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ABSTRACT 

A set of Hermitian equations is constructed using a mode 

description of the dynamic equations of the ocean surface. 

These equations are sufficiently flexible to include the coup- 

ling of the ocean surface to the wind, viscous damping and 

the effects of surface tension as well as the non-linear inter- 

actions between surface waves.  The system of equations is ex- 

act and from them a system of approximate, first-order (in time) , 

finite differential equations is derived and solved numerically. 

The solutions to these coupled equations p- ovide one with a de- 

tailed view of the growth of the non-linear surface waves and 

energy spectrum with time. 
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1.  INTRODUCTION 

The problem we wish to discuss in this report is how to 

describe the physical structure of the ocean's surface by 

means of a direct calculation of the non-linear interactions 

between gravity waves.  Some of the interactive mechanisms them- 

selves had not been identified until the last decade; so it is 

no surprise that there does not exist as yet a cohesive theory 

which presumes to calculate the surface structure of the ocean 

from first principles.  The extreme difficulty of the problem 

xies in the nonlinear character of the interaction process 

which necessitates the construction and solution of non-linear 

models. 

Theoretical models describing the ocean surface and the interac- 

tion of surface waves with surface waves, and surface waves with in- 

ternal waves, fall into two rather broad categories.  The first cate- 

gory comes under the general heading of Ray Theory, which is space 

oriented and primarily concerned with wave packets, e.g., Whitham 

(1966).  In this type of '-heory one has position and time dependent 

wavenumbers and frequencies. The wave packet models are also known 

- — t^*m 



as WKB or  eikonal theories.  They consider the ocean surface 

as essentially a superposition of a number of spatially lo- 

calized wave packets, each distinguished by a characteristic 

wavenumber k and frequency u which are related by means of a 

disperison relation.  These wave packets move along trajectories 

defined by the wave conservation equations 

and 

Ü -  V 

dt     x 

(1.1) 

(1.2) 

which defines the paths along which energy naturally propagates. 

The second approach and the one we will use in this puper 

is a modal description .  the interaction process.  Tne mode 

oriented models describe the ocean surface as a superposition 

of waves  (in the inperturbed ocean this would be a superpo- 

sition of sine waves).  Such models generally concentrate 

their attention on the transfer of energy between the different 

modes. The most complete theory using such a method is that 

due to Hasselman (1961) .  He introduces the mode expansion for 

the surface elevation and velccity potential in the dynamic 

equation for the ocean surface, as is shown in Section 2.  In 

adlition, each mode is expanded in a perturbation series using 

the slope of the waves as a smallness parameter.   The non- 

linear interactions are given at each order in perturbation theory 

ty the product of an appropriate number of first order terms.  By 
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assuming that the sea state is initially Gaussian, an expres- 

sion for the redistribution of energy between th:» interacting 

modes is obtained. 

In a later paper (1966), Hasselman structures the modal 

problem so as to make applicable the methods of Field Theory. 

The non-linear interactions enter this structure as pertur- 

bation diagrams of increasing order, just as in Quantum Field 

Theory and Nuclear Physics.  However, all the difficulties of 

convergence and mathematical opacity also attend this approach, 

making practical calculations without the assumption as to the 

statistical nature of the aea state uncertain. 

In the limiting case of small amplitude waves, both treat- 

ments, i.e., rays and modes, are equivalent since the require- 

ments for validity of the WKB approximation are usually well 

satisfied for the waves of interest.  This equivalence is often 

obscured in the development of models since spatial structure 

is bound up in the details of the phase relationship between 

different wavenumbers in a mode description; whereas the wave- 

number structure is dependent on the details of the spatial 

correlations function in the wave packet description. 

In Section 2 our model ocean is defined in terms of Ber- 

noulli' s equation for the ocean surface and the kinematic boun- 

dary condition at that surface.  In a mode description these 

equations are reduced to a set of coupled equations which have 
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only first order derivatives in time.  The method of keeping 

iuhe first order simplicity of the equations is to introduce a 

set of hermitian variables.  These variables essentially de- 

couple the equations into a set of right and left moving waves, 

with the amplitudes q^' and q^; respectively.  The rapid time 

oscillating part of the mode (Fourier) amplitudes for the vel- 

ocity potential (0k) and surface elevation (?.) is in this way 

removed so that qk
+) and q^"' are slowly varying functions of 

time.  These new mode amplitudes refer to a Fourier expansion 

in both space and time. 

The utility of such a representation of the surface ele- 

vation and velocity potential is explored in Section 3, where 

the original coupled equations are cast in the form of an un- 

coupled eigenmode equation.  In this representation the only 

variation in the q^  amplitudes comes directly from the non- 

linear interactions which are in terms of multiple products 

of these amplitudes.  For calculational expediency the exact 

equations are expanded and the terms grouped so as to give 

second, third and higher order interactions.  The expansion 

parameter is again a wave slope, but we expand only exponen- 

tial terms and do not use perturbation theory.  This we feel 

obviates some of the difficulty encountered in Hasselman's 

treatment of the problem. 



f^m 

In Section 3B the specialized problem of the interaction 

of only surface gravity waves is discussed.  A resonance (fre- 

quency matching) condition simplifies the eigenmode equations 

so that only the third order interaction terms contribute to 

the rate equations for the system.  A discussion of the inte- 

gration procedure to be used in obtaining the numerical solu- 

tion to the problem is presented in the appendix.  The integra- 

tion technique employed allows one to take large time steps on 

a scale corresponding to the oscillating part of the solution. 

This is done by integrating the rapidly oscillating part of the 

interaction coefficient analytically and numerically integrating 

only the slowly varying part.  This technique was used sucess- 

fully [Cohen, et al (1971)] in the treatment of the laser heat- 

ing of plasmas. 

Section 4 explores some of the specialized types of in- 

teraction, such as self-interaction and the scattering of waves 

which do not change in wavenumber.  The connection with the non- 

linear Stokes wave is also made here.  The form of the surface 

contours and the representation of the aea spectrum in terms 

of the qk - amplitudes is discussed in Section 5. 

A preliminary calculation is presented in Section 6, which 

has direct bearing on the experiment of Benjamin and Feir (1967) 

in which they determined a single gravity wave to be unstable. 

A single mode of large amplitude is allowed to interact with 

*m*mi m 
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its side bands which are an order of magnitude smaller in am- 

plitude.  It is observed in the calculation that energy dif- 

fuses out of the primary mode into the other modes in the sys- 

tem, until the neighboring and primary modes are of comparable 

amplitude.  Energy is then transferred rapidly between all the 

modes in this region of k-space.  The spatial picture of the 

surface when this rapid transfer process takes place is a break- 

up of the primary wave into a number of wave packets.  This 

breakup into packets is the instability found by Benjamin and 

Feir.  A detailed comparison with these results is made in 

the text. 
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2.  MODE COUPLING ANALYSIS 

In the following analysis, the ocean is assumed to 

be homogeneous and  irrotational, that is, if ♦ is the potential 

describing th.j velocity field (u = V*), then Vxu ■ 0. The 

velocity potential also satisfies Laplace's equation 

V2* = 0 , (2.1) 

since the fluid is assumed to be incompressible. If we define 

the quantities:  p as the fluid density, g as the gravitational 

acceleration, and p as the pressure, we may write the momentum 

equation of the fluid as 

du    1 4   ■► 
3t = " p AP * 9 (2.2) 

In terms of the velocity potential. Equations (2.2) may be 

written as, 

du 
St 

|j|+iv*.7*] --vJE + g2j (2.3) 

where we have nade use of the fact that the d/dt is the 

Eulerian derivative 

d   3 
Ht  Tt f V"I"V (2.4) 

the density p is constant (assumed) and z is the vertical 

coordinate. 

mm ^m/m 



We may integrate Equation (2.3) immediately to obtain 

(2.5) *t + I 7**v* +^+ 9? = 0  at z = ^ 

with the condition that hydrostatic equilibrium must prevail 

at infinity, where Ap is the incremental pressure with respect 

to ambient and z - ; is the free surface of the ocean.  A 

second equation may be obtained by recalling that the rate of 

increase in the wave height following a fluid element is the 

vertical component of the fluid velocity: 

S Tl  at z (2.6) 

Using the notation (V) for the horizontal gradient, we may 

write Eq. (2.5) and (2,6) as 

♦ t + y (V*)2  + gc +AP/P- 0  at z - ; 

and 

;t + v^-y; - ^ - o at z ■ c 

(2.7a) 

(2.7b) 

as the set of coupled equations describing the ocean surface. 

To obtain an expression for the pressure in Eq. (2.7a) 

we must consider the fact that the interface between two fluids 

is in a state of uniform tension. The pressure condition at 

this interface can be obtained by considering the vertical 

forces acting on a strip of surface of width 6x.  If p is the 

pressure just below the water surface, p the pressure of the 
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air and T1 the surface tension, then 

(p - pJ6x + 6 
Cl 

T Ji 11 3x (2.8) 

is the force balance acting on the strip 6x.  We therefore 

have 

P = ^ " Tl !-7 
3^ 
3xJ 

(2.9) 

The quantity pa is variable if there is a wind blowing over 

the ocean surface.  We model this variation in pressure by 

the expression 

P pa = a ^ * painbient  ' <2-10) 

which gives the in-phase pressure variation at the surface 

due to the action of the wind* Substituting Eqs. (2.9) and 

(2.10) into (2.7a) yields 

♦ + i (V*)2 + g; + o^i - yi!i = o 
t  2 3x   3x2 

(2.11) 

where we have assumed conditions to be completely uniform in 

the y-direction. i.e., a series of ridges. 

In the above equations (2.11) and (2.7b), we have assumed 

the existence of a velocity potential (u ■ 7*) based on the 

assumption that the ocean is irrotational.  We have also pro- 

*  Equation (2.10) is intended to indicate how one includes the 
contribution from the wind in the dynamic equations, the de- 
tailed form of the term will change in a realistic calcula- 
tion, e.g., making a a function of k as in the Miles-Phillips 
Model. 
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^ided ci means by which energy is supplied to the surface waves, 

i.e., by the action of the wind.  We must now discuss the mech- 

anisms by which this energy supplied by the wind may be dissi- 

pated.  The most dramatic process is the formation of "white 

caps" or wave breaking.  In our model this breaking directly 

transfers energy into heat and therefore out of the wave sys- 

tem and is not directly included in the above equations.  The 

"white capping" should appear as instabilities in the above 

solutions when the wave slope has exceeded some critical value. 

A second mechanism for the dissipation of energy is the action 

of molecular viscosity, which has not as yet been included in 

the above equations. 

To model the effect of viscosity, we first transform the 

system into a modal description by introducing the plane waves 

Xk(x) =  eikx//L (2.12) 

where L (« length) is a dimension of interest tor the problem, 

and decompose the vector potential and wave amplitude into their 

Fourier components. 

(x,ift) -J^ Xk(x) •lkli *. (t) (2.13) 

and 

;(x,t) « Z^xk(x) ck(t) (2.14) 

10 
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Introducing Eqs. (2.13) and (2.14) into Eqs. (2.11) and (2.7b) 

yields the set of coupled equations in terms of the modal 

amplitudes, 

£xk(x) \i e'k'Z + gck + iak;k + Yk
2?k 

-j (V*)2; S « C 

(2.15) 

and 

klz Sxk(x) jCk - IkUj^e
1 

We wish to rewrite Eqs. (2.15) and (2.16) in a form 

where the left hand sides of the equations are linear and the 

right hand sides contain all the non-linear coupxing effects. 

To do this we evaluate (V»)  and V**Vc to be as follows: 

(?•) ♦ 2 + *2 

^P 

(UKIPI) 

and 

V*«VC ' " £ *P 
I  z 

l,p 
^S6 X

AXp 

X£Xp     (2.17) 

(2.18) 

and remove the exponentials to the right hand side of Equations 

(2.15) and (2.16).  Then by multiplying these equations by 

Xk(x) and integrating over x, we obtain 

11 
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V 

♦k + «k - I 2 (*P - IMIpDVp 

y.(i*i+ipi)c(x)x (x)x (x)x*(x)dx 

C(x) 1)   x   (x)xk(x)dx 

- iakck - yk  ;k (2.19) 

and 

r I i. I   *, =  XI ÄP*^pieU|C(X)X»X.Xtdx 
Ä,p 

* 

^ APXk< 

♦ Em#1/c,A,c<x,-i) X£ Xkdx (2.20) 

or defining F1(k)   and F2(k)   by the right hand sides of 

Eqs.   (2.19)   and   (2.20),   respectively, we have  the set of 

equations 

Wk   ■   F^k) 
2 

where G.H  g + yk and 

Ck -   |kUk »  F2(k) 

(2.21) 

(2.22) 

which to this point provides a formally exact description 

of the  interaction process in n  single horizontal dimension 

12 
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We now return to the discussion of the viscous damping 

of high frequency waves.  In a viscous fluid the interaction 

between water molecules produces shearing effects when the 

water is in motion and destroys the irrotational assumption 

imposed above.  In such a system we assume that we can super- 

impose the rotational character of the fluid on the irrotational 

so that 

where 

u = 7* + u1 

Vxu' ^ 0  . 

(2.23) 

The energy of the fluid motion is gradually dissipated by 

these shearing effects and may be modeled by determining the 

rate at which the energy is being dissipated. 

Following Phillips1 discussion of viscosity, we write 

the rate of strain tensor as 

du..   du 

'ij   ijdXj^} (2.24) 

where (i,j ■ 1,2) label the components of the coordinate 

system and velocity.  Assuming the ocean to be an isotropic, 

incompressible Newtonian fluid, and \i to  be the coefficient 

of viscosity, we may write the frictional force per unit 

volume in terms of the derivative of the rate of strain tensor, 

i.e. 

3e,, 

'i-'TiJ (2.25) 

13 
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V 

since V»u =0. We may also write the rate of working against 

viscous forcer as 

3e, 
u.f. ■ 2u u. 
11   M  i 3x 

hi 

■ 2^ w: (uieij) " e 

3 

9ui where e = ly(ei.)
2 = Zye^^. T^- 

(2.26) 

(2.27) 

The first term on the right of Eq. (2.26) repr.,',ents the 

viscous energy flux; the second term, the rate of energy 

dissipation per unit volume by molecular viscosity. 

The rate of energy dissipation per unit area at the 

surface of a very deep ocean can be written, using Eq. (2.26) 

/ rc i E = -j edz = -J      JM 
3XD 

au.; 
3xi 

dz (2.28) 

The contribution from the surface, layer is assumed to be 

small, the primary effect coming from the ocean interior. 

Using only the irrotational part of the velocity from Eq. (2.23), 

we may write Eq. (2.28) up to second order as 

.o 

'■i'-IH dz (2.29) 

We evaluate Equation (2.29) using a single mode solution to 

the linear equation, i.e., 

14 
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(2.30) 

(2.31) 

* = c*k e
kz sin |k(x-ct)] 

so that Equation (2.29) is reduced to 

E = - 2M2k3c2 

Using the fact that in deep water 

F _ 1  ,2 2 . 
2 p *k c k 

the attenuation coef f icient Yv for this wave can be written as 

Yv = " ^ = 2^2 (2.32) 

where v - y/p is the kinematic viscosity of water.  The energy 

density of the wave field decreases as exp {- 2Yvt} and the 

amplitude by exp|-Yvt}.  We may, therefore, model the effect 

of viscosity in Equation (2.21) by including the term 

-2v k^*. (2.33) 
in F1(k) 

The equations lor the ocean surface now take the form 

*k+Gk^k " Fl<k) " 2v^k = F^k) (2.34) 

and 

^k " lkl^k "  F2(k) ■ F2(k)  - (2.35) 

which includes models for: (i) the generation of waves by 

wind,  (ii) the non-linear interaction of surface waves, 

(iii) the effect of damping by the dissipation of energy 

through molecular viscosity, and (iv) the generation of capil- 

lary waves. 

15 
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3.  EIGENMODE DESCRIPTION 

The structure of Eqs. (2.34) and (2.35) suggests that 

it may be possible to transform these coupled equations 

to a decoupled representation.  We can in fact define the new 

variables 

and 

♦ k - •/G^^1(k) 

Ck = i /|k| ^2(k) 

(3.1a) 

(3.1b) 

which, when substituted into Equations (2.34) and (2.35), yield 

i^1(k) - /Gjjkl ^2 (k) =— ^(k) (3.2a) 

and 

1^2^) -^klkl ♦i(k) ■ -=k^    i2W     .      (3.2b) 

If we cake the sum and difference of Eqs. (3.2a) and (3.2b), 

we obtain 

i^.+lL) - /G, | k I  (ij^+llO = — F- (k) + -^rp F7(k) 
1 ^    k    ■L ^   Ä *    /|k|  z 

and 

K^-^) +/Gk|k| (^1-^2)   = — ^l(k) ~ ITf  ^2(k) 

v€; 

which in terms of the quantities 

17 
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(±) 

and 

t±Wwt.M{i£y.^LJK^) i 

/3 

ä 4.      ^        * 
F, (k)   - -==    F5 1       /JTkT   2 < J( ¥f 

(3.3) 

(3.4) 

becomes 

i£<*'.^nrr^' F(+) (k) (3.5a) 

and 

+ ^1 Ikl   b^'^   ■ F1"' (k) ibk      +^klkl   ^ (3.5b) 

In terms of the orthonormal matrices 

c'*' .A {I,    and   c (-) i(-i) 
Eqs.   (3.3)   to   (3.5)   can be written 

*. ■ W*» WV   • (3.6) 

(+)    (+) (")   /.) 
F(k)   =  F(k)Cl   '   + F(k)Cv   ; (3.7) 

and 

ib.   - Ab.   = F(k) (3.8) 

where 

(3.9) 

18 
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Using the preceedlng equations, we may express  the 

velocity potential and wave height in terms of the eigenmode 

amplitudes of  the problem   [b* as  follows 

and 

Both the velocity potential and the wave height are real 

quantities so we may equate them with their respective complex 

conjugates 

11) 

* = ** =Lxv  elklz 

-Ex; «lk|z 
k    K 

and because xv ■ X.i. we obtain 

W'1 PT 
1 

1 
1 

srw - ^r ♦ •#* • (3.12a) 

In a similar manner 

C    =  c = + i 

19 



and therefore 

i<'-b<-',= - i,b<J>* - bl-'«, 

Adding emd subtracting Equation (3.12) yields the 

following conditions on the amplitudes 

(3.12b) 

(+) . b(-)*  .  b(-) = b(+)* (3.13) 
'k    "-k   '  "k    ~-k 

We can remove the rapidly oscillating part of the expres- 

sion in our eigenmode equations [Equation (3.5)] by introducing 

the variables 

(3.14) 

(±) . where q^  is assumed to be a slowly varying function of 

time.  If we equate OK to /Gk|k| in Eq. (3.5) , then we have 

the new equations 

i^  ■ e  k F(±)(k)/r (3.15) 

U) 
for our system. 

To interpret the significance of the *I*i let us 

consider a single mode propagating to the right. Then, 

according to Eq. (2.14) the wave height is 

;(x,t)  = xk(x) Cw(t)  +  X_v(x) C_k(t) 

20 
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Taking b^  and b_k 
= P^    as the only nonvanishing modes, 

this becomes 

{x,t)    IriirrJ L"k - ^    e J • 
-i On setting ^ = |k|~ and 

^k 
(+) - !„(+) 

^k 
ie, 

this becomes 

C(x,t) ._ = -|q ( + ) sin k sin|kx - ui,t  + (3.16) 

The dimensionless quantity I qjj  I thus represents the 

ratio of the maximum wave amplitude to X.  We expect 

0 < l^ I < 1» since at the upper limit very strong coupling 

between modes will occur.  This notion is consistent with the 

analysis done by Stokes on finite amplitude effects on gravity 

waves in deep water,  it was determined that a maximum crest 

angle (120°) for gravity waves existed, after which the wave 

becomes unstable. This restriction is easily maintained in 

terms of the slope of the gravity wave, i.e., the ratio given 

by Equation (3.16). The quantity q^ is, therefore, a more 

natural variable for the problem than the wave height. 
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3A.  The Approximate Equations 

Although Eq. (3.15) is formally exact, in its present 

form it is not of much use.  It may be put in a more manageable 

form for numerical calculation by making a number of reasonable 

approximations.  Consider the function F,(k) , 

/•(|»MP|)C(K) 
dx 

^P 

(3.17) 

in this expression the function ; multiplied by a wavenumber 

in the exponential is a small quantity since the slope cannot 

exceed the value 1/7. This value is a result of the Stores 

analysis mentioned earlier.  The wavenumber in the exponential 

is generally restricted to a region of wavenumber space in which 

the surface elevation is being expanded, i.e., I^j,,^!^ Ul^ l^max 

and Ik   -k   I << 111, so that |£k(x) has a critical value 
min   max 

which is on the order of 2IT/7 Ml.  It is therefore not unreason- 

able to expand the exponentials under the integral sign in Equa- 

tion (3.17) and keep terms to only third order in the amplitudes 

when one is not considering capillary waves or those gravity 

waves close to breaking. 

We perform this expansion in Equation (3.17) and replace ; 

by its Fourier expansion [Equation (2.14)1 to obtain, 

22 



Ä 1      _ 
Fl(k) " I  Z     Up -   k||p|)Mp - L      IlliiCp " iak;k 

+ E I   (iP  "   ltllpl>(lll+   IPDVPV   2v)c2*k 
£-<-p-t-n-k 

i+p+n-k ^ *   P n 
(3.18) 

/L 
The time derivatives of the amplitudes may be replaced in this 

expression by their value from Eq. (2.19) to obtain 

F1(k) m -  iak;. - 2vk2^J 

+P' \^p-k^(lp" ,t|lpl)*t*p* {Gi * ial>i*UiS 

+ E        || dp -IIIIPI)  lUI * IPI - U+p|lMncn l+p+n-k   f I p n 

+ 1^_    KC^ i^)C]l*2vl2#JllC  rj     . (3.19) 

In a similar way we obtain the following expression for F   (k) 

F2(k) »  Z l(l+p)^,c    +   Z } tp -»■ Ui-ilila c  C 
»♦p i+p+n-k 

(3.20) 

(±) 

Our eigenmode equations are,  however,  in terms of q^   and 
(■f) A 

P -   (k)   not   ♦k,   ck and r(k).     We must therefore determine  P(- 

in terms of qj,-' . 
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We  recall that 

t)(k)- |-±- ; 
I /SGT     1 ■ ^2{k) 

3i iW 
which may be written using Eqs. (3.19) and (3.20) and Eqs. (3.10) 

and (3.11); 

-i^K'-nK'-piKl^l) 
i 

l+p+n-k 
j 0tpn h^-i-'i^r-riK'-c'] 

^tpnK
+,-{-,]K+,-<,]Kt,-^,] 

(3.20) 

and 

'IP 

IP 

Mi 
iptk m       -v 

-S(lp.|i|lpl)|     . 

i   iyl- VUllPl   (Gt ♦ i«*)     ' 

2   CTT     4 V^"   t/ÜL l(l*p)    , 
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ipn 

'ipn 

-   - •S-r^ (tp-l^l lpl)(|t| HPI-I^PI) VM^2   , 

2         
-     ^   VlM|p||n|/2     (G^ial)     , 

and 

PMn| 

(3.22) 

The complete expression  for Equation   (3.16)   is as  follows: 

VGT   iq (±)   J^k* 
k    ^k «iu       « I|qt     S     e laip + ßlp4Ylp;kJ 

l+p-k 

^t    Mp L lp    plp     'Ip.-kJ 

* qt    'p    e 

-i(u))l-ü)  )t 

Kp-^p^lplkJ 

*W<l^nK-^^\) 
3/2 

^2:i'W^."1<"^4s,t[^*^-^k] t+p+n-k 

-i(wi-f<D^-w   )t 
+ qt    S    qn    e L-0lpn-ßlpn-Ylpn,kJ 

<*>«<-)a^)/i(W*"VWn)t 

'I    qp    qn q»   'q"  'q-  '# l0tpn-ßlpn-Ylpn ^     1 pn;kj 
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■        ■ •■ 

-i(W.-W    -0)    )t 
(+) (-) (-)0      

p n r.«   + R    + vt^ + Vl    %    %    e n^pn* ßlpn + YÄpn,kJ 

* q^
)^,sl+,• 

»-     p     n 

[aÄpn  " ßÄpn + YÄpn;kJ 

i(u  -w  +u)   )t 

♦ »<->«^-<-^ P qÄ    qp    qn L    ipn    "ipn        tpn *._♦..--..'!»,,] (: 

+ ^A    ^p    ^n    0 

.(UÄ+u)p-a)n)t 
ra        .  ß        _ Y(±) 
I  ipn      p£pn      T£pn;kJ 

i (w.+u +ü)^) t 

Mi    HTP    Hn 

I    p    n' 

L    ipn    PApn      TApn;kJj 

Vf.!...V¥|^."v 
W-— (3.23) 

3B.  The Resonance Condition 

We expect that in the development of the amplitude of 

the k  mode non-resonant terms, being oscillatory, will make 

a zero, i.e., negligible, net contribution for the interaction 

of surface gravity waves alone.  Only those combination of 

frequency close to u». , i.e., those in resonance, will contrib- 

ute substantially to q^±).  We therefore rewrite Equation 

(3.23) for a right travelling wave as 
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w - [ ak|k_|   _  ^2 | 
2a),, 

!1  n^ 

t+p-k+n 
aÄp-n + ßip-n + Yip-n;kJ(J£    S    ''-n 

■   L A-np-ßl-nr"YA-np;kJ qi    q-n qp 

■[■- npi " ß-npj, 
(+)        1   a^-Jaf + la^) Y-npi;kJ  q-n qp    qn 

[^    |l^| I^H-k^-n"-»-^! 

which we can  rewrite  in the  form 

tf' - [ ttklkl   _  vk2 | 1 „^ Jqk 

i r (+)«(+)«<-)  .^Apak* 

t+p-k+n 
Äpn;k   q4     qp    q-n     e 

where 

i,pn;k 
1 / +fi ( + ) _ . g + Y< + ) 
7 y £p-n       £p-n-Tlp-n;k       i-np       £-np    T£-np; 

(3.24) 

-  o       . + B -npl      -np£ 
-,(-)      \/jL   JL-3\ T-np£;ky^5G^     Ipn    j (3.25) 

and 
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Äpnk     k  n   i  p 

If we define the functions 

(3.26) 

%n(t) 
„(+)„(+)[„(+)■)* 

" qi    qp  [qn 
and 

n = fl ipnk 

(3.27) 

(3.28) 

then Equation (3.24) can be written in the form 

qk 

where 

[^ - -2] <+] E 
i+p-k+n 

irilpn;k H£pn(t)   e 
int 

(3.29) 

rZpn;k RJlpn;k + iIilpn;k 

Mi 

ipn;k i6Gk   |ipn|3/2 

^5^ (|ip| -ip)(|i| + |p| - |i+p|) VR 

^G^ (jinl ♦ip)(|A| + |n| - |t-ii|) VTPT 

y^  (|np| +np)(|n| ♦ |p| - ln-p|)  yJ\T\ 

(Upn|)^ (Gn n^  2G,  A
2) + (n^2np)ln|(|Ei|)^ 

V^ "(*—p)i*i (If I)1 
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wk 
1Pn,k 16Gk    |)lpn|3/2 

a|ilpn|2     2Jl3-n3 

2 V/G^ il4   | pn 
') 

(3.30) 

The numerical integration of Equation (3.29) is discussed 

in Appendix A. 
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4.  DISCUSSION OF EQUATION (3.29)* 

The wavenumbers in the interval 0 < x < L are of the form 

k = 2TJ K ,  p = 2« P ,  etc., (4.1) 

where K, p, etc., are integers. The wavenumber matching con- 

dition in Equation (3.24) using Equation (4.1) is then an in- 

teger matching condition. 

The quantity r [Equation (3.30)] has the dimensions of 

a frequency and is of the same order of magnitude as the mode 

frequency, that is, 

T = 0((ük)  , (4.2) 

where uk is a characteristic wave angular frequency in the wave- 

number region of interest. We recall that the q^±) are dimen- 

sionless ratios of [from Equation (3.16)], 

wave height 2 TT 

wave length 

When the q^'s are nearly unity, the non-linear interaction has 

a time constant comparable to the wave period. 

When the qk
,s are small compared with unity, the character- 

istic time constant o^ the non-linear terms is ~ L. |a | 2 I ~1. 

*  In this Section we set G.=g, i.e.. neglect surface tensi ion, 
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When 

l^pnkl   ^ KI-I2] (4.3) 

the oscillating exponential will tend to "wash out" the non- 

linear coupling. 

If we set [assume A, p, k, n £ 0] 

k = n - n 

n = p + n, 

we satisfy the wavenumber matching condition k + n 

frequency mismatch (3.26) is then 

Q = - /g [/Ä + /^ - /F^ _ /p + nj t 

- p < n < ä . 

Next, we assume Jl ^ p and write 

(4.4) 

A + p.  The 

(4.5) 

(4.6) 

« s f »   y = öL'-cJ<y<1' 

to obtain 

ü -  a- = f (q,y) = 1 + /q - /T^y - /^ u 

(4.7) 

(4.8) 

At the y-end points f is positive and has the value 

f(q, -q) = f(q/ 1) = 2/q 

1+ /q + /1+q 
(4.9) 
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f has two, and only two, zeros.  These occur at 

n = o, T] = i- p (4.10) 

Between these zeros f is negative and has the minimum value 

(1 - /q)2 

wo - '{*• ^) = - rr^ /q + /2(1 -q) 

The quantity fmin (q) is plotted in Figure 1. 

For the self-interaction of a single mode, we have 

u 
r = r 
k  lkkk|k 

k 
T f1-^-^)]- (4.12) 

For scattering with no change of wavenumber, we have 

r  = r    + r nk   nkn;k   knn;k 

•k 
4 -#(-i- Ml)] 
^k/ak       vk!\/]i^2 

2    \Ag "  2ukJ\nl (4.13) 

The appropriate form of Equation (3.24) in the case of 

pure resonant interactions is 

%     -   [ 
a-iM. vk2 

2u). )< 
+ ir, qk qk 

♦    ü   II (+) 
nkPn 

n(A) 

( + ) (4.14) 
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The quantity [- r^/a^] is plotted in Fig. (2) as a function 

of the ratio (k/n) for the case a = v = 0. 

Let us consider the rate equation for the self-interaction 

of a single mode in the absence of wind and neglecting vis- 

cosity, i.e. , 

,<+> . -i^iVi (4.15) 

where we have used Equations (4.12) and (4.14).  We may pre- 

multiply Equation (4.15) by q^*  and premultiply the complex 

conjugate of Equation (4.15) by q}[
+) and add the two equations 

to obtain 

d  , m ,2 

(4.16) fel^'l  • « 

( + ) which implies that the modulus of q^ is constant.  We there- 

fore write 

(+)       iXk 
^k  = ck e (4.17) 

where ck is constant.  Substituting Equation (4.17) into Equa- 

tion (4.15) we obtain 

Tlck (4.18) 

which yields 

(+) 
ck p{-i^i=ki2t} (4.19) 

as the solution to the interaction equation for a single mode 

lEquation (4.15)].* 

* Note that this result will not change if the T       terms in 

Equation (4.14) are also included in Equation (4.15). 
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Frr   (2) 

c 

k/n 
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In this single mode case we can write the velocity poten- 

tial in terms of its Fourier amplitudes [Equation (4.19)] as 

(4.20) 

We can use Equation (4.20) to write the phase velocity for 

this single wave us 

-ph 
a,k ♦ /Uk 
^ = VgTk jl*Mck| (4.21) 

in terms of the modulus of the mode amplitude.  From Equation 

:k    '•k 

2 

(4.17)   it  is clear  that ck » q1J+) (t-0) ,   so  that, 

(t-0)| k2c2 
(4.22) 

where we have  used  Equation   (3.16)   to write  the  second equality 

in   Equation   (4.22).     The phase velocity may therefore be writ- 

ten as 

cph    =    V^Ä jl  +7kVJ (4.23, 

which is  seen  to agree to  second order with the phase velocity 

of a  Stokes wave,   i.e.,   have  the appropriate amplitude dependence, 
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5.  SEA SURFACE CONTOUR AND ENERGY 

Consistent vith the spirit of our technique, which assumes 

the non-linear couplings to be relatively weak, we shall cal- 

culate the wave enerr;, to only second order in the wave ampli- 

tude.  The kinetic and potential energies per unit surface 

area are, respectively, 

L        2  . 
(5.1) 

and 

K.E.      -     zj^Jk  pu2dz     ' 
o -»   ' 

- in»* 

and 

p •E • *■ dx     . (5.2 

Use of  Equations   (3.10)   and   (3.11)   gives us,   to  second order. 

P.E. -»r^f^-^]^^^]. (5..) 
Here we have also made the approximation of replacing Gk by g in 

Equation (3.10).  The distinction between Gk and g is important 

only for the shorter wavelengths, which are expected to con- 

tribute relatively little to the energy and also to violate the 

expansion in Equation (3.17). 

For right-travelling waves only, the energy is just 

'k L    • (5.5) K.E. + P.E.  » f £k. 
k>0 
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The «urface contour obtttined from the definition of the 

mode expansion (Equation (2.14)), iu, 

Ux,t) - -Y* — 
i    ()     i(kx-«t) 

(5.6) 

for waves travelling only to the right, we keep only terras with 

k>0, here.  For the case of a single mode. Equation (5.6) re- 

duces to Equation (3.16), of course. 

We wish to write Equation (5.6) so as to remove the pri- 

mary wave component from the oscillation.  To do this we write 

the primary wave number k-k so that, o 

wk " f«(k0*ic) ••hj14 I 
lt* 

" "ko'^G (5.7) 

where the group velocity (vG) of the primary wave is given by 

7 w)to/
k
0-  

The wave envelope can, therefore, be written as. 

;(x,t) 
r-* iki     I k . (5.8) 

Alternatively we can express Equation (5.8) in terms of a phase 

and amplitude modulation by defining the quantities 

40 

^M 



GR * i Gj 
Eq,+)ei.<x-vGt, 

(5.9) 

.uul 

o     O (5.10) 

Substituting Equations (5.9) and (5.10) into (5.8) yields 

C(xft)  - fl7^ 6T GO 
—7 cos 6^ + -—- sin 6^ 
|6|     o   |G|     o 

or 

C(x,t)  -  |G| cos I eo - arctan fe)l 

(5.11) 

(5.12) 

The modulation of the surface waves, i.e., the surface envelope 

is therefore given by the function, 

(*)  i*(x-vt) 
qk  e (5.13) 
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6.  SAMPLE CALCULATION AND CONCLUSION 

The purpose of doing a sample calculation is twofold: 

(i) to test the numerical methods in a simple case which can 

be compared to an analytic calculation, and (ii) to deter- 

mine instructive ways of presenting the results of the cal- 

culation.  For our test calculation we have selected what 

we feel to be the simplest problem which is still of some 

physical interest.  The initial state in the test problem 

consists of three equally spaced non-zero modes, the center 

mode being an order of magnitude larger in amplitude than 

its side bands.  The interaction between the modes is de- 

scribed by Equation (3.24) and the growth of all the modes 

in the system is calculated. 

This problem is the one considered both experimentally 

and theoretically (linear) by Benjamin and Feir (1967) and 

which lead them to the conclusion that a Stokes wave is un- 

stable.  The experiment consisted of generating a mechanical 

wave of fairly large slope (0.17) in a wave tank and modula- 

ting this wave with two low amplitude waves (perturbations) 

at the side bands of the primary wavenumber.  These perturba- 

tions were found to grow exponentially from out of the back- 

ground noise on the tank surface and eventually caused the 

primary wave to break up.  The details of this break-up pro- 

cess will be discussed below in terms of the present calcula- 

tion. 
43 
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We have limited the total number of modes in this first 

calculation to nine.  This number is somewhat arbitrary but 

it is large enough to indicate the general behavior of the 

system when the number of modes is increased.  Comparisons 

with the results from a second calculation with thirteen modes 

is also made.  Also, the present number of modes does yield 

accurate quantitative results over a time scale long compared 

to the characteristic growth ti^e of each of the separate modes. 

The wavenumbers for our modes are chosen such that, 

k = "T ^  '*   * » 0, 1, 2, . . . , N        (6.1) 

where L is a length representing the region of interest of the 

ocean surface and K  is  an integer.  Because we wish to make 

some comments on the comparison of the present calculation and 

the experiment of Benjamin and Feir, we select a length (L « 
4 

2.1946x10 cm) and integer (tc ■ 100) such that the central wave- 

number (k) is that of the primary wave in their experiment, 

i.e., k» 0.02863 cm  .  Our first calculation will not use the 

experimental amplitudes since these values lead to a very 

rapid break up of the primary wave.  The initial configuration 

is shown in Figure 3 labeled "time=0 sec."  We have selected 

an initial amplitude of the primary mode to be |q   | =0.071 and 

|q(C±, I «0.014 for the secondary modes which corresponds to wave 

amplitudes of 2.46 cm for the primary and 0.45 cm for the greater 

and 0.55 cm for the lesser of the secondary modes.  The remainder 

of the nine node amplitudes are initially zero. 
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The results of this calculation are presented in Figures 

3 through 6.  In Figure 3, we show a series of snapshots of 

the modulus of the mode slopes.  Each snapshot indicates how 

the energy has redistributed itself between the modes from the 

preceding snapshot.  We can see that the energy of the system 

which at time zero was concentrated in the three central modes 

diffuses outward into the neighboring modes of the system in 

time.  Those modes closer to the central mode grow faster than 

the more distant modes.  It is evident from Figure 3 that the 

evolution of the modes closely resembles the process of dif- 

fusion.  This notion of the diffusion of energy between modes 

due to non-linear interactions will be explored more fully in 

a subsequent report (PD-72-029) which models the interaction 

process between ocean waves in terms of a transport equation. 

In Figure 4 the sensitivity of the preceding calculation 

to changes in mode number is shown.  Maintaining the spacing 

between modes we increase the width of our k-space interval 

by four modes maintaining the same central mode.  It is clear 

that these additional modes have no effect on the growth for 

t < 80 sec since only the 12th mode has significant amplitude 

up to this time. 

Figure 5 is a continuous representation of the informa- 

tion in Figure 3, showing how each of the mode amplitudes 

grow as a function of time.  We can see from Figure 3 that 
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the side bands do not grow at exactly the same rate, but close 

enough that a single line may be used in Figure 5 to represent 

the growth of both these modes.  The central mode (K =100) is 

labeled "Primary Mode" in Figure "i, the first side bands (K = 99 

and 101) are labeled "Secondary Mode," etc.  In this figure we 

compare our calculations to an analytic result, i.e., the Born 

approximation.  The Born approximation for this problem is 

calculated by assuming, (i) that the amplitude of the primary 

mode is constant throughout the interaction process, and (ii) 

the freguencies of the primary and secondary modes are approx- 

imately egual.  The interaction equations then become, 

1
K  +1 o 

2        2 

O       O vo 
and 

q  a 0 
^o 

(6.2) 

(6.3) 

(6.4) 

since, by assumption (ii) 

o    o 
0) .-I-if g * (6.5) 

We may use Equations (6.2) - (6.4) to construct the equation 

d 
at "V1 

d
  I 
3t lqK -i o 

- •K q2
K  lm{q 

o o  ' o K +1% .->> 
(6.6) 

where Imj } refers to the imaginary part of the bracketed quan- 

tity.  Since our initial conditions are g  , (0) = a    (0) = a 
^K  +1     ^<^-l  '   ^ 

* J o 
and q  (0) = q  (0), Equation (6.6) has the solution 

''o      ^o 
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^0+l (t)   -  q (t)   - qjcosh^^lq^l2!]   -   isinh^Jq^ljj 

(6.7; 

The  Born approximation to the   secondary modes plotted   in Fig- 

ure  5   is,   therefore, 

o o *■       O       o - 
(6.8) 

We see that the growth of the secondary mode is similar 

to Equation (6.8) in the region where the approximations made 

are nearly valid, that is, for a near constant primary mode. 

The development is markedly different, however, after the higher 

modes have grown to an appreciable size, that is, the secondary 

modes cease growing and begin losing their energy.  The energy 

is depleted from the secondary and primary modes, causing the 

growth of the more central modes co be inhibited.  It is not 

shown here, but the energy drain of the primary mode does not 

persist, it begins growing after the other modes of the sys- 

tem are of the same order of magnitude.  The detailed manner 

of this growth ha? yet to be explored. 

In Figure 6 we illustrate the envelope of the surface 

waves in a region of ocean 438 meters long.  The envelope is 

calculated as it travels with the group velocity of the pri- 

mary wave (9.26 m/sec) so that each envelope shown, i.e., dif- 

ferent time snapshots, is constructed from the same group of 

waves as they propagate along the ocean surface.  In Figure 6a 
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we see that (time t=0)  the modulation of the ocean surface 

is slow, but significant over the region of interest.  This is 

due to the large initial amplitude of the secondary modes. 

The step size is given in units of the primary wavelength, i.e., 

X = 2.194 meters.  The initial undulation of the envelope seems 

to be compressed in time into a series of bumps.  These bumps 

rapidly become accentuated, forming wave packets on the sur- 

face.  It will be seen, however, that the large structure in 

Figure 6 is due to the periodic boundary conditions imposed 

on the problem and does not represent the breakup seen ex- 

perimentally by Benjamin and Feir. 

The significant structure in Figure 6 lies between the 

modulation peaks.  In this region the modulation remains 

fairly constant during the time in which energy is diffusing 

out of the center mode (see Figures 3 and 4).  As the ampli- 

tude of the higher modes increases, however, the structure of 

the wave envelope changes.  The extreme case is shown in Fig- 

ure 6c where the detailed modulation of the surface waves 

has clearly developed.  It is difficult to determine the 

surface structure by looking at only a picture of the modula- 

tion so we introduce a parameter to indicate the degree of 

distortion. 

To characterize the distortion of the ocean surface, we 

use the ratio of the difference between the maximum and mini- 
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mum envelope height to the average envelope height.  In Fig- 

ure 7 we use this quantity to indicate the growth in the sur- 

face wave amplitude modulation.  The solid curve refers to 

the sample calculation above, the dashed to a simulation of 

the Benjamin-Feir experiment.  We see in Figure 7 that for 

t^70 sec, essentially no change is observed in the modula- 

tion of the surface.  Note that we have removed the effects 

of the large bumps in Figure 6 and are concerned only with 

the "actual" modulation which lies between the bumps.  The 

sudden growth of the surface distortion (t>70 sec) occurs 

when the magnitude of the modes becomes comparable (see Fig- 

ures 3 and 4) so that large transfers of energy can take 

place in small interaction times. 

The second curve in Figure 7 represents the growth of 

the surface distortion from the calculation using the ini- 

tial conditions of the B-F experiment.  This calculation 

again uses nine modes, with the central mode corresponding 

to the mechanically generated wave.  The experimental condi- 

tions were simulated by giving each of the remaining modes 

the uniformly small value cl 0.001, which is intended to re- 

produce the noise at the tank surface.  In terms of our vari- 

able, the central mode amplitude is qlZi  ■ 0.17 corresponding 

to a primary wave of 5.93 cm amplitude.  These initial con- 

ditions are shown by the "time =0" graph in Figure 8. 
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r 
Figure 8 depicts the modulus of the mode amplitude at 

different instants of time just as Figure 3 for the test cal- 

culation,  .'e can see that the non-linear interactions pref- 

trentiaily amplify the side bands which differ from tne pri- 

mary by ±3Ak, where Ak is the step size in wavenumber space. 

These side bands are 1.3 and 0.7 of the central wavenumber 

(ico) .  This is in essential agreement with the perturbation 

analysis of Benjamin which shows that the freguency side bands 

at 1.1 and 0.9 of ü)O would be preferentially amplified from 

out of the background noise.  The effect of increasing the 

number of mod^s in this calculation is shown in Figure 9, 

where we have reduced the step siz- Ak by a factor of two. 

In Figure 9 the mode numbers which differ from the primary 

by ±10% are modes 1 and 13.  We can see that instead of a 

single mode on each side of the primary being preferentially 

amplified we have a preferred group of modes being amplified. 

This would seem to indicate the validity of the preferred 

mode concept in the contiijous limit, where a group of waves 

in a region öw about the average position ±10% of H would 
o 

be picked out of the background. 

In Figure 10 we again illustrate the modulat-on of the 

surface envelope on a stretch of ocean 200 times the primary 

wavelength (Xp« 2.194 meters).  Comparing the initial distor- 

tion with that of the test calculation in Figure 6a, we see 

that the direct comparison is somewhat deceptive in that the 

56 

mm 



icr'h 

UJ 
CL 
o 
_l 
C/) 

UJ 

io-2h 

Z) 
_l 
=) 
Q 
O 
2 

io-3h 

0 SEC 

io-4i- 

FIGURE (9) 

20 SEC. 

LJ 

30 SEC. 40 SEC 

" n 111 i 111 M       ■' niif       ULLLU II 
I    3   5   7   9  II 13        I   3  S   7  9  II  13        I   3  5   7   9   II 13        13   5   7   9  1    13 

MODE   NUMBER 

57 

*mm^ ^rnam 



4.0 r 

3.0 

2.0 

1.0 

5.0 r 
LÜ a. 
3   4.0 
UJ 

g   3.0 
111 
^   2.0 

K 
CO 

o 

1.0 

TIME=0 SECONDS 13 MODES 

9 MODES 

20    40    SO    80    100   120   140   160   180   200 

(10A) 

TIME =20 SECONDS 
13 MODES 

9 MODES 

J L ± J I I L J I 
0     20    40    60    80     100   120    140    160   180   200 

(10B) 

TIME = 30 SECONDS 
13 MODES 

9 MODES 

-L -L J 

20    40    60    80    100   120   140    160   180 200 

DISTANCE   IN UNITS OF   Xprimary (=2.194 meters) 

(10c) 

FIGURE (10) 

58 

mm 



B-F case has a greater initial distortion which is not evident 

from the figure.  In Figure 10 the surface modulation for both 

the 9 and 13 mode B-F cases discussed are given.  We see that 

the effect of decreasing the mesh size by a factor of two in 

k-space has displaced the central bump in the 9 mode calcula- 

tion from 100 Xp to 20f Xp in the 13 mode calculation.  The 

effect of this reduction is most clearly seen in the "time = 

30" graph.  Although the 9 mode calculation does show the 

modulation of the surface waves, the envelope becomes distorted 

as it approaches the 1/Ak = 100Xp point in the figure, i.e., 

the periodic boundary.  This effect is markedly reduced in the 

13 mode calculation which shows precisely the type of surface 

modulation observed by Benjamin and Feir.  This comparison 

indicates that caution must be exercised in the selection of 

the mode spacing used in a particular calculation.  The am- 

plitude scales in Figure 10 are arbitrary because the 9 and 

13 mode curves were shifted so as to provide the best visual 

comparison.  The initial curves are actually superimposed. 

The distance the primary wave travelled in the B-F ex- 

periment prior to breaking up was approximately twenty-eight 

wavelengths. The corresponding time interval is 33 seconds. 

We see from Figure 10 that the distortion of surface becomes 

quite significant (wl0%) at this time, which agrees well with 

the experiment. 
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It is clear that when the primary wave initially contains 

most of the energy in the wave system, that the coherent non- 

linear interactions between the surface gravity waves lead to 

a breakup of this wave into packets.  The characteristic time 

for this breakup is determined by the details of the initial 

conditions.  The breakup is seen as a distortion of the sur- 

face envelope.  This distorting occurs as energy coherently 

diffuses from the primary to the other modes in the system. 

As additional modes develop the surface distortion increases 

markedly, but the pattern of the distortion does not change. 

We see this in Figure 10 where the initial pattern in the B-F 

experiment translates and grows but does not change in shape. 

This would indicate that the group velocity of the pattern, 

which is that of the primary wave, changes only slightly as 

the other modes develop;  also that the phases of the other 

modes "lock" onto that of the primary so as to create the 

stationary pattern. 

If such an effect were present on the real ocean it 

could be observed with radar. The radar return from such a 

surface would indicate the envelope structure and "see" the 

phase-locking effect. The distorted envelope would yield a 

strong correlation centered at the frequency of the primary 

wave. 
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APPENDIX A 

To integrate Eq. (3.29) over the interval 0<t<T, 

we choose a time step A, where T/A is an integer.  Let 

tj = JA,  j = 0, 1, 2,   ... , T/A  . 

Integration of Eq. (3.29) over the interval t. to t.+1 is 

done in the form: 

q}[
+)    (tj   +  A)   = i.. (Wüi 

I   v2 ^ 
, 2^ » - vk   I   A I ^^ 

+    i      ~«<        r i Mi 
!i+p=k+n    l Ipiiik    xipn;k   u; (A..I) 

where 

ipn ;k
(j)5 J 

t . 
j 

xi*t 

"tpn e '^   " • (A.2) 

The numerical evaluation of Eq. (A.2) is done as 

follows 

Write   [we drop  for  the morr.ent the   (Jl,p,nfk)   subscripts] 

H(t)    r     Hit)   e1^0        , m (A.3) 

where Hm and $  are  real.     We suppose for the  evaluation of I(j) 
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the qk  (t.^ and qJJ
+, (t. -A) are stored.  We can thus evaluate 

Ho    E     Hm<Vt  ) Hrn(tj)   ^H,        , 

H, 

and 

^«^j1   " "m^j  " A)l/A 

Mtj  +  7*   *    "V   +I    $1       ' 

(A.4) 

\1    =     [«(tj   -  •(tj-A)l/A (A.5) 

We may then express  I{j)    [Eq.   (A.2)] 

Kj)     =    e 
QCtj  +| )+$0] 

[H^ + H.T]   e •L    dx 
J A 0        1 

i[n(tj   + 5)   + *0] 

=    e tHoLo + H1L1] 

where 

Lo   =   W*TT   sin  IW + •1)A/21    , 

L,     =     i—y        J  2  sin   [ (0 ♦ *1)A/2] 
(«+*!)2 ( 1 

-    ((n + *1)A)     cos   [{Q + *1)A/2]   ( 

(A.6} 

(A.7) 
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In Equation (A.6) we have introduced the new variable 

of integration  T = t - (t. + A/2). 

To check the numerical accuracy of the calculation at 

each step of the integration the energy is calculated using 

Equation (5.5).  Since the energy will be conserved in the 

absence of wind and viscosity, this provides a quantitative 

check of our procedure. 

6| 

■ 



REFERENCES 

Benjamin, T. B., (1967), Royal Soc. of London, Proceedings, 
A299, 59. 

Benjamin, T.B. and J. E. Feir, (1967), J. Fluid Mech. 27, 417. 

Cohen, B. I., A. N. Kaufman and K. M. Watson, (1971), Phys. 

Rev. Lett. 29^, 581. 

Hasselmann, K., (1961), J. Fluid Mech. 12, 481. 

Hasselmann, K., (1966), Reviews of Geophysics 4, 1. 

Phillips, 0. M., (1966), The Dynamics c_ the Upper Ocean, 

Cambridge University Press. 

Whitham, G. B., (1966), Royal Soc. of London, Proceedings, V299 

65 

- - *«■* mmm 


