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Introduction

This workx is directed toward the meaeurement of vibrational

Raman scattering signatures for flme. gases, with a primary view

toward temperature measurements and a cncounitant goal of identifi-

cation and measurement of minor flame species. The development of an

optical probe for these purposes is highly desirable, since advanced

combustion system are utilizing pressures and temperatures such

that physical probes canrnot survive. The use of a Raiman scattering

probe, in particular, offers a variety of adantages over other

optical probes, along with some limitations which will be explored

during the course of this work.

During this project reporting period, experimental effort has

been focussed mainly on: (1) the observation and fitting of FUan

Stokes vibrational Q-branch profiles for N2 and H2 obtained through



use of U -air flames produced on porous plug burners, (2) explora-
2

tion of the accuracy of temperature Measurement for N through ex-
2

tended thermocouple calibrations and computer data-fitting tecm biques,

and (3) construwtion and preliminary use of apparatus designed for

use in these and other phascs of this research project.

The theoreticel effort during this project reporting period has

been concentrated upon analytical calculations of Raman Stokes vibra-

tional Q-branch profiles, suitably convoluted by experimentally-

determined monochromator slit functions or interference filter ba-nl-

passes. The main effort has involved analyticil procedures necess;ry

to determine the temperature, and has included both least-square data

fitting of entire profiles as well as intensity ratios cf suitably

chosen spectral regions.

I;



I. Experimental Equipment

Vhe basic double mcnochromator exper mental apparatus has been

1described previously. (Ref. I is included here as Appendix 1.) New

additions have been made to the cozmbustion, spectroscopic, tempperature-

measurement and comijuter data handling capabilities in connection with

several parallel programs in our laboratory. Those which pertain

directly to the present research effort are described next in outline

fashion:

(1) A horizontal hydrogen-oxygen burner system utilizing a Meker

burner has been assembled, which will permit flames to be produced

up to ca. 30360 K. This apparatus does not disturb the basic geometry

of our double-monochromator system, since it permits use of a vertical

laser beam passing throujh the flame 1r, the same fashion as forz our

porous plug burner assembly used at ca. 1300-1700 0K. The high-

temperature burner is desiLgned for production of "minor" flame species

of high technological interest, such as OH. Preliminary design studies

have also been carrieci out for am 1liavry optics for u.I.zation with

a vertically burning flame. In this configuration, a line image

(i.e., the scattering zone in the flame) must be rotated through 90

degrees. Design studies include bothi use of two additioanal mirrors

and use& of a Dri 'e prism.

(2) Accurate &f'low metering techniques have been install~ed for

the production of reproducible and clearly-defined fflame conditions.

The flows are now monitored and made steady by criticai flow ozifices

and regulators, u~e being made of precision high-pressure gauges for

accurate control of the fiow rates. The critical flow orifices have

been calibr-ated In our laboratory through use of basic volu~edisp13ce-

ment techniques.



(3) Fine wire thermocouples have been made in our laboratory

for independent measurements of the f la~aa tmiperature by a stenfard

2
method. These thermo ,ouples were made of 0.0005 inch diameter wires of

Pt - Pt 10% Rh, coated with quartz so preveGnt catalytic heating. The

thermocouples were nnved throughout. the flame with an accurate vernier

manipulator using, as a ref'trence Vo.ition locator;. a finely-machined

metal cone which could be placed xeproduciblv on the burnez head.

When the burner assembly was then placed in the test position in

front of the spectrometer, the burner could be accurately located in

this same reference position bY placing it so that the laser beam

just touched the cone tip. (By olbserving slight attenuatiofi of the

laser beam with a power meter at the position of the laser dump,j

this positioning could be accomplished with high sensitivity.)

In principle, the ther.icouple-measurement posi ~ior; and laser

Raman scatteriAg position could be made coincident by nmaging the

laser beam on the thermo-ouple junction. However, it is experimentally

dif..icult to accomplish this. In adidition, the therrTtocouples are

relatively fragile, and ft was therefore found ti be advisable to

calibrate the flame before embarking cn the scat :ering measurements.

AddiLiona'L temperature nieasurements have been made with a com-

mercially-available 0.001 inch diameter Pt - Pt 10% Rh thermocouple

with a bead-welded end, str -tched out to the si *e linear geometry as

was used f:-r the 0.005 inch diameter thernocouples described above.

tSee Fic. 1 for schematics of these two t~pen of thermocouples.) This

thermocou-ple was not quartz-clad, but ha. longer leads. The basic

idea was to test the sensitivity of the7:mcouple measurement of tem-

perature to thermocouple geometry, without embarking upon a major

4
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diversion of efforts The result was that a modest but not very sgr--ft-

cant differencc existed. The smaller thermooouple gave an uncorrected

temperature of 17050 K in a carefully controlled stoichiometric hydrogen-

air flame, while the larger gave 178. These values are the average

of many measurements with only a small variation between measurements.

Since the correction for radiative losses (the 1rgest correction here)

to be applied to rhekmocouple-measured temperatures is ca. 4 times

larger than th s difference of values, the difference is not believed

to be highly significant.

(4) Data logging via paper tape for intensity and wavelength

has been installed in the double monochzrmator system. This apparatus

permits data to be accumulated in a far more accurate and -onve:.ifnt

fashion, making full use of our computer facilities. in Fig. 2 is

shown the electronic detection schematic for this apparatus. The

wavelength data is obtained through use of an optica± incremental

encoder installed on the double monochromator. This systema, no4

operational, is currently being improved by location of a new optical

encoder element directly on the wavelength screw (rather than in a

more remote mechanical locaLion, as is presently the case). The en-

coding of accurate wav_2.ength data is consideret! important because use

of an inaccurate (non-linear, etc.) wavelength axis in fitting experi-

mental Raman vibrational Q-branch profiles to theoretical shapes

results in distortion which, in turn, lead to inaccurate ccnputer fits

and therefore inaccurate temperatures.

(5) An interference filter-test cell apparatus has been constructed

which is capable of operation witn a porous plug burnier. A photograph

of the apparatus appears as Fig. 3, while a schematic is showi in Fig. 4.

6
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Fig. 4 Schematic of interference filter-test cell apprtu a esigne4 for
photon-counting operation.
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Preliminary operation of this test cell with several hydrogen-oxygen

flames has identified areas of needed additional development work.

Particular attenUon is now being given to cooling of the interference

filters, since the filter passbands shift with the temperature, and

do not return to their initial positions when the original temperature

4s restored.

II. Experimental Conditio, s

All experiments discussed here utilized the double monochromator

and horizontally-burning hydrogen-air flames on a 2.5 cm-diameter water

cooled porous plug burner which was placed 2.0 cm away from another

water-cooled porous plug connected to a vacuum line. A continuous

wave argon ion laser source of about 1 watt at the flame position at

48n nm was used for all the results reported here. The temperatures

[ of the flames 4ere measured as a ftction of position by means of

the fine thermocouples described in the previous section.

Two different flames were studied. First, F or nitrogen data,

a steady si:ichiometric hydrogen-air flime was utilized (37.5 cc/sec.

H2 and 88.8 cc/sec. air) for which 65% of the product gases was
2I

nitrogen. 7he flame was found to be about 15750 K at its center point

(i.e., halfway between the burner head and the vacuum plug), including

a rough 50°K correction for thermocouple radiative losses. Since the

image of the monochromator entrance slits at the flame scattering

position was about 5 mm high, an estimate was made of the temperature

variation along this zone. This was found to be about 16'K. The re-

producibility of the thermocouple data was about ±

10



Second, for hydrogen data, a less steady fuel-rich (four times

stoichiomet,'ic) hydrogen-air flame was used (79.3 cc/sec. H and
2

47.0 cc/sec. air) for which about 511 of the product gases was

hyd :ogen. This flame was found to be about 13900 K at its center

point, including a rough 40°K correction for radiaLive losses.

Here, the variation of temperature with posItion along the slit

image was much more severe, being rought~v 1100 K over a 5 mm

vertical zon,.. Furthermore, the reproducibility was significantly

poorer, b. 'i:g roughly ± 30 K. This flam.., colored red from the
3

emission of water vapor vibratien-rotation bands, was subject to

significantly more diffusion by the ambient atmosphere than the pre-

ceeding flame, which undcubtedly contributed to its less reproducible

characteristics. It had, however, the virtue of a high hydrogen content.

Ill. Theoretical Predictions of Band Profiles

For the diatomic molecules consider-ed in these experiments,

Eq. (3) of Ref. 1 (see Appendix 1) can be used for the calculation

of the Stokes Q-branch fundamental series (',+ *v) profiles. This

intensity relation neglects the small depolarized contribution for

our cases. The profiles calculated in Ref. I in this fashion were

used to fit experimental profiles in order to determine the scatter-

ing-gas temperature. Therefore, als calculated profiles were nor-

malized to the experimental curvp eak. Such normalized profiles

arc also used here in computer fits for temperature determination

(see Fig. 13), but for other purposes, it is desired to calculate

prcfilee for a given molecule at various temperatures while main-

taining the spectral intensity differences at these temperatures



(i.e., not normalizing each profile at the peak intensity). This

is the case, for example, if it is desirr.d to calculate the relative

intensities at different temperatures obtained through use of a

monochromator or filter desioned to iso -e a spectral portion of

the 2-branch. We point out here that Eq. '3) of Ref. 1 can be used

for thes.e calculations if the vibrational partition function Qib

given in Ref. I folowing Eq. (3),

Ql-x - a - 1 ,

is multiplied by the factor exp [-(hc/kTG(O,O)J, where G(O,O) is

the zero-point energy. Here:

G(O.) = 1/2)c - (1/4)w x + (1/8)weee e e

where c , ue x , and wy are vibrational constants defined by Eq. (1)e ee ee

of Ref. 1. The exponential factor compensates for the fact that the

term jalue C(vJ) defined by Fq. (1) of Ref. 1 relates to the energy

above zero rather than above the zer--point, ensr:y.

F:',thermore, substitution of w. for w in Eq. (1) for Q , where
e I

i0 w~ -w x + (3/4) yo e ee ey

results in a slightly more accurate calculation of 2 vib" Here, wo

is the coefficient of the linear v term in the term value expression

2G (v) = w v - constant x(v ) +io o
Finally, if cozparisons of Q-branch intensities are to be made

between different molecules, account must be taken of the absolute

12



value of the nuclear spin statistical weight gI" This may be ac-r,-

plished by subs titution of gI for the relative factor n in Eq. (3)

of Ref. 1, and, for Z states of homoniclear molecales, multiplication

of the value of Qrot % kT. 2hcBe given in Ref. I following Eq. (3),

2by the factor (2141) 2 . Here, I is the nuclear spin quantum number.

In analoqy with the previous conment ,n Qv.b, substitution of

B for Be in the relation for Qrot results in a slightly more accurate

calculation of Qrot" Here,

B0  Be - e /2

where ae is the coefficient of the vibration-rotation interaction term

in the term value G(v,J) given ".n rq. (1) of Ref. 1.

In Fig. 5(A) are shown the calculated nitrogen rotational lines

of the vibrational Q-branch at 1000 K, different .symbols denoting

the various fundamental bands. The nitrogen zpectrum has alternately

':strong" and "weak" lines Lecause of nuclear spin degeneracy, but only

the "strcng" lines are shown hora for clarity. In Fig. S(B) is shawn

the spectrometer slit-convoluted intensity appropriate for the instru-

,ent used in our work, viz., a triangular si- t function of full width

at half maximum (F-iM) A 1 .63.R corresponding to 300uia entrance and

exit :;.lits on a Spex 1400-1 I double spectrometer. The same type of

calculations for 2000oK and 3000o.0 are shown in Figs. 6 and 7, re-

spectively.

Use of the type of data shown in Figs. 5-7 permits estimation of

appropriate spectral regions for measuring the various rotational and

vibrational excitation temperatures possible. In general, vibrational

temDeratures are proportional to the integral of intensity for partic-

ular bands (i.e., the ground st-., band ox any specific u.per state

13
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Fig. 5 Calculated Stokes Q-branch fundamental intensLty .'t 1000OK for
nitxogen. (A) Alternate "strong" line intensitie.-. The square
data points correspond to the ground state band an, the circular
points to the first upper tate band. (B) Trianzgi-3r slit funcrion-
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FIg. 6 Calculated Stokes Q-branch fundamental intensity at 200&K for
nitrogen. (A) Alternate "strong" line intensities. The square
data points correspond to the ground state band, the circular
points to the first upper state band, the open triangular points
to the second upper st- e band, etc. (B) 2Itiangular slit function
convoluted profile, where A is the spectral slit width (-WHIM).
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Fig. 7 Calculated Stokes Q-branch fundamental intensit at 300) for
nit-rogen. (A) Alternate "strong" line intensiti =. Thea square
data points correspond to the ground state band, the cimi-lar

points to the-first upper state band, the open triangular points to
the second upper state band, etc. (B) Triangular slit function
convoluted profile, where A is the sL-.tral slit width (FIiM)
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band), while rotational temperatures are proportional to the profile

on the short wavelengthj side of each band via the influence of rhe

vibration-rotation interaction. Thus, in principle, it is po.;ible to

determine vibrational e~citation temperdtures foi any pair of vibratiornal

levels, and rotational excitation temperatures associated with any vibra-

tional level.

For general comparative puroses, the nitrogen profile has been

calculated from 300 0K to 3500°K in Fig. 8 for A = 1.5. Here, the

rc latively Iroad spectral width at elevated temperatures becomes quite

apparent.

The profiles for hydrogen are very different from those for nitrogen,

since the individual vibration-rotation lines of the Q-branch for light

molecules are spread far apart because of their very large vibration-

rotation interaction constant, ae. (For hydrogen, a. is over -0 times

la-rger than the value for nitrogen.) In Fig. 9 are showm calculated

shapes for hydrogen from 300°K to 1500eK, while in Fig. 10 are shown

the profiles for 1900OK to 35000 K. We note that the first vibration-

rotation line of the first upper state band in hydrogen does not appear

for a longer spectral interval [starting from the (0,0) position, where

the pakenthetic notation corresponds to the lower level quantum numbers

(v,J) ] than that corresponding to the entire wavelength scale of all

the nitrogen data plotted in Fig. 8.

IV. Experimental Results for Nitrogen

The profile of nitrogen observed from the stoichiometric flame at

a thexrmk.otxple-measured tem:rerature of 15750 K (15256 indicated temperature,

plu.e an estimated 500 K correction for radiative losses) is shcwn in Fig. 11

"7
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Fiq. 11 Analog x-y recorder trace of Stokes vibrational Q-branch for nitrogen.
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as recorded by an analog x-y recorder. The same data as recorded by

paper tape data logging appears in Fig. 12. Here, the number of

counth was recorded every ten seconds (i.e., every 0.02 rm for the

spectrometer scan speed used).

In order to theoretically fit the exper'm'-ntai profile and the e-

by determine the nitrogen temperature, the experi s-ntal data wave-Ilength axis was first made coincident with the proper theoretical

wavelength axis by manually overlaying the ejcperimental datz on a

normalized (i.e., at the ground state band peak) set of theoretical

profiles. (See.Fig. 13) These profiles all have very similar long-

wavelength ed _s, determined over dhis temperature range alimost entirely

by the monochromator slit function shape. This long-waveiengt:1 edge

wa therefore useful in determining the proper absolute wavelength

values fc the experirontal data. in future work, it is contemplated

to perfar= this axis adjustment ,required slight backlash in the

monochro-mator scanning mechanism) automatically thr-u use of a

computer-fit of the long-wavelength edge utilizing an initiaily

assu:med zpproximate temperature.

The next step in the determination of teqperature involved a

calculation based upn-n the ratio of intensities recorded by the mono-

chromator in the vicinity of the peaks of the first upper state band

and the ground state band. (See Fig. 14) Each of t:ese bandPaSses

was 0.18 nn wide, and contained ten data points. The theoretical

ratio slown in Fig. 14 was stored as a data file in the ccc=uter, 3nd

the computer-determined peak ratio for the ex._zrimental data could

then be compared te this data file, resulti.w in a determination of

teiperature. The theoreticai ratio of peak bandrass intensities is

22
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also shown in Fig. 15 over a smaller temperature range applicable to

porous plug burner experiments. This ratio is almost exactly linear

over this range of temperature. For the flame studi.ed here, the

temperature deterained by this procedure was 1 54 6uK.

The final step in temperature measurement involved a least-square

computer curve-fitting treatment of the experimental data. The initial

assumed temperature for this procedure was that determined from the

band peak ratio methoI just described. The minimum least-square devia-

tion was then searched for by the computer as a function of tc.rperature,

and the temperature corresponding to this minimum deviation determined

thereby to the nearest 10K.

This methed of temperature determination has a basic sh'ortcoming

in that it is based upon use of raw monochromator data, to which the

peak of each trial thecretical profile must be normalized. Thus, any

noise "spike" of other random inaccuracy in the grOnvid state band peak

intensity can cause a substantial distortion -f the curve fitting pro-

cedure by producing a 'false rnormalization, with subsequent vertical

stretching or squeezing of the profile. This proLleM car. be circtmvented

by the averaging of zjacent data points, which car be performed by

the computer to produce a new 'szioothed" experimental data file. A

program has been written tc acco.plish this smoothing by averaging

over any odd nl-,r of data points in an equall-j-weighted fashion.

Thus, for a three-point data average at vavelengt-h A, with 6 equal

to the spectral interval between data points, the new intemsity at

A corresponds to (1/31 times the originally-encoded intensities at

k-6, A, and A+6.

26
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In turn, this method of data smoothing has a clear shortctning

in that it also distorts the overall Profile in the vicinity ot sharp,

nonlinear charges of intensity. 7.1hus, a compromise approach as dictated,

in which data smoothing is accomplished over an optimized spectral

interval. This has been done for the data shown in Fig. 12, for which

three--point, five-point, and seven-point data averages were taken. in

Fig. 16 is shown the three-point averaged diata, while the five-paint

averaged data is shown in Fig. 17 along with a theoretically-calculated

profile comp-ted at T= 15469K (the temperature determined by the peak

ratio method described previously) and kiormalized to the peak of the

data-averaged experimental curve.

In the table contained in Fig. 18 is shok.n the results of the

least square computer fi-tting procedure for the raw mo.nochrom-ator

data, and the three-point. five-point, and seven-point averaged data.

-te temperature correspondin- to the minimum deviation [i.e., T(min),

corresponding to the mini--= value of - (deviations) for each treat-

ment of the data increases here as the amount of data averaging in-

creases. It is easily seen that as the data averaging is increased

excessively, the spectral profile is "flattened out", resulting in an

appearance closer to that corresponding to higher te=peratures.

As a working criterion for determining the optimum amount of data

averaging, the procedure chosen txilized the s-allest vain-u value

of (deviations)". As may be seen in the table contained in Fig. 18,

the smalest value occu-rred for the five-point data average -nd,

accordingly,. this was chosen as the a~tmroriate treatment for the

data. The graph showra in Fia. 18 illustrates the variation of

1(deviations) with temperature for the fi-epoint data average, and

indicates resultant best fit at a value of T(min) = 153&K.
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10I

4 2

DATA8 1505%
at 3P0 DA/11

'a' j5-PIIT A io' .211
_AVERAGE t

SIAVERAGE j. 443
10 150 54 15

TEMPERAT'JRE (*K)

Fig - 18 -,able. Siaryo Tce rAs ?!r-ii.) correspondizm_ i, th
=3n"== -alue Of l (deviat..os) for the least sqzre profie-
fitting proceulure. ce.-d for the zraw momoc!.c%zoi , data and
4For three cures cat data &vegrq iq~re. -Varationi f
1e-iatioMS) as & func--iom of temper-atue fior th.e five--point

dataa~er~eiprofile.
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Surwiarizing our findings for the accurate determination of flame

temperature for nitrogen:

I. Sensitivity for measurement by averaged band peak ratic-s is

shlwoun in Figs. 14 aid 15.

2. Sensitivity for curve fittig is illistrated by the set of

nornalized curves sl.omn in Fig. 13.

3. I-e tevperature measu-ed by the band peal ratio was 1546°K.

4. ne tesperatuwe measured by the be-t (five-point) data-

averaged computer profile fit was 1534°K.

5. The temerature indicated 1y the fl-ne -wre tern.oa-ple wass

1525PK plus an approximate 50K radiative correctzw. for ea

estated fla-e te--,erature of 1575K

Cur%-enL agreement Between 6-a peak inte-ity ratio method aod

-the curve fitting metho4 is about %. It is intended to _-zue these

techniques to determine their Iwiting acizr- 4 es, vith an ----

an variations of the metis wiich produce -;ood accracy with a

of ,.oplexity in the data handLing. Thu. the trend is toward utilizing

the f ul Profile fit as a cali'atic of the s le b M ra10 Me td_.

This latter ethod can be ade more a---ate b%, uzil n more tha-n the

;;reset-1;m- ___tw band-passes.

7he full p€rfiie-fitti= wethod v-I retain its utili ty for investi-

gatices of no-thema eqjir_; signas~ures. it will tue Farticule-1

usefui when neither vibrational nor -otat-4oal ".

a drterniz-atcc o r2ztive pouations of the vario°s Vilrnio;ai

ando rotzcti a;al le-wel.-
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It is Gtress, d here that Ram~an scattering ziatures are direct

maeasures of the relative populations of the mlu r itr nlice

aad, for equiilibritsz situati-ans, these relative populations ccxrrespandI to -.he fundamental deft-ipion of teeperature. Thtus, it is contevpla ted
that this forma of temerature diagnostics has the po)tential for beccingIthe nos-, fzndamentally accurate schmme for -n -perturbing, three-dinmension-a

v. nr~x.-tT Result3 for Mtdro en

The nitrogem data d scimsed in Section V were takers vith a v'iew

toward hicL--ac-_zacy temperature diagqstics.!. he bydrogen_ data' dis-

cussed in th~is soctio were taken in order to investigate the Eifferent

type of Raman vibcrational signaturze prodaced by a very l-ight wilecale,

arA vre not intemded for a.-cuxate tenjoertuxe r-asure=_eats.

7bhe pro!le of hydragen ebtained frm a fo"'-tiines-stoll ic~etric

h-~r~e-ai Ila at a tbermuple-zmeasured te~pex-_ture of about

l3~30 K(crrete ro~hy for ra itive I -ses)i shown in- Fig. 29

as cbserved t-.c-*gh mre ti an analog x-y re-trJn-r. Yhe first fobur

Votaticnal Iin-e- of the Stokes vibratioz-al 2-b-tw~ -- re ideatified-

%.-r parposz of =*ariso, see Fig- 9 fbe a theor.. -icall.1 a-sd

CurVe Of the entire Q-br.-exh at 150 E-) 1. :?Iq. 200 is shcar the

saze daza as cbtained fr=2 the pap-r taze data loer, wiere tbe trace-

zon as the solid --=-.e ontains the R~nan scattering iLat-. a.-4 the

~isnd .. rv s a 3set4rn m~ission ctriof this is

12 Mae.Te enisszco swctzv,-- has beem f~r~dfr=~ the ~s~n

ps-scaring ~~~ inf 7rig._ 2t. and a eertcycluae

casied rve zd&d for hvydS--roemn at 1 AWPE. 3Kaen-ixrq he .j
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calculated peak intensity . )rmalized to the experimental peak intensity,

profiles were also calculated for other temperatures. The peak values

for J= O, 1, and 2 at 13000 K, 14000 K, and 1OO°K aze indicated by the

appropriate horizontal lines in this figure. The accuracy of temperature

measurements for the hydrogen data shown here is not good for two main

reasons: (1) the flame is somewhat unsteady and non-isothermal, and

(2) ratios of the vibration-rotation line intensities shown here are

not particularly sensitive to the temperature over this temperature range.

Other ratios utilizing higher rotational lines are more sensitive for

this range. However, the profile presented here is indicative of the

type of data and the required treatmen- for temperature estimates

utilizing light molecules. The relatively wide spectral intervals

bet.ean vibration-rotation lines for these molecules suggests that,

with prcer choice of bandpass, interference filters could eventually

be used for temperature determinations with greater ease than would

be the case for heavier molecules.

VI. Conclusion

The vibrational Ramtn signati-s for nitrogen and hydrogen

have been studied for hydrogen-air flames produced on a water-

cooled porous plug burner. Accurate determinations of temperature

have been pexformed ntilizing the nitrogun data from a band ratio

method and from a total profile-fitting procedure. These deter-

minations as well as various other theoretical predictions havc

made wide use of computer calculation techn-ques. The tem:peratures

found from the Raman methods agreed with each other to within - percent,

and agreed with an independently measured temperiture utilizing a fine
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wire thermocouple (only rough .' corrected for radiative losses) to

within 2%.

The hydrogen signature has been fitted to theoretical predictions

for low-lying rotational lines, and exhibits a spread-out structure

which may be particularly useful for temperature diagnostics. Addi-

tional equipment has been assembled for improvements iii the spectrc-

scopic, combustion, temperatur.-measurement, and data acquisition and

reduction aspects of the experimental program. These will be used in

further study of laser Paman probes for combustion diagnostics.
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Ramam Scaffet h Flom in the scattering zorm was about 100 :2
p-m. and the hrisht frcm which the
scattered radiation was accepted (a,% _z,

Abstract. La Ranun smtering do& for nkroger-, oxyen, and wa, vaptw termined by the 1-cm slit heightA", -hr
have .-en obtained from h>ydr-,W.n-r and W-d ogrn-oxygen jkl z. The endtbl image sagncation f ctur of
grour4-tatcand upper- state ibrationad bands exhibit rrong asynmetnea 6road- about 5 mu. The roochromA i
ening Experimental spectral profils hate been fitted theoretically to gvie a new tance and exit slits Wer- .' to 300-
measureintuit technique for the determination of rotatonal and vibraionad ex- Im. for *'h.kh the spwc'r't sli- wii.eh
ciraton temperdtures. was measured to be in var .io-e agrc--

ment with the vaue -ac, ted from
We report here obhsevatiohNs of vi- with studies of species in oven. at the instrument dispersion curve. T-4

brational R.man scaturing Mm flame temperatures up to 1000'C (3), and (Rayleigh and Mie szatte:ing) xbate
gasc . One motivation for these obser- with a low-pressure electric discharge ut the laser beam at the evlrance slits
vations is that Raman scattering can (4). We have bwa unable to find any (as viewed by a periscope attachment
provide spatially resolved neasurements earlier publications cncernios Raman behind the slits) &,hoied no change
of the concentration and the vibration- szattcrig in ftams or in avy syictas when :he flame was ignfied.
al and roticnal excitation ei;era- at temperatures ij, excess of 10001C. The flames !tatcd *ere pro. ,Zced
tures of flame constituents. This capt- Our initial observations were cm- on a watercooled porcu plug burner
bility should prove to be of substantial fined to Stokes bands arising from (diameter. 2.5 cra) (5) operated hori-
use in the dizgnostics of noneqilio- 4S80-A incident radiation from an ar- zontally nnd burned into anz te, water-
rium as ve1l as equilibrium phenomena. gon ion lase (Cohebat Ridiation cooL-d poro s plug (of lrger diamet:er)

The work presented her is focased model 5281 operated for most da:a at placed about 1.5 cm away which Was.
upon the ob rvation of tenperature- 1.5 watts. The scatzered ligh was ana- in turn. connected to a rough 'acuum
dependent ecmts in the spectral distui- y1red by a dotble monochromator (Spcx line. In this fashion, a stable hoizontal
bution of the Stokes Q-branch vibra- 1400-11) aith 5000-A blazd gratings, flame at atmospheric pressure was
tional scattering. These effect arise The detector was a cooled pholtmulti- produced which possessed thz advan-
predominantly from the vibratio-o- plier (RCA C3100E Quantacon) op- tare of offering a scattering test zone
ration interaction and from significant crated in tN pulse-counting merde with of unif,?rm conditions (that is, at a
populations of excited vibrzzional ev- dark ctemt levels of about 1$ counts constant distance from the flat flame
el. From thes excited levels origin:.te per second for this wo&r. front) for a laser beam passing in the
tapper-state bands (1) which are us- The cverall =xperimental arrange- vertical direction. 3catlering data for
uaily shiftei Foward the blue region ment was designed to have the laser HO arid O, %-re obtained from lean
bit, the spectrum, beam tgaveling along :he direction of H.-0 thmes, wheTreas data for N.

In Fig. I we show the types :f fun- the entrance slits (that is, vertically) was obtained from a igan H2 -air flame.
dameal vr,-ratinnal Raman scattering and focused at a position about 0.3 m Because of the low luminosity of theseetts that may bo ob--ed in tam from the entrncee slit. The .Raman- flames in the spectra. regions of in-
Eanter Ram=n se.ttwint exper*iments scatteredl r',4iaiion was collected by a terest., no increase in background was
at elevated tempgaures have "et multickment Ian with a focal length observed Alwahe the flarres were ignited.
with la heatinj 4f a vapor (2). of 75 rm- The width of the laser beam Precise 11,; data were not taken, nor

C..pyriril- lot 1, r Awiir-nss itsaHbr the? :tdmriirrnt o.f UZPiepc
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were accurate ui dpenden temperature aone involve a much smaller spectral corrop6idg to the Qbranch do not
measurements made. since the major rane than with the corripoodisS overlap each other exaly. There is a
gO lof this portion of our fame Raman matreawes of Stokes/saoi&Sokes prressive sft to showr wav lengths
scaterag investigation was the e. ratios. Thus, in the former cae it is 0caused by the vibration-rct tioo 5nter-
ploration-of general tmpeatfutb4e i- easier to correct for the spectral vwa- action Senn of the energy levels for a
64ve features of scattered bands. The tioa of background, absoqrd. &M molecule. To discuss the sper
temperatures actuay &eermubd from spectromeer respomep and poition of each -band we-considerthe scattoAing data ae reonable values 'he asymmetry of the vibrational the term value G(vJ) fora al d

fort namts usid. bands s evident even at room temptra- tomic molecule (7). includia bi-f
Although vibrational- temperatures ture for the molecules coosiderd I , tions from harmonic a anharmnic

have been deter:,ined from the Stags/ and particularly so for H2O. In Fig. osclator legns, rigid and anharmonc
anti-Slkes rtios of vibrational as2t- 21 the MO vibrational groundtate roierx-etms, and vibratioa-rotatki in-
Win ten(2, 45), the same informatia is b.,d is shown for scattering from room teraciio terms (8).

accessible from the- Stakes scattering temperatue ambient HO. The greatly
alone. Our initial attention to delet- increased broadening toward the blue G(J) E .fJ)Ikc=--.fv+%)-
ter is due -in part to the geater semi- region of the spectrum under flame .r.(r + +)' + 3..(v + %r +
tivity oi our spectrometer and detector cooritiocs is sholwi in Fig. 2A. ThIU .1)( + 1) - _
to the Stokes scattering; However. strong asymmetry of the N2j and Os D + p.12^JJ1 )"-
there is also a potentl advantage to vi'rAtional bands under flame CoD&-
tis approach -which uisis from the tions can be sem in Figs. 3 and 4.-This
fact that temperature m _easremmnts "bue asymzfit" is explained by the Here E(vj) is the eon of the level
from Stokes (or amU-Stokes) sc&st fact tat all te =O rotational lines (vJ); ris -Flauck's constant cis the

Stokes (av1+I)
Vibr. trmsgons

~C A

- i( (
0 - l ll l ., - " a. . .. . .. . . .

L (a) (b)

Wavelength in I-A intervals -

I11/ *
HP0 (.3t5rn' shift

a5, lit.|

S_.__.___ _ _____ -A intervals -

1!Fl I d:f). Schemati of tom molecular transi.ions whch cotriue to fund&, ntai vibr tonRm sctei (.W±=__ 1).
i "l Stolkes ,;pper-rate hand (c rded numeral "one," at right) is associate with,;he moleculr viraioa tranidon v _.- to r. 2.
i - For this tranStont tL scattered photon en~erg as slighly lpeter than that for the ground s ~ (ibM is, r = ( to r= ),
r,;' O-branch , irclcd tetter "G) laeo -l aarot . th pe-tebadppg t• lgtl

shorter mvle tl, i 2 • flt.a,)Tme., taa .~oa fralanH- Thepma
?egtSnent above cue-f t trace is a peOoo of another measome: shown to indicate t remrrblity olr "he p~rm L'atures at

=postions (a) stad (b). T c ;atte is as uppr-sute bead; d is discued at the end of tids tepo@L Alhog feamture (-) approui
mnately Conie with a wea Ar lin ,t 5925 A. euperinieta mea,'urcn fz: ed to show sufficient scattering of i aito

S to cause the obserred ()Tese , am nt to 2$K. tonr). The |
curve is he , ltfucro. These cve corspond to 30-g entrance and extitsfo hde slit wdh.
i.62 A t tis wavelength. The wavelength am of these curv-s are indicated in a reislive fasionu only, sic wavelengthlibraio

s sigtly to the right of the peak of (B) (that is. at slightly longer wv,- le:.m). As am easmnol of a eas fo- whc exact tat-
culatior ar rot complicst,4 the peak of the 295"K s -tomvcled pr J for ?1 is at a waeleagth about 0.3 A less thun i
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wavlength (A) -Wauelent

Fig. 3 (lWt). Ramnan scattering fmvm N. in a !ean H: air flame. (A) The experimntal recording ona abich hatg mensperini-
posed the sptctromneter slit fwtmi for the 300-pin entrance and exit slits msed. The spectral sli u3*h .1 is 1.&3 A. The lak~ug G.
1. and 2 corresponds. respcctivey. to the ground-taie Stokes vibratiastal Q-bwmmch. the upper-suwe Qbtanch (r = to r- = 2). and
the uppcr-statc Q-branch (r =2 to r =3). (3) 17e solid Umn is a trAcing of the -arizean curve ,(A). So fad-hutte conipiison
with the intensity Calculated ZIdscm Wjiwingts f m Eq 3 cau'resb t, 10" . 16W J1 2n I *K (xL

scattering from 0. in a lean HL-Q_ flame. The geccml conunKut for Fit. 3 also applv heme. Howeer. in his case a 4itior-lVN-
per-state band (labeled 3) is seen. Furthenaere. a tracing of a s~ubs eat nseasureme-s uvder ietial cnditins is ssoom as
the da4hed curve in 1B) These tu-o curves ti~c an estimate of the spriAd En the C6 dats. and are to be coanpeed wMt the theo-
retically predictcd shapacs. -An ettirate of rourW1-7WK is obtained frole these dima

speed of light. @, . ,r.. and co~j. ame whcre k is Botmann's coristant and for which iy=0 (that k. the lines
vibiationa! constants such that m y.. -C wr is the wxre number of the Rama corresponding so even values of I are
as~(<a.,. B, and D. ame. rcsectively. fundamtental line (11): missing).
the rotstional constants for- rigid and -. ;~ .1-r)It is . vident from Eq. 3 that the
nimrigid rotation in the equilbrium r+ I )shapet of cachs iarcula-banWW (that is,
irt*erUCkaT position; and r, and 8Pe for which is *-he wave number of the a givcn r) of the furkdatenal series
(a, <8., and fl, 4 Dj. -epreseWt Ni- i:Ocaing (laser) -Ddiatimo Here the wuill be dependent upmo the rotational
bration-rotation interctions. depol.rized cont-ibution %a been neg- temerature and that a proper fi: #.o

The Ramnan shift for a fundamental lee. mvd the -Wars associzted W~~ an~ etperUimenMA prowil car then serve
vibrational band (that is for W =O the cross section which are not ex- to delenflif this USe rau'zur All of
and 1v = 1) is. from Eq. 1. plicitly written out 2re denoced by r, the brands of the fandamental sees

.IG(r + I J.-J) = &.- 2&-.r.(r -4 1) + The rotitial (12) and vibraizkal will haVe somewhat similar shapes.

ryf3r2 +4 6v + 13/4) - u-Jof + 1) - Partition fUnction' QI- and Q,* Xre Here-, for the purposes of 1110 J100.
~LP+ ~ ~ ) c consider fth grond--atc band. rs.e

Q-, - k12hcN.shape of this band (that is. theS

,Aheie the vibraticm-rotation inc. .- kT/2hc. - pofie) may be calculated
tion. corresponding to the last two Q.,. -It - e'P ( lCMAI1 horn Eq. 3 wh ch. for a fixed tempera
terrns of Eq. 2. leads to the blue asTt and the factor Y, accounts for the erea tu &ur.-bcomes
gictry for the bamds Here. P1. ma)Y be of nuclear vinf. For N. (1=1M the S(CJ) cr (21- wX
neglected. since P < , -i -

The radiant flux S for a rotational llat'to she nriona levels coraon sud[sc#J(;+I)

th a..-t-. . - ..- - o[s zp-. .kU Q+• .+7

fine of the fundaental series (r+ I-r) to e vn valus of , fot- which !; = I - with
Stokes Riaman-wcanered Q-branch is . The s tosd- m;F M e U7-ic levr CAr-
given hy (9, 10) rcqxA ,to oddvalu s of .L frwiticd W " 1. - 40u, 2 It.? + )

fi1 of)f )W. V=% o .I ) thesymetric what nly hom tri .pn natIiw
sa rn cc 4.. Q.-. levels cocrespond to cdd vaars of I. for sil .icanc, which contribute to the

L p !-- G(4an 1  which = 1. whereas the antaayometric relative hand shape have barn retaine.
-. kT j ' k l.vels crrespod to ev e s of e o . The rtuition fou wsc u povv e only a3
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t~P~~uC-CP~dWScale factor for ncAxtion( 3 v..m to denote the vibra GXW' tA~mV~r c u&L u.
Eq4 3. and so are m of to~ o iWqw ubmfrl & 1% 0. S L Ow t fhr.tim.;%= ro Iak,pr~ fttl fundibna vibtationa smodet. 1I Owk fi is L4Oma~aWmO

The experiments reporsed bet cor- band comrepnieg to the transatwin A~dm '-w be. fti a xiromm- zved
resOndcd iuidt reaotuble crtaincy to (I. .O)mi iO~s the most likey to be -- L awn-i Q-c obn -s

Mutations for ft vr ohmed. sznc h ares froml thw popn- L W- HOLM. W. F. US:b~ 5L 1. SOOSS&K
t5Iona and rotafuni cne1ty kids. bion of 2ie lowest excized- ii&azia ak-- 5x'~ 3" M~ f ~ ~ ~ ~ Z ~ ~. __S.. $0- d a Mm. L A. cAim *md G. A.
frum is " eected. th epr- a) b w~ato [hX betpom tg 5, 6 kw Secs taiteo 'W- mawse~
turt factors appqvin;- in the ez~oaient upjie-stale bad and the roamd-staae ~ ~m .wie..Op.S
of Ehj3 can be d:o dasvaheesof band (for no roosii) is -x 2 When A 7e!91 L. VY OiIdmu. :I-W

of T4 &mciazed with aftCIJ. x.._ is Ok- coefficieng of the (r, + ) ,. CAOM. P#10 ;A. theM
LTa energY levrKs and the v~ii a i+;A-) trun in te vwtij kml Ca S. Smt kc eamk W. IL M&. is MR&
and rotazjomg-exciutiom ien natures pressaon For H-0. x._k -2o cmO IROO %CCWV~b V431 MT t34Ciid
cOrrcqpoodi~ to tgcsc detrees of free- amd 51 cmrespoods to a blue Shift Of ik G. F. W~ a S- I. e~ir. A-u. U.i
dorm can therefore be de ined.m In 7.05 A for licident 4880-A radkltm 7. 7b. Cco" gtuf amm.P .4 o mec aPeneral, the ftW6% peak 'vaai or. mae- This Abift closely comacdles with the Ammm mWit- au t am -a oft& aw

grAted inlemity v; o*ach successife band p.'euls of fcatm (b) in Fjg. 2A (since 4 Wm"O mwae& zg-r-t-y=c
zmdcatca the ubrafioeai tensperazawe. ; is kcaledi siijbil so the right of dle -S"'3-

aheea-ic shap (that iblasa peak at the lankan siatteru' ow n 1- .Irkg ~~ ~~ jLd -Stczv " I- $oe" agZ Lie:..metRY) of each band deimime the Fi. 28). Thms vie have esiikace of an Wa N-m" t'iffiar. NJ.-
tota'io.ral empemaure. Thus, if nom- arleciAb popauat m oi the I UP V-= &Z m bk IL c e= C
eq'Jilibriusn is swspccled separateEft I'lesl for the flame smsdieid. More ins- ohm ..ft t*& 3
to the shape -of ech band shoul Ui poctatly. "h resul decwuuvne the L A W&Wh. 3L Qu.o 2i)"a:l
madc. In this fahiom. 2di~reUt vibam potenialW aithy of Raz s~iet-g IHL A- SiiGAmiL fS. 0*00 **WYOW
tonal 31W rataioal eciation kmr- OS UreftentSs for polrAtosde mlculeS I.j.3 Tsm serv4~ qw e. 34
P"alWes can be associated laith ecxh In IMaS-rpr uv bave cevsrw 19 lu 1 "to
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