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ABSTRACT

From theoretical calculations of acoustic-gravity
waves in the period range 40 to 1,000 seconds from
various combinations of yield and burst height, we
conclude that the power varies as the square of the
yield for low-altitude explosions and as the two-thirds
power for altitudes above 100 km, For a given yield, the
power increases with burst height to a maximum which is
found at lower altitudes for higher yields. The affect
of variable atmospheric structure along the propagation
paths render it possible to make only a rough estimate
of yield and no meaningful estimate of burst height. The
study also shows that all of the first ten modes are
always relatively well excited so that the relative
modal structure of a signal is not a good diagnostic
for burst height.
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INTRODUCTION

' The continuing tests of nuclear weapons in the
atmosphere have prompted interest in using infrasonic

data recorded at distant stations to estimate

yields and burst heights of the sources. We have calcu-
lated theoretical barograms for a variety of yields and
burst heights, synthesizing the barograms from the
acoustic-gravity wave modes which propagate in the

period range of the operating microbarocraph arrays, i.e.,
periods of 4 to 14 minutes. We show examples of barograms
' recorded at teleseismic distances for many combinations

4 of heights and yields, and draw tentative conclusions
about diagnostics which might be deduced from such

ot

recordings.
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METHOD

The digital computer programs used were those
written by Harkrider for calculation of the modal
excitation of acoustic-gravity waves (Harkrider, 1964;
Harkrider and Flinn, 1970). The original programs used
a mass-injection source; we modified these programs to
use instead Pierce's energy injection source (Pierce,
1968) which is physically more realistic.

Using these programs it was straightforward to
calculate the spectrum and hence the time-domain waveform
(via Aki's synthesis technique) for arbitrary yields
and burst heights, for any of the various acoustic or
gravity modes.

The atmospheric model used was the standard ARDC
model (Wares et al,, 1960), bounded below by a rigid
surface and above by a free surface. The calculated
phase velocity dispersion curves for this model are
shown in Figure 1.

For standard instrumentation in use, and at an
epicentral distance of 10,000 km, only the fundamental
gravity mode GR0 and the lowest acoustic modes S0
through 53 are involved in synthesis of waveforms. We
calculated theoretical barograms for each of these
grevity and acoustic modes, as well as their relative
excitation for each yield and source height. The
composite barograms in Figures 2 through 10 were
constructed from the scaled modal barograms. The notches
in the spectra are due to the wave-guide propagation,
but we believe that the ripple is probably an artifact




of the synthesis algorithm we employed.

The maxima in the long-period spectra (1 minute)
are shown in Figures 11 through 13, The general conclu-
sions we draw from these figures are that: (1) the long-
period power varies as the square of the yield for low-
altitude explosions, and as the two-thirds power for
high altitudes (h>100 km); (2) for a given yield, the
long-period power increases with burst height to a
maximum, which occurs at lower altitudes for higher
yields.

Because of winds and nonuniform atmospheric struc-
ture along the signal propagation paths (effects which
we have not taken into account in the prcsent work)
only a rough estimate of yield can be made from the
observational data, and no meaningful estimate of burst
height can be attempted.

Acoustic spectrograms from atmospheric explosions
contain energy at periods as low as a few seconds. In
order to identify the corresponding acoustic-gravity
wave modes, we calculated the medium response for all
the acoustic modes from S0 to 5,4, at periods down to
a few seconds. We chose ten modes to include in a synthe-
sis of the broadband waveforms. The ten modes were GR0
and S0 through 88) over the frequency intervals shown
in Figure 14. To test the importance of the higher
acoustic modes for identifying source height, we calcu-

lated theoretical barograms for five source altitudes
from 1 km to 45 km. The theoretical barograms for each of
ten modes for a source yield of 10C kT at an altitude of
S km are shown in Figure 15. The moving-window power



i spectra for a composite barogram consisting of 5 modes is
shown in Figure 16; Figure 17 shows a ten-mode composite.

The composite waveforms fcor five-mode and ten-mode
synthesis are shown in Figures 18 t»rough 20 for yields
of 1 kT and 100 kT and altitudes ot 1 km, 5 km, and 15 km.
It is clear from observational data that attenuation and
scattering reduces the higher mode amplitudes much more
than the lower mode orders. The high-frequency ripple
seen in the ten-mode composites is an artifact introduced
by the relatively narrow frequency interval in the

. . o

synthesis.

The peak overpressures for each of the ten modes are
shown in Figure 21. This shows tuat all ten modes are
relatively well excited, and makes it clear that relative
modal overpressure is not a good diagnostic for burst
height,
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Figure 2, Synthesized barograms and spectra for sources at 1 km
altitude and yields from 1 kT to 50 MT. Each record extends over
the group velocities from 333 to 290 m/s, beginning 400 minutes
after an event 8000 km distant, The horizontal axes are scaled
in seconds of period, c
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Figure 3. Synthesized barograms and spectra for sources at S km
altitude and yields from 1 kT to 50 MT. Each record extends over
the group velocities from 333 to 290 m/s, beginning 400 minutes
after an event 8000 km distant. The horizontai axes are scaled
in seconds of period.
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LONG PERIOD MAXIMUM POWER lpblll SEC)
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Figure 11. Variation of long-period maximum amplitude (taken for
periods greater than one minute) with yield and burst height,
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Figure 13. Maximum long-period spectral amplitude contoured as a
function of both yield and burst height.
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Figure 23. Variation of peak amplitude with altitude for the R
individual modes used in the barogram synthesis.,
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