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Jrom theoretical calculations of acoustic-gravity waves in the period range 40 to 
1,000 seconds from various combinations of yield and burst height, we conclude that 
the power varies as the square of the yield for low-altitude explosions and as the 
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with burst height to a maximum which if found at lower altitudes for higher yields. 
The affect of variable atmospheric structure along the propagation paths render it 
possible to make only a rough estimate of yield and no meaningful estimate of burst 
height.  The study also shows that all of the first ten modes are always relatively 
well excited so that the relative modal structure of a signal is not a good 
diagnostic for burst height. 
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ABSTRACT 

From theoretical calculations of acoustic-gravity 

waves in the period range 40 to 1,000 seconds from 

various combinations of yield and burst height, we 

conclude that the power varies as the square of the 

yield for low-altitude explosions and as the two-thirds 

power for altitudes above 100 km. For a given yield, the 

power increases with burst height to a maximum which is 

found at lower altitudes for higher yields. The affect 

of variable atmospheric structure along the propagation 

paths render it possible to make only a rough estimate 

of yield and no meaningful estimate of burst height. The 

study also shows that all of the first ten modes are 

always relatively well excited so iihat the relative 

modal structure of a signal is not a good diagnostic 

for bur^t height. 
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INTRODUCTION 

The continuing tests of nuclear weapons in the 

atmosphere have prompted interest in using infrasonic 

data recorded at distant stations to estimate 

yields and burst heights of the sources. We have calcu- 

lated theoretical barograms for a variety of yields and 

burst heights, synthesizing the barograms from the 

acoustic-gravity wive modes which propagate in the 

period range of the operating microbaro^raph arrays, i.e., 

periods of 4 to 14 minutes. We show examples of barograms 

recorded at teleseismic distances for many combinations 

of heights and yields, and draw tentative conclusions 

about diagnostics which might be deduced from such 

recordings. 
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METHOD 

The digital computer programs used „ere those 

written by Harkrider for calculation of the modal 

excitation of acoustic-gravity waves (Harkvider, 1964; 

Harkrider and Flinn, 1970). The original programs used 

a mass-injection source; we modified these programs to 

use instead Pierce's energy injection source (Pierce, 

1968) which is physically more realistic. 

Using these programs it was straightforward to 

calculate the spectrum and hence the time-domain waveform 

(via Aki's synthesis technique) for arbitrary yields 

and burst heights, for any of the various acoustic or 

gravity modes. 

The atmospheric model used was the standard ARDC 

model (Wares et al., 1960), bounded below by a rigid 

surface and above by a free surface. The calculated 

phase velocity dispersion curves for this model are 

shown in Figure 1. 

For standard instrumentation in use, and at an 

epicentral distance of 10,000 km, only the fundamental 

gravity mode GR0 and the lowest acoustic modes SQ 

through S- are involved in synthesis of waveforms. We 

calculated theoretical barograms :or each of these 

grcvity and acoustic modes, as well as their relative 

excitation for each yield and source height. The 

composite barograms in Figures 2 through 10 were 

constructed from the scaled modal barograms. The notches 

in the spectra are due to the wave-guide propagation, 

but we believe that the ripple is probably an artifact 
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of the synthesis algorithm we employed. 

The maxima in the long-period spectra (1 minute) 

are shown in Figures 11 through 13. The general conclu- 

sions we draw from these figures are that: (1) the long- 

period power varies as the square of the yield for low- 

altitude explosions, and as the two-thirds power for 

high altitudes (h>100 km); (2) fur a given yield, the 

long-period power increases with burst height to a 

maximum, which occurs at lower altitudes for higher 

yields. 

Because of winds and nonuniform atmospheric struc- 

ture along the signal propagation paths (effects which 

we have not taken into account in the present work) 

only a rough estimate of yield can be made from the 

observational data, and no meaningful estimate of burst 

height can be attempted. 

Acoustic spectrograms from atmospheric explosions 

contain energy at periods as low as a few seconds. In 

order to identify the corresponding acoustic-gravity 

wave modes, we calculated the medium response for all 

the acoustic modes from S0 to S^, at periods down to 

a few seconds. We chose ten modes to include in a synthe- 

sis of the broadband waveforms. The ten modes were GRQ 

and S0 through Sg) over the frequency intervals shown 

in Figure 14. To test the importance of the higher 

acoustic modes for identifying source height, we calcu- 

lated theoretical barograms for five source altitudes 

from 1 km to 45 km. The theoretic?! barograms for each of 

ten modes for a source yield of IOC kT at an altitude of 

5 km are shown in Figure 15. The moving-window power 

S- 
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spectra for a composite barogram consisting of 5 modes is 

shown in Figure 16; Figure 17 shows a ten-mode composite. 

The composite waveforms for five-mode and ten-mode 

synthesis are shown in Figures 18 through 20 for yields 

of 1 kT and 100 kT and altitudes ot 1 km, 5 km, and 15 km. 

It is clear from observational data that attenuation and 

scattering reduces the higher mode amplitudes much more 

than the lower mode orders. The high-frequency ripple 

seen in the ten-mode composites is an artifact introduced 

by the relatively narrow frequency interval in the 

synthesis. 

The peak overpressures for each of the ten modes are 

shown in Figure 21. This shows taat all ten modes are 

relatively well excited, and makes it clear that relative 

modal overpressure is not a good diagnostic for burst 

height. 
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Figure 11. Variation of long-period maximum amplitude (taken for 
periods greater than one minute) with yield and burst height. 
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Figure 12. Maximum long-period spectral amplitude as a function 
of burst height. 
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Figure 13. Maximum long-period spectral amplitude contoured as a 
function of both yield and burst height. 
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inSv?h23; Va^iation °f Peak amplitude with altitude for the 
individual modes used in the baiogram synthesis. 
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