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CHAPTER I 

INTRODUCTION 

This work considers the development of net-r materials for applica- 

tions in infrared nonlinear optics. The investigated crystals belong to 

the II-IV-V2 class of ternary semiconductors with chalcopyrite struc- 

ture. We discuss growth technique, materials quality problems, ab- 

sorption mechanisms, semiconducting properties, and linear and non- 

linear optical properties for two of the compounds: CdGeAsp and 

CdGeP2 . 

In general nonlinear crystals are used to generate coherent 

radiation at wavelengths where la^rs are not available. The process 

can be second harmonic generation (SHG), mixing, or parametric 

oscillation. 

Since nonlinear optics require high optical power densities 

the material quality problems are extremely important. Alr,o, the 

crystals must be phasematchable and have a high nonlinear figure of 

merit to give good nonlinear interaction efficiencies. Several use- 

ful crystals exist for the visible spectral region. In the infrared, 

however, there is a lack of high quality nonlinear crystals. 

As a result of this study, CdGeAsp has been shown to have tha 

highest figure of merit of any presently available infrared nonlinear 

material.  With a positive birefringence of 0.1, CdGeAsp is phase- 

matchable for SHG and parametric interactions over most of its trans- 

pnency range from 2.k  to 18 um. By SHG of a TEA C02 laser we have 

observed a doubling efficiency of 2 percent. 



To improve the understanding of the optical absorption mechanisms 

we have measured the semiconductor properties and determined the band 

structure near the Brillouin zone center. We have identified one 

of the absorption mechanisms in CdGeAs2 as due to intraband transitions 

between the split valence bands. This absorption is avoided by 

reducing the hole concentration through compensation or doping. 

The Il-lV-Vg chalcopyrite compounds were first synthesized in 

the late nineteen fifties.1'2 Over the past ten years Russian workers 

have reported extensive work on the compounds.5 We had therefore 

information about melting points and several attempted growth methods 

when the chalcopyrite growth program started at Stanford in the fall 

of I969. The important properties for nonlinear optics such as dis- 

persion, birefringence, and nonlinear coefficients were not known, 

but from the close resemblance with the III-V compounds we assumed that 

the nonlinear coefficients were large. From the crystal structure it 

was clear that the crystals would be birefringent because of the 

tetragonal distortion of the unit cell. We did not know, however, 

if the birefringence would be sufficient to satisfy the phasematching 

condition. Today, due to the recent work at Stanford and the Bell 

Telephone Laboratories, the potential of the II-IV-V2 chalcopyrite 

compounds for nonlinear optics is fully confirmed. 

The long-term goal of this research is to develop chalcopyrite 

crystals of high enough optical quality for the constractlon of a 

parametric oscillator tunable over the infrared frequency range.  In 

Chapter VII we -Uscuss the potential use of tunable infrared radiation 



to detect air pollutants and compare the sensitivity with alternative 

laser detection schemes. 

. 
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CHAPTER II 

SELECTION OF CRYSTALS FOR NONLINEAR OPTICS 

A.  GENERAL CONSIDERATION 

This chapter reviews briefly the crystal parameters ot .■ .portance 

for nonlinear optics and introduces the properties of the chalcopyrite 

compounds. To evaluate nonlinear crysti. s it is necessary to considei 

the following properties: 

1. Large nonlinear coefficient. 

2. Sufficient birefringence for phasematching. 

5.  Crystal transparency range. 

h.    Optical quality. 

h  5 
The second order nonlinear coefficient d. .^ is defined by ' 

with summation over repeated indices.  In this equation P. («-)  is the 

nonlinear polarization generated by the electric fields E.^) and 

£.(0^). The symmetry of the d ,  tensor follows from the crystal 

point group symmetry.0 For the crystal to have a nonvanishing nonlinear 

coefficient it cannot have a center of symmetry.  In materials where the 

nonlinear coefficient has not been measured, the magnitude can b-3 

estimated by Miller's rule^ if    indices of refraction are known.  The 

Miller's rule relates the indices of 'üfraction n to the nonlinear 



coefficient by 

diik ■ ^jk^i - vtf - ^4 -i) *    w 

where    &. ..      is   Lhe Miller's  constant.    For most materials,     &..,     is 1JK '   ijk 

constant to within a ractor of two while the nonlinear coefficient can 

vary over almost four orders of magnitude. Miller's rule works very 

well especially for crystals with the same point group symmetry. 

The nonlinear polarization drives an electric field It to, . In 

order for the driving polarization to stay in phase with the resulting 

electric field over the whole crystal length the phasematchin0 condition 

k
5 ■ \ +  k2 (2.5) 

must be satisfied.  Since k = nco/c  , we can rewrite the equation as 

n^x>     = n^Dj + n2a>2        . (2.1;) 

In addition, energy conservation requires 

ü^ = ü^ + CJü2   . (2.5) 

In crystals we accomplish phasematching by using the birefringence 

to compensate for the dispersion in the indices of refraction. The 

condition that the crystals should have sufficient birefringence to achieve 

phasematching sets a very important limit on the number of crystals 

useful for nonlinear optics. Degenerate parametric oscillators or second 

harmonic generation (SHG) require the largest birefringence. The 

- 5 



phasematching angle, for SHG is approximately given by (cf. Appendix A) 

sin 0 m    VD/|B| (2'6) 

for type I phasematching and 

sin e11 •< VSD/IB (2.7) 

for type II phasematching. Here B ^ ne - n0  is the birefringence 

and D = n^ - n" is the dispersion. The crystals must therefore have 

a birefringence larger than the dispersion between the second harmonic 

and the fundamental frequency. 

The transmission range of crystals is determined by the bandgap 

absorption at short wavelengths and by two-phonon absorption at long 

wavelengths.  Since efficient nonlinear interactions require high 

optical power densities, the absorption within the transparency range 

must be at an absolute minimum to avoid crystal damage or breaking of 

the phasematching condition. Fov reference, in a high optical quality 

"1 9 
infrared material such as GaAs the absorption is 0.02 cm ,  and the 

2 10 
optical damage threshold is approximately 100 MW/cm .   Nonlinear 

absorption is also important and may even limit the maximum efficiency 

of the nonlinear interaction. We will discuss this in Chapter VI. 

B.  ESTIMATION OF THE OPTICAL PROPERTIES OF THE Il-IV-Vg CHALC0PYRITE 

COMPOUNDS 

The III-V semiconductors have large nonlinear coefficients, but 

due to the cubic symmetry they have no birefringence and phasematching 

is therefore not possible.  If we replace the cation In the III-V 



compounds with atoms from the second and fourth column of the periodic 

table, we generate a new class of crystals known as the II-IV-Vp 

chalcopyrite compounds. These have very similar optical properties 

but with the important addition that they are birefringent.  The 

chalcopyrite crystal structure is tetragonal and the point group 

symmetry of ^2m allows both type 1 and type II phai3?matching. 

Figure 1 shows the atomic arrangement in the chalcopyrite unit 

12 
cell.   The lattice parameters are a and c  . Each cell contains 

four II-IV-V2 formulas.  If the II and IV atoms were indistinguishable, 

the chalcopyrite structure would reduce to a compressed sphalerite 

structure.  However, because of the ordered arrangement of the II and 

IV atoms, the chalcopyrite unit cell is twice the sphalerite cell. The 

II and IV cations have different covalent radii, and the anion V is 

therefore not exactly in the center cf the cation tetrahedra.  It is 

positioned a distance a(x - 1/1+)  off the center closer to the cations 

with the smallest radii.   We can characterize the chalcopyrite 

structure by two parameters T and a where T = 2 - c/a is the 

tetragonal compression and a = hx - I  gives the position of the 

anion. 

The growth of high optical quality material presents several 

problems. For maximum progress we decided to concentrate on a few 

compounds.  In choosing which compounds to grow, tha  important con- 

siderations were transmission range, birefringence, and magnitude of 

the nonlinear coefficients. When we started the growth, the only 

7 - 



FIG. l--Chalcopyrite unit cell 
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useful information available was the crystal structure and the bandgap 

frequency. The other important properties such as the infrared cut- 

off frequency, the nonlinear coefficients, and the birefringence had 

not been measured   e therefore used the close resemblance with the 

III-V analogs tr predict the properties. For reference the III-V 

analogs are lasted in Table I. As pointed out, two-phonon absorption 

determines th» infrared cut-off frequency, and the freauency is 

approximately twice the transverse optical mode frequency at the 

Brillouin zone center. When we assume the same force constants 

for the chalcopyiite bonds as for the III-V analogs, we estimate 

ehe transverse optical mode frequency to be equal to the largest 

transverse optical mode freqi-ency of the III-V analogs. This leads 

to predicted cut-off wavelengths that aj ree with recent measurements 

to better than one micron. For example, for CdGeAs2 we predicted 

a cut-off at 18.5 jam and measured 18 um as shown in Fig. 2. The 

strength of the two phonon absorption in CdGeAsp is about 20 cm'1 

at room temperature. There is also some weak three phonon absorption 

of approximately O.J cm" . 

The chalcopyrites have only one independent nonlinear coefficient 

since d^ = d ^ accoiding to the Kleinman symmetry condition. 

By applying the Miller's rule in Eq. (2.2), we estimate the magnitude 

using the measured Miller's constants for the III-V analogs. The 

agreement with the recent experimental values is within a factor of 

- 9 
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two. For compounds with unknown average index of refraction we use 

Eq. (2.10) to estimate the index. 

The property most difficult to estimate is the birefringe.ice. The 

c-axis compression of the III-V compounds results in a negative 

birefringence, so it was surprising that most of fK« chalcopyrites 

turned out tc be positive birefringent. Initially, Wi  assumed that 

the crystals rfith the largest tetragonal distortion had also the largest 

birefringence. We have shown later, however, that there is no such 

correlation. For example, both CdGeAs2 and CdGePp have large tetragonal 

distortion, but only CdGeAs2 has large enough birefringence for phase- 

matching . 

It is interesting to derive expressions for the indices of refraction 

and the birefringence for he chalcopyrites by assigning bond polarizabilities 

to the II-V and the III-V bonds. With a linear polarizability tensor 

ä , we write the induced polarization of a bond as 

p(t) = e05-E(t) (2.8) 

We assume uniaxial bond symmetry and write the transverse and the 

longitudinal linear bond polarizabilities as tti  and an  . We can 

then calculate the susceptibility tensor by sumriing over the thirty-cwo 

bonds within the chalcopyrite unit cell. Defining an average bond 

polarizability as a = 7(2», + an)  and the änisotropy as 7 = (ar - Cfi), 

- 12 
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we follow Clv.'ala
15 and obtain for the susceptibility tensor that 

/I 0 0 
16 16 

^ = ^ - ! = 7 Kc + aBc)l+ - 7AC(T + <r) + 7BC(T ■ a)^0  1 0 j, 

<0    0  -2- 

(2.9) 

where AC and BC refer to the bonds to the largest and smallest 

cation and V is the unit cell volume. We assume the average bond 

polarizability is approximately the same as for the IIT-V analogs and 

calculate the average susceptibility for the chalcopyrites using the 

equation 

V       V 
X   =  -^ X -f-^X.   , (2.10) 
av    V     v 

where V  and V.  are the unit cell volumes and X  and X,  are ab a      u 

the measured susceptibilities of the III-V analogs. 

For the relative birefringence we obtain from Eq. (2.9) that 

^    ne " n0     Xe " X0      7a(T ♦ a) ♦ 7b(T - a) 

2(1 + xav)        6(aa + ab 

(2.11) 

since X   is always much greater than one. For the Il-IV-Vg compounds, 

T and a    have about the same magnitude so we can approximate Eq. (2.11) 

by 

An      1  70 
_ ^ . 9  (T + a)   .       (2.12) 

n      6 «a + ab 

- 15 - 



The maximum positive birefringence occurs when Oi » Otii  • This gives 

^AnX        1   T + a 
-    = + •       (2.13) 
n / U 1 + au/tti / max Jb' J_a 

According to Eq. (2.12) the birefringence deponds mainly on the sniso- 

troplc polarizability of the AC bond. Consequently, since A is the 

cation with the largest radius, the birefringence of, for example, 

CdGePp and CdSiPp should be determined mainly by the anisotropic polar- 

izability of the CdP bond. However, it is not possible to estimate 

the birefringence of CdSiPp from the birefringence CdGeP2 because the 

anisotropic polarizability of the CdP bond changes when silicon re- 

places germanium. Therefore, in practice the Eqs. (2.12) and (2.13) 

cannot be used to estimate the birefringence. 

For reference. Table 1 gives a listing of the optical properties of 

the chalcopyrltes. The numbers in parentheses have not been measured, 

but we believe they represent good estimates. The two most useful 

crystals for nonlinear optics will probably be CdGeASg and ZnGePg  . 

Ik 
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CHAPTER  III 

BANDSTRUCTURE OF THE CHALCOPYRITES 

IN THE VICINITY OF k = 0 

CdGeP2 with a bandgap energy of 1.72 eV is expected to be the 

II-IV-V2 chalcopyrite compound with the largest direct energy gap. 

All the chalcopyrites with smaller energy gaps, however, are direct 

bandgap material with the bandgap located at k = 0  . Rowe and 

17 
Shay  discuss the splitting and symmetry of the valence and con- 

duction bandstand they model the chalcopyrite structure as a 

strained version of the III-V sphalerite structure. This gives 

good agreement with the observed electroreflectance spectra. The 

S-like conduction band is singly degenerate (doubly counting spins). 

The triply degenerate P-like valence band (sixfold counting spins) 

is split into three sub-bands because of spin-orbit and crystal 

field Interaction. 

Knowledge of the splitting and the curvature of the valence 

and conduction bands near k = 0 is very Important for the under- 

standing of optical and electrical transport properties. From the 

curvature of the bands we determine the effective masses which 

allow us to calculate the intrinsic carrier density, the free t .sctron 

absorption cross section, and the plasma frequency. From the plasma 

frequency we can determine how much the presence of free carriers 

perturb the indices of refraction. The components of the mobility 

and conductivity tensor are related to the anisotropy of the effective 

masses. 

- 15 - 
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In p-type material there Is optical absorption due to intr?band 

trannltions between the valence bands. Our band structure calcü1ation 

allows us to estimate the magnitude of the absorption cross section. 

In Chapter V we also discuss third order nonlinear processes in the 

chalcopyrites.  The largest contribution to the third order sus- 

ceptibility tensor for III-V compounds with a free electron con- 

16  -5 
centration of 10  cm  is from the nonparabolicity of the conduction 

band near k = 0  . '        Similar calculations are also possible for 

the chalcopyrites except they are more complicated, since the lack 

of cubic symmetry leads to much more complex bandstructure.  It is 

interesting, however, that measuring the third order susceptibility 

tensor components provides a check on the bandstructure theory. 

The bandstructure of the III-V compounds near the Brillouin 

zone center is very well described by a semi-empirical theory due to 

20 5 
Kane.   Borshchevskii et al.  adopt these results directly to the 

chalcopyrites to calculate the effective masses. This is not very 

satisfactory since there is a significant crystal field splitting 

21 
in the chalcopyrites.   We will therefore extend Kane's theory to 

the chalcopyrites and calculate the energy and wave functions to 

second order in k 

Including spJn-orbit coupling, the SchrÖdinger equation for aa 

electron in a periodic potentia)  V(r) is 

— + v + -2-2 (w x ;)•* I ^ = E^ ,  (5.1) 
I 2m     1+m c J 

16 



where p is the momentum operator and cr Is the spin operator 

Introducting the Bloch-function ^ = uke
ik'r , where IL  has the 

periodicity of the lattice, we obtain 

2 2 
1> R _ _ ft         _   K 
— + V + - k-p f —g-g (W x p)-a + —5-5 (W X k).CT| UL 
2m m 1+m c            hm c                           ' 

2 2' 
B k 

u 
2m 

k   • (5-2) 

2  2 2       — 
We neglect the term  (ft /km c  )(W X k)'a u,  , since it is very 

small according to Kane, because most of the spin-orbit interaction 

occurs in the interior of the atom where the atomic momentum p is 

much larger than the crystal momentum ftk  . We write the potential 

as v = v0 + Vcr  . Here V0 has cubic symmetry and V   is  the 

potential caused by the tetragonal Jistortion. We let 

2 

H0 = ^+vo (5.5) 

be the Hamiltonian for the unperturbed problem and treat 

ft __   ft 
H' = Vcr + - k.p + —-2 (W X p).a      (3.10 

m     1+m c 

as the perturbation where the tetragonal potential is neglected in 

the spin-orbit coupling term. As basis functions we take the 

wavefunctions for the valence and conduction band. Restriction to 

these eight wave functions means that the influence of the higher 

IT 



«d  loTOr  lyln8 band5 are co„.ldered  small_     ^^  ^^^^^^^ ^^^ 

b«t vhen the energy seperetlon to the other bends at k = 0 tl 

-ch lerger then the bendgap energy. „e fllUou Kane „„ use ^ 

basis  functions: 

iSi)   .   I21/2 (X - lY)t) ,   |zi)   ,   |2-1/2(x+iY )T) , 

ri/2 Ust), |^/2(X+1Y)A) ^ (ZT)^ (2-l/2(x_iy 
)A) . 

Ths first four functions are reanprn„ai„ ^ are respectively degenerate with the last 

four.  The symbols' end » mdioete spin up end do™ referred to the 

i-«l.. S re£e:s to the conductmn benc „eve functions. They trens. 

for. as atomic s-functlons under the a^etry operation, of the 

^trahedra! group.  SImUany X , y , and , refer to the valence 

bend „eve functlona, and they heve the sy-»try properties of the 

ato-lc '-«-»"«• - , y , and a Jnder the tetrebedral group 

operations. 

With these basis functions, it follows that the 8 X 8 Hamil- 

tonian matrix can be written 

H 

H = 

■ 

H21 

H, 
(3.5) 
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where 

H, 

E s 
0 kzP 

0 
p     5     5 

k P 
z 5 

E    -f5 
P     5 

and 

0 

0 

P  3  5 

(5.6) 

.ol/2/ Ji/z, 
•2 ' (*, + ^y)?    0    2  (kx " iky)P 

-1/2 
2 ' (k + Ik )P 

21//2(k - ik )P v x   y' 
0 

(5.7)   J 

Here E  and E  are the eigenvalues of the unperturbed Hamlltonian, 
s      p 

referring to respectively the two-fold degenerate conduction band 

and the six-fold degenerate valence band. We further have defined 

the quantities 

ft 

P = - i- (s|p2|z) 
■ 

(5.8) 
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with 

(S|pz|z>     =    (S|px|X)     =     (S|py|Y) 

3fll öv dv 
(x| -%„ --^PJY) (5.9) 

with 

4m c ox    ^      dy 

ox      '       dy dx dz 

- Of I-^ P, - r2 pjz> 
öy      z      öz      y 

and 

(x|vcr |x)   =   (s|vcr |s> +| 

(z|vcr lz)   =   (s|vcr Is) -^ I   .. (5.10) 

We have not included the term (SJV^ js)  in Eq. (5.6) since it only 

shifts the eigenvalues by a constant. To determine the level splitting 

near k = 0 to first order in H' because of the spin-orbit coupling 

A and the crystal field splitting & , we diagonalize the matrix 

in Eq. (5.5). We find that the conduction band remains two-fold 

degenerate while the valence band splits into three doubly degenerate 

levels. The four doubly degenerate eigenvalues are determined by the 

20 
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secular equation; 

(1 - 1.) E + (5 + A)E + 
2A& 

(V)' 
2b 

E + — 

(k2 + k
2)P2 ( — + & ) E + — 

3    /    5 J 
= 0 

(5.11) 

where E = Ek - (Y^2/^)     .    We have fixed the zero on the energy 

scale in Eq. (5.11), by letting Ep + b/5 + A/5 = 0  . At k = 0 

the eigenvalues are Es , E1 , 0 , and E2 with 

^2 
| (A + b)  ± | yji^f^f      .       (5.12) 

^1T ,    , .t ... v,,,,-      A > 0    and    & < 0      which means that In the chalcopyrites we have      o ^ v    »"«    w >. »# 

E    > 0    and    E    < 0     .    E,     is therefore the energy of the highest 

lying valence band and the bandgap energy is    EG = Eg - Ej^     .    We 

u?e this together with Eq.   (5-12)  to rewrite Eq.   (5-11).    We find 

that 

E(E  - E1 - EG)(E - E1)(E - lg)     -     (kzP)2E    ^E ♦ ^j 

+  (k2 + k2)P2   [(l-^Xl-lJ  -f(E + &)l v x       y7       I 1 2       ^ i 

(5.15) 

For small k2 , the solutions of Eq. (5-15) give parabolic energy 

bands.  Including the  (ft^/an)  term from Eq. (5.2), we obtain 

21 - 
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to second order in k that the energies of the conduction and valence 

bands are 

ftV  (kzP)
2(Ec + E1 + 2^/5) 

'G + ^+ * 
+ - 

VEG + El  " V 

(kx + kv)p2 

EG + E1 

1 
(A/3)(EG  +E1 + 6)  ' 

EG(EG + EI-E
2)   . 

I   =  E, + 
Vl     1   2m 

A2  (k2P)
2(E1 + aV3)  (kj[+k

2)P2(E1 + 5)A 

EG^E1 " E2) 
JE.E (E1 - E2) 

Ä2  1 (k2 + k2)P2    _  x   y' 

2m 2  E^E, 

E2 + 
liV  (k P)2(E_ + aV3) 

^ 

(k^ ♦ kpP^CEg ♦ 6)A 

2m   (E1 - E2) (EG ♦ E1  1^  JE^ ♦ E1 - E^ ^ - Ej J 

(3.11») 

The above equations give the erorgy splittings and the effective masses 

of the four bands excluding the effect of higher lying bands.  It is 

worth noting that the expressions for E   and E   are not valid 
vl       v2 

in the limit  6 -• 0  . We now proceed to calculate the wave functions. 

The lattice periodic functions  |u ) are given by a linear combinntion 

of the eight basis functions  |n)  .We have 

|u ) = V a  |n)   , 
' ra'    ^  mn1 '   ' (3.15) 

n 
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and we determine the coefficients a   by solving the eight homo- 

geneous equations 

YafH  -E5)=0; /.   mnl sn   m sn / 
n   ^ ' 

s = 1 to Ö (5.16) 

for each eigenvalue E  of the Hamiltonian matrix H   in Eq. {'b.^ 
m on ~k        \^    s - m sn 

We then obtain Eqs. (3.I7) and (3.18) 

u*>  - ) |u|) • lv|-A l«^-«)t> + (Eo+Ei+-) ^ 
j      ^o^i-vy L3 v      3/   . 

-    2-*(kx-lky)P    /EG+E1+a*-J|-2"i(X*lY)|> +—A  |zf>     j 

2"'(k   ♦Ik )P        1 
♦   —2 *— |2-*(X.lY)i> 

VEX 
(5.17) 

l«Bc>    -    {M>* 
VB( L3 v       3/   . 

+ 2 '^x^V1* (vBi+8+-) l2'^x-',f)t> + -A '■tq j 

- 

25 
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i       1^     •\aft*3^/J    |E1+( 

r/3)A 

(aV3) 
|2"*(X.lY)f>+  |Z{) 

^■HöT4!^-W..(> 

^ 3E0[E1+(aV3)J 

|uj>   -   ||2-*(x+ir)f> ^^ U.f>| 

K >    -     }|2-*(X «r)|> - 

3        I       2\aa+3E2/ 

2'^-!^ 

^+E1 
is 

{2*/3)A 

V 
^+E1-E

2 

E2 + (2Ä/3) 
|2-*(X.lY)f)* |zf) 

(kx - Ik,.)» 

3(E0+E1.E2)(E2+(2V3) 

3 I       2\aA+3E2/ 

•*  i    (2^/3)^ 

E2+ (2V3) 

Iff) 

-2"i(X+lY)|)+  |zf> 

|l.f> 
(^♦IQ» 

^ 
VE1-E2 3(E0+E1.E2)|E2+(2ö/3)] 

N> 

(3.18) 
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In Eqs. (3.I7) and (5.18) A and B distinguish between the 

two wave functions of each doubly degenerate band. The Eqs. (5.11+) 

(5.IT), and (3.18) are the main results of this chapter. With these 

equations we can calculate energy splittings, effectivs masses, and 

optical transition probabilities between the bonds. The equations 

depend only on the following four parameters:  the bandgap energy 

EG , the spin-orbit splitting energy A ,  the crystal field splitting 

parameter 8 , and finally the matrix element P  . For the band- 

gap energy we use the measured value.  The spin-orbit coupling and 

crystal field splitting energies have been measured for four of the 

II-IV-V2 compounds:  CdGeP^ CdSnP^ ZnSiAs  and CdSiAs .l6 For 

the other chalcopyrites we estimate the spin-orbit coupling from tne 

III-V compounds by averaging the experimental values for the III-V 

22 
analogs.   For the crystal field splitting we use the results of 

21 
a pseudopotential calculation,  noting that with our definition of 

the crystal field splitting parameter it assumes negative values 

17 
in the chalcopyrites.   It is also possible to estimate the crystal 

field splitting by considering the chalcopyrites as stressed versions 

of the III-V compounds as sugsested by Shay et al.17'25 A comparison 

with Pollak et al.  yields 

8 = "I^OOl " -5b^zz "Sj =   -^    >       (3.19) 
2 2 

where b is the deformation potential of the III-V analogs for stress 

in the  [001] direction. For GaAs b = - I.75 ev.
25' Since we do not 

25 
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know b for IiiAs, we use this value to estimate & = - 0.29 eV for 

CdGeAs2 which is close to -0.25 eV predicted by the pseudopotential 

calculation. 

The matrix element P is nearly constant for all the III-V 

compounds, that can be described by Kane's theory.   Within 2056 we 

have 

fi' 
,2 

= — x 20 eV 
2m 

(3.20) 

for the III-V compounds, and we assume this value for the chalcopyrites. 

Close to k = 0 the energy bands are of the form 

ft 12  ,2 ,2 
k + k k 
x   y z  1- + — 

"T   V 
(3.21) 

with the plus and minus sign referring to respectively the conduction 

and valence bands. In Eq. (3.21) 8^ and n^ define the transverse 

and t\r.  longitudinal effective masses. We can use these to define 

a denfity ot states effective mass m. 

mde 
v 

2 
(5.22) 

and a conductivity effective mass    m 

1 

a 

1    l\ 2 

■ VL 
* (5.23) 

(cf. reference 2?). Table II gives the calculated effective masses 

for CdGeAs and CdGeP together with the values for £„ . A and & 
« G ' 

■ 
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TABLE II 

CALCULATED VALENCE BAND SPLITTING ENERGIES AND EFFECTIVE 

MASSES FOR THE CONDUCTION AND VALENCE BANDS 

CdGeAs2 CdGeP2 

EG 
A 

0.53 

0.38 

1.72 

0.11 

5 - 0.25 - 0.20 

Ei 0.20 0.17 

E2 - 0.32 - 0.08 

raT mL 
m, 

de 
ma ^ '"L 

m, de 
ma 

c 0.039 0.028 0.035 0.034 0.088 0.079 0.085 O.085 

vl o.TT 0.031 0.26 0.087 - 0.097 

v2 0.079 - 0.23 

v3 0.14 0.69 0.24 0.19 0.24 

1 

. ;   ■ . , 

All energies are in eV and the effective masses are in units of the 

free electron mass. 
■ 

■ 
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used in the calculation. The table also lists the splitting energio 

Ej and E^ of the valence band. We have assumed direct bandgaps, 

setting EG equal to the measured bandgap energy.  There is, however, 

some uncertainty concerning CdGeASg.  Early reports of a direct band- 

28 n 
gap  have been questioned recently,29 although the fact that both 

of the III-V analogs GaAs and InAs have direcv bandgaps tends to 

support the notion of a direct bandgap. With this qualification in 

mind. Fig. 3 shows the expected bandstructure of CdGeAs near k = 0. 

The highest valence band has a smaller longitudinal, but a larger 

transverse effective mass than the v^band. A few of the effective 

masses of the valence bands are not listed in Table II. These can 

only be determined accurately by considering the effect of higher 

bands since they receive very little contribution from the conduction 

band interaction. No measured effective masses have been reported 

for CdGeP2.  In CdGeAs2, however, infrared plasma reflection
50 

and thermoelectric power measurements28'51 have been used to determine 

the electron mass. The effective mass depends on the carrier 

concentration.  Extrapolation to small carrier concentrations results 

in an effective mass of 0.02 to 0.03  times the free electron mass. 

This is in reasonably good agreement with the calculated effective 

mass of 0.055 in Table II. There is only one reported measurement 

of the effective hole mass in CdGeAs^51 The mass wa. deduced from 

measurements of the thermoelectric power.  This gave a density of 

state effective mass of 0.5 which agrees surprisingly well with our 

- 28 
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calculated value of 0.26. We therefore conclude that the generalized 

Kane model that we have described gives *n adequate description of 

the bandstructure near k « 0 in CdGeAs,, and probably works well aU o 

for the other chalcopyrites. 

Finally in this chapter, we list the matrix elements for optical 

transitions between the highest and the two lower valence bands. 

In Chapter VI we will refer back to the results when we estimate 

the magnitude of the absorption in p-type material.  (See Eq. (5.21») 

on the following page). 

- 50 
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P2m A !V*Ji («*  |5-Pl^ >    - -C„ 2' 1/e(k    ♦ Ik) S i_ (      + i    ) 
'    n  5^ + 26/3) EG(EC +il)    

x       y Tj-    'v^ yl 

2 

<«i  |S-?I«; )    - - Cv    2"  l/2     — 
Vl V2 Vl ft "o 7        B« + E,        ■ 

A   - -   A ^ <u    |«-p|u    >    - - C      C        
\ *} Vl    V3    ft 

1 I 
k • 

\EG     EG + E1-E2 

AZ 

9^! +aV31(E2 + 2^/31 

k   + Ik 
^—* (s - «V 

E„ ' 

k   • Ik 
—J5 X  (.x ♦ i.y) 

A       -   1 AP^" 
<«   15-PI»" )   -   - c    c      

Tl v3 vl   ^3 3   ft ^lEj + 26/3] 

(Ec + El - E2)(E2 + 2V3) 
(ky + lky)«f 

(Ej + 26/3)(EG+ El - E2) (E2 + 26/3)Ec 

with 

C_ 
I   /    26 

1 +-       
2   \26 + 3E, 

C 1 -i- 1 (_iLV 
2   ^ + 3E2/ 

-/2 

1/2 

k.(.x ♦ l.y) 

■ 

. 
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CHAPTER IV 

ELECTRIC PROPERTIES AND LINEAR EXPANSION COEFFICIENT OF CdGeAs 

Several abtcrption mechanisms In the chalcopyrites are related 

to the semiconductor properties. Therefore knowledge of the electric 

transport properties is necessary for a full evaluation of the material. 

It is well known that controlled doping may improve the optical 

quality of semiconductors.  As an example, doping GaAs by chromium 

introduces deep acceptor levels that remove all the free electrons. 

This results in high resistivity material of good optical quality. 

Another example is CdSe where Se  compensation reduces the carrier 

concentration. Besides causing scattering leading to absorption, the 

presence of free carriers perturbs the indices of refraction 

and thereby the phasematching angle for nonlinear optical inter- 

actions. An additional absorption mechanism exists in p-type 

material due to intraband transitions between the split valence 

bands. This absorption mechanism has a magnitude proportional to the 

free hole concentration. Another common cause of optical absorption 

in semiconductors is impurity absorption. From the temperature 

dependence of the Hall coefficient we can derive information about 

the position and concentration of the impurity levels, and by combining 

the Hall coefficient with the measured conductivity we can calculate 

the carrier mobility. The mobility is sensitive to the general 

crystal quality and increases with a smaller number of crystal 

imperfections. 
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In this chapter we discuss the electrical transport equations 

necessary to interpret the experimental results and then present 

the results for p-type CdGeAs2. We will also discuss the measure- 

ments of the linear thermal expansion coefficient for CdGeAs . The 

expansion coefficient is strongly anisotropic and explains at least 

partially the crystal cracking during growth. 

A.  ELECTRIC TRANSPORT PROPERTIES 

1.  Theory 

Introducing an electron mobility    u      and a hole mobility    u 
c '  'v > 

we have that the electric conductivity is given by 

o- ■ e(n|ic + p^v) ih.l) 

when there are n electrons in the conduction band and p holes in 

the valence band. The mobility depends on the collision time of the 

carriers and the effective mass.  For holes we have 

•<t) 

(U.2) 
m 

and a similar expression holds for the electrons,  (T)  is ehe 

collison time averaged over the carrier velocity since T in 

general is velocity dependent. 

In the case of an anisotropic valence or conductior band, a is 

a tensor. From band structure calculations near the Brillouin 

zone center we have shown that the chalcopyrites have a nearly 
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Isotropie conduction band, but that the valence band is strongly 

anisotropic.  It is convenient to define a longitudinal and a 

transverse conductivity for conduction parallel and perpendicular to 

the c-axis direction. For p-type material we have according to 

Eqs. (l+.l) and (k.2)  that 

^L 

V1,T     V1,L 

(h.3) 

where ^ refers to the top valence band. Using the effective masses 

in Table II, we obtain ^  . 25 for cdGeAs^     ^  ratio ^^^ 

the electron and hole mobility depends on which scattering mechanism 

limits the collision time. The average collision time is in general 

different for electrons and holes. Pure acoustic scattering is most 

important at high temperatures due to the T^2  temperature dependence. 

In that case the ratio between the longitudinal components of the mobility 

tensor is 

ih.h) 

and we obtain a similar expression for the transverse components. 

ThM  subscript de in Eq. (k.k)  r.fers to the density of states effective 

mass. Applying Eq. {k.k)  to CdGeAs,, we obtain ^ ^   . 22 and 

^- «AL. = koo . 1'L 
1,T 
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By a slight extension of the results in reference 21,  we obtain 

expressions for the Hall constant R in crystals such as CdGeASp 

with spheroidal constant energy surfaces and a direct bandgap at 

k = 0  . For the magnetic field applied along the c-axis we find 

2     2 E      r  pu T - n^i T 

and for the magnetic field perpendicular to the c-axie we have 

hit 
V-T V'L CIT CIL 

jyBx    |e|  (P^)T +n^CjT)(P^,L +n^,L) 

ik.6) 

2    2 In the above equations r = (T )/(T)  is a constant close to unity, 

i.e.  r = 1.18 for pure acoustic scattering and r = I.95 for 

27 ionized impurity scattering. ' With only one type of carrier the 

equations simplify.  For p-type material we have 

r 

and in this case the Hall constant is a dir et measure of the carrier 

concentration. 

In intrinsic semiconductors the number of holes equals the number 

of electrons. With the definitions 

, 2mcTm de \ 2 n   Q\ 
Nc = 2 (   ^    I >-8 

35 
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and 

27TkTm , 

we calculate the Intrinsic carrier concentration n.  by the equation 

af = N N exp f- -^ j  . (It.10) 
i     cv    I    ' 

Using the effective masses 11».= Ü.055 m and mv de ■-= 0.26 m , 

we obtain for CdGeAs that 

5000 \   / 1 
Bl = l.^xlO^T^expf j ; (—j . {h.U) 

Figure h  shows the temperature dependence of the intrinsic carrier con- 

centration. At 500OK we have N = I.6I1 x 10 ' cm'5 and 

18  »5 N  = 3.32 x 10  cm -^ . 
vi 

For extrinsic semiconductors assuming nondegenerate bands, the 

product np of the electron and hole concentration is constant 

independent of the impurity concentration and it is given by 

np = n2   . (h.12) 

The semiconductor is nondegenerate when the Fermi level is in the for- 

bidden energy gap and is separated from the valence and the conduction 

band by an energy of more than kT  , For p-type material this 

condition implies that p/N  < 1/e with e = 2.718 . This condition 

can be rewritten such that for a carrier concentration p the semiconductor 

^6 
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is nondegenerate at temperatures larger than the degeneracy temperature 

T  defined by the equation 

h2 

TD = 1.23   p2/3   .        (4.15) 
27Tk m , v,de 

16  -^ 
For a hole concentration of 10  cm J  in CdGeAs the degeneracy tem- 

perature is as low as 120K . 

Finally in this section, we discuss the temperature variation 

of the carrier concentration in a material with N, donors and two 
d 

acceptor levels of concentration N   and N   respectively. The 
al      a2 

results apply to the measured p-type CdGeAs samples. Tl« charge 

balance leads to the eiuation 

n + \ - \)  + (Na2 " V.) 
= P + (Nd " nd) ' 

where nd is the number of filled donor levels (un-ionized donors) 

and na and na are the number of unfilled acceptor levels (un- 

ionized acceptors). We consider p-typa naterial. The donors are 

then ionized such that n, = 0 . Furthermore, we let N   refer to 
al 

a shallow acceptor level also fully ionized (n- = 0)  . N   refers 
al a2 

to a deeper partially ionized acceptor level. For an acceptor ioniza- 

tion energy of e   , the number of un-ionized acceptors is given by 

N a. 
n a 

1 +|exp   [(Ep  - e^/kT] 
(4.15) 
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Here the Fermi energy is measured from the top of the valence band and 

the factor of two is the spin degeneracy. For simplicity we also 

neglect n in Eq. (k.lk).    This is allowed as long as the hole 

concentration is much larger than the intrinsic carrier density. 

For a nondegenerate semiconductor, the concentration of holes in the 

valence band is given by 

-Ep/kT 
P = Nve (4.16) 

which substituted into Eq. (4.15) yields 

N 
n 

a2 
a2    I HO| (N /p) exp (- e /kT) 

(4.17) 

This eliminates the Fermi energy from Eq. (4.14) and we can solve for 

the hole concentration. We obtain 

1 / 1   ■eaykT 

P =    2  \  - Nd " I V  S  ) 

1    ■ 

. (4.18) 

with the asymptotic solutions  p = Na - Nj at low temperatures and 

p = Nai + N^ - Nd at high temperatures. The donors partially 

compensate the hole concentration. At intermediate temperatures 

there is an approximate solution provided the condition 

Na " Nd << P « N
fl + Nn 1 ai      ar, 

Nd (4.19) 
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can be satisfied which is only possible when N  » N  - N 
a2    ai   d 

With Eq. (k.19)  satisfied, the approximate carrier concentration is 

given by 
I.   .  . 

^| N N  e  '- 
2 ao v 

-e /2kT 

ik.20) 

2. Experiment 

We have measured the resistivity and Hall constant between 770K 

and h00OK  for p-tyPe CdGeAs2. The samples came from boules grown from 

stoichiometric melt. For most samples we used the van der Pauw 

method.^3 We did not orient the samples. They consisted of one or 

a few crystallites and the sample diameter to thickness ratio was 

about 10. It would have been desirable to use oriented rectangular 

bar shaped samples since this would have allowed us to measure 
■ ■       - 

■ 

the individual components of the conductivity tensor. However, 

due to the extensive cracking it was not possible to obtain suffi- 

ciently large oriented single crystal samples. We used indium 

to form ohmic contacts. The contacts worked well down to liquid 

nitrogen.  Small balls of indium were squeezed onto the sample by 

a teflon coated tw.e.er and then alloyed in an ^  atmosphere for 5 

to 10 minutes at 3500C. 

Figure 5 shows the temperature dependence of the Hall constant. 

We used a current of 0.5 mA and a magnetic field of 2000 Gauss. 

This gave a Hall voltage of about 100 ^V. The Hall constant is 
■ 

almost independent of temperature between 770K and 250OK.    At 

ko 
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higher temperatures it starts to decrease. The resistivity plotted 

in Fig. 6 also has the same general temperature dependence. It is 

constant between 770K and 250OK and decreases at higher temperatures. 

This agrees with published data.2 ,5  Vaipolin et al.   observed 

that the Hall constant started to decrease above 200 K and claimed 

that this was due to the onset of mixed conductivity. This, however, 

is not compatible with their results showing the Hall constant goes 

to zero at 500OK. With a bandgap of 0.55 eV, it is easy to estimate 

from Eqs. (U.5) or (It.6) and Fig. k  that the temperature difference, 

measured in units of IGOO/T, between the onset of mixed conductivity 

and zero Hall constant should be less than 0.5 K- . This is much 

-1 
smaller than the difference between 2000K and 500OK which is 5 K . 

Furthermore, the resistivity changes too quickly with the temperature 

to be explained by purely a change in thu mobility. The correct 

interpretation is probably that the crystals have two acceptor levels, 

one shallow and one deep. The shallow level is completely ionized 

above 7T0K. Between T70K and 250OK we have a region of saturated 

conduction with the carrier concentration equal to N
a ~ Nj • 

Above 250OK the effect of the deep acceptor level starts to be notice- 

able. 

When there is only one type of carrier, the Hall constant gives 

a direct determination of the carrier concentration. Neglecting the 

constant r , it follows from Eq. (J+.7) that p = l/|e|R . This 

o 15  -5 
gives a carrier concentration at 77 K of 6.6, 8.1, and 5.3 X 10  cm 

- It - 
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respectively for the samples from boules B6, B7, and BÖ.  Since the 

samples have a nondegenerate carrier concentration, we can use £q. 

(U.20) to obtain a rough estimate of the impurity concentration that 

gives rise to the doep acceptor level. Equation {h.20)  gives the 

carrier concentration at intermediate temperatures and we determine 

the ionization energy of the deep levels from the slope in Fig. 5» 

This gives e   =0.2 eV, and we est'.mate the impurity concentration 
a2 

17  -5 
to be Nag =» 1| X 10  cm ^ for sample B8. 

The Hall constant and the resistivity allow us to determine the 

Hall mobility which is defined by Hj. = R/p  .  For our samples the 

Hall mobility is temperature independent up to nlmost room tempera- 

ture.  It then starts decreasing.  The Hall mobilities calculated at 

770K for samples B6, B7, and B8 are respectively 676, 606, and I5U0 

cm /Vsec.    The difference between B8 and the two other samples might 

be partially due to orientation effects, .^or comparison we also list 

the previously published results  Reference' gives a hole mobility 

of 20 cm /Vsec and reference jh  lists the electron and hole mobilities 

as 1000 cm /Vsec and 2^0 cm /Vsec respectively. We therefore conclude 

that our material is probably of slightly higher electronic quality 

with fewer ionized impurities acting as scattering centers to limit 

the mobility. 

B.  MEASUREMENT OF THE LINEAR THERMAL EXPANSION COEFFICIENT 

We have measured the linear thermal expansion coefficient for 

CdGeASp in the temperature range 80OC to 170 C, using an optical 

- kk 



interference technique.  Figure 7 shows the experimental setup. To 

avoid vibrations the experiment should be performed on a stable table. 

A small tilt between the microscope slides gives rise to fringes, 

and the fringe spacing on the screen decreases with increasing tilt 

angle. The microscope slides were coated to obtain good fringe 

contrast. At times the contrast could be Improved by a wedge 

blocking the zero order reflection. We had regular air in the furnace. 

Above 200 C it is necessary to use an inert atmosphere or vacuum to 

avoid growth of an oxide layer. A vacuum has the additonal advantage 

that it is otherwise necessary to correct for the change in the index 

of refraction with the temperature of the gas between the microscope 

slides. 

Let  / be the sample thickness and n the index of refraction 

for air. The phase difference associated with one double reflection 

between the microscope slides is then given by cp = (U7T/x)n/ 

Here x ■ 6528 A is the wavelength of the He-Ne laser. A temperature 

change .AT changes the phase difference by 

kn    /di      dn\ 
Z^p = — (— n + £ — ) Z^r   .      (1+.21) 

X  ^      «/ 

We measure An by observing the fringe movement on the screen. For 

s fringes passing through a reference point, we have £&  = 27Ts  . By 

substituting this into Eq. (^.21) we datermine the linear thermal 

coefficient a . We find 

£ dT    2n/ AT  n dV v   ' 
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We see from Eq. (4.22) that we need to know dn/dT for air.  The index 

of refraction for air can be written as n = 1 + — X with the sus- 

ceptibility X proportioral to the density N/V = p/kT  .  From 

this it follows that 

nT  ' 1    p  T 

nT  - 1    P T0 

For p = p  and defining ß = 1/T , we can rewrite this equation as 

T 
0  1 + ß(T - T )   .        {h.2h) - - ■ Kx-  ^0 

n„ - 1 

Letting T ■ 2750K ,  we should theoretically have ß = O.OO567 . 

Experimentally ß  is found to be equal to O.OO5679 for x = 6528 X 

and TV. = 275 K.   For the same wavelength and temperature and a 

nressure of 76O mm Hg the index c^ refraction for dry air is n_ ■ 

1.0002921  .  The temperature dependence is obtained by differentiating 

Eq. (1+.21+). We obtain 

dn,, n    -  1 
T T 
  =  - ß     .        (U.25) 
dT        1 + ß(T - T ) 

The calculated dru/dT is plotted in Fig. 8. 

In order to test the method we first measured a crystal with a 

known exnansion coefficient. We used a single crystal of silicon 

5.99 mm thick. The results are listed in Table III.  In Fig. 9 we 

couvr. i  the results with the data for polycrystalline silicon from 

re'.erence 56. The agreement is good. 
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TABLE III 

LINEAR THERMAL EXPANSION COEFFICIENT FOR SILICON 

T 
2nt AT \n dT/ air 

a 

0C (IG"6 0K^) 
/.-6 o..-l\ 
(10      .   ; do"6 »K-1) 

82.5 1.85 - 0.6U 2.U9 

115 2.17 - 0.55 2.70 

IU7 2.29 - 0.1+6 2.75 

■ 
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We had two crystals of CdGeAs?, one c-axis cut h.Ol  mm thick and 

one a-axis cut 2.96 mm thick. CdGeAs^ proved to have a very aniso- 

tropic linear thermal expansion coefficient with Qi more than ten 

times larger than an  . The results for a-axis expansion are listed 

in Table IV. For the c-axis expansion we did not obtain equally 

accurate measurements because QtM was of the same order as dn/dT 

for air, but of opposite sign, such that the fringe movement was 

almost zero. The results are in Table V. In Fig. 10 we plot the 

temperature dependence of the expansion coefficients. The expansion 

coefficients increase slightly with the temperature. 
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TABLE IV 

uAjTriinoiU«   UUWf ICIENT FOR CdGeAs 

T 

N 
2nt AT 

(IQ"6 0K-1) 

/Idn| 
U dT/air 

(io-6 0
K-i) (IO"6 0K   -1) 

T.9.3 7.6U -0.61+ 6.28 

UL 7-93 -0.5U 6.I17 

lh2 8.18 -0.I16 8.64 

HI 8.47 -0.1*0 8.87 
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TABLE V 

LINEAR THERMAL c-AXIS EXPANSION COEFFICIENT FOR CdGeAs 

I 
2n£ ÄT 

/I dn\ 
\n dT/air a, 

N (IG"6 OK'1) (ID"6 0K-1) (IG"6 0K-1) 

128 -O.Ik -O.I9 0.35 

2k5 0.3k -O.5O 0.6U 

288 0.50 -0,25 
i 

0.75 

. 
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CHAPTER V 

■ 

CRYSTAL GROWTH AND MATERIAL EVALUATION 
■ 

■■ 

In this chapter we briefly describe the growth technique and then 

the testiag procedures used to evaluate chalcopyrite crystals. The 

problems of main concern are the optical transmission and crystal 

cracking.  Fortunately, the necessary crystal size for most nonlinear 

optic applications is only a few millimeters so samples can be cut from 

the best sections of the boules. The crystals are grown at the Center 

for Materials Research (CMR) at Stanford. 

A.  GROWTH METHOD 

1.  CdGeASg 

References 37 and 58 discuss the equilibrium phase diagram of 

CdGeAs .  The crystal melts congruently at 670 C. The homogeneity 

region is believed to be very narrow.  It probably extends only a 

traction of a percent away from the stoichiometric composition which 

Iis helpful in obtaining uniform single crystals. All our measurements 

have been on samples grown by the vertical Bridgman-Stockbarger tech- 

nique. 

Stoichiometric proportions of the elements (6N) are placed in a 

quartz tube which then is sealed under vacuum. The material is re- 

acted for 16 hours at a temperature of 730 to fkO  C. The temperature 

is raised slowly since the arsenic vapor pressure is about 10 atm at 

730 C. After complete reaction, the material is ready for Bridgman 

growth. The furnace is vertical with a temperature profile as illus- 

trated in Fig. 11. The quartz crucible is placed near the top of the 
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furnace and Is lowered slowly through the temperature gradient. To 

aid formation of a single crystal, the crucible has a 1 to 1^ inch long 

capillary at the bottom. The synthesis and growth can be done in one 

or two steps. The two step procedure has the disadvantage that some 

vapor in the crucible deposits on the walls when the synthesized 

material is quenched, and it is not possible to retrieve this deposit. 

The one step proces« assures that no material is lost. However, there 

is a problem of obtaining uniform mixing and achieving fully reacted 

material in the crucible as well as in the capillary before the growth 

starts. An ultrasonic vibrator aids the mixing process. To prevent 

reaction of the melt with the crucible walls a carbon layer is used 

to coat the inside of the quartz crucible. Boules grown without the 

carbon layer did not show any noticeable change in the optical trans- 

mission. 

Figure 12 shows a photograph of a boule. The boules are usually 

2.5 cm long and 1.5 cm in diameter with the general properties fairly 

repeatable from run to run. There is, however, a secondary nuclea- 

tion problem. The boules start as single crystals, but after 0.5 to 

1 cm of growth the melt becomes unstable and numerous small crystals 

form from nucleation sites. In trying to eliminate this problem, the 

growth conditions have been varied over a wide range. The lowering 

rate of the crucible has been changed between 0.25 and 2? mm/hour and 

the temperature gradient between 11.8 and 5U0C/cm, this has not resulted 

in any improvement. Another problem is extensive crystal cracking which 

occurs at all investigated growth conditions. 
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2-  CdGeP  2 

The melting point of CdGePg 1B at 790OC. Because of the high 

phosphorus vapor pressure, CdP,, Is s ntheslzed first and then reacted 

with Ge to form CdGe>2 at a temperature above the melting point of Ge. 

The fully reacted mat- ial is then used to grow single crystals by the 

Bridgman-Stockbarger technique similar to the growth of CdGeAs . Due 

to observe Si vitrification, a carbon crucible is used to synthesize 

the CdGeP2.  The resulting crystals show the same cracking pattern as 

observed for CdGeAs . 
2 

B.   INITIAL TESTING 

!•  Polishinfii and Etching 

Both CdGeAs2 and CdGeP2 polish well.  Since the crystals are 

anisotropic, the grain boundaries and the twin lines can be seen on 

a polished surface using a microscope and partially crossed polarizers. 

Without polarizers it is necessary to use a suitable etch to reveal the 

structure. A good etch for CdGeAs2 is IH^: 2*^011:1^0 and etching 

for 50 sec.  For CdGeP2 etching for 15 sec in a 10^ Br2 solution in 

ethyl alchol gives good results. The best section of the boule is 

usually the region within 0.5 to 1 cm from the capillary. This section 

most often consists of two or three crystallites. For growth from 

stolchlometric melt there is no evidence of inclusions except near the 

top of the boules. 

2.  Cracking 

Due to the extensive cracking, the largest single crystals of 

CdGeAs2 useful for nonlinear optics have to date been limited to 
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approximately km?.     It has been suggested that the cracking In 

CdGeAs Is due to a sphalerite to chalcopyrlte phase transition at 

ejcfc.5'59 We have, however, some doubt about the phase transition 

since we have not been able to verify the sphalerite phase In samples 

quenched from temperatures above 630OC.  The large anlsotropy In the 

thermal expansion (cf.Chapter IV) may also give rise to cracking. 

There Is a definite correlation between the cracking and the grain 

boundaries. Large single crystal regions usually have few cracks, ar.H 

It Is hoped that the cracking will reduce with Improved growth techniques. 

Finally, the cracking may be related to the constraints Imposed by the 

walls of the quartz crucible. 

5.  Growth Direction 

We have taken Laue photographs of several boules to determine the 

preferred growth direction.  In a few boules strain caused blurring of 

the Laue spots. The orientation of large single crystal regions is 

usually with the chalcopyrlte unit cell [111] direction within 10 of 

the boule axis. This agrees with the literature which reports the [111] 

direction as the fastest growth direction for the chalcopyrites. 

The impurity segregation coefficient and the density of stoichio- 

metric imperfections may depend on the growth direction. Boule number 51 

had two twins with a large disparity in the optical transmission.  The 

smaller piece was transparent. It grew in a direction of 1? off  the 

c-axis in the [100] plane.  The larger piece, however, which was 

completely opaque, grew close to the [221] direction. To see if there 

was any significant difference in the impurity concentration between 

the two samples, they were sent out for impurity analysis. The results. 
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however, were not conclusive.  They are summarized in Table X. 

ll.  Optical Transmission 

The property of the greatest concern is the optical transmission. 

Since the band^ap of CdGeAs  is at 2.? ^m, visual inspection is not 

possible. Slices 1 mm thick are therefore cut from several sections of 

the boule.  They are polished and the optical transmission is measured 

on a 621 Perkin-Elmer spectrophotometer.  Most boules have a very non- 

uniform transmission with the best transmission usually at the bottom. 

Uniform transmission exists only over very limited regions.  The 

transmission including reflection losses through one of our best samples 

of p-type CdGeAs is shown in Fig. 1). More often the best transmission 

in a boule is between 20 to ^Ql for a 1 nm thick sample.  The bandgap at 

2.3 ^m and the two phonon absorption at 18 ysa  determine the transmission 

range. Some weak three phonon absorption exists between 12 to 15 lim. 

There is no free carrie- absorption in p-type samples.  For most samples, 

however, significant absorption occurs between the bandgap and S to 

6 urn.  This absorption is not seen in n-type samples which in ret* ru 

have a shorter infrared cutoff wavelength due to free electron absorption. 

Due to the larger bandgap the quality of CdGePp can be studied using an 

infrared microscope which makes evaluation easier than for CdGeAs . The 

boundary between transparent and opaque regions usually follows sharp 

lines and there is often a correlation between crack lines and opaque 

regions (cf. Fig. 11*). The cracking is concentrated on the boundary 

between single crystal regions. The optical transmission range for 

n-type CdGeP is 0.8 \i  to 12.5 l-un as shown in Fig. 15. There is some 
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absorption at short w.v.Uu^h. close to the bandgap frequency. SUnilar 

absorption is seen in sevand of the II-VI semiconductor compounds. 

5-  ^Ummm  of the Resistivity and the Si.n nf ^Kq Majority gagig 

After the samples have been tested for optical transmission, they 

are etched and the resistivity is measured by the four point probe 

method,  m addition, a hot probe is used to determine the sign of the 

majority carriers.  Growth of CdGeAs,, from stoichiometric melt gives 

P'type material except for a region close to the capillary „here there 

may be a small n-type region.  Crystals have been grown from melt with 

0.5 .o 1*  excess arsenic, and one boule was grown with 2* excess ger- 

«ani....  The8e boules were also p-type. The optical transmission and 

res Lstivity of boules grown from arsenic rich melt are about the same 

as lor stoichiometric grown boules.  Electron probe microanalysis 

revealed arsenic inclusions n.ar the top, and In that region the 

material was n-type.  The germanium rich boule had very nonuniform 

transmission due to germanium precipitates. 

The resistivity correlates with thfc optical transmission.  For 

P-type CdGeAs2 the resistivity at room temperature is between 0.5a cm 

and 15a cm with the largest resistivity resulting in the best optical 

transmission. An exception was boule number 28 which had a resistivity 

of about lOOn cm.  This high resistivity was probably due to a reduced 

mobility because of strain since this boule was quenched from i.SoV 

The presence of strain was confirmed by .easuring second harmonic 

generation in a wedged sample. 
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The resistivity sometimes varies significantly across the boule 

cross section. This is also reflected in the nonuniform optical trans- 

mission. The variation in resistivity can be by a factor of five or 

more. For example, for boule number 31 which consisted of two single 

crystals, one "ransparent and one opaque, the resistivity was 7.5 to 

15 fl cm and 2.1+n cm respectively. 

In n-type CdGeASg the resistivity is usually much smaller than 

1 ft cm and the crystal is opaque. 

Only a few boules have been gircwn of CdGeP . The boules were 

n-type with a resistivity of 10 to 105a cm. 

C.  OTHER TESTS 

1.  Electron Probe Microanalysis 

We have made extensive microprobe analysis of several boules to 

investigate possible deviations from stoichiotretric composition. The 

absolute accuracy of microprobe measurements are between 2 and 5 weight 

percent. For absolute calibration we use Cd, CdS, Ge , and GaAs as 

standards and determine the weight fraction Wu of the elements in the 

unknown (CdGeAs^ using the expression 

F   I 
_1   s 

u   "s 
F   I 
u   u 

where Ws is the weight fraction of the element in the standard  I 
'  s 

and Iu are the x-ray irtensities from the standard and the unknown, 

and Fg and Fu corrects for the matrix absorption in the standard and 

the unknown. 
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We have determined F^  from tables in Birks^0 for an accelerating 

voltage of 25 kV, electrons incident at 62.5° , and a takeoff angle 

* of 58.5  .  Table VI gives the product W F /F  .  Equation (5.I) 
s s  u 

does not include any matrix enhancement factor since at 25 kV there is 

negligible enhancement in the x-ray intensity because of excitation by 

the characteristic fluorescence from the other elements in the matrix. 

Figure 16 shows an etched boule cross section of CdGeAs containing 

several grains. The left side of the cross section was transparent and 

p-type and the right side opaque and n-type.  Table VII gives the results 

of the microprobe analysis.  No variation in stoichiometry over the cross 

section or irregularities at the grain boundaries could be observed 

within the experimental resolution. 

The relative accuracy of the microprobe analysis can be as good 

as a few tenths of one percent. Table VIII lists some experimental 

results for different boules of CdGeASg. Within the experimental error 

excess As does not perturb the stoichiometric composition. The results 

agree with the previous phase diagram studies, that CdGeAs exists only 

in a narrow homogeneity region. 

2.   Impurity Analysis 

The purification of compound semiconductors is far more difficult 

than for the element semiconductors.  It is not sufficient to remove 

foreign atoms. The stoichiometric composition must also be controlled. 

The observed carrier concentration is probably related to both impurities 

and stoichiometric variations. Since there are approximately l^22 atoms/cm5 

a carrier concentration of IQ16 cm"5 corresponds to only 1 ppm of 
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TABLE    VI 

MAGNITUDE OF    W    F  /F      FOR MICROPROBE ANALYSIS OF CdGeAs^ 
s     s'   U £ 

Standard cdm G*m kam 

■ 

Cd 115.26 

CdS 82.23 

Ge 101.99 

GaAs 
■ 

h9.31 

■ 

■■'   ■ . ■ 

1 ■      , ■ 

1 
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FIGURE   16 
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TABLE VII 

MICROPROBE ANALYSIS OF SLICE No. 9  FROM BOULE No. Jli of CdQeAs 

* ■ ,     .— . 

Area 
V As 

I 32.11 21.94 45.95 
II 31.97 21.96 46.07 
III 31.97 21.93 46.11 
IV 32.50 21.78 45.92 

(cf. Fig. 16) 
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TABLE VIII 

MICROPROBE ANALYSIS OF CdGeAs 

Boule Number 

we 

w Cd W 
Ge W fAs       I Growth Condition Optical 

Transmis sion 

26A (top of boule) 

26c 

51 

35 

31.33    22.21 1*6.1+6 10.5 Wt £ excess As I  Opaque 

31.33 j 22.121 I+6.55 Stoichiometric Max 1+0^ 

3I.3V 22.29' ^.36 Stoichiometric        j  Max 15^ 

31.61+' 22.05, 46.54 0.5 Wt $ excess As    Max 10^ 

51.58    22.56 1+6.26 0.5 Wt io excess As!  Max 25^ 

CdGeAs 55.57' 21.68   1+1+.75 

, 

■ 
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electrically active impurities or lattice vacancies.  A considerable 

amount of self compensation probably occurs in CdGeAs  and CdGeP 
2        2' 

Table IX shows the results of an impurity analysis of three 

slices from boule number 35, The slices were from different sections 

of the boule and they had different resistivity and optical transmission. 

The impurity analysis was performed by the Bell and Howell Electronic 

Materials Division in Pasadena using spark source mass spectrometry. 

There appears to be very little correlation between the impurity 

analysis and the optical transmission.  A possible explanation is that 

only a small fraction of the boule cross section was probed and homo- 

geneity problems may have obscured the results. The probed area was 

less than one mm and only a few tenths of a milligram was analyzed. 

The usually large oxygen and carbon concentrations are most probably 

due to hydrocarbons and possibly an oxide layer on the surface. 

The analysis of the transparent and the opaque twin in Boule 

number 31 is listed in Table X. Here also there is very little correl- 

ation between impurities and transparency.  Besides oxygen and carbon, 

only silicon and sulfur impurities are present at a significant level. 

Most of the crystal growth effort has centered on the Bridgman 

method. We decided to investigate this method since it is a relatively 

simple method which usually provides good results.  In addition, the 

method had already been used by others to grow chalcopyrites. The 

Bridgman growth program is now near completion. We have been unable 

to solve the cracking problem and the optical transmissica s very 

nonuniform throughout the boules. Fortunately, however, the necessary 

crystal size for efficient nonlinear interactions is only 2 to 5 mm 
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and from some sections of the boules we have obtained crystals of 

sufficient quality to demonstrate efficient second harmonic generation 

of a C02 laser.  The absorption, however, Is still too large for para- 

metric oscillators. We hav« tried to link the absorption to the 

impurities or stoichiometrlc variations using mass spectrometrlc and 

electron microprobe analysis, but we have not seen any significant 

correlation. This does not exclude stoichiometrlc variations, however, 

since the microprobe at best has a relative accuracy of only 0.1*. Much 

smaller variations in the stoichiometry can have significant influence 

on the absorption and carrier concentrate. With reproducible growth 

results the next obvious step is to examine how compensation and also 

doping affect the optical transmission. Alternative growth methods 

which allow seeding and avoid the constraints set by the crucible wall 

should also be explored. With a large anisotropic thermal expansion 

coefficient c-axis growth is probably best for reducing cracks. It 

also helps to grow single crystals.  In the Bridgman boules the large 

strain building up at the grain boundaries leads to cracking. 

Recently we have tried a new growth technique with very encouraging 

results. By growth from a bismuth solution we have obtained single 

crystals with almost no cracks. The optical absorption is still too 

high, but the elimination of cracks is a significant step in the right 

direction. 
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TABLE IX 

IMPURITY CONCENTRATIONS IN CADMIUM GERMANIUM ARSENIDE 

(IN PARTS PER MILLION ATOMIC) 

(a) 
Element   Detection   Opaque      Max T = 20$ Max T = ^ 

Limit^ 

Li 0.007 0.012 0.083 0.017 
C 0.05 h.6-23 3,200(75-10,000) 19 N 0.05 0.18 0.51 0.28 0 0.05 76 900 5,600 F 0.07 0.27 O.W 0.22 

Na 0.01 0.55 8.3 0.73 Mg 0.5 N.D. 0.I+9 N.D. AI 
Si 

0.1 
1 

0.57 
6.7 

5.9 
N.D. 

0.80 
N.D. S 0.05 1.5 1.1 h.5 

K 0.01 0.052 0.51 (6.6*) 0.19 Ca 0.05 O.O65 0.25 (5.5*) 0.07I+ 

(a) No analysis was made for hydrogen. Analyses for gold are not given 

llTrlr / ^l    f  Were Sparked a8ainst hi8h Purity 80ld """tor- electrodes. Background lines of the matrix interfere with the 

S!!J I uC1' **'  ^ Fe- 0ther i^ities not listed were not 
detected and have concentrations less than 0.3 ppma. 

(bj Determined for 3 x 10-7 coulomb exposure. 
Seen on one exposure only. 

N.D. Not detected. 
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TABLE X 

IMPURITY CONCENTRATIONS IN CADMIUM GERMANIUM ARSENIDE 

(IN PARTS PER MILLION ATOMIC) 

Boule Number 51 

Element (a) Detection Limi t(b) 
Transparent 
Sample 

Opaque 
Sample 

Li 0.007 0.077 
B 0.02 0.01*6 
C 0.03 31 N 0.05 1.7 
0 0.03 27 

F 0.07 0.1 
Na 0.01 1.8 
Mg 
Al Ja N.D. 

1.8 
Si 0.3 3.1 

P 
S 

0.03 0.09 It 
0.03 h.5 Cl 300 N.D. K 0.01 1.5 Ca 0.03 O.78 

V 0.05 0.20 Cu 0.07 0.1f5 
Zn 0.07 0.2 6a 0.1 0.1 
Sn 0.1 O.65 

0.07 0.39 

0.021 
0.075 

110 
2.0 

120 

0.1 
5.h 
N.D. 
3.5 

16 

0.19 
1.8 
N.D. 
h.l 
1.5 

0.33 
O.93 
O.78 
0.29 
1.9 

0.24 

(a) 

(b) 
N.D. 

No analysis was made for hydrogen. Background lines of the 

oth r'i« ^r witvhe anaiyse8 for m*n*ane8e and **<£ Oth .r Impurities not listed were not detected and have con- 
centrations less than 0.3 ppma. 
Determined for 3 x 10*7 coulomb exposure. 
Not detected. 
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CHAPTER VI 

LINEAR AND NONLINEAR OPTICAL PROPERTIES 

THEORY 

In this chapter we briefly review some nonlinear optical 

theory as a necessary background and then present our experimental 

results. We also discuss the optical absorption mechanisms in 

chalcopyrite r/stals. 

1. Second Order Nonlinear Interactions 

(a) Effective nonlinear coefficient 

The symmetry restrictions on the second order nonlinear coefficient 

are the same as for the piezoelectric tensor. For the chalcopyrites 

which have Ü2m symmetry, the generated nonlinear polarisations along 

the principal axes in terms of the electric field amplitudes are 

therefore 

^x " 2dll|EyEZ 

P  = 2dn,E E y      11+ z x 

P  = 2d^E E 
z     56 x y 

(6.1) 

Since d . = d 6 according to the Kleinman symmetry condition, the 

chalcopyrites have only one independent nonlinear coefficient. The 

polarization tensor, which is the same as that for KDP, allows 

both type I and type II phasematching. The phasematching or conserva- 

tion of momentum conditions for the type I and type II phasematching 
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in a positive birefringent crystal are respectively 

o e e 
tt> n      =    ca n    + m.n. (6.2) p p s s        i i \v.ej 

and 

o e o 
»w   +CD«        , (6.5) P P s s        i i 

where the superscripts e and o denote extraordinary and ordinary 

waves and p , s , and i refer to the pump, signal, and idler 

fields. In addition, conservation of energy requires CD = üO + üD 
p   s   i ' 

For type I phasematching the effective nonlinear coefficient is 

dlll 
sin 2e where 0 is the angle between the direction of propagation 

and the c-axis. The signal and idler are extraordinary waves polarized 

in the (010) plane «id the perpendicular pump wave is ordinary. Maxi- 

mum nonlinear interaction occurs at 9 = 1+5° . Only type II phase- 

matching allows interaction in the 90° direction. The effective 

nonlinear coefficient for type II phasematching is d . sin 0 with 

the signal polarized as an extraordinary wave in the(llO) plane and 

the idler polarized parallel to the pump as an ordinary wave. Figure 1? 

shows how the fields are polarized for the two phasematching conditions. 

For second harmonic generation (SHG) th.j Eqs. (6.1) reduce to 

P2 =: dlU 8in 2e  Ei 

Pl = 2dll| sin 2e EiE2 (6-U) 

for type I phasematching where the subscripts 1 and 2 refer to 

the fundamental and the second harmonic waves. The fundamental wave is 
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E$ AND Ej 

Opaip» nt(ö)cü$ + n*(ö)tu, 

Pp « 2d|4sln2Ö EgEj 

Pe ' 2(i,As\nZ6 E; E •!4 i    P 

Pj •2dl4tlfi2ÖEtE 

B 

0 • n 0 
OptüpS n8(o)tü$ + njWj 

PpS2d|4slnÖEsEi 

P8 -ad^slnOEjEp 

P, •2d|4slnÖEsEp 

FIG. 17—Type I and type II phasematching in a positive bire- 
fringent crystal of ^2m symmetry. 
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polarized along Es or Ei In Fig. 19(a) and the second harmonic in 

the E  direction. For type II phasematchlng we have 
P 

P2 . dlU sin 0 z\ 

p  = 2dlU sin 0 E^   . (6-5) 

Referring to Fig. 19(b) the fundamental wave Is now polarized In the 

(E E ) plane if  to the E  direction and the second harmonic along 
v s' p P 

E  or E,  . 
P      i 

(b) Second harmonic conversion efficiency. 

Starting from Maxwell's equations we can determine the second har- 

monic conversion efficiency. This is a standard calculation, and 

reference h  gives an excellent treatment of the subject. For reference, 

we therefore only state the results.  Introducing an effective non- 

linear coefficient d such that P2 = dE* , we have that the second 

harmonic power P2 is given by the equation 

p  = Kpfik-h  , (6-6) 

where P  is the laser power at the funda-Aiental frequency and the 

constant K In mks units is given by 

0 1    . (6.7) K    =   2 
n^TT 

The dimensionless quantity h in Eq. (6.6) Includes the effects of 

double refraction and focusing.  It is tabulated in reference h  and 
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is of the order of unity or smaller. Further i    is the crystal length, 

nl and n2 are the inclices of refraction at the. fundamental and 

second harmonic frequencies, 1^ = ti.ax./c    is the wavevector, and 

finally i\Q  = 577 fi is the free space impedance. In order to compare 

nonlinear materials, a figure of merit is often defined given by 

.2 

M, 
2 

Rln2 

(6.8) 

This definition, however, neglects the limitations set by double 

refraction for phasematching at other angles than 90°. To correctly 

account for this, we introduce two other figure of merits which apply 

to the cases of maximizing the total SHG power and the SHG power in 

the Gaussian mode. We first define a few parameters. The fundamental 

wave has a spot size w1    located at the center of the crystal and 

the confocal parameter is 

b = 

2 
27m1w1 

(6.9) 

The parameters ? and B describe the focusing and the double refrac- 

tion. They are given by 

1/2 1      J 

? = t/h    and B = I pdk^) (6.10) 

where p is the double refraction angle defined in Appendix A. We 

consider first the case of total SHG power. For optimum focusing 

(?m = 1-392) and B > 2 we have that h in Eq. (6.6) reduces 
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to the approximate expression 

h       =   o.7lVB       • (6.11) mm ' v ' 

From Eqs. (6.6), (6.10), and (6.11) it follows that under these condi- 

tions the SHG power Improves only with the square root of the crystal 

length and the appropriate crystal figure of merit is given by expression 

d2 

MSHG tot = -W"    ' (6'12) nl n2p 

For convenience we write the condition B > 2 in terms of the aperture 

length i  which is defined by 

1/2 
TT ' W, 

'a = ~~^      ' (6-l3) 
P 

since sometimes this parameter is used instead of B  . The aperture 

length should be longer than the crystal length in order for the SHG 

l/? power not to be limited by the double refraction. With B = (TT  /2) 

-1/2 
ill I   )| '    > 2 we obtain I    < 0.^, I     . 'am a 

For many applications diffraction limited beams are of importance. 

The maxl:.num SHG power in the Gaussian mode is obtained by substituting 

the expressior 

h (0) 
h (B) «  S^—z  (6.U) 

1 + (^B
2/7r)hiran(0) 

into Eq. (6.6). Here ^(0) is equal to 1.068. Equation (6.1U) holds 
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to within lOio  for all B  . It is clear from Eqs. (6.6) and (6.U) 

that the Gaussian SHG power saturates for (^AOhJO) > 1 , and 

we use this to define a maximum useful crystal length 1^ given by 

max 
2V^mm(0) 

(6.15) 

For i    greather than ^ the SHG power is 

P2 « ^ T 
d P" 

(6.16) 

and in this case the figure of merit is given by 

,2 

M SHG Gaus 2  2 
(6.IT) 

We later use the figure of merit expressions to compare the chalco- 

pyrites with other existing infrared nonlinear materials. 

For weak focusing (E < D and negligible walk-off (B < 0.5), we 

have h * f and Eq. (6.6) reduces to 

U      \ 2 
(6.18) 

This equation is valid for small conversion efficiencies. It assumes 

that the phasematching condition is satisfied and neglects absorption, 

For large conversion efficiencies the exact expression given by 

P2 = Pi tanh 

2 1 1/2 

(6.19) 
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tnuet be u6«tL     If the phaBeinfitchiiig  nondition is not Batisfied. 

Eg,   (6.16) modifiee to 

P2    =    ^   j Pl ~ 6i3XC   ^l/2') 
v. 

(6,20) 

where ^ representB the nomentum miBmatch. In the above equations 

P2    aad P1 are the powers inside the crystal. For an un-coated 

crystal  we have to take int,-> account surface reflections. Using 

the transformations P. „,  = P-Iliu/fn^ + I)2] and p, c   out    c.        d.        d 1 out 

Pjffflj - 1) /l^üj] where P2 out and P1 out are the powers out- 

side the crystal, we obtain from the Eqs. (6.7) and (6.20) that 

S 9 O 4 128 jgi^ out 
-a //2       -OLI -(ct/2+Q)/ 

I   ^        - e    '   )C + U      2 1    sin2 Ai/S 

(^k)2 .  (a2/2 - aj)2 

(6.21) 

In this last equation we have also included the optical absorption at 

the two frequencies. The only assumptions in Eq. (6.21) are weak 

focusing and moderate conversion efficiency. 

(c) Second harmonic angular half-width 

Provided that the absorption Is not too large, the SHG output 

power from a crystal follows a sine curve when the crystal rotates 

through the phasematching position (cf. Eqs. (6.20) and (6,21)]. 

Since the angular half-width depends on the crystal length, we can 
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use the observed width to determine an effective phasematching length 

which for a high quality crystal is equal to the crystal length. 

Variations in the indices of refraction, however, may make it impossible 

to satisfy the phasematching condition over the total crystal length, 

2  o 
leading to a shorter phasematching length.  Since sine 80 * 0.5 , 

it follows that the angular half-width at the half power point is 

determined by 

£k{e)i 80 X TT 

2 18C 

Writing Ak(0) -  [9Ak(e)/B0]Ae  , we find that 

(6.22) 

Äk(e) 
Im Bn. 
 -LG 
X,  S0 

(6.25) 

for type I and 

27T Sa. 

Ak(e) = & 
X, 39 

(6.2*0 

for type II phasematching in a positive birefringent crystal. We 

determine ^6    by differentiating Eq. (A.l) in Appendix A and find 

9ne(e) 

he 
=    - ne(e) tan p (6.25) 

By combining the Eqs. (6.22) to (6.25) we determine the internal angular 

half-width A0int  • This must be related to the measured external 

half-width A0   . When the laser is incident on the crystal at an 
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angle a    to the normal, the internal angle ß follows from the 

relation 

^ sin ß = sin ^ . (6-26) 

If the crystal phasematches at this position, we immediately obtain 

by differentiation that 

USE   .   ni^i       . (6.27) 
LB. . cos a 

int 

For close to normal incidence this equation reduces to Aeext = n^e^ 

and with this we find 

&Ö, 
h (6.28) 

I'ext    k,3t  tan p 

and 

.    *       JIJ^     '6.29) 
II,ext   2#25f tan p 2n®(e) 

for the two phasematching conditions. The half-widths are calculated 

in radians and we see that the type II phasematching half-width is 

twice the type I half-width. 

In our experiments we have mixed 5-5 M* with 10.6 M» to generate 

5.55 m using type I phasematching. For this experiment the angular 

half-width is given by 

, r..e^ . „e, ,       x^nfCe) + n^(e)] 
I'ext      9*1^(6) tan p2 + 1/2 nj(9) tan pj] 

(6.50) 
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(d) Parametric oscillator threshold and bandwidth 

When available, CdGeASg is very useful as the nonlinear element 

in an infrared parametric oscillator because of the extensive tuning 

range and large nonlinear coefficient. In this section we list the 

equations which allow us to estimate the parametric oscillator threshold 

for doubly and singly resonant oscillators. In a doubly resonant 

oscillator (DRO) there is low loss both at the signal and the idler 

wave, whereas for a singly resonant oscillator (SRO) only one of the 

waves is resonant. The single pass gain of a degenerate parametric 

amplifier u) = üü = CD /2 is equal to the second harmonic conversion 
S     l     H 

efficiency P /P,  into a Gaussian mode when the fundamental frequency 

is at a) /2  . We follow reference 5 and define üJ0 = ü^/2  , 

03 = CD (1 + 5), and CJü = cu (1 - &)  . For maximum parametric gain 
8    0 1    u 

both the pump, signal, and idler wave should have the same confocal 

parameter such that ^ - *», - ^  • Thi8 leads t0 a sina11 si8nal 

gain G given by' 

G - (n)2 = K<yVi(i - s2)2 ,    (6.51) 

where K    is defined in Eq. (6.?) with ^ = ^0 • Further P is 

the pump power and the parameter & tells how close the oscillator 

is to degenerate operation. The bar expresses that only the coupling 

into the Gaussian signal and idler mode should be included in the gain 

expression and at optimum focusing Eq. {6.1k)  gives a good approximation 

for h . It is clear from Eq. (6.5I) that the gain decreases when the 
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(6.510 

when the signal and idler wave has the same single pass power loss a 

This equation gives the necessary gain for the oscillator to build up 

from the parametric fluorescence noise power f»  at the signal or 

idler wavelength to a power p  after n passes. We require some 

pump depletion and take P      to be lO/o of the pump power. Because of 

the logarithmic dependence the exact value of P /pQ    is not critical, 

P 

1° 
As an example, for P /prt w 10  . t = 200 nsec, and t. = 0.2 nsec 

'      nu        P ü 

oscillator tunes away from degeneracy,leading to an increased pump 

threshold. Witn single pass power losses Q^ and 0^ at the 

signal and idler frequency the necessary pump power to reac'i DRO 

threshold is given by 

G = a a,   , (6.52) 
s i 

and for SRO operation with no idler feedback (a. ■ l) we have 

G = 2a   . (6.53) s 

These equations are strictly valid only for cw operation. For a 

Q-switched pump laser the threshold must be reached within a finite 

number of passes, and this requires some excess gain. Assuming 

a square pump pulse of length t  and a cavity transit time t0 

the maximum number of available passes is n = t AQ • Under 

these conditions it is easy to show that the DRO cw threshold condition 

1+1 
modifies to 

In 10 
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which corresponds to an effective cavity length of 6 cm, the equivalent 

loss due to buildup is 1.1$. Similarly for pulsed SRO operation we 

modify Eq. (6.55)' Resonating the signal wave leads to 
1+2 

lg(l + G - 2as) 
p. n 

lg r-3 
Pr 

(6-55) 

assuming no loss in the crystal at the idler wavelength and also that 

G - 2 « 1 . The eouation reduces to 
x 
s 

2a + s 

In 10 

n 
(6.?6) 

Using the same numerical example as before the necessary excess gain 

is 2.1$, 

2 
The frequency output of a parametric oscillator follows a sine 

(Aki/2) dependence where Ak = k - k - k  is the momentum mis- 

match. Assuming a single frequency pump, a change Bcu (= -5CD. ) 
S        X 

in the signal frequency away from the phasematching solution leads 

to a momentum mismatch o .ia 

Ak    =    b6üj    + ^ b.to2 

s      2    1s 

where 

'c* 3k, 

S 1 , 

(6.37) 

3n 

ax. 

Sn, 
+ Xi 

hi. 

(6.38) 
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and 

Ob 1 f       ^2               .2 
5 3 ns        3 S ni 

^ 
2 

27rc 
(6.59) 

We define the bandwidth by setting  |Ak//2|  = 7T  . Except for operation 

close to the degeneracy point for type I phasematching or near the 

turning points of the angular tuning curves for type II phasematching 

we have  [l+Tlb^Lb21<1 and by solving Eq. (6.57) for Büig we 

determine the full bandwidth Aa>  at the base line. We find 
s 

Au) 
/b    \ r     IjTTb. / UTTb 

\ b y v    Lb2   v     Lb^ Lb 

(6.U0) 

For the special case that     [l+TTb^Lb^ |> 1   ,  the bandwidth is given 

by 

&JC1 
V Lb^ V    Lb^ 

(6.U1) 

2. Third Harmonic Generation 

For an electron concentration of 5 x 10 cm"5 the III-V compounds 

1+5 
InSb and InAs have very large third order nonlinear coefficients 

with the main contribution to the nonlinearity arising from the non- 

parabolicity of the conduction band. 4 The magnitude is inversely 

proportional to the bandgap frequency and the effective mass squared 

and proportional to the carrier concentration. This makes CdGeAs2 

\ 
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interesting beeanee In eddition to the ».U bandgap frequency and 

the aoall effective maaa It has aufflclant birefringence for phase- 

.atchlng leading to the poaalblUty of raaaonab!, efficient IHG. A 

aetemlnatlon of the varloua components of the susceptibility tensor 

My also provide an Interesting Chech on the bandstructure caUuUtion 

near k = 0  .  In this section we discuss phasematchlng and derive 

expressions for the effective nonlinear coefficient, conversion effi- 

ciency, and angular bandwidth for third harmonic generation (IHG). 

( 0 m  ehagatc&üa and sUSäSSS  nonHnear coefficient 

There are three possible ways to phasematch IHG. For a crystal 

„1th positive birefringence the phasamatchlng conditions can be written 

1*5 as 

n° = nj(e) 
'5 

o = i [2n-(e) + n'] (6.^2) 

^ - i[«;(e)+2nj] 

i  ►,.«« T  TT  and III phasematchlng 
and we refer to them as respectively type 1, II, and    P 

Type III requires the largest blrefnngence. 

We use cijk£  for the third order nonlinear coefficient. The 

definition follows from the equation 

P  - c   EKE. (6-U5) ?i    Cijkitj k i 

with summation over repeated indices and where as usual P and E 

stand for the generated nonlinear polarUation and the electric field 
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amplitudes. The permutation symmetry between the last three indices 

suggests introduction of a contracted notation. The matrix c^ 

has 81 elements while the compact form c^ has only 50. The definition 

of m follows from Table XI>5 For the Ü2m chalcopyrite symmetry 

the tensor cim is given by 

C,    0    0    0     0    cl6    0     cl8   0   o 

0     0     0      0   C.n  0 

'im 

'11 
0 

0 
-11 
o . 

0 

33 

Z16 
o 

"35 
o '55 

o 
C18 
0   0 , 

{6M) 

The tensor has 5 independent elements or h  when we use the Kleinman 

symmetry condition^ .hich gives c^ = cl6  . In contracted form . 

Eq. (6.^3) reduces to 

where the vector ^ is given by 

111 

Pi = cim£m ' 

>5 

(6.1+5) 

m 

'222 

333 

^233 + ^523 ^332 

^223 + ^252 + ^322 

^133 + ^313 + S31 

^113 + ^131 + ^311 

£122 + £2l2 + £221 

^112 + ^121 + ^211 

^123 + ^152 + ^215 

(6.1+6) 

+ i. 
231 + ^12 + £321 
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TABLE    XI 

CONTRACTED NOTATION FOR THE THIRD ORDER NONLINEAR COEFFICIENT 

ijk     ia 

 1  

222   I 533 235   223 155   115 122 112   I  123 

mil     2 7 89 

J L. 
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and ^ijk = Ei(Q5)Ej(^2)Ek(cD1) . Ws use Sq. (6.45) together with 

the Eqs. (S.kk)  and {6M)  to deteraiae the effective nonlinear 

coefficient for the three phasematching conditions. Let 9    be the 

angle between the wavevector L  and the z axis, cp the angle 

between the projection of ^ in the (x,y) plane and the x axis, 

and a the angle between the electric field iL at the fundamental 

frequency and the normal to ^ in the  (k^z) plane (cf. Fig. 18). 

The effective nonlinear coefficient depends on the angles and we 

find 

I:  P3 = "h  (C11 " 5cl8) sin(lKp)cos59E3 

II:  p5 =  I 2 (cii " 3
C
IQ)  

sin 2cP cos e + ciß  sin2e 

2 "1        2  ^ 
+ c n cos 6      siva cos a  E:r 

111:    P3    =    k  ^cll " 5ci8^ sin(^cP) cos0 sin a cos a E^ 

(6AT) 

for the three phasematching conditions. In Eqs. (6.1*7) 9    is fixed 

by the phasematching conditions in Eqs. (6.1)2). The two other angles, 

however, can be chosen to maximize the nonlinear interaction. The 

optimum values for cp and a are listed in Table XII together with 

the maximized effective nonlinear coefficient c as defined by 

P^ = cEj^  . Considering only the nonparabolic band contribution to 

the nonlinear coefficient we have for spherical bands that 
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FIG. 18—Definition of the angles 9, (p,  and a    for third 
order optical Interactions. 

-9k 

Q-:..Z?:Z...J^ 



9 

c 

H-4 
<u 
O 
O 

u 
CD 

c 

c 
o 
c 

•H 
4-1 
U 
0) 

»4-1 

><.' 
£ 

Ö 

C\i 

CD 

J 
CO 
o 
o 

CO 

O 

I 

00 
c c 

•■-I   o 

U   4J 

ll 
0)   o 
CO   U 
CO 

M m 

o 

X 

c 
+ 

OJ fl 
■I-l 

(0 

VD 

o 

+ 
CD 

OJ 
CO 
O 
o 

CO 

CD 

CO 
o 
o 

00 

U 

-• i w 

o 

01 
a 
>> 
H 

OJ 11^   -1^ 

O 
CVI 

o 
o 
o\ 
X 

d 

+ 
o 

O 
CO 

ITS 

O 

X 
a 
+ 

o 
ITS 

aj 
OJ 

a 
H 

0) 

_I J 

95 - 



-c  =c^=c,o  . With this assumption the effective nonlinear 
5 11   16   lo 

coefficients in Table XII reduce to Cj = c^  ■ 0 and c^  = [Z/yfiit^- 

Since the chalcopyrites have fairly Isotropie conduction bands, the 

most efficient third order interaction in n-type material probably 

occurs for type II phasematching. 

(b) THG conversion efficjpney and angular bandwidth 

For weak focusing such that the crystal length I    is smaller than 

the confocal parameter b1 , the third harmonic conversion efficiency 

P /f^ is given by 

2 . 
where c is the effective nonlinear coefficient and k^  = 7^/2 ■ 

X b /Un  is the beam area.  Equation (6.U8) does not include reflection 

losses. 

The sine curve determines the angular half-width. Similar to the 

treatment of SHG we find that the angular half-widths «t the half 

power point are given by 

bß IL 
I,ext 6>T5i tan p 

Le II,ext        ^ 5| tm p ne(0) 

uaIII,ext 

u 

i 
2.251 tan p n*(e); 

(6.U9) 
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5«  Determination of Indices of Refraction 

In order to determine accurately the phasematchlng conditions for 

I material, the dispersion and the birefringence must be known to better 

than one part In the third place. We measure the Indices of refraction 

using a prism set of minimum deviation.   This Is the best method 

when sufficiently large single crystals are available. 

Figure 19 shows a diagram of the Index of refraction measurement 

apparatus. The light source Is either a laier or a globar for measure- 

ments at wavelengths longer than one micron. The detector Is PbS out 

to three microns, and then a thermocouple at longer wavelengths.  ...iC 

crystal Is mounted on a Gurley Unlsec table which measures angles to 

one second of arc.  In practice, diffraction effects due to the finite 

prism size limit the accuracy of the measured angles. With the col- 

limated light filling a prism of length L , Fraunhofer diffraction 

limits the angular width of the focused beam at the detector to 

Xf 
&p = 2— , (6.50) 

LR 

where X is the wavelength, R is the distance from the center of 

the table to the detecto., and f is the fncal length of the focusing 

optics.  For our system we have R = 25 cm and f = 15 cm. Assuming 

the detector can be set 10 the maximum within five percent of the full 

angular width, we have for a 0.5 cm prism and a wavelength of 5 iun that 

the diffraction limits the accuracv of the measured angles to approxi- 

mately 1U seconds of arc. 
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We calculate the Indices of refraction from the equation 

sin (H*) 
air 

sin (a/2) 

(6.51) 

where 6 Is the minimum deviation angle and a Is the apex angle. 

By differentiating Eq. (6.51) we obtain 

An    ,     fa + b 
— = ^ coLanl   

\    2 
u»-t 

iin (e/2) 

sin (a/2) 8in((a + &)/2) 

£..  . 

(6.52) 

For our CdGeASg and CdGePg prisms we have & * 55  and a * 1? 

SuLjtitutlon into Eq. (6.52) yields 

— * 1.1 A5 - 3-5 ^ f 
n 

„here Lb    and Ux    are in radians, and the uncertainty in the 

measured index values is 

(6.53) 

An = n (1.1 Lbf + (3-3 taf (6.5U) 

Taking A6 = ± 1' «»d •» - » 1'  the uncertainty is An = * O.OOU . 

The absolute accuracy of the measured indices is probably not better 

than this since we worked with very small prisms. More important, 

however, la the relative accuracy which depends only on Lb    . We 

expect this to be better than one part in the third place. 

The sample temperature mutt be kept constant during the measure- 

ment.,. For rdGeA.2 dn/dt ~ 5 x 10^ V1 at 3.39 M« . This means 

that a temperature rise of 20C changes the indices by as much as one 
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part In the third place.  The growth method and carrier concentration 

must also be specified.  In semiconductors carrier concentration 

variations may change the indices of refraction significantly.^ 

If large enough single crystals are not available for prism 

fabrication, other methods can be used to determine the birefringence 

of a crystal. One way is to use a laser to probe a wedged platelet 

between crossed polarizers. The laser beam is normal to the crystal 

and polarized 1^° to the -effective" c-.xls in the platelet plane. 

By translating the wedge a distance x across the beam, the power 

P at the detector is given by 

where re - ro = i^Mn^e)  - n^ x tan a is the phase difference 

between the extraordinary and the ordinary wave. Here 0 as usual 

is the angle between the c-.xis and the propagation direction and a 

1. the wedge angle.  If the distance between two power minima is x 
o • 

then the equation 

X 
ne(e) - no =   (6#55) 

x tan a 
o 

determines the birefringence. 

For very small samples not larger than 1 mm, the birefrlogence 

can be measured by routing . platelet. This method, however, is not 

-o reliable. With crossed polarizers and the laser polarized at U50 
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to the "effective" c-axis, Eq. (6.55) still holds, and the phase 

difference Is given by 

e        o 

2717 
  [nfc(e)co8 ffl    - no cos<Po]     , (6.57) 

where / Is the plate thickness and Fig. 20 defines the angles. 

Equation (6.57) can be written as 

r - r e  'o 

2nt 

X 

/n (0) - sin (p /n - sin cp 

(6.58) 

To obtain an approximate expression we use Eq. (A.2) In Appendix A 

This gives 
2      2 

and take n » sin m 
o      w 

27T/ 

e   o 

1 sin (p 
An sin 9    I 1 + - (6.59) 

where An is the birefringence. When the rotation is around the axis 

normal to the "effective" c-axis, 0 is related to ^he external 

angle $> by P = 7T/2 + 9 - T) where n !■ the angle between the 

c-axis and the platelet plane. By measuring the extern*! angle 

difference between two power minima, we use Eq. (6.55) together with 

Eq. (6.58) or (6.59) to calculate the birefringence. 

The measured index data can be fit to a classical Sellmeier 

equation of the form 

0 B C 
- A + 

(o/xr (E/xr 
(6.60) 
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c-axis 

PIG. 20--D«tenninatlon of  the birefringence by the platelet method. 
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which holds in the transparent region of the crystal not too close to 

the absorption bands. In this equation E is approximately the 

reotstrahl wavelength and D corresponds to an average electronic 

bandgap wavelength. From Eq. (6.60) we estimate the DC dielectric 

constant by letting X - " • This gives 

e   = A + B + C  . (6.61) 

k.    Measurement Technique for the Optical Nonlinear Coefficient 

1+8 
There are several ways to measure the optical nonlinear coefficients. 

We have used the wedged sample technique11 which is most convenient for 

relative measurements. Translation of the wedged nonlinear crystal 

across the User beam results in oscillations in the SHG output power. 

Taking s as integer, maxima occur every time the effective crystal 

thickness is equal to 2s + 1 times the cohe.ence length fc which 

for SHG is defined as 

1.1. -^   .       (6.62) 
c   ^k   U(n2 - n^ 

The wedge method is very similar to the Maker's fringe technique, 

but it has some advantages. The Maker's fringe technique is only 

useful when the crystal length / > (2n) /c , and the method 

therefore requires large samples of materials with large indices 

of refraction and a large coherence length when only srall samples 

are available. The wedge technique does not have this limitation. 
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Thin samples may be used and the absorption can therefore most often 

be neglected. The wedge technique also avoids problems of multiple 

reflections and resonance. The fraction of the SHG power that suffers 

multiple reflections is transmitted in different directions and can 

be stopped by proper aperturing. By mounting the wedge such that the 

incident laser beam is normal to the crystal surface, there is no 

mode distortion due to refraction as it will be with the Maker's 

fringe technique. 

Equation (B.5) in Appendix B gives the SHG output power generated 

in a wedged sample. Neglecting the absorption the equation reduces 

to 

2out 

128 "0 "? ** PL* 

■ 

1    • •  cos(£k/   )  exp 
/Wj^ Ak tan a\' 

,   \          ^           /J 
(a, + i^dij + l)*ii»J 

(^)2/2 

(6.65) 

which agrees with reference 50. We determine the coherence length 

lfl = TT/^ by translating the crystal a distance y  between two 

SHG minima. This gives 

'c = 2 y0 ** a {6.6k) 

The expression inside the parenthesis in Eq. (6.65) reduces to the 

standard 

/ > ' 
I-, sine 

IOU 



form when 

This condition is never difficult tj satisfy and neglecting the expo- 

nential we have 

128 ,1 4 *l <?u lout 

2out    T"        . -.2, 13  2 
(n2 + 1) (n1 + 1) m^ 

2 .  , TT 'o 
— / sin — — 
7T  C     2 

c J 

(6.65) 

We measure the relative effective nonlinear coefficient by using a 

reference sample and comparing the coherence lengths and the aaximum 

SHG output powers for a given input power. 

5. Absorption Mechanisms 

A ma> imum optical power density in the material eventually limits 

the efficiency of nonlinear optical processes. Different mechanisms 

may be responsible such as nonlinear absorption, broken phasematching 

condition due to induced index of refraction inhomogeneities, 

or permanent crystal damage. Both the broken phasematching condition 

and the crystal damage are often caused by the local heating dve to 

the optical absorption, and it is th«refore important to reduce the 

absorption to a minimum. Some of the most common absorption mechanisms 

are: 

1} Bandgap absorption, 

2) Two-phonon absorption, 
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5) Three-phonon absorption, 

h)    Free electron scattering; in n-type semiconductors, 

5) Free hole scattering | 
V in p-type semiconductors, 

6) Intra band absorption) 

7) Impurity and defect absorption, 

8) Free carrier absorption generated by impurity or defect absorption, 

9) Two-photon absorption, 

10) Free carrier absorption generated by two-photon absorption. 

As discussed earlier the direct or indirect bandgap absorption 

determine the short wavelength cutoff and two-phonon absorption limits 

the transmission at long wavelengths. In CdGeAs,, the two-phonon absorp- 

tion is approximately 20 cm"1. Some weak three-phonon absorption 

exists at wavelengths roughly two thirds of the two-phonon cutoff and 

-1 
in CdGeAs the magnitude is approximately 0.5 cm  at 12 pm. 

The free carriers in a semiconductor affect both the indices of 

refraction and the absorption. According to classical Drude-Zener 

theory the free carrier contribution to the relative dielectric 

. 51 
constant e at frequency CD is given by. 

e = € 
00 

0)   Ü) T 

1 -i^-E- 
cu 1 + icm 

(6.66) 

where e  is the optical relative dielectric constant without the 
00 

carrier contribution, 0»  the plasma frequency, and t the carrier 
p * 

collision time. For a carrier density N and an effective mass m > 

106 - 



the plasma frequency Is given by 

CD (6.6?) 
m e e 

0 oo 

In the visible and near infrared where m » OD and 1/T , it follows 

from Eq. (6.66) that the indices of refraction n and the free carrier 

absorption constant a can be written as 

= n=o i1 -Iv^2] (6.68) 

and 

a = 

2 2 
n en 
ca  p 

2 
C T 0) 

(6.69) 

In crystals with an anisotropic effective mass tensor, the presence of 

carriers changes the birefringence. Assuming a single band extrema 

at k = 0 , the free carrier induced change in the birefringence is 

found from Eqs. (6.6?) and (6.68) to be 

Ne 
nn - ni = nn   • n 

i 

-L,     2€0 03 nll .oo"1!! 

■ (6.70) 

We refer to this expression in Section A.6 of this chapter and discuss 

how to use this effect in CdGeAs to construct a modulator. 

According to Eq. (6.69), the free carrier absorption increases 

with the square of the wavelength. This result assumes an energy 

independent collision time which often is not the case. More generally, 
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we can write a « x" where the exponent depends on which scattering 

mechanism limits the collision time. Scattering by acoustical phouors 

5i- 

C7 

gives 1.5,  and scattering by optical phonons gives 2.5.   For 

ionized impurity scattering, the exponent is between J.O and 3.5, 

depending on which approximation is used. For CdGeASg we have measured 

a 3.5 dependence for n-type material (cf. CH. VI.B.5). The absorption 

is therefore determined by ionized impurity scattering and the 

absorption cross section a b follows from the equation 

cr ,   = a 
abs 

/N .  - 
' el 

l6v/2 7T Ze 
2  ?    2 

e Ni ft 

^VDC/ ^0 n» c(m J Jß 

(6.71) 

where N^^ is the density of ionized impurities. The derivation of 

Eq. (6,71) assumes an Isotropie effective mass, but the expression 

still can be used to estimate the ionized impurity density in CdGeASg 

since the conduction band is not too anieotropic. 

In p-type CdGeAs? we see no evidence of free hole absorption. 

The absorption has a more complicated wavelength dependence due to 

intra band transitions between the split valence bands. This absorp- 

tion also occurs in p-type germanium55 and the III-V compounds. 

We refer to the results of Chapter III to determine the magnitude 

and spectral dependence of the intra band absorption in p-type CdGeAs . 

The absorption constant at the frequency co for transitions between 

55,56 
the    v,    band the the    v0    or    v      band is 

2 
6 1__P_ n   , „-WkT 

a 1,1 , 2    n osr „ 
lWT€0m c    oo     Nv 

—- (1 - e' )/lM|2ei 
E./WT 

5(E1  - Ei - to)d5k  , 

(6.72) 
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where i = 2 or 5 refers to the two lower valence bands, » is the 

free electron .ass, p is the hole density, and ^ is defined in 

Eq. (U.9). The integration is over the crystal momentum with 

k  k - k  . Further the matrix element M is given by 
k - Kl   i 

IM K^lf^)!2*!^!*-^ 
(6.75) 

•  «f rh*   v  band is measured relative to the band and the energy ^    of the vl    oana 

extreme such that 
. ,2 .2 - 

ft 

2 

1 

L"i,i  mi, 
(6.7U) 

We «.luate the Integral in Eq. (6.72) In Appendix C. Equation (JA) 

gl,e. the ^trU elements for the Intra band transitions. By coining 

Eq. (5.2U) with Eqs. (C.5), («;«), (C.13), -d (6.72) »e calculate 

^   <.2  0
2 - e2 = -  • The expression 

the absorption constant letting e
x " 

ey   z  3 

for the absorption constant depend, on only four parameter.: the band- 

gap energy, the spln-orblt coupling, the crystal field splitting, and 

the matrix element P . «1th the v.lue. In Table II an. Eq. (3-20), 

the absorption constant, for CdGeAs, at a carrier concent-.tlon of 

16   "3      L    Üi**mÜ 2  x 10  cm ' can be written 

,    - i [1 - exp(^AT)l (0.616 - 0.936 eAT) exp(0.088 cA^) 
a2,l ~ ^ 

(6.75) 
i_» 

- i- [1 - exp(-fta)AT)l(1.85 " 2.62 eAT) exp(0.17l e/kT) 
a3,l " «o l 

(6.76) 
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where    e - AE - *»<*    and AE    is the band splitting energy.    For 

the    Vi . V2    transition we have    ^ = 0.20 eV    and for the    ^ - ^ 

t.ansition^^O.^eV     . Similarly, when    00    we obtain 

Jüät    [1  - exp(-^AT)l  /^öTJf   exp(-€AT) 
a2,l «^   

+ a    ,   11  - erf  (/T.Ü «M)l (6-77) 

2,1 

1 

and 

'5,1 ft» 
(6.78) 

.„.re   ., .    -n.    ., ,    «• .1»- »V *' "»e "pre"i0"8 " ""    £ ' " 
^^L c^nts'in E,,.   (6.T5)  -  (6.76).    Flsu.e 3! .Ho« the 

„„.Wh dependence of the c-ined ...option conet.n» to, tk. «- 

lntr. 0.nd tr.n.ition. .t three dl^eren. te^er.tnre..    For . c.rrler 

concenrr.rton of t * 10*  -' there U .i8n«io.nt .h.orptfon »Ithfn 

the nor^U, tr.nep.rent frequene, rn^e.    The long ..v.Ungth cntoff 

o£ 0.20 eV correepond. to the c.UnUted splittlns enerB, het,een the 

v     .nd   ,     b.nd.    in the experl«ent.l .ectlon of thl. ch.pttr we 

eLp-re ..Lred .nd c.lcnl.ted .h.orption.    The oh.erved .h.orptfon 

cut-off provide, .n experlaent.l v.lue for b.nd .putting energy. 

Sorption .UO occur, due to l^purltle. ,nd defect, .nd the 

8tr„cture of the Intr.h.nd .h.orption 1. therefore often ob.cured. 

„efect. .uch .. Uttlce v.cncle. h.ve .n effect .1.11« to l»purltle. 

They give rl.e to .cceptor ,nd donor  level, .nd optic! .h.orption 
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is possible between these levels and the valence or conduction band. 

If the innurity levels are ionized by photon absorption, the resulting 

carriers lead to additional free carrier absorption. This is a non- 

linear absorption mechanism which is Important at high optical power 

densities.  In some materials nonlinear absorption leads to satura- 

tion in the nonlinear conversion efficiency before the optical damage 

threshold is reached. 

Two-phctop absorption between the valence and the 'iduction band 

is another Important nonlinear absorption mechanism. For a parametric 

oscillator, the pump frequency should be chosen to be Jess than half 

th'i bandgap frequency to avoid two-photon absorption. The measured 

two-photon absorption constant in GaAs and InP is approximately 

0.1 cm^/MW cm"2 at 1.06 M».57 The free carriers generated by two- 

photon absorption lead to rn absorption constant piopo'tional to the 

square of the laser power density. In InP the cwo-photon generated 

free carrier absorption equals th?. normal two-photon absorption at 

2 MW/cm2. This mechanism in believed to limit the 10.6 ;un doubling 

58 59 
efficiency in tellurium to, at best, a few percent. 

6. Modulation bv Free Carrlei Induced Birefringence 

Because of the anisotroplc effective masses in CdGeASp, it is 

possible to modulal  «-.he birefringence by injecting free carriers. 

The maximum modulation frequency is set by the free carrier recombi- 

nation time.  Increasing the carrier concentration by M changes 

the birefringence by &(An) which, according to Eq. (6.70), may be 
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written «s 

6(An) 

.^e 

2t0<6 

1     1 
—— +  

1    1 
 +  

m||.c  mi ,vr 
n 

(6.79) 

...umlng the Injection generates equal numbers of holes and electrons. 

We consider modul tlon at the 10.6 M» C02  User wavelength. At this 

wavelength the CdGeA.,, crystal Is transparent without any absorption 

due to intraband transitions between the valence bands. With the 

values for the effective masses In Table II, we find 

|(ft0 ■ - AN x 5-5 x 10"19 (cm5)  .      (6.80) 

The necessary change in the birefringence to change the electric field 

polarlratlon by 90° !■ a crystal with length /  Is given by 

e(*0 21 
^6.81) 

This corresponds to lOO^t modulation when the crystal Is Inserted be- 

tween crossed polarlrers. For a 2 mm crystal the necessary Injected 

carrier concentration Is ^ = 5 x 1015 cm"5 . This technique Is a 

novel way to modulate a C02 laser. It requires a material with 

light and anlsotroplc effective masses such as CdGeASg. 
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B.  EXPERIMENTAL RESULTS 

1.  Indices of Refraction and Timing Curves 

(•) CdGeAs? 

We have measured the Indices oS refraction out to 10.6 um using 

a U mm long by 3 inn high prism with an apex angle of 13 degrees. The 

prism was cut from boule No. 16. This boule was grown with 0.5 Wt^t 

excess arsenic. Table XIII lists the Indices of refraction for p-type 

material. CdGeAs has a positive birefringence of about 0.1. For 

the 3.39 m  and the 10.6 um points we used laser sources. The other 

points were taken with a globar light source.  Because of the small 

prism size, the amount of refracted light from the globar was too 

small for the thermocouple detector at wavelengths longer than five 

microns. 

A computer fit to the Sellmeler expression In Eq. (6.6O) gives 

the results 

8.891       1.886 

n  = U 0 'o*3mr 
(6.82) 

1 -( 1    1 -(-1 

and 

9-521        1.909 

n2 - U +  7 pv*  7-^       (6-85) 
'0.68U7X 

for the ordinary and   ?xtrao'dlnary Indices.     In these er.presslons  the 

UU 



TABLE  XIII 

MEASURED INDICES OF REFRACTION FOR CdGeAs, 

\ [ml 
 ,. I. 

n e 

l  

n 
0 

n    - n 
e         0 

t=—               ^F^ 
2.88 5.7525 5.6558 0.1167 

i 
5-59 3.7285 5.6208 0.1077 

h.o         ; 5.7131* 5.612U 0.1010 

U.U5 5.7053 5.6062 0.0991 

5.06 3.6955 5.5992 O.O96I 

10.6 5.6578 5.5688 O.O89O 

i          ........ 

\ 
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long wavelength resonance was fixed at 56 ,*. which is the measured 

re.t.tr.hlen frtquency. Figure 22 shows a plot of the indices of 

refraction. We estimate the low frequency dielectric constant from 

Eq. (6.61) and find 

I 
1U.81 

en = 15.^ 

(6.8U) 

It is also important to know the temperature dependence of the 

dispersion and the birefringence. If the phasematching condition is 

temperature sensitive, it is possible to tune without crystal rotation 

avoiding annoying alignment problems. For some applications the tempera- 

ture sensitivity may prove a disadvantage. When the crystal has a 

slight absorption, the resulting nonuniform temperature distribution 

may make it impossible to satisfy the phasematching condition over 

the whole crystal length. We have measured the temperature dependence 

of the birefringence of CdGeAs2 at 3.59 V* and  10.6 um. The crystal 

„as inserted into an oven between crossed polarizers, and the incident 

light was polarized at U50 to the c-axis. By counting tie frinpes 

in the detected signal we determined the temperature dependence of the 

birefringence. With a temperature raise AT resulting in m fringes, we 

obtain 

d(An) 
dT 

Xm 
/ AT 

An a (6.85) 

where An 
n - n  is the birefringence, t    1« the crystal length. 
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and a    is the a-axis linear thermal expansion coefficient (cf. Fig. 10) 

At 10.6 \m   a    gives approximately a 25t correction. The crystal we used 

was 2.96 mm long and it was cut from boule No. 28. Table XIV lists 

the measured  ^ ' .-suits and Fig. 2^ shows how the birefringence 

changes with temperature at 3.39 um. We have also measured the tempera- 

ture dependence of the absolute indices of refraction at 3.39 um. We 

heated the prism slightly above room temperature .nnd measured the change 

in the indices as the prism cooled off. These results are also listed 

in Table XIV. We see from the table, that the temperature dependence 

of the birefringence is very large for CdGeAs2 and it comparable to 

the values for LiNbO . 

TABLE XIV 

TEMPERATURE DEPENDENCE OF THE INDICES OF REFRACTION FOR CdGeAs^ 

X T dn /dT dn /dT 
0' 

d(An)/dT 

(um) (0c) iio-u V1) (io-u V1) (io"U 0--1) Method 

10.6 -125 O.389 fringes 

3-39 100 0.772 fringes 

3-39 170 O.833 fringes 

5.3° 55 5.3 M ~ 1 prism 

As discussed earlier, the presence of free carriers perturbs the 

indices of refraction.  The prism we used for the indices of refraction 

measurements was p-type, but we did not measure the carrier concentration. 
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Temperature (0C) 

FIG.  25--Teiiiperatura dependence of the birefringence in 
CdGeASp at   5.59  um. 
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It was probably between 1015 and 10l6 cm"5.  Equation (6.70) gives 

the induced birefringence due to free carrierc. With 

we find 

0    ,    2 
2.818 x 10"15 cm 

An carrier 

NX m r0 

27T 

. (6.86) 
nil mil  n| _m| ai  mi 

IJ
00
 1' 

Since m, > my both for the conduction band and the top valence band, 

the birefringence decreases with increasing carrier concentration both 

in n- and p-type material. For a hole concentration of 10  cm 

we have i*        t      = -O.OOh  at 10.6 pm. The indices are also affected 
we nave   carrier 

by the intraband transitions between the valence bands, and it is 

important to keep these effects in mind when comparing the measured 

indices of refraction of different CdGeAs2 crybtals. 

In CdGeAs0 phasematched second harmonic generation is possible 

between 5 and 18 ^m .or type I phase matching and between 5.1+ and 15 M* 

for type II. Figure 2k  shows a plot of the phasematching angle, versus 

wavelength. For doubling with the SHG crystal inside the laser cavity, 

type I phasematching is most useful since, in that case, the fundamental 

wave is polarized along one of the optical axis. For type II this is 

not possible and the crystal birefringence causes polarization rotation. 

Since the walk-off angle limits the maximum useful interaction 

length, [cf. Eq. (6.15)1, the most attractive parametric oscillator 
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construction would be a 90 phasematched oscillator with a tunable 

pump. Figure 25 shows the calculated tuning curve for such a device. 

Parametric tuning by crystal rotation is possible over almost the 

whole transmission range of CdGeAs^. Figures 26(a) and 26(b) show 

tuning curves for several pump wavelengths. A single, crystal can scan 

approximately 20 degrees.  The walk-off angle for the extraordinary 

wave is typically about one degree. The curve for X = ^ |jm in 

Fig. 26(a) represents an interesting special case where parametric 

tuning is possible between 6 and 15 um without changing the crystal 

position. The large phasematching bandwidth might be useful In short 

pulse work. 

A doubled C0_ laser is a useful pump source for CdGeAs^ since tha 

5.3 um wavelength is slightly less than half the bandgap frequency and 

therefore avoids two-photon absorption. Figures 2T(a) and 27(b) show 

the calculated tuning curv :s for the two phasematching conditions. 

-1 
The bandwidth over most of the tuning range varies between 10 and 20 cm 

for a 1 cm crystal. For type II phasematching it is possible to tune 

through the degeneracy point and to make a choice between fast 

tuning and large bandwidths or slow tuning and small bandwidths. Note 

that the curvescover the very important 8 to I5 Mm atmospheric window. 

(b) CdGeP^ 
 2 

■ 

Table XV lists the measured indices of refraction for CdGePp. 

We used a prism 3.5 mm by 2 mn with an apex angle of Ik  .    The crystal 

was n-type and had a resistivity of approximately 10 fi-cm. We 

MVM"/m}iH   C^l 
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FIG. 26a--Theoretical tuning curves for type I phasematching 
in CdGeHs- for several pump wavelengths. 
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FIG. ?7(a)--Theoretical tuning curve and minimum bandwidth 
for type I phaaematching for a one cm CdGeAs^ 
crystal pumped by a pump wavelength of J.J ^im. 
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50 60 70 
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FIG. 27(b)—Theoretical tuning curve and minimum bandwidth for type 
II phasematching for a one cm CdGeAso crystal pumped by a 

pump wavelength of 5*3 !•« 
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TABUE    XV 

MEASURED  INDICES  OF  REFRACTION FOR CdGeP,. 

Wavelength 
X(jim) 

n e no n    - n 
e        0 

0.85 5.W33U 3.U283 0.0551 

0.90 3.^597 3.3958 O.0I439 

0.95 

1.00 

5.^099 

3.58U1 

3.3710 

5.5^95 

O.0389 

O.O3I+8 

1.15 3.355^ 3.3068 0.0266 

2.10 3.2282 3.21U7 0.0135 

5.59 3.2026 5.1915 0.0113 

U.00 5.1963 5.I856 0.0107 

5.00 3.1899 5.1795 0.0106 

6.00 

10.6 

3.1855 

3.1517 

5.17U6 
• 

5.1367 

O.O1O7 

O.OI50 
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estimate the Index values to be good to at least one part In the third 

p.'ace. The average index of 3.2 agrees well with J.l as predicted 

from III-V analogs, but is smaller than the value of 5-6 reported 

by Goryunova et al.   Figure 28 shows a plot of the indices of 

refraction. The birefringence of 0.01 is too »mall for parametric 

interactions. The result is in complete disagreement with Goryunova 

et al., but agrees with Bjyd et al. 9 Goryunova et al. did their 

measi'rements on platelets grown by vapor transport while we used 

Brldgman grown material. Assuming the Russian measurements are correct, 

the only explanation may be that there exists two forms of CdGeP2 

both with chalcopyrite structure but with different order of the Cd 

and Go atoms within the unit cell. IMs needs further clarification 

by careful x-ray analysis. 

The birefringence of CdGeP2 similar to CdGeAs2, increases with 

-1+ /O 
increasing temperature. At 2.10 Mm we measure dne/dT = 2.5 x 10  / C 

and dn /dT = 2.2 x 10"U/OC which gives d(An)/dT * 0.5 X IO" A in 
o 

the temperature range of 25 C to U5 C. 

2.  Measurement of the Second Order Nonlinear Coefficient 

We have measured the nonlinear coefficient relative to GaAb by 

second harmonic generation of a Q-switched CO,, laser using the wedge 

technique described in Section A.U. Figure 29 shows a schematic of 

the experimental set-up. We Q-switched the C02 laser by rotating the 

grating A He-Ne laser reflecting off the grating provided a trigger 

signal. By adjusting the aperture the laser operated in a Gaussian 
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FIG. 28--Indlce8 of refraction for CdGaP0  . 
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mode with a pulse l^pgth of about JOO-UOO nsec and peak power of 

approximately 200 watte. A pyroelectrlc detector monitored the C02 

laser output. The detector was sufficiently fast to completely resolve 

the pulse. An uncoated h  cm germanium lens focused the laser to a 

hO  MTO spot size at the wedged SHG crystal. Another germanium lens 

focused the S!iG signal onto a liquid nitrogen cooled InSb detector 

preceded by a sapphire filter which blocked the 10.6 urn CO- laser 

2 
radiation. The detector had an active area of 0.5 X 0.5 ™> and a 

response time of 8 nsec so it did not resolve the pulse. The detector 

output wan fed into a boxcar integrator and a chart recorder. 

The CdGeAs„ samples for the nonlinear coefficient measurements 

came from boule No. 16. The GaAs reference sample was supplied by 
p 

Monsanto.  It was Cr doped and had a resistivity of 5 x 10 n-cm. 

Table XVI lists the parameters for the experiment. The measured 

coherence length for CdGeAs of 22 ± 1 M« agrees well with the 21.2 um 

calculated from Eq. (6.62) and the index data. The coherence length 

for GaAs is in good agreement with the published values in references 11 

and 62 of IOU ± 7 Mm and 107 * 5 M«, respectively. For the spot size 

and crystal thickness we used both  |  and B « 1 (cf. Eq. (6.10)]. 

In addition/ since the spot size was much smaller than the translation 

distance between two SHG minima, we can use Eq. (6.65) to determine the 

nonlinear coefficient. The CdGeAs nonlinear coefficient measured 

relative to GaAs is 

d_,(CdGeAs-) 
-» 2_ . 5.U ± 20* ,      (6.87) 

dlU(GaAO 
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TABLE XVI 

MEASUREMENT OF THE SHG NONLINEAR COEFFICIENT 

GaAs CdGeAs2 

Crystal orientation (HI) (no) 

Wedge angle i^e' l0^' 

CO polari zation 1 [no] [1101 

SHG polarization II rii2] II [001] 

deff J**** d £ 

nI 3.2711 3.5688 

n2 3.5011 3.6935 

i [m], measured 10I4 ± 5 22.1 ± 1 
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and with d^GaAs) = l.lh x  lo"  (mks),  we have that d ^(CdGeAs-) = 

3.9 x 10'21 (mks). 

The optical properties of the II-IV-V compounds can be estimated 

from the III-V analogs. Using the definition in Kq.   (2.2) we compare 

the Miller's 6 for CdGeAs- with the III-V analogs GaAs end InAs. 

We obtain 6(CdGeA82)/6(GaAs) =1.8 and 6(CdGeAs )/6(lnAs) - 1.5  , 

Assuming that the average bond nonlinearity for CdGeAsp is similar to 

1/2(GaAs + InAs) we expect Miller's  6 for CdGeAs0 to be the average 

of the III-V analogs. The measured value is somewhat larger but it 

is much smaller than calculated by Chemla.   He uses Levine's bond- 

charge model and obtains  6(CdGeAs )/6(GaAs) = 5.U. 

29 
Recently Boyd et al.,  have measured the nonlinear coefficient 

for CdGeAs2. They report d ^(CdGeAs J/d-,(GaAs) = 2.62 ± 15$ ,  and 

for the coherence length they measure 21.5 * 1 Mm and calculate 23.0 \m. 

These results are in good agreement with our previously published 

results.   Alto Goryunova et al.,  have measured the nonlinear coef- 

ficient for CdGeAs,,. They used a ruby laser with both the fundamental 
c 

and the second harmonic frequency well above the bandgap frequency. 

Because of the reduced electronic contribution to the nonlinear coef- 

ficient, they measured a smaller value than expected in the trans- 

parent region of the cryptal. 

In Section VI.A. 1(b), we defined three figures of merits where 

Mj is applicable for 90 phasematching. For phasematching at other 

angles M_„_^   or M-„_     must be used. They are the figure of 0     SHGtot      SHGgaus ' 0 

15^ 
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merits for maximum SHG conversion and for SHG into a Gaussian mode. 

MSHGgaus also aPPlles «hen crystals are compared for use  in 

parametric oscillators. Table XVII compares CdGeASg with tellurium 

and Ag3AsS5 which are two of the most popular infrared nonlinear 

materials. For reference we also list GaAs.  CdGeA^ has the second 

largest known nonlinear coefficient of any phasematchable crystal. 

Only tellurium has a larger coefficient, but since tellurium 

also has a larger double refraction angle, the C02 laser doubling 

efficiency is largest in CdGaASg . The maximum useful crystal length 

^max for cdGeAs2 is 2.7 mm for confocal focussing compared to only 

0.1 mm for tellurium. The theoretical 10.6 ,im conversion efficiency 

in CdGeAs2 for a 2.? mm crystal and confocal focussing is P /? 
SH' Fund 

0'001 PFund(W) for the two Phasematching conditions.  This neglects 

surface reflections. We use the calculated doubling efficiency to 

estimate the threshold for a degenerate parametric oscillator pumped 

at 5-3 mn. Assuming the equivalent loss due to  the finite build-up 

time is negligible compared to the other losses in the cavity 

[cf. Eqs. (6.3IO and (6.36)], we find from Eqs. (6.32) and (6.33) 

that the threshold pump power p   is 
th 

Pth = ^i x 10 (w) 

for a doubly resonant oscillator (DRO) and 

Pth = ^s x lo5(w) 

(6.68) 

(6.89) 
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TABLE XVII 

FIGURE OF MERITS FOR INFRARED NONLINEAR CRYSTALS 

CdGeASg Te AgjAaSj GaAs 

n 3.60 h.Q6 2.52 5-3 

d  (rel. GaAs) 5A 6.9 0.1k 1 

M1 = d2/n5 195 522 I 22 

0  (SHG of 10.6 ^m) 5505^(l) 
5W(ii) 

iiAo' 22O30'   

P lü20' 5V, 
3o30'   

'max = X/2nlP  [UUU] 2.72 0.11 0.56   

MSHGtot = Ml &t 
607 27lf l   

MSHGgaus = Ml/p2 1550 l?i l ... 

136 
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for a singly resonant oscillator (SRO). With 10$ signal and idler 

losses, the threshold pump power and power density are, respectively, 

th = 10 W and P /A = 1 MW/ th' cm (6.90) 

for a DRO and 

P .  = 200 W and P../A = 20 MW/ th' cm 

2 

(6-91) 

for a SRO. The area A is as usual, defined as TTW /2  . Equations 

(6.9O) and (6.9I) are for confocal focusing in a 2.7 mm crystal. A 

larger crystal does not increase the gain, but it reduces the power 

density such that crystal damage is less probable. The necessary pump 

power to reach thvjshold is available at wavelengths near 5 M* either 

frora a TEA CO laser or from a CdGcASp doubled TEA C0p laser. However, 

the present CdGeAs crystals are too lossy to attempt a parametric 

oscillator experiment. Assuming the losses will reduce with further 

crystal development, a 2.7 mm crystal should be adequate for a doubly 

resonant oscillator. For a singly resonant oscillator, however, the 

crystal should be at least s mm to reduce the power density. The 

measured optical damage threshold for CdGeAs  is kO MW/cm at 10.6 [m. 

5. Phasematched Parametric Interactions 

We have demonstrated several phasematching experiments in CdGeASp. 

The measured phasematching angles are in reasonable agreement with the 

calculated values based on the measured indices of refraction. Table XVIII 

lists the results. For the SHG experiments we used a CW C02 laser. 
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TABLE XVIII 

PHASEMATCHING EXPERIMENTS 

Process 
SHG of 
10.6 \im 

SHG of 
10.6 (im 

SHG of 
10.6 ^m 

Mixing of 
10.6 um + 5 3 M« 

Boule No. 16 El. 31 31 

Phasematching 
condition 

II II I I 

Measured phase- 
matching angle 

1+9° 50» 
± 15« 

1*8° 50' 
± 15' 

51° ^0' 
± 20' 

35° ky 
±  I? 

Calculated phase- 
matching angle 

5^51' 5h0  51' 35° 5^' 35° 30' 

Walk-off angle, o 1° 20- 1° 20' 1° 20- 

Crystal length 
l(inm) 

1.3^ k.2 1.95 1.95 

Measured angular 
half-width (deg) 

7.5-8.5 2.25-3.0 5 1.7-1.8 

Calculated angular 
half-width (deg) 

8.5 2.25 3 1.9 
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We chopped the beam to reduce the crystal herding. A motor scanned 

the crystal through the phasematching position. Figure 50 shows the 

second harmonic output power versus the external rotation angle for 

one of the crystals. It shows the regular slnc-curve dependence given 

by Eq. (6.20). The curve has some oscillations near the maximum. 

These occur when the laser la normal to the crystal. The feed-back 

then makes the laser unstable which allows an accurate measurement of 

the phasematching angle. The oscillations are monitored at the SHG 

wavelength or by recording the C02  laser output. The angle between 

the center of the oscillations and the maximum of the slnc-curve 

gives the phasematching angle relative to the normal of the crystal 

face, and by x-ray diffraction we determine the angle between the 

normal and the c-axls. With this technique we measure the phase- 

matching angle within 15 minute«. 

In Table XVIII the external half-angles at the half-power points 

are calculated using Eqs. (6.28), (6.29), «nd (6.JO). By comparing the 

calculated with the measured half-angles, we obtain Information 

about the crystal quality.  In nonuniform crystals with variations In 

the Indices of refraction, the phasematching condition may not h'i  satis- 

fied over the whole crystal length. This leads to a larger angular 

half-width than calculated. The crystals listed in Table XVIII have 

lengths between 2 and I* millimeters and the quality Is good enough for 

the phasematching length to be approximately equal to the crystal length, 
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To further teat the crystal quality, the crystal is translated 

perpendicularly through the laser beam while the phasematched second 

harmonic output is monitored. Figure 31 shows a typical horizontal 

and vertical scan for the SHG crystal from boule No. 16.  "Oood" 

crystal regions are over distances of about 1 mm.  It is therefore 

possible to avoid the areas with significant absorption. 

The mixing experiment in Table XVIII between 10.6 u* and 5.3 u» 

to generate third harmonic at 5.53 um was achieved by first doubling 

and then mixing in two separate CdGeASp crystals. The crystals are 

placed right next to each other. For the doubling we used the h.2 wa 

type II phasematching crystal and the. mixing was in a I.95 mm crystal 

cut for type I phasematching. 

We have also generated third harmonic directly using a TEA CO^ 

laser. The calculated phasematching angles for tripling are 1+9 U' 

for type I and 6^0'     for type II phasematching. No solution exists 

for type III phasematching. The I.97 mm crystal from boule Bl? was 

cut for type II phasematching which we expect to give the largest 

nonlinear efficiency.  The crystal quality was not as good as for 

some of the other crystals. Using Eqs. (6.2?) and (6.U9) we 

calculate an angular half-width of 3013, compared to a measured half- 

width of 1+015'. This corresponds to a phasematching length of only 

1.5 mm. The crystal could be used for both phasematched type II SHG 

and type II THG and the measured internal angle between the two phase- 

o 
matching positions of 11.2 ± 1 was in good agreement with the calcu- 

lated difference of 12.1 . 
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0 12 3 
HORIZONTAL SCAN   (mm) 

FIG. 31—Variation In the SHG output power over 
the crystal cross section. 
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The measured phasematchlng angle for the SHG civstal from boule 

No. 16 was I^JO' as stated in Table XVIII. At one spot on the crystal, 

however, we mtasured 5cAo'. This was probably due to a crystallite 

at a slightly different orientation to the rest of the crystal. To 

determine how a change in the dispersion D and the birefringence B 

at the fundamental frequency affect the phasematchlng angle 0m , we 

differentiate Eqs. (2-5) «nd (2.6) «nd find 

". - i'«».(f -f) (^> 
for both phasematchlng conditions. One of the problems with absorption 

in the crystals is that the resulting temperature increase changes the 

phasematchlng angle. We estimate the effect of a temperature raise of 

10OC by using § - 5-9 x lO*5 V1 from Table XIV and assuming 

— * 1 x 10'h  V1  . For CdGeAs^ with a birefringence of B = O.O89 
dT ■ 
and a dispersion of D = 0029 this gives ft0in = + 0.6° for type I 

and 66 = 1.2° for type II phasematchlng for SHG of 10.6 am. The 
m 

phasematchlng angle therefore increase a with increasing temperature. 

A change in the carrier concentration also affects the phasematchlng 

angle. An increase of the hole concentration of 5 * K) 5 cm  results 

in a decrease in the birefringence at 10.6 um of 6B = - 0.002 accord- 

ing to Eq. (6.86). From Eq. (6 68) we calculate the change in the dis- 

persion of the ordinary index I 6D = 0.7 x 10   . This increases 

the phasematchlng angle b>  Ptf^ - 0.5° for type I and 60m = 1° for 

type II phasematchlng. Finally It is worth noting that the indices 

of refraction for p-type material are also perturbed by the intraband 
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translLions between the split valence bands.  It Is more complicated, 

however, to evaluate the magnitude. 

2Q 
Recently, Boyd et al. y  have measured the type I and type II 

phasematching angles for SHG of 10.6 um to be 55 ± 1 and 51.6 ± 0.5 

respectively. This is in reasonable agreement with our results con- 

sidering they hnd crystals with much larger absorption. A bire- 

fringence change from boule to boule was observed by Boyd et al. 

for ZnGePp where they report a change of 0.001 out of a total bire- 

fringence of O.OW at 1.06 um. Unfortunately they did not measure the 

carrier concentration. 

\,    Maximum 10.6 um Doubling Efficiency and Optical Damage Threshold 

We have observed a maximum doubling efficiency in an uncoated 

CdGeAs crystal of l.U1^ for a TEA CO laser.  If we subtract the 

reflection losses at the crystal faces, this gives an expected 

doubling efficiency of 5* for a coated crystal. This compares to 

58 5Q 
the best results reported for tellurium.  '^ The laser had a 

Gaussian output beam with a pulse length of 200 nsec and a repetition 

rate of lU ppa. A 27 cm focal length germanium lens focused the beam 

into the SHG crystal. The laser rower was measured by a CRL power 

meter and the second harmonic by an Eppley thermopile. The crystal 

was 1.95 ram long and it was cut for type I phasematching. The measured 

absorption at the laser and the second harmonic frequency was «1Q g - 

0.8U cm"  and a- , = 5 cm"  , respectively. According to Eq. (6.21) 
5 •* 
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this reduces the theoretical SHG conversion efficiency by a factor of 

0.U0. At the measured 1.^ conversion efficiency the incident laser 

peak power was 12.5 kW.  Including losses, this gives a theoretical 

conversion efficiency of 2.kf  for a square laser pulse. The pulse 

shape, however, was more Gaussian and this reduces the theoretical 

conversion by a factor of approximately 2/5 to 1.6? which agrees well 

with the measured conversion. 

We observed a saturrtion in the SHG conversion efficiency before 

the optical burn density threshold was reached. This might be due to 

either a thermal effect or due to generated free carriers resulting from 

optical absorption between an impurity level and the valence or the con- 

duction band. With reduced optical absorption we believe the satura- 

tion effect will vanish. For the measured crystal the saturating laser 

power density inside the crystal was approximately 15 MW/cm . 

The optical bum density measured by the TEA C0o laser was 

58 ± 2 MW/cm2 for most crystals.  In one crystal, however, it was as 

high as 55 MW/cm . We have also measured the cw damage threshold. 

At 10.6 vm  it is smaller than 1000 W/cm . 

5. Carrier Absorption 

Figure 52 shows the free electron absorption in n-type CdGeASg. 

The 3.5 power dependence is characteristic of charged impurity scat- 

tering [cf. Eq. (6.71)1, *nd the result agrees with reference 66 

which reports a power dependence of 3.2 - J.h. 
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Figure 53 shows the lowest measured absorption in p-type CdGeAs 

By writing c » 0.151 eV - *» in Eqs. (6.75) end (6.77) and adjusting 

the hole concentration to 8.1» X 1015 cm"3 we obtain excellent agree- 

ment between the measured and the calculated absorption for transi- 

tion, between the valence bands ^ and v,,  . The measured valence 

band splitting energy is therefore 0.15 ±  0.01 eV which is not too far 

off our estimated 0.20 eV. A theoretical value for the splitting 

energy of 0.17 eV is given in reference 66. This reference also 

discusses intraband absorption but uses a formula that does not apply 

for the chalcopyrites. 

In conclusion, in order to obtain negligible absorption in p-type 

CdGeAs2 the hole concentration should be smaller than 10
15 cm"5. 

Compensation or doping to reduce the carrier concentration is therefore 

necessary to obtain high optical quality material. 
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CHAPTER VII 

APPLICATION OF TUNABLE RADIATION FOR AIR POLLUTION DETECTION 

Perhaps the most challenging application of tunable infrared 

radiation is for air pollution detection.  In this chapter we compare 

the detection sensitivity using an infrared parametric oscillator to 

other laser detection methods. The important results have been 

published and are presented in Appendix D.  Of the three analyzed 

schemes: Raman backscattering, resonance backscattertng, and resonance 

absorption; only the last is sensitive enough to detect dispersed 

pollutants. 

i 
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CHAPTER VIII 

CONCLUSION 

CdGeAs is very promising for infrared parametric generation 

ard efficient SHG and mixing. We have measured the nonlinear co- 

efficient and determined the phasematching conditions . The crystal 

is phasematchable over most of its transparency range between 2.k 

and 18 um and it has the highest figure of merit of any phasematchable 

nonlinear crystal.  CdGeP is not phasematchable.  It has approximately 

the same tetragonal distortion as CdGeAs but the birefringence is a 

factor of ten smaller. 

The growth of high optical quality chalcopyrlte crystals is 

hindered by several problems.  Extensive crystal cracking occurs during 

growth and the boules have nonuniform optical transmission. We have 

measured the linear thermal expansion coefficient for CdGeAs .  It is 

very anisotropic and this probably explains the large number of cracks. 

We have been able to reduce the cracks by growth of single crystals in 

a bismuth solution. There has been no correlation between the non- 

uniform optical transmission and the impurity content.  The material 

probably undergoes significant self-compensation during growth and we 

suspect that slight stoichiometric variations may explain the non- 

uniformity in the optical transmission. 

To explain one of the absorption mechanisms in p-type material 

we have determined the bandstructure near the Brillouin zone center. 
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The bandstructure results let us calculate the absorption due to Intra- 

band transitions between the split valence bands and we obtain good 

agreement with measured values for CdGeAs . Experimentally we determine 

the valence brnd splitting energy to be AE     = 0.15 ±  0.01 eV. 
v1- v2 

To have negligible intraband absorption the hole concentration must 

15  -3 
be smaller than 10  cm 

The free carriers also affect the indices of refraction and the 

measured phasematching angles. An increase in the carrier concentra- 

l^  •? 
tion of 5 X 10  cm  changes the phasematching angle by approximately 

1° for SHG of a CO laser with type II phasematching. 

Because of the anisotropic effective masses in CdGeAs ,  carrier 

injection introduces a birefringence change. We have proposed to 

use this effect to construct a 10.6 ^m modulator. 

Since the carrier concentration is very important for the measured 

optical properties of CdGeAs we have determined the temperature depend- 

ence of the carrier concentration in p-type CdGeAs .  It is constant 

from 77 K to 200 K and then starts to increase. At room temperature the 

carrier concentration in the CdGeAs grown by the vertical Bridgman 

method is usually between 5 x 10 ^ to 5 X 10  cm  . 

By SHG, THG, and mixing experiments we have verified several of 

the calculated phasematching conditions. We have observed as high as 

2$  10.6 ^m doubling efficiency in a 2 mm CdGeAs crystal^and the 

measured burn density is hO  MW/cm2 for a 200 nsec CO laser pulse. 

We expect the quality to improve with further crystal development. 

It is a long and tedious process, however, to determine the optimum 

growth conditions. To minimize the optical absorption it is necessary 
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to reduce the carrier concentration by compensation or doping. The 

CdGeA82 has an extensive tuning range and due to a large figure of 

merit only a few millimeter long crystal is necessary to reach parametric 

oscillator threshold. Presently available crystals have almost low enough 

optical absorption to allow the construction of a doubly resonant 

oscillator.  The calculated threshold pump power at 5-3 M- for a 2.? mm 

crystal is low for 10^ loss at the signal and the idler wavelength. 

The most straight forward application of an infrared parametric 

oscillator is in spectroscopy with air pollution detection as a 

particular stimulating possibility. 
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APPENDIX A 

TYPE I AND TYPE II PHASEMATCHING EQUATIONS 

T! * extraordinary Index of refraction for a wave propagating at 

. 8 
an angle  9    with respect to the crystal c-axis is given by 

2        2 
cos 0     sin 0 

ne(0)' 

(A.l) 

When the birefringence B = n - n  is much smaller than no , we 
e   o 

can rewrite Eq. (A.l) as 

n (0) mt   " + B 8in e 

e        o 
(A.2) 

The phasematching conditions for second harmonic generation in a positive 

birefringent crystal  (B > 0) is 

no      =    ne(0) (A.5) 

for type 1  and 

2ü3 k + •: w) (A.U) 
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for type II phasematchlng.  We calculate the phasematching angle by 

substituting Eq. (A.2) into Eqa. (A.j) and (k.U).    Defining the 

dispersion as D ^ n^ - n^ , we find for the two phasematching 

conditions that 

sin 6 =  /^/B"3 (A.5) 

and 

sin Bn (A-6) 

where B"3 is equal to the birefringence at the fundamental  frequency    (D    . 

Similarly for a negative birefringent crystal     (B    <   0)    where the 

phasematching conditions  for type I  and type II phasematching can be 

written,  respectively,  as 

n      (6) o e 
(A.T) 

and 

i (-: + »: (•>) ■ft») - *(»;+ "ef))        •  (A-8) 

we obtain 

sin    0T    =    / - D/B2^ (A.9) 

and 

sin    6 II \/ 320).    igCU 

-  15^ 

(A.10) 



For the extraordinary wave, the power flow and the wavevector are 

not ifi the same direction.  The Poyntlng vector walk-off angle Is 

8 
given by 

I "2 " - ) sln 

\ne    no/ 

n (e)2 
tan p = —   I -^ - -^ I sin 26     ,   (A.11) 

which with the approximation  j B | « n  reduces to the simpler 

expression 

B 
tan p   ^    -    —  sin 20 .   (A.12) 

n o 

Using Eqs. (A.5) and (A.6) or Eqs. (A.9) and (A.10) we can 

determine quickly if a material has sufficient birefringence for phase- 

matched SHG . 
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APPENDIX B 

SECOND HARMONIC GENERATION IN A «EDGED 
PLATELET 

Equation (6.21) give« the <wr „ .- / exveb cne iHG output power fr«™ - 
KUL power trom a crystal with a 

constant length /    T.- 

"" .2 ■../ VF .. the fundm.„tal .„d the 8econd hamon£c uave_. 

•OdlttM the SBC outpuc po„er; ,, reca8t 
tq. io.«J  in terms of the 

Peak Intensities anri th^ 

tra„,ver.e „ode di.tnbut^n. „lth p   . , ,2 
2 lout    r7"*!/2)  and 

^out - VV*) we obtain 

' 

l2 =   if^ ^ d2 I* 

("2 + 1? (^ ♦ I)1 

««e |(i)  ls expressed by 

•(I) (B.l) 

Hi)  =  - 
, (B.2) 

where i = / - „ t-an „ l
0      y tan a according to FiE fxk\ 

qHr        , g- (3^-  To calculate the 
SHG power,  s(i) must be ave 
. „ 8    " the transverse mode dlstri- 

butlon. As before, we assume th. User ha  ,r 
1,(0-1 expT 2r2/21      • ^ ^ a ^^ ^ such that 
1  ^   1 -P C- 2r /w^  . Wit, the cry8tal 
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A laser 

FIG. jit—Getoetry for SHG in a wedged platelet, 
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x and    y    direction much Urg«r th«n tht apot aif, v find 

P
2o«t-//    M^)dxdy 

2^2 
« * y 

,oo^3    2   .2 T2 • -*»  S  

11     8(lo ' y t'n. a)* l ,!xdy ' 
(ng ♦  l)2^ ♦ IT 

(B.5) 

•nd using 

we re*nrlte Eq.  (B.j)  •• 

128T15 a)f d2 F^.     ' j  'o    1 lout 
2out "    » ,\2, TT'*        2 

(n2 + 1)  (nj + 1)    TT w1 

■1 

(Ak)2 •6-J 

exp ^o* 

/o^w   t.na \2 i /aw   t.n a ^ 

2 cot ^/     - 2 
o m2ft-h 

X    exp ft^^-^/te^o2-^ 
Equatlo.« (B.5) 1« the final reault of this appendix. 

(B.5) 
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APPENDIX C 

EVALUATION OF THE INTRABAND ABSORPTION INTEGRAL 

In this appendix we evaluate the Integral in Eq. (6.72). Denoting 

the integral by S we have 

E /kT 
S =  ||Ml2 e 1    6(E1 - Ei - hu) A . (Cl) 

Let AE represent the energy difference at k = 0 between the v  and 

the v  band. This gives 

E1 - E1 = AE 
V»l, I!   "i,!! /     \"l,l    "1,1/  i 

h2 

=    tE  -    — 

2 Am, 

1 
tiaii  J 

(C.2) 

whete the definitions of 6m,, and tka,.      in Eq. (C.2) should be apparent 

and accruing to Table II both ate positive. The v. - v  band absorption 

is most important sin^e this occurs in the middle of the crystal trans- 

parency range. For this transition the matrix element in Eq. (6.75) is 

always of the form 

|M|2 = Ak? + Bk? (C.3) 
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The matrix element for the v - v. transition also can reduce 

to this form for certain polarizations.  Using Eq. (C.j) we have that 

2      2 the Integral In Eq. (C.l) depends only on k,. and ki  , and 

It Is therefore useful to Introduce polar coordinates In the (k ,k ) v  x'  jr 

plane.    After the angular  Integration we obtain 

E   /kT 
S = 27r/ |Ml2    e 1 6(E1  - Ei  - hcu) k.   dk.   dk,, , (C.k) 

which  further reduces  to 

^J-  n ,- Ei/kI 

O 
a" 

when we make use of Eq. (C.2) and carry out the ki  Integration. In 
p 

Eq. (C.5) ki   Is replaced by 

Ami 
P     L  2 

kf =   k,, - — (^ - ha)) Am| ,   (C.6) 
1    teH      

h 

We have to consider separately the two cases AE > hu and ÄE < hcu , 

jnd we refer to the Integrals as respectively S.  and S« . From the 

considerations of the Integration path. It follows that 

kntm 

Sl    =     j    |M|  e '   dk,, ,   (C.7) 

h     k.^mln 
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and 

—       J    |Ml2    e  1 
dk, 

h o 
>       (C.8) 

wliere 

|,.1B-     V(2 (2/n   ){tE  - lkD)4B, (C.9) 

With  the doflnltions 

c =  u - y* S3 (CIO) 

and 
Ami frni 

K =         ♦ 

■L   ■ lJ        "I,! 

(CU) 

we can express  Che  Integrals  as 

S1 = S2 [1  - erf (^KeAT)] 

UTTÄmi   kT 

v5 

AAm,,  + BÄm 1 
v/ä&nT €      exp 

c       Am 

k m 
(C.12) 

lj 
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and 

2j\&ml kl       / 2n Am,, kT A^m,, + BAmJ_ 2€Araj_ B ' 

kT 

X    exp 

€ ^1 

LkT        ^^ 

(C.15) 

In Eq.   (C.12)    erf(x)    If  the error function defined by 

2 f        -t2 

•rf(x)    =      -— |      e C    dt (c.iu) 

In Chapter VI, Section A.5 we use these integrals to calculate the 

intraband absorption in CdGeAs« 
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