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FOREWORD

This report summarizes the work completed by Battelle-Northwest for
the U.S. Bureau of Mines under Contract Number H0220027. The program
director is D. E. Rasmussen and principal investigators are A. K. Postma,
J. D. Smith and D. S. Trent.
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DEVELOPMENT OF A CONCEPT FOR A HIGH CAPACITY
PNEUMATIC CONVEYING SYSTEM EMPLOYING A FLUID ATTACHMENT DEVICE
FOR USE IN UNDERGROUND EXCAVATION
to
U.S. BUREAU OF MINES
CONTRACT NUMBER H0220027

INTRODUCTION
This report describes the work completed during the course of a pro-
gram carried out by Battelle-Northwest for the U.S. Bureau of Mines. The
objective of this research program was to develop a mathematical model to
describe the fluid mechanics of a Coanda eductor. A satisfactory model
will serve as a tool in design of Cnanda eductors for pneumatic conveying
of excavated rock materials.

The possible use of a Coanda eductor for pneumatic transport was sug-
sested by preliminary experiments carried cut at Battelie-Nortnwest. A
small model was fourd to be highly effec:.ive in entraining granular mate-
rials and discussions with personnel from the U.5. Bureau of Mines led
to the current interest in assessing the potential use of such an eductor
in transporting rock in underground excavations.

The term "Coanda" derives from the Romanian-born engineer ramed
Hernri Coanda. Henri Coanda nearly suffered an early demise as a result
of unexpected flow along exhaust deflector plates he had installed on a
wooden airplane powered by a type of jet engine. Instead of deflecting
the exhaust gas away from the wooden fuselage, installed deflector plates
were actually sucking the flames toward it. Coanda survived this mishap,
and spent much of the remainder of his life studying the curious attach-
ment phenomena which accompany flow along solid surfaces. Most of the
scientific effort devoted to attached or "Coanda" flow has been directed
to the use of the phenomenon in vehicle propulsion.

Use of the fluid attachment principle in an eductor is attractive
because of very simple mechanical designs which are possible, and more
importantly, because of the possibility of designing eductors with large
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throat openings free from obstructions. These advantages are of poten-
tially great importance in pneumatic conveying of solids. This problem

had not been studied previously to an appreciable extent. The approach
taken in the present study is to develop a mathematical model which ade-
quately describes fluid flow in Coanda eductors. The merits for using a
Coarda eductur in a specific case can then be judged from eductors designed
to meet specific requirements of flow rate and pressure drop.

SUMMARY

A 12-month pregram with the objective to develop a mathematical model
of fluid fiow in Coanda eductors is complete. Tasks which were completed
include writing a detailed program plan, reviewing available technical
literature, making a compariscin of performance of Coanda eductors with
cther momentum transfer methods, adaptation of a numerical computer pro-
gram for solvirg tne differential equation of fluid flow for axial symmetric
flow, and experimental measurements >f flow fields in model eductors.

Many studies of wall jet flow have beer performed for two-dimensional
flow over flat and curved surfaces. The experimental and theoretical data
that were available, however, did not apply directly to flow in cylindrical,
axisymnetri: geometries of interest for the Coanca eductor.

Comparison of the Coanda eductor with other types of momentum trans-
fe: devices indicated that the chief advantages offered by this eductor
lie in its extreme mechanical simplicity, and in its large open throat.
Energy requirements for the Coanda eductor are expected to be higher than
for mechanical systems such as conveyers or pneumatic conveyors witn air-
lock feeders. Ltnergy requirements are expected to be equivalent to those
for presently available ejectors.

Thre: approaches to building a mathematical model for the flow field
were considered. These included model theory based on dimencional analysis,
similarity theory, and numerical solution of the time-smocthed Navier-
Stokes equations. A decision was made to pursue the latter approach
because it can provide the most detailed description of the flow field with
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the least amount of experimental data. An existing computer code which
solves the Navier-Stokes equations for flows having axial symmetry was
modified to calculate the flow field for a Coanda eductor. This computer
code has provided theoretical predictions of velocity profiles and center-
line pressures for air flow through Coanda eductors. While the theoret-
ical profiles have shown qualitative similarity to those obtained experi-
mentally, it is apparent that the detailed flow structure is not correctly
described by the model. An improved model will require addition of a
calculational scheme for evaluating the turbulent eddy viscosity at each
nodal point.

An experimental apparatus was designed and fabricated to provide data
on pressure crop, entrained flow, and velocity profiles for several geome-
tries. The experimental data was used to test the validity of the mathe-
matical model and to provide input regarding numerical values of eddy
viscosity.

CONCLUSIONS AND RECOMMENDATIONS

The following conclusions are supported by the work completed.

e Coanda eductors possess potential advantages compared to alternate
ejectors and other momentum transfer devices. The advantages are
primarily related to the simplicity of the mechanical design, and the
7low characteristics. Thesa allow for passage of large aggregate
particles without piugging, lead to automatic termination of feed
input when pressure drop increases in the transport pipe (automatic
clearing of incipient blockage situation), and result in highly reli-
able operation in underground applications.

e Experimental studies, designed primarily to support a theoretical
modelling effort, have demonstrated that crushed rock can be conveyed
at high rates by means of a Coanda eductor (.etailed results snown
on page 73).
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e A fully satisfactory theoretical model was not achieved. The weak
element in the theoretical model developed was the lack of a calcula-
tional scheme to predict turbulent eddy viscosities at each nodal
point. Development of a computational scheme to do this was beyond
the scope of the present contract.

o It is recommended that the development ef{fort to apply Coanda eductors
underground be continued. The next step appears to be the develop-
ment of an eddy viscosity model (such models have become state-of-the-
art during the past year, see page 37) which would eliminate the weak
element in the present mathematical model. Subsequent effort would be
the underground demonstration of optimum-designed devices.

LITERATURE REVIEW

Literature on the Coanda effect was reviewed with the purpose of
gatnering information which would support the present Coanda eductor
study. A bibliography of the literature reviewed is included as
Appendix 8. The review revealed that very little information is avail-
able concerning wall jet behavior in geometries with cylindrica® symme-
try. A number of studies, both theoratical and experimental, have dealt
with two-dimensional flow over flat and curved surfaces. In addition, a
relatively large body of information has been developed for ejectors
(or jet pumps) which entrain fluid by flowing primary air through 2 tube
centered in a larger mixing tube. For the Coanda eductor, the primary
air is introduced through an annuiar slit, and becomes attached to the
inlet surface prior to entry into a mixing zone. Geometries for the
two eductors are similar downstream from the entry to mixing section,
hence information developed for this region in ejectors should apply to
the Coanda eductor. The fullowing paragraphs briefly describe the infor-
mation obtained from the literature search.

Studies of ejectors have included both theoretical ard experimental
approaches. Theoretical studies consist of the one-dimensional approach,
with details of the fluid mechanics typically being neglected. Reversible




R i i e e SEES S i et = o e P e LT = sk S S L S SRS

thermodynamics have been assumed along with equations of state for the
fluids. Thus, the theoretical analyses establish an upper limit to per-
formance, but shed little light on how to design Coanda eductors to
achieve the maximum performance. Experimental studies with air ejectors
have shown optimum designs. The length-to-diameter ratio for the mixing
section is found to be near 7. The optimum angle of divergence in the
outlet diffuser is found to be in the 7° to 10° range. Because of the
similarity in geometry, these optimum parameters would be expected to
apply to the Coanda eductor.

Attachment of air jets to surfaces has been the subject of a number
of experimental studies. Applications have been directed primarily
toward fluidic amplifiers and to aircraft propulsion. Jet attachment has
been studied as a function of jet width, step height, and angle of inclina-
tion of attachment surface compared to the slit. From the results one can
predict the distance of attachment as a function of these conditions.
Several studies have focused on the effect of curvature on detachment and
fiuid entrainment. Entrainment increases with increasing curvature where
curvature is defined as the reciprocal of the radius of curvature (i/R).
From these results, one would expect that the greatest entrainment ratios
could be obtained by using large curvature upstream from the constant area
mixing sectica of the Coanda eductor. On the other hand, the largest
pressures could likely be developed using inlet surfaces which employed
less curvature.

To date, the most realistic theoretical approaches have relied on
similarity theory to simplify the flow equations, thus permitting
solution. This similarity approach appears to be quite successful in
predicting the flow field for flat and curved two-dimensional flows.
Similarity has not been applied to the axisymmetric case of interest in
the Coanda eductor.

Several ~xamples of reported results are briefly discussed here.
Figure 1 shows the results of Bourque and Newman(]) for reattechment of a
jet to an inclined plane. The minimum length of plate reguired to cause
spontaneous attachment is shown as the upper curve. The maximum angle at
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which spontaneous attachment occurs is appruximately 50°. Once the jet
becomes attached, however, a hysteresis effect becomes evident since
attachment can be maintained up to about 65°.

Experimental data on entrainment for jet flow along the surface of a
cylinder were reported by Sridhar and Tu.(z) Their results are shown in
Figure 2, in which the dimensionless entrainment velocity is shown as a
function of curvature of the cylindrical surface. For convex surfaces,
entrainment per unit length increases as the radius of curvature decreases.
For convex surfaces, just the opposite occurs.

The literature review was p: imarily concerned with studies conducted
on the "C~inda effect” and on "wall jets". Some of the material was
useful in our effort to develop a reiiable analytical method for the
design of eductors incorporating the fluid attachment principle.

PLANE SURFACE S- {1%-( @-apw)

% = DISTANCE ALONG SURFACE
PRIMARY JET THICKNESS

CONVEX SURFACE JET FLOW

S " JET FLOW AT GIVEN POSITION

aF"‘ 2 § FOR A PLANE SURFACE
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;

CONCAVE SURFACE

D 4
' [e}
o
L i 1 1 % 1 1 ) | J
-)4 .3 5.3 o ] .0 0.3 K) .4
.'
CURVATURE + ., IN.

q v

FIGURE 2. Results of Sridhar and Tu'?) for Dimensionless Entrainment
as a Function of Surface Curvature
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However, little was revealed that would provide the basis for a reliable
comparison of a Coanda eductor to other momentum transfer methods. It

is, however, reasonable tu assume that the performance of a Coanda eductor
will be similar tc that of an air ejector since beth incorporate inlet
entrainmert regions for a high velocity motive jet to entrain ambient air,
a constant cross-sectional area mixing region. and a diffusor section to
increase the discharge pressure (see Figure 3). If this assumption is
valid, then f:om air ejector technology we can predict the performance for
Coanda eductors. Figure 4 shows anticipated performance for a family of
motive air supply pressures in terms of entrainment (R”) and discharge
pressure.

MATHEMATICAL MODEL DEVELOPMENT

The ultimate use of the mathematical model will be to predict mate-
rial transport rates for eductors employing the Coanda effect. The
material transport capabilities of the eductor are expected to be
related closely to tne air flow rate and the pressure drop developed
across the eductors. Thus, the mathematical model should permit predic-
tion of these two parameters as a functicn of design elements including
fluid properties, primary jet velocity, and geometric design of a
specific eductor.

To develop a theoretical model within the time allotted, we identi-
fied three possible approaches. The first approach was to use model
theory which relies on dimensional analysic to permit scaling of data
from model to prototype. The setond approach was to use similarity
theory. This involves simplifying assumptions to coavert boundary layer
partial differential equations to total differential equations which are
easily solved. Similarity theory has been used successfully in modeling
(3) The third potential theoretical approach involved
adapting an existing fluid flow computer code capable of numerically

wall jet flows.

solving the Navier-Stokes equations for axial symretric €low fields.

o
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Our first efforts were to briefly survey these theoretical approaches
to verify the plausibility of each for application to the present problem.
As a result of this survey, the decision was made to fccus on the use of
an existing numerical computer code since it promised the most complete
prediction of the flow field and at the same time required the least
amount of experimental data as input. Each of the three alternative
mathematical approaches is described further in the following sections of
thi. report.

DIFFERENTIAL EQUATIONS OF FLUID FLOW

The mathematical formulation of the differential equations for fluid
flow are obtained by making mass, force, and energy balances on a small
fluid element in space. These basic equations form the basis for theore-
tical attacks on the fluid flow problem. Although the full set of equa-
tions is too complicated to solve generaliy, they were listed to establish
the following:

e Simplifying assumptions used in various thecretical approaches
o Idantification of important physical parameters

e Description of important boundary condtions

e Basis for dimensional analysis.

The continuity equation results from a statement that mass is con-
served. For ~ylindrical coordinates, the continuity equation is

g%+%%(orvr)+%s%(pve) +-a%(pvz)= 0 (1)
where
p = fluid density,

t = time
distance measured in radial direction,

-
(1]

n




V. © fluid velocity in radial direction,

Vg = fluid velocity in 6 direction,

v, = fluid velucity in z direction,

@ = angular position measured around z axis,
z = distance measured in axial direction.

As written, Equation (1) applies to the three-dimensional flow of a
compressible fluid. For special cases, this equation may be appreciably
simplified.

The momentum equations are derived by balancing the forces on a
fluid element. Statically unbalanced forces are equated tu the fluid mass
times its acceleration. Thus, it amounts to application of Newton's
second law of motion to a small fluid element. However, deformation of
the fluid element by tangential forces must also be accounted for, and
this greatly complicates the equations of motion as compared to those for
nondeformable bodies. ftor three-dimensional flow, three separate momentum
equations result. Written in cylindrical coordinates, in terms of stress
camponents. the momentum equations are as follows:

av . v vV, 9V v v 3
r-component ol L + Ve _r,8_r_ 28 +v, rj._ P
at or r oo r 92 ar
19 1 9T . T 9T
o e 0 e R kst RN (2)
rar r a8 r 9z
/5v v V, 3V V.V v \ 13
8-componenc p-—9+v'_—9-+—e—-—9+—"—-e-+vz_._e_ - ._F
ot er r a6 r 3z r 96
[l 3 ) 101, 37y,
- —'—("T,.e)"———+-—— + pgy (3)
2
lr ar r 236 ez |

12
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|’1 ? 191y, 91,
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tr or ( 2]y 36 3z Z

These momentum equations apply gquite generally because simplifying
assumptions have not yet been made.

The energy equation is obtained from an energy balance written on a
small fluid element. In cylindrical coordinates it may be written in
terms of stress components as

[T oT Vo oT aT 19 1 3q, 3q,
pcv—-+vr—+———+vz-—— = - —-——(rqr)+-———+——
ot or r 39 tY4 r ar r 3o 32
aPA [1 B 1 dv v v
o e (rvr) +o—t+ £ {T"r_r
aT 0 roor r 36 32 toor
1/3v v Y/ 1 dv
* Tog _(—e' * Vr) T2 —_Z} “{Tre|" ’(’i)’k -—
r\38 3z L or\r/ r 36
Lo
oV v 1 av v
+1, (—£+—L\)+TBZ(———£+——9—)> (5)
z ar Y4 r 8o Y4
where
Ev = heat capacity at constant volume,
T = temperature,
aT
qr = k -a—r. *

S 1
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k thermal conductivity.

The stress componerts which are included in Equations (2) through (5)
are defined as follows for a newtonian fluid.

v
Ter © '“{2 — - %(V ) V):l

or
[ /1 dv v
Tgg = ~H 2(—-—-—e-+—r-)-—§-(v . )J
Lr a0 r
[ Qv
- 2.
TZZ—-llZ — 3(V v)
3/"9 1avr
e w vy A

r 1
avg 1 avZJ
T =T = -u__-{-_—_._
6z 26 | 3z r 96
avz avr
A P
1 9 l'r)ve avz
b0 g
r ar r 236 92

Equations (1) through (5) fully describe the flow of fluids in three-
space dimension. In practice, some degree of simplification is required
before these equations can be solved.
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DIMENSIONAL ANALYSIS

: Any mathematical relationship which is dimensionally consistent may

% he written as a relationship between dimensionless groups. The various

% techniques of dimensional analysis identify the dimensionless groups for a
{ given physical problem. The utility of this approach is that it can
greatly reduce the number of independent variables which must be considered
in experiments. Once a relationship between dimensionless groups is
defined by means of model experinents, predictions can be made for proto-
types provided the numerical values taken by the various dimensionless
groups fall within the range investigated in model tests.

One way of deriving the important dimensioniess groups for a problem

is based on simple mathematical operations on the basic differential equa-
tions. This method is well described by Klinkenberg and Mooy.(4) We have

used this approach with the momentum and energy equations, Equations (2)

through (5). The following dimensionless groups shown in Table 1 appeared
from this analysis.

TABLE 1. Dinensionless Groups Obtained from Momentum
and Energy Equations

Name of Dimensionless Group Definitiun
Reynolds No., Re pdv/u
Prandtl No., Pr Cpu/k
Eckert No., Ec vzlcvt
Euler Wo., Eu p/ove
Brinkman No., Br w2/kT
Specific Heat Ratio, vy Cp/Cv
Froude No., rr ad/V2
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where

fluid density,

©
]

V = velocity,

u = viscosity,

C_ = heat capacity at constant pressure,
k = thermal conductivity,

C. = heat capacity at constant volume,

= temperature,
P = pressure,
g = acceleration due to gravity,

d = dicmeter.

A second appronach to deriving important dimensionless groups is to
list all important parcometers for a given physical situation. The param-
eters can then pe grouped as dimensionless ratios using standard tech-
niques. A hypothetical Coanda eductor is shown schematically in Figure 5.
In addition to the 12 geometric dimensions, flow properties expected to be
important includa: fluid density, fluid viscosity, specific heat, specific
heat ratio, thermal conductivity, temperature, velocity of primary air,
velocity of entrained air, and pressure drop across nozzle. Using the
Buckingham method(s) for forming the dimensioniess group, we obtain the
following expression for the entrained air flow.

Entrained Flow
Primary Flow

function (Re, Ma, Br, Eu, v, geometric length ratios) (6)

where

]

Reynolds No.
Mach No.

i6




Ly — 4 L,
, ENTRAINMENT MIXING ZONE DIFFUSER

4 ”/”/’//"‘/' A .
i # /f;}fAJL/(jj/fi//
{
Ry
e
- 4
1 L width of primary air inlet slit
w, = height of step separating jet and Coanda wall
wy = length of inlet cylinder upstream from primary air slit
ay = angle of divergence of outlet diffuser
e, *© angie of inclination of primary jet
ag = angle of convergence of inlet
%y = length of mixing section (constant area)
L = length of outlet diffuser

iy o= length cf Coanda entrainment section

ig ¢ length of inlet transition
R] = radius of throat of nozzle
R2 = radius of curvature of (oanda entrainment section

FIGURE 5. Schematic View of Hypothetical Coanda Eductor
Showing Geometric Parameters
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Br = Brinkman No.
Eu = Euler No.
y = specific heat ratio.

The Mach No. is closely related to the Eckert No. which appeared
earlier. From Equation (6), one could, in theory, perform experiments that
would provide the functional relationship between the groups. In practice,
toc many experiments would be required to evaluate the relationship among
the five flow related groups and the 12 geometric ratios. The next step
in using the dimensional analysis approach would be to eliminate the groups
of minor importance, and key on the several controlling groups. This step
was not accomplished in the present work.

SIMILARITY THEORY

Similarity theory is a method for simplifying the equations of motion
to 2 point where they can be solved. The term “"similarity" derives from
the assumed shape of the velocity profile, which is assumed to kuve a pre-
scribed similarity at each downstream position, x. A classical example of
similarity theory is that used by Glauert 3) in his analysis of the wall
jet. Glauert's beginning point is the simplified, two-dimensional boundary
layer momeritum equation written as

2
uiq-+v§£-=\)§-—u2- (7)

X Jy 3y

where

u = velocity in x direction,
v = velocity in y direction,
v = kinematic viscosity.
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A stream function, y, is defined satisfy the continuity equation:

- %% = xv (8)
and
= (9)
where

Y = stream function.

The continuity equation may be written as

é% (xu) + é%—(xv) =0 (10)

By defining a new variable, n = yx", the two partial differential equa-
tions, Equation (7) and Equation (10) are transformed to a tota} differen-
tial equation:

f"'+ff"+(1f'2=0 (]])

In Equation (11) the argument of the function, f, is n; a is a aumerical
parameter related to n.

G]auert's(3) solution to Equation {11) provides velocity profiles
which agree well with experimental measurements, shtowing that the mathe-
matical assumptions made were justified. It is possible that similer
approaches could be made for axisymmetric flows encountered in the Coanda
eductor. No attempt was made to pursue the similarity theory approach
in this study.
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NUMERICAL MODEL BASED ON VORTICITY TRANSPORT THEORY

The following discusses the mathematical basis and the finite
difference method of solution used in the vorticity transport method.

Mathematical Basis

The differential equations governing Coanda eductor fluid flow are
derived from the two conservation laws:
e conservation of mass (continuity)
e conservation of momertum (Newton's second law).

These eguations writen for incompressible, turbulent flow in
cartesian tensor form are:

Continuity:
aui
"a—‘.-=0y (]2)
i
Momentum:
Du. u.
i_ 1 3 + 3 ( . 1\
e c -+ o leif ) - (13)
Dt p ax1 3XJ -xj/

In the above equations, time and spatial changes of the fiuid density,
0, have been igrored (incompressibility condition).

Notation used in Equations {12) and (13) is as follows:

velccity along ith coordinate

ui=
X; = ith space coordinate
P = pressure
= time
€43 = Eddy diffusivity tensor for momentum.
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The operator D/Dt is the substantial derivative defined as

D3, 2
Bt -3t T Y e

The tensor index i {or j) for three-space takes values i = 1, 2 and 3.
Einsteinian notation is used where a repeated index implies summation over
the possible values i (or j) = 1, 2 and 3.

In the momentum Equation (13), we have neglected gravitational effects
and have assumed that the effects of Reynolds stresses (turbulent stresses)

may be approximated through the use of an eddy diffusivity, €i°

For the Coanda eductor study, it is possible to express the equations
of continuity and momentum in terms of axisymmetric coordinates, thus
using only the two-space coordinates z (axial) and r (radial). This
assumption ignores mean azimuthal variation of the dependent variables such
as mean azimuthal velocity (swirl). Also, the Coanda study is directed to
steady-flow operation of the eductor, hence time dependence may also be
eliminated in the equations of motion.

Thus, the equations which are used for analysis of the Coanda eductor
are the following steady-flow, axisymmetiric equations of continuity and

motion:
Continuity:

1 Jur . av _

F3r+az_o' (1)
Momentum:

r-direction,

u, . 19, 3 feraur), 3 (3w '
u—=+vy --pr+ ( )+ (Czaz), (]5)
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z-direction,

ov v _ _ 13 .13 vy, 3 v
Usprtvy;7- p 3z v (%cr Br) * 3z (%2 32) : (16)

In the above equations, u and v are velocity in the r and z direc-
tions, respectively, and the eddy diffusivity tensor is assumed to have
components €n and €, only.

Use of only the € and €, components of momentum diffusion is to
assume that the diffusion coefficient for v-velocity and u-velocity are
the same in a given direction.

Vorticity Transport

In the application of numerical analysis we corsider solving Equa-
tions (14), (15) and {16) by finite-difference techniques without further
simplification. However, we must devise some method to solve for pres-
sure, P, This may be done by taking the divergence of Equations (14) and
(15) and adding the results to obtain

2 2
2p = - Y u v U v
vep {(r)z * (ar\) * (az) *25 Br} a7)

where the operator

2.8 15, 3%
37‘2 r ir 322

In Equation (17), terms involving derivatives of €. and €, have been
ignored for the sake cof this discussion. To obtain a solution to the
Coanda dynamics, Equations (15), (16) and (17) would be solved simulta-
neously. However, experience has shown that Equation (17) is difficuit to
solve numerically because of required boundary conditions.
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To circumvent simultaneous solutions to the pressure equation and
associated difficulty with the boundary condition, one may choose to solve
an equivalent set of equations which eliminates pressure as an explicit
part of the analysis. This approach is called the vorticity transport
method.

We define vorticity, w, as

Lodu_ v (18)

e - }%féand (19)
v = ‘Fg‘g (20)

which identically satisfies the continuity Equation (13). An elliptic
partial differential equation is obtained for y by substituting Equa-
tions (19) and (20) inte {18) which yields

2 . 2
oy 1w,y o, (21)
arl roar 2z

Velocities u and v may be obtaired by solving Equation (21) for y and then
solving the auxiliary Equations (19) and (20).

However, to obtain solution to Equation (21), the flow field vorticity,

o(r,z), must be known. A vorticity transport equation may be derived by
cross-differentiating Equations (15) and (16) and subtracting the latter
result from the former to obtain




3uw  IVw 3 1 Jur Bzw 3 /1 dur aer u e

— e — Er — + € $ —f e —— e 4 ——— . _}_
ar 32 ar \r or 02 3z \r Jr or 3z 3z
3€ 3 /1 Bur\ aez 82u 3 [3v e v 3¢
b —— e + - - ————f —— ———r + - Z

?€ azv 1 3v a€ azv
-t —) - = — (22)
ar ar- r ar ar 9z

if the turbulent structure of the flow field is homogeneous and iso-
tropic, derivatives of Ep and €, vanish and the vorticity transpcert equa-
tion becomes

2

duw  IVw 3 1 3wr o w
S A AL (23)
ar 3z ar \r ar az

Note that pressure, P, does not explicitly appear in Equations (22) and
(23). Once the vorticity solution is obtained (and hence, the velocity
solutinn), one may back-calculate pressure from Equation (17). Alterna-
tively, pressure may also be caiculated ysing either Equation (15) or (16).

Description of the SYMJET Code (CJanda Version)

The Coanda version of the SYMJET code snlves Equations (21) and (22)
along with the auxiliavy relationships Equations (19) and (20), by finite-
difference techniques. rowever, these equations are first scaled with the
dimensionless variables aad parameters definec asz follows:

R = r/ro
= z/r0 , £ =2/0
U= u/vo
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Gt

V= v/vo
2
v =/ (l’o VO)
E Q=w ro/vo
E ToVo .
REr i , (radial, turbulent Reynolds No.)
r
ToVo .
REz = — , (vertical, turbulent Reynolds No.)
r4

In the above, rc is the characteristic radius of the Coanda eductor and Yo

is a characteristic reference velocity which may be taken as the Coanda
slot velocity.

in their scaled form the governing equations become:

Stream Funciion:

32? 1 3y BZW

-+ (24)
3RS R 3R 7%

Vorticity Transport:

sua ave 1 3% 13 @ 1 ¥

+ = st-—-S|+—— » (25)
aR YA R,Er oR Ra3R R REZ ok

along with the auxiliary relationships for velocity:

__lay
u--+ 2 (26)

4
2| -t

(27)

o} —
2%
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Terms invoiving derivatives Lf RE_ and REz are not included in Equa-
tion (25) but are accounted for in the SYMJET code.

Finite pifference Grid System

The finite difference grid layout consists of two grid systems. One
grid is used to calcula*te the stream function, ¥, which provides informa-
tion to compute velocity components, U and V. This system coincides with
the physical boundaries ard is illustrated by the wider lines on Figure 6.
The stream function is calculated at the system interior intersection
points designated by the solid round symbols. The U components of the
velecity field are computed at vertical midpoints which are designated by
open circle symbols; whereas, the V components are computed at horizontal
midpoints (K coordinate) and designated by oper box symbols. In this
manner, the stream function grid layout defines a system of cells with the

stream function, ¥, computed at each corner point (or set by boundary
conditions, as the case may be) and velocities defined at the center of
the cell face.

The second grid system is used to calculate vorticity, 2, and is
illustrated in Figure 6 by the narrow lines. This layout completely over-
laps the ¥ grid (and physical system) with interior intersection points
centered in the cells which are defined by the ¥ grid system. These
interior grid points are indicated by crosses.

This staggered grid system is used for computational convenience in
treating boundary conditions and to permit direct evaluation of convective
transport terms at cell faces.

The ¥ grid system is sized by NJ and NK grid points in the R direction
and vertical direction, respectively. The Q system has size NJ + 1 and
NK + 1 in the respective directions. Points on the ¥ grid are indicated by
(3, k), whereas points on the G grid are specitied by (p, a). VYertical
spacing for the system is defined by AZk which may be variable. urid
spacing along the R coordinate is designated by AR.
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COMPUTATIONAL POINT LEGEND

°-v X - &
0-u o-v
’P J-1 P J p+l
q+]—)ﬂ( ﬁl‘ﬁ *ﬁ {l\ﬁ ‘*‘
¥i-1.k Vik ¥
. 1 BVRE RS U\ LS
Az,
U, Q U.
q-¥— l ot L EL SN L N A 11, SR
¥ k1 1Yk ¥5 k-1
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——— |
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q-1 ¥ — ‘& * % X
Fj-1 Rp J

FIGURE 6. Typical Finite Difference Cell ITlustrating
Indices for y, @, and V
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Difference Equations

Standerd difference representation is used wherever possible in this
discussion. Central differences are used for both first and second partial
derivatives except for convective terms where special upstream methods are
used. These methods are similar to those used by Torrance and Rockett(ﬁ)

and Runchal and wo]fshtein,(7)

) and details of the application here are
8

explained by Trent. Techniques for uneven spacing are used for the

vertical differences.

Stream Function and Velocity

Consider the stream function grid system illustrated in Figure 6.
The finite difference representation of Equation (24) based on central
differences for both first and second partial derivatives is as follows:

1 1 1 ARN 1 AR
2 + Y. =— 1 -—]¥: 7  , +t— (1 +—]V.
aRe Az AZ 3k e or ) 3¥l.k T \p2 2R ) -1k
k™ “k+1

2

+ .y,

Jok+l
B2,y (AZk+] + AZk)

2 —

+ . wj,k_] + Qj,k RJ. . (28)

02y (8247 + 07,

In the above difference equation, the quantity Qs K is the average value
3

vorticity at point (j,k), hence the over ar. This average value is used

since Qp q does not lie on the ¥ computational grid.

*

Velocity is calculated at cell faces by

., = . S 29
UJak R. AZ W:hk Jsk") ( )
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Transport Equations

. (“’j,k - wj_],k) . (30)

Referring to the p,q grid system illustrated in Figure 6, the differ-
ence representation of the steady flow vorticity transport Equation (25) is
written as (after collecting terms).

1

REz

+

2 ( 1
82, \AZ,+AZ,

+U; ot [u

Js

1 1
- V. Q =l— « {]u. i
vJsk"]) P.q 2AR (lu\]']skl * UJ‘]’k> * RE ARZ
r

AZ, +AZ

k

1 ( ARZ) 1 (l I
+ - 2+ — + — U_
2 2 J.k
w1/ REAR R/ 28R

1
- —— |
1 U‘M’k) "o (lvj,k' * 5kt Vgl
K
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The SYMJET code solves the two difference Equations {28) and (31) by
Gauss-Siedel iteration. Iteration is continued until the computea velocity
meets a particular convergence criterion. Although this criterion is left
to the discretion of the user, computation in the present work was carried
out unti? the maximun relative change in velocity for the entire flow field
was less than 10> for one iteration.

Pressure Calculation

The pressure developed by the Coanda nozzle was predicted from the
computed velocity profiles using the z-direction momentum equation. For
steady state, axisymmetric flows, the z-direction momentum eguation is

y M v 13p 1 3 f v, 9 f av
ar v 9z p 9z * r or (? ar) * 9z (%z az) ) (16)

Along the center—]ine, r=0, this equation may be simplified. B8y
symnetry u=o0, and "F = 0. Equation (16) may be written as

2 2
13P _av [aEz 3%V v
022 az(az'v)+aE3;2+Ez§;f‘ (32)

This equation may be integrated with respect to z. When tne integration
is carried out using the dimensionless quantities used in the SYMJET code,
the result may be written as

1=2
oF 2 2
v r oV z 3V
P-P =pV [ v — + + ~———] dz. (33)
) 0 3z Rovo ;E? ROV0 572 )
=0

Equation (33) was solved numerically, using the velocity data generated by
the SYMJET code. Integration was performed using the trapezoidal rule.
The arid system used for the pressure calculation was identical to that
used for solution of the vorticity transport equations. The pressure
calculation was performed by a subroutine termed (PRESS) which was
appended to the SYMIJET code.
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This method of calculating the developed pressure is only as correct
as the velocity profile data, and the coefficients of eddy viscosity which
are used to compute the integrand. The relative values of the three ierms
in the integrand have been examined for several cases, and it appears that
the first term, °!%¥3 which accounts for fluid acceleration, is dominant.
Thus the accuracy of the pressure calculation depends primarily on the

accuracy of the axial velocity profile.

Application of the SYMJET Code to the Coanda Eductor

A first step in application of the computer code was to develop a
computational routine which would permit definition of solid boundaries
from input. This routine is essential because the calculational grid
system used is different for each physically unique eductor. The routine
developed has proven highly satisfactory. A1l boundary conditions may be
specified from an input card, and the search routirie maps the specified
beundary conditions onto the overal grid system.

Initial flow calculations were carried cut for an eductor geometry
which duplicated a small Coanda eductor which was available prior to the
beginning of this study. The grid system used for this eductor is shown
in Figure 7.

At the cernter of the nozzle, the boundary condition require. that the
velocity yradient in the radial direction be zero. Along the outer walls
of the eductor, the no-slip criteria (velocity zero at solid wall) was
used. At the outlet, velccity profiles werz specified; at the inlet (top)
of Figure 7), the free-flow boundary condition was used. This condition
requires only that the streamlines remain straight as they enter. At the
primary jet opening, the velocity was specified.

The unequal grid spacing evident in Figure 7 was required to ade-
quately handle flow issuing from the primary jet. Initial attempts to use
an equal spacing, with only a single-mesh node being within the primary
jet, failad to converge.
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Only the inlet section of the Coanda eductor was included in the cal-
culational grid system. Although it is possible t¢ include downstream
regions, this would substantially increase the number of calculational
nodes and the computer time. This was considered unnecessary fcr initial

runs.

Results for a typical case in which the total air flow was five times
the flow of the primary air are presented in Figure 8. The shape of the
streamlines demonstrates that the primary jet becomes attached to the
outer wall of the eductor, and entrains additional air.

(L]

Z2/RD

CIRFCYION.
o 80

¢ 0

VERTICS

[N 14

Q20

L) 0.50 v 2 ko ) T
RADIAL TIRECTION. R/RO ® -

FIGURE 8. Streamlines Predicted for an Entrainment Ratio of 5
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Figure 9 shows results obtained for a lower entrainment ratio. The
total air flow was reduced by lowering the specified outlet velocity. The
total flow leaving through the cutlet (bottom of Figure 9) was slightly
lower than that entering through the primary air slit. Flow separation
occurred near the center of the nozzle, with a part of the primary air
exiting through the normal inlet. It is worth noting that this type of
behavior could not be predicted using similarity theory because the veloc-
ity profiles are not similar at the various downstream positiors.

—

2 /RO

VERTLOH HREUTIAN,

o

1R, C.F‘.:Han R:ﬁ;

FIGURE 9. Streamlines Predicted for an Entrainment Ratio of 0.8
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For the cases shown in Figures 8 and 9, the eddv viscosity was taken
as constant throughout the flow field. This is a recognized oversimpli-
fication which was subsequently shown to be a serious limitation of the
calculational code.

In addition to the streamline output shown in Figures 8 and 9, the
SYMJET program prints velocity components, stream functions, and vorticity
at each flow node.

Application of the SYMJET code to the eductor geometries considered
in the present study led to discovery of problem areas not evident from
the results shown in Figures 8 and 9. These problem areas and their
solutions are discussed below.

Problem Area 1. Arbitrary Specification of Outlet Velocity

As is evident from Figure 7, initial predictions were done using a
velocity profile <pecified at the outflow boundary of the eductor. It was
recognized that arbitrary specification of a velocity profile was not
strictly correct, but the degree of error resulting from this procedure
was not thought to be controlling. When experimental data became available,
however, it became obvious that the model was not yielding accurate velocity
profiles.

The iack of quantitative agreement between measured and predicted
velocity profiles prompted a modification in the specification of the
boundary conditions at the outlet of the eductor. In place of specifying
the velocity profile, the free-flow boundary condition was used. The
total flow leaving the eductor was determined by specifying the numerical
values of the center-line and wall streamlines. This free flow boundary
condition is physically equivalent to allowing the eductor to discharge
into an infinite volume.

This change in the outlet boundary condition did not appreciably
change the character of the flow field. It was concluded that the change
represented a theoretical improvement, but that use of a specified outlet
velocity profile was not the primary cause for the discrepancy between
measured and predicted flow fields.
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Problem Area 2. Inclusion of Mixing Section in Computational Field

Use of the free flow boundary condition at the outlet of the entrain-
ment section of the eductor was recognized as unreal. Physically this
boundary condition is equivalent to operation of the eductor without the
mixing tube. In order to assess the degree to which use of this boundary
condition would influence the results, an experimental eductor was operated
without the mixing section. It was determined experimentally that the
pressure distribution and velocity profiles were significartly affected by
the absence of the mixing section and it was concluded that the calcula-
tional model must include the mixing tube as well as the entrainment
section.

The computational grid system was expanded to include the mixing tube.
The most obvious effect of this change was a marked improvement in the
rate of convergence of the model. Although the flcw field and pressure
drop changed to a limited extent, inclusion of the mixing sectior did not
eliminate the tendency of the model to predict a flow separation where
none was observed experimentally. Alsc, inclusion of the mixing section
did little to improve the capability of the model to predict the thin,
high velocity wall jet which was observed to flow along the wall of the
entrainment section. Typicaily the model predicted a wider, more diffuse
wall jet than was observed experimentally.

Problem Area 3. Constancy of Radial and Axial Components of Eddy Viscosity

At present, the SYMJET code allows for variations in eddy viscosity
only with the axial and radial directions. Er and EZ may be different,
but they must be constant for the entire flow field. Although this was
recognized as a limitation, past experience with the SYMJET code did not
indicate that this limitation would severely affect the validity of the
predicted flow fields.

The numerical values of Er and EZ were systematically varied to deter-
mine how sensitive the predicted flow fields depended on the input viscos-
ities. It was found that the value of EZ was critically important in deter-
mining whether the flow would attach or separate from the curved surface in

36




. 2
ithe entrainment region. For E, smaller than 0.012 ft /sec, the high
velocity primary jet would detach from the curved surface. For larger

values, the flow would remain attached, in agreement with experimental
measurements.

The numerical value of Er was relatively unimportant, and little
change in the flow field was observed when Er was variea between 0.02 and
0.0002 £t%/sec.

The minimum usable value of EZ of 0.0012 ftz/sec noted above corre-
sponds to a relatively high viscosity. Lse of a highly viscous fluid in
a Coanda eductor would be expected to alter the flow pattern compared to
that for air. The major anticipated effect would be to cause rapid thicken-
ing and dissipation of the primary jet. For a highly viscous fluid, one
would expect greater viscous dissipation of kinetic energy and therefore a
lower pressure gain than could be achieved with a low viscosity fluid.

This problem area can apparently be resolvzd only if a method is
developed for predicting the eddy viscosity at each point of the grid.
Suitably low viscosities (axial component) cannot be used in the SYMJET
code because the primary je* will not remain attached to the curved surface
when realistic viscosities are used. Thus, in order to achieve an attached
flow, high viscosities must be used, and this leads to rapid dissipation of
the primary jet. In reality, the effective viscosity of the flowing fluid
varies greatly with position. Within the high velocity jet, turbulent
viscosities would be high, but for most of the voiume, the viscosity would
be close to the molecular value.

Although development of a calculational code for predicting eddy vis-
cosities at each node was beyond the scope of this project, work published
by others very recently indicates that such a calculational scheme can be
considered to be "state-of-the-art" today. Important publications which
would serve as a base for incorporating 2 turbtulence model include those

(9) (10) ¢ Rotta’(]],lZ)

of Gibson and Spalding, of Ng and Spalding, and

of Bradshaw and Ferriss.
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EXPEPIMENTAL PROGRAM

EXPERIMENTAL TECHNIQUE

The apparatus used ia the Experimental Program is shown in Figure 10.
The system comprised: A rotometer to measure the motive air flow, an
eductor nozzle with features for changing the inlet geometry, a constant
area mixing section, a diffuser, an orifice meter to measure the mixed flow
and a valve to regulate the back pressure on the system. The apparatus
was further instrumented to provide pressure and temperature data of the
motive air flow and the mixed motive and entrained air flow.

Velocity Profiies

Flow field data was gathered by pitot tube which was mounted on a
precision x-y table with features for acjusting the angle of the pitot tube
with respect to the axis or the educto:, {Figure 11). The flow field data
in the eductor inlet region was taken on a horizontal radial plane.

Pressure Developed

The back pressure or pressure gain across the eductor was measured at
the outlet of the diffuser section. The data was taken by liquid manometer
and pressure dauge.

Calibration of temperature and pressure instrumentation was by conven-
tional means. Pressure and differential pressure were measured by liquid
manometer where practical. Both the pitot tubes and the o:ifice meter
(Figure 12 and 13) were calibrated with a Dresser-Industrial flow meter,
Model 7M 125. For each condition of motive air pressure used, the roto-
meters were calibrated against the orifice meter. Calibration of the
3.036 in. 0.0. - 0.020 in. I.D. pitut tubes found them both to have a
velocity coefficient of unity.

For most of the experiments, motise air was supplied by a portable-
diesel powered 250 scfm - 120 psig rotary compressor.

38




6¢

me————

Juawdinbl  ejuswisadx3 Jo M3LA J3ewdsyds ‘Ol 3YNDIJ

N ——
I
po— L ,
. {
o
[ ! [l | 1 ﬁ w m
= — A_ )
s _
X \ .,
Tt - 7/
- Al 2
: AL
PO IANCIY
e KOIVIRLIP
N oo
“A y MITA 3a77
| i sOm £Osa T IP KX v
j o . ﬂ Mlitsdaiciond
““ T JI. - |.o|5||.\v.\ &y e S
" SPLPIYONYY,
y — 2AVAL 3 g

“ ]
P s04ed

=/,

3 - S\ m/
i, I
; /—n_; - Py d
4 " L4
LPEVYIS PN HO
S vie

. - § L. -
; D)

e

o ol T ) 7
218 74 [

e e e+ - w - A SN e




leg. 731122-3

FIGURE 11. tLxperimental Apparatus Showing x-y
Pitot Mount
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Entrainment

The mo. .~ 1ir flow was measured by rotometers. The mixed motive and
entrained flow was measured by an orifice meter. The entrainment ratio was
calculated from the measured primary flow and total flow.

Geometries Studied

Eductor inlet geometry was modified by the use of machined inserts.

Figure 14 shows three inserts which provided educters with: 0.5 in.']

curvature - 6.0 in. diameter motive air annulus, 0.5 in.'] curvature -
4.0 in. diameter motive air annulus, and 0.33 in." curvature - 6.0 in.
diameter motive air annulus. Ti.. motive air annulus gap was adjusted by

the addition or removal of shim material.

In all, some 7500 individual experimental measurements were made.
During the study, Table 2 lists the combinations of inlet geometry and
annulus dimensions that were experimentally examined.

TABLE 2. Experimental Eductor Geometries

Eductor Annulus Annulus
Curvature Dianeter Gap

-in.-1 -in. -in.
0.5 6.0 0.006
0.5 6.0 0.017
0.33 6.0 0.006
0.5 4.0 0.006
0.5 4.0 0.009
0.5 4.0 0.010
0.5 4.0 0.014
0.5 4.0 0.015
0.5 4.0 0.020
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3 Material Transport

The experimental apparatus was modified (Figure 15) for material
transpert experiments. The modification included an inclined feed chute
and a gas tight collection box which allowed orifice meter measurement of
the mixed motive and entrained air during the conveying tests. Material
transport rates were determined by material balance as a function of time.

-

EXPERIMENTAL RESULTS

The information of interest that was ga hered experimentally during
this study included; the static pressure dis:ribution within the inlet
region of the eductors, the velocity and direction of the flowing gases,
the downstream developed pressure and the ratio of the entrained air to the
motive air supplied to the eductors.

Velocity and Pressure Profiies

Effect of Geometry

0f particular interest was the effect of inlet eductor geometry and

the motive air annulus gap on the flow fields and pressure profiles.

Flow fields and pressure profiles were measured on the eductor nozzle
with a curvature of 0.50 in.']. The eductor had a two inch throat diameter,
a six inch annular orifice diameter and a 0.006 in. annular gap. Figure 16
shows the flow field for an entrainment of 2.15. For this conditionr there
is a flow reversal causing a discharge of air from the center region of the
eductor. The back pressure regulating valve was then further opened to
allow an entrainmert of 2.62. Figure 17 presents similar data for this
condition. Comparing these data shows that with the increase in entrain-
ment, the flow reversal collapsed and that a stationary eddy circulation
ncw exists in the inlet region of the eductor. An eductor nozzle with a
curvature of 0.33 in.'] was installed in the e perimental apparatus. As in
the previous geometry above, the eductor had a two inch throat diameter, a
six inch annular orifice and a (0.006 in. annular gap. Flow fields and
pressure profiles were measured for entrainment conditions of 2.62 and
0.0 in Figures 18 and 19. As in the case for the eductor with a curvature
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of 0.5 in.'], the flow reversal experienced in low entrainment ratios dis-
appears and a stationary eddy circulation in the inlet region is estab-
lished. For both the case of the 0.5 in.°] curvature and the 0.33 in.']
curvature a mo ive air supply of 40 scfm was used.

Effect of Cylindrical Mixing Section

Reasonaple agreement was not achieved between values measured experi-
mentally and those predicted by the analytical model. It was postulated
that the analytical treatment of the eductor outlet as a free flow boundary
might be the cause of this disagreement in that the experimental apparatus
included a two inch diameter, twelve inch long cylindrical mixing section
attached to the eductor outlet. Experiments were performed to determine
the effects of the mixing section on the flow field of an eductor with a
curvature of 0.50 in.'], an annulus diameter of 6.0 in. and an annular gap
of 0.011 in. Data was gathered on the eductor with the two inch diameter
mixing section attached to the outlet. The apparatus was then modified to
effectively provide a free flow boundary at the eductor outlet (Figure 20).
For both configurations, the motive air supplied to the eductor was 40 scfm.
The results of these experiments showed that a significant effect on the
flow field and performance was experienced by the inclusion of th2 two inch
diameter mixing section. For the eductor with the two inch diameter mixing
section, the maximum entrainment was 2.0. In the case of the eductor with
the free flow boundary at the outlet, the maximum entrainment achievad was
only 1.0. Figures 21 and 22 show the flow fields for the two conditions.
Evaluation of these data led to the conclusion that the cylindrical mixing
section must be incorporated into the mathematical model.

Performance

Effect of Geometry

Of particular interest to this study was the effect on eductor perfor-
mance from variations in geometry of the inlet region. The performance
factors most important to the end usage of these eductors are the ratio of
the entrained air to the motive air and the developed pressure capabilities.
Data were gathered to investigate the effect on these performance factors.
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Figuires 23, 24, and 25 show the developed pressure or pressure gain across
the eductor as a function of motive flow. Each plot shows two values,
representing the maximum pressure developed against a blockage and the
minimum pressure developed when the valve on the discharge piping of the
experimental apparatus was fully opened. In each of the three cases the
dimension of the annular gap was 0.006 in. The three geometries were:

0.33 in.'] curvature - 6.0 in. diameter annulus, 0.50 1'n.'1 curvature -

6.0 in. diameter annulus and 0.50 in.”) curvature - 4.0 in. diameter
annulus. Comparison of the data shows that an increase in curvature pro-
duces higher pressure capabilities and that a decrease in annulus diameter
also produces higher pressure capabilities. The eductor with the 0.50 in.”
curvature and 4.0 in. diameter annulus was evaluated for the effect of
variations in the motive air annular gap. Figures 26, 27, 28, and 29
similarly present data as before for gap dimensions of 0.006 in., 0.009 in.,
0.014 in., and 0.020 in. Analysis of these data indicates that the system
capability to produce pressure against a blockage optimizes with the
eductor having a motive air annulus gap of approximately 0.009 in.

1

Of equal importance to eductor usage for pneumatic conveying is ratio
of entrained to motive air. The experimental data showed that the highest
entrainment ratios were achieved for low motive air inputs with eductors
having a large motive air annulus diameter and a low curvature (Figure 30).
For the higher motive air inputs, the difference in the entrainment from
one eductor geometry to another was not as significant. Figures 31 through
35 present the entrainment versus motive flow for eductor geometries of
0.50 in.'] curvature - 6.0 in. diameter annulus - 0.010 in. gap and
0.50 in.'] curvature - 4.0 in. diameter annulus with annulus gaps of
0.006 in., 0.009 in., 0.014 in., and 0.020 in. These data show that as
the dimension of the motive air annulus gap is increased, the entrainment
is decreasea for all motive flow conditions.

Effect of Back Pressure

In that the entrainment of atmospheric air will be reduced during
material transport gperations, the developed pressure as a function of the
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entrainment ratio is of special interest. f{iaure 3{ precents the entrain-
ment ratio versus developed pressure or back pressure for a family of motive
flow conditions in an eductor with a curvature of 3,3) in.':, an annulus
diameter of 4.0 in. and an annulus gap of 0.005 in. Figures 37 and 38 show
similar data for the same eductor when the anniular gac s increased to

0.014 in. and 9.020 in. with motive flows of 150 scfm and 228 scfm,
respectively. From this, it is shown that a reduction in performance is
experienced when the annular gap is increased from 0.014 in. to 0.020 in.

Material Transport

The experimental apparatus was further modified for experiments
involving the pneumatic conveying of crushed rock materials. The modifi-
cations included: A collection chamber for the conveyed material which
would allow the measurement of the volume of mixed motive and entrained
gir, an inclined fzed table and instrumentation to measure the pressure
drop through the conveying duct. The eductor section was fitted with a
metal insert which provided an inlet geometry of 0.50 in.'] curvature and
4.0 in. ovameter annulus. The crushed rock material used for the experi-

ments was a 3/8 in. minus having a bulk density of 81.5 1b/ft3'

Figure 39 shows the material conveying rate as a function of the
motive air flow. Included is the motive air pressure supplied to the
eductor, and the calculated horsepower to compress the air at that flow
condition. It should be roted that durinj the tests using 50 scfm motive
flow, the velocity of the conveying air in the duct was insufficient to
maintain fluidized transport while conveying at the rates measured. For
the higher motive flow used in the experiments, the velocity in the convey-
ing duct when no material was being processed was 6820 ft/min. During the
conveying operations, while processing crushed rock at a rate of 4 tons
per hour, the velocity of the conveying gases was reduced to an average of
4600 ft/min. At this conveying rate, the pressure drop through twenty feel
of conveying ductwork averaged two inches of water.

Most of the data gathered to support the development of the mathe-
matical model was taken in the inlet region of the eductor. These data
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are presented in Figures 40 through 47. These pnysical measurements may
be used in evaluating mathematical models designed tc predict the perfor-
mance of Coanda eductors.

COMPARISON OF MODEL PREDICTIONS WITH EXPERIMENTAL RESULTS

As noted earlier in this report, the lack of an eddy viscosity model
has prevented the satisfactory prediction of flow fields in Coanda eductors.
The comparison presented here is designed to elucidate the differences
between the computed and experimental results.

VELOCITY AND PRESSURE PROFILES FOR CASE I

For this case, the primary air flow was 39.5 scfm, the inlet slit
width was 0.006 in., the slit diameter was 6 in., the radius of curvature
of the entrainment section wus 3 in., and the entrainment ratio was Z2.62.

The axial! velocity profile measured at the entry to the constant cross
section mixing section is compared to that predicted in Figqure 48. 1t is
apparent that the wall jet does not diffuse as rapidly as predicted by the
theory. This discrepancy stems from tne relatively high viscosity used
in the SYMJET solutiun to this probiem. When lower viscosities ware tried,
the jet detached from the curved surface a short distance dcwnstream from
the inlet.

The centerline pressure distribution computed from the model is com-
parec to that measured experimentally in Figure 49. In the inlet region,
reasonable agreement between the measured and predicted profiles is shown.
However, after tie maximum in pressure i$ reachecu, the numerical model pre-
dicts a much greater drop in pressure than actually occurs. This discrep-
ancy is apparently caused by inAccuracies in the centerline velocity pro-
file. It is plausiblie that the predicted pressure distribution could

actuully be obtained if the fiuid possessed the viscosity assumed in the
model.
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VELOCITY AND PRESSURE PROFILES FOR CASE II

Experimental and theoretical profiles are worth comparing for this
case because this geometry was found experimentaily to be optimum among the
cases studied experimentally. The primary air flow was 140 scfm, the inlet
siit width was 0.006 in., the slit diameter was 4 in., the radius of
curvature of the entrainment section was 3 in., and the entrainnent ratio
was 2.57.

The axial velocity profile measured at the entry to the constant cross
section mixing secticn is compared to the predicted profile in Figure 50.
As before, the theoretical profile is mnuch flatter than the measured pro-
file. It is thus apparent that the viscous flattening occurs for this
case also.

Experimental and theoretical pressure profiles are compared in Figure
51. As was observed for Case I, reasonable agreement is observed near the
inlet, but the curves diverge after the maximum in pressure is passed.
This discrepancy is apparently caused by inaccuracies in the centerline
velocity profile. which are attributable to the high values of viscosity
used.
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