing the data and it also had a much
snaller storage requirement. Both of these qualities are important in inter-
active computations. The sole disadvantage we saw with the dynamic programming
approach was the necessity to code a special algorithm. In contrast, interactive
LP codes are already available. However, to analyze a model interactively using
linear programming it is neceisary to write a matrix generation program that con-
structs the LP constraint matrix from the problem's data and then retranslates
the LP solution into the terms of the original problem. We found it was as easy
to write the dynamic programming code as to construct the matrix generator for
the LP. In addition, it seemed unlikely to us that an LP could improve on the
extremely simple calculations required in (5) and (6). Finally, we shall in
later sections be faced with similar choices in solution strategies for more

complicated problems. In those situations we believed that the dynamic programming



approach offered even greater advantages. Thus it was necessary to write the

dynamic programming code for use as a subroutine in the more complicated prob-

lems.

ik
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I1. MINIMAL COST OPERATION: A FINITE HORIZON

AND A TERMINAL CONSTRAINT.

This section refines the model presented in Section [ by adding the terminal
constraint, x(T) ¢ C = {y | yA > 0} . Since ST ={y|ys= lef,y > 0}, the

terminal constraint can also be written as
A
x(T) e CN ST =B .

Any polyhedral subset B of ST can be represented in the manner described

above.

As one example consider a restriction that the fraction of workers in ranks

h+1,h+ 2, ..., N is less than 6§ . This can be written

h N
§f x () + (-1 |} x,(T) 2 0.
{=1 = teh+l

We can also specify final target distribution x(T) .

If there are K terminal constraints then A 1is an N x K matrix.

The optimization problem 1is

T-1
(1) Minimize )} x(t)c(t) + u(t)d(t)
t=0

Subject to x(t + 1) = x(t)P + u(t)
u(t)f = x(t)v

u(t)

av

0 t =0,1, ..., T-1

v
o

x(T)A 2

x(0) = x> 0 given.



This is exactly problem (1) of Sectior I with q = 0 , and an additional constraint
x(T)A 2 0 .
Recall from the introduction that 17:r (x) is the set of all points that
can be reached from x in exactly T steps. If RT (x) N C = ¢ , then problem
(1) is infeasible: there is no x(T) satisfying the terminal constraint.
For each y ¢ RT(x) define W(y) as the optimal value of
T-1

Minimum T x(t)e(t) + u(t)d(t)
t=0

Subject to x(t + 1) = x(t)P + u(t)
u(t)f = x(t)v
u(t) 20
x(T) =y
x(0) = x>0

W(y) 1is the minimum cost of going from x to y in T steps. For y ¢ RT(x)

ve define W(y) = +» ., Problem (1) is equivalent to
(2) Minimize Wiy)
Subject to y € C (I RT(x)

This section shows how we can exploit the efficient dynamic programming
procedure developed in Section I to solve the problem with a terminal constraint.
The method is outlined below using Dantzig and Wolfe's generalized linear
programming [4]. We maintain a feasible solution of problem (2) at all times
and calculate a sequence of lower bounds on the optimal value of (2).

After describing the algorithm we will show how an optimal solution of (1)

e
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is constructed from an optimal solution of (2). Then we give a theoretical

justificatior of the algorithm and we present a phase I procedure that will

either initialize the algorithm or show that problem (2) is infeasible.
Let yl,yz, e ym be points in RT(x) , and let Wi = W(yi) .

The master linear program is

m
3) Mininmize Y o A
i=1

T 1
Subject to 2 Ai(y A) >0

i=1
5
A =1
gm1 &
A 2 0

m

m
Let A" be the optimal solution of (3). Then z }‘1"1

i=1

is feastible for (2)

m
and X A':Wi is an upper bound on the optimal value of (2).

i=]1
Let (rm,om) be the optimal dual variables associated with problem (3).
m
Note that ¢" = ) x"iwi . The subproblem is
i=1
(4) Minimize  W(y) - yAr"

y € RT(x) .

Subproblem (4) is solved by setting qul = Ar" and solving problem (1) of
Section I. Let ymﬂ be the optimal solution of (4) and let vmﬂ be the
optimal value of (4). Then vm+1 is a lower bound on the optimal value of (2)

and



m+1 wm+l m
W'ﬂ v +y “Ar .

We consider two cases:

1. 1f \a-'.':l < " , then column (Wnﬂ_l,y“lA) is added to problem (3).

m
2. If vm’l > " , then Z A';yi is optimal for (2) and the optimal value
i=]1

of (2) is

m n
m+l n i
Vitwgh = J ATW ."(12 xy).
gy 14 - 1

The generalized linear programming algorithm solves (3) and (4) while
successively generating a sequence of upper and lower bounds on the optimal

m
value. If optimal termination occurs on iteration m , then y = ): x:yi

i=]1
is the optimal solution of (2).
After we have discovered the optimal sclution y of problem (2) we need
to reconstruct [x(t),u(t)}::é » the optimal solution of problem (1). Let

J = {jl)‘? > 0} . Then y = z A:yi . For Je€J, let n(t,j) be the appointment
J

policy used to genera'te y:l . To go from x to yJ we hire only in rank

n(t,j) at time t . If [xj(t),uj(t)}t:ll, leads from x to y‘j at cost Wi
(ree20 )5 ' ; 1w
then {x(t),u(t) =0 leads from x to y at cost ): )‘:I. , where
i=]l

u(t) = § Anuj(t)
;3

x(t) = § A%d(e) .
b

The justification of our algorithm is as follows. Let ; be the optimal

m
solution of (2). For any m , if A" ig optimal for (3), then 2 A':yi is

feasible for (2). It is easy to show that W(y) 1is convex, hence
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w(y) w(lf AT 1) T A%
y) S 2 AW,
f=1 1 =1 11

In addition the duality Theorem of linear programming implies r >0 and,

m
W) g0t = § AW

g=1 11

Thus o is an upper bound on the optimal value of (2). Since e > 0, and

;A > 0 we have ;Atm >0 . In addition ; is feasible for (4) so

Ve Min W) - YA < W) - FAT < WD)

Therefore vw.'l is a lower bound on the optimal value w(y) of (2).
The stopping condition, vm+1 > o » lmplies our current lower bound equals
the upper bound, and we have found the optimal solution.
The proof is completed by showing problem (4) can be solved by setting
q= Ar"  and using the dynamic programming procedure developed in Section I.
Let vm+1 and yﬁl be the value and terminal point from the dynamic programming

calculation. Suppose there exists a y such that W(y) - yAtn < v"u . Then the

program [x(t),u(t)]::é leading to y would be optimal for the dynamic

program. This contradicts the definition of vmﬂ . It is also apparent that
vm+1 = W(ym"'l) - y”lArm . If there is a cheaper way to ymﬂ we could do

better than vﬁl in the dynamic program. Note the dynamic program always

generates an extreme point of RT (x) , since it appoints in only one rank in
each period. RT (x) has a finite number of extreme points, therefore we must
converge to an optimal solution in a finite number of steps. This completes
our discussion of the generalized linear program.

The feasibility of (1) 18 checked in a similar vay. First set q =0,
then find a yl € RT(x) and Wl = W(yl) = Min W(y) . For any m solve a

phase I master.
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(5) Minimize )} z,

m
Subject to Z Ai(yiA) +z2>0
i=1

1
A, =1
ge1 1

K a
Let (A?z‘) solve (5). 1f | z: =0 then [ Aiyi is feasible for (2).
k=1 i=1

Othervise let (r',a') be the optimal dual solution of (5) and solve the
dynamic progrum in Section I with c(t) = d(t) = 0 forall t and q = A" .

Let y."1 be the terminal point of the dynamic program. If o > - y‘ﬂ'At"l .

then add column (O,y'ﬂA) to problem (5). If ™ o= y'uAr-

then stop:
problem (2) ie infeasibls.

The justification is similar to the phase II probleam described previously.
When switching from phase I to phase II we need to know “1 for 1 =1,2, ..., m .
When we solve the dynamic programming subproblem in phase I we should calculate
the cost of going from x to yi using the optimal program. This is an upper

bound (usually exact) on W, . " A careful review of the phase II procedure should

i
convince the reader that it is possible to substitute these bounds for the W

i

and commence phase II directly. If one of the bounds is not tight, then the

column will be regenerated if it is needed in the course of calculations.
Problem (1) can be considered as a linear program with T + n equality con-

straints and n x (T + 1) nonnegative variables. In contrast problem (3) has

n + 1 equality constraints and n + M variables, where M 1is the number of

extreme points of Rr(x) . When T=30, and n = 15 , then (1) has 45 con-

straints to 16 constraints in (3).
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We elected to solve problem (3) for several reasons: the efficiency of
the dynamic programming subroutine, the reduced storage, the ease of handling

arrays, and the flexibility in changing the data.
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ITI. INFINITE HORIZON PROBLEMS

This section considers stationary problems with an infinite planning horizon
and with constraints on the staff distributions in each period. In practice most
planning problems do not have a specified finite horizon; many manpower policy
decisions have such long term effects that decisionmakers must consider the long
run implications of any policy. One way to examine the long run effects of present
decisions is to select a large planning horizon T with the hope that the impact
of present decisions on periods t > T 1is likely to be small. This approach has
two drawbacks: 1t is difficult to select an appropriate T , and if T 41is large
the resulting multi-stage planning problem is difficult to solve. Our alternative
approach is to assume an infinite planning horizon in a stationary environment.
Thus, with the exception of the state vector x , every period we begin a new
problem that is identical to the problem we faced at time zero. These stationary
problems are frequently easier to solve than long finite horizon problems.

In each time period the system will obey the law of motion, the no firing
condition, and the growth constraint. In addition we shall require that for
each t the staff distribution x(t) is contained in the polyhedral cone
C={y|ya20}.

Theorem 2 describes theoretical conditions necessary and sufficient for a
sequence of staff distributions to remain in C indefinitely. From these con-
ditions we develop in Theorem 3 a test for the initial staff distribution which
will guarantee the existence of feasible solutions to the infinite horizon mini-
mum cost problem. Two objective criteria are considered--long run average cost
and total discounted cost, and for both cases bounds on the minimum cost have
been calculated. These results. which are contained in Theorems 4 and 5 respec-
tively, were accomplished with the aid of a surrogate linear program. The sur-

rogate program defines a stationary linear appointment policy u(t) = x(t)D
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which obeys the law of motion, no firing, and growth constraints. Given an
initial distribution x(0) , the appointment policy u = xD determines tile
entire sequence x(t) . If x(t) ¢ C for all t then the stationary linear
appointment policy 1s optimal and the surrogate linear program's lower bound
is exact. It is, however, possible that x(t) ¢ C for some t . In this
case the lower bound is not exact. In any case we have i%%%f +yk ¢ C as
t +0, and in addition a weighted average (which depends on the discount fac-
tor) of the x(t) 41s in C . These properties lead us to suspect that, even
if x(t) £ C for some t , our lower bound is accurate and our easily imple~
mented appointment policy is nearly optimal.

As ve point out at the close of this section it is theoretically possible
to find the actual optimal policy. However it is a difficult task and not a
task we would like to repeat to gain sensitivity information. What is more, it

will not in general lead to an easily implemented linear decision rule.

The infinite horizon constraints are:
x(t) = x(t - 1)Q + u(t - 1)
(1) x(e)f = 6%xf
u(t - 1) >0
x(t)A > 0 t=20,1,2, ...
x(0) = x>0 given.

The use of Q and & above instead of P and O as before is in anticipation
of Section IV, where different policies will be considered for promotion and
growth in the transient and stationary stages respectively.

The first three constraints enforce the law of motion, the constant growth

rate of x(t)f , and the no firing condition. The final constraint restricts
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the distribution x(t) to the cone C = {y | yA > 0} for all t .

The constraints can be written in terms of x(t) alone.
x(t) > x(t - 1)Q
(2) x(t)f = 8%xE
x(t)A>0  t=1,2, ...
x(0) = >0 given

We can also write the constraints in terms of u(t) , since

t
x(t+1) = th+1 + I u(s)Qt-‘s .

s=0
We have
t
(3) Z u(s)Qt-'f - x[6t:+].I - Ql:'l'llf
s=0
s t-s t+1
] u(e)Q" A2 -xq A
=0

u(t) > 0 t=10,12, ...

The objective is to minimize [ af[x(t)c + u(t)d] . When a6 <1,
t=0

this sum is finite. If a°§ =1 , the cost is typically infinite. In this

case ve seek to minimize

L 4 STl
%) ln sup 3 I a'[x(t)e + u(t)d] .

T+= t=0
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Before searching for optimal policies we must examine the question of
feasibility. Given x € C 1is it possible to remain in C indefinitely?
This question cannot be answered precisely. However, we do obtain a sufficient
condition for x e C_  in Theorem 3, and a necessary condition from Theorem 5.
Both conditions require the solution of a linear program.

Recall from the introduction that E L {y | 8y > yQ,y > 0} . The following

lemma is extremely useful in analyzing questions of feasibility.

Lemma 1:

If {x(t)}:_o is feasible for (2), define.

T-1

y = lim sup -,:1!; Z G-tx(t)
t=0

T
then y e CNSNE.

Proof :

For each T let

y(m = 3 T e
t=0
y(T) 1is a nonnegative combination of points in C , therefore y(T) 1s in
C. For each t , G-tx(t) eES={z | zf = xf,z > 0} , thus y(T) ¢ S, since
‘9(T) 1s a convex combination of points in S . It is apparent that y e CNS .
From the constraints of (2), G—tx(t) :% [6-(t-1)x(t - 1)Q] . Summing the

above relation for ¢t =0, ..., T-1 (with x(-1) = 0) , we obtain

~(1-1)
y(T) > [% y(me - & —2( = UQ].

Now 6-(T-1)x('r - 1)Q remains bounded, therefore as T+ = , y > %’- yQ . Also,
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since G-tx(c)-i xf (min fi)-le for each t , we have y <=, Thus ye E .||
i

Recall R(x) = {y | y > xQ,yf = 6xf} . Let c®=c , and for t =1,2, ...,

define

t‘l *

ct - {x | xeC and R(x) N C ¢} .

Ct is the set of starting points x such that it is possible to remain in C

for t steps. Clearly C':QCH'l . Let C = tﬁo c® . Then €~ 1is the set

of feasible starting points for problem (1). It follows that

Lemma 2:

o0 00
xeC 1if and only if x € C and R(x) NC # ¢ .
Theorem 2 below gives an operational check on whether feasible initial states
exist., It does not answer the more difficult question of whether a particular

starting state x is in ¢’ .

Theorem 2:

¢” 1s void if and only if CNE 1is void.

Proof:

} If xe CNE, then x ¢ ¢” since étx is feasible for (2).
| For the converse, suppose. x € c” . From Lemma 2 we can construct a
sequence [x(t)]:_o such that x(0) = x and x(t + 1) = R[x(t)] Nnc for
t =0,1, ... . From Lemma 1 we can then find a y such that y ¢ C NE .II
As mentioned above these results do not give an explicit characterization
i of C , the set of feasible starting points. In some cases it is possible to
prove that ¢ =C. Let [rk]:-l be the extreme rays of the cone C . Then

K
C={ly|ly= ] wr.,u >0}.
L et
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If R(rk) NC+ ¢ forall k, then. R(y) NC # ¢ for each y € C . Therefore
Cl = C , a condition which leads to the identity ¢ =cC. In Theorem 3 we apply
this result to develop a means of testing whether a given value of x e C is a

(-]
member of C .

Theorem 3:

If xeC, then x ¢ ¢ if the linear program (5), below, has an optimal

*
solution 2 <1 .
(5) Minimize A

Subject to A x+u-y=290

yt = Oxf

Proof :

The constraints of (5) require that u ¢ CMNE and that y € R(x) . Let
X &k % * . * *
(A ,u ,y) solve (5), with A <1 . Then define u to satisfy (L - X )g =, .
* * *
Obviously 0 e CNE and y =Ax+ (1 -X)u . Now consider a new problem
with C={y|ys= uyx + uzﬁ,ul 20,1, 2 0} . Since x and 5-1\'1 are in C ,
~ ~ o * - -~

we have CCC, and C C c¢” . However y eCNR(x) and & € C NR@u) ,

therefore & = &' = &, and xeC cc .}

Note that problem (5) contains 3 x N+ K+ 1 conetraints with 2N + 1
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nonnegative variables. The dual problem of (5) will have only 2N + 1 constraints

and thus will be easier to solve.

Now we turn to optimization and consider the average cost problem (ad = 1) .

If we substitute u(t) = x(t + 1) - x(t)Q in (4) we obtain

15 e
Minimize 1lim sup T Z a x(t)g .
To t=0

Subject to x(t) > x(t - 1)Q,
(6) x(t)f = &%x¢
x(t)A > 0 , t=0,1,2, ...

x(0) = x > 0 given
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where g=c+ 68d - Qd . Since G-t = at , we know from Lemma 1 that the

value of any soluticn {x(t)}:_o is given by yg where

T S
y = lim sup T Z § "x(t) ,
T4 t=0

and y e CNSNE . We can therefore calculate a lower bound on the value of (6)

by solving:
€)) ' Minimize yg
Subject to y >y Q

yf = xf

Problem (7) can be written in a more operational form. Since, y = yaQ + u ,

ve set y = u(l - uQ)'.1 = uB where B> 0. Problem (7) becomes;
(8) Minimize uBg
Subject to uBf = xf

uBA;O

Theorea 4:

If v=[6I-Q)f>0 and aé =1, then

(1) The optimal value of (8) 1s a lower bound on the optimal value of (6).

(11) If we maximize in (8) we obtain an upper bound on the optimal value

of (6).



(111) If x is in the relative interior of E N C , then the bound obtained
in (8) 1is tight and an optimal policy can be described.
*
(iv) If u is the optimal solution of (8) then the stationary linear

appointment policy is

]

u(t) = x(£) S = x(e)D
u f

Proof:

Items (1) and (1i) follow from the discussion above and Lemma 2.

We shall sketch a proof of item (iii). Let v solve (8) 3 y* - u*B :
and let L be the line segment joining x and y* €S . For each t let
z(t) = utx(t) € S. Given z(t) the optimal policy is to choose z(t + 1)
as the point in L N R[az(t)] that is closest to y* . This rule generates
a sequence of points z(t) € C that converges to y* .

Item (iv) warrants more discussion than proof. First, note that v 1is
a column vector and u* is a row vector, therefore vu* is an nxn matrix

*
and u f is a scalar. We can easily verify that this appointment policy leads

to a sequence x(t) that satisfies
x(t) > x(t - 1)Q

and

x(t)f = Gtxf

for all t . In addition let z(t) = atx(t) . Since x(t + 1) = x(t){qQ + D)
we have z(t +1) = z(t)[a(Q + D)) = z(t)G where z(t) ¢ S for all t . It
is easy to see that z(t) = th c

*
G 1is a square nonnegative matrix. The vectors f and y are easily

seen to be right and left eigenvectors of G corresponding to an eigenvalue
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of 1. Let F be a diagonal matrix\with elements f, on the diagonal.

i
Then F_IGF is a Markov matrix. We shall assume that this Markov matrix
corresponds to a chain with a single ergodic class ([5], page 69). This con-
dition is satisfied if, for example, u; >0 and it is possible to reach
any rank starting at rank 1. Let 7 be the unique probability vector ([5],
1

page 71), that solves 1w = #F "GF . One can check that - fiy: =

In addition (F-]'GF)t + H where each row of H 18 equal to w . Then
¢t = FIF I F L + FF L . Thus z(t) = xG° + xFEF L =y .

This establishes two facts. The stationary linear policy achieves the
lower bound determined by (8) and leads to a sequence of states x(t) such

that

1m X3 c ¢ .||
tom X t)f

It is a conjecture that the optimal valus function of problem (6) is
constant for initial states x in the relative interior of C . It is
possible to get stuck on the boundary of ¢ and thus incur a higher per
period cost. Note that if the conjecture above is true it is not operational
since it requires a precise characteritation of C" and the specification of
an optimal appointment policy.

We now turn our attention to the problem of minimizing discounted cost.

In the discounted case we shall frequently use the identity

) atx(t) = xB +a ) atu(t)B
t=0 t=0

vhere B = (I - aQ)-l . Using this identity with constraints (3) and the dis-

counted cost objective we obtain



(13) Minimize xBc + ) a‘u(t)[aBe + d]
t=0

t-

1
Subject to Z u(s)Qt-s-lf = x[GtI - Qt]f
s=0
t-1
Z u(s)Qt-s-lA > thA
s-

u(t) 2 0 t =0,1,2, ...

Define u = Z :xtu(t) . Then Z a.tx(t) = xB + auB , and the otjective
t=0 t=0

value of any solution in (9) 1is
xBc + u[aBe + d] .

We wisl to substitute a finite set of constraints for the infinite set (9).

Instead of writing

t-1
Zo u(s)Qt-s-]‘A > - thA
x-

for all t =0, ... , we multiply the tth constraint by at and sum. The

resulting problem is

(10) Minimize ufaBe + d] + xBc

xf
1l -aé

Subject to u[aBf] = - xBf

u[aBA] > - xBA

uzO
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This problem has K + 1 constraints, within nonnegative variables. We know

that any feasible solution of (9) determines a feasible solution of (10).

Theorem 5:

If ve=[6I1-Q)Jf>0, and ad < 1, then

(1) Infeasibility of (10) implies x ¢ c .

(11) 1If o ‘dolves (10), then u*[anc +d) + xBc 1is a lower bound on the
| optimal value of (9) .

(111) The stationary linear appointment policy is

*

u(t) = x(t) ["*" ] = x(t)D .
uf

Proof:

Parts (i) and (ii) follow since any [u(t)}:_o feasible in (9) 'impliea

um= Z atu(t) is feasible in (10).
t=0

In part (iii) it 1is easy to verify that the stationary linear decision rule
leads to a sequence of distributions x(t) which satisfy the law of motion
and growth constraint. As before we can also show that in the limit :—:%)Lf
is in C . In addicinn E 6tx(t:)A 20 . Let u(t) be the appointment

t=0
policy resulting from the stationary linear appointment rule. Note that

u= J atu(t) = -—*1— ) atx(t)v o . nu*

t=0 uf | t=0

vhere n 1is a constant. Recall that the sequence u(t) 1is designed so

that u(t)f = Gtxf for all t . Therefore u is feasible for (10) and
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* * *
u[aBf] = nu [aBf] = 1 . However, u is feasible for (9), thus u [aBf] = 1 ,
®
80 n=1 and u =u , Thus the stationary linear policy achieves the lower

bound calculated by (10).|

We say a distribution of staff y* is stationary if the stationary linear
decision rule u(t) = x(t)D applied at x(0) = y* leads to the sequence
x(t) = th* .

In the average cost case the stationary staff distribution y* is given
by y* = u*B , and the optimal cost by y*g . In the average cost case to find

the stationary staff distribution we must solve.
* *. vu*
dy =y [é +'-;-]
uf
*
y £ =xf

This system of equations is similar to the characterization of the limiting
distribution in a finite, regular, Markov chain [5]. The system can be solved
in the same manner.
As a final comment let W(x) be the optimal value of problem (9) and
V(x) the optimal value of problem (10) . We know V(x) < W(x) , and W(x)
satisfies a functional equation
W(x) = Min [%c + du + aW[xQ + u]] ,
u0
ufe=xv
uA>-xQA
vhere W(x) = 4= 4{if x ¢ c” . It s theoretically possible using a generalization
of Howard's policy iteration scheme (see [9)) to compute W(x) for x ¢ S and u(x)
an optimal policy. We suspect that W(x) and u(x) are piecevise linear for

-
xeC .



IV. TRANSIENT-STATIONARY PROBLEMS

New institutions or institutions experiencing severe change often undergo a
transient period before reaching a state of equilibrium growth. This section
shows how the infinite horizcn model of Section III can be combined with results
from Sections I and II to calculate lower bounds on the minimum cost of the
combined transient and stationary problem.

‘In a typical transient problem the system grows rapidly during the first
T years at 107 per year. After reaching maturity the system may grow at a
reduced rate of 1X per year. In this section we provide a method for analyzing
transient problems which will allow a decision maker to gauge the tradeoffs
between the initial growth rate and the duration of the transient period.

Let P be the proﬁotion matrix during the transition years and Q the
promotion matrix during the steady state period. P and Q may not be equal
because of different promotion policies in the two periods. Let 6 and §
be the growth rates during the different periods.

Now consider a problem with a T year tranaient period, and assume no
restriction is placed on the distribution =x(t) during the transient stage.

In the steady state from period T onward we impose the restriction
x(t) eC={y | yA20} for t>7T.

As in Section II, let W[y] be the minimum cost of going from x to y
in T periods. Let V[y] be the optimal value of problem (10) in Section III.
Viy] 1s a lower bound on the minimum cost operating the system over an infinite
horizon with initial state y .

V(y) = yBc + Min u[aBc + d]
Subject to ufaBf] = . ; S yBf

1 - aé

u[aBA] > -yBA
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To calculate a lower bound on the transient and stationary phase of operation

we must solve
(2) Minimize W(y) + aTV(y)
T
Subject to y ¢ R (x)NC .

' We outline a procedure for solving (2) below. The method follows the
generalized programming technique of Section 1I. It is important to find a
technique that will produce an optimal or nearly optimal solution of (2)
efficiently. The efficiency in solution allows one to solve (2) repeatedly
and to carry out sensitivity analyses.

The master program is:

m
(3) Minimize I i(W  t yiuTBc) + u[uTﬂBc + urd]
i=]1
Subject to:
Iil
A,y.A 20
= i1
1
A
=1 i -1 .
m
I (Y4BA + waBA >0

i=]

0 Txf

n
z Xi(yilf) + u(aBf) = T-o8"°

i=1

vhere the y, are points in Lr(x) and "1 = H(yi) .

Let (An,u') solve (3) and let (r‘,a‘..‘.*‘) be the optimal dual solution.

We have:




#) (1) (oBA)S™ + (aBEW™ < (a7)(aBe + d)

(1) (A" + o™ + (3B + (v BOV" ¢ (W, + y,a'Be)
for 1 =1,2, ..., m

(111) " >0, s

m
(1v) o + py" = 21 AL+ yiaTBc) + W®[(a) (aBc + d)] .
i=

(r",om,s',w“) is dual feasible.

The first three conditions state that
The final condition is that both solutions are optimal.

As in Section II, o+ &np provides an upper bound on the optimal value

m
of (2). The optimality of our current solution, Z A';yi, is checked using the

1=1
subproblem:
(5) Minimize W(y) - y[Ar™ + BAs™ + BEY™ - a'Be)
T
Subject to y ¢ R (x)

The optimal solution of (5) is calculated using the dynamic program with

Q™ = Ar™ + BAs® + BEY™ - a'Bc . Let V™! be the optimal value of (5) and

y-ﬂ the terminal point.

The value v.u can be ugod to calculate a lower bound on the optimal

®
valus of (2). Let V be the optimal value of (2), then
R, B w
o +¥p2V 2w +9p

There are two cases to consider:

mtl

1. If v .

n
> d" , then the current solution y = | )y, solves (2).
i=1

T =+l il m+l

2, If v'ﬂ'<<f.thcnthncolum (H.H-Poy Be, y A, 1,y BA.ym

can enter the basis in (3).

1

Bf)
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To verify the lower bound claim consider an alternate way of expressing

aTV(y) using the duality theorem.
aTV(y) - aTyBc + Max v(p - yBf) - yBAs
(5) Subject to (aBf)y + (aBA)s < uT(ch + d)
8>0
According to 4(1) wm and s" are feasible for (5), thus:
(6) aV(y) 2 a'yBe + y*(p - yBE) - yBAS®

for all y . In particular for y , the optimal solution of (2).

Since the optimal solution y e C , and r 20, ve have ;A:‘ 20 . Thus

¢)) (y) > W) - yAr™ .

| A4

Combining (6),with y = y, and (7) we obtain

V' o= W) +olV() > W) - y[Ax™ + BAs™ + BEY" - atBe] + ¢%p |

WOyT) - y (o™ + % = V™ 4 4

We can use the technique described in Section II, to obtain = first feasible
golution to problem (3).

It is possible to reformulate (2) as a linear program with T+ 2 x n con-
straints and n x (T + 2) variables. For reasons identical to those given in
Section II and the introduction, we preferred the generalized linear programming

approach.
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V. USE OF THE MODEL

Our model was originally motivated by an examination of a university
faculty system. This section demonstrates how the model can be applied to
a faculty system with three ranks of members: assistant professors, associate
professors, and full professors. This highly aggregated example was selected
to facilitate geometrical display of the results and more importantly, to stress
our contention that this type of model is best suited to evaluate and suggest
general policies or to distinguish the effects of alternate golicies. We do
not view our model as a precise control instrument. In the university context:
we are not trying to specify appointment quotas in esach department for each
year, rather we are concerned with judging the long range financial and staffing
effects of alternate promotion, salary, and retirement policies.

A small model has the advantage of flexibility in altering the structural
coefficients. For example, the promotion rates, P 14 ° are actually the result
of policy decisions. If a change in the promotion policy is being considered,
it is relatively easy to alter the P 1 and, resolve the problem, and judge
the impact of the new promotion policy. A more disaggregated model might
represent the dynamics of the systea more accurately, but we rapidly lose
flexibility as the number of ranks increases.

The algorithms were programmed in APL 360 with the aid of Edward Stohr
and then used to solve two classes of problems.

To begin, we examined the problem of reaching a specified distribution of
faculty in 15 years st minimum cost. This problem was solved under four separate
assumptions concerning promotion and retention policy and salary structure. In
each of the four cases we varied the target distribution over a wide range of
possibilities. Our computational efforts involved about 150 of the generalized
linear programs described in Section II. Since each generalized linear program

used the dynamic programming subroutine about 14 times,this calculation included
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l I solving 2000 of the dynamic programs described in Section I. We shall present

one set of results in detail and comment on others.
The [ollowing data were used.*
Initial distribution: X " 3, x, = 3, x, = .4
Discount factor 1: i.e. total cost.
Growth rate 0 (constant size).
Support cost (20,28,34)
Recruiting and hiring cost (2,2,2)
Time horizon: 15 years.

Promotion Matrix

71 .12 0
P= .8 .1
.93

In Pigurc 1 below, Yy and Y, refer to the target values of assistant
and associate professors. Obviously, the fraction of full professors is given
by Yy " 1- Yy Yy - The dark border shows the boundary of distributions that
can be obtained from x in 15 periods (Rls(x)). The dotted straight lines indi-
cate the boundary of the equilibrium set. I1If a distribution y 4s in the equil-
ibrium set, then there exists a hiring policy such that the distribution y can
be maintained from year to year. The curved lines in Figure 1 are isocost lines:
any two targets on the same isocost line can be reached for the same minimum cost.
Note the isocost lines as drawm do not differ by a zonstant amount. The cost
function is actually bowl shaped. It is fairly flat over a large region, and
has relatively steep sides. In particular, as Y, increases, the cost increases
sharply. Note also that the cost increases when the target point is outside of
the equilibrium set. This is due to the Aifficulty the system has in reaching

a nonequilibrium target.

*

One should not attach undue importance to these figures; our purpose is
to give an example of the models' usefulness and not to solve a particular
problem at a particular university.
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The numbers on the isocost lines are the cost per faculty member in
thousands of dollars of running the system for 15 years. To estimate the
total cost you must multiply by the number of faculty members.

The costs of reaching various targst points were calculated under three
alternative set promotiun and salary policies. First we changed the first top
row of the promotion matrix to .666 .1666 .0 . This change had two effects:
it increased costs by about 3%, and it reduced the size of the feasible region.
Targets vith Yy 2 .34 becams infeasible. Thus a more liberal promotion policy
did not cause a drastic increase in costs, howvever it did cause the loss of a
great amount of flexibility. In the next trial we moved to a more stringent
promotion policy and changed the top row of the promotion matrix to .65 .08 .0 .
This resulted in a 2% decrease in costs and an enlargement of the set of feasible
target. The final application retained the more stringent promotion policy and
raised the support cost of full professors to 40 . This, of course, did not
change the set of feasible targets, but it did cause an 8% increase in cost.

The second major application used Eho transient-infinite horizon model
described in Section IV. We consider the problem of an institution that wishes
to expand its faculty size by 500X. The model is usad to measure the tradeoff
between cost and the length of the growth period. We checked growth periods
from 8 to 24 years, and plotted cost vs. growth period in the curve shown below.

The cost figures have been normalized so that they show the percent of
saving that is achieved by lengthering the growth period. The cost calculated
is a lower bound on the discounted cost of going from an initial faculty
distribution to a target distribution (5 times as large) in T years and then
remaining at that target indefinitely.

f In the example solved, the following data were used:

Reci aion Lt

A



Initial distribution: (.3 .3 .4)

Target distribution: (.31 .275 ,415)

Target size: five times original size-geometric growth.
Discount factor: a = .96

Support costs: (20 28 34)

Appointment costs: (2 2 2)

Promotion matrix in the growth stage

J1 .12 .0
8 .1
.93

Promotion matrix in the steady state.

.65 .08 0
8 .1
93

The growth rate, of course, is adjusted to meet the target size in the specified
time period. The coefficients are somevhat arbitrary, particularly the discount
rate. The estimates of support and appointment cost, and the promotion matrices,
as noted above, contain the result of policy decisions. The small size of this
model allows one to test sensitivity to changes in the discount factor, salary
or promotion policy.

Although our three state '-odol is crude,it must be judged against past
performance of faculty planning in major universities. Some universities have
been through expansion periods in the post-war era without considering the prob-
lems that would ensue when the growth period was ovar. A naive shortsighted
strategy produced a noncquilibri;n result. Thirl is akin to impacting astronsuts
on the moon rather than landing them there. In the first instance you attain
your target with cai:utrophic results. In the second case a smooth transition

to equilibrium is assured. Our model does produce a smooth transition to
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equilibrium. In addition, we can determine & least cost path to the equilibrium
distribution.

Another possible use of the model is in determination of the minimum time
needed tc reach a given distribution. For this problem the final distribution
x(T) is fixed and T 1is then reduced until the problem becomes infeasible.
This approach not only yields the minimum number of periods until x(T) can
be reached but it gives a tradeoff curve relating the number of periods and the
cost of reaching the target. If the model is of reasonsble size there will be
licttle computational difficulty in this approach, and a decision maker could
resolve the same minimum time problem under various assumptions on the promotion

matrix to gauge the effects of promotion policy on the time to reach a target.
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