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ABSTRACT

A set of Hermitian equations is constructed using a mode
description of the dynamic equations of the ocean surface.
These equations are sufficiently flexible to include the coup-
ling of the ocean surface to the wind, viscous damping and
the effects of surface tension as well as the non-linear inter-
actions between surface waves. The system of equations is ex-
act and from them a system of approximate, first-order (in time),
finite differential equations is derived and solved numerically.
The solutions to these coupled equations p  ovide one with a de-
tailed view of the growth of the non-linear surface waves and

energy spectrum with time.
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1. INTRODUCTION

The problem we wish to discuss in this report is how to
describe the physical structure of the ocean's surface by
means of a direct calculation of the non-linear interactions
between gravity waves. Some of the interactive mechanisms them-
selves had not been identified until the last decade; so it is
no surprise that there does not exist as yet a cohesive theory
which presumes to calculate the surface structure of the ocean
from first principles. The extreme difficulty of the problem
ities in the nonlinear character of the interaction process
which necessitates the construction and solution of non-linear

models.

Theoretical modeis describing the ocean surface and the interac-
tion of surface waves with surface waves, and surface waves with in-
ternal waves, fall into two rather broad cateqories. The first cate-
gory comes under the general headiny of Ray Theory, which is space
oriented and primarily concerned with wave packets, e.g., Whitham

(1966). In this type of *“heory one has position and time dependent

wavenumbers and frequencies. The wave packet models are also known
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t as WKB or eikonal theories. They consider the ocean surface
as essentially a superposition of a number of spatially lo-
calized wave packets, each distinguished by a characteristic
wavenumber k and frequency w which are related by means of a
disperison relation. These wave packets move along trajectories

defined by the wave conservation equations

>
} .g—%{ = V.}:w (l.l)
and
-’
‘ -d-]i = =V, w 1.2
3t : ( )

which defines the paths along which energy naturally propagates.

The second approach and the sne we will use in this paper
is a modal description . the interaction process. Tne mode
oriented models describe the ocean surface as a superposition
of waves (in the inperturbed ocean this would be a superpo-
sition of sine waves). Such models generally concentrate
their attention on the transfer of energy between the diffe.rent
modes. The most complete theory using such a method is that !
due to Hasselman (1961). He introduces the mode expansion for [

the surface elevation and velocity potential in the dynamic

equation for the ocean surface, as is shown in Section 2. 1In
acdlition, each mode is expanded in a perturbation series using

the slope of the waves as a smallness parameter. The non-

linear interactions are given at each order in perturbation theory

Fy the product of an appropriate number of first order terms. By
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assuming that the sea state is initially Gaussian, an expres-

sion for the redistribution of energy between th-> interacting

modes is obtained.

In a later paper (1966), Hasselman structures the modal
problem so as to make applicable the methods of Field Theory.
The non-linear interactions enter this structure as pertu:-
bation diagrams of increasing order, just as in Quantum Field
Theory and Nuclear Physics. However, all the difficulties of
convergence and mathematical opacity also attend this approach,
making practical calculations without the assumption as to the

statistical nature of the sea state uncertain.

In the limiting case of small amplitude waves, both treat-
ments, i.e., rays and modes, are equivalert since the require-
ments for validity of the WKB approximation are usually well
satisfied for the waves of interest. This equivalence is often
obscured in the development of models since spatial structure
is bound up in the details o2f the phase relationship between
different wavenumbers in a mode description; whereas the wave-
number structure is dependent on the details of the spatial

correlations function in the wave packet description.

In Section 2 our model ocean is defined in terms of Ber-
noulli's equation for the ocean surface and the kinematic boun-
dary condition at that surface. In a mode description these

equations are reduced to a set of coupled equations which have

‘-_‘;_.__._———#




cnly first order derivatives in time. The method of keeping
the first order simplicity of the equations is to introduce a
set of hermitian variables. These variables essentially de-

couple the equations into a set of right and left moving waves,

with the amplitudes q;+) and qé-{ respectively. The rapid time

oscillating part of the mode (Fourier) amplitudes for the vel-

ocity potential (¢k) and surface elevation (;k) is in this way
+ -

renoved so that qé ) and qé ) are slowly varying functions of

time. These new mode amplitudes refer to a Fourier expansion

in both space and time.

The utility of such a representation of the surface ele-
vation and velocity potential is explored in Section 3, where
the original coupled equations are cast in the form of an un-
coupled eigenmode equation. In this representation the only

variation in the qéi)

amplitudes comes directly from the non-
linear interactions which are in terms of multiple products
of these amplitudes. For calculational expediency the exact
equations are expanded and the terms grouped so as to give
second, third and higher order interactions. The expansion
parameter is again a wave slope, but we expand only exponen-
tial terms and do not use perturbation theory. This we feel

obviates some of the difficulty encountered in Hasselman's

treatment of the problem.
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In Section 3B the specialized problem of the interaction
of only surface gravity waves is discussed. A resonance (fre-
quency matching) condition simplifies the eigenmode equations
so that only the third order interaction terms contribute to
the rate equations for the system. A discussion of the inte-
gration procedure to be used in obtaining the numerical solu-
tion to the problem is presented in the appendix. The integra-
tion technique employed allows one to take large time steps on
a scale corresponding to the oscillating part of the solution.
This is done by integrating the rapidly oscillating part of the
interaction coefficient analytically and numerically integrating
only the slowly varying part. This tethnique was used sucess-
fully [Cohen, et al (1971)] in the treatment of the laser heat-

ing of plasmas.

Section 4 explores some of the specialized types of in-
teraction, such as self-interaction and the scattering of waves
which do not change in wavenumber. The connection with the non-
linear Stokes wave is also made here. The form of the surface
contours and the representation of the sea spectrum in terms

(t)
k

of the g - amplitudes is discussed in Section 5.

A preliminary calculation is presented in Section 6, which
has direct bearing on the experiment of Benjamin and Feir (1967)

in which they determined a single gravity wave to be unstable.

A single mode of large amplitude is allowed to interact with




its side bands which are an order of magnitude smaller in am-
plitude. It is observed in the calculation that energy dif-
fuses out of the primary mode into the other modes in the sys-
tem, until the neighboring and primary modes are of comparable
amplitude. Energy is then transferred rapidly between all the
modes in this region of k-space. The spatial picture of the
surface when this rapid transfer process takes place is a break-
up of the primary wave into a number of wave packets. This
breakup into packets is the instability found by Benjamin and
Feir. A detailed comparison with these results is made in

the text.
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2. MODE COUPLING ANALYSIS

In the following analysis, the ocean is assumed to
be homogeneous and irrotational, that is, if ¢ is the potential
describing th.: wvelocity field (3 = V), then Uxu = 0. The
velocity potential also satisfies Laplace's equation

V2o =0, (2.1)

since the fluid is assumed to be incompressible. If we define
the quantities: ¢ as the fluid density, 3 as the gravitational
acreleration, and p as the pressure, we may write the momentum

equation of the fluid as
>
d 1 »>
a-‘tl=--5Ap+g . (2.2)

In terms of the velocity potential, Equations (2.2) may be

written as,

g% = V [.g_:i + %—Véb-‘?@] = -V’g + gz$ (2.3)

where we have made use of the fact that the d/dt is the

Eulerian derivative

g? =& +vey (2.4)

the density p is constant (assumed) and z is the vertical

coordinate.
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We may integrate Equation (2.3) immediately to obtain
o, + ) =
" 3 VoV + e + gz =0 at z = g (2.5)

with the condition that hydrostatic equilibrium must prevail
at infinity, where Ap is the incremental pressure with respect
to ambient and z = ¢ is the free surface of the ocean. A
second equation may be obtained by recalling that the rate of

increase in the wave height following a fluid element ig the

vertical component of the fluid velocity:

dt - %% at z = ¢ . (2.6)

-

Using the notation (V) for the horizontal gradient, we may

write Eq. (2.5) and (2.6) as

¢t + % (V)% + gz +ap/p= 0 at z = ¢ (2.7a)

and

g, + VéeVr - ¢, =0 at z=1¢ , (2.7p)

as the set of coupled equations describing the ocean surface.
To obtain an expression for the pressure in Eq. (2.7a).
we must consider the fact that the interface between two fluids
is in a state of uniform tension. The pressure condition at
this interface can be obtained by considering the vertical
forces acting on a strip of surface of width 6x. If p is the

pressure just below the water surface, Pa the pressure of the

-_____.__._____




air and T1 the surface tension, then

= T o
(p pa)6x+6['rl T =0 (2.8)

is the force balance acting on the strip 6x. We therefore

have
P=p, - T — . (2.9)

The quantity P, is variable if there is a wind blowing over
the ocean surface. We model this variation in pressure by

the expression

1 14

) P, = 4 == ¥ Pambient ' {(2.10)
which gives the in-phase pressure variation at the surface
due to the action of the wind: Substituting Egs. (2.9) and

(2.10) into (2.7a) yields

2
o, + Lve)? + gz 4 u%% a Y:—:’ =0 (2.11)
X

where we have assumed conditions to be completely uniform in
the y-direction. i.e., a series of ridges.
In the above equations (2.11) and @.7b), we have assumed

the existence of a velocity potential (3 = vé) based on the

assumption that the ocean is irrotational. We have also pro-

* Equation (2.)0) is intended to indicate how one includes the
contribution from the wind in the dynamic equations, the de-
tailed form of the term will change in a realistic calcula-
tion, e.g., making a a function of k as in the Miles-~Phillips
Model.

1
|
¢
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E vided @ means by which energy is supplied to the surface waves,

, i.e., by the action of the wind. We must now discuss the mech-
anisms by which this energy supplied by the wind may be dissi-
pated. The most dramatic process is the formation of "white
caps" or wave breaking. In our model this breaking directly
transfers energy into heat and therefore out of the wave sys-
tem and is not directly included in the above equations. The
"white capping" should appear as instabilities in the above
solutions when the wave slope has exceeded some critical value.
A second mechanism for the dissipation of energy is the action
of molecular viscosity, which has not as yet been included in

the above equations.

To model the effect of viscosity, we first transform the

system into a modal description by introducing the plane waves
N ikx

where L (= length) is a dimension of interest for the problem,
and decompose the vector potential and wave amplitude into their

Fourier components,

¢(x,z2,t) -;xk(x) elklz ¢k(t) (2.13)
and

t(x,t) = ;xk(x) ck(t) (2.14)

10




Introducing Eqs. (2.13) and (2.14) into Egs. (2.11) and (2.7b)
yields the set of coupled equations in terms of the modal

amplitudes,

;xk (x)

. lk|z 2
] 4
¢y € +gg, + 1ak;k + vkt

k

(2.15)

=2 v0)?; z = ¢

and

|k|z

Ty = |k|¢ke = - VoeVg; 2 =107 . (2.16)

;Xk(")

We wish to rewrite Egs. (2.15) and (2.16) in a form
where the left hand sides of the equations are linear and the
right hand sides contain all the non-linear coup.iing effects.

To do this we evaluate (V<I>)2 and 5@-3; to be as follows:

(ve)2 = o2 4 o2
(121+p1)2
= = (p - |2||p|)¢2¢pe XgXp (2.17)
L,p
and

& EAR

VoV = - Lp ¢£ ;pe xzxp (2.18)
L,p

and remove the exponentials to the right hand side of Equations
(2.15) and (2.16). Then by multiplying these equations by

x;(x) and integrating over x, we obtain

11




b + 9t == 2 U - [2llphege,
L,p

(J2]+]pl) g (x) *
_/; xz(x)xp(x)xk(x)dx

& ‘i’zf(e“'lC(X) -1 x, g (max .
)
- iakr, - VKL (2.13)
k - YK Ty .

and

e
~

= Y, IlIC(X) *
¢ = Z ~p¢ch_[& X, XpXdx
L,p
*
+EI2|¢ f Heta -1) %, X, dx (2.20)
1

or defining Fl(k) and Fz(k) by the right hand sides of
Egs. (2.19) and (2.20), respectively, we have the set of
equations

¢k+-Gka = Fl(k) (2.21)

where Gk =g+ Yk2 and

Zy = Ikl ¢ = Fylk) (2.22)

which to this point provides aformally exact description

of the interaction process in » single horizontal dimension.

: 1
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We now return to the discussion of the viscous damping
of high frequency waves. 1In a viscous fluid the interaction
between water molecules produces shearing effects when the
water is in motion and destroys the irrotational assumption

imposed above. 1In such a system we assume that we can super-

impose the rotational character of the fluid on the irrotational i
so that
U= 99 + 3/ (2.23)
>y
where va' # 0 .,

The energy of the fluid motion is gradually dissipated by
these shearing effects ;nd may be modeled by determining the
rate at which the energy is being dissipated.

Following Phillips' discussion of viscosity, we write

the rate of strain tensor as

ou. ou.
=1 )Y_i,"3
i3 T 7 ] 3%, 8% } (2.24)

J

where (i,j = 1,2) label the components of the coordinate
system and velocity. Assuming the ocean to be an isotropic,

incompressible Newtonian fluid, and p to be the coefficient

of viscosity, we may write the frictional force per unit

volume in terms of the derivative of the rate of strain tensor,

11
i

£, wp—id (2.25)

13




since V-u = 0. We may also write the rate of working against

viscous forces as

9e. .
= i §
uE =20y gy
= 2y w2 (uje.s) - € (2.26)
0X.. iTij )
J
A % 3ui 5
where ¢ = .p(eij) = 2ueij 5;; (2.27)

The first term on the right of Eq. (2.26) repr.sents the
viscous energy flux; the second term, the rate of energy
dissipation per unit volume by molecular viscosity.

The rate of energy dissipation per unit area at the

surface of a very deep ocean can be written, using Eq. (2.26)

y]

-00 -00

2
4 G ou . ou
P = - = - 1 I P
E fedz f " 5, " 3xi\ dz . (2.28)

The contribution from the surface. layer is assumed to be
small, the primary effect coming from the ocean interior.
Using only the irrotational part of the velocity from Eq. (2.23),

we may write Eq. (2.28) up to second order as

o 2
E = -/ 21 g-:-}ﬁ- dz . (2.29)
i°7)

=00

We evaluate Equation (2.29) using a single mode solution to

the linear equation, i.e.,

14




¢ = c¢ e*? sin k(x-ct)l (2.30)

so that Equation (2.29) is reduced to

E = - 2y ¢§k3 c? (2.31)

Using the fact that in deep water
_1 2 2
E = > p¢kc: k
the attenuation coefficienth for this wave can be written as

Y, = - 3% = 2vk? (2.32)

where v = y/p is the kinematic Viscosity of water. The energy
density of the wave field decreases as exp {-Zth} and the
{

amplitude by expi-th}. We may, therefore, model the effect

of viscosity in Equation (2.21) by including the term

-2y szbk (2.33)

in Fl(k).

The equations for the ocean surface now take the form

2 ~
Ot G = Fy(k) - 2vk 9 = Fy(k) (2.34)

and

o = Ikloy = Fy(k) = §2(k) ; (2.35)

which includes models for: (1) the generation of waves by
wind, (ii) the non-linear interaction of surface waves,
(iii) the effect of damping by the dissipation of energy

through molecular viscosity, and (iv) the generation of capil-

lary waves.

15




3. EIGENMODE DESCRIPTION

The structure of Egs. (2.34) and (2.35) suggests that

it may be possible to transform these coupled equations

to a decoupled representation. We can in fact define the new

variables

o) = YGyv, (k) (3.1a)
and

g, = & /|k_| ¥, (k) (3.1b)

which, when substituted into Equations (2.34) and (2.35), yield

ip. (k) - /GIk| ¥, (k) = == F. (k) (3.2a)
1 k‘ 2 /(—;;- 1
and
19,00 =/Glk| ¥y (k) = /Ikil F,(k) . (3.2b)

If we take the sum and difference of Egs. (3.2a) and (3.2b),

we obtain

. . e A l ~

i, +0.) =G k] (Y, +¥,) = = F, (k) + F., (k)

17vV2 Kk 1 "2 ﬁ%{ 1 /ﬁ:r 2
and

(b=0,) +/G k| (¥ w)-—-—F(k)- F. (k)

(=¥, 1 Ve /I_T 2

k

which in terms of the quantities

17
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(%) 1 k ~
by " = = [“’1”‘) t "’2“"] (J'—LL) e

and
(+) i 4 + b -
F'=" (k) =]— F, (k) - F, (k) (
[/ﬁk L 2]k 2 J

becomes

. (+) (+) _ o(+)

iby, -véklkl b," = F" (k)
and

) = =
ib, ~ +4£ [k| b ) = p(7) (x)

In terms of the orthonormal matrices

ct) = L <i> ana c{7) =1 _i)
~ Y2 ~ VZ

Egs. (3.3) to (3.5) can be written

By

’

(+) o (+) (=) (=)
=b, ¢ + b ¢

(+) (=) e
Fao) = Faag™t + raog!?

~
and

ib, - AR, = E(k)

where

2 = /5 1k ¢

18

(3.5a)

(3.5b)

(3.6)

(3.7)

(3.8)

(3.9)
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Using the preceeding equations, we may express the

velocity potential and wave height in terms of the eigenmode

amplitudes of the problem [béi)] as follows
2
+) b( )f (3.10)

"G v, (k) =4__k_
¢ 1613
1
and 2

iVik] v, (k) = 1417-1- ) pl- )f . (3.11)

Both the velocity potential and the wave height are real

®x

x

quantities so we may equate them with their respective complex

conjugates

1

L 2
P e B |
2

1
Toy ok ’
= * _lk|z (#)* L (=)*({ L
= Xy, © k ’b +b s -
kK X T Ik k |x|3
%*
and because Xk = X_x We obtain
(+) (=) 4 (+)® (=)*
bk + bk = b_k + b_k . (3.12a)

In a similar manner




and therefore

— * -) %
RIN A  N E  N SN S (3.12b)

Adding and subtracting Equation (3.12) yields the
following conditions on the amplitudes
(+) _ n(=)* | (=) . pi8)*
bk = b_y i by b_, b (8=13)
We can remove the rapidly oscillating part of the expres-
sion in our eigenmode equations [Equation (3.5)] by introducing

the variables

(#) g siwt
b, =X _o K (3.14)
7
where qéi) is assumed to be a slowly varying function of

time. If we equate wy to /Gk|k| in Eq. (3.5), then we have

the new equations

tiw, t
AR 1% (3.15)
for our system.

+
To interpret the significance of the ) let us

1‘( ’
consider a single mode propagating to the right. Then,

according to Eq. (2.14) the wave height is

L(x,t) = ¥ (%) T (t) 4 x_ (%) T (€)
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Taking b£+) and b(;) = [bé+)]* as the only nonvanishing modes,

this becomes

: i(kx-w, t) -i(kx~w, t)
Z(x,t) = (2 ﬁd ) [%é+)e oM e * ]

On setting % = |k|-l and

i6
+ (+) 4 k
A PSR :
this becomes
5(;.t) = _|q£+)| Sin[kx - ut + ek] . (3.16)

The dimensionless quantity |q£+)| thus represents the
ratio of the maximum wave amplitude to X. We expect
0 < |qﬁ:” < 1, since at the upper limit very strong coupling
between modes will occur. This notion is consistent with the
analysis done by Stokes on finite amplitude effects on gravity
waves in deep water. It was determined that a maximum crest
angle (120°) for gravity waves existed, after which the wave
becomes unstable. This restriction is easily maintained in
terms of the slupe of the gravity wave, i.e., the ratio given

by Eguation (3.16). The quantity qé+) is, therefore, a more

natural variable for the problem than the wave height.

21




3A. The Approximate Equations

i Although Eq. (3.15) is formally exact, in its present

t form it is not of much use. It may be put in a more manageable
form for numerical calculation by making a number of reasonable

approximations. Consider the function Fl(k) '

. (1t1+1pl)ety o
F (k) = %— Z (¢p - |2||p|)¢2¢p[e X g XpXk dx o
L,p
8 |2|C(X) * 2
-Z ¢y (e -l)xlxkdx-ickck-ka ¢k
2 .
(3.17)

in this expression the function I multiplied by a wavenumber

in the exponential is a small quantity since the slope cannot
exceed the value 1/7. This value is a result of the Stoxes
analysis mentioned earlier. The wavenumber in the exponential
is generally restricted to a region of wavenumber space in which

s |2]s |k

the surface elevation is being expanded, i.e., |k max|

min

min-—kmax|<<|£|, so that |%|g(x) has a critical value

which is on the order of 2n/7 m 1. It is therefore not unreason-

and |k

able to expand the exponentials under the integral sign in Fqua-

tion (3.17) and keep terms to only third order in the amplitudes
when one is not considering capillary waves or those gravity

waves close to breaking.

We perform this expansion in Equation (3.17) and replace

by its Fourier expansion [Equation (2.14)] to obtain,

G o G e
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~ 1 .
P00 ™3 2 (- Tallpheyey - 2 llégs, - dake

Arp=k 2 +p=k
/L /L
2
+ 3 we - lellphls]+ Iple o o8,- 20K ¢,
l+p+n=k
2

£+p+n-k

LIL $yCotn - (3.18)
. 2

The time derivatives of the amplitudes may be replaced in this

expression by their value from Eq. (2.19) to obtain

- . _ 2
Pl(k) PO 1akck 2vk ok

1
- at) |t |z
+ gptkk-(lp It1leDege, + (6, + satyfels e

YL
+ 2v22¢l¢p$
bl }1 (o -l2llpl) U2l + Ipl - |4+pll6.e ¢
g+ptn=k Z P
Yh

&
) 2
+ 1—4—- [(Gl + iGl)Cl + 2vi Ql](pcn (3.19)

In a similar way we obtain the following expression for ﬁz(k)

2
F (k) = Z L(2+p) ¢ ¢ Z ?lp + J—'{—*Izlolcpcn .

f4p=k L+p+n=k
/T /L

(3.20)

Our eigenmode equations are, however, in terms of q(-) and

( )(k) not ¢k ck and r(k) We must therefore determine P(t)

in terms of q( )
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F——r—v————vi*v-
3

We recall that

1
o) (40)°

F(t)(k)-{ L F (k) ¢
V26, Y2]k]

which may be written using Egs. (3.19) and (3.20) and Egs. (3.10)

and (3.11);
i . -
. o e B | el o o) |
L+p=x
(+) (-) (+) _.. (=)
2 Blp[b’- = by ][bp bp ]
]

+

3
(2) [L(+) 4 (=) (+)_(-)]$(|k|)7
Ylp:k[bl +by ][bp bp Ip
(+) (-)] (+) (-)][m_ (-)]
¥ E 3“'-9!\["’- *By [bp +by "J|Pn " Pn
[ L+p+n=k

(+) ([ (#) _ (-)][ (4) _, (- )]
Bg_pn[b,_ b} ][bp b7 ] [pg*) -

3
MO SRR | (N SRR TN

Ikl [ (+) (=) z‘/Gk (+) . (=)
{ + iak T[bk -bk ] - 2ivk T[bk +ka

+

+

(3.20)
and
apo = iﬁ:’—?—; (to- Illpl)] |
elp e =i l%l \[TETT;T-(Gl-+iul) ;
Y!(.;):k e G,lpl 4 VE’;T; :—p:- L(L+p)




- @2 (o= 121 1p1) (121 + Ip] - |2+p1) YInl/2 .

fpn
2
L
bon = L yTeTIRTInl2 (o, + az) |
and
. 2 G, | ylellnl
(3) £ 4 L Kk
Il R O G 310 x| 2
(3.22)
The complete expression for Equation (3.16) is as follows:
’i“’ ~i(w +w )t;
5 () 1 (+) _(+) (%)
\/Gk iaq, Z ;qz %5 e [°1p+82.p sz k]
L +p=k
i(w, +w )t
(=) _(=) Lp (%)
+4qy 'q, ‘e [Alp-+alp ye k]
-i(w,~w )t
+ 9, qp e [azp Blp sz i
i(w,~w )t 3/2
+q, qp e [alp-alp+Ylp,k]$ <|5[|>
' Z el gt e i((‘)"m*’m“)t[ +8 () ]
__ ql q Gzpn zpn Yﬁpn i

l"‘p+n-k

oy ~l(w,+w _-w )t
q’('+)q;+)qr§ )e £ °p ' n [

+

= = - ()
®tpn " Bipn ~ Yepn; k]

+

(+) ( (+)e-i (wz-wp'bwn)t [

- - (2)
q qp 9 %y pn szn Yign: k]

25




-i(mz-wp-wn)t

+ qé+)qé-)qé-)e 2ot B2pn * Yipn;k ]
¥ qé-)qé+)qé+)ei(wz-wp_mn)t ;°zpn “Bepn * Yé;;;k.
. qé-)qé+)qé-)ei(wz—wp+wn)t -alpn+ szn ) Y:;L;k]
. qé-)qé-)qé+)ei(wg+wp-wn)t e s Bnpn ) Yé;;;k]
+ Qé-)qé')qé')ei(“2+wp+“n)t - szn + Yé;;’k]i
+ |iak ‘/I_-:—T: 2ivk ‘@2-"_ q’;: . (3.23)

3B. The Resonance Condition

We expect that in the development of the amplitude of

the k9

mode non-resonant terms, being oscillatory, will make
a zero, i.e., negligible, net contribution for the interaction
of surface gravity waves alone. Only those combination of
frequency close to Wy i.e., those in resonance, will contrib-

ute substantially to qéz). We therefore rewrite Equation

(3.23) for a right travelling wave as
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» *(+
t S
+
X
which we

o (+
3" -
+

where
I‘Jl,pn;k =

and

[cﬂ(lkl

2wk

720

vkz] q}£+)

(+) (+) (=)

(+)
alp-n'+82p-n'+Y£p-n;k}

q, qp 7
L£+p=k+n
i . WSO N O BN CO IS ,
_al-np Bl-np Yl-np;kd 9 9.p qp
[ ) (+) (=) (+) (+)
_a-npl 8-np2'+Y-npz;k 9n qp 9n b
1
3
1 k 2 A
Bl e TR
can rewrite in the form
k|k
[a |x| _ vkz] g
2wk
iQ t
2 : . (*) #)_1=) Lpnk
i ngn;k qy qp a, e (3.24)
L+p=k+n
1 (+) _ (+)
2 (azp-n N Blp-n —Yf.p—n;k 0‘fl.—np ¥ Bl-np 4 Y9.-np;k
N3
N - o (#) 1 k
Q_npz"'a_npl Y—npl;k)(ﬁGk lgpn ) (3.25)
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Q + W —wp - w : (3.26)

£pnk

If we define the functions

*
Hypn(®) = g gt fagt] (3.27)

£pn p

and

lenk , (3.28)

i
\
; then Equation (3.24) can be written in the form
3

c(+) _ [eklkl _ 27 (+) Z . int
I - [ 2w vk N B lI‘!Lpn;k Hlpn(t) €

k L+p=k+n (3.29)

| where

Fepnix = Rapn:k *2lepn;k

wy ||

Repnik 16G, 377

| 2pn |

VoS, (1201 -10) (121 +1pl - [2+p]) VinT

s GG, (|1n|+zp)(|z|+|n|-|z-n|)\/m
-y, (Inel +ne)(Inl + Ip| - In-pl) VTET

1
(Izpnl)2 (Gn n? + 26, 22) + (nz-znp)|n|(|%§1)f GGy

GG, 2t(s-n+p)i2| (|Pk‘l)f‘

x

+
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Wk |k | 3 3

1
2
I = al2pn|“ 22° -n
ipn; k 2

i 166y |2pn|?/

1 1
+2\)<\/Gn n? |pe|? - 2, & Ipn|2> , (3.30)

' The numerical integration of Equation (3.29) is discussed
i in Appendix A.
P
|
]
)
’
;
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4. DISCUSSION OF EQUATION (3.29)*

The wavenumbers in the intevval 0<x <L are of the form

k = =—K, p = —P, etc., (4.1)

where K, P, etc., are integers. The wavenumber matching con-
dition in Equation (3.24) using Equation (4.1) is then an in-

teger matching condition.

The quantity I' [Equation (3.30)] has the dimensions of
a frequency and is of the same order of magnitude as the mode
frequency, that is,

I ™ O(wk) ' (4.2)
where W, is a characteristic wave angular frequency in the wave-
number region of interest. We recall that the qéi) are dimen-
sionless ratios of [from Equation (3.16)],

wave height 27
wave length

When the qk's are nearly unity, the non-linear interaction has

a time constant comparable to the wave period.

When the qk's are small compared with unity, the character-

istic time constant o” the non-linear terms is ~[wk|a|2l-l.

¥ In this Section we set Gk==g, i.e., neglect surface tension.
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When

12 ol > [wk|a|2] (4.3)

the oscillating exponential will tend to “"wash out" the non-
linear coupling.

If we set [assume &, p, k, n 2 0)

k=42 -n

n=p+n, (4.4)

we satisfy the wavenumber matching condition k + n = £ +p. The

frequency mismatch (3.26) is then

Q=-/§[/I+/§-/£-n-/p+n], (4.5)

—p<n<2t. (4.6)

Next, we assume £ 2 p and write

fle]
]
ro
<
]

T.-9<yc<1l, : (4.7)
to obtain

- g_ : flq,y) =1+ /g - /I5y - /357 . (4.8)
%

At the y~end points f is positive and has the value

2/q
1+ /q + YI+g

f(q, =q) = f(q, 1) = (4.9)
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f has two, and only two, zeros. These occur at

n=0, n=28-p . (4.10)

Between these zeros f is negative and has the minimum value

2
_ 1-q\ _ 1-"q)
frin@ = £(a, :59) = - ’

14/ + vIT =gV

The quantity f (g) is plotted in Figure 1.

min

For the self-interaction of a single mode, we have

w 2
£ = Xl (ek _ vk©
X rkkk;k = 3 [l i (Bg Tu, )] : (4.12)

-1
1

For scattering with no change of wavenumber, we have

r r + T

nk - "nkn:k knn:k

[Vl x - -2

iw 2 2
k [ ak vk k
+ —= <E . _2‘*’k>(5) (4.13)

The appropriate form of Equation (3.24) in the case of 1

pure resonant interactions is

: K|k : .
57 - (e - ) of ¢ anfof”] off

+ :E: i.Pnk

n (#k)

2
q,ﬁ”l g " (4.14)
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The quantity [- Pnk/wk] is plotted in Fig. (2) as a function

of the ratio (k/n) for the case o =v =0,

Let us consider the rate equation for the self-interaction
of a single mode in the absence of wind and neglecting vis-
cosity, i.e.,

s

(+)
| aq (4.15)

. w
.
% o= cigley

where we have used Equations (4.12) and (4.14). We may pre-

multiply Equation (4.15) by qé+)* and premultiply the complex
conjugate of Equation (4.15) by qé+) and add the two equations
to obtain

+)l2

& le) = 0 (4.16)

which implies that the modulus of qé+) is constant. We there-

fore write

(+) _
qk = ck e (4.17)

where Cx is constant. Substituting Equation (4.17) into Equa-

tion (4.15) we obtain

L] w
k 2
Xk = -—2—|ck| (4.18)
which yields
(+) . Yk 2
qQ = o exp{—17|ck| t} (4.19)

as the solution to the interaction equation for a single mode

(Equation (4.15)]."

* Note that this result will not change if the rnk terms in
Equation (4.14) are also included in Fquation (4.15).
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In this single mode case we can write the velocity poten-

tial in terms of its Fourier amplitudes [Equation (4.19)]) as

1

G, L \7 -iw [1+ Yec Iz]t iw [1+ Mc Iz]t

b B k c. e Kk k P i k
k 2_|k-l_§ k k

(4.20)
We can use Equation (4.20) to write the phase velocity for

this single wave us

mk-+Awk 2
6 = === = Va/k 1+;,]ck| f (4.21)
in terms of the modulus of the mode amplitude. From Equation
(4.17) it is clear that ck==qé+)(t-0), so that,
+
el = lait e=0)]? = k2 g2 (4.22)

where we have used Equation (3.16) to write the second equality

in Zquation (4.22). The phase velocity may therefore be writ-

ten as

on = Va/k ;1 % %- k2 ¢2 (4.23)

which is seen to agree to second order with the phase velocity

of a Stokes wave, i.e., have the appropriate amplitude dependence.
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5. SEA SURFACE CONTOUR AND ENERGY

Consistent with the spirit of our technique, which assumes
the non-linear couplings to be relatively weak, we shall cal-
culate the wave enerc; to only second order in the wave ampli-

tude. The kinetic and potential energies per unit surface

area are, respectively,

4
1 1 2
K.E. = E/dx/E pu“dz , {5.1)
[e] -0
and L
1 1l 2
P.E. = 5/5 pg L dx . (5.2)
o

Use of Equations (3.10) and (3.11) gives us, to second order,

K.E. =~ B3 }:;12- [b,ﬁ”) +b,§"][b_f;) +b_(;)] , (5.3)
and -

P.E. = - %izk: ;17 [b,i” -bé—)][bf;) +b_(;(')] . (5.4)

Here we have also made the approximation of replacing Gy by g in

Equation (3.10). The distinction between Gy and g is important
only for the shorter wavelengths, which are expected to con-

tribute relatively little to the energy and also to violate the

expansion in Equation (3.17).

For right-travelling waves only, the energy is just

a8
K.E. +P.E. = 229- k (5.5)

k>0 k
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The surface contour obtained from the definition of the

mode expansion [Equation (2.14)]), is,

i[kx -w, t]
Cix,t) = -E Iilc_l m?q;” e k (5.6)
X

for waves travelling only to the right, we keep only terms with
k>0, here. For the case of a single mode, Equation (5.6) re-

duces to Equation (3.16), of course.

We wish to write Equation (5.6) so as to remove the pri-
mary wave component from the oscillation. To do this we write

the primary wave number k -ko so that,

w, = Vg(ko-nt) N W,

l x
1 + ] + L] . L]
(o] H o

k0+u<vG (5.7)

where the group velocity (vG) of the primary wave is given by

%- mko/ko. The wave envelope can, therefore, be written as,

ik x-w t] ix[x-v.t)
Tix,t) = - =N Im%qé” e ° © e G . (5.8)
= ||

Alternatively we can express Equation (5.8) in terms of z phase

and amplitude modulation by defining the quantities
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ik(x -v.t)
(+) G
G = Gy +1i6, = Eqk e (5.9)
k

and

Go = kox - w,t . (5.10)

Substituting Equations (5.9) and (5.10) into (5.8) yields

2 2 |61 Gg
g(x,t) Gp *+ 65 ,_|G| cos 8 + _|G sin 6 (5.11)
or
GR
t(x,t) = |G| cos |6 - arctan{ — . (5.12)
o GI

The modulation of the surface waves, i.e., the surface envelope
is therefore given by the function,

ik (x -th)

6] = (5.13)

T e
X
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6. SAMPLE CALCULATION AND CONCLUSICN

The purpose of doing a sample calculation is twofold:
(i) to test the numerical methods in a simple case which can
be compared to an analytic calculation, and (ii) to deter-
mine instructive ways of presenting the results of the cal-
culation. For our test calculation we have selected what
we feel to be the simplest problem which is still of some
physical interest. The initial state in the test problem
consists of three equally spaced non-zero modes, the center
mode being an order of magnitude larger in amplitude than
its side bands. The interaction between the modes is de-
scribed by Equation (3.24) and the growth of all the modes

in the system is calculated.

This problem is the one considered both experimentally
and theoretically (linear) by Benjamin and Feir (1967) and
which lead them to the conclusion that a Stokes wave is un-
stable. The experiment consisted of generating a mechanical
wave of fairly large slope (0.17) in a wave tank and modula-
ting this wave with two low ampiitude waves (perturbations)
at the side bands of the primary wavenumber. These perturba-
tions were found to grow exponentially from out of the back-
ground noise on the tank surface and eventually caused the
primary wave to break up. The details of this break-up pro-
cess will be discussed below in terms of the present calcula-

tion.
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We have limited the total number of modes in this first

calculation to nine. This number is somewhat arbitrary but

it is large enough to indicate the general behavior of the

system when the number of modes is increased. Comparisons

with the results from a second calculation with thirteen modes

is also made. Also, the present number of modes does yield

accurate quantitative results over a time scale long compared v

to the characteristic growth time of each of the separate modes.

The wavenumbers for our modes are chosen such that,

2n

k = T

K 3 k=0,1,2, ..., N (6.1)

where L is a length representing the region of interest of the
ocean surface and x is an integer. Because we wish to make
some comments on the comparison of the present calculation and
the experiment of Benjamin and Feir, we select a length (L =
2.1946 x104cm)andimteger (k =100) such that the central wave-
number (k) is that of the primary wave in their experiment,
i.e., k=0.02863 cm™). our first calculation will not use the
experimental amplitudes since these values lead to a very
rapid break up of the primary wave. The iritial configuration
is shown in Figure 3 labeled "time =0 sec." We have selected

an initial amplitude of the primary mode to be |qé+)| =0.071 and

(+)

|qK+l|==0.Ol4forthe secondary modes which corresponds to wave

amplitudes of 2.46 cm for the primary and 0.45 cm for the greater :
and 0.55 cm for the lesser of the secondary modes. The remainder J

of the nine mode amplitudes are initially zero. |

L
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The results of this calculation are presented in Figures
3 through 6. 1In Figure 3, we show a series of snapshots of
the modulus of the mode slopes. Each snapshot indicates how
the energy has redistributed itself between the modes from the
Preceding snapshot. We can see that the energy of the system ¥
which at time zero was concentrated in the three central modes
diffuses outward into the neighboring modes of the system in
time. Those modes closer to the central mode grow faster than
the more distant modes. It is evident from Figure 3 that the
evolution of the modes closely resembles the process of dif-
fusion. This notion of the diffusion of energy between modes
due to non-linear interactions will be explored more fully in
a subsequent report (PD-72-029) which models the interaction

process between ocean waves in terms of a transport equation.

In Figure 4 the sensitivity of the preceding calculation
to changes in mode number is shown. Maintaining the spacing
between modes we increase the width of our k-space interval
by four modes maintaining the same central mode. It is clear
that these additional modes have no effect on the growth for

h

t < 80 sec since only the 12t mode has significant amplitude

up to this time.

Figure 5 is a continuous representation of the informa-
tion in Figure 3, showing how each of the mode amplitudes

grow as a function of time. We can see from Figure 3 that
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the side bands do not grow at exactly the same rate, but close
enough that a single line may be used in Figure 5 to represent
the growth of both these modes. The central mode (Ko==100) is
labeled "Primary Mode" in Figure 5, the first side bands (k =99
and 101) are labeled "Secondary Mode," etc. 1In this figure we
compare our calculations to an analytic result, i.e., the Born
approximation. The Born approximation for this problem is
calculated by assuming, (i) that the amplitude of the primary
mode is constant throughout the interaction process, and (ii)
the frequencies of the primary and secondary modes are approx-

imately equal. The interaction equations then become,
i,

: “o 2 2 *
q z-——-[lq |© q +q, qF _ ] (6.2)
Ko+l 2 Ko Kotl ="Ky “kg-1 !
U, © 0 (6.3)
and in
q ~-—>[la_|?q +q o (6.4)
Ko—l 2 Ko Ko=1 Ko “Kotl )

since, by assumption (ii)

2m
w =W B .= v-—gk A (6.5)
Ko Ko+l Ko 1l L o

We may use Equations (6.2) - (6.4) to construct the equation
d I 2 d 2 2
dt 14 | €= lq |“= - w_gq Im{q q } (6.6)
€ Pl gl dt Ky=1 Ko Ko Ko+l Ty =1

where Im{} refers to the imaginary part of the bracketed quan-
tity. Since our initial conditions are q +l(0) =q l(0) = q
K, R~

and q, (0) = q: (0), Equation (6.6) has the solution
o o
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_ ‘ - 2t . s 2 £
qKo+l(t) = qKo-l‘t) = q cosh[wK |qK | 5] - 1smh[wK la, | 5]‘.

o "o o "o
. (6.7)
The Born approximation to the secondary modes plotted in Fig-

ure 5 is, therefore,
g 411% = la y1* = a® cosn[ w0, Ja 17¢] . o
We see that the growth of the secondary mode is similar
to Equation (6.8) in the region where the approximations made
are nearly valid, that is, for a near constant primary mode.
The development is markedly different, however, after the higher
modes have grown to an appreciable size, that is, the ‘secondary
modes cease growing and begin losing their energy. The energy
is depleted from the secondary and primary modes, causing the
growth of the more central modes co be inhibited. It is not
shown here, but the energy drain of the primary mode does not
persist, it begins growing after the other modes of the sys-
tem are of the same order of magnitude. The detailed manner

of this growth has yer to be explored.

In Figure 6 we illustrate the envelope of the surface

waves in a region of ocean 438 meters long. The envelope is

calculated as it travels with the group velocity of the pri-
mary wave (9.26 m/sec) so that each envelope shown, i.e., dif-
ferent time snapshots, is constructed from the sam2 group of

waves as they propajate along the ocean surface. In Figure 6a
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we see that (time t=0) the modulation of the ocean surface

is slow, but significant over the region of interest. This is
due to the large initial amplitude of the secondary modes.

The step size is given in units of the primary wavelength, i.e.,

A =2.194 meters. The initial undulation of the envelope seems

e . .

to be compressed in time into a series of bumps. These bumps
rapidly become accentuated, forming wave packets on the sur-

face. It will be seen, however, that the large structure in

Figure 6 is due to the periodic boundary conditions imposed
on the problem and does not represent the breakup seen ex-

perimentally by Benjamin and Feir.

The significant structure in Figure 6 lies between the
modulation peaks. In this region the modulation remains
fairly constant during the time in which energy is diffusing
out of the center mode (see Figures 3 and 4). As the ampli-
tude of the higher modes increases, however, the structure of
the wave envelope changes. The extreme case is shown in Fig-
ure 6c where the detailed modulation of the surface waves
has clearly developed. It is difficult to determine the
surface structure by looking at only a picture of the modula-

tion so we introduce a parameter to indicate the degree of

distortion.

To characterize the distortion of the ocean surface, we

use the ratio of the difference between the maximum and mini-
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mum envelope height to the average envelope height. 1In Fig-
ure 7 we use this quantity to indicate the growth in the sur-

face wave amplitude modulation. The solid curve refers to

St . & . e

the sample calculation above, the dashed to a simulation of
the Benjamin-Feir experiment. We see in Figure 7 that for
t £70 sec, essentially no change is observed in the modula-
tion of the surface. Note that we have removed the effects
of the large bumps in Figure 6 and are concerned only with
the "actual” modulation which lies between the bumps. The
sudden growth of the surface distortion (t270 sec) occurs
when the magnitude of the modes becomes comparable (see Fig-
ures 3 and 4) so that large transfers of energy can take

place in small interaction times.

The second curve in Figure 7 represents the growth of
the surface distortion from the calculation using the ini-
tial conditions of the B-F experiment. This calculation
again uses nine modes, with the central mode corresponding
to the mechanically generated wave. The experimental condi-
tions were simulated by giving each of the remaining modes

the uniformly small value ¢f 0.001, which is intended to re-

produce the noise at the tank surface. In terms of our vari-

(+)
MID

to a primary wave of 5.93 cm amplitude. These initial con-

able, the central mode amplitude is g = 0.17 corresponding

ditions are shown by the "time = 0" graph in Figure 8.
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Figure 8 depicts the modulus of the mode amplitude at
different instants of time just as Figure 3 for the test cal-
culation. ’e can see that the non-linear interactions pref-
crentially amplify the side bands which differ from tne pri-
mary by +34k, where Ak is the step size in wavenumber space.
These side bands are 1.3 and 0.7 of the central wavenumber o
(Ko). This is in essential agreement with the perturbation
analysis of Benjamin which shows that the frequency side bands
at 1.1 and 0.9 of w, would be preferentially amplified from
out of the background noise. The effect of increasing the
number of modes in this calculation is shown in Figure 9,
where we have reduced the step siz~ Ak by a factor of two.

In Figure 9 the mode numbers which differ from the primary
by $10% are modes 1 and 13. We can see that instead of a
single mode on each side of the primary being preferentially
amplified we have a preferred group of modes being amplified.
This would seem to indicate the validity of the preferred
mode concept in the continous limit, where a group of waves
in a region 6w about the average position :10% of Wo would

be picked out of the background.

In Figure 10 we again illustrate the modulat-on of the
surface envelope on a stretch of ocean 200 times the primary
wavelength (Ap:=2.194 meters). Comparing the initial distor-
tion with that of the test calculation in Figure 6a, we see

that the direct comparison is somewhat deceptive in that the
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B-F case has a greater initial distortion which is not evident
from the figure. In Figure 10 the surface modulation for both
the 9 and 13 mode B-F cases discussed are given. We see that
the effect of decreasing the mesh size by a factor of two in
k-space has displaced the central bump in the 9 mode calcula-
tion from 100 Ap to 20¢C Ap in the 13 mode calculation. The
effect of this reduction is most clearly seen in the "time =
30" graph. Although the 9 mode calculation does show the
modulation of the surface waves, the envelope becomes distorted
as it approaches the 1/Ak = lOOAp point in the figure. i.e.,
the periodic boundary. This effect is markedly reduced in the
13 mode calculation which shows precisely the type of surface
modulation observed by Benjamin ard Feir. This comparison
indicates that caution must be exercised in the selection of
the mode spacing used in a particular calculation. The am-
plitude scales in Figure 10 are arbitrary because the 9 and

13 mode curves were shifted so as to provide the best visual

comparison. The initial curves are actually superimposed.

The distance the primary wave travelled in the B-F ex-
periment prior to breaking up was approximately twenty-eight
wavelengths. The corresponding time interval is 33 seconds.
We see from Figure 10 that the distortion of surface becomes
quite significant (= 10%) at this time, which agrees well with

the experiment.

¢




It is clear that when the primary wave initially contains
most of the energy in the wave system, that the coherent non-
linear interactions between the surface gravity waves lead to
a breakup of this wave into packets. The characteristic time
for this breakup is determined by the details of the initial
conditions. The breakup is seen as a distortion of the sur-
face envelope. This distorting occurs as energy coherently
diffuses from the primary to the other modes in the systen.
As additional modes develop the surface distortion increases
markedly, but the pattern of the distortion does not change.
We see this in Figure 10 where the initial pattern in the B-F
experiment translates and grows but does not change in shape.
This would indicate that the group velocity of the pattern,
which is that of the primary wave, changes only slightly as
the other modes develop; also that the phases of the other
modes "lock" onto that of the primary so as to create the

stationary pattern.

If such an effect were present on the real ocean it
could be observed with radar. The radar return from such a
surface would indicate the envelope structure and "see" the {
phase-locking effect. The distorted envelope would yield a
strong correlation centered at the frequency of the primary J

wave.
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APPENDIX A

To integrate Eq. (3.29) over the interval 0<t<T,

we choose a time step A, where T/A is an integer. Let

tj = jA, j=20,1,2, ... ,T/0 .
Integration of Eq. (3.29) ove) the interval tj to tj+l is
done in the form:
q(+) (t. + &) = 1l - 95151 - vkz A q(+)(t.)
ko 53 2 ] ko'
k
g . ]
ol L+p=k+n I‘fl,pn;k ISLpn;k (3) (A.2)
where
t.
J+4 10 it
Ilpn;k(J) = Hzpn e dt . (A.2)
€.
J
The numerical evaluation of Eq. (A.2) is done as
follows:

Write [we drop for the moment the (%,p,n,k) subscripts]
H(E) = H_(e) ™) (A.3)

where Ho and ¢ are real. We suppose for the evaluation of I(j)
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the qé )(tj‘ and qk+)(tj - A) are stored. We can thus evaluate

(

A

- A ~
HO = Hm(tj + -2— ) = Hm(tj) + 5 Hl ’
and
4, Ay o A
¢o = h(tj + E) ¢(tj) + E <1)1 ’
¢ = d(e.) - ¢ O
1= 10e) = e (k-]

We may then express I(j) [(Egqg. (A.2)]

: A
l[Q(tj t 3 )+é ]

n

I(3) e

i[9+¢l]r
X [Ho + le] e dt

N >

Nf &

: A
J.[Q(tj + f) + ¢o]

= e [HOLo + HlL
where
_ 2 ;
LO = "(-Q—+—¢TL5- sin [(Q + <1’1)A/2] '

L i 2 sin [(Q + ¢.)A/2]
L a2 { !

QQ + ¢1)A> cos [(a + ¢,)8/2] }
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i In Equation (A.6) we have introduced the new variablec

of integration T =t - (tj + A/2).

To check the numerical accuracy of the calculation at
each step of the integration the energy is calculated using
Equation (5.5). Since the energy will be conserved in the
absence of wind and viscosity, this provides a quantitative

check of our procedure.
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