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ABSTRACT 

We consider a fractional flow model of a graded aanpower system 
and develop algorithms for calculating optimal control policies 
in four situations; (1) finite time horizons with no constraints 
on staff distributions, (11) finite time horison with constraints 
on final staff distribution, (114) infinite horison with con- 
straints on staff distribution and (iv) problems with a nonsta- 
tlonary transient stage and an infinite stationary stage. In 
each case results developed in solving ths simpler problems are 
useful in analysing more complicated situations. 

In addition to providing computational procedures we apply the 
algorithms to s three renk model and discuss the possible uses 
end limitations of our procedure. 
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INTRODUCTION 

This paper studies a fractional flow model of a graded manpower system. 

A useful mathematical programming procedure for evaluation of alternate pulicies 

is presented, and some Illustrative examples given. 

The model is designed as an aggregate planning device; it is not defigned 

to specify hiring and promotion policy in an exact sense, but to assist in 

answering questions of the following sort:  (i) How should the growth of a new 

organization be scheduled? (ii) What are the costs of Institutional restric- 

tions on staff? (iii) How would the system react to a change in promotion 

policy? (iv) What is the relation between the cost of operation and the rate 

of growth? (v) What impact would a wage increase have on the cost of future 

operations? 

An extended discussion of similar models in manpower planning can be found 

in Bartholomew [1]. This paper follows Bartholomew [2] in the basic model struc- 

ture and search for optimal policies. 

Although models of this type are often called Markov models, we believe 

this name is misleading. The Markov interpretation implies there ie a stochastic 

decision rule that governs promotion policy for each Individual in the system. 
■ 

We must either assume that all individuals are the same and face the same sto- 

chastic promotion mechanism or that different classes of individuals face dif- 

ferent pruDtotion possibilities and that the given promotion matrix can describe 

the aggregate behavior of all classes. Both of these assumptions are difficult 

to defend. In addition, if the coefficients P.. truly represent probabilities, 

then the variances of random vsriables such as the number of yeere in the system, 

and the totel salary received should be meaningful. Our rough calculations have 

indicated that these variances are far too large to be consistent with observed 



behavior.  Therefore we prefer the deterministic fractional flow interpretation 

of the model.  The organization as a matter of policy  decides to promote a 

fraction of people in rank 1 to rank 2 each year. Our model is designed to 

explore the consequences of that policy decision. 

The system has n ranks 1,2, ..., n .  In period t the n vector 

x(t) = [x-Ct), ..., x (t)] describes the distribution of manpower among the 

ranks.  We assume the initial distribution x(0)  Is known. An n * n pro- 

motion matrix P governs transitions within the system, where P. .  Is the 

fraction of workers in rank 1 who move to rank j . We generally assume 

that P is independent of t .  This assumption is crucial for the infinite 

horizon cases In Section III and part of IV.  In Sections I and II, however, 

P can vary with t . 

The system hiring policy is described by the n-vector u(t) ■ [u.-Ct), .... u (t)] 
in 

where u. (t) Is the number of new appointments in rank j made during period t . 

We shall assume throughout that u(t) is nonnegative: there Is no firing. We 

adopt the convention that these new workers start work in period t + 1 , there- 

fore 

n 
c.(t + 1) - I   x.(t)P., + u,(t) . 
J     1-1 1  1J  J 

In matrix notation 

(1) x(t + 1) - x(t)P + u(t) . 

Equation (1) is the system's Law of Motion. 

We assume the system grows at rate (6-1) . We have expansion, no growth, 

or contraction as 8 > 1 , 6-1, or 0 < 1 . Let e be an n dimension column 

vector with each component equal Co one. At time t the growth constrain«: is 



I t 
x(t)e = 9 x(0)e for t ^ 1 . 

Alternate growth constralnto are possible.  For example, let  f b« an n 

dimension column vector with f,  equal to the total annual Institutional finan- 

cial support given to a worker in rank i . Then x(t)f gives the total man- 

power budget in period t . The growth constraint could also read 

(2) x(t)f - eScCOK for t >. 1 

to reflect a changing manpower budget. A strict cost interpretation for (2) Is 

not necessary: for example f. could represent some measure of the productivity 

of raiuc i staff members. In that case, condition (2) would give the total system 

productivity requirement for the t  period. 

In the optimization models described below our objective is a linear function 

of the state vector x(t) of staff distribution and the control vector u(t) of 

new appointments. Throughout we Interpret this objective as the cost of system 
j 

operations.    There are two reasons for this:    first it eases the exposition, 
\ 

second it is a useful criterion.    The minimum cost of system operations is a 
■ 

lower bound on the cost that could be Incurred using any other policy. It Is 

reasonable to assume that the institution's personnel policy will depart from 

the minimum cost policy indicated by our model. However, knowledge of the mini- 

mum cost policy also provides a direction of policy change, if the Institution 

desires to change policies and reduce costs. As with the growth constraint (2), 

alternative interpretations of the linear objective are allowable. We could, 

for example, use the objective function to measure productivity, and seek to 

maximize  it subject to budgetary or size restrictions. In essence, all the 

results in this paper would carry over In this case. 

In Section I we Introduce a finite horizon planning problem with no constraints 

on the staff distribution and develop an efficient dynamic programming procedure 

to solve this problem.  Section II considers a slight generalization of the finite 

X 
■. 



horizon planning problem: constraints are placed on the final distribution 

x(T) .  This problem is solve! using generalized linear programming, where the 

dynamic programming algorithm described in Section I is the column generating 

subproblem.  Section III considers infinite horizon p oblems and computes lower 

bounds on the optimal value. We obtain asymptotically optimal stationary linear 

decision rules. This easily implemented policy is optimal if the resulting se- 

quence of staff distributions x(t) does not violate the system constraint. In 

Section IV the theory of Sections II and III are blended together to examine an 

infinite horizon planning problem that combines a T year transient stage and 

an indefinite stationary stage. As in Section III we are able to derive lower 

bounds on the optimal value of this two stage planning problem. 

We solved the problems presented in Sections I-IV using a dynamic program- 

ming and generalized linear programnlng. All of these problems could have been 

attacked directly by solving larger linear programs. We took the dynamic pro- 

gramming generalized LP approach for several reasons. Our analysis of the 

problem developed in exactly the way our results are presented. We first de- 

veloped the DP procedure to study the free end point problem, and then found 

that these results could be used to help solve the more complicated problems 

with terminal constraints. We feel that the generalized LP approach is a 

more natural way to analyze the problems presented in Sections II and IV since 

it focuses attention on properties of sets in the n dimension space of staff 

distributions.  In addition, the dynamic programming procedure is efficient and 

application of generalized LP is new and of independent Interest. Our compu- 

tations were done interactively, and we frequently changed the data and policy 

environment to examine the effects of these changes on appointment policies and 

staff distributions. The compact form of the data storage needed in the gener- 

alized LP approach saved us from regenerating large arrays each time the prob- 

lem was changed. 



We did not test each method to see which was numerically more efficient on 

a set of test problems. That type of analysis seemed far removed from the pur- 

pose of the paper. We were, however, satisfied with the speed and storage re- 

quirements of the approach we selected. 

In Section V we examine a three state university planning model and give 

two examples of how the theory developed In Sections I-IV can be used. The 

example's small size is consistent with the purpose of the model. The organi- 

zation's policy Is as much determined by the growth factor 6 , and the promo- 

tion matrix P as the hiring policy u(t) . A small model allows us to do 

extensive sensitivity analysis to determine the effects of changing 6 , P , 

and other system parameters. A reader interested in the model's value as an 

aid to declslonmakers can turn directly to Section V without reading further. 

The following definitions and notations are used. The symbol Ä means 

"is defined to be". Given the vector f with f. > 0 we say 

Sj. - {x(t) | x(t)f - e'xf ,x(t) > 0} 

where x is the initial distribution. S  is the set of possible distribution 

at time t , assuming a growth rate of (6 - 1) In each period, and S - S . 

Let R(x) - {y | y > xP.yf - Oxf} . Starting at x , R(x) is the set of 

points that can be reached in one period. For any t and set ACS 

R(A) - u R(x) - (y | y c R(x),x E A) . 
xeA 

R(A) is the set of points that can be reached in on« period from the set A . 

Let R1(A) - R(A) , and for t > 2 , 

R^A) - B(Rt"1(A)) . 

R (A) is the set of points that can be reached from A in exactly t periods. 



Let 

i 

E - {y | ey > yP.y > 0} . 

i 

If y e E , then x(t) = 6 y Is a sequence that obeys the size constraint (2) 

and the law of motion (1) with u(t) = öy - yP . Note that E =» {y | Oy E R(y),y ^ 0 

In Section III we designate the promotion matrix as Q and the growth factor 

as 6 .    This allows us to distinguish the transient and stationary promotion ma- 

trices and growth rates when they are united In Section IV. We denote the empty 

set as ^ , and use cl for closure and rl for relative interior. 



I.  MINIMUM COST OPERATION:  FINITE TIME 

HORIZON - NO TERMINAL CONSTRAINTS. 

This section develops an efficient method for minimizing the cost of 

operations over a T year horizon with no terminal constraints. 

The distribution x(t) follows the law of motion described in the intro- 

duction with the quantity x(t)f growing at a constant rate 6 - 1 . The present 

value of cost incurred in period t is x(t)c(t) + u(t)d(t) . There is a 

reward x(T)q  (perhaps zero) attached to the terminal distribution x(T) . 

The present value of all costs is thus 

T-l 
I    x(t)c(t) + u(t)d(t) - x(T)q . 

t-0 

We assume the current distribution x(0) ■ x is known. 

The problem is 

T-l 
(1) Minimize I   x(t)c(t) + u(t)d(t) - x(T)q 

t-0 

Subject to 

x(t + 1) - x(t)P + u(t) 

x(t)f - eScf 

u(t) > 0       t - 0,1,2, ...» T-l 

x(0) - x >_ 0 

The first set of constraints is the law of motion that describes distribution 

changes over tine. The second set of constraints indicates that the quantity 

x(t)f grows at a constant rate (6 - 1) . The third set of constraints says 

that no firing takes place. 

Note that 

•- 
. 



x(t + l)f - x(t)Pf + u(t)f - 9x(t)f 

Thus    u(t)f  ■ x(t)[ei  - P]f   .    Let    v =  [81 - p]f   .     Our  solution procedure 

below aaavnaa    v    ia strictly poaitive and   P   >^ 0 .     When    f = e  ,  constraint 

u(t)e - x(t)v - x(t)e(6 - 1) + x(t)(I - P)e ,  says the number of people hired 

is equal to the number that leave,    x(t)(l - P)e  , plus the number needed to 

increase size,     (6 - l)x(t)e  . 

Although we shall not work out the details,  the analysis below is still 

valid if    P    is a function    P(t)    of time and    v(t)  -  [61 - P(t)]f    is strictly 

positive for all    t   . 

Problem (1) can be solved with an efficient dynamic programming technique. 

For    s - 0,1,2 ... T    define    V(x,a)    to be the optimal value of 

T-l 
(2) Minimize I   x(t)c(t) + u(t)d(t) - x(T)q 

t-a 

Subject  to        x(t + 1) - x(t)P + u(t.) 

u(t)f - x(t)v 

u(t) > 0 t - s,s+l,   .... T-l 

x(s) » x ^ 0 given 

Note that   V(x,0)    is the optimal value of (1)    as a function of the 

initial conditions    x(0)  * x    and that   V(x,T) - -xq  .    The optimal value function 

obeys the usual dynamic programming principle of optlmality. 

[■ (3) V(x,t) = xc(t) +   Min    |ud(t) + V(xP + u,t + 1) | 
uf-xv 
u>0 

Assume V(x,t + 1) - xh(t + 1) 



a linear function. 

For t • T - l,h(T) - -q . Thus thi« asauopclon is valid for t » T - 1 . 

Then equation (3) becomea 

(4) V(x,t) - xlc(t) + Ph(t + 1)] + Mln [u(d(t) + h(t + 1))] 
uf"xv 
u>0 

Since v > 0 , xv Is strictly positive for any seal-positive x . Thus the 

linear progrsa In this functional equation has s trivial solution. Let ir(t) 

be the Index such that 

td(t) + h(t + l)l,m Id(t) + h(t + 1)1. 
(5) n = !Li^-   Mln    j ^ 

»(t) 1-1,2,....N       rl 

The optimal solution to the linear progrsa In (4) Is 

(0   If    1 ^ »(t) 

1     l|^   If    1 - t(t) 

Therefore 

V(x,t) - x(c(t) + Ph(t + 1)} + xvn 

Set 

(6) h(t) - c(t) + Ph(t + 1) + nv 

By this constructive Induction ve have deaonstrated 

Theorem 1; 

The optimal solution of problem (1) Is to set 

(f1   If    1 - ir(t)l 

0     otherwise 

\ 
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The index T{t)    and the vector h(t) are calculated recursively from (5), 

(6), and the initial condition h(T) - -q . 

A more general analysis of this no terminal constraint model can be found 

in Section 1 of [7].  The case of nondecreasing size is treated and a paitlcu- 

lar class of problems is shown to have a closed form solution.  However, we wish 

to use this model as a building block in solving more detailed problems with 

terminal constraints. 

It is possible, by eliminating the variables x(t)  from problem (1), to 

express (1) as a linear program with T equality constraints and n * T variables. 

In choosing the dynamic programming approacn to the solution of problem (1), we 

considered several possible advantages and disadvantages of the two methods. 

First, it must be understood that we were doing Interactive computations. The 

Interactive approach Is most useful If the programs allow us to quickly analyze 

the effects of alternate policies or data Inputs.  In other words we could change 

P , f , c , d , x(0) , and q easily and resolve the problem. The dynamic pro- 

gram offered greater flexibility In changing the data and It also had a much 

smaller storage requirement. Both of these qualities are Important in inter- 

active computations. The sole dlsedvsntage we saw with the dynamic programming 

approach was the necessity to code a special algorithm. In contrast. Interactive 

LP codes are already available. However, to analyze a model interactively using 

linear programming it Is necessary to write a matrix generation program that con- 

structs the LP constraint matrix from the problem's data and then retranslates 

the LP solution Into the terms of the original problem. We found it was as easy 

to write the dynamic programming code as to construct the matrix generator for 

the LP. In addition. It seemed unlikely to us that an LP could improve on the 

extremely simple calculations required in (5) and (6). Finally, we shall in 

later sections be faced with similar choices in solution strategies for more 

complicated problems.  In those situations we believed that the dynamic programming 



approach offered even greater advantages. Thus it was necessary to write the 

dynamic programming code for use as a subroutine in the more complicated prob- 

lems. 

s 
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II. MINIMAL COST OPERATION: A FINITE HORIZON 

AND A TERMINAL CONSTRAINT. 

This section refines Che model presented in Section I by adding the terminal 

T constraint,    x(T)  E C =  {y   |  yA >  0}   .    Since    S    = (y  |  y = 9 x£,y > 0}  ,  the 

terminal constraint can also be written as 

x(T)  e C 0 ST - B  . 

Any polyhedral subset B of S- can be represented in the manner described 

above. 

As one example consider a restriction that the fraction of workers in ranks 

h + l,h -I- 2, ..., N is less than 5 . This can be written 

h N 
6 I    x. (T) + («-!) I     x, (T) > 0 . 
i-1 1 1-hfl 1 

We can also specify final target distribution x(T) . 

If there are K terminal constraints then A is an N * K matrix. 

The optimization problem is 

T-l 
(1) Minimize   I   x(t)c(t) + u(t)d(t) 

t-0 

Subject to  x(t + 1) - x(t)P + u(t) 

u(t)f • x(t)v 

u(t) > 0   t - 0,1, .... T-l 

x(T)A > 0 

x(0) - x ^ 0  given. 



This is exactly problem (1) of Section I with q - 0 , and an additional constraint 

x(T)A > 0 . 

T 
Recall from the introduction that R (x) is the set of all points that 

T 
can be reached from x in exactly T steps. If R (x) D C •■ + , then problem 

(1) is infeasible: there is no x(T) satisfying the terminal constraint. 

T 
For esch y e R (x) define W(y) as the optimal value of 

T-l 
Minimum   £ x(t)c(t) + u(t)d(t) 

t-0 

Subject to  x(t + 1) - x(t)P + u(t) 

u(t)f - x(t)v 

u(t) > 0 

x(T) ■ y 

x(0) - x > 0 

T 
W(y) Is the minimum cost of going from x to y in T steps. For y ^ R (x) 

we define W(y) ■ +• . Problem (1) is equivalent to 

(2) Minimize   W(y) 

Subject to y e C n RT(x) 

This section shows how we can exploit the efficient dynamic programming 

procedure developed in Section I to solve the problem with a terminal constraint. 

The method is outlined below using Dantzig and Wolfe's generalized linear 

programming [A].   We maintain a feasible solution of problem (2) at all times 

and calculate a sequence of lower bounds on the optimal value of  (2). 

After describing the algorithm we will show how an optimal solution of (1) 

\ 



Is constructed from an optimal solution of (2). Then we give a theoretical 

Justification of the algorithm and we present a phase I procedure that will 

either initialize the algorithm or show that problem (2) is infeaslble. 

1        2 m T I 
Let    y  ,y  i   •. •» y      be points in   R (x)   , and let    W    ■ W(y )   . 

The master linear program is 

m 
(3) Minimize I    XV 

1-1    1 1 

1 Subject to I   A.(y A)        > 0 
1-1    1 

m 
I    A, 

1-1    1 

X > 0 ■ 

m 
Let    Xm   be the optimal solution of (3).    Then     I    A°y      is feasible for (2) 

1-1    1 ^^ 

m 
and      £    X^W     is an upper bound on the optimal value of  (2). 

1-1    1 1 

Let    (r ,0 )    be the optimal dual variables associated with problem (3). 
m 

Note that    am -    ^    X^W,   .    The subproblem is 
1-1    1 

(4) Minimize        W(y) - yArm 

T y e R (x) . 

Subproblem (4) is solved by setting q - Ar  and solving problem (1) of 

Section I. Let y   be the optimal solution of (A) and let v    be the 

m+l 
optimal value of (4). Then v    is a lower bound on the optimal value of (2) 

and 



V1 " V   + y  Ar . 

We consider two cases: 

1. If v   < am , then column (W^j^.y  A) is added to problem (3). 

mfl m 

2. If v   > o , then  ^ A.y  Is optimal for (2) and the optimal value 
1-1 1 1 

of (2) is 

mfl v ■""■Jx^Hl^1)- 
The generalised linear programming algorithm solves (3) and <4) while 

successively genersting a sequence of upper end lower bounds on the optimal 
_   m    . 

value. If optimal termination occurs on Iteration m , then y - £ X y 
1-1 1 

is the optimal solution of (2). 

After we have discovered the optimal solution y of problem (2) we need 

to reconstruct jx(t),u(t)|  Q , the optimal solution of problem (1). Let 

J ■ |jlx? > 0| • Then y " I Ä?y • por J E J , let w(t,j) be the appointment 

policy used to generate y . To go from x to y we hire only in rank 

ir(t,J) at time t . If |x^(t),u^(t)| "J leads from x to y^ at cost W 

{1 T 1 '" 
x(t),u(t)| 0 leads from x to y at cost  J XTW. , where 

u(t) - I  X"uj(t) 
J J 

x(t) - I  X»xj(t) . 
J J 

The Justification of our algorithm is as follows.    Let    y    be the optimal 
m . 

solution of  (2).    For any   m , if    A      is optimal for (3), then      £    Ay      is 
1-1 i 

feasible for (2). It is easy to show that W(y) is convex, hence 

\ 
\ 
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(m    Am 
I xTy) i I ^ • 

i-l   /  i-1 1 1 

In addition the duality Theorem of linear programming Implies rm > 0 and. 

m 
W(y) < am - I   xV . 

1-1 1 

Thus a  Is an upper bound on the optimal value of (2). Since r > 0 , and 

yA > 0 we have yAr > 0 . In addition y is feasible for (4) so 

v"4"1 - Min W(y) - yAr" < W(y) - yArm < W(y) . 

Dfl *• 
Therefore v    is a lower bound on the optimal value W(y) of (2). 

o+l   m 
The stopping condition, v   « 0 » Implies our current lower bound equals 

the upper bound, and we have found the optimal solution. 

The proof is completed by «bowing problem (4) can be solved by setting 

q - Ar  and using the dynamic programming procedure developed in Section I. 

Let v    and y   be the value and terminal point from the dynamic programming 

m   D+I 
calculation. Suppose there exists a y such that V(y) - yAr < v   . Then the 

program x(t),u(t) T-l .       leading    to   y   would be optimal for the dynamic 

mfl program.    This contradicts the definition of    v        .It is also apparent that 
mI i       mil     mi 1  m n4*1 

v   - W(y  ) - y  Ar . If there is a cheaper way to y   we could do 

ntl 
better than v   in the dynamic program. Mote the dynamic program always 

T 
generates an extreme point of R (x) , since it appoints in only one rank in 

T 
each period. R (x) has a finite number of extreme points, therefore we must 

converge to an optimal solution in a finite number of steps. This completes 

our discussion of the generalized linear program. 

The feasibility of (1) is checked in a similar way. First set q « 0 , 

1   T 
then find a y e R (x) and W. - WCy,) - Min W(y) . For any m solve a 

phase I maater. 



K 
(5) Minialz«    I    z, 

k-l * 

Subject to   J ^(XjA) + z > 0 

i-1 * 

X > 0 ,   « > 0 . 

K ■ 
L«t (x"«a) solve (5). If  J «" - 0 then  J X^  is feasible for (2). 

k"l 1"1 

Otherwise let (r",om) be the optimsl dual solution of (5) and solve the 

dynamic prograa In Section I with   c(t) - d(t) - 0 for all   t and q - ArB . 

w¥\. ■     B^l n Let y   be the tenlnal point of the dynamic program. If o > - y  Ar 

then add column (O.y^A) to problem (5). If o* < - y^Ar" then stop: 

problem (2)  is inftatibUj. 

The juetificatlon is similar to the phase II problem described previously. 

When switching from phase I to phase II we need to know V. for 1 - 1,2, ..., m 

When we solve the dynamic programing subproblcm In phase I we should calculate 

the cost of going from x to y  using the optimal program. This is an uppsr 

bound (usually exact) on W. . A careful review of the phase II procedure should 

convince the reader that it Is possible to substltuts these bounds for the W 

and commence phase II directly. If one of the bounds Is not tight, then the 

column will be regenerstsd if it is needed in the course of calculations. 

Problem (I) can be consldsred as s linear program with T -I- n equality con- 

straints and n x (T 4- 1) nonnegative variables. In contrsst problem (3) has 

n + 1 equality constraints and n + M variables, where M is the number of 

extreme points of R (x) . When T - 30 , and n - IS , then (1) has 45 con- 

straints to 16 constraints in (3). 
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We elected to solve problem (3) for several reasons: the efficiency of 

the dynamic programming subroutine, the reduced storage, the ease of handling 

arrays, and the flexibility in changing the data. 
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III.  INFINITE HORIZON PROBLEMS 

This .section considers stationary problems wich an infinite planning horizon 

and with constraints on the staff distributions In each period. In practice most 

planning problems do not have a specified finite horizon; many manpower policy 

decisions have such long term effects that declsionmakers must consider the long 

run Implications of any policy. One way to examine the long run effects of present 

decisions is to select a large planning horizon T with the hope that the Impact 

of present decisions on periods t > T Is likely to be small. This approach has 

two drawbacks: it is difficult to select an appropriate T , and if T Is large 

the resulting multi-stage planning problem is difficult to solve. Our alternative 

approach Is to assume an infinite planning horizon in a stationary environment. 

Thus, with the exception of the state vector x , every period we begin a new 

problem that is identical to the problem we faced at time zero. These stationary 

problems are frequently easier to solve than long finite horizon problems. 

In each time period the system will obey the law of motion, the no firing 

condition, and the growth constraint. In addition we shall require that for 

each t the staff distribution x(t) is contained in the polyhedral cone 

C ■ {y | yA J> 0} . 

Theorem 2 describes theoretical conditions necessary and sufficient for a 

sequence of staff distributions to remain in C Indefinitely. From these con- 

ditions we develop in Theorem 3 a test for the initial staff distribution which 

will guarantee the existence of feasible solutions to the infinite horizon mini- 

mum cost problem. Two objective criteria are considered—long run average cost 

and total discounted cost, and for both cases bounds on the minimum cost have 

been calculated. These results, which are contained in Theorems 4 and 5 respec- 

tively, were accomplished with the aid of a surrogate linear program. The sur- 

rogate program defines a stationary linear appointment policy u(t) * x(t)D 

-,■>-■ ■■,■; ,...  ■■ .1 ■.■■.■,  - 



which obeys the law of motion, no firing, and growth constraints. Given an 

initial distribution x(0) , the appointment policy u = xD determines the 

entire sequence x(t) .  If x(t) c C for all t then the stationary linear 

appointment policy is optimal and the surrogate linear program's lower bound 

is exact.  It Is, however, possible that x(t) i  C for some t . In this 

x(t) 
case the lower bound is not exact.  In any case we have  ; Cr ■* y* e C as 

x(t)f 

t -*- 0 , and In addition a weighted average (which depends on the discount fac- 

tor) of the x(t) Is in C . These properties lead us to suspect that, even 

if x(t) i  C for some t , our lower bound Is accurate and our easily Imple- 

mented appointment policy is nearly optimal. 

As we point out at the close of this section It is theoretically possible 

to find the actual optimal policy. However It Is a difficult task and not a 

task we would like to repeat to gain sensitivity Information. What Is more. It 

will not In general lead to an easily Implemented linear decision rule. 

The infinite horizon constraints are: 

x(t) - x(t - 1)Q + u(t - 1) 

(1) x(t)f - «Stf 

u(t - 1) > 0 

x(t)A > 0   t - 0.1,2, ... 

x(0) - x ^ 0   given. 

The use of Q and 6 above Instead of P and 6 as before Is In anticipation 

of Section IV, where different policies will be considered for promotion and 

growth in the transient and stationary stages respectively. 

The first three constraints enforce the law of motion, the constant growth 

rate of x(t)f , and the no firing condition. The final constraint restricts 



the distribution x(t) to the cone C « {y | yA > 0} for all t . 

The constraints can be written in terms of x(t) alone. 

Kit) >  x(t - 1)Q 

(2) x(t)f - fi^f 

x(t)A > 0   t - 1,2, . 

x(0) - 1 0   given 

We can also write the constraints in terms of u(t) , since 

We have 

.t+1 
x(t + 1) - xQ^1 + I   u(s)Qc"8 . 

8-0 

(3) ft+l,  Ät+1, I    u(s)QC-f - x[«WI - QWlf 
s-0 

.t+1. I   «(.)QC-8A > - xQC+iA 
1-0 

u(t) > 0   t - 0,1,2, ... 

The objective is to minimize  £ ot(x(t)c + u(t)d] . When o-fi < 1 , 
t-0 

this sum is finite. If a*6 - 1 , the cost is typically infinite. In this 

case we seek to minimize 

(4) 
. T-l ,. 

11m sup ^ I   otIx(t)c + u(t)dl 
T-»-    t-0 
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Before searching for optimal policies we must examine the question of 

feasibility. Given x e C is it possible to remain in C indefinitely? 

This question cannot be answered precisely. However, we do obtain a sufficient 

00 

condition for    x E C      in Theorem 3,  and a necessary condition from Theorem 5. 

Both conditions require the solution of a linear program. 

Recall from the introduction that    E = {y  |   6y >^ yQ,y >^ 0} .    The following 

lemma Is extremely useful in analyzing questions of feasibility. 

Leuima it 

If (^(t)|^0 is feasible for (2), define. 

1 T"1 -t 
y - 11m sup Y I    * «(t) 

T-K»   t-0 

then y e C n S n E . 

Proof: 

For each T let 

T-l 
y(T) - ^ I   fi'ScCt) 

1 t-o 

y(T) is a nonnegative combination of points In C , therefore y(T) is in 

C . For each t , ö~tx(t) e S - {z | zf - xf.z > 0} , thus y(T) e S , since 

9(T) is a convex combination of points In S .  It Is apparent that y e C D S . 

From the constraints of (2), 6''tx(t) > -r [6~^      'x(t -  1)Q] . Summing the 

above relation for t-0 T-l (with x(-l) - 0) , we obtain 

T(T) > [i yd), - £g^fg - ')"] . 

-(T-l) „ 1 Now 6 x(T - 1)Q remains bounded, therefore as T -♦■ » , y > -r yQ . Also, 
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-1 since 6 x(t) <_ xf(min f.)  e for each t , we have y < " . Thus y e E .| | 
1 

Recall R(x) - (y | y > xQ.yf ■ 6xf} . Let C0 = C , and for t » 1,2, ..., 

define 
1 

■ 

■ 

c' - {x | x e C and R(x) O c''1 ^ *} . 

i 
C  is the set of starting points x such that it is possible to remain in C 

t    t+1 "St " 
for t steps. Clearly CDC   . Let C - Q. C . Then C  is the set 

of feasible starting points for problem (1). It follows that 
■ 

Lemma 2; 

x e c"    if and only if    x e C    and   R(x) D C* j* ^ . 

Theorem 2 below gives an operational check on whether feasible initial states 

exist.    It does not answer the more difficult question of whether a particular 

starting state   x    is in   C    . 

Theorem 2; 

c" is void If and only If CHE is void. 

Proof; 

If x c C HE , then x e C* since 6 x Is feasible for (2). 

to 
For the converse, suppose . x e C . From Lemna 2 we can construct a 

sequence |x(t)|" 0 such that x(0) - x and x(t + 1) s R[x(t)] H C* for 

t ■ 0,1  From Lemma 1 we can then find a y such that y c C HE .| | 

As mentioned above these results do not give an explicit characterization 

of C , the set of feasible starting points. In some cases it is possible to 

prove that c" ■ C . Let lrit[it-i 
be the extreme rays of the cone C . Then 

C - {y | y » I   Vk^k - 0 
k-1 
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If R(rk) H C ^ (|> for all k , then R(y) H C # * for each y e C . Therefore 

CT = C , a condition which leads to the identity C = C .  In Theorem 3 we apply 

this result to develop a means of testing whether a given value of x e C is a 

00 

member of C . 

Theorem 3: 

00 

If x e C , then x e C  if the linear program (5), below, has an optimal 

solution X < 1 . 

(5) Minimize \ 

Subject to Ax + u - y " 0 

y£ ■ 6xf 

y > xQ 

uA ^ 0 

u(6I - Q) ^ 0 

A^0,u^0,y^0. 

Proof: 

The constraints of (5) require that u e C D E and that y e R(x) . Let 

* * * * . *    * 
(X ,u ,y ) solve (5), with X < 1 . Thsn define u to satisfy (1 - X )G • u . 

*   *   ,   * 
Obviously ü e C n E and y - X x + (1 - X )ü . Now consider a new problem 

with C - {y | y - u.x + ^u,!^ > O.p» >^ 0} . Since x and S~ u are in C , 

we have C C C , and C* C C . However y c C H R(x) and 6u e C O Kfa)  , 

therefore C* - C  ■ C , and x e c" C c" . 11 

Note that problem (S) contains 3 * N + K + 1 constraints with 2N + 1 



nonnegative variables. The dual problem of (5) will have only 2N + 1 constraints 

and thus will be easier to solve. 

Now we turn to optimization and consider the average coat problem (a6 ■ 1) . 

If we substitute u(t) - x(t + X) - x(t)Q in (4) ve obtain 

1 T"1 
Minimize lim sup ~ I a x(t)g . 

!>*•  1 t-0 

Subject to x(t) > x(t - 1)Q , 

(6) x(t)f - 6^  . 

x(t)A > 0    ,   t - 0,1,2, 

x(0) ■ x >_ 0 given 
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where g = c + 6d - Qd . Since 6  » a , we know from Lemma 1 that the 

[Ml'o value of any solution ix(t)jfr_n is given by yg where 

1 T"1 -t 
y - 11m sup ^ I   6 x(t) , 

T-H»   t-0 

and y c C n S 0 E . We can therefore calculate a lower bound on the value of (6) 

by solving: 

(7) Minimize   yg 
\ 
1 

Subject to y > y Q 

yf - xf 

yA> 0 

y > 0 

Problem (7) can be written In a more operational form. Since, y - yoQ + u , 

we set y ■ u(I - aQ)  - uB where B > 0 . Problem (7) becomes; 

(8) Minimise  uBg 

Subject to uBf - xf 

uBA > 0 

u > 0 . 

Theorem 4; 

If v - [61 - Qjf > 0 and 06 - 1 , then 

(i) The optimal value of (8) is a lower bound on the optimal value of (6). 

(11) If we maximize in (8) we obtain an upper bound on the optimal value 

of (6). 



(ill)  If x Is in the relative interior of E A C , then the bound obtained 

in (8) is tight and an optimal policy can be described, 

(iv) If u  is the optimal solution of (8) then the stationary linear 

appointment policy is 

* 

u(t) - x(t) ^- - x(t)D 
u f 

Proof: 

Items (1) and (11) follow from the discussion above and Lenma 2. 

We shall sketch a proof of Item (ill). Let u  solve (8) , y - u B , 

* 
and let L be the line segment joining x and y e S . For each t let 

z(t) - a x(t) e S . Given z(t) the optimal policy Is to choose z(t + 1) 

* 
as the point In L H R[az(t)] that is closest to y . This rule generates 

a sequence of points z(t) e C that converges to y . 

Item (iv) warrants more discussion than proof. First, note that v Is 

* * 
a column vector and u  is a row vector, therefore vu  is an n x n . matrix 

and u f is a scalar. U« can easily verify that this appointment policy leads 

to a sequence x(t) that satisfies 

x(t) > x(t - 1)Q 

x(t)f - «Srf 

for all t . In addition let z(t) - aStU) . Since x(t + 1) - x(t)lQ + D] 

we have s(t ♦ 1) ■ z(t)[a(Q ■»- D)J - z(t)G where z(t) c S for all t . It 

is easy to see that r(t) - xG 

* 
C is a square nonnegative matrix. The vectors f and y  are easily 

seen to be right and left eigenvectors of  G corresponding to an eigenvalue 

I 
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of 1 . Let F be a diagonal matrix with elements f. on the diagonal. 

Then F GF is a Markov matrix. We shall assume that this Markov matrix 

corresponds to a chain with a single ergodlc class ([5], page 69). This con- 

* 
dltlon is satisfied if, for example, u. > 0 and it is possible to reach 

any rank starting at rank 1. Let ir be the unique probability vector ([5], 

_,% -1 * 
page 71), that solves ir - irF GF . One can check that n - f y . 

In addition (F GF) •*■ H where each row of H is equal to ir . Then 

Gt - FlF^GFjV1 + FHF"1 . Thus «(t) - XG' ■»■ xFHF"1 - y* . 

This establishes two facts. The stationary linear policy achieves the 

lower bound determined by (8) and leads to a sequence of states x(t) such 

that 

"-lii'c-ii t-*"^ 

It is a conjecture that the optimal value function of problem (6) is 

constant for initial states x In the relative interior of C . It is 

possible to get stuck on the boundary of C  and thus Incur a higher per 

period cost. Note that if the conjecture above is true it is not operational 

m 
since it requires a precise characterisation of   C     and the specification of 

an optimal appointment policy. 

We now turn our attention to the problem of minimizing discounted cost. 

In the discounted case we shall frequently use the identity 

I   a'xU) - xB + o   I   otu(t)B 
t-0 t-0 

where   B - (I -   oQ)      .    Using this identity with constraints (3) and the dis- 

counted cost objective we obtain 



(13) 
co 

Minimize xBc + L atu(t)[aBc + d] 
t:aO 

t-1 
Subject to l u(s)Qt-s-lf • x[6tl - Qt]f 

s•O 

u(t) > 0 - t - 0,1,2, .•. 

GO 

Define u • Then l atx(t) • xB + auB , and the objective 
t•O 

value of any solution in (9) is 

xBc + u[aBc + d] • 

We wist to substitute a finite set of constraints for the infinite set (9). 

Inste~d of writi 

for all th t t • 0, ••• , we multiply the t constraint by a and sum. The 

resulting problem is 

(10) 
Minimize u[aBc + d] + xBc 

xf Subjec t to u[aB£] • 1 _ a6 - xBf 

u{aBA] > - xBA -
u > 0 • 



This problem has   K + 1    constraints, within nonnegative variables.    We know 

that any feasible solution of (9)    determines a feasible solution of  (10). 

Theorem 5: 

If    v - [61 - Q]f > 0 , and   a6 < 1 , then 

(1)    Infeaslbllity of  (10) implies   x i C    . 

(11)    If   u     solves (10), then   u [oBc + d] + xBc    is a lover bound on the 

optimal value of  (9) . 

(ill)    The stationary linear appointment policy is 

u(t) - x(t) 
&fl 

x(t)D . 

Proof: 

Parts (i) and (11) follow since any 

w   I   atu(t) is feasible In (10). 
t-0 

u(t) 0 feasible in (9) implies 

In part (ill) It is easy to verify that the stationary linear decision rule 

leads to a sequence of distributions x(t) which satisfy the law of motion 

xit2_ 
3C<t)f 

is in C . In addlclon  £ a x(t)A > 0 . Let u(t) be the appointment 
t-0 

policy resulting from the stationary linear appointment rule. Note that 

and growth constraint. As before we can also show that In the limit 
m 

t 

U - I dVt) - -J- 
t-0       u f 

Z «^(Ov 
t-0 

nu 

where n Is a constant. Recall that the sequence u(t) is designed so 

that u(t)f - 6Cxf for all t . Therefore u Is feasible for (10) and 



u[aB£] " n'J [°(Bf] =• 1 . However, u  is feasible for (9), thus u [otBf] » 1 , 

so n ■ 1 and u * u . Thus the atatlonary linear policy aahtevan  ehe lower 

bound calculated by (10).|| 

We say a distribution of staff y  Is stationary If the stationary linear 

decision rule u(t) ■ x(t)i) applied at x(0) - y  leads to the sequence 

x(t) - «V . 
* 

In the average cost case the stationary staff distribution y  Is given 

*   * * 
by y - u B , and the optimal cost by y g . In the average cost case to find 

the stationary staff distribution we must solve. 

*    *r   vu i 
«y - y Q + TT I 

* 
y f - xf 

This system of equations is similar to the characterization of the limiting 

distribution In a finite, regular, Markov chain [5]. The system can be solved 

in the same manner. 

As a final comment let W(x) be the optimal value of problem (9)  and 

V(x) the optimal value of problem (10) . We know V(x) < W(x) , and W(x) 

satisfies a functional equation 

fin Ixc + du + aW[xQ + u] , W(x) -  Mln |xc + du + oWjxQ + u] 

uf"XV 
uA>-xQA 

where   W(x) - -H*   if   x i C It Is theoretically possible using a generalisation 

of Howard's policy iteration scheme (see 19J) to compute   W(x)    for   x c S   and   u(x) 

an optimal policy.    He suspect that   V(x)    and    u(x)    are piecewlse linear for 

x c C    . 



IV. TRANSIENT-STATIONARY PROBLEMS 

New institutions or Institutions experiencing severe change often undergo a 

transient period before reaching a state of equilibrium growth. This section 

shows how the infinite horizon model of Section III can be combined with results 

from Sections I and II to calculate lower bounds on the minimum cost of the 

combined transient and stationary problem. 

In a typical transient problem the system grows rapidly during the first 

T years at 10Z per year. After reaching maturity the system may grow at a 

reduced rate of 1Z per year. In this section we provide a method for analyzing 

transient problems which will allow a decision maker to gauge the tradeoffs 

between the initial growth rate and the duration of the transient period. 

Let P be the promotion matrix during the transition years and Q the 

promotion matrix during the steady state period. P and Q may not be equal 

because of different promotion policies In the two periods. Let 6 and 5 

be the growth rates during the different periods. 

Now consider a problem with a T year transient period, and assume no 

restriction is placed on the distribution x(t) during the transient stage. 

In the steady state from period T onward we Impose the restriction 

x(t) e C - {y | yA > 0} for t > T . 

As in Section II, let W[y] be the minimum cost of going from x to y 

In T periods. Let V[y] be the optimal value of problem (10) in Section III. 

V[y] is a lower bound on the minimum cost operating the system over an infinite 

horizon with Initial state y . 

V(y) - yBc + Mln u[oBc + d] 

Subject to ulaBf ] - j-~J - yBf 

u[aBA] > -yBA 
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u > 0 

To calculate a lower bound on the transient and stationary phase of operation 

we must solve 

(2) Minimize       W(y) + aTV(y) 

T 
Subject to     y e R (x)nc . 

We outline a procedure for solving (2) below.    The method follows the 

generalized programming technique of Section II.    It is Important to find a 

technique that will produce an optimal or nearly optimal solution of (2) 

efficiently.    The efficiency in solution allows one to solve (2) repeatedly 

and to carry out sensitivity analyses. 

The master program is; 

t? T T+l T 
(3) Minimize I ^ (^ + y^o Be) + ula      Be + o d] 

1-1 *    ^^       1 

Subject to: 

I Vl* i 0 
1-1 x 1 

m 

lil 1 " 1 

I X.y.U + uoBA > 0 
1-1 1 1 

m T 
I X^y^f) + u(oBf) - f^jy - p 

A. > 0 u > 0 i - • 

where the   y.    arc points in   IL(x)    and    H. - Viy.)  . 

Let    (x"^")    solve (3) and let    (r yo .s"^")    be the optimal dual solution. 

Ve have: 



(4) (1)  (aBA)8m + (aBf)*" < (oT)(aBc + d) 

(il)  (y^r10 + om + (y^s" + (y^f)*1" < (^ + y^Bc) 

for 1 > 1,2, ..., ■ 

(111) rm > 0, s" > 0 

■ T T 
(Iv) o" + pi|.m - [ \*i\l.  + y.a Be) + uIIII(aT)(oBc + d)] . 

1-1 1 1   1 

The first three condition« stete thst  (rre,om,sm,iJim) Is duel feasible. 

The final condition Is that both solutions are optimal. 

As In Section II, o + <i p provldee en upper bound on the optimal value 

■ 
of (2). The optimallty of our current solution, £ *?/<• l8 checked using the 

1-1    1 1 

subproblea: 

(5) Mlnl^.«e W(y) - ylAr" + BAs" + Bf*" - aTBc] 

Subject to ye RT(x) 

The optimal solution of (5) Is calculated using the dynamic program with 

q" - Ar" + BAs" + Bf*m - aTBc .    Let    v"*"1    be the optimal value of  (5) and 

■rfl y the terminal point. 

•fl The velue    v cen be used to celculete e lower bound on the optimal 

value of  (2).    Let   V     be the optimal velue of (2), then 

o" + fv > V* > v"*1 + ♦"p 

There are two cases to consider: 

1. If v   > o , then the current solution y - J X y  solves (2). 
1-1 1 1 

2. If ^1 < <^ , then the column (W^ + aTy"flBc, y"*"^, 1, y^BA, y,BflBf) 

cen enter the besis In (3). 
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To verify the lower bound claim consider an alternate way of expressing 

T a V(y)    using the duality theorem. 

oTV(y) - oTyBc + Max    ♦(? - yBf) - yBAs 

(5) Subject to    (aBfH •«- (aBA)8 < aT(aBc + d) 

s > 0 
m 

According to 4(1) ii     and s  are feasible for (5), thus: 

I 

(6) oVy) > aTyBc + ♦"(? - yBf) - yBAs" 

for all y .  In particular for y , the optimal solution of (2). 

Since the optimal solution y c C , and rm > 0 , we have yArm > 0 . Thus 

(7) $)  > W(?) - yAr" . 

Combining (6), with   y ■ y, and (7) we obtain 

V* - W(y) + aTV(y) > W(y) - ylAr" + BAs" + Bf«B - oTBc] + «"p 

■H-l   .   .m W(y") - y"IqB] + A - v^1 + ♦"p 

We can use the technique described in Section II, to obtain <■ first feasible 

solution to problem (3). 

It is possible to reformulate (2) as a linear program with   T -f 2 x n   con- 

straints and    n x  (T + 2)    variables.    For reasons identical to those given in 

Section II and the introduction, we preferred the generalized linear programming 

approach. 



V. USE OF THE MODEL 

Our model was originally ootivattd by an examination of a university 

faculty system. This section demonstrates how the model can be applied to 

a faculty system with three ranks of members: assistant professors, associate 

professors, and full professors. This highly aggregated example was selected 

to facilitate geometrical display of the results and more importantly, to stress 

our contention that this type of model is best suited to evaluate and suggest 

general policies or to distinguish the effects of alternate policies. We do 

not view our model as a precise control Instrument. In the university context: 

we are not trying to specify appointment quotas in each department for each 

year, rather we are concerned with Judging the long range financial and staffing 

effects of alternate promotion, salary, and retirement policies. 

A small model has the advantage of flexibility in altering the structural 

coefficients. For example, the promotion rates, P.. , are actually the result 

of policy decisions. If s change in the promotion policy is being considered, 

it is relatively easy to alter the P.. and, resolve the problem, and Judge 

the impact of the new promotion policy. A more disaggregated model might 

repreaent the dynamics of the system more accurately, but we rapidly lose 

flexibility as the number of ranks increases. 

The algorithms were programmed in APL 360 with the aid of Edward Stohr 

and then used to solve two classes of problem». 

To begin, we examined the problem of reaching a specified distribution of 

faculty in 15 years at minimum cost. This problem was solved under four separate 

assumptions concerning promotion end retention policy and salary structure.  In 

each of the four cases we verled the target distribution over a wide range of 

possibilities. Our computational efforts Involved about 150 of the generalized 

linear programs described in Section II. Since each generalized linear program 

used the dynamic programming subroutine about 14 times,this calculation included 



solving 2000 of the dynamic programs described In Section I. We shall present 

one set of results in detail and cuimnent on others. 

* 
The following data were used. 

Initial distribution: x. - .3 , x, - . 3 , x - .4 

Discount factor 1: I.e. total cost. 

Growth rats 0 (constant size). 

Support cost (20,28,34) 

Recruiting snd hiring cost (2,2,2) 

Time horizon: 15 years. 

Promotion Matrix 

[.71 .12 0 

•' :J,J 
In Figure 1 below, y. and y» refer to the target values of assistant 

snd assoclste professors. Obviously, the frsctlon of full professors is given 

by y« a 1 - y. - y» • The dsrk border shows Che boundary of distributions that 

can be obtslnsd from x in 15 periods (IL.fc)). The dotted straight lines indi- 

cate the boundary of the equilibrium set. If s distribution y is in the equil- 

ibrium set, then there exists a hiring policy such that the distribution y can 

be maintained from year to year. The curved lines In Figure 1 are isocost lines: 

sny two targets on the ssms isocost line can be reached for the asms minimum cost. 

Nots the Isocost lines ss drawn do not differ by a constsnt amount. The cost 

function is actually bowl shaped. It Is fairly flat over a large region, and 

has relatively steep sides. In particular, as y. Increases, the cost increases 

sharply. Note also that the cost Increases when the target point Is outside of 

the equilibrium set. This is due to the difficulty the system has in reaching 
■ 

a nonequlllbrlum target. 

One should not attach undue importance to these figures; our purpose Is 
to give an example of the models* usefulness and not to solve a particular 
problem at a particular university. 
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The numbers on the isocost lines are the cost per faculty member In 

thousands of dollars of running the system for IS years. To estimate the 

total cost you must multiply by the number of faculty members. 

The costs of reaching various target points were calculated under three 

alternative set promotion and salary policies. First we changed the first top 

row of the promotion matrix to .666 .1666 .0 . Thie change had two effects: 

it increased costs by about 3Z, and it reduced the sice of the feasible region. 

Targets with y. > .34 became infeasibls. Thus a more liberal promotion policy 

did not cause a drastic increase in costs, however it did cause the loss of a 

great amount of flexibility. In the next trial we moved to a more stringent 

promotion policy and changed the top row of the promotion matrix to .65 .08 .0 . 

This resulted in a 2X decrease in costs and an enlargement of the set of feasible 

target. The final application retained the more stringent promotion policy and 

raised the support cost of full professors to 40 . Thie, of course, did not 

change the set of feasible targets, but it did cause an 8Z increase in cost. 

The second major application used the transient-infinite horison model 

described in Section IV. We consider the problem of an Institution that wishes 

to expand its faculty else by 500X. The model is uand to measure the tradeoff 

between cost end the length of the growth period. We checked growth periods 

from 8 to 24 years, and plotted cost vs. growth period in the curve shown below. 

The cost figures have been normalised so that they show the percent of 

saving that is achieved by lengthening the growth period. The cost calculated 

is a lower bound on the discounted cost of going from an initial faculty 

distribution to a target distribution (5 times as large) in T years and then 

remaining at that target indefinitely. 

In the example solved, the following data were used: 

X 



Initial distribution:  (.3 .3 .4) 

T«rg«t distribution: (.31 .275 .415) 

Tsrger siss: five tlass orlglnsl siss-gi 

Discount fsctor: o • .96 

Support costs:  (20 28 34) 

Appointment costs:  (2 2 2) 

Proaotion ■strlx in the growth stsge 

.71 .12 .0 
.8  .1 

.93 

Proaotion «strlx in the stesdy stets. 

trie growth. 

.65 .08 0 
.8  .1 

.93 

The growth rets, of course« is sdjusted to aeet the terget sizs In ths specified 

tine period. The coefficients srs soaewhst srbitrery, psrticulsrly the discount 

rste. The estlaetes of support sod sppointaent cost, end ths proaotion astrices, 

ss noted above, contain the result of policy decisions. Ths sasll size of this 

aodel allows one to test sensitivity to chsngss in ths discount fsctor, sslsry 

or proaotion policy. 

Although our three stete aodel is cruds,lt oust be judged against past 

psrforasncs of faculty planning in major universities. Some universities have 

bssn through expension periods in ths post-war era without considering the prob- 

leas that would ensue when the growth period wss over. A naive shortsighted 

strategy produced a nonequilibriua result. This is akin to impacting astronauts 

on ths moon rsthsr than landing then there. In the first instsnes you attain 

your target with catastrophic results. In the second case a smooth transition 

to equilibrium is assured. Our aodel does produce a smooth transition to 



equilibrium. In addition, we can determine e least cost path to the equilibrium 

distribution. 

Another possible use of the model is in determination of the minimum time 

needed tc reach a given distribution. For this problem the final distribution 

x(T) is fixed and T is then reduced until the problem becomes infeasible. 

This approach not only yields the minimum number of periods until x(T) can 

be reached but it gives a tradeoff curve relating the number of periods and the 

cost of reaching the target. If the model is of reasonable size there will be 

little computational difficulty in this approach, and a deciaion maker could 

resolve the same minimum time problem under various assumptions on the promotion 

matrix to gauge the effects of promotion policy on the time to reach a target. 
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