AD-759 142

DRUG THERAPY OF ACUTE PULMONARY INSUFFICIENCY

Domingo M. Aviado, et al

Pennsylvania University

Prepared for:

Army Medical Research and Development Command

1 January 1973

יייה אומיייאיא אומאיייא איייאייי

DISTRIBUTED BY:

National Technical Information Service U. S. DEPARTMENT OF COMMERCE 5285 Port Royal Road, Springfield Va. 22151

pe'		
	Δ	D-759142
Security Classification		<u> </u>
DOCUMEN (Security classification of title, body of abetract and	T CONTROL DATA - F D	hen the everall report is also allied)
. ORIGINATING ACTIVITY (Corporate author)	2.0. R1	PORT BECURITY CLASSIFICATION
Department of Pharmacology;Schoo	ol of Medicine	
University of Pennsylvania, Philad	lelphia, Pa. 19174 20. 01	NOUP
DRUG THERAPY OF ACUTE PUI	MONARY INSUFFICIE	NCY
Annual Summary Report (1 April 1		
L. AUTHOR(S) (Leet name, first name, initial)		
Domingo M Aviado, MD		
Miroslaw A. Beley PhD		
Leonardo V. Bacalzo, Jr., MD	TA. TOTAL NO. OF PAGES	75. NO. OF REF!
. REPORT DATE	26	7
1 January 1973	20	NUMBER(8)
• . CONTRACT OF FRANT NO. DADA-17-71-C-1060	2	
DADA-17-71-C-1000		
E PROJECT NO.		
ø.	92. OTHER REPORT NO(3) (Bie mper)	Any other numbers that may be seelfied
4.		
"Approved for public release; dist	12. SPONSORING MILITARY US Army Medical Development Com Washington, D C	ACTIVITY Research and hmand
12. ABSTRACT Contract No. DADA-17-71-C new drugs for the treatment of act have been selected for further inv rhesus monkeys prevented or redu- induced by iodoacetamide. Other in the dog (alloxan and ANTU) did naphthoquinone compound previous pulmonary edema was less effection non-toxic and potentiates the coro known to be released by hemolysic Two water-soluble benzoyled effective in preventing carbon dio tenzoylcarbinoltrimetyl acetate p carbonolmorpholize acetate was s intravenous injection would be effi insufficiency.	ite pulmonary insufficie estigation: Eriodictyol a uced the pulmonary com- compounds known to pr l not induce similar effe sly demonstrated to pro ve in monkeys. In the nary vasodilator action s. arbinols were tested in xide-induced pulmonary roduced pulmonary hem elected for future studi ective in treating or res	administered orally to gestion and edema ovoke pulmonary edema ect in the monkey. The stect rodents from dog heart, eriodictyol is of adenosine, a substanc mice. Both were edema. However, a orrhages. Benzoyl- es to determine if
NATIONAL INFORMAT	TECHNICAL ION SERVICE	- 14 43 ⁴

en efterster hångslenere der et et

4

26

6.4

-			4 70	•	60		1
Securi' Classification		1	PJ J	- 7:	77	170	K
14. KEY WORDS	ас-с, цантного Малайанин н	ROLE	K A	LIN		LIN	
Acute pulmonary insufficiency Eenzoylcarbinols Eric fictyol Lung injuries Naphthoquinones Pulmonary Edema							
Reproduced from best available copy.							
	UCTIONS						
 ORIGINATING ACTIVITY: Enter the name and address of the contractor, subcontractor, grantee, Department of De- fense activity or other organization (corporate author) insuing the report. REPORT SECURITY CLASSIFICATION: Enter the over- all security classification of the report. Indicate whicher "Restricted Data" is included. Marking is to be in accord- ance with a propriate security regulations. GROUP: Automatic downgrading is specified in DoD Di- rective 5200.10 and Armed Forces Industrial Manual. Enter the group number. Also, when applicable, show that optional markings have been used for Group 3 and Group 4 as author- ized. REPORT TITLE: Enter the complete report title in all cepital letters. Titles in all cast as should be unclassified. If a meaningful title cannot be selected without classifica- tion, show title classification in all capitals in parenthesis immediately following the title. DESCRIPTIVE NOTES: If appropriate, enter the type of report, e.g., interim, progress, summary, annual, or final. Give the inclusive dates when a specific reporting period is covered. AUTHOR(S): Enter the name(s) of author(s) as shown on or in the report. Enter the date of the report as day, month, year, or month, year. If more than one date appears on the report, use date of publication. REPORT DATE: Enter the date of the report as day, month, year, or month, year. If more than one date appears on the report, use date of publication. NUMBER OF REFERENCES: The total page count should follow normal pagination procedures, i.e., enter the number of pages containing information. NUMBER OF REFERENCES Enter the total number of 	imposed b such as: (1) (2) (2) (3) (4) (4) (4) (4) (5) (5) (5) (5) (5) (5) (5) (5) (7) (7) (7) (7) (7) (7) (7) (7) (7) (7	NBORING I timental pro- te research rRACT: E of the docu- to appear of ditional of ed. highly des	requeste DDC." nnouncen DC is no ernment (directly i request tary sgen tily from st throug bution of users sho bution of users sho bution of users sho bution of users sho to f Com nter the p ARY NOT MILITAR oject offici n and dev cater an a iment ind olsewhere opece is i	rs may obt nent and d t authoriz agencies n from DDC. through through this repor- pole of the pole of the pole of the bole	tein copi issemini ed." ney obta Other of obtain c ner quali t is cont the Offic sale to nown for addi TY: Em ratory ag Include ving a b the repud y of the continue	tion of this in copies qualified i opies of t fied users trolled. Q trolled. Q trolled. Q trolled. Q to f Tec the public tional exp onsoring o address. rief and fi ort, even t o technical sation she classified	of DDC " his " hual- ," hual- ," hual- c, indi- blana- me of (pay- hough of re- ot shall
 references cited in the report. Sa. CONTRACT OR GRANT MUMBER: if appropriate, enter the applicable number of the contract or grant under which the report was written. Sb, Sc, & Sd. PROJECT NUMBER: Enter the appropriate military department identification, such as project number, subproject number, system numbers, task number, etc. Sa. ORIGINATOR'S REPORT NUMBER(S): Enter the official report number by which the document will be identified and controlled by the originating activity. This number must be unique to this report. Sb. OTHER REPORT NUMBER(S): If the report has been assigned any other report numbers (either by the originator or by the originator. 	be unclass an indicat formation There ever, the 14. KEY or short p index entr selected 1 fiers, suc project co words but	sified. Ea tion of the in the part suggested WORDS: hrases the tes for cal- to that no h as equip de name, will be for assignme	ich parag military agraph, re itation or length is Key word t charact taloging (security of ment mod prographi liowed by	raph of the security c apressated a the lenge from 150 a are tech erize a report. classifica- lel design c location y an indice	abetra lessific les (75) th of the to 225 v nicelly i port and Key we tion is r nices, tru , may be atles of	ct shall er ation of th b. (3). (C). abstract. vords. may be ur ords must oquired. ids name, o used as technical	ad with the in- , or (U). How- i torme be identi- military hey con-

10. AVAILABILITY/LIMITATION NOTICES: Enter any liplistions on further dissemination of the report, other than those

D .52. 1473 (BACK)

the section development our spectral

1

e

Security Classification

AD______ -/REPORT NUMBER 2
DRUG THERAPY OF ACUTE PULMONARY INSUFFICIENCY
Annual Summary Report
(1 April 1972 to 1 January 1973)

Domingo M. Aviado, MD and Miroslaw A. Belej, Ph. D. and Leonardo V. Bacalzo, Jr., MD

Department of Pharmacology, University of Pennsylvania Medical School

Philadelphia, Pennsylvania 19174

1 January 1973

Supported by

U.S. ARMY AND MEDICAL RESEARCH AND DEVELOPMENT COMMAND

Washington, D. C. 20314

Contract No. DADA-17-71-C-1060

University of Pennsylvania

Philadelphia, Pennsylvania 19174

DDC AVAILABILITY STATEMENT

"Approved for public release; distribution unlimited."

The findings in this report are not to be construed as an official Department of the Army position unless so designated by other authorized documents.

mentances and minister and second as a

TABLE OF CONTENTS

	Page
Abstract	3
Chemical structures	3
Part I. Testing of antiedemagenic compounds in rhesus monkeys	4
Iodoa cetamide	4
Naphthoquinone	5
Eriodictyol	5
Table 1. Summary of <u>in vivo</u> and postmortem measurements in monkeys with acute pulmonary insufficiency 40 min after starting infusion	
of iodoacetamide Table 2. Summary of <u>in vivo</u> measurements in 20 monkeys 40 min	7
following intravenous infusion of alloxan, ANTU or iodoacetamide	8
Table 3. Details of in vivo measurements in monkeys receiving edema-	
provoking agents and anti-edemagenic drugs	9
Figure 1. and 2	13
Part II. Pharmacology of Eriodictyol	ì4
Adenosine	15
Angiotensin	15
Table 4. Influence of eriodictyol on responses to adenosine in the heart	
with perfused coronary artery	17
with perfused coronary artery	18
Table 6. Influence of eriod.ctyol on responses to adenosine and angio-	
tensin in the heart with intact coronary artery	19
Figure 3. and 4	20
	20
Part III. Search for intravenous preparation for treatment of acute pulmonary	
insufficiency	21
Benzoylcarbinolmorpholine acetate hydrochloride	21
Benzoylcarbinoltrimethyl acetate	21
Table 7. Summary of antiedemagenic effect of benzoylcarbinols,	
eriodictyol and naphthoquinone (WR 49, 808)	22
References	23
Distribution List	24
Document Control Date - R and D	25
Key Words	26

84

ABSTRACT

Contract No. DADA-17-71-C-1060 was initiated for the purpose of developing new drugs for the treatment of acute pulmonary insufficiency. Two compounds have been selected for further investigation: Eriodictyol administered orally to rhesus monkeys prevented or reduced the pulmonary congestion and edema induced by iodoacetamide. Other compounds known to provoke pulmonary edema in the dog (alloxan and ANTU) did not induce similar effect in the monkey. The naphthoquinone compound previously demonstrated to protect rodents from pulmonary edema was less effective in monkeys. In the dog heart, eriodictyol is non-toxic and potentiates the coronary vasodilator action of adenosine, a substance known to be released by hemolysis.

Two water-soluble benzoylcarbinols were tested in mice. Both were effective in preventing carbon dioxide-induced pulmonary edema. However, benzoylcarbinoltrimetyl acetate produced pulmonary hemorrhages. Benzoylcarbinolmorpholine acetate was selected for future studies to determine if intravenous injection would be effective in treating or reversing acute pulmonary insufficiency.

The chemical structures of anti-edemagenic and other compounds are illustrated below.

· \$4 **

Testad to induce putmanery and cordias testality :

i in companyally water or

E-lodosostimit

I-(I-NophilyI)-2-Misures (ANTV)

DRUG THERAPY OF ACUTE PULMONARY INSUFFICIENCY

with special reference to anti-edemagenic compounds.

During the past year, there were three significant developments in our contract. <u>First</u>, is the confirmation that the compounds previously reported to exert pulmonary antiedemagenic action in rodents are also effective in the rhesus monkey. <u>Second</u> is the selection of eriodictyol as an orally administered agent for the prevention of pulmonary edema. <u>Third</u> is the initial search for an intravenously administered agent for the treatment of pulmonary edema. The experiments relating to these three items are discussed in this report which cover the second year of the contract.

Part I. Testing of antiedemagenic compounds in rhesus monkeys (Table 1 to 3).

In the dog experiments reported in the Progress Report No. 1, alloxan was used to provoke pulmonary insufficiency. It was tested in three rhesus monkeys anesthetized with sodium pentobarbital 30mg/kg intravenously. In three monkeys, the infusion of 5 or 10 mg/kg/min caused death after the following lethal dose of alloxan: 833, 900, and 1100 mg/kg. There was no pulmonary edema and respiratory insufficiency; death was caused by cardiac failure. Another chemical agent known to produce pulmonary edema in dogs was then tested in three monkeys. Alpha-naphthylthio urea (ANTU) was infused at the rate of 2 or 4 mg/kg/min. The lethal doses in three monkeys were: 140, 264 and 320 mg/kg. None of these monkeys showed acute pulmonary insufficiency. There was therefore a difference in sensitivity of the lungs to alloxan and ANTU between the dog previously reported (1) and the monkey reported presently.

Iodoacetamide proved to be an effective agent in producing acute respiratory insufficiency in rhesus monkey. This compound was infused at a rate of 10 mg/kg/min,

in a constant of months - British as

and the lethal doses for three monkeys were as follows: 410, 420, 440 mg/kg. Prior to death, there was in increase in pulmonary resistance, decrease in pulmonary compliance, decrease in respiratory minute volume, decrease in systemic arterial blood pressure and decrease in arterial blood oxygen tension. At autopsy, the lungs were hemorrhagic and the wet weight and moisture content were higher than those of control monkeys. The lungs were tested for static compliance by measuring pressurevolume curves. The critical pressure that caused inflation was-16 cm H₂O for iodoacetamide treated monkeys and -11cm H₂O for control monkeys (Figs. 1 and 2). There was also a reduction in total phospholipid content from 16.7 mg/g lung in control to 14.5 mg/g for iodoacetamide treated lung. These changes indicate acute pulmonary insufficiency based on signs of pulmonary edema, pulmonary congestion and reduced pulmonary compliance.

A <u>naphthoquinone</u> compound (WR 49, 808) was administered orally, 500 mg/kg for two or three days prior to provoking acute pulmonary insufficiency with iodoacetamide. In three pretreated monkeys, the mean lethal dose for iodoacetamide was increased to 496 mg/kg which is higher but not statistically different from mean lethal dose of monkeys that were not pretreated. The severity of pulmonary edema judged by lung weight/body weight and percentage moisture of the lung of pretreated monkeys was significantly less indicating some protection. Three additional monkeys were pretreated with WR 49, 808 by intraperitoneal injection of 500 mg/kg one hour prior to the injection of iodoacetamide. There was protection from the edema-inducing action of iodoacetamide based on the measurements <u>in vivo</u> and postmortem.

<u>Eriodictyol</u> was examined and its protective action was more conspicuous than that exerted by the naphthoquinone compound. Three monkeys were pretreated with eriodictyol 500 mg/kg orally for 2 or 3 days, and three additional monkeys with the

in same in

•same dose administered intraperitoneally for 2 or 3 days. The conclusion that eriodictyol prevents acute pulmonary insufficiency provoked by iodoacetamide is based on the following observations:

1. The monkeys pretreated orally with eriodictyol had a <u>mean lethal dose</u> for iodoacetamide of 536.7 \pm 34.8 mg/kg which is statistically greater than the mean lethal dose for monkeys without pretreatment. The intraperitoneal injection of eriodictyol did not cause a significant increase in mean lethal dose of iodoacetamide.

2. The fall in <u>arterial blood pH and oxygen tension was less in monkeys pre-</u> treated orally with eriodictyol than the monkeys receiving iodoacetamide without pretreatment.

3. There was no fall in <u>pulmonary</u> <u>compliance</u> in monkeys pretreated orally with eriodictyol.

4. The percentage <u>moisture content</u> of the lung of monkeys pretreated with eriodictyol was not different from the normal lung indicating that eriodictyol prevented pulmonary edema induced by iodoacetamide.

5. The <u>critical inflating pressure</u> of the lung from monkeys pretreated with eriodictyol of 12.07 cm H₂O approached the value for normal lung (-11.08 cm H₂O) and less than the value for the lung of iodoacetamide-treated monkeys without pretreatment (-16.00 cm H₂O).

6. The <u>phospolipid content</u> of lung of eriodictyol pretreated monkeys had a mean value of 15.0 mg/g lung tissue. This value is higher than that for iodoacetamide treated monkeys. The increase in phospholipid content reflects a correction of deficiency in surfactant activity.

(Tables 1 to 3 and Figures 1 and 2 are in the following pages).

						•						Phoenhoa	I athal	Critical
Procedure	No. of Exps.	Arts Contr.	Arterial pH. Contr. Resp.	Arterial pCO2 mmHg Contr. Resp.	al mmHg Resp.	Arterial pO2 mmHg Contr. Res	nHg Resp.	Fulm. Compl. ml/cmH2O Contr. Resp.	ompi. nH2O Resp.	<u>g. W. L. W.</u> kg. B. W.	g. W. L. W. g. D. L. W.	lipids mg/g	8	point -cmH2O
Control .	e	:		:	:	:	-	:	:	6.50 ±0.58	4.50 ≠0.20	16.7 ±0.90	:	11.08 ±0.51
lodos cet-	e	7.36	7, 13+	33, 3	34.0	88.7	65.0	9.67	7.50+	10.7*	5.20*	14.5*	423, 3	- 16. 00*
amide	;	±0.01	±0.01 `±0.05	±1.3	±13.5	±0. 3	±12.6	#0. 33	*0.29	±0. 17	±0. 12	±0.55	±8.8	`±1.58
WR-49808	m	7.34	7.28	33.0	16.7	91.7	101.0	6.83	7, 83	:8, 30**	4.80**	14.1	496.7	12.87
.(oral pretr.)		±0.03	±0.09	±1.2	¥2.8	±10.9	4 1. 0	±0.44	-44 -44	±0. 62	±0. 06	±0.40	±44.8	±0, 58
WR-49808	m	7.41	7.26	36.7	17.0	96.3	87.7	9.83	9.50	8, 80**	4.50**	14.4	460, 0	:
(i. p. pretr.)		±0. 02	±0. 02	±0. 3	±1.5	±4.7	±14.1	±0.17	±1.32	±0. 65	±0. 23	±0.20	±50.3	
Eriodictvol	m	7.41	7.27	35.7	25.3	39.0	81.3	6.00	61.9	8° 50##	5.00	15,0**	15,0*** 536,7**	12.07**
(oral pretr.)		±0. 02	±0. 09	±3, 3	±6. b	±7.4	±18.7	±0. 58	±0.50	±0. 59	±0.15	±0.43	±34.8	±0.29
Eriodictyol	2	7.36	7.24	34.5	26.0	96.0	67.0	5, 50	5, 00	8, 90	5.00	13, 70.	380. 0	:
(i.p. pretr.)		•												

Different from iodoacetamide, p<0.05
Not different from control, p>0.05

-

Page 7

-

7

.

:

÷

ť

Procedure	Exp.	Pulmonary B cmH ₆ O/ LPS Control Res	tesistano		Pulmonary ml/cmH ₂ O	ry Compli	Compliance	Resp. N ml/min	Min Volume n		Heart Rate beats/min Control R	ate tin Reconce			Aortic Blood Pressure mm Hg	essure
	-								and any				3		Indent	
Alloxan	1	23.8	0.05	+26	10.0	9.0	-10	630	765	+21	170	160	9	06	71	-21
5 or 10 mg/kg/min 2	P 2 .	25.0	22.0	-12	8,5	10.0	. +17	729	880	+21	230	210	6-	140	104	-26
	e	26.7	25.5	-4.4	10.0	8,5	-15	432	510	+18	180	170	s.	001	100	0
	Mean	. 25. 2	25.8	+3.2	9.5	9.2	-2.5	597	718	+20	193	180	-6.7	110	92	-15.
	#SE	±0. 8	±2.3	±11.6	#0.5	#0.4	±10.2	2 ±87	±109	±1.0	±19	±15	±1.2	51± :	+10	± 8.
ANTU	+	28. 0	30.0	i+	8.0	7.0	-13	543	550	7	180	185	÷	95	80	-16
2 or 4 mg/kg/min	5	23.5	27.7	+5	8.6	6.0	-25	675	144	-79	180	80	-56	95	30	-68
	Q	27.3.	30.0	+10	10.0	6.5	Ϋ́,	540	550	+2	180	175	+3	125	06	-28
-s.	Mean	26.3	28.2	+7.3	8.7	7.5	-14.2	586	413	-25	180	147	-17	105	67	-37
	♦ SE	±1.4	±1. 8	±1.5	±0.7	±1.0	±5.8	s#45 .	±137	±27	0∓	±34	±20	±10	419	±16
Iodoa ceta míde	•	27.0	27.0	0	. 0.6	7.5	-17	270	192	-29	175	60	-66	120	25	-79
10 mg/kg/min	œ	26.0	32.0 +	+14	10.0	7.0	-30	360	288	-20	170	80	-53	120	30	-75
	6	21.1	30.7 +	+46	10.0	. 8. 0	-20	300	120	. 09-	. 150	20	-53	127	25	-80
	Mean	25.4		+20	9.7	7.5 .	-22	310	200	-36	165	70	-57	122	26.7	-78
	ч. т	± 2.2	1.5	11	10.3	±0.3	14	226.5	148.7	112	27.6	\$5.8	*.	± 2.3	2.1.7	7
WR 49, 808 orally	10	30	28		7.5	8.0	4	360	432	+20	180	230	+27	130	75	-42
500 mg 2 or 3X	11	58		11+	2.0	1.0	•	528	540	75	195	200	÷	145	50	-66
followed by iodo- 12 acetamide 10 mo/	12	28	26	5	6.0	8.5	41	346	336	•	175	160	6-	125	45	-64
kg/in	Mean	28.7	24.3	7	6.8	7.8	+16	114	436	9	183	197	4	133	57	-57
2: mar - North	- #S. E.	+ 0.6	11.5	. 91	10.4	+0.4	+ 12	+ 58	+ 59 -	2+	9+	± 20	+ 10	+ 4	6.+	80 +1

	WR 49, 808 intra-	13	22.0	28.0	•	10.0	12.0	+20	600	720	+20	230	170	-26	120	70	-42
	peritoneally 500		21.0	21.0		9.5	7.5	-21	600	430	-28	210	100	-52	130	50	-62
	mg I or 2X fol-	15	20.0	20.0		10.0	0.6	-10	620	450	-27	180	100	-44	105	45	-57
action 21:0 9.8 5.5 -4 6.07 5.33 -1.2 2.7 1.3 -41 1.18 55 kg/min 45.12 2.10 1.8 0 2.10 2.0 2.0 2.11 2.12 2.7 2.94 2.16 2.13 2.7.6 7.6	lowed by Iodo-				-						-				-		-
kg/min a5, \mathbf{r} 2,0,6 2,0,6 1,0 1,2 2,1 1,0 16 2,2 13 67 500 mg/bg 2 or 17 2,1 2,3 2,4 6 5,0 5,8 -3 2,4 10 10 12 14 12 14 10 14 12 14 12 14 12 14 12 14 12 14 12 14 12 14	acetamide 10 mg	/Mean	21.0	21.0			5.5	4	607	533	-12	207	123	-41	118	55	-54
Triadictrycel ormally 16 18.0 18.0 13.0 17.0 7.0 0 405 757 459 160 190 419 140 65 500 mg/hg 20~17 77.3 23.6 45 5.0 7.5 450 410 486 419 190 186 22 133 67 50 510 510 120 112 142 142 15 143 15 150 1500 mg/hg/min Man 23.9 23.5 5 6.0 5.8 16 370 511 144 170 189 140 12 10 12 10 12 114 12 14 170 189 140 12 12 14 14 12 14 14 14 14 14 14 14 14 14 14 14 14 14	kg/min	#S. E.	2 0.6	10.6	•		1.3	112	1.7	1 94	116	: 15	÷ 23	8	÷7.3	27.6	5.6
	Eriodictyol orally	16	18.0	18.0	1.1	7.0	7.0	•	405	767	+89	160	190	+19	140	65	-53
X fallowed by 18 z_{0} 24,0 z_{1} z_{1} z_{0} z_{1}	.500 mg/kg 2 or	11	27.3	25.6		5.0	7.5	+50	410	486	+19	190	186	-2	135	67	-50
Iodacertamide 10 21,9 22,5 -5 6,0 6,8 +16 370 511 +34 170 155 +10 140 72 $35. E_{-}$ 2,19 22,3 2 2,0 5 17 53 141 23 2 2,0 10 23 2 2,0 2 4 4 2 3 3 13 2 2 3 3 13 2 2 3 3 2 3 3 4 3 5 3	3X followed by	18	26.3	24.0		6.0	5.8	•	294	280	÷	160	180	+12	145	. 85	-41
	Iodoacetamide				-				-			-					ľ
45. E. \pm 2.9 \pm 2.3 \pm 2.0.6 \pm 0.5 \pm 117 \pm 38 \pm 141 \pm 28 \pm 10.0 \pm 5.9 \pm 6.4 riodicyol untra- 19 19.1 18.3 \pm 5.0 5.0 0 5.1 100 \pm 50 \pm 50 \pm 51 \pm 50 \pm 51 \pm 50 \pm 51 \pm 50 \pm 51 \pm 50	10 mg/kg/min	Mean	23.9	22.5		6.0	6.8	+16	370	511	+34	170	185	+10	140	72	-48
Ki-adictyol lutra- 19 19.1. 18.3 -4 5.0 5.0 0 6.12 300 -51 180 80 -56 110 25 perimanality 500 20 21.0 2 1.0 0 6.0 5.0 -17 324 200 -38 200 100 -50 110 40 mg/cg 2 or 3X		±5. E.	± 2.9	12.3		±0.6	±0.5	±17	+ 38	1141	+28	10.0	12.9	9 +1	22.9	16.4	+1
peritonanily 500 20 21.0 21.0 0 6.0 5.0 -17 324 200 -38 200 100 -50 110 40 mg/sg 2 or 3X	Eriodictyol intra-	19		18.3		5.0	5.0	•	612	300	-51	180	80	-56	110	25	-11-
mg/sg 2 or 3 X	peritoneally 500	20	21.0	21.0		6.0	5.0	-11	324	200	-38	200	100	-50	110	40	-64
kg/min	fellowed by iodo-	Mean	20.1	19.7	7	5.5	5.0	-8.5	468	250	4	190	66	-53	110	33	11-
	a cetamide 100 m kg/min	•															
													т. Ц				
												*	×				
								•									
	3					•											
													•				
			÷														
					1.			4									

12.		•
r-4	FC.	- 4

Procedure	Exp. No. (min)	Pulmonary Resistance cmH2O/LPS	Pulmonary Compliance <u>m1/cmH2</u> 0		Heart Rate <u>b/min.</u>	Aortic B. P. mr.!lg	Art. pH	Art. pCO2	Art. pOz mmHg
lloz: n	1 (0)	23.8	10.0	630	170	90.0			
mg/kg/min	(10)	23.8	10.0	720	160	95.0			
	(30)	21.1	11. 3	756	160	70.0			
	(60)	31.7	8.0	780	160	64.0			
	(90)	31.7	. 0	780	140	40.0			
	(120)	34.5	8. 0	1092	120	35:0			
	(143)	34.5	8.0	120	60	30. 0			
	Max, %	A +45	-20	-81 '	-65	-67			
	Animal	died after 145	min.; lethal d	ose: 833 mg/	'kg				
lloxan	2 (0)	25	8, 5	729	230	• 140			
mg/kg/min	(10)	25	8.5	972	230	148			
	(30)	20	10.0	850	220	100			
	(60)	22	8.5	907	200	85			•
	(80)	28.6	6.5	440	80	35			
	Max. %	۵ +14 ·	-24	-40	-65	-75			
	Animal	died after 90 m	nin, ; lethal do	se: 900 mg/	kg				
lloxan	3 (0)	26.7	10.0	432	180	100			
mg/kg/min	(10)	28.6	9.0	540	180	115	•		
	(30)	28.6	9. 0	540	180	85			
•	(60)	24. 2	8. 0	540	160	100			2.4
	(90)	25.0	8.0	486	140	96			
•	(100)	30. 8	5.0	553	120	65			
•	(105)	30, 8	5.0	324	80	35			
	Max, %	Δ -15	-50	-25	-56	-65	•		
		died after 110	min.; lethal de						
NTU	4 (0)	28.0	8.0	544	180	95	7.35	30	90
mg/kg/min	(10)	30.0	8.0	580	190	88	7.33	30	.89
	(30)	30.0	7.0	619	185	80	7.35	39	74
	(60)	30.0	6.5	518	180	60	7.24	30	70
1	(90)	30.0	6.0	518	180	50	7.17	18	60
	(120)	30.0	6.0	454	175	40			
	(125)	30.0	6.0	232	100	30			
	Max, %		-25	-57	-44	-68	-2.4	-40	-33
		died after 132				-04	-6,4	-10	-33

Procedure	Exp. No.	Pulmonary Resistance cmH2O/LPS	Pulmonary Compliance ml/cmH ₂ O		Rate b/min.	Aortic B. P. <u>mmHg</u>	Art.		Art. pO2 mmlig
ANTU	5 (0)	23.5	8.0	675	180	95	7.41	30	80
4 mg/k-s/min	(10)	23.5	8.0	675	150	85	7. 39	33	66
	(30)	24.2	6.0	504	180	55	7.23	42	42 '
	(32)	24.7	6.0	144	80	. 30	7.00	51	31
	Max. %	∆ +5	-25	-79	-56	-68	-5.5	+70	-61
	Animal	died after 35 n	nin. : lethal do	se: 140 mg/	kg				
	6 (0)	27. 3	10.0	540	180	125	7. 38	32	75
	(10)	27. 3	10.0	570	200	110	7. 38	28	80
	(30)	30.0	10.0	570	190	100	7. 34	32	73
	(60)	27. 3	9.0	540	160	54	7.28	32	74
	(75)	32.5	8.0	456	140	35	7.23	30	53
	Max. %	Δ +19	-20	-16	-22	-72	-2.0	-6	-29
	Animal	died after 80 m	nin. : lethal do	e: 320 mg/	kg				
lodoa ceta mide	7 (0)	27.0	9.0	270	175	120	7. 37	32	89
10 mg/k.g/min	(10)	27.0	9.0	420 .	175	75	7. 31	28	122
-	(30)	.27.0	8.0	260	140	45	7.19	30	100
0.00	(40)	27.0	7.5	192	60	30	7.19	22	80
•	Max. %	<u>ه</u> ٥	-17	-29	-66	-75	-2.4	-31	-10
a e -	Animal	died after 42 m	nin. : lethal doe	e: 420 mg/	kg			-	0
	8 (0)	28.0	10.0	360	170	120	7. 34	32	89
1.5	(10)	30. 0	8.0	378	180	60	7.29	32	83
	(30)	32. 0	8.0	462	180	57	7.34	14	82
	(40)	32. 0	7.0	288	80	30	7.17	19	75
1	Max. %	414	-30.0	-20	-53	-75	-2, 3	-41	-16 '
	Animal	died after 44 m	in. : lethal dos	e: 440 mg/	kg			4 V.	
	9 (0)	21.1	10.0	300	159	127	7. 36	36	88
	(10)	30.7	8.0	240	160	70	7.25	42	78
	(30)	30.7	9.0	150 .	145	45	7.13	51	50
	(40)	30.7	. 8. 0	120	70	25	7.04	61	40
	Max. %		-20	-60	-53	-80	-4.3	+69	-55
	Animal	died after 41 m	in, : lethal dos	e: 410 mg/l	kg				_
WR-49808,	10 (0)	30.0	7.5	360	180	1 30	7. 38	35	70 .
per os,	(10)	30. 0	7.5	396	195	100 .	7.45	23	111
2 X 500 mg/kg	(30)	28.0	7.5	495	200	70	7.40	21	120
followed by	(40)	28.0	8.0	432	230	75	7.42	11 .	103
Iodoacetamide	, Max. %	4 -7.0	+7.0	+20	+27	-42	+0.5	-69	+47

10 mg/kg/min Animal died after 52 min. : lethal dose: 520 mg/kg

. .

*

10

rocedure	Exp.No. (min)	Pulmonary Resistance cmH ₂ O/LPS	Pulmonary Compliance ml/cmH ₂ O	Resp. Min. Volume <u>ml/min.</u>	Heart Rate <u>b/min.</u>	Aortic B. P. <u>m.mHg</u>	Art. <u>pH</u>	Art. pCO ₂ mmHg	Art. pO ₂ <u>mmHg</u>
/R-49808,	11 (0)	28	7.0	528	195	145	7.34	33	- 100
er os,	(10)	31 -	6. 5	576	200	60	7.36	22	120
X 500 mg/kg	(30)	. 31	7.0	972	210	75	7.44	17	120
ollowed by	(38)	31	7.0	540	200	50	7.33	19	100
odoacetamide	, Max. %	∆ +11	0	+2	· +3	-66	0	-42	0
0 mg/kg/min	Animal	died after 41	min. : lethal d	ose: 410 mg	/kg				
VR-49808	12 (0)	28	6.0	346	175	125	7.29	31	105
er os,	(10)	28	6.0	324	180	50	7.17	38	100
X 500 mg/kg		26	8.0	336	180	55	7.09	35	98
ollowed by	(40)	26	8.5	336	160	45	7.09	20	100
odoa cetamide	, Max. %	Δ -7.0	+41	- 3	-9	-64	-2.7	- 35	-5
		died after 56	min. : lethal d	ose: 560 mg	;/kg				
VR-49808,i.p.	13 (0)	22.0	10.0	600	230	120	7.44	36	102
X 500 mg/kg	g. (10)	22.0	10.0	612	190	85	7.44	36	103
ollowed by	(30)	22.0	12.0	840	180	80	7.45	19	109
odoacetamide	, (40)	22.0	12.0	720	170	70	7. 38	21	108 -
0 mg/kg/min	(50)	20.0	12.0	760	140	35	.7.30	15	115
	Max. %	∆ [°] -9	+20	+27 -	- 39	-71	-1.9	-58	+13
	Anima	l died after 56	min. : lethal d	lose: 560 mg	g/kg				
	14 (0)	21.0	9.5	600	210	1 30	7.38	37.0	87 *
1.	(10)	24.0	9.0	650	180	. 80	7.41	25.0	95
	(30)	22,0	- 9.0	660	210	75	7.43	25.0	100
·	(40)	21.0	7.5	530	100	50	• 7.27	20.0	80
	Max. %		-21	-12	-54	-62	-1,5	-46	-8
		l died after 42	min. : lethal d	lose 420 mg	/kg				
WR-49808,i.p.	, 15 (0)	20.0	10.0	620	180	105	7.40	37	100
X 500 mg/k	g, (10)	20.0	10.0	500	193	70	7.37	29	88
ollowed by	(30)	20.0	9.0	475	220	50	7.33	18	72
odoacetamide	, (35)	20.0	9.0	450	100	35	7.22	16	68
0 mg/kg/min	Max. %	Δ 0	-10	-27	-44	-67	-2,4	-57	- 32
	· Anima	l died after 40	min. : lethal d	lose 400 mg	/kg				
Eriodictyol,	16 (0)	18.0	7.0	405	160	140	7.37	29	102 .
per os,	(10)	18.0	7.0	486	190	110	7.36	30	112 !
2 X 500 mg/k	g (30)	18.0	7.0	721	190	90 .	7.37	20	112
followed by	(40)	18.0	8.0	767	190	65	7.34	16	107
lodoacetamid	e, (50)	18.0	7.0		180	45	••	·	
10 mg/kg/mir	n Max.%	Δ 0 .	0	+89	+13	-68	-0.4	-45	44.9

7

he mis

Animal died after 60 min. : lethal dose 600 mg/kg

Il

Table 3 (Continued) Pulmonary Pulmonary Resp. Min. Heart Aortic Art. Art. pCO₂ Exp. No. Resistance Compliance Volume Rate B. P. Art. pO₂ (min) mmHg pH mmHg mmHg Procedure cmH2O/LPS m1/cmH2O ml/min. h/min. 7.42 17 (0) 27.3 5.0 410 190 135 39 · 85 Eriodictyol, (10) 27.3 6.Z 356 210 110 7.38 37 85 per os, ł 2 X 500 mg/kg, (30) .25.6 5.8 585 205 97 7.40 19 95 7.5 67 7.34 97 followed by (40) 25.6 486 186 22 7.5 32 ' 7.10 38 45 lodoacetamide, (50) 25.6 162 80 +50 -47 10 mg/kg/min Max, % -6 -60 -58 -76 -4.3 -2.6 Animal died after 53 min. : lethal dose 530 mg/kg Eriodictyol, 18 (0) 26.3 6.0 294 160 145 7.43 39 110. (10) 24.0 7.0 288 200 107 7.39 38 108 per os, 6.0 7.47 19 122 3 X 500 mg/kg, (30) 24.0 569 190 108 followed by (40) 24.0 5.8 280 180 85 7.37 22 92 Iodoacetamide, Max. % -9 -3 -5 +13-41 -0.8 -44 -16 10 mg/kg/min Animal died after 48 min, : lethal dose 480 mg/kg 5.0 180 7.31 38 87 Eriodictyol, 19 (0) 19.1 612 110 5.0 (10) 19.1 639 · 160 45 7.35 25 102 i. p. 98 200 45 7.37 2 X 500 mg/kg (30) 18.3 5.0 720 17 16, 3 5.0 300 80 35 7,18 29 60 followed by (35) -4 -1.8 -31 Iodoacetamide, Max. % 0 -51 -56 -68 -24 10 mg/kg/min Animal died after 39 min. : lethal dose 390 mg/kg 200 7.41 31 105 Eriodictyol, 20 (0) 21.0 6.0 37.4 110 6.0 . 200 70 7.38 112 i. p. (10) 21.0 390 30 114 3 X 500 mg/kg (30) 5.7 420 220 55 7.42 20 21.0 100 40 7.29 23 74 followed by (35) 21.0 5.0 200 - 38 -50 -64 -1.6 -26 -29 Iodoacetamide, Max. % 0 -17 10 mg/kg/min Animal died after 37 min. : lethal dose 370 mg/kg

Page 12

12

Figure 1. Pressure-volume curves of excised lungs from monkeys of normal control, iodoacetamide-treated and pretreated with WR 49, 808 followed by iodoacetamide.

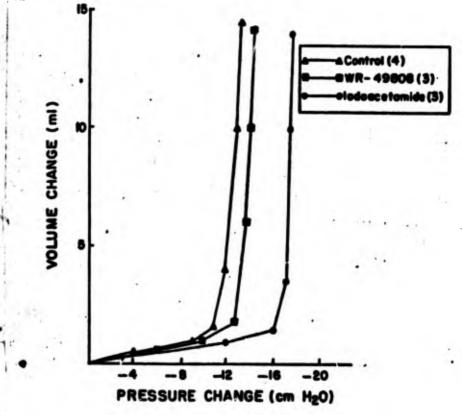
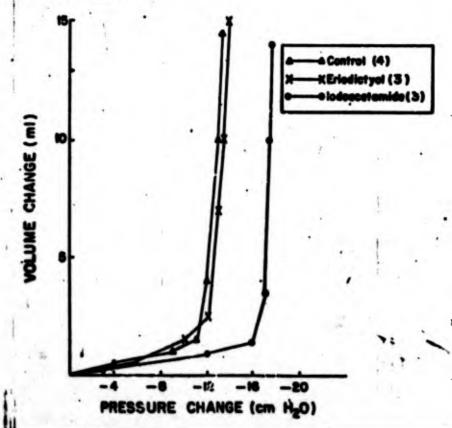



Figure ... Pressure-volume curves of excised lungs from monkeys of normal
 control, lodoacetamide-treated and pretreat with eriodictyol followed by lodoacetamide.

٤.

in a number light and the states

Part II. Pharmacology of Eriodictyol.

Eriodictyol is a flavonoid originally isolated from the weed Eriodictyon californicum. It occurs in nature as a glycoside in lemon and when ingested, the enzymatic action in the intestine releases the aglycone, eriodictyol. Eriodictyol has teen used by Williams and Hedgecock (1962) for the treatment of Menieres disease, presumably by reducing capillary permeability in the inner ear. The present observations that eriodictyol also reduces capillary permeability in the pulmonary capillaries present some theoretical considerations relating to a comparison of the iormation of endolymph of the inner ear and the edema fluid in the pulmonary tissue. These are beyond the scope of the present investigation.

From the practical standpoint, information on pharmacology and toxicology of eriodictyol has been collected and a <u>New Drug Application</u> (NDA) has been prepared so that this drug can be tested in humans. Briefly, eriodictyol is non-lethal even in doses of 5 g/kg in animals. It has no adverse effect on the nervous, gastro-intestinal and respiratory systems. In the heart, another flavonoid, methyl hesperidin, was reported to produce potentiation of coronary vasodilation by adenosine (4). Adenosine is released from hemolyzed erythrocytes so that it became necessary to test eriodictyol for interaction with adenosine.

Six dogs, weighing from 15 to 20 kg, were used in this investigation. They were anesthetized with sodium pentobarbital (25 mg/kg intravenously). The chest was opened via a midsternal incision. The lungs were ventilated artificially, a strain gauge arch was sutured to the surface of the left ventricle supplied hy the anterior descending branch, and the aortic blood pressure was measured through a catheter inserted into one femoral artery.

In the first group of three dogs the anterior descending branch of the left coronary artery was exposed and cannulated for perfusion. A Sigmamotor pump supplied this branch continuously with femoral arterial blood. Eriodictyol, adenosine and angiotensin were administered into the perfused coronary artery.

The second group of three dogs received intravenous injections of adenosine, angiotensin and eriodictyol. The coronary artery remained intact and the coronary sinus was cannulated to measure the coronary blood flow by means of a Morawitz cannula and a Shipley-Wilson rotameter. Coronary vascular resistance was estimated by dividing the aortic blood pressure in mm Hg by the coronary sinus flow in ml/min (5).

<u>Coronary arterial injections of adenosine</u>. Adenosine was administered in three doses (0, 1, 1, 0 and 10 mg/kg) directly into the perfused coronary artery. The smallest dose of 0.1 mg/kg reduced the force of ventricular contraction, slowed the heart rate and reduced the aortic blood pressure, but had no significant effect on coronary perfusion pressure. The next dose of 1.0 mg/kg influenced all four parameters, including coronary perfusion pressure, which was reduced, indicating vasodilation (Table 4).

<u>Coronary arterial injections of eriodictyol and adenosine</u>. Eriodictyol was also administered in three doses (.0.1, 1.0 and 10 mg/kg). A temporary reduction occurred in coronary perfusion pressure, indicating coronary vasodilation. There was a transient decrease in ventricular force, a decrease in heart rate and a fall in aortic blood pressure, lasting for one to two minutes. After complete recovery, the injections of adenosine were repeated. No important alterations in coronary vascular and ventricular contractility responses to adenosine appeared. However, there was a reduction in the intensity of the bradycardia response to adenosine following the intracoronary administration of 0.1 mg/kg eriodictyol (Table 4).

<u>Coronary arterial injection of angiotensin and eriodictyol</u>. The same three dogs reported on the preceding paragraphs also received an injection of angiotensin, which

Wer of the property in the

caused an elevation of coronary perfusion pressure, indicating vasoconstriction (Table 5). Following the injections of eriodictyol, there was a reduction in intensity of coronary vasoconstrictor response (Fig. 2).

Intravenous injections of eriodictyol. The second group of three dogs received intravenous injections and the coronary circulation was interrupted on the venous side. The administration of 1 and 10 mg/kg eriodictyol caused an increase in coronary blood flow, accompanied by a reduction in aortic blood pressure. This combination of elevated flow and reduced pressure indicated a decrease in coronary vascular resistance (Table 6). The accompanying changes in heart rate and ventricular force were not significant.

Intravenous injections of adenosine and angiotensin. The repeated injections of angiotensin after 10 mg/kg eriodictyol initiated a reduction in coronary vasoconstrictor. response... With 1 mg/kg eriodictyol there was a detectable exaggeration of the increase in coronary blood flow elicited by adenosine (Fig. 4). Therefore, eriodictyol administered intravenously produced a sensitivity of the coronary blood vessels to adenosine and angiotensin.

<u>Conclusions</u>. Eriodictyol reduced the vasoconstrictor effect of angiotensin on the canine coronary vessels. The reduction in effect was apparent whether eriodictyol was administered intracoronarily or intravenously. However, with regard to adenosine the potentiation of its coronary vasodilator effect was not detectable when it was administered into the coronary artery but was seen after intravenous injection. The phenomenon of sensitization to adenosine probably depends on a metabolic conversion of either adenosine or eriodictyol outside of the coronaries.

(Tables 4 to 6 and Figures 3 and 4 are in the following pages).

ir antes reserveries methods a we

Page 16

Table 4. Influence of eriodictyol on responses to adenosine in the heart with perfused coronary artery.

Eriodictyol	Adenosine				three anesthe				<u> </u>
(Intracoronary	(Intracoronary	Cor. Per	the second s	Ventrio	ular Force	Heart I	the second s	Aortic B	
Dose)	Dose	min Hg.	%∆	g	%∆	/min	%∆	mm Hg	%∆
Control		99		110		166		122	
		<u>+ 4</u>		<u>+</u> 5		<u>+</u> 13	*	<u>+</u> 3	
	Adenosine	96	- 3	93 ·	15	146	- 12*	105	-14
	(0.1 mg/kg)	<u>+</u> 3	<u>+</u> 3	<u>+</u> 3	<u>+</u> 2.7	<u>+</u> 3	+ 1.8	<u>+</u> 5	<u>+</u> 4.1
	Adenosine	84	- 35	76	-31	130	-22	92	-25
	(1.0 mg/kg)	<u>+</u> 6	<u>+</u> 6	+ 19	<u>+17.2</u>	<u>+</u> 9	<u>+</u> 5.4	<u>+</u> 13	±11
	Adenosine	76	-23*	71	- 35	121	-27*	74	-39*
	(10 mg/kg)	+ 8	<u>+</u> 8	+ 16	+14.5	<u>+</u> 8	<u>+</u> 4.8	<u>+</u> 10	<u>+</u> 8.2
				-		144	*	146	*
Eriodictyol		92	- 7	86	-22 +11	144	-13 ⁺ + 2,4	145	+19 ⁺ <u>+</u> 3.0
(0.1 mg/kg)		<u>+</u> 8	+ 8	<u>+</u> 13	-	-	_	_	
	Adenosine	88	- 4	73	- 15	139	- 3**		-39**
	(0.1 mg/kg)	<u>+</u> 8	<u>+</u> 8.7	<u>+</u> 6	+ 6.9	<u>+</u> 5	+ 3.5	. –	+ 6.9
	Adenosine	84	- 9	63	-27	135	- 6	82	-44 **
	$(1.0 mg/k_g)$	<u>+</u> 7	<u>+</u> 7.6	<u>+</u> 6	<u>+</u> 6.9	<u>+</u> 4	+ 2.8	-	+ 7.6
	Adenosine	82	11	48	-44	130	- 10**	66	
	(10 mg/kg)	<u>+</u> 5	<u>+</u> 5.4	<u>+</u> 15	+17.9	<u>+</u> 7	± 4.8		<u>+</u> 8.3
Eriodictyol	·	87	- 12	78	-29	138	-17**		-29*
(1.0 mg/kg)		<u>+</u> 5	± 5	+ 17	<u>+</u> 15.6	<u>+</u> 3	<u>+</u> 1.9	<u>+</u> 10	+ 8.2
	Adenosine	84	- 3	66	- 15	128	- 7	80	- 8.
•	(0. 1 mg/kg)	+ 4	+4.6	+ 9	+11.5	<u>+</u> 4	<u>+</u> 2.9	9 <u>+</u> 9	<u>+10.3</u>
	Adenosine	81	- 7.	72	- 8	120	-13	60	-31
	(1.0 mg/kg)	+2	+ 2.3	+ 17	+21.7	+ 10	+ 7.3	2 + 14	+16.0
	Adenosine	78	- 10	61	-22	. 112	19	- 53	- 39
•	(10 mg/kg)		+ 5.7	+ 21	+26	<u>+</u> 9	+ 6.		+ 5.7
	(10 118/ 48)	<u>+</u> 5	<u>+</u>	-			_		
Eriodictyol	•	86	-13	78	-20	132	-20*	87	-29*
(10 mg/kg)		<u>+</u> 6	+ 6.2	<u>+</u> 15	+14	<u>+</u> 7	<u>+</u> 4.2	<u>+</u> 7	+ 5.7
	Adenosine	80	- 7	76	- 3	122	- 8		- 17
	(0.1 mg/kg)	+ 6	+ 6.9	<u>+</u> 16	<u>+</u> 20.5	<u>+</u> 8	+ 6.3	3 <u>+</u> 12	+13.7
	Adenosina	80	- 7	71	- 9	115	- 13	68	-22
•	(1.0 mg/kg	<u>+</u> 4	+ 4.7	+ 18	+23	+ 8	+ 6.3		+14.9
		- 77	- 10	- 47	-40	103	-22		-18
	Adenosine (10 mg/kg)	<u>+</u> 6	+ 6.7	+ 19	+24	<u>+</u> 6	+ 4.		+ 10.3

p < 0.05 compared to control values.

Existant here

 $p \leq 0.05$ compared to control responses to adenosine.

Table 5. Influence of eriodictyol on responses to angiotensin in the heart with perfused coronary artery.

1.18

Eriodictyol (Intracoronary	Angiotensin (Intracoronary	Cor. P	erfusion	Vaula	for three and icular Force	the second s	the second s		
Dose)	Dose)	mm Hg	×∆″	g	%	Heart /min	Kate %∆	Aortic H	
							704	mm_Hg	%∆
Control		99		110		116		122	
		<u>+</u> 4		<u>+</u> 5		+ 13		· <u>+</u> 3	
	Angiotensin	104	+ 5	100	- 9	163	+ 2	127	+ 4
	(0.1 µg/kg)	<u>+</u> 4	+ 3.9	+ 17	+ 15.5	+ 12	<u>+</u> 7.2	+ 6	+ 4.
	Angiotensin	100	+10	80	-27	162	- 2	144	+18
	(1.0 µg/kg)	<u>+</u> 5	<u>+</u> 5	+ 30	+27	+ 9	+ 5.4	+ 15	+12.3
	Angiotensin	128	+29	102 .	- 7	152	- 8	- 142	+16*
	(10 µg/kg)	+ 12	+12	+ 16	+15	+ 12	+ 7.3	+ 4	<u>+</u> 3,
			-	-		· ·	-	-	
Eriodictyol		92	- 7	86	-22	144	-13*	145	+19*
(0.1 mg/kg)		+ 8	<u>+</u> 8	<u>+</u> 13	<u>+11</u>	<u>+</u> 4	+ 2.4	+ 4	<u>+</u> 3.
	Angiotensin	92	0	91	+ 6	145	+1	124	- 14
	(0.1 µg/kg)	<u>+</u> 8	+ 8.6	<u>+</u> 5	<u>+</u> 5,8	<u>+</u> 3	+ 2.1	+ 13	+ 8.
	Angiotensin	87	- 5	73	- 15	137	- 5	122	- 16
	(1.0 µg/kg)	<u>+</u> 6	+ 6.5	+ 22	+26	+ 9	+ 6.3	+ 11	+ 7.
	Angiotensin	97	+ 5	74	-14	141	- 2	120	-17
	(10 µg/kg)	+ 3	+ 3.3	+ 24	+28	+ 7	+ 4.8	+ 13	+ 8.
Entail at 1					-	-		<u> </u>	
Eriodictyol (1.0 mg/kg)		87 + 5	-12	78	-29	138	- 17*	87	-29*
1	S	-	<u>+</u> 5	<u>+</u> 17	±15.6	<u>+</u> 3	+ 1.9	<u>+</u> 10	+ 8.2
***	Angiotensin	. 91	+ 4	77	- 1	138	0	102	+17
	$(0.1 \mu g/kg)$	<u>+</u> 6	<u>+</u> 6.9	<u>+</u> 19	+24.3	<u>+</u> 3	+ 2.2	+ 10	<u>+11,4</u>
	Angiotensin	99 -	+14	74	- 5	138	0	117	+34
	$(1.0 \ \mu g/kg)$	<u>+</u> 7	<u>+</u> 8	+ 22	+28	+ 0.5	+ 0.4	+ 15	+17 -
	Angiotensin	87 '	0	· 97	+24	128	- 7	130	+49
	(10 µg/kg)	<u>+</u> 4	+ 4.5	+ 14	+18	+ . 4	+ 2.9	+ 20	+22.9
Eriodictyol		0/	1.0	•	•	•	_	-	-
(10 mg/kg)		86 + 6	-13'	78	-20	132	-20**	87	-29**
0,			<u>+</u> 6.2	<u>+</u> 15	<u>+14</u>	· <u>+</u> 7	+ 4.2	<u>+</u> 7	<u>+</u> 5.1
	Angiotensin	86	0	81	. + 4	132	0	103	+18
	$(0.1 \mu g/kg)$	<u>+</u> 6	<u>+</u> 7	<u>+</u> 12	<u>+15.0</u>	<u>+</u> 4	<u>+</u> 3.1	<u>+ 14</u>	<u>+16.1</u>
•	Angiotensin	91	+ 6	86	+10	133	+ 1	110	+26
	(1.0 µg/kg)	<u>+</u> 6	+ 6.8	+ 17	+22	<u>+</u> 2	+ 1.6	+ 18	+20.6
	Angiotensin	94	+ 9	82	+ 5	127	- 4	116	+35 **
	(10 µg/kg)	<u>+</u> 9	+10.5	+ 22	+28	+ 2	+ 1.5	+ 8	+ 9.1

* $p \leq 0.05$ compared to control values.

ELINATE INNING

3

 $p \leq 0.05$ compared to control responses to angiotensin.

18

Eriodictyol			*		Mann + SF				1		-		
Dose)	(Intravenous	Coronary	Coronary Sinus Flow			Venti	Ventricular Force U.S.	ed dogs					-
	Dose)	ml/min %	A ml/min		A mm/m	un .	Immediate Delayed	-1-1-	1.	Delayed	Aortic BP Immediate	BP	Delaved
Control		. 16	*	1.45		118	1	um/		/min	aH mm	2% 2	mm Hg
			1	+0.34		+ 13		+ 6.3			26		
	(1 Hg/kg)	+ 37 +15.6	108	1.62	+11* 1.67	5	-18 159-	120	.+	121	21 +		
	Adenosine				+ 2 +0.40	+ 16	+18 + 20	9	+		+ 17	FI+	144
			- 35 +	14.0	-38* 0.63	13	-38* 130	68	*2*-				8
	ų,	90			± 2.2±0.15	9 +1	± 5.2± 10	+ +	+ 2.6+	2	¢ *	-50	9 60
	(1 Hg/kg)		+1	10.20	+34 1.50	16	-19 148	110	9 -	120	106	+14	
Eriodictyol		72 -15		1		-	4 Tror T	7 +	+ 3.1+	•	m +1	+18	
(0.1 mg/kg)			::	+ 0.01	-26	119	-13	114	- 0.3		14	+***	
	Adenosine					N +1	+ 7.2	+ 0.3	+ 0.8	:	e +1	+ 5.5 .	: :
	(1 mg/kg)	+ 36 - +37	110			72	-40 127	59					-
	Anciotensin .				10 +0.17	1 12	+ 9 + 15	+ +	+ 9 +	5	4 4	-29	67
	(1 Hg/kg) +	+ 32 +40 3	116		-	55	-33 137	111				+1	•
		1		1- 1- 1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1	40.54	+ 12	+ 3.6+ 32	++	+ 3.2+		108	+ 29+	149
(1 mg/kg)		88 +27	:	0.86 -3	8	121					+1	+0.6	5
		8.174 6			6.9 1		+14.4	+ 0.6	+ 0.26	:	- 22	-23	
	•		95	0.30 -21							+1	+11.6	
	(1 mg/kg) +	+ 26 +52	+ 18 +		3.7 +0.22	100	17 135	Ċ	-29	10.9	42 -4	2	40
	ii.		134				0 +1 -	1 20	11.7+	•	+ 1.5 +	1.5+	5 m
	(1 Hg/kg) +	+ 28 + 3.0	+ 26	19	+		161 94 20	117 .	+ 111 +	116	120 +60	:	127
Eriodictyol		89 +48		:	1	1			+1.2	m	+1	1.2 +	-
(amg/kg)	+1	0	•	+0.19 +34		122 +		113 .	1.2		60 09		
	Adenosine		İ.	1		-	113.8 1	0.5	10.29	:	2 +20	• •	: :
	+	29 + 77	+ 16 +	0.25 -59		110 -	9** 151	- 06	++01-		1		
	Angiotensin				+0.16 +	+1	6.54 17 +		+15.2+	+	40 -42 5 + -42	-	5
	+		+ 45 +	0.66 + 2		124 +	1 180	113 +	+10 -			+1	
		•			8 +0.18 +	+	0.7+ 30 +	+ 2	5.84		-13	80	

a compared to control respons

ť

Figure 3. Influence of eriodictyol on increase in coronary blood flow in response to adenosine in the dog. Note potentiation of response to adenosine.

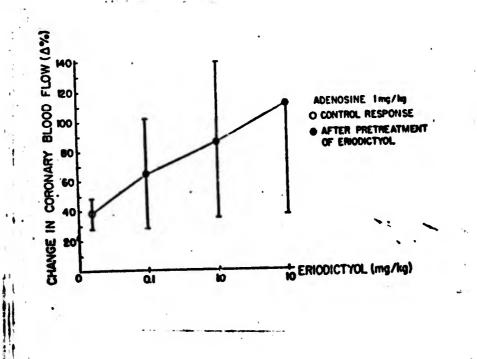
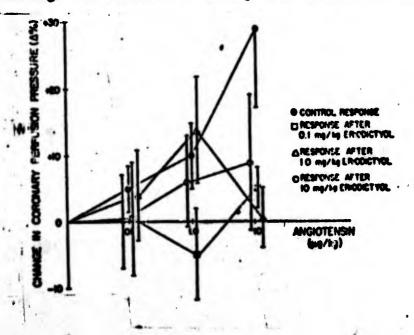



Figure 4. Influence of eriodictyol on cogonary vasoconstrictor response to angiotensin in the dog. Note reduction in response following criedictyol.

Ξ.

a value and approximate or other think

a state and state a

Part III. Search for Intravenous Preparation for Treatment of Acute Pulmonary. Insufficiency.

Page 21

The 15 compounds reported in Progress Report No. 1 were water-insoluble and could not be injected intravenously. An examination of the literature indicated that there are several water-soluble compounds which reduce the capillary permeability of the skin. Two compounds reported in 1963 by Tommasini, Parenti, Longoni and Berti (7) were obtained and are as follows: benzoylcarbinolmorpholine acetate and benzoylcarbinoltrimethyl acetate. Both are water soluble and are suitable for intravenous injection.

The initial testing for prevention of pulmonary edema was performed in male Swiss mice inhaling 25% carbon dioxide (6). In addition to the control and the carbon dioxide groups of mice, several mice were pretreated with one of the following: benzoylcarbinolmorpholine acetate hydrochloride, benzoylcarbinoltrimethyl acetate, eriodictyol and WR 49, 808. Although the last two compounds have been previously tested, they were used again for comparison of effective dosages.

The results indicate that both benzoylcarbinols are effective in preventing pulmonary edema induced by carbon dioxide inhalation. An intraperitoneal dose of 2.5 mg/kg of either benzoylcarbinol afforded aprotection similar to 25 mg of eriodictyol or WR 49,808. The examination of the lungs of mice pretreated with benzoylcarbinoltrimethyl actate revealed petechial hemorrhages which were absent in mice pretreated with benzoylcarbinolmorpholine acetate hydrochloride. The former has been excluded from further consideration and future work will be on the latter.

(Table 7 appears in the following page).

10. 6. 13. 14 Mar 19 19

Table 7. Summary of antiedemagenic effect of benzoylcarbinols, eriodictyol and naphthoquinone (WR 49, 808): Mean ± SE

Procedure	Dese mg/kg	No. of Mice	Body Weight g	Lung Weight % B W	P versu Control	CO,	Lung moisture %	P versus Control CO
Control		5	30.8	0, 62			79.4	1
1			±1, 16	±0. 02			±0.68	
Carbon dioxide	25%	5	20.8	0. 92	< 0.001		83. 2	< 0. 001
			±1.28	±0. 04			±0.49	
Eriodictyol	25	5	26.2	0. 92		NS	79.4	<0.001
			±1.28	±0, 973			±0,40	
Eriodictyol	50	5	.21. 2	0. 92		NS	79.4	< 0. 00
		•	±2.06	40. 073			40. 81	
Eriodictyol	100	5	22.4	0. 84		NS	78.6	<0. 00
		`	#0, 51	±0, 924			±0.927	
Carbon dioxide	25%	5	23.8	0. 94	< 0. 001	•	84.4	40.05
			±3.70	±0, 040			±1.86	
WR 49, 808	25	5 ·	20.6	0. 90		NS	78.2	< 0. 00
			±0. 75	40. 063			±0. 37	
WR 49, 808	50	5	23.6	0. 84		NS .	77.2	<0.00
WR 49, 808	100	5	26.0	0.74		CO. 01	79.6	<0.05
			±0, 89 🎍	40. 060			±1.07	
Carbon Dioxide	25%	5	19, 2	1.0	<0. 001		84.2	< 0. 001
		·	±1.02	±0. 07			±1.11	
Bensoylca rbin e	1-2.5	5	22, 2	• 0.90		NS	78.0	<0.00
trimethyl		•	±0. 80	40. 084			40, 45	
	5.0	5	20. J	1.0		NS	80.6	<0. 05
			±2.66	±0.09			±1.08	
	10	5	23, 2	1.0		NS	79.0	< 0. 001
		- ·	±1,06	±0, 10	•		40, 55	
	25	5	. 19.4	0. 88		NS	79.0	< 0. 001
			±1.63	40.019			±0, 95	4
Carbon dioxide	25%	5	21.4	0. 94	<0.01		83. 8	< 0. 05
			#2.16	40, 116			41.77	
Bensoylca rbino	- 2.5	5	21.6	0. 94		NS	81. 2	NS
morpholize Acetate		5	±0. 81	±0, 024		22	±1.15	
	5.0	5	21.6	0. 86		115	79.0	. 40.01
			40, 81	40. 039	,	1	40.71	
	10	5	29.2	0.64	1	(9. 01	79.6	<9.95
1		1	40. 37	40. 024		1	40.63	

A ST PART OF AN EXTRACT STATE STATE

REFERENCES

- AVIADO, D. M. and SCHMIDT, C. F.: Pathogenesis of pulmonary edema by alloxan. Circ. Res. 5: 180-186, 1957
- GABOR, M.: <u>The anti-inflammatory action of flavonoids</u>. Akademiai Kiado, Budapest 1-110, 1972.
- 3. WILLIAMS, H. L. and HEDGECOCK, L. D. : Citrus bioflavonoid, ascorbic and the B vitamins in treatment of certain types of neurosensory deafness. <u>Proc. Staff</u> <u>Meetings Mayo Clinic</u> 37: 474-483, 1962.
 - TSUNOO, M., KAWAZOE, K., IWATA, Y., and KIMURA, F.: The potentiating effects of methyl hesperidin on coronary vasodilation induced by adenosine or related compounds. <u>Arzneimittel-Forschung</u>. 17: 979-980, 1967.
 - AVIADO, D. M., ITO, Y. W., CHO and BELLET, S. Coronary vasodilators on myocardial oxygen consumption and ammonia production. <u>Cardiologia</u> 53: 27-46, 1968.
 - AVIADO, D. M. and CAMBAR, P. J. Pathologic physiology and chemotherapy of <u>Plasmodium berghei</u>, X. Pulmonary edema and naphthoquinones (WR 26, 041 and WR 49, 808). <u>Exp. Parasitol</u>. 26: 354-368, 1968.
 - TOMMASIN!, R., PARENTI, M., LONGONI, A. and BERTI, F. Attivita farmacologica di un nuovo derivato idrosolubile del benzoilcarbinolo: il benzoilcarbinolomorfolinoacetato. <u>Il Farmaco</u>, 18: 245-253, 1963.