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CHAPTER 1

INTRODUCTION

This work considers the development of ncw materials for applica-
tions in infrared nonlinear optics. The investigated crystals belong to
the II-IV—V2 class of ternary semiconductors with chalcopyrite struc-
ture. We discuss growth technique, materials quality problems, ab-
sorption mechanisms, semiconducting properties, and linear and non-
linear optical properties for two of the compounds: CdGeA32 and
CdGeP2 .
In general nonlinear crystals are used to generate coherent
radiation at wavelengths where lasers are not available. The process
can be second harmonic generation (SHG), mixing, or parametric
oscillation,

Since nonlinear optics require high optical power densities
the material quality problems are extremely important. Also, the
crystals must be phasematchable and have a high nonlinear figure of
merit to give good nonlinear interaction efficiencies. Several use-
ful crystals exist for the visible spectral region. In the infrared,
however, there is a lack of high quality nonlinear crystals.

As a result of this study, CdGeAs,, has been shown to have the
highest figure of merit of any presently available infrared nonlinear
material. With a positive birefringence of 0.1, CdGeAs2 is phase-
matchable for SHG and parametric interactions over most of its trans-

perency range from 2.4 to 18 uym. By SHG of a TEA CO, laser we have

observed a doubling efficiency of 2 percent.



To improve the understanding of the optical absorption mechanisms
we have measured the semiconductor properties and determined the band
Structure near the Brillouin zone center. We have identified one
of the absorption mechanisms in CdGeAs2 as due to intraband transitions
between the split valence bands. This absorption is avoided by
reducing the hole concentration through compensation or doping.

The II-IV-V2 chalcopyrite compounds were first synthesized in
the late nineteen fifties.1’2 Over the past ten years Russian workers
have reported extensive work on the compounds.3 We had therefore
information about melting points and several attempted growth methods
when the chalcopyrite growth program started at Stanford in the fall
of 1969. The important properties for nonlinear optics such as dis-
persion, birefringence, and nonlinear coefficients were not known,
but from the close resemblance with the IIT-V compounds we assumed that
the nonlinear coefficients were large. From the crystal structure it
was clear that the crystals would be birefringent because of the
tetragonal distortion of the unit cell. We did not know, however,
if the birefringence would be sufficient to satisfy the phasematching
condition. Today, due to the recent work at Stanford and the Bell
Telephone Laboratories, the potential of the II-IV-V2 chalcopyrite
compounds for nonlinear optics is fully confirmed.

The long-term goal of this research is tc develop chalcopyrite
crystals of high enough optical quality for the construction of a
parametric oscillator tunable over the infrared frequency range. In

Chapter VII we discuss the potential use of tunable infrared radiation



to detect air pollutants and compare the sensitivity with alternative

laser detection schemes.




CHAPTER 1II

SELECTION OF CRYSTALS FOR NONLINEAR OPTICS
A. GENERAL CONSIDERATION

This chapter reviews briefly the crystal paramecters ot . portance
for nonlinear optics and introduces the properties of the chalcopyrite
compounds. ‘o evaluate nonlinear cryst..s it is necessary to conside:

the following properties:

1. Large nonlinear coefficient.
2., Sufficient birefringence for phasematching.
3. Crystal transparency range.

L., Optical quality.

)
The second order nonlinear coefficient dijk is defined by+’5

P (wg) = dyyE (0 B, () (2.1)

with summation over repeated indices. In this equation P?L(wB) is the
nonlinear polarization generated by the electric fields Ej(wl) and
E (wy). The symuetry of the dijk tensor follows from the crystal

point group symmet:ry.6 For the crystal to have a nonvanishing nonlinear

coefficient it cannot have a center of symmetry. In materials where the

nonlinear coefficient has not been measured, the magnitude can be
estimated by Miller's rule7 if . indices of refraction are known. The

Miller's rulc relates the indic -fraction n to the nonlinear



coefficient by

4y = a“k(nf . 1)(n§ S - 1), (2.2)

where & 1s the Miller's constant. For most materials, b, is

ijk

constant to within a factor of two while the nonlinear coefficient can

1jk

vary over almost four orders of magnitude. Miller's rule works very
well especially for crystals with the same point group symmetry.

The nonlinear polarization drives an electric field at w3 . In
order for the driving polarization to stay in phase with the resultiug

electric field over the whole crystal length the phasematchin, condition
k, = k, +k (2.3)
must be satisfied. Since k = nw/c , we can rewrite the equation as
g0y = nyoy + g, . (2.4)

In addition, energy conservation requires

Wy = + w, . (2.5)

In crystals we accomplish phasematching by using the birefringence

to compensate for the dispersion in the indices of refraction. The

condition that the crystals should have sufficient birefringence to achieve

phasematching sets a very important limit on the number of crystals
useful for nonlinear optics. Degen:rate param:tric oscillators or second

harmonic generation (SHG) require the largest birefringence. The
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phasematching angle for SHG is approximately given by (cf. Appendix 4)

sin 6, o \Vn/|B| (2.6)
for type I phasematching and

sin 6., Vap/|B (2.7)

for type II phasematching. Here B = n, - 1, is the birefringence

and D = ngw - ng is the dispersion. The crystals must therefore have
a birefringence larger than the dispersion between the second harmonic
and the fundamental frequency.

The transmission range of crystals is determined by the bandgap
absorption at short wavelengths and by two-phonon absorption at long
wavelengths. Since efficient nonlinear interactions require high
optical power densities, the absorp’ion within the transparency range
must be at an absolute minimum to avoid crystal damage or breaking of
the phasematching condition. For reference, in a high optical quality
infrared material such as GaAs the absorption is 0.02 cm.l,9 and the
optical damage threshold is approx.imately 100 MW/cmz.lo Nonlinear

absorption is also important and may even 1imit the maximum efficiency

of the nonlinear interaction. We will discuss this in Chapter VI.

B. ESTIMATION OF THE OPTICAL PROPERTIES OF THE II-IV-V2 CHALCOPYRITE

COMPOUNDS

The I1I-V semiconductors have large nonlinear coefficients,11 but
due to the cubic symmetry they have no birefringence and phasematching

is therefore not possible. If we replace the cation in the I1I-V



compounds with atoms from the second and fourth column of the periodic
table, we generate a new class of crystals known as the II-IV-V,
chalcopyrite compounds. These have very similar opti~al pronerties
but with the important addition that they are birefringent. The
chalcopyrite crystal structure is tetragonal and the point gromup
symmetry of 12m allows both type I and type II phascmat:ching.h

Figure 1 shows the atomic arrangement in the chalcopyrite unit
ce11.12 The lattice parameters are a and ¢ . Each cell contains
four II-1V-V, formulas. If the II and IV atoms were indistinguishable,
the chalcopyrite structure would reduce to a compressed sphalerite
structure. However, because of the ordered arrangement of the II and
IV atoms, the chalcopyrite unit cell is twice the sphalerite cell. The
II and IV catioas have different covalent radii, and the anion V is
therefore not exactly in the center cf the cation tetrahedra. It is
positioned a distance a(x - 1/4) off the center closer to the cations

with the smallest radii.l3

We can characterize the chalcopyrite
structure by two parameters Tt and o where T =2 - c/a is the
tetragonal compression and ¢ = Llx - 1 gives the position of the
anion.

The growth of high optical quality material presents several
problems. For maximum progress we decided to concentrate on a few
compounds. In choosing which compounds to grow, the important co=n-

siderations were transmission range, birefringence, and magnitude of

the nonlinear coefficients. When we started the growth, the only



FIG. 1--Chalcopyrite unit cell.
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useful information available was the crystal structure and the bandgap
fraquency. The other important properties such as the infrared cut-
cff frequency, the nonlinear coefficients, and the birefringence had
not been measured. ‘e therefore used the close resemblance with the
III-V analogs tr predict the properties. For reference the IT1-V
analogs are l'sted in Table I. As pointed out, two-phonon absorption
determines th¢ infrared cut-off frequency, and the frequency is
approximately twice the transverse optical mode frequency at the
Brillouin zone center. When we assume the same force constants
for the chalcopyirite bonds as for the III-V analogs, we estimate
the transverse optical mode frequency to be equal to the largest
transverse optical mode frequency of the III-V analogs. This leads
to predicted cut-off wavelengths that ajree with recent measurements
to better than one micron. For example, for CdGeAs, we predicted
a cut-off at 18.5 um and measured 18 ;m as shown in Fig. 2. The
strength of the two phonon absorption in CdGeAs2 is about 20 cm”1
at room temperature. There is also some weak chree phonon absorption
of approximately 0.3 cm-l.

The chalcopyrites have only one independent nonlinear coefficient
since dlh = d36 according to the Kleinman symmetry condition.lh
By applying the Miller's rule in Eq. (2.2), we estimate the magnitude

using the measured Miller's constants for the III-V analogs. The

agreemeat with the recent experimental values is within a factor of
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two. For compounds with unknown average index of refraction we use
Eq. (2.10) to estimate the index.

The property most difficult to estimate is the birefringence. The
c-axis compression of the III-V compounds results in a negative
birefringence, so it was surprising that most of te chalcopyrites
turned out tc be positive birefringent. Initially, w: assumed that
the crystals #ith the largest tetragonal distortion had also the largest
birefringence. We have shown later, however, that there is no such
correlation., For example, both CdGeAs2 and CdGeP2 have large tetragonal
distortion, but only CdGeAs2 has large enough birefringence for phase-
matching.

It is interesting to derive expressions for the indices of refraction
and the birefringence for ‘he chalcopyrites by assigning bond polarizabilities
to the II-V and the III-V bonds. With a linear polarizability tensor

a » we write the induced polarization of a bond ac
p(t) = e @E(t) - (2.8)

We assume uniaxial bond symmetry and write the transverse and the
longitudinal linear bond polarizabilities as al and a” . We can
then calculate the susceptibility tensor by sumriing over the thirty-cwo
bonds within the chalcopyrite unit cell. Defining an average bond

polarizability as ¢ = %(a?l + a”) and the anisotropy as 7y = (a” = al),

- 18



we follow Ch',mla15 and obtain for the susceptibility tensor that

16 16 100
-1 = — (OtAc + och)ﬂ+ ~ 7Ac('r +0) + 7Bc('r - U)] o1 0],
v v 0 0 -2

>
]
mi

(2.9)

where AC and BC refer to the bonds to the largest and smallest
cation and V is the unit cell volume. We assume the average bond
polarizability is approximately the same as for the I1T7-V analogs and
calculate the average susceptibility for the chalcopyrites using the

equation

va Vb
. = = X + = 5 (2.10)
av v a v xb

where V and V are the unit cell volumes and X and Xb are
a b a

the measured susceptibilities of the III-V analogs.

For the relative birefringence we obtain from Eq. (2.9) that

An-' ne-no~ X, = % m_ya(T+°)+7b(T-°)
- - J

n n 2(1 + xav) 6(a, + o

(2.11)

since Xav is always much greater than one. For the II-IV-V2 compounds,

r and ¢ have about the same magnitude so we can approximate Eq. (2.11)

by
On 1 7a
— == (T + 0) . (2.12)
n 6 a, + o

- 13 -




The maximum positive birefringence occurs when Ol.>> a” . This gives

On 1 T+ 0
— - m— (2.13)
"/ max b1 albﬁqla

According to Eq. (2.12) the birefringence depends mainly on the aniso-
tropic polarizability of the AC bond. Consequently, since A is the
cation with the largest radius, the birefringence of, for example,
CdGeP2 and CdSiP2 should be determined mainly by the anisotropic polar-
jzability of the CdP bond. However, it is not possible to estimate
the birefringence of CdSiP2 from the birefringence CdGeP2 because the
anisotropic polarizability of the CdP bond changes when silicon re-
places germanium. Therefore, in practice the Eqs. (2.12) and (2.13)
cannot be used to estimate the birefringence.

For reference, Table I gives a listing of the optical properties of
the chalcopyrites. The numbers in parentheses have not been measured,
but we believe they represent good estimates. The two most useful

crystals for nonlinear optics will probably be CdGeAs2 and ZnGeP2 .
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CHAPTER 1III
BANDSTRUCTURE OF THE CHALCOPYRITES

IN THE VICINITY OF k = 0

CdGeP2 with a bandgap energy of 1.72 eV is expected to be the
II-IV-V2 chalcopyrite compound with the largest direct energy gap.16
All the chalcopyrites with smaller enetgy gaps, however, are rirect
bandgap material with the bandgap located at k = O . Rowe and
Shay17 discuss the splitting and symmetry of the Qalence and con-
duction bands;and they model the chalcopyrite structure as a
strained version of the III-V sphalerite structure. This gives
good agreement with the observed electroreflectance spectra. The
S-like conduction band is singly degenerate (doubly counting spins).
The triply degenerate P-like valence band (sixfold counting spins)
is split into three sub-bands because of spin-orbit and crystal
field interaction.

Knowledge of the splitting and the curvature of the valence
and conduction bands near k = 0 1is very important for the under-
standing of optical and electrical transport properties. From the
curvature of the bands we determine the effective masses which
allow us to calculate the intrinsic carrier density, the free ¢ l.ectron
absorption cross section, and the plasma frequency. From the plasma
frequency we can determine how much the presence of free carriers
perturb the indices of refraction. The components of the mobility

and conductivity tensor are related to the anisotropy of the effective

masses.

- 1§ -



In p-type material there is optical absorption due to introband
transitions between the valence bands. Our band structure calcu'ation
allows us to estimate the magnitude of the absorption cross section.
In Chapter V we also discuss third order nonlinear processes in the
chalcopyrites. The largest contribution to the third order sus-
ceptibility tensor for III-V compounds with a free electron con-
centration of 1016 cm'3 is from the nonparabolicity of the conductiun
band near k = 0 .18’19 Similar calculations are also possible for
the chalcopyrites except they are more complicated, since the lack
of cubic symmetry leads to much more complex bandstructure. It is
interesting, however, that measuring the third order susceptibility
tensor components provides a check on the bandstructure theory.

The bandstructure of the III-V compounds near the Bri;IOuin
zone center is very well described by a semi-empirical theory due to

3

Kane.20 Borshchevskii et al.” adopt these results directly to the
chalcopyrites to calculate the effective masses. This is not very
satisfactory since there is a significant crystal field splitting
in the chalcOpyrites.21 We will therefore extend Kane's theory to
the chalcopyrites and calculate the energy and wave functions to
second order in k .

Including spia-orbit coupling, the Schridinger equation for ~a

electron in a periodic potentiai V(Tr) is

2

p h N
—+ Vet (Wxpo|ly = E¥ , (3.1)
om hm2c2 k k'k

- 16 -



where ; is the momentum operator and o is the spin operator.
ik.r
e

introducting the Bloch-function wk = u

» Where u has the

periodicity of the lattice, we obtain

2
P n_ _ o — __ ol _
=—+ V+ —kep + 22(WXP)'U+—2—2(WXk)-Uuk
2m m km“c hm ¢
ﬁ2k2

= [E - -;;— Uy . (3.2)

We neglect the term (na/hmece)(vv X k)0 w  , since it is very

small according to Kane, because most of the spin-orbit interaction
occurs in the interior of the atom where the atomic momentum ; is
much larger than the crystal momentum Bk . We write the potential

as V=V_+ Vcr . Here VO has cubic symmetry and Vcr ie the

0
potential caused by the tetragonal distortion. We let
2
P .
Hp = —+ 7Y (3.3)
m

be the Hamiltonian for the unperturbed problem and treat

- h = =
kep + —53 (VVO X p)ec (3.h)
m km~¢

| =

HO = V__ o+
cr

as the perturbatjon where the tetragonal potential is neglected in
the spin-orbit coupling term. As basis functions we take the
wavefunctions for the valence and conduction band. Restriction to

these eight wave functions means that the influence of the higher

-17 -



and lower lying bands are considered small, This approximation works
best when the energy separation to the other bands at k = 0 1{g

much larger than the bandgap energy. We follow Kane and use the
basis functions:

l1s8) , (212 (x . N, 2, | 2% 4 gy

2

157, 182 w nyu) , Jany | e Vo - gy

The first four functions are respectively degenerate with the last
four. The symbols? and ! indicate spin up and down referred to the
z-axis. S refers to the conduction band wave functions. They trans-
fori: as atomic s-functions under the Symmetry operations of the
tetrahedral group. Similarly Xx , v » and Z refer to the valence
band wave functions, and they have the Symmetry properties of the
atomic p-functions x » Y, and 2z under the tetrahedral group
operations,

With these basis functions, it follows that the 8 X 8 Hamil-

tonian matrix can be written

i H
H = ) (3'5)
+
Hy H
- 18 -
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where

H1 =
and
-1
/2,
X
H2 =
-1
51/2,
X
' |

Here Es and

the quantities

k P

0 k_P
A
21/2
5.4 2
3 3 3
2/ o =
3 P 3
0 0 E +
P
21/2(k + ik _)P 0
y
0 0
0 0
0 0

0
0
0
5.4
373
(3.6)
1/2 =
(k iky)P
0
0
0
(3.7) -

Ep are the eigenvalues of the unperturbed Hamiltonian,

and the six-fold degenerate valence band.

h

= - 1= (s|p,[2)

m

-19 -

referring to respectively the two-fold degenerate conduction band

We further have defined
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with

(sle,12) = (slp fx) = «(slp [¥)
381 ov ov
0 0
A = (x| P, - — plY) (3.9)
kme? x Y 3y X
with
ov ov ov ov
0 0 _ 0 Yo
— ——. Y - —_— -
(x| TS P Y) = (x| P T P, |2)
ov ov
= | 2p, - Lp lz)
oy d2 Y
and
%
KlVep %) = (8], [s) +3
28
@V, f2) = slv, Is) -5 - (3.10)

We hive not included the term (SIVcr IS) 1in Eq. (3.6) since it only
shifts the eigenvalues by a constant. To determine the level splitting
neer k = 0 to first order in H’ because of the spin-orbit coupling
A and the crystal field splitting & , we diagonalize the matrix

in Eq. (3.5). We find that the conduction band remains two-fold
degenerate while the valence band splits into three doubly degenerate

levels. The four doubly degenerate eigenvalues are determined by the

- 20 -



secular equation:

5 A8 5 2A
E{(E-2)|E°+ (8 +DE+— |~ (k_P) E +—
° 3 d 3

2n &
- 0+ kﬁ)Pe [E2 +[—+ s)E+—|= 0,
3 3

(3.11)

where E = Ek - (hake/am) . We have fixed the zero on the energy
scale in Eq. (3.11), by letting Ep +8/3+40/3=0 . At k=0

the eigenvalues are E_ , E; 0 , and E2 with

1 1 2 _ 8ad
E1,2 = -E(A+6)i§ (6 +4)° - 3 . (3.12)

1
In the chalcopyrites we have A>0 and 38<O0 1 which means that

E, > 0 and E2 <0 . E1 is therefore the energy vf the highest
lying valence band and the bandgap energy is EG = E8 - E1 . We
use this together with Eq. (3.12) to rewrite Eq. (3.11). We find

that

E(E - Ey - EG)(E - El)(E - Ee)

(kzP)eE <g + %%)

(k2 + ks)Pe & -5 - By - 2 + )| -

+

(3.13)
For small k2 , the solutions of Eq. (3.13) give parabolic energy

bands. Including the (h2k2/2m) term from Eq. (3.2), we obtain

-21 -



A

to second order in k that the energies of the conduction and valence

bands are

1%°%  (k.P)2(E, + E, + 24/3) ™\
z (] 1
Ec = EG + E1 + +
2m EG(EG +E, - E2)

(K2 + k2)p? . (8/3) (B +Ey + B)

+

E, +E

¢ T 51 E;(Eg + E) - E)

122 ) (kzP)a(El + 27/3) . (k2 + ks)ra(sl + 8)a

E = E

+
vy 1

om 1?.(,,(1?.1 - E2) 3Elzg(zl - E2)

2 2 2,2
1%k 1 (kS + kD)

E, = - -
v
2 am 2 EG + El
1k (k P)3(E, + 28/3) (12 + k2)PE(E, + B)a
E = E_ + + = = ;
v 2 .
3 an  (E) - E))(E, +E - E)) 3E(E, +E -E)(E -E) )

(3.14)

The above equations give the en~rgy splittings and the effective masses
of the four bands excluding the effect of higher lying bands. It is
worth noting that the expressions for Ev and Ev are not valid

1 2

in the limit & = 0 . We now proceed to calculate the wave functions,

The lattice periodic functions |um) are given by a linear combination

of the eight basis functions |n) . We have

lugd =Y agln) (3.15)

n

- 22 -



a0 M

T e T g ——

and we determine the coefficients & n by solving the eight homo-

geneous equations

zam<}18n- Em68n>= 0 ; s = 1to8 (3.16)

for each eigenvalue Em of the Hamiltonian matrix Hsn in Eq. (3.5).

We then obtain Eqs. (3.17) and (3.18)

A
)

. H
2 A
! [18}) + e kPl —o le'i(x-u)f) + (EG+ El+—) 124
( Eg(Eg+E, -E,) 3 I

3
A 2
2'§(kx - iky)P [(EG+E1+ o+;) |-2'§(x+ 1Y)}) + ;- A lzf)]

-3
-—(ﬂ‘ﬁ |2 'é(x-u)&) (3.17)

EG+El

+

’

B
lug)

3
[1s}) + ———1———— K P[z—A |-2 i(x», 91 )] +( ) lzf)]
E,(E;+E, -E,) 3 '

~

3
2
2‘§(kx+ uy)v [(Ec*zl"“%) lz‘i(x - s.r)f) + -;- a lz{)]

+

2 ¥
_.(__EZ)_. |2‘§(x+ 177$)

R+

+
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a
]

A 1 & 1L oY,
1 o erem—— -é
' [ "z (awsl) ] {”v P R
kP -
- -2 ltsf) - (k, -t )em [18d)
5 3 [E, + (2/3)
» RYETR ki RGN
) = = -3
ln'l [1 + " (2A+3El)] {El'l-(?A/S) |-2 (x+1r){) + |z}

(k_+1x )m

kP
- = uef) + —X l1s)
5 Eg|Ey+ (22/3)

4
.i .
I“C) . la‘é(xur)f) -'M lisf)}

2
A B +E,

(
4
l“f ) = 4 la'é(x-ir){) - M '1.})}

2 ' !0 +El
4 - [+ H] [ o
R LN b}

KlP (x +15)PA
- [1s})
R -E, | EgeE,-E )f2+(ea/T e b}

\
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In Eqs. (3.17) and (3.18) A and B distinguish between the
two wave functions of each doubly degenerate band. The Eqs. (3.1L4),
(3.17), and (3.18) are the main results of this chapter. With these
equations we can calculate energy splittings, effective masses, and
optical transition probabilities between the boads. The equations
depend only on the following four parameters: the bandgap energy
EG , the spin-orbit splitting energy A » the crystal field splitting
parameter  , and finally the matrix element P , For the band-
gap energy we use the measured value. The spin-orbit coupling and
crystal field splitting energies have been measured for four of the

16

IT-IV-V_ compounds: CdGeP,, CdSnP ZnSiAsg, and CdSiAsg. For

2 2’ 2’
the other chalcopyrites we estimate the spin-orbit coupling from tne
III-V compounds by averaging the experimental values for the III-V
analogs.22 For the crystal field splitting we use the results of
a pseudopotential calculation,21 noting that with our definition of
the crystal field splitting parameter it assumes negative values
in the chalcopyrites«17 It is also possible to estimate the crystal
field splitting by considering tha chalcopyrites as stressed versions
of the III-V compounds as suggested by Shay et a1.17’23 A comparison
with Pollak et al.2* yields

3 3
5 = - ; BE = - 3b(ezz - exx) = ; bt , (3.19)

where b 1is the deformation potential of the III-V analogs for stress

in the [001] direction. For GaAs b = - 1.75 eV.ei Since we do not
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know b for InAs, we use this value to estimate & = - 0.29 eV for

CdGeAs2 which is close to -0.25 eV predicted by the pseudopotential

calculation.

The matrix element P is nearly constant for all the III-V

compounds that can be described by Kane's theory.26 Within 20% we
have
2 ﬁ2
PS = — X 20 eV (3.20)
2m

for the III-V compounds, and we assume this value for the chalcopyrites.

Close to k = O the energy bands are of the form

1 K24kl K2
E = E, *— L, 2 ] (3.21)

o T

with the plus and minus sign referring to respectively the conduction

and valence bands. In Eq. (3.21) m and m define the transverse
and thki longitudinal effective masses. We can use these to define

a density ot states effective mass my.

mge - mLm§ ’ (3.22)

and a conductivity effective mass mc

1 1 /1 2
_— = -1 +— ’ (3.23)
my 3T \mp  Tp

(cf. reference 27). Table II gives the calculated effective masses

for CdGeAsé and CdGeP, together with the values for E. , A and 3
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TABLE II

CALCULATED VALENCE BAND SPLITTING ENERGIES AND EFFECTIVE

MASSES FOR THE CONDUCTION AND VALENCE EANDS

CdGeAs,, CdGeP,
Eg 0.53 1.72
A 0.38 0.11
) - 0.25 - 0.20
E 0.20 0.17
Eo - 0.32 - 0.08
mT mL mde M mT mL mde Mo
c 0.039 | 0.028| 0.035 | 0.034 | 0,088 | 0.079 0.085 | 0.085
vy |0.77 0.031] 0.26 |0.087| - |0.097
VE 0.079 - 0-23 -
vy 0.14 | 0.69 | 0.2% |0.19 |0.2k4 -

All energles are in eV and the effective masses are in units of the

free electron mass.

- 27 -
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used in the calculation. The table also lists the splitting energies
E1 and E2 of the valence band. We have assumed direct bandgaps,
setting EG equal to the measured bandgap energy. There is, however,
some uncertainty concerning CdGeAsz. Early reports of a direct band-
gap28 have been questicned recently,29 although the fact that both

of the III-V analogs GaAs and InAs have direcr bandgaps tends to
support the notion of a direct bandgap. With this qualification in
mind, Fig. 3 shows the expected bandstructure of CdGeA52 near k = 0,
The highest valence band has a smaller longitudinal, but a larger
transverse effective mass than the v2-band. A few of the effective
masses of the valence bands are not listed in Table II. These can
only be determined accurately by considering the effect of higher
bands since they receive very little contribution from the conduction
band interaction. No measured effective masses have been reported
for CdGePz. In CdGeAsz, however, infrared plasma reflection ®

and thermoelectric power measurement528’31 have been used to determine
the electron mass. The effective mass depends on the carrier
concentration. Extrapolation to small carrier concentrations results
in an effective mass of 0.02 to 0.03 times the free electron mass.
This is in reasonably good agreement with the calculated effective
mass of 0.035 in Table II. There is only one reported measurement

of the effective hole mass in CdGeAsz.31 The mass was deduced from

measurements of the thermoelectric power. This gave a density of

state effective mass of 0.3 which agrees surprisingly well with our
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L

calculated value of 0.26. We therefore conclude that the generalized
Kane model that we have described. gives »n adequate description of
the bandstructure near k ~ 0 1{n CdGeAs2 and probably works well also
for the other chalcopyrites.

Finally in this chapter, we list the matrix elements for optical
transitions between the highest and the two lower valence bands.
In Chapter VI we will refer back to the results when we estimate
the magnitude of the absorption in p-tvpe material, (See Eq. (3.24)

on the following page).
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lcplu ) =-C, 2 l/e(k +1k)
"1 1 3(E, +2a/3]z(z +z)

- . Pon [k k- 1k
(W epld) a-c, 2 /2 __ Y (o, - to) e S
v, v, V. z
1 2 1 E Eg + Ky

G G

ch 1
A ja =1 A
(u "‘P'“ ) meC C —_— ——— kK e
1 Yy "1 3u B, Eg+E -E s

2

A Fk + tk

+
9 + 28/31[E, +20/3] | E;

(c - uy)
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W 1) - -c,

"1 33 " l[c(z + 2/3]

K
- (k. + 1k_)
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(e

+ e
y)

k:(.x + “’)I

(3.24)



b

CHAPTER IV

ELECTRIC PROPERTIES AND LINEAR EXPANSION COEFFICIENT OF CdGeA32

Several abssorption mechanisms in the chalcopyrites are related
to the semiconductor properties. Therefore knowledge of the electric
transport properties is necessary for a full evaluation of the material.
It is well known that controlled doping may improve the optical
quality of semiconductors. As an example, doping GaAs by chromium
introduces deep acceptor levels that remove all the free electrons.
This results in high resistivity material of good optical quality.
Another example is CdSe where Se compensation reduces the carrier
concentration. Besides causing scattering leading to absorption, the
presence of free carriers perturbs the indices of refraction
and thereby the phasematching angle for nonlinear optical inter-
actions. An additional absorption mechanism exists in p-type
material due to intraband transitions between the split valence
bands. This absorption mechanism has a magnitude proportional to the
free hole concentration. Another common cause of optical absorption
in semiconductors is impurity absorption. From the temperature
dependence of the Hall coefficient we can derive information about
the position and concentration of the impurity levels, and by combining
the Hall coefficient with the ucasured coﬁductivity we can calculate
the carrier mobility. The mobility is sensitive to the general
crystal quality and increases with a smaller number of crystal

imperfections.
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In this chapter we discuss the electrical transport equations
necessary to interpret the experimental results and then present
the results for p-type CdGeAse. We will also discuss the measure-
ments of the linear thermal expansion coefficient for CdGeAse. The

expansion coefficient is strongly anisotropic and explains at least

partially the crystal cracking during growth.

A. ELECTRIC TRANSPORT PROPERTIES

1. Theory

Introducing an electron mobility He and a hole mobility My

we have that the electric conductivity is given by

o = e(m, +p) (k.1)

when there are n electrons in the conduction band and p holes in
the valence band. The mobility depends on the collision time of the

carriers and the effective mass. For holes we have

e(t)
b= , (4.2)

m
v

and a similar expression holds for the electrons. (t) 1is the
collison time averaged over the carrier velocity since T in
general is velocity deperndent.

In the case of an anisotropic valence or conductior band, ¢ 1is
a tensor. From band structure calculations near the Brillouin

zone center we have shown that the chalcopyrites have a nearly
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isotropic conduction band, but that the valence band is strongly
anisotropic. It is convenient to define a longitudinal and a
transverse conductivity for conduction parallel and perpendicular to
the c-axis direction. For p-type material we have according to

Eqs. (4.1) and (L.2) that

[of v v

L 1,L 1,T
—_— = e L L d , (h5)
fop M m

i V1,1 V1,1

where v, refers to the top valence band. Using the effective masses

in Table II, we obtain ot/oT = 25 for CdGeAse. The ratio between

the electron and hole mobility depends on which scattering mechanism
limits the collision time. The average collisicn time is in general
different for electrons and holes. Pure acoustic scattering is most
important at high temperatures due to the T-B/e temperature dependence.
In that case the ratio between the longitudinal components of the mobility

tensor 1s27

Ve L m“L ,hl d %
Sab L LL [ _"l.de , (L.13)
..1._1 : Rt " de

and we obtain a similar expression for the transverse components,
The subscript de 1in Eq. (4.4) refers to the density of states effective

= 22 and

mass. Applying Eq. (4.4) to CdGeAs2 we obtain M,
L
)

,L/“vl

Hoo/h = 4oo .
c, T/ "y
SR
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By a slight extension of the results in reference 27, we obtain
expressions for the Hall constant R in crystals such as CdGeAse
with spheroidal constant energy surfaces and a direct bandgap at

k =0 . For the magnetic field applied along the c-axis we find

E r 2 -n12
Y Phy T HelL L
Sie T s, Tel RO
jx z €l \p v,T + nuc,T

and for the magnetic field perpendicular to the c-axis we have

Ez T ppv,Tpv,L i npc,Tpc,L

i B el (puy g+ mu, p)(Puy o+ p)
(L.6)

In the above equations r = (12)/(1)2 is a constant close to unity,
i.e. r = 1.18 for pure acoustic scattering and r = 1.93 for

T With only one type of carrier the

ionized impurity scattering.2
equations simplify. For p-type material we have
i L
RB”C - RBJ_C B IeIP ‘ (k.7)
and in this case the Hall constant is a dir .ct measure of the carrier
concentration.

In intrinsic semiconductors the number of holes equals the number

of electrons. With the definitions

21k T 3
N, = 2 ———:—-h; de )2 (4.8)
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and

enkTmc de %
N = 2 [|——— (4.9)
v h2

we calculate the intrinsic carrier concentration n, by the equation

EG
= NN exp|-— . (4.10)

2
i KT

n

Using the effective masses m =0.035m and m =0.26m,
e v,de

c,d
we obtain for CdGeAs2 that

3000 1
n, = 1.hk2 x 10“‘ 'r3/2 exp{-— ] | =3 - (4.11)
T cm

Figure L4 shows the temperature dependence of the intrinsic carrier con-
centration. At 300°K we have N, = 1.64 x 1017 cm™ and
18 -3
= 3. X .
Nv1 3.32 X 1077 em
For extrinsic semiconductors assuming nondegenerate bands, the
product np of the electron and hole concentration is constant

independent of the impurity concentration and it is given by
np = nf . (4.12)

The semiconductor is nondegenerate when the Fermi level is in the for-
bidden energy gap and is separated from the valence and the conduction
band by an energy of more than kT . For p-type material this

condition implies that p/Nv < 1l/e with e = 2.718 . This condition

can be rewritten such that for a carrier concentration p the semiconductor
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1s nondegenerate at temperatures larger than the degeneracy temperature

T~ defined by the equation

D
2
h
T o= Ly —— 23, (4.13)
2nk m
v,de
For a hole concentration of 1016 cm-3 in CdGeAs_ the degeneracy tem-

2

perature is as low as 129K .

Finally in this section, we discuss the temperature variation
of the carrier concentration in a material with Nd donors and two
acceptor levels of concentration Nal and Na2 respectively. The

results apply to the measured p-type CdGeAs, samples. The charge

2

balance leads to the ejuation

n + (Nal - nal) + (Naa - naa) = p+ (Nd - nd) ,
(4.14)

where n, is the number of filled donor levels (un-ionized donors)

and N, and n_  are the number of unfilled acceptor levels (un-
2

ionized acceptors). We consider p-type naterial. The donors are

then ionized such that ny =0 . Furthermore, we let N, refer to
1

a shallow acceptor level also fully ionized (na1 =0) . Na refers
2

to a deeper partially ionized acceptor level. For an acceptor ioniza-

tion energy of eae » the number of un-ionized acceptors is given by

N
a

no = 2 . (4.15)
2 1+ é exp [(EF - eae)/kT]




Here the Fermi energy is measured from the top of the valence band and
the factor of two is the spin degeneracy. For simplicity we also
neglect n in Eq. (4.14). This is allowed as long as the hole
concentration is much larger than the intrinsic carrier density.

For a nondegenerate semiconductor, the concentration of holes in the
valence band is given by

-EF/kT

P = Ne B (4.16)

which substituted into Eq. (4.15) yields

n, = T . (4.17)
2 1+ 2 (Nv/p) exp (- eae/kT)

This eliminates the Fermi energy from Eq. (L.14) and we can solve for

the hole concentration. We obtain

- kT
1 1 eag/
p=2(Na1-Nd-2Nve )
1.
-¢_ /KT -, /KT |2
1 1 Ca/ \27', 32 ,
+3 (Na =Ny -gNe 20 )% a(Nal + Nae - Nd)Nve
(4.18)
with the asymptotic solutions p = Nal - Nd at low temperatures and
P = Na1 + Na2 - Nd at high temperatures. The donors partially

compensate the hole concentration. At intermediate temperatures

there is an approximate solution provided the condition

Nall =N < p < Na1 + Nae - Ny (4.19)
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can be satisfied which is only possible when Na2 >> Na - Nd
1
With Eq. (4.19) satisfied, the approximate carrier concentration is

given by
. -€ _ /2kT
~VIN N e % : (4.20)

2. Experiment

We have measured the resistivity and Hall constant between 77°K
and hOOoK for p-type CdGeAsg. The samples came from boules grown from
stoichiometric melt. For most samples we used the van der Pauw
method. 32,33 We did not orient the samples. They consisted of one or
a few crystallites and the sample diameter to thickness ratio was
about 10. It would have been desirable to use oriented rectangular
bar shaped samples since this would have allowed us to measure
the individual components of  the conductivity tensor. However,
due to the extensive cracking it was aot oossible to obtain suffi-
ciently large oriented single crystal samples. We used indium
to form ohmic contacts. The contacts worked well down to liquid
nitrogen. Small balls of indium were squeezed onto the sample by
a teflon coated twoezer9and then allo&ed in an H2 atmosphere'for S,
to 10 minutes at 350°C,

Figure 5 shows the temperature -dependence of the Hall constant,
We used a current of 0, 5 mA and a magnetic fielo:onEOOO,Gauss.

This gave a Hall voltage of about 100 pv. The Hall constant is

almost independent of temperature between 77°K and 2SO°K} At
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higher temperatures it starts to decrease. The resistivity plotted
in Fig. 6 also has the same general temperature dependence. It 1is
constant between 77°K and 250°K and decreases at higher temperatures.

28,3k Vaipolin et a1.28 observed

This agrees with published data.
that the Hall constant started to decrease above 200°K and claimed
that this was due to the onset of mixed conductivity. This, however,
1s not compatible with their results showing the Hall constant goes
to zero at SOOOK. With a bandgap of 0.53 eV, it is easy to estimate
from Eqs. (4.5) or (4.6) and Fig. U that the temperatuce ifference,
measured in units of 1000/T, between the onset of mixed conductivity

and zero Hall constant should be less than O.5°K-1. This is much

smaller than the difference between 200°K and SOOOK which is BOK-I.
Furthermore, the resistivity changes too quickly with the temperature
to be explained by purely a change in the mobility. The correct
interpretation is probably that the crystals have two acceptor levels,
one shallow and one deep. The shallow ievel is completely ionized
above 77°K. Between 77°K and 250°K we have a region of saturated
conduction with the carrier concentration equal to Nal - Nd .
Above 250°K the effect of the deep acceptor level starts to be notice-
able.

When there is only one type of carrier, the Hall constant gives
a direct determination of the carrier concentration. Neglecting the
constant r , it follows from Eq. (L.7) that p = 1/|e|]R . This

gives a carrier concentration at T71°K of 6.6, 8.1, and 5.3 X 10}° em™

- b2 -
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respectively for the samples from boules B6, B7, and B8. Since the
samples have a nondegenerate carrier concentration, we can use Eq.
(4.20) to obtain a rough estimate of the impurity concentration that
gives rise to the deep acceptor level. Equation (L4.20) gives the
carrier concentration at intermediate temperatures and we determine
the ionization energy of the deep levels from the slope in Fig. 5.
This gives €82 =~ 0.2 eV, and we estimate the impurity concentration
to be Ny, = 4 x 1017 o2 fo% sample BS.

The Hall constant and the resistivity allow us to determine the
Hall mobility which is defined by My = R/o . For our samples the
Hall mobility is temperature independent up to salmost room tempera-
ture. It then starts decreasing. The Hall mobilities calculated at
77°K for samples B6, B7, and B8 are respectively 676, 606, and 1540
cme/Vsec. The difference between B8 and the two other samples might
be partislly due to orientation effects. For comparison we also list
the previously published results. Reference28 gives a hole mobility
of 20 cm?/Vsec and reference 34 lists the electron and hole mobilities
as 1000 cme/Vsec and 240 cma/Vsec respectively. We therefore conclude
that our material is probably of slightly higher electronic quality
with fewer ionized impurities acting as scattering centers to limit

the mobility.
B. MEASUREMENT OF THE LINEAR THERMAL EXPANSION COEFFICIENT

We have measured the linear thermal expansion coefficient for

CdGeAs, in the temperature range 80°¢ to 170°C, using an optical

2
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interference technique. Figure 7 shows the experimental setup. To
avoid vibrations the experiment should be performed on a stable table.
A small tilt between the microscope slides gives rise to fringes,

and the fringe spacing on the screen decreases with increasing tilt
angle. The microscope slides were coated to obtain good fringe
contrast. At times the contrast could be improved by a wedge
blocking the zero order reflection. We had regular air in the furnace.
Above 200°C it is necessary to use an inert atmésphere or vacuum to
avoid growth of an oxide layer. A vacuum has the additonal advantage
that it is otherwise necessary to correct for the change in the index
of refraction with the temperature of the gas between the microscope
slides.

Let [ be the sample thickness and n the index of refraction
for air. The phase difference associated with one double reflection
between the microscope slides is then given by ¢ = (lm/A)nt
Here ) = 6328 & 1is the wavelength of the He-Ne laser. A temperature

change AT changes the phase difference by

Y [at dn
&p = — [(—nn+t— L8 . (L.21)
A dT dT

We measure X by observing the fringe movement on the screen. For
s fringes passing through a reference point, we have /4y =27ms . By
substituting this into Eq. (4.21) we dutermine the linear thermal

coefficient a . We find

(L.22)

~ =

a A
dT 2n!

3 |
aja.

Ly

8
Q@ = ik
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We see from Eq. (4.22) that we need to know dn/dT for air. The index

of refraction for air can be written as n =1 + % X with the sus-

ceptibility X proportional to the density N/V p/kT . From

this it follows that

p. T
= =0 _ . (4.23)
p T

For p = p, and defining p = 1/TO , we can rewrite this equation as

0

n -1
TO
—— = 1 +8(T - TO) . (h.24)

n, - 1

Letting T. = 273°K , we should theoretically have B = 0.00367

0
Experimentally B is found to be equal to 0.003679 fer 3 = 6328 &

and TO = 275°K.35 For the same wavelength and temperature and a

pressure of 760 mm Hg the index ol refraction for dry air is n, =
0
1.0072921 . The temperature dependence is obtained by differentiating
Eq. (4.24). We obtain
dnT nT -1

— - -8 : (4.25)
dT 1+B(T - Tj)

The calculated dnT/dT is plotted in Fig. 8.

In order to test the method we first measured a crystal with a
known exnansion coefficient. We used a single crystal of silicon
3.99 mw thick. The results are listed in Table III. In Fig. 9 we
cownps. 2 the results with the data for polycrystalline silicon from

re‘erence 36. The agreement is good.
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TABLE IIIX

LINEAR THERMAL EXPANSION COEFFICIENT FOR SILICON

T Z87 17 (;_11 ':ll_'!r") air o

o (10-6 oxf1> (10-6 oK-l) (10-6 oK-l)
82.5 1.85 - 2.6L 2.49
113 2.17 - 0.53 2.70
147 2.29 - 0.46 2.75
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Linear thermal expansion coefficient

a (1076 %)

3.5
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* Ref. 7
A Experiment
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+ 9-~Linear thermal expansion coefficient for silicon.
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We had two crystals of CdGeAsa, one c-axis cut 4.0l mm thick and

one a-axis cut 2.96 mm thick. CdGeAs, proved to have a very aniso-

2
tropic linear thermal expansion coefficient with al more than ten
times larger than a” . The results for a-axis expansion are listed
in Table IV. For the c-axis expansion we did not obtain equally
accurate measurements because a” was of the same order as dn/dT
for air, but of opposite sign, such that the fringe movement was
almost zero. The results are in Table V. In Fig. 10 we plot the

temperature dependence of the expansion coefficients. The expansion

coefficients increase slightly with the temperature.
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TABLE IV

LINEAR THFRMAL a-AXIS EXPANSION COEFFICIENT FOR CdGeAs2

T ErAu- é (% d—;)air “
oc) (10 6 oK-l) (10-6 oK-l) (10 6 oy -1)
19.3 7.64 -0.6L4 8.28
110 7.93 -0.5k4 8.47
142 8.18 -0.46 8.6L4
171 8.47 -0.L0 8.87




TABLE V

LINEAR THERMAL c-AXIS EXPANSION COEFFICIENT FOR CdGeA82

RO T WS Eavaeer

b Eh AST (-tl-{ %)air ot”

(OC) (10-6 oK-l) (10-6 oK-l) (10-6 oK-l)
128 -0.14 -0.k9 0.35
245 0.34 -0.30 0.64
288 0.50 -0.25 0.75
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CHAPTER V

CRYSTAL GROWTH AND MATERIAL EVALUATION

In this chapter we briefly describe the growth technique and then
the testing procedures used to evaluate chalcopyrite crystals. The
problems of main concern are.the optical transmission and crystal
cracking. Fortunately, the necessary crystal size for most nonlinear
optic applications is only a few millimete:s 80 saﬁples can be cut from
the best sections of the boules. The crystals are grown at the Center

for Materials Research (CMR) at Stanford.

A, GROWTH MEIHOD
1. CdGeAsE,:

References 37 and 38 discuss the equilibrium phase diagram of
CdGeAsa. The crystal melts congruently at 67000. The homogeneity
region is believed to be very narrow. It probably extends only a
traéfion of a percent away from the stoichiometric composition which
is helpful in obtaining uniform single crystals. All our measurements
have been on samples grown by the vertical Bridgman-Stockbarger tech-
nique.

Stoichiometric proportions of the elements (6N) are placed in a
quartz tube which then is sealed under vacuum. The material is re-
.acted for 16 hours at a temperature of T30 to_7h0°C. The temperature
is raised slowly since the arsenic vapor pressure is about 10 atm at
730°C. After complete reaction, the material is ready for Bridgman |

growth., The furnace is vertical with a temperature profile as illus-

trated in Fig. 11. The quartz crucible is placed near the top of the i
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furnace and is lowered slowly through the temperature gradient. To
aid formation of a single crystal, the crucible has a 1 to 1% inch long
capillary at the bottom. The synthesis and growth can be done in one
or two steps. The two step procedure has the disadvantage that some
vapor in the crucible deposits on the walls when the synthesized
material is quenched, and it is not possible to retrieve this deposit.
The one step process assures that no material is lost. However, there
is a problem of obtaining uniform mixing and achieving fully reacted
material in the crucible as well as in the capillary before the growth
starts. An ultrasonic vibrator aids the mixing process. To prevent
reaction of the melt with the crucible walls a carbon layer is used
to coat the inside of the quartz crucible. Boules grown without the
carbon layer did not show any noticeable change in the optical trans-
mission.

Figure 12 shows a photograph of a boule. The boules are usually
2.5 cm long and 1.3 cm in diameter with the general properties fairly
repeatable from run to run. There is, however, a secondary nuclea-
tion problem. The boules start as single crystals, but after 0.5 to
1 cm of growth the melt becomes unstable and numerous small crystals
form from nucleation sites. In trying to eliminate this problem, the
growth conditions have been varied over a wide range. The lowering
rate of the crucible has been changed between 0.25 and 27 mm/hour and
the temperature gradient between 11.8‘and jhoc/cm,'this has not resulted
in any improvement. Another problem is extensive crystal crackiﬁg which

occurs at all investigated growth conditions.
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2. CdGeP

The melting point of CdGeP_ is at 790°C. Because of the high

2
phosphorus vapor pressure, CdP2 is s''nthesized first and then reacted
with Ge to form CdGe)E at a temperature above the melting point of Ge.
The fully reacted mat:+ial is then used to grow single crystals by the
Bridgman-Stockbarger technique similar to the growth of CdGeAse. Due
to observed Si vitrification, a carbon crucible is used to synthesize
the CdGeP2. The resulting crystals show the same cracking pattern as

observed for CdGeAsE.

B. INITIAL TESTING

1. Polishing and Etching

Both CdGeAs2 and CdGeP2 polish well. Since the crystals are
anisotropic, the grain boundaries and the twin lines can be seen on
a polished surface using a microscope and partially crossed polarizers.
Without polarizers it is necessary to use a suitable etch to reveal the
structure. A good etch for CdGeA82 is 1H202: 2NHhOH:hH20 and etching
for 30 sec., For CdGeP2 etching for 15 sec in a 10% Br2 solution in
ethyl alchol gives good results. The best section of the boule is
usually the region within 0.5 to 1 cm from the capillary. This section
most often consists of two or three crystgllites. For growth from

stoichiometric melt there is no evidence of inclusions except near the

top of the boules,

2. Cracking

Due to the extensive cracking, the largest single crystals of

CdGeAs2 useful for nonlinear optics have to date been limited to
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approximately L mm3. It has been suggested that the cracking in

CdGeA32 is due to a sphalerite to chalcopyrite phase transition at
6300C.3’39 We have, however, some doubt about the phase transition

since we have not been able to verify the sphalerite phase in samples
quenched from temperatures above 630°C. The large anisotropy in the
thermal expansion (cf.Chapter IV) may also give rise to cracking.

There is a definite correlation between the cracking and the grain
boundaries. Large single crystal regions usually have few cracks, znd

it is hoped that the cracking will reduce with improved growth techniques.

Finally, the cracking may be related to the constraints imposed by the

walls of the gquartz crucible.

3. Growth Direction

We have taken Laue photographs of several boules to determine the
preferred growth direction. In a few boules strain caused blurring of
the Laue spots. The orientation of large single crystal regions is
usually with the chalcopyrite unit cell (111) direction within 10° of
the boule axis. This agrees with the literature which reports the [111]
direction as the fastest growth direction for the chalcopyrites.

The impurity segregation coefificient and the density of stoichio-
metric imperfections may depend on the growth direction. Boule number 31
had two twins with a large disparity in the optical transmission. The
smaller piece was transparent. It grew in a direction of 17o off the
c-axis in the [100] plane. The larger piece, however, which was
completely opaque, grew close to the [221) direction. To see if there
was any significant difference in the impurity concentration between

the two samples, they were sent out for impurity analysis. The results,
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however, were not conclusive. They are summarized in Table X.

4. Optical Transmissior

The property of the greatest concern is the optical transmission.

Since the bandgap of CdGeAs, is at 2.3 um, visual inspection is not

2
possible. Slices 1 mm thick are therefore cut from several sections of
the boule. They are polished and the optical transmission is measured
on a 621 Perkin-Elmer spectrophotometer. Most boules have a very non-
uniform transmission with the best transmission usually at the bottom.
Uniform transmission exists only over very limited regions. The
transmission including reflection losses through one of our best samples

of p-type CdGeAs, is shown in Fig. 13. More often the best transmission

2
in a boule is between 20 to 30% for a 1 mm thick sample. The bandgap at
2.3 um and the two phonon absorption at 18 um determine the transmission
range. Some weak three phonon absorption exists between 12 to 13 um.
There is no free carrie- absorption in p-type samples. For most samples,
however, significant absorption occurs between the bandgap and 5 to

6 um. This absorption is not seen in n-type samples which in return

have a shorter infrared cutoff wavelength due to free electron absorption.

Due to the larger bandgap the quality of CdGeP, can be studied using an

2

infrared microscope which makes evaluation easier than for CdGeAs The

o
boundary between transparent and opague regions usually follows sharp
lines and there is often a correlation between crack lines and opaque
regions (cf. Fig. 14). The cracking is concentrated on the boundary
between single crystal regions. 7%he optical transmission range for

n-type CdGeP, is 0.8 u to 12.5 um as showr in Fig. 15. There is some

2
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absorption at short wavoleugths close to the bandgap frequency. Similar

absorption is seen in sevarsl of the II-VI semiconductor compounds.

5. Measurement of the Resistivity and the Sign of the Majority Carrier

After the samples have been tested for optical transmission, they
are etched and the resistivity is measured by the four point probe
method. 1In addition, a hot probe is used to determine the sign of the
malority carriers. Growth of CdGeA82 from stoichiometric melt gives
P-type material except for a region close to the capillary where there
may be a small n-type region. Crystals have been grown from melt with
0.5 to 1% excess arsenic, and one boule was grown with 2h excess ger-
maniva. These boules were also P-type. The optical transmission and
resistivity of boules grown from arsenic rich melt are about the same
as for stoichiometric grown boules. Electron probe microanalysis
revealed arsenic inclusinns near the top, and in that region the
material was n-type. The germanium rich boule had very nonuniform
transmisgsion due to germanium precipitates.

The resistivity correlates with the optical transmission. For
p-type CdGeA82 the resistivity at room tomperature is between 0.5Q cm
aad 150 cm with the largest resistivity resulting in the best optical
transmission. An excepfion was boule number 28 which had a resistivity
of about 1000 em. This high resistivity was probably due to a reduced
wobility because of strain since this boule was quenched from 480°c.
The presence of strain was confirmed by measuring second harmonic

generation in a wedged sample.
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The resistivity sometimes varies significantly across the boule
cross section. This is also reflected in the nonuniform optical trans-
mission. The variation in registivity can be by a factor of five or
more. For example, for boule number 31 which consisted of two single
crystals, one “ransparent and one opaque, the resistivity was 7.5 to
150 cm and 2.4 0 cm respectively.

In n-type CdGeAs2 the rosistivity fs usually much smaller than
10 cm and the crystai is opaque.

Only a few boules have been grown of CdGeP.. The boules were

2
n-type with a resistivity of 10h to 10°Q cm.

C. OTHER TESTS

1, Electron Probe Microanalysis

We have made extensive microprobe analysis of several boules to
investigate possible deviations from stoichiometric composition. The
absolute accuracy of microprobe measurements are between 2 and 5 weight
percent. For absolute calibration we use Cd, CdS, Ge , and GaAs as
standards and determine the weight fraction wu of the elements in the

unknown (CdGeAsa) using the expression

Fg I
W,= W, — - (5.1)
u s g .
u u

where ws is the weight fraction of the element in the standard, Is
and I, are the x-ray irtensities from the standard and the unknown,
and Fs and Fu corrects for the matrix assorption in the ctandard and
the unknown,
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We have determined Fs/Fu from tables in Birksho for an accelerating
voltage of 25 kV, electrons incident at 62.5o » and a takeoff angle
Y of 38.5° . Table VI gives the product wst/Fu . Equation (5.1)
does not include any matrix enhancement factor since at 25 kV there is
negligible enhancement in the x-ray intensity because of excitation by
the characteristic fluorescence from the other elements in the matrix.

Figure 16 shows an etched boule cross section of CdGeAs_ containing

2
several grains. The left side of the cross section was transparent and
P-type and the right side opaque and n-type. Table VII gives the results
of the microprobe analysis. No variation in stoichiometry over the cross
section or irregularities at the grain boundaries could be observed
within the experimental resolution.

The relative accuracy of the microprobe analysis can be as good
as a few tenths of one percent. Table VIII lists some experimental
results for different boules of CdGeAs2. Within the experimental error
excess As does not perturb the stoichiometric composition. The results

agree with the previous phase diagram studies, that CdGeAs2 exists only

in a narrow homogeneity region.

2. Impurity Analysis

The purification of compound semiconductors is far more difficult
than for the element semiconductors. It is not sufficient to remove
foreign atoms. The stoichiometric composition must also be controlled,
The observed carrier concentration is probably related to both impurities
and stoichiometric variations. Since there are approximately ]q22 atoms/cm3

16

a carrier concentration of 10 cm-3 corresponds to only 1 ppm of
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TABLE VI

MACNITUDE OF Ws FS/Fu FOR MICROPROBE ANALYSIS OF CdGeAs2

. Standard de Gem Asm
cd 115.26

cds 82.23

Ge 101.99

GaAs 49.37
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MICROPROBE ANALYSIS OF SLICE No. 9 FROM BOULE No. 34 of CdGeAs

TABLE VII

2

Ar
M wbd ng wks
1 32.11 21.94 45.95 | L
11 31.97 21.96 L6.07
111 31.97 21.93 k.11
1v 32.30 21.78 ks5.92

- 70 -
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TABLE VIII

MICROPROBE ANALYSIS OF CdGeAs2

Boule Wumber de wGe wAs Growth Condition Optical
I Transmission
l
l
i-_e 31.33 | 22.21] 46,46 0.5 Wt % excess As! Opaque
26A (top of boule) | 31.33 22.12{ h6.55‘ Stoichiometric | Max Log
26C 31.34 - 22.29! 46.36 Stoichiometric . Max 15%
31 31.61;:i 22.03 L46.34 0.5 wt % excess As| Max 109
33 31.38- 22.36 146.26 0.5 wt % excess As| Max 25%
i t
| | ’ ‘
- ' : !
: = | f o
CdGeas,, 33.57 21.68 Lh.75 | i {
: |
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electrically active impurities or lattice vacancies. A considerable
amount of self compensation probably occurs in CdGeAs2 and CdGePg,

Table IX shows the results of an impurity analysis of three
slices from boule number 33. The slices were from different sections
of the boule and they had different resistivity and optical transmission.
The impurity analysis was performed by the Bell and Howell Electronic
Materials Division in Pasadena using spark source mass spectrometry.
There appears to be very little correlation between the impurity
analysis and the optical transmission. A possible explanation is that
only a small fraction of the boule cross section was probed and homo-
geneity problems may have obscured the results. The probed area was
less than one mm2 and only a few tenths of a milligram was analyzed.
The usually large oxygen and carbon concentrations are most probably
due to hydrocarbons and possibly an oxide layer on the surface,

The analysis of the transparent and the opaque twin in Boule
number 31 is listed in Table X. Here also there is very little correl-
ation between impurities and transparency. Besides oxygen and carbsn,
only silicon and sulfur impurities are present at a significant level,

Most of the crystal growth effort has centered on the Bridgman
method. We decided to investigate this method since it is a relatively
simple method which usually provides good results., In addition, the
method had already been used by others to grow chalcopyrites. The
Bridgman growth program is now near completion. We have been unable
to solve the cracking problem and the optical transmissic: g very
nonuniform throughout the boules. Fortunately, however, the necessary

crystal size for efficient nonlinear interactions is only 2 to 5 mm
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and from some sections of the boules we have obtained crystals of
sufficient quality to demonstrate efficient second harmonic generation
of a CO2 laser. The absorption, however, is still too large for para-
metric oscillators. We have tried to link the absorption to the
impurities or stoichiometric variations using mass Spectrometric and
electron microprobe analysis, but we have not seen any significant
correlation. This does not exclude stoichiometric variations, however,
since the microprobe at best has a relative accuracy of only 0.1%. Much
smaller variations in the stoichiometry can have significant influence
on the absorption and carrier concentratici, With reproducible growth
results the next obvious step is to examine how compensation and also
doping affect the optical transmission. Alternative growth methods
which allow seeding and avoid the constraints set by the crucible wall
should also be explored. With a large anisotropic thermal expansion
coefficient c-axis growth is probably best for reducing cracks, It
also helps to grow single crystals. 1In the Bridgman boules the large
strain building‘up at the grain boundaries leads to cracking,

Recently we have tried a new growth technique with very encouraging
resultsf By growth from a bismuth solution we have obtained single
crystals with almost no cracks. The optical absorption is still too
high, but the elimtnation of cracks is a significant step in the right

direction.
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TABLE IX

IMPURITY CONCENTRATIONS IN CADMIUM GERMANIUM ARSENIDE

(IN PARTS PER MILLION ATOMIC)

Element(a) Detecfggn Opaque Max T = 20% Max T = <7
Limit

Li 0.007 0.012 0.083 0.017

C 0.03 4,6-25 3,200(75-10,000) 19

3 0.03 0.18 0.51 0.28

0 0.03 76 900 3,600

F 0.07 0.27 0.48 0.22

Na 0.01 0.35 8.3 0.73

Mg 0.3 N.D. 0.49 N.D.

Al 0.1 0.37 3.9 0.80

Si 1 6.7 N.D. N.D.

S 0.03 1.5 1.1 4.5

K 0.01 0.052 0.51 (6.6%) 0.19

Ca 0.03 0.065 0.25 (3.3%) 0.074

(a) No analysis was made for hydrogen. Analyses for gold are not given

(5)

since the samples were sparked against high purity gold counter-
electrodes. Background lines of the matrix interfere with the
analyses for Cl, Mn, and Fe. Other impurities not listed were not
detected and have concentrations less than 0.3 ppma.

Determined for 3 X 10~T coulomb exposure,

Seen on one exposure only.

N.D. Not detected.
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TABLE X

IMPURITY CONCENTRATIONS IN CADMIUM GERMANIUM ARSENIDE

(IN PARTS PER MILLION ATOMIC)

Boule Number 31

Element(a) Detection Limit(b) Transparent Opaque
Sample Sample

Li 0.007 0.077 0.021
B 0.02 0.046 0.075
C 0.03 31 110
N N.03 1.7 2.0
0 0.03 27 120
F 0.07 0.1 0.1
Na 0.01 1.8 5.4
Mg 1 N.D. N.D,
Al 0.1 1.8 3.3
51 0.3 3.1 16
P 0.03 0.0%94 0.19
S 0.03 L.5 1.8
cl 300 N.D. N.D.
4 0.0l 1.5 4.7
Ca 0.03 0.78 1.5
v 0.05 0.20 0.33
Cu 0.07 0.45 0.93
Zn 0.07 0.2 0.78
Ga 0.1 0.1 0.29
Sn 0.1 0.65 1.9
I 0.07 0.39 0.24

(2) No analysis was made for hydrogen. Background lines of the
matrix interfere with the analyses for manganese and iron.
Other impurities not listed were not detected and have con-
centrations less than 0.3 ppma,

(b) Determined for 3 x 10~7 coulomb exposure.

N.D. Not detected.
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CHAPTER VI

LINEAR AND NONLINEAR OPTICAL PROPERTIES

A. THEORY

In this chapter we briefly review some nonlinear optical

theory as a necessary background and then present our experimental
results. We also discuss the optical absorption mechanisms in

chalcopyrite ‘tystals.

1. Second Order Nonlinear Interactions

(a) Effective nonlinear coefficient

The symmetry restrictions on the second order nonlinear coefficient
are the same as for the piezoelectric tensor. For thz chalcopyrites
which have Lom symmetry, the generated nonlinear polarizations along

the principal axes in terms of the electric field amplitudes are

therefore
' Px = 2d1hEyEz
Py = 2d1hEzEx (6.1)
Pz = 2d36ExEy :

Since dlh = d36 according to the Kleinman symmetry condition, the
chalcopyrites have only one independent nonlinear coefficient. The
polarization tensor, which is the same as that for KDF, allows

both type I and type II phasematching. The phasematching or comserva-

tion of momentum conditions for the type I and type II phasematching
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in a positive birefringent crystal are respectively

) e e
@, = ®n+on (6.2)
and
o e ) r
©pn, = @A+ an s (6.3)

where the superscripts e and o denote extraordinary and ordinary

waves and p , s , and i vefer to the pump, signal, and idler

fields. In addition, conservation of energy requires u¥ =W+ o .
For type I phasematching the effective nonlinear coefficient is

dlh sin 20 where 6 1is the angle between the direction of propagation

and the c-axis. The signal and idler are extraordinary waves polarized

in the (010) plane ind the Perpendicular pump wave is orvdinary. Maxi-

mum nonlinear interaction occurs at 6 = h5° . Only type II phase-

matching allows interaction in the 90o direction. The effective

nonlinear coefficient for type II phasematching is dm sin 8 with

the signal polarized as an extraordinary wave in the(110) plane and

the idler polarized parallel to the pump as an ordinary wave. Figure 17

shows how the fields are polarized for the two phasematching conditions.

For second harmonic generation (SHG) the Eqs. (6.1) reduce to

2
P2 = dlh sin 26 E1

Py = 2d), sin 20 EjF, (6.4)

for type I phasematching where the subscripts 1 and 2 refer to

the fundamental and the second harmonic waves. The fundamental wave is
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P, = 2d),sin20E E,

E ]
[I‘JEIJ o _ o 6 o
npwp- n,( )ws+niwi
Py = 2d,sinf E E
Py = 2d  sin0 E4E)

[1io]

FIG. 17--Type I and type II phasematching in a pos.tive bire-
fringent crystal of L2m symmetry.
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polarized along Es or Ei in Fig. 19(a) and the second harmonic in

the Ep direction. For type II phasematching we have

2
P2 = dlh sin 0 E1
P, = 2d)) sin 0 E,E, . (6.5)

Referring to Fig. 19(b) the fundamental wave is now polarized in the
(ES,EP) plane 45° to the Ep direction and the second harmonic along
Ep or Ei

(b) Second harmonic conversion efficiency

Starting from Mexwell's equations we can determine the secaond har-
monic conversion efficiency. This is a standard calculation, and
]
reference L gives an excellent treatment of the subject. For reference,
we therefore.only state the results. Introducing an effective non-

linear coefficient d such that P, = dEi , we have that the second
[

harmonic power P2 is given by the equationh
P, = Wik (6.6)

where 'Pl is the laser power at the fundawental frequency and the

constant K in mks units is given by

2

2niw.d

Oe\N
=N

(6.7

n,n

x
1]

= N

n

=

The dimensionless quantity h in Eq. (6.6) includes the effects of

double refraction and focusing. It is tabulated in reference L and



is of the order of unity or smaller. Further { is the crystal length,

n; and n2 are the indices of refraction at the fundamental and

second harmonic frequencies, k1 = o,

finally o = 377 @ 1is the free space impedance. 1In order to compare

/e 1is the wavevector, and

nonlinear materials, a figure of merit is often defined given by

2

[

M =

1 (6.8)

n2n
12
This def.nition, however, neglects the limitations set by double
refraction for phasematching at other angles than 900. To correctly
account for this, we introduce tws other figure of merits which apply
to the cases of maximizing the total SHG power and the SHG power in
the Gaussian mode. We first define a few parameters. The fundamental
wave has a spot size Wy located at the center of the crystal and

the confocal parameter is

b o —all (6.9)

The parameters £ and B describe the focusing and the double refrac-

tion. 'They are given by
1 1/2
E = 4/b and B = 'ép(fkl) , (6.10)
where p 1is the double refraction angle defined in Appendix A. We
consider first the case of total SHG power. For optimum focusing

(¢

L= 1.32) and B > 2 we have that h in Eq. (6.6) reduces
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to the approximate expression
h o, = 0.7T14/B . (6.11)

From Eqs. (6.6), (6.10), and (6.11) it follows that under these condi-
tions the SHG power Improves only with the square root of the crystal

length and the appropriate crystal figure of merit is given by expression

d2

MouG tot T n572n ) (6.12)

1 2P
For convenience we write the condition B > 2 in terms of the aperture

length la which is defined by

2y
g, = ——— (6.13)
P
since sometimes this parameter is used instead of B . The aperture

length should be longer than the crystal length in order for the SHG

power not to be limited by the double refraction. With B = (ﬂl/é/é)
-1/2

(1/za)¢m >2 we obtain 1 < 0.3 !

For many applications diffraction limited beams are of importance.

The maximum SHG power in the Gaussian mode is obtained by substituting

the expression

h (B)‘ ~ " 0) (6.14
mm - 2, T -14)
1 + (B“/m)h_(0)

into Eq. (6.6). Here Eﬁm(o) is equal to 1.068. Equation (6.14) holds
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to within 10% for all B . It is clear from Eqs. (6.6) and (€.1k)

that the Gaussian SHG power saturates for (hBe/n)me(O) >1, and

we use this to define a maximum useful crystal length lmax given by
!

N — (6.15)

2
max
2n,p hmm(o)

For [ greather than [ the SHG power is
max
it
P, = A z (6.16)

and in this case the figure of merit is given by‘

d2

MSHG Gaus n?n 2
172P

(6.17)

We later use the figure of merit expressions to compare the chalco-
pyrites with other existing infrared nonlinear materials.
For weak focusing (E < 1) and negligible walk-off (B < 0.5), we

have h ~F and Eq. (6.6) reduces to
ey !
F"r_' . @ (— . (6.18)

This equation is valid for gmall conversion efficiencies. It assumes
that the phasematching condition is satisfied and neglects absorption.
For large conversion efficiencies the exact expression given by

G 1/2
= P tanh® |x L (6.19)

le

®a
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must be used. I1f the phasematching rondition is not satisfied,

Eg. (£.12) modifies to

I 2

| #; — sinc (k1 /2) ] s (6.20)
Wl )

where /[k represents the momentum mismatch. In the above equations
Fb and 'Pl are the powers inside the crystal. For an um-coated
crystal we have to take into account surface reflections. Using

2
3 : { Ve o
the transformations Fé ont = FéILngl.ng +1)7] and Pl el

2z
{ s i [ R -
Pl I ‘nl 1) /Unl ] where 2 out are the powers out

side the crystal, we obtain from the Eqs. (5.7) and {6.20) that

and Pl Sal

-a,1/2 -, ! ~(a,/2 + o )1
(e 2" -2 ¥, 2 1" s1n? &kt f2

3 2.2
P - 128 ”o“id Pi out : |

2 out 2, N 2l g JRPNIRY-
(n2 + 1) (n; + 1) "ma) (& )" 4 (02/2 01)

(6.21)

In this last equation we have also inciuded the optical absorption at
the two frequencies. The only assumptions in Eq. (6.21) are weak

focusing and wmoderate conversion efficiency.

(¢) Second harmonic angular half-width

Provided that the absorption is not too large, the SHG outﬁut
power from a crystal follows a sinc cthe when the crystal rotates
through the phasematching position [cf. Eqs. (6.20) and (6.21)].

Since the angular half-width depeuds on the crystal length, we can
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use the observed width to determine an effective phasematching length
which for a high quality crystal is equal to the crystal length.
Variations in the indices of refraction, however, may make it impossible
to satisfy the phasematching condition over the total crystal length,
leading to a shorter phasematching length. Since sin-c2 80° ~ 0.5 s

it follows that the angular half-width at the half power point is

determined by

ok(6)1 80 x T
= . (6.22)
2 180
writing Ak(6) = [34k(6)/39140 , we find that
by ani
Ak{g) = - ——086 (6.23)
N 08
for type 1 and
o ar]
bk(8) = - —— b9 (6.24)
y 96

for type II phasematching in a positive birefringent crystal. We

determine ani/ae by differentiating Eq. (A.1) in Appendix A and find

an®(9)

= -n%) tanp . (6.25)
28

By combining the Egs. (6.22) to (6.25) we determine the internal angular
half-width Aeint . This must be related to the measured external

half-width Aeext . When the laser is incident on the crystal at an
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—— e =

angle o to the normal, the internal angle B follows from the

relation

n, sin B

1

I1f the crystal phasematches at this

by differentiation that

sin ¥ . (6.26)

position, we immediately obtain

A6 cos B
—=£L = ) . (6.27)
bo, cos O

int

For close to normal incidence this equation reduces to Aeext = nlbeint

and with this we find

A
do . = - - (6.28)
’ L.5¢ tan p

and
o e
M n, + n1(6)

(iY¢] = 16.29)
R 2.251 taa p 2ni(9)

for the two phasematching conditioms. The half-widths are calculated
in radians and we see that the type II phasematching half-width is
twice the type I half-width.

In our experiments we have mixed 5.3 um with 10.6 L to generate
3,53 um using type 1 phasematching. For this experiment the angular
half-width is given by
2, [n§(6) + n3(6)]

Ae5.3+10.6
I,ext 9z[n;(e) tan p, + 1/2 ni(e) tan p,]

(6.30)
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(d) Parametric oscillator threshold and bandwidth

When available, CdGeAs2 is very useful as the nonlinear element
in an infrared parametric oscillator because of the extensive tuning
range and large nonlinear coefficient. In this section we list the
equations which allow us to estimate the parametric oscillator threshold
for doubly and singly resonant oscillators. In a doubly resonant
oscillator (DRO) there is low loss both at the signal and the idler
wave, whereas for a singly resonant oscillator (SRO) only one of the
waves is resonant. The single pass gain of a degenerate parametric
amplifier o = o, = u$/2 is equal to the second harmonic conversion
efficiency P2/P1 into a Gaussian mode when the fundamental frequency
is at u$/2 . We follow reference 5 and define w, = wp/2 ,

0

w, = ab(l +8), and w = ub(l - §) . For maximum parametric gain

both the pump, signal, and idler wave should have the same confocal

parameter such that bp = bS = bi . This leads to a small signal
gain G given by5

¢ = (re)° = @t (1 - 82, (6.31)
where x 1is defined in Eq. (6.7) with W = Wy - Further § 1is

the pump power and the parameter & tells how close the oscillator

is to degenerate operation. The bar expresses that only the coupling
into the Gaussian signal and idler mode should be included in the gain
expression and at optimum focusing Eq. (6.1&) gives a good approximation

for h . It is clear from Eq. (6.31) that the gain decreases when the
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oscillator tunes away from degeneracy,leading to an increased pump
threshold. With single pass power losses as and ai at the
signal and idler f{requency the necessary pump power to reach DRO
threshold is given by

G = aa s (6.32)

and for SRO operation with no idler feedback (ai = 1) we have

G = 2ua . (6.33)

s

These equations are strictly valid only for cw operation. For a
Q-switched pump laser the threshold must be reached within a finite
number of passes, and this requires some excess gain. Assuming

a square pump pulse of length tp and a cavity transit time to

the maximum number of ava’lable passes is n = tp/to . Under

these conditions it is easy to show that the DRO cw threshold condition

modifies tohl

1n 10 Fn
Jo = a4 (2] , (6.34)
2n F'EI

when the signal and idler wave has the same single pass power loss Q .

This equation gives the necessary gain for the oscillator to build up

from the parametric fluorescence noise power Pb at the signal or

idler wavelength to a power Pn after n passes., We require some

pump depletion and take Pn to be 10% of the pump power. Because of

the logarithmic dependence the exact ;alue of Pn/Pb is not critical.
12

As an example, for Pn/Po ~ 1077 , tp = 200 nsec, and ty = 0.2 nsec
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which corresponds to an effective cavity length of 6 cm, the equivalent

loss due to buildup is 1.k4%. Similarly for pulsed SRO operation we

modify Eq. (6.33). Resonating the signal wave leads toh2
1 Pn
lg(l+c-2a) = —-1g [— ] , (6.35)
n PO

assuming no loss in the crystal at the idler wavelength and also that

G - 2x << 1 . The equation reduces to
]

1n 10 =
G = 20 + g f—1 . (6.36)

Using the same numerical example as before the necessary excess gain
is 2.4%.

The frequency output of a parametric oscillator follows a sin02
(Akl/E) dependence where @Ak = kp - ks - ki is the momentum mis-

match. Assuming a single frequency pump, a change 6&3(: -6&1)

in the signal frequency away from the phasematching solution leads

to a momentum mismatch ofhl
1 2
Bk = bBw +zZbotw (6.37)
where
ok 2k 1 an on
b= o(=2-—) - -- ns-ni-)‘s_§+>‘i_i]
aws awi c axs axi
(6.38)

- 88 -



and

2 2

b 1 2°n 3 n
i
by = = = -—3 xz ;+x§ 51 - (6.39)
3w, ame Mg o
We define the bandwidth by setting [Akf¢/2] = m . Except for operation

close to the degeneracy point for type I phasematching or near the
turning points of the angular tuning curves for type II phasematching
we have Ihﬂbl/Lb2|<1 and by solving Eq. (6.57) for Bw,  we

determine the full bandwidth Aws at the base line. We find

1| /b hﬂbl kﬂbl Yy

bo = = — 1+ —5 - 1-—> (|~ |~

s 2 \bl Lb Lb Lb
(6.40)

For the special case that Ihﬂbl/Lbd|> 1 , the bandwidth is given

b knbl gy
Aw = |5 1+ 5 =\/ |\ - (6.41)
b 1 Lb Lb,

2, Third Harmonic Generation

by

For an electron concentration of 5 X 106 cm-5 the I1I-V compounds
InSb and InAs have very large third order nonlinear coefficients16
with the main contribution to the nonlinearity arising from the non-
parabolicity of the conduction band.hh The magnitude is inversely

proportional to the bandgap frequency and the effecztive mass squared

and proportional to the carrier concentration. This makes CdGeAs2



interesting because in addition to the small bandgap frequency and

the small effective mass it has sufficient birefringence for phase-
matching leading to the possibility of reasonably efficient THG. A
determination of the various components of the susceptibility tensor
may also provide an interesting check on the bandstructure calculation
neay k=0 . In this section we discuss phasematching and derive
expressions for the effective ncnlinear coefficient, conversion effi-

ciency, and angular bandwidth for third harmonic generation (THG ) .

(a) THG phasematching and effective nonlinear coefficient

There are tnree possible ways to phasematch THG. For a crystal

with positive birefringence the phasematching conditions can be written

aSh‘5
n; = ni(e)
0 - -;- 2n2(6) + n]) (6.12)
n; = % [n](6) + 2n]]

and we refer to them as respectively type I, II, and III phasematching.
Type III requires the largest birefringence.
We use cijk! for the third order nonlinear coefficient. The

definition follows from the equation
P, = cijszjEkEl (6.43)

with summation over repeated indices and where as usual P and E

stand for the generated nonlinear polarization and the electric field
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amplitudes. The permutation symmetry between the last three indices
suggests introduction of a contracted notation. The matrix cijkl
has 81 elements while the compact form Sim has only %0. The definition

of m follows from Table XI.]1L5 For the Iom chalcopyrite symmetry

the temsor ¢, is given by
c11 0 0 0 016 8 0
¢im = | © 3 9 ‘16 g 18
0 0 c 0
©33 “35 35

(6.44)
The tensor has 5 independent elements OT i when we use the Kleinman
symmetry conditionlh which gives c35 = Ci16 In contracted form the

Eq. (6.43) reduces to

Pi = CiS ’ (6-h5>

m m

where the vector %m is given byhs

111
222
333
233 * F323 T *332

®
+
la]
+
£

o005 + Fo3p * F300 , (6.16)
133 313 531
113 311

120+t L0120 * Lop

L1100 * 4101 T 211

123 ¥ L1320 T T213 T Tzl T 7312 73Rl
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TABLE XI

CONTRACTED NOTATION FOR THE THIRD ORDER NONLINEAR COEFFICIENT

ijk

1.1

222 | 333

233

223 | 133

113

122

112

: 123j

m

-92 -



and iijk = Ei(aB)Ej(ub)Ek(wl) . We use Eq. (6.45) together with
the Eqs. (6.4L4) and (6.46) to determine the effective nonlinear
coefficient for the three phasematching conditions. Let 6 be the
angle between the wavevector Ei and the z axis, ¢ the angle
between the projection of El in the (x,y) plane and the x axis,

and «a the angle between the electric field El at the fundamental

frequency and the normal to kl in the (El,z) plane (cf. Fig. 18).

The effective nonlinear coefficient depends on the angles and we

find
1
I P3 = -3 (c11 - 3c18) sin(hv)cosBGEf
II: I“3 = [-é— (cl1 - 3c18) sin22cp cos6 + 16 sin29
+ 8 cosee] siny cos%u E%
III: P, = + (cyq = 3c.q) sin(lp) coso sin’c cos o E2
S RS B | 18 ¢ 1

(6.47)

for the three phasematching conditions. 1In Eqs. (6.47) 6 is fixed
by the phasematching conditions in Eqs. (6.42). The two other angles,
however, can be chosen to maximize the nonlinear interaction. The
optimum values for ¢ and @ are listed in Table XII together with
the maximized effective nonlinear coefficient c¢ as defined by

P, = cE3 . Considering only the nonparabolic band contribution to

3 1

the nonlinear coefficient we have for spherical bands that
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FIG. 18--Definition of the amgles 6, ¢, and ¢ for third
order optical interactions.
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1

3 €11 = 16 = ©18 ° With this assumption the effective nonlinear
coefficients in Table XII reduce to ¢; = Cyyy = O and cpy = (2/}¢S—c16.
Since the chalcopyrites have fairly isotropic conduction bands, the

most efficient third order interaction in n-type material probably

occurs for type II phasematching.

(b) THG conversion efficiency and angular bandwidth

For weak focusing such that the crystal lemgth ! 1is smaller than

the confocal parameter b1 , the third harmonic conversion efficiency

P3/P1 is given by

2
(¢] 7)' P Ak[
2 . Bwct)? (2 ) stac?(—) , (C.18)
P n & 0 1 A 2
1 371 1

where c¢ is the effective nonlinear coefficient and A, = ﬂw§/2 =
klbl/hnl is the beam area. Equation (6.48) does not include reflection
losses.

The sinc curve determines the angular half-width. Similar to the
treatment of SHC we find that the angular half-widths at the half

power point are given by

8o a
Iext — 6.75¢ tan p
)
A n
1 3 !
Ae = . (bal‘g)
I1,ext 4.5¢2 tan p n;(e)
o
A6 ) N "3
I1I,ext

2.251 tan p ni(e)
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3. Determination of Indices of Refraction

In order to determine accurate.y the phasematching conditions for
a material, the dispersion and the birefringence must be known to better
than one part in the third place. We measure the indices of refraction
using a prism set of minimum deviation.h6 This is the best method
when sufficiently large single crystals are available.

Figure 19 shows a diagram of the index of refraction measurement
apparatus. The light source is either a laser or a globar for measure-
ments at wavelengths longer than one micron. The detector is PbS out
to three microns, and then a thermocouple at longer wavelengths. i:e
crystal is mounted on a Gurley Unisec table which measures angles to
one second of arc. In practice, diffraction effecis due to the finite
prism size limit the accuracy of the measured angles. With the col-
limated light filling a prism of length L , Fraunhofer diffraction
limits the angular width of the focused beam at the detector fo

A\f

bo = 2— , (6.50)

LR
vhere ) 1s the wavelength, R {s the distance from the center of
the table to the detecto., and f is the focal length of the focusing
optics. For our system we have R = 23 cm and f = 15 cm. Assuming
the detector can be set o the maximum within five percent of the full
angular width, we have for a 0.5 cm prism and a wavelength of 5 m that

the diffraction limits the accuracv of the measured angles to approxi-

mately 1L seconds of arc.
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We calculate the indices of refraction from the equation

" sin (QL%?Si)
= ’ (6-51)
Ry sin (a/2)

where & is the minimum deviation angle and a is the apex angle.

By differentiating Eq. (6.51) we obtain

An

a+ b 1 sin (8/2)
cotan a6 - > o .
n 2 sin (@/2) sin((a + 8)/2)

(6.52)

(o [

For our CdGeAs2 and CdGeP2 prisms we have B = 350 and O = 130 .

Sul stitution into Eq. (6.52) yields
4n
— ~ 1.185-338 (6.53)
n

where A5 and [l are in radians, and the uncertainty in the

measured index values is

in = R \/u.l R+ (3.3 02 . (6.5)

Taking 85 = * 17 and &x =+ 1° the uncertainty is An = * 0.00k .
The absolute accuracy of the measured indices is probably not better
than this since we worked with very small prisms. More important,
however, is the relative accuracy which depends only on A% . We
expect this to b; better than one part 1; the third place.
The sample temperature must be kept constant during the méasure-
<4 o,.-1

ments. For CdGeAs, dn/dt ~ 5 x 10 c at 3.39 um . This means

that a temperature rise of 2°C changes tl:2 indices by as much as one



Part in the third place. The growth method and carrier concentration
must also be specified. In semiconductors carrier concentration
variations may change the indices of refraction significantly.hY

If large enough single crystals are not available for prism
fabrication, other methods can be used to determine the birefringence
of a crystal. One way is to use a laser to probe a wedged platelet
between crossed polarizers. The laser beam 1s normal to the crystal
and polarized hSo to the "effective" c-axis in the platelet plane.
By translating the wedge a distance x across the beam, the power
P at the detector is given by

re -rO

P ~¢.nl , (6.55)
2

where r, =T, = (2n/x)[ne(9) - no] X tan @ 1is the phase difference
between the extraordinary and the ordinary wave. Here 6 as usual

1s the angle between the c-axis and the propagation direction and a
is the wedge angle. If the distance between two power minima is X,

then the equation

A
ne(6) - n = (6.56)
X tan o
o
determines the birefringence.
For very small samples not larger than 1 mm, the birefringence

can be measured by rotating a platelet. Thisg method, however, is not

8o reliable. With crossed polarizers and the laser polarized at hSo
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to the "effective" c-axis, Eq. (6.55) still holds, and the phase

difference is given by
2mt

r -r, = -;— [n (6)cos @, - n cosp ] ,  (6.57)

where ! 1is the plate thickness and Fig. 20 defines the angles.

Equation (6.57) can be written as

2! = /
2 2 2 2
I‘e-ro=7 \/1—1;(9) - sin"¢p - no-singp X

(6.58)
To obtain an approximate expression we use Eq. (A.2) in Appendix A
and take ni >> sin2m . This gives
ot 2 1 sin2¢
' =T = =— {fAnsin9 {1+ - s (6.59)
e o] 2
A 2 n°

where An 4is the birefringence. When the rotation is around the axis
normal to the "effective" c-axis, 6 1is related to the external
angle ¢ by 6 =m/2 +9 -1 where n 1s the angle between the
c-axis and the platelet plane. By measuring the external angle
difference between two power minima, we use Eq. (6.55) togecher with
Eq. (6.58) or (6.59) to calculate the birefringence.

The measured index data can be fit to a classical Sellmeier

equation of the form

2 B C
n = A+ 2 + 2 ) (6°60)
1 - (D/A) 1 - (E/A)
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c-axis

FIG. 20--Determination of the birefringence by the platelet method.
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which holds in the transparent region of the crystal not too close to
the absorption bands. In this equation E is approximately the
reststrahl wavelength and D corresponds to an average electronic
bandgap wavelength. From Eq. (6.60) we estimate the DC dielectric

constant by letting X =~ . This gives

€ = A+ B+ c . (6.61)

4. Measurement Technique for the Optical Nonlinear Coefficlent

There are several ways to measure the optical nonlinear coefficients.
We have used the wedged sample t:echnique11 which 1s most convenient for
relative measurements. Translation of the wedged nonlinear crystal
across the liser beam results in cscillatiomns in the SHG output power.
Taking s as integer, maxima occur every time the effective crystal
thickness is equal to 2s + 1 times the cohe.ence length [c whicii
for SHG is defined as

M

'ﬂ— = . (6.62)
Ok h(n2 - nl)

49

The wedge method is very similar to the Maker's fringe technique,
but it has some advantages. The Maker's fringe technique is only
useful when the crystal lenmgth ! > (2n)2lc , and the method
therefore requires large samples of materials with large indices
of refraction and a large coherence length when only small samples

are available. The wedge technique does not have this limitation.
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Thin samples may be used and the absorption can therefore most often
be neglected. The wedge technique also avoids problems of multiple
reflections and resonance. The fraction of the SHG power that suffers
multiple reflections is transmitted in different directions and can
be stopped by proper aperturing. By mounting the wedge such that the
incident laser beam is normal to the crystal surface, there is no
mode distorticn due to refraction as it will be with the Maker's
fringe technique.

Equation (B.5) in Appendix B gives the SHG output power generated

in a wedged sample. Neglecting the absorption the equation reduces

to
( ) L0 Ok tan ¢
1 - cos(Ake.) exp |-
3 2 .2 0 [ < >
e 128 Mo 1 d F%out 3
2out 2 4 2

(6.63)

which agrees with reference 50. We determine the coherence lengtk
lc = w/Ak by translating the crystal a distance Yo between two

SHG minima. This gives

b, = %yo tana . (6.64)

The expression inside the parenthesis in Eq. (6.63) reduces to the

standard

okt \ |2
L. sinc| -~—
9 2
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form when

 tan o \° .
W, & tan L
2 Soutiatitl S L./ 1) W
L \E}’r‘
This condition is never difficult t, satisfy and neglecting the expo-
nential we have

32 =2 2
128 ng i d] piout 1
1

2 ™
L 20w {r sin 2

P
2out 2
(n2 + 1) (n1 + 1) ™y

[

(6.65)

We measure the relative effective nonlinear coefficient by using a
reference sample and comparing the coherence lengths and the naximum

SHG output powers for a given input power.

5. Absorption Mechanisms

A marimum optical power density in the material eventually limits
the efficivncy of nonlinear optical processes. Different mechanisms
may be responsible such as nonlinear absorption, broken phasematching
condition due to induced index of refraction inhomogeneities,
or permanent crystal damage. Both the broken phasematching condition
and the crystal damage are often caused by the local heating die to
the optical absorption, and it is th.refore important to reduce the
absorption to a minimum. Some of the most common absorption mechanisms
are:

1) Bandgap absorption,

2) Two-phonon absorption,
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Three-phonon absorption,

) Free electron scattering; in n-type semiconductors,

= W

Free hole scattering
in p-type semiconductors,

o\

Intra band absorption

® =

Free carrier absorption generated by impurity or defect absorption,

9
10

)

)

) Impurity and defect absorption,
)

) Two-photon absorption,

)

Free carrier absorption generated by two-photon absorption.

As discussed earlier the direct or indirect bandgap absorption
Jetermine the short wavelength cutoff and two-phonon absorption limits
thce transmission at long wavelengths. In CdGeAs2 the two-phonon absorp-
tion is approximately 20 cm-l. Some weak three-phonon absorption
exists at wavelengths roughly two thirds of the two-phonon cutoff and
in CdGeAs2 the magnitude is approximately 0.3 cm-1 at 12 pm.

The free carriers in a semiconductor affect both the indices of
refraction and the absorption. According to classical Drude-Zener
theory the free carrier contribution to the relative dielectric
constant ¢ at frequency « is given by.51

w w T
1 -1-2 2 — . (6.66)
w 1 + ior

€ = €
0

where € 1s the optical relative dielectric constant without the
carrier contribution, a$ the plasma frequency, and Tt the carrier

*
collision time. For a carrier demsity N and an effective mass m ,
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the plasma frequency is given by

—
-
LS
|

|'r N
o = f = : (6.67)
\1 m €o€m

In the visible and near infrared where w >> il and 1/t , it follows

from Eq. (6.66) that the indices of rofraction n and the free carrier

absorption constant a can be written as

n= ool -—;—(mp/m)el (6.68)
and
2 2
nwa) |
a = _PE . (6.69)
cCTW

In crystals with an anisotropic effective mass tensor, the presence of
carriers chaﬁges the birefringence. Assuming a single band extrema

at k = 0, the free carrier induced change in the birefringence is
found from Eqs. (6.67) and (6.68) to be

Ne2 1 1

AL = Mo ™ Pl " 2¢, of ) i n) A

(6.70)
We refer to this expression in Section A.6 of this chapter and discuss
how to use this effect in CdGeAs2 to construct a modulator.
According to Eq. (6.69), the free carrier absorption increases

with the square of the wavelength. This result assumes an energy

independent collision time which often is not the case. More generally,
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we can write a « xp where the exponent depends on which scattering
mechanism limits the collision time. Scattering by acoustical phonosos
gives 1.5,52 and scattering by optical phonons gives 2.5.55 For
ijonized impurity scattering, the ex,onent is between 3.0 and 3.5,5h
depending on which approximation is used. For CdGeAs2 we have measured
a 3.5 dependence for n-type material (cf. CH. VI.B.5). The absorption

is therefore determined by ionized impurity scattering and the

absorption cross section O.bs follows from the equationSh
‘ 2 o x 8
16\/57r2 ze® e” Ny e g\ F7
o = a/N —
abs el *.3/2 )
3 MﬂeoeD hneo n_c(m )3/ My
(6.71)

where Ni is the density of ionized impurities. The derivation of
Eq. (6.7;) assumes an isotropic effective mass, but the expression
still can be used to estimate the ionized impurity density in CdGeAs2
since the conduction band is not too anieotropic.

In p-type CdGeAs2 we see no evidence of free hole absorption.‘
The absorption has a more complicated wavelength dependence due to
intra band transitions between the split valence bands. This absorp-
tion also occurs in p-type germanium55 and the III-V compounds.51
We refer to the results of Chapter III to determine the magnitude
and spectral dependence of the intra baﬁd absorption in p-type CdGeAse.

The absorption constant at the frequency o for transitions between

the vy band the the v, or v, band 1555,56

2 >
2
e 1 P E./kT
=¥ /kT 2 I
a; | = =R - (1 - e /k)flnl e S(El-Ei-m)d3k,
2 hneom ¢ B Nv .
1 (6.72)
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where 1 = 2 or 3 refers to the two lower valence bands, m is the

free electron mass, p 18 the hole density, und Nv is defined in
1

Eq. (4.9). The integration {s over the crystal momentum with

k = k1 = ki . Further the matrix element M 1s given by
2 A -1 A |2 A - B (12
M= = lwvllé - pl\vviH + |‘<\vv1|% - pl\vvi>l ’
(6.73)

and the energy E1 of the v, band is measured relative to the band

extrema such that

2 2
2 k k
[ <l I
_——+

2
"l "Ll

E, = - . (6.74)

We evaluate the integral in Eq. (6.72) in Appendix C. Equation (3.24)
gives the matrix elements for the intra band transitioms. By combining

Eq. (3.24) with Egs. (c.3), (c.12), (c.13), and (6.72) we calculate

the absorption constant letting ei = ei = ei = % . The expression

for the absorption constant depends on only four parameters: the band-
gap energy, the spin-orbit coupling, the crystal field splitting, and
the matrix element P . With the values in Table II anu Eq. (3.20),
the absorption constants for CdGeAs2 at a carrier concentration of

2 X 1016 cm-3 can be written

8, 1 = ;1;;) [1 - exp(-1w/kT)] (0.616 - 0.936 e/kT) exp(0.088 €/kT)
(6.75)
851 = %; 1- exp (~tw/kT)](1.85 - 2.62 ¢/kT) exp(0.171 ¢/kT)

(6.76)
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where € = AE - 1w <0 and AE is the band splitting energy. For
the v, = Vo transition we have AE = 0.20 ev and for the v, - v5

transition AE = 0.52 eV . Similarly, when ¢ > 0 we obtain

a’ = ng? [1 - exp(-1w/kT)] Vf36b Yy exp(-€/kT)

2,1
+a, [1-erf (/1.11 ¢/kT)] (6.77)
and
aé . = l%Z? - exp(-1w/kT)]) J 300 e/t exp(-1.05 e/kT))
’.I.

LR 11 = exf (f 'I..Cr{-i-:ﬁ.'_l'_';] . (6.78)

where 82’1 and a§’1 are given by the same expressions as the € <0
absorption constants in Egs. (6.75) and (6.76). Figure 21 shows the
wavelength dependence of the combined absorption constants for the two
intra band transitions at three different temperatures. For a carrier
concentration of 2 X 1016 cm"3 there is aignificant atsorption within
the normally transparent frequency range. The long wavelength cutoff
of 0.20 eV corresponds to the calculated splitting energy between the
vy and vy band. In the experimental gection of thils chapters we
compare measured and calculated absorption. The observed absorption
cut-off provides an experimental value for band splittihg energy.
Absorption also occurs due to impurities and defects and the
structure of the intraband absorption is therefore often obscured.

Defects such as lattice vacancies have an effect similar to impurities.

They give rise to acceptor and donor levels and optical absorption
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is possible between these levels and the valence or conduction band.
1f the imdurity levels are ionized by photon absorption, the resulting
carriers lead to additional free carrier absorption. This is a non-
linear absorption mechanism which is important at high optical power
densities. In some materials nonlinear absorption leads to satura-
tion in the nonlinear conversion efficiency before the optical damage
threshold is reached.

Two-phcton absorption between the valence and the ceaduction band
1s another important nonlinear absorption mechanism. For a parametric
oscillator, the pump frequency should be chosen to be less than half
the bandgap frequency to avoid two-photon absorption. The measured
two-photon absorption constant in GaAs and InP is approximately
0.1 cm-I/Hw cm-2 at 1.06 um.57 The free carriers generated by two-
photon absorption lead to &n absorption constant propo~tional to the
square of the laser power density. In InP the two-photon generated
free carrier absorption equals th: normal two-photon absorption at

2 HH/cmz. This mechanism is believed to limit the 10.6 ym doubling

efficiency in tellurium to, at best, a few percent.se’sg
6. Modulation by Free Carrier Induced Birefringence

Recause of the anisotropic effective masses in CdGeAsz, it is
possible to modulat- the birefringence by injecting free carriers.
The maximum modulation frequency is set by the free carrier recombi-
nation time. Increasing the carrier concentration by AN changes

the birefringence by 5(An) which, according to Eq. (6.70), may be
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written as

ANe® 1 1 1 1 1 1
s(an) = - 5 + - + ’
2€0LD m“ )€ m“ PAST n” » m.l.:c m.l.:"l n.l.:“"

(6.79)

assuming the injection generates equal numbers of holes and electrons.
We consider modul .tion at the 10.6 pym 602 laser wavelength. At this
wavelength the CdGeAs2 crystal is transparent without any absorption
due to intraband transitions between the valence bands. With the

values for the effective masses in Table 11, we find

s(on) = - MNx5.5x 1077 () . (6.80)

The necessary change in the birefringence to change the electric field

polarization by 9o° in a crystal with length ! is given by

s(on) = 51; . (6.81)

This correspords to 100% modulation when the crystal is inserted be-
tween crossed polarizers. For a 2 mm crystal the necessary injected
carrier concentration is AN = 5 X 1015 cm-3 . This technique is a
novel way to modulate a 002 laser. It requires a material with

light and anisotropic effective masses such as CdGeAse.
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B. EXPERIMENTAL RESULTS

1. Indices of Refraction and Tuning Curves

(a) CdGeAs,

We have measured the indices - refraction out to 10.6 um using
a 4 mm long by 3 mm high prism with an apex angle of 13 degrees. The
prism was cut from boule No. 16. This boule was grown with 0.5 wed
excess arsenic. Table XII1I lists the indices of refraction for p-type
material. CdGeAs2 has a positive birefringence of about 0.1. For
the 3.39 ym and the 10.6 um points we used laser sources. The other
points were taken with a globar light source. Because of the small
prism size, the amount of refracted light from the globar was too
small for the thermocouple detector at wavelengths longer than five
microns.

A computer fit to the Sellmeier expression in Eq. (6.60) gives

the results

8.891 1.886
2
nT = L+ + - (6.82)
P 0.5524\° A6
1 - 1 -
yy A
and
9.521 1.909
n2 = L 4 2 + ———s (6.83)
- 0.6847 36\
i B 1 -| —
A 3

for the ordinary and :xtraovdinary indices. In these expressions the
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TABLE XIII

MEASURED INDICES OF REFRACTION FOR CdGeAs2

A [pm] n, n, n, - n
2.88 3.7525 3.6358 0.1167
3.39 3.7285 3.6208 0.1077
4.0 3,713k 3.612L 0.1010
L.h3 3,7053% 3.,6062 0.0991
5.06 3.6953 3.5992 0.0961
10.6 3.6578 | 3.5688 0.0890
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long wavelength resonance was fixed at 36 um which is the measured
reststrahlen frequency. Figure 22 shows a plot of the indices of

refraction. We estimate the low frequency dielectric constant from

Eq. (6.61) and find

14.8
°l (6.8h)

15.4

m
|

It is also importan: to know the temperature dependence of the
dispersion and the birefringence. If the phasematching condition is
temperature sensitive, it is possible to tune without crystal rotation
avoiding annoying alignment problems. For some applications the tempera-
ture sensitivity may prove a disadvantage. When the crystal has a
siight absorption, the resulting nonuniform temperature distribution
may make it impossible to satisfy the phasematching condition over
the whole crystal length. We have measured the temperature dependence
of the birefringence of CdGeAs, at %.39 ym and 10.6 um. The crystal
was inserted into an oven between crossed polarizers, and the incident
light was polarized at LSO to the c-axis. By counting tne frinpes
in the detected signal we determined the temperature dependence of the
birefringence. With a temperature raise AT resulting in m fringes, we

obtain

dan) _ @ -pna , (6.85)

where &n =n_ - n_ is the birefringence, ! 1is the crystal length,
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and o is the a-axis linear thermal expansion coefficient (cf. Fig. 10).
At 10.6 ym « gives approximately a 2% correction. The crystal we used
was 2.96 mm lohg and it was cut from b;ule No. 28. Table XIV lists

the measured 2§$ﬂl c~sults and Fig. 23 shows how the birefringence
changes with temperature at 3.39 m. We have also measured the tempera-
ture dependence of the absolute indices of refraction at 3.39 um. We
heated the prism slightly above room temperature and measured the change
in the indices as the prism cooled off. These results are also listed
in Table XIV. We see from the table, that the temperature dependence

of the birefringence is very large for CdGeAs2 and it comparable to

the values for LiNbO .60

3

TABLE X1V

TEMPERATURE DEPENDENCE OF THE INDICES OF REFRACTION FOR CdGeA82

;
A T dn_/dT dno/dT d(4n)/dT

(m) | (%) | @™ %1y | (10 %y | 107" %1y | Method

10.6 ~125 0.389 fringes

3.39 | 100 0.772 fringes
3.39 170 0.833 fringes
3.39 35 5.3 k.3 ~ 1 prism

~

As discussed earlier, the presence of free carriers perturbs the
indices of refraction. The prism we used for the indices of refraction

measurements was p-type, but we did not measure the carrier concentration.
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Change in birefringence

CdGeAsz
Boule no. 28
A=339um

0.05 [~

0.010

0. 005

0.000
1 ] |
100 150 200

Temperature (°C)

FIG. 23--Temperature dependence of the birefringence in
CdGeAs2 at 3.39 um,
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It was probably between 1015 and 1016 =, Equation (6.70) gives

the induced birefringence due to free carriers., With

2
e

r, = 5 = 2.818 x 102 cm

bgre _mc
0
we find
Nxzm ro 1 1
On = = - . (6.86)
carrier o n ) S il
o'l "Ll

Since Ql > m” both for the conduction band and the top valence band,
the birefringence decreases with increasing carrier concentration both
in n- and p-type material. For a hole concentration of 1016 cm-3
we have Ancarrier = =0.004 at 10.6 um. The 1nd;ces are also affected
by the intraband transitions betweep the valence bands, and it is
important to keep these effects in mind when comparing the measured
indices of refraction of different CdGeAs2 crystals.

In CdGeAs2 phasematched eecond harmonic generation is possible
between 5 and 18 um for type I phase matching and between 5.4 and 13 um
for type II. Figure 24 shows a plot of the phasematching angle versus
wavelength. For doubling with the SHG crystal inside the laser cavity,
type 1 phasematcbing is most useful since, in that case, the fundamental
wave is polarized along one of the optical axis. For type II this 1is
not possible and the crystal birefringence causes polarization rotation.

Since the walk-off angle limits the maximum useful interaction

length, [cf. Eq. (6.15)], the most attractive parametric oscillator
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construction would be a 90o phasematched oscillator with a tunable
pump. Figure 25 shows the calculated tuning curve for such a device.
Parametric tuning by crystal rotation is possible over almost the

whole transmission range of CdGeAs Figures 26(a) and 26(b) show

X
tuning curves for several pump wavelengths. A single crystal can scan
approximately 20 degrees. The walk-off angle for the extraordinary
wave is typically about one degree. The curve for lp = b um in
Fig. 26(a) represents an interesting special case where éarametric
tuning is pocsible between 6 and 13 um without changing the crystal
position. The large phasematching bandwidth might be useful in short
pulse work.

A doubled CO2 laser is a useful pump source for CdGeAs2 since the
5.3 um wavelength is slightly less than half the bandgap frequency and
therefore avoids two-photom mbsorption. Figures 27(a) and 27(b) show
the calculated tuning curves for the two phasematching conditions.
The bandwidth over most of the tuning range varies between 10 and 20 cm-l
for a 1 cm crystal. For type I1 phasematching it is possible to tune
through the degeneracy point and to make a choice between fast

tuning and large bandwidths or slow tuning and small bandwidths. Note

that the curvescover the very important 8 to 13 um atmospheric window.

(b) CdGeP
Table XV lists the measured indices of refraction for CdGePe.
We used a prism 3.5 mm by 2 ma with an apex angle of 140. The crystal

was n-type and had a resistivity of approximately'lo5 l-cm. We
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FIG. 26a--Theoretical tuning curves for type I phasematching

in CdGeHs,, for several pump wavelengths.
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FIG. 27(a)--Theoretical tuning curve and minimum bandwidth

for type I phasematching for a one cm CdGeAs,

crystal pumped by a pump wavelength of 5.3 um,
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FIG. 27(b)--Theoretical tuning curve &nd minimum bandwidth for type
11 phasematching for a one cm CdGeAs, crystal pumped by a

pump wavelength of 5.3 um.
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TABLE XV

MEASURED INDICES OF REFRACTION FOR CdGeP2

Wa;\n(zi:‘t)igth n, n n, - n
0.85 3.L834 3.4283 0.0551
0.90 3.4397 3.3958 0.0L439
0.95 3.4099 3.3710 0.0389
1.00 3,3841 3,3493 0.0348
1.15 3.333) 3.2068 0.0266
2.10 3,2282 3.2147 0.0135
3.39 3,2026 3.1913 0.0113%
L.00 3,1963 3,1856 0.0107
5.00 3,1899 3.1793 0.0106
6.00 3.1853 3.1746 0.5107

10.6 3.1517 3.136'7 0.0150
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estimate the index values to be good to at least one part in the third
p.ace. The average index of 3.2 agrees well with 3.1 as predicted
from III-V analogs, but is smaller than the value of 3.6 reported
by Goryunova et 31.61 Figure 28 shows a plot of the indices of
refraction. The birefringence of 0.0l is too small for parametric
{interacticns. ‘‘he result is in complete disagreement with Goryunova
et al., but agrees with Boyd et 81.29 Goryunova et al. did their
meacurements on platelets grown by vapor transport while we used
Bridgman grown material. Assuming the Russian measurements are correct,
the only explanation may be that there exists two forms of CdGeP2
both with chalcopyrite structure but with different order of the Cd
and Ge atoms within the unit cell. This needs further clarification
by careful x-ray analysis.

The birefringence of CdGeP2 similar to CdGeAse, increases with
increasing temperature. At 2.10 um we measure dne/dT =2.5X% 1o'h /OC
and dn_/dT = 2.2 X 1o'l*/°c which gives d(An)/dT = 0.3 x 1o'l*/°c in

the temperature range of 25°C to 45°¢.

5. Measurement of the Second Order Nonlinear Coefficient

We have measured the nonlinear coefficient relative to GaAs by
second harmonic generation of a Q-switched COP laser using the wedge
technique described in Section A.4. TFigure 29 shows a schematic of
the experimental set-up. We Q-switched the 002 laser by rotating the
grating. A He-Ne laser reflecting off the grating provided a trigger

signal. By adjusting the aperture the laser operated in a Gaussian
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FIG. 28--Indices of refraction for CdGeP2 .
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mode with a pulse lurgth of about 300-400 nsec and peak power of
approximately 200 watts. A pyroelectric detector monitored the C02
laser output. The detector was sufficiently fast to completely resolve
the pulse. An uncoated L4 cm germanium lens focused the laser to a

40 pum spot size at the wedged SHG ~rystal. Another germanium lens
focused the S!G signal onto a liquid nitrogen cooled InSb detector
preceded by a sapphire filter which blocked the 10.6 um C02 laser
radiation. The detector had an active area of 0.5 X 0.5 mm2 and a
response time of 8 psec so it did not resolve the pulse. The detector
output was fed into a boxcar integrator and a chart recorder.

The CdGeAs, samples for the nonlinear coefficient measurements

2
came from boule No. 16. The GaAs reference sample was suppiied by
Monsanto. It was Cr doped and had a resistivity of 3 X 108 fl-cm.
Table XVI 1ists the parameters for the experiment. The measured

coherence length for CdGeAs, of 22 * 1 um agrees well with the 21.2 um

2
calculated from Eq. (6.62) and the index data. The coherence length

for GaAs is in good agreement wit)i the published values in references 11
and 62 of 104 *+ 7 ym and 107 * 5 um, respectively. For the spot size
and crystal thickness we used both ¢ and B << 1 [cf. Eq. (6.10)].

In addition, since the spot size was much smaller than the translation
distance between two SHG minima, we can use Eq. (6.65) to determine the
nonlinear coefficient. The CdGeAs2 nonlinear coefficient measured

relative to GaAs is

d. (CdGeAs,,)
30 2. . 3.t 208 , (6.87)

d;),(GaAs)
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TABLE XVI

MEASUREMENT OF THE SHG NONLINEAR COEFFICIENT

GaAs CdGeAs2
Crystal orientation | (111) (110)
Wedge angle 4%8" 1°46 "
€O, polarization || [110] | [110]
SHG polarization | f112] || [oo1]
dets 2/3 4 d36
n, 3.2711 3.5688
n, 3.3011 3.6933
lc[m], measured 104 = 3 22.1 £1
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and with d;,(GeAs) = 1.14 x 10721

-21 (

(mks),62 we have that d36(CdGeAs2)

3.9 x 10 mks ).
The optical properties of the II-IV-V2 corpounds can be estimated
from the III-V analogs. Using the definition in Eq. (2.2) we compare

the Miller's & for CdGeds, with the I1I-V analogs GaAs and InAs.

2
We obtain 6(CdGeA32)/6(GaAs) = 1.8 and 6(CdceAs2)/6(1nAs) = 1.3

Assuming that the average bond nonlinearity for CdGeAs2 is similar to

1/2(GaAs + IrAs) we expect Miller's & for CdGeAs, to be the average

2

of the III-V analogs. The measured value is somewhat larger but it
is much smaller than calculated by Chemla.15 He uses Levine's bond-
charge model and obtains 6(CdGeAs2)/6(GaAs) = 5.4,

Recently Boyd et al.,29 have measured the nonlinear coefficient

for CdGeAs,. They report d

» ¢(CdGeAs,)/d) ) (GaAs) = 2.62 £ 154 , and

3

for the coherence length they measure 21.5 * 1 ym and calculate 23.0 um.

These results are in good agreement with our previously published
1:esults.65 Also Goryunova et al.,6h have measured the nonlinear coef-
ficient for CdGeAgz. They used a ruby laser with both the fundamental
and the second harmonic frequency well above the bandgap f -equency.
Because of the reduced electronic contribution to the nonlinear coef-
ficient, they measured a smaller value than expected in the trans-
parent region of the cryetal.

In Section VI.A.1(b), we defined three figures of merits where

M; is applicable for 90° phasematching. For phasematching at other

angles or must be used. They are the figure of

MSHGtot MSHCgaus
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merits for maximum SHG conversion and for SHG into a Gaussian mode.
MSHGgaus also applies when crystals are compared for use in
parametric oscillators. Table YVII compares CdGeAs2 with tellurium
and Ag3A583 which are two of the most popular infrared nonlinear
materials. For reference we alsc list GaAs. CdGeAs2 has the second
largest known nonlinear coeificient of any phasematchable crystal.
Only tellurium has a larger coefficient, but since tellurium

also has a larger double refraction angle, the CO2 laser doubling

efficiency is largest in CdGeAs The maximum useful crystal length

5 ¢
zmax for CdGeAs2 is 2.7 mm for confocal focussing compared to only
0.1 mm for tellurium. The theoretical 10.6 um conversion efficiency
in CdGeAs2 for a 2.7 mu crystal and confocal focussing is PSH/PFund =
0.001 PFund(w) for the two phasematching conditions. This neglects
surface reflections. We use the calculated doubling efficiency to
estimate the threshold for a degenerate parametric oscill ator pumped
at 5.3 um. Assuming the equivalent loss due w0 the finite build-up
time is negligible compared to the other losses in the cavity |

[cf. Eqs. (6.34) and (6.36)], we find from Eqs. (6.32) and (6.33)

that the threshold pump power Pth is

_ 3
Pth = aQq, ><l10 (W) (6.88)

for a doubly resonant oscillator (DRO) and

Pep = 20 x 107(W) (6.89)
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TABLE XVII

FIGURE OF MERITS FOR INFRARED NONLINEAR CRYSTALS

CdGeAs2 Te AgBAsS GaAs
n 3.60 }.86 2.52 3.3
d (rel. GaAs) 3.4 6.9 0.1k 1
M = a2/ 19% 302 1 22
] 5503L" (1) 0y 0q
em(sug of 10.6 um) 540517 (11) 14710 22730 ---
0 1920’ 5%42 3930’ | ---
¢ =\/enp°[mm]
max 1P 2.72 0.11 0.56 =
2
Mucgaus = Ml/p 1330 121 1 ---
o 156 -

-
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for a singly resonant oscillator (SRO). With 10% signal and idler

losses, the threshold pump power and power density are, respectively,

2 p
Py = 10 W and Pth/A = 1 Mi/cm (6.90)

for a DRO and

2
Pth = 200 W and Pth/A = 20 MW/cm (6.91)

for a SRO. The area A 1is as usual, defined as ﬂwi/e . Equations
(6.90) and (6.91) are for confocal focusing in a 2.7 mm crystal. A
larger crystal does not increase the gain, but it reduces the power
density such that crystal damage is less probable. The necessary pump
power to reach thi:shold is available at wavelengths near 5 um either
from a TEA CO laser or from a CdGeAs2 doubled TEA CO2 laser. However,

the present CdGeAs, crystals are too lossy to attempt a parametric

2
oscillator experiment. Assuming the losses will reduce with further
crystal development, a 2.7 mm crystal should be adequate for a doubly
resonant oscillator. For a singly resonant oscillator, however, the

crystal should be at least 5 mm to reduce the power density. The

measured optical damage threshold for CdGeAs2 is ko Mw/cm2 at 10.6 um.

3. Phasematched Parametric Interactions

We have demonstrated several phasematching experiments in CdGeAse.
The measured phasematching angles are in reasonable agreement with the
calculated values based on the measured indices of refraction. Table XVIII

lists the results. For the SHG experiments we used a CW CO2 laser.
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TABLE XVIII

PHASEMATCHING EXPERIMENTS

Process SHG of SHG of SHG of Mixing of
10.6 pym| 10.6 pm 10.6 pm 10.6 pm + 5.3 um

Boule No. 16 Bk 31 31
Phasematching II II I I
condition

o ) o )
Measured phase- 49~ %0 | L8 s50°' 31 Lo 33 L3
matching angle + 15 + 15 + 20° + 1€
Calculated phase- | 54° 510 | 54° 51° 359 340 | 359 30
matching angle
Walk-off angle, p | 1° 20" | 1° 20 1° 20
Crystal length 1.34 k.2 1.95 1.95
£ (mm)
Measured angular 7.5-8.5 | 2.25-3.0 3 1.7-1.8
half-width (deg)
Calculated angular| 8.5 2.25 3 1.9
half-width (deg)
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We chopped the beam to reduce the crystal heating. A motor scanned
the crystal through the phasematching position. Figure 30 shows the
second harmonic output power versus the external rotation angle for
one of the crystals. It shows the regular sinc-curve dependence given
by Eq. (6.20). The curve has some oscillations near the maximum.
These occur when the laser is normal to the crystal. The feed-back
then makes the laser unstable which allows an accurate measurement of
the phasematching angle. The oscillations are monitored at the SHG
wavelength or by recording the CO2 laser output. The angle between
the center of the oscillations and the maximum of the sinc-curve
gives the phasematching angle relative to the normal of the crystal
face, and by x-ray diffraction we determine the angle between the
normal and the c-axis. With this technique we measure the phase-
matching angle within 15 minutes.

In Table XVIII the external half-angles at the half-power points
are calculated using Eqs. (6.28), (6.29), and (6.30). By comparing the
calculated with the measured half-angles, we obtain information
about the crystal quality. In nonuniform crystals with variations in
the indices of refraction, the phasematching condition may not b satis-
fied over the whole crystal length. This leads to a larger angular
half-width than calculated. The crystals listed in Table XVIII have
lengths between 2 and L millimeters and the quality is good encugh for

the phasematching length to be approximately equal to the crystal length.
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PHASEMATCHING
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EXTERNAL ROTATION ANGLE (DEGREES)

FIG.

30--Angular dependence of the gsecond harmonic output power
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To further test the crystal quality, the crystal is translated
perpendicularly through the laser beam while the phasematched second
harmonic output is monitored. Figure 31 shows a typical horizontal
and vertical scan for the SHG crystal from boule No. 16. "Good"
crystal regions are over distances of about 1 mm. It is therefore
possible to avoid the areas with significant absorption.

The mixing experiment in Table XVIII between 10.6 ym and 5.3
to generate third harmonic at 3.53 um was achieved by first doubling
and then mixing in two separate CdGeAs2 crystals. The crystals are
placed right next to each other. For the doubling we used the 4.2 mm
type II phasematching crystal and the mixing was in a 1.95 mm crystal
cut for type I phasematching.

We have also generated third harmonic directly using a TEA 002
laser. The calculated phasematching angles for tripling are 49”L ¢
for type I and 6700' for type II phasematching. No solution exists
for type II1 phasematchirg. The 1.97 mm crystal from boule B1l7 was
cut for type II phasematching which we expect to give tne largest
nonlinear efficiency. The crystal quality was not as good as for
some of the other crystals. Using Eqs. (6.27) and (6.49) we
calculate an angular half-width of 3013' compared to a measured half-
width of h°15'. This corresponds to a phasematching length of only
1.5 mm. The crystal could be used for both phasematched type II SHG
and type I1 THG and the measured internal angle between the two phase-
matching positions of 11.2 % 1° was in good agreement with the calcu-

lated difference of 12.1°.
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FIG. 31--Variation in the SHG output power over
the crystal cross section.
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The measured phasematching angle for the SHG crvstal from boule
No. 16 was 49°30' as stated in Table XVIII. At cne spot on the crystal,
however, we mcasured 50°40'. This was probably due to a crystallite
at a slightly different orientation to the rest of the crystal. To
determine how a change in the dispersion D and the birefringence B
at the fundamental frequency affect the phasematching angle em , we

differentiate Egs. (2.5) and (2.6) and find

m

86 = % tan 6_ <%? - %?> (6.92)

for both phasematching conditions. One of the problems with absorption
in the crystals is that the resulting temperature increase changes the
phasematching angle. We estimate the effect of a temperature raise of
10°C by using %% = 3.9 X 10-5 OC.1 from Table XIV and assuming

%%-kzl X 10-h OC”1 For (dGeAs, with a birefringence of B = 0.089
and a dispersion of D = 0.029 this gives 66m =+ 0.6° for type 1
and 86 = 1.2° for type 1I phasematching for SHG of 10.6 um. The
phasematching angle therefore inrreases with increasing temperature.
A change in the carrier concentration also affects the phasematching

3

angle. An increase of the hole concentration of 5 X 1015 cm 7 results
in a decrease in the birefringence at 10.6 ym of 8B = - 0.002 accord-
ing to Eq. (6.86). From Eq. (6 68) we calculate the change in the dis-
persion of the ordinary index s 8D = 0.7 X 1o'h . This increases
the phasematching angle by (8 = 0.5° for type I and 86 = 1° for
type 11 phasematching. Firslly it is worth noting that the indices

of refraction for p-type material are also perturbed by the intraband
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transitions between the split valence vands. It is more complicated,
however, to evaluate the magnitude.

Recently, Boyd et a1.29 have measured the type I and type II
phasematching angles for SHG of 10.6 um to be 35 * 1° and 51.6 * 0.5°
respectively. This is in reasonable agreement with our results con-
sidering they had crystals with much larger absorption. A bire-
fringence change from boule to boule was observed by Boyd et 31.65
for ZnGeP2 where they report a change of 0.001 out of a total bire-

fringence of 0.048 at 1.06 yum. Unfortunately they did not measure the

carrier concentration.

4. Maximum 10.6 um Doubling Efficiency and Optical Damage Threshold

We have observed a maximum doubling efficiency in an uncoated
CdGeAs2 crystal of 1.4% for a TEA CO2 laser. If we subtract theo
reflection losses at the crystal faces, this gives an expected
doubling efficiency of 3¢ for a coated crystal. This compares to
the best results reported for tellurium.se’sg The laser had a
Gaussian output beam with a pulse length of 200 nsec and a repetition
rate of 1L pps. A 27 cm focal length germanium lens focused the beam
into the SHG crystal. The laser rower was measured by a CRL power
meter and the second harmonic by an Eppley thermopile. The crystal
was 1.95 mm long and it was cut for type I phasematching. The measured

absorption at the laser and the second harmonic frequency was 806 °

0.8% G T amd ag 3 = 3 cm-1 , respectively. According to Eq. (6.21)
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this reduces the theoretical SHG conversion efficiency by a factor of
0.40. At the measured 1..44 conversion efficiency the incident laser
peak power was 12.5 kW. Including losses, this gives a theoretical
conversion efficiency of 2.44 for a square iaser pulse. The pulse
shape, however, was more Gaussian and this reduces the theoretical
conversion by a factor of approximately 2/3 to 1.6¥ which agrees well
with the measured conversion.

We observed a saturation in the SHG conversion efficiency before
the optical burn density threshold was reached. This might be due to
either a thermal effect or due to generated free carriers resulting from
optical absorption between an impurity level and the valence or the con-
duction band. With reduced optical absorption we believe the satura-
tion effect will vanish. For the measured crystsl the saturating laser
power density inside the crystal was approximately 15 Mw/cmz.

The optical burn density measured by the TEA CO2 laser was
38 £ 2 Mw/cm2 for most crystals. In one crystal, however, it was as
high as 55 Mw/cmz. We have also measured the cw damage threshold.

At 10.6 um 1t is smaller than 1000 W/cm®.

5. Carrier Absorption

Figure 32 shows the free electron absorption in n-type CdGeAsz.
The 3.5 power dependence is characteristic of charged impurity scat-

tering [c%. Eq. (6.71)], and the result agrees with reference 66

which reports a power dependence of 3.2 - 3.k,
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FIG. 32--Free electron absorption in n-type CdGeAsa.
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Figure 33 shows the lowest measured absorption in p-type CdGeAse.

By writing € = 0.151 eV - % {n Eqs. (6.75) and (6.77) and adjusting

15 cm-3 we obtain excellent agree-

the hole concentration to 2.4 % 10
ment between the measured and the calculated absorption for transi-
tions between the valence bands Vi and vy The measured valence
band splitting energy is therefore 0.15 + 0.01 eV which is not too far
off our estimated 0.20 eV. A theoretical value for the splitting
energy of 0.17 eV is given in reference 66. This reference also ‘
discusses intraband absorption but uses a formula that does not apply
for the chalcopyrites.

In conclusion, in order to obtain negligible absorption in p-type
CdGeAs2 the hole concentration should be smaller than 1015 cm-3.

Compensation or doping to reduce the carrier concentration is therefore

necessary to obtain high optical quality material.
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CHAPTER VII

APPLICATION OF TUNABLE RADIATION FOR AIR POLLUTION DETECTION

Perhaps the most challenging application of tunable infrared
radiation is for air pollution detection. In this chapter we compare
the detection sensitivity using an infrared parametric oscillator to
other laser detection methods. The important results have been
published and are presented in Appendix D. Of the three analyzed
schemes: Raman backscattering, resonance backscattering, and resonance
absorption; only the last is sensitive enough to detect dispersed

pollutants.
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CHAPTER VIII

CONCLUSION

CdGeA52 is very promising for infrared parametric generation
ard efficient SHG and mixing. We have measured the nonlinear co-
efficient and determined the phasematching conditions. The crystal
is phasematchable over most of its transparency range between 2.l
and 18 um and it has the highest figure of merit of any phasematchable
nonlinear érystal. CdGeP2 is not phasematchable. It has approximately
the same tetragonal distortion as CdGeA52 but the birefringence is a
factor of ten smaller.

The growth of high optical quality chalcopyrite crystals is
hindered by séveral problems. Extensive crystal cracking occurs during
growth and the boules have nonuniform optical transmission. We have
measured the linear thermal expansion coefficient for CdGeAsQ. It is
very anisotropic and this probably explains the large number of cracks.
We have been able to reduce the cracks by growth of single crystals in
a bismuth solutionl There has been no correlation between the non-
uniform optical transmission and the impurity content. The material
probably undergoes significant self-compensation during growth and we
suspect that slight stoichiometric variations may explain the non-
uniformity in the optical transmission.

To explain one of the absorption mecﬁanisms in p-type material

we have determined the bandstructure near the Brillouin zone center.
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The bandstructure results let us calculate the absorption due to intra-
band transitions between the split valence bands and we obtain good
agreement with measured valucs for CdGeAsz. Experimentally we determine

the valence bsnd splitting energy to be AEV iy = 0.15 = 0.01 eV.
1 "2

To have negligible intraband absorption the hole concentration must

be smaller than 1015 cm-5.

The free carriers also affect the indices of refraction and the
measured phasematching angles. An increase in the carrier concentra-

tion of 5 X 10lb cm-3 changes the phasematching angle by approximately

(o]

17 for SHG of a CO, laser with type II phasematching.

2

Because of the anisotropic effective masses in CdGeAs2 , carrier
injection introduces a birefringence change. We have proposed to
use this effect to construct a 10.6 pum modulator.

Since the carrier concentration is very important for the measured

optical properties of CdGeAs, we have determined the temperature depend-

2

ence of the carrier concentration in p-type CdGeAsz. It is constant

from 77°K to 200°K and then starts to increase. At room temperature the

carrier concentration in the CdGeAs, grown by the vertical Bridgman

2
method is usually between 5 X 1015 to 5 X 1016 cm-3 .

By SHG, THG, and mixing experiments we have verified several of
the calculated phasematching conditions. We have observed as high as

2% 10.6 pm doubling efficiency in & 2 mm CdGeAs_ crystal,and the

2

measured burn density is 4O MW/cm2 for a 200 nsec CO, laser pulse.

2
We expect the quality to improve with further crystal development.
It is a long and tedious process, however, to determine the optimum

growth conditions. To minimize the optical absorption it is necessary
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to reduce the carrier concentration by compensation or doping. The
CdGeAse has an extensive tuning range and due to a large figure of
merit only a few millimeter long crystal is necessary to reach parametric
oscillator threshold. Presently available crystals have almost low enough
optical absorption to allow the construction of a doubly resonant
oscillator. The calculated threshold pump powex at 5.3 um for a 2.7 mm
crystal is 10W for 10% loss at the signal and the idler wavelength,

The most straight forward application of an infrared parametric
oscillator is in spectroscopy with air pollution detection as a

particular stimulating possibility,.
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APPENDIX A

TYPE I AND TYPE I1 PHASEMATCHING EQUATIONS

T} s extraordinary index of refraction for a wave propagating at

an angle 6 with respect to the crystal c-axis is given by8

1 cos 6 sin29
5 = > + 5 . (A.1)
n (8) n n
e o e
When the birefringence B = n, - n, is much smaller than n, o, we

can rewrite Eq. (A.1) as

ne(e) ~ n +B sin29 . (A.2)

The phasematching conditions for second harmonic generation in a positive

birefringent crystal (B > 0) is

ni‘*’ = o) (A.3)
for type I and
nﬁ“’ - %(n‘g + o (e)) (A.4)
o 153 -



for type II phasematching. We calculate the phasematching angle by

substituting Eq. (A.2) into Egs. (A.3) and (A.L). Defining the

dispersion as D = nﬁm - ﬁ? , we find for the two phasematching
conditions that

sin 0, = v /B® (A.5)
and

sin 6, = Vv 2D/Bw (A.G)

where B® is equal to the birefringence at the fundamental frequency
Similarly for a negative birefringent crystal (B < 0) where the
phasematching conditions for type 1 and type II phasematching can be

written, respectively, as

W
niw (9) = B (A-T)
and
2w
n, (8) = = <n? + ﬂ? (9)> , (A.8)
we obtain
sin 6; = V-D/Bem (A.9)
and
D
sin 8 = - . (A.10)
11 B?&D_ %Bw



For the extraordinary wave, the power flow and the wavevector are

aot i the same direction. The Poynting vector walk-off angle is

given by8
n (e)2 1 1
tan p = — - | sin 26 s (A.11)
2 n n /
e o

which with the approximation | B | < n reduces to the simpler

expression
B
. (A.12)

— 8in 20

Using Eqs. (A.5) and (A.6) or Eqs. (A.9) and (A.10) we can

determine quickly if a material has sufficient birefringence for phase-

matched SHG .
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APPENDIX B

SECOND HARMONIC GENERATION IN A WEDGED PLATELET

Equation (6.21) gives the SHG output power from a crystal with g
constant length s It assumes Gaussian modeg with spot gizes W
and v, = wL/ \ﬁi at the fundamental ang the second harmonic wave -

length. 1In order to examine how g wedged sample ag in Fig,. (B.l)

transverse mode distribution. With Fﬁout = Il(nwf/E) and
2
Poout = IE(WWé/?) we ohtain
1287 o o 12
I, = s(1) . (B.1)

(ne + 1)2 (n1 + JE

Here S(1) ig expressed by

. 2 o )
L-luelﬁl ) '-:11!) ) !h.- 2 to 1 2 Akt

sin 5
S([) = > ) (3.2)
x.
2
Chk)™ + ({-5 - EIIJ
2
where g = L, -y tan o according to Fig, (34). 10 calculate the

SHG Power, S(!) must be averaged over the transverse mode distri-
bution. As before, we assume the laser hag g Gaussian mode such that

Il(r) = I, exp [- 2r2/hf] + With the crystal dimensions in the

= 156 =



4

A laser

FIG. 3L--Geémetry for SHG in a wedged platelet.
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x and y direction much larger than the spot size, we find

P2out - f[ Ia(x,y) dx dy

2 2
X +y
1281 mf a2 ff x b=z
- 2 5 N [j S(to - y tan a)e "1 dxdy ,
(u2 + 1) (nl + 1) uL *
(8.3)
and uesing

= -A -h2w2 v w.A 2
f e ¢ (y/l') d f—l exp (-%-) , (B.4)

we rewrite Eq. (B.3) as

12877 mf s

2| -1
e C lout [Ak 2 (“_a_ - ) J
20Ut (ny 4+ 1)%(n, + )" 7 v = 2 1

r

-

2 2
aewl tan ] alw tan ¢
X ¢ exp -a210+(—T——) J+exp[-2alt°+<—-l-2—-—)]

2
v, tan g Q
- 2 cos Akl°-2<—1———> (—2+a1>AR]

b 2 .
- 3

e e ()

(8.5)

g

Equatioa (B.5) is the final result of this appendix.
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APPENDIX C

EVALUATION OF THE INTRABAND ABSORPTION INTEGRAL

In this appendix we evaluate the integral in Eq. (6.72). Denoting

the integral by S we have
E, /kT
s= [IuZe! 6(E, - E, - tw) &’k . (c.1)

Let AE represent the energy difference at k = O between the \f) and

the \ band., This gives

2
h 1 1 2 1 1 5
El - Ei = AE = — - k” + = kl
2 m m I m1 L m l

(c.2)

]
=1
'
I s 4
I .—:xl\)
'
=
| ION— |

where the definitions of Am" and Aéﬂ in Eq. (C.2) should be apparent
and azroriing to Table II both are positive. The vy -tV band absorption
is most impertant since this occurs in the middle of the crystal trans-
parency range. For this transition the matrix element in Eq. (6.73) is

always of the form

2 2
|M|© = Ak" + Bki . (c.3)
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The matrix element for the vy - v3 transition also can reduce
to this form for certain polarizations. Using Eq. (C.3) we have that
the integral in Eq. (C.l) depends only on kﬁ and ki , and
it is therefore useful to introduce polar co;rdinates in the (kx,ky)

plane. After the angular integration we obtain

E. /kT
2 N1
S = 21r/ [Ml< e 8(E, - E - tw) k_Lko_ dk“ , (c.4)

which further reduces to

QWAmL

E, , kT
S = f |M|2e1/ dk”;El-E = hw , (c.5)

i

n

when we make use of Eq., (C.2) and carry out the k| integration. In
1

Eq. (C.5) kl? is replaced by

&m 5
A 2

b,

We have to consider separately the two cases AE > Yw and AE < hw ,
+nd we refer to the integrals as respectively S1 and 82 . From the

considerations of the integration path, it follows that

hﬂﬁml = El/kT
IM‘ e dk” ’ (c.7)
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and

wvhere

k”,min =

With the definitions

and

we can express the integrals as

S, =8, [1 - erf (VKe/kT)]

!mAmL kT AAm” + BAm.L

+
n’ K

2Am”e exp [-
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=

(c.8)

(c.9)

(c.10)

(C.11)

(c.12)



and

2ndm| kT e Am" kT AAm” + BlAm| 2¢Om| B
5, = 1 N
h K K KT
X exp |— — . (c.13)
kT ml).l.

In Eq. (C.12) erf(x) 1is the error functicn defined bv

2

Jr

erf’x) = "t ae . (C.1k)

o = X
n
n

In Chapter VI, Section A.5 we use these integrals to calculate the

intraband absorption in CdCeAse .
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