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SUMMARY 

\ 

The research under modified Contract No. H0220068 has been devoted to 

experimental thermal-mechanical fragmentation of Missouri red granite in 

place, and to supporting theoretical analyses. The results of the previous 

year's experimental work showed that thermal stresses are several times more 

effective in fragmenting hard rock when they are created within the rock 

rather than upon the surface. Also, large blocks {4-foot cubes) are not ade- 

quate to simulate the response of in situ rock. 

Based upon laboratory tests an experimental round was designed analogous 

to an explosive blasting round with coiled wire heating elements placed in 

drill holes. Three displacement relief faces were required for effective 

fracture at a 5 kw power level for a 10 inch burden. However, the heaters 

clogged and failed, and although the rock was effectively fractured, the 

fragments required considerable mechanical effort to remove them. Electric 

arcs at 12 kw, utilizing carbon electrodes were employed to create thermal 

inclusions, and in holes 14 inches in depth with equal burden. The rock was 

fractured and easily removed, as was also the case with 20 inches depth and 

overburden. Experiments are in progress to optimize round geometry and energy 

levels. Major problems are the brittleness of the carbon electrode:, and 

maintaining of a stable arc as the heating is begun. Both of these problems 

are being solved. 

Theoretical analyses of temperature and thermal stress distribution are 

progressing well and procedures are being refined for use of more accurate 

boundary conditions, temperature-dependent rock properties, and other input 

parameters. Laboratory experiments are being conducted to determine stress 

and temperature distribution for a cylindrical geometry for basalt. Calcula- 

tions of projected rates of advance and excavation costs indicate that for a 

slot type round the process is technically and economically feasible. 
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AN INVESTIGATION OF COMBINED THERMAL WEAKENING AND 

MECHANICAL DISINTEGRATION OF HARD ROCK 

INTRODUCTION 

Thermal stresses have been employed since antiquity in the fragmen- 

tation of rock. The most active use of heat in recent and current opera- 

tions has been that of the flame jet for drilling, and the cutting and 

facing of spallable monument stone. Its successful employment led to 

a research project (1) on the feasibility of a flame jet tunneling ma- 

chine, i.e., the utilization of flame jets for weakening hard rock to 

make it more susceptible to roller cone cutting. Slot cutting with 

heat and wedging of ridges between kerfs was also suggested as a poss- 

ible excavation process. Large amounts of excess heat and combustion 

generated gas, inefficiency of heat transfer from a flame jet to rock, 

and other factors appeared to mitigate against its use, as well as the 

moderate increase of rock removal efficiency achieved by roller cones. 

The advantages of tunnel boring machines in soft to medium hard 

rock, which they can excavate economically, and the disadvantages of 

drill and blast methods (cyclic character, overbreak into walls, and 

vibration and noise problems) have led to an intensive search for novel 

methods which will increase tunneling capabilities in hard rock. Of 

the several methods recently investigated, the use of heat has been the 

subject of considerable research, some fourteen techniques for drilling 

and fragmentation having been proposed and investigated. Flame jets 

have been in use for several decades, but have on'y limited application 

for drilling and quarrying. Various types of heat drills investigated 

to date have not been applied extensively because of nonadaptability of 
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of equipment to underground conditions, environmental problems created 

by the excavation device, high energy consumption, or because results ob- 

tained in the laboratory could not be applied to rock in place. 

Because it was found that thermal energy is much more effective in 

fragmenting rock when it is applied internally, the research described in 

this report was designed to evaluate the basic engineering factors in the 

development of a thermal round (of the same concept as a high explosive 

blasting round) for fragmentation of hard rock for use in a tunnel excava- 

tion system. The total concept includes a study of heat sources, hole 

placement and geometry, pertinent mineral and rock properties, heat trans- 

fer, temperature distribution, thermal stress distribution, fracture initia- 

tion and propagation, required rock displacement relief, methods of slot 

cutting, and related factors. Based upon these findings, existing mining 

equipment will be modified, or new equipment designed to accomplish the 

operation of the fragmentation process. Three years of research (as of 

June 1973) will have been completed on thermal fragmentation. The next 

phase will require a joint effort with a mining machinery manufacturing 

company, and the research will be phased over into full equipment and 

system development as soon as practical. 

It should be noted that, while most recent related technical litera- 

ture has emphasized the specific energy of drilling, breakage and other 

types of rock removal, the absolute value of this factor for a given rock 

and process combination is seldom a deciding factor by itself unless a 

critical value for specific energy is exceeded. The most critical opera- 

tional factor, assuming specific energy requirements are not near or above 

maximum permissible values, is the rate of advance, for both drilling and 

excavation. 



An evaluation of a method of thermal rock drilling and excavation 

can be made by assessing the following factors: 

1. Current status 

a. Theory 

b. Research 

c. Development 

2. Energy and fracture characteristics 

a. Specific energy requirements 

b. Efficiency of energy transfer 

c. Availability of energy 

d. Control of energy source 

3. Application characteristics 

a. Control of energy within the rock 

b. Preservation or strengthening walls and roof 

c. Smoothness of opening excavated 

d. Efficiency of energy utilization 

e. Environmental factors 

Adaptability to variable rock properties and conditions 

Feasibility of equipment design and construction 

Continuity of method - down time 

R&D required 

Time to develop and apply new method 

Rate tf advance 

4. Cost factors 

a. R&D 

b. Capital equipment 

c. Operating: labor, materials, etc. 

d. Overhead 

Many of the above ^actors have been studied in detail in relation 

to this research project. Theoretical and experimental studies are in 

advanced stages on heat transfer, thermal stress analysis, and effects 

of thermal propert'es. of minerals and rocks. Extensive field tests of 

thermal fragmentation of granite have reached a stage which indicates 
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a high probability of successful application. Rate of advance and cost 

analysis studies are in progress. 

SCIENTIFIC AND ENGINEERING BACKGROUND 

While there have been comprehensive studies made of thermal properties 

of minerals and rocks, only a limited number of investigations have been 

made of the specific scientific and engineering factors which are directly 

related to-the problems posed by this investigation. There is a large 

fund of information from ceramics studies of heating and melting of synthetic 

silicates and selected clays, studies of the calcination of carbonates in 

their sintering for manufacture of Portland cement, and the physical chemi- 

stry of various types of rock in geologic studies of igneous action and 

metamorphic processes. Several experimental programs have been carried 

out on thermal stresses and fracture in rock, but there are few data 

available on rock properties as functions of temperature, or of melt proper- 

ties. 

Thermal Rock Drilling and Fracture 

Twelve methods of drilling or breaking rock by thermal means were re- 

viewed by Maurer in 1968 (2). These included flame jet (jet piercing), 

electric disintegration by low frequency current, cyclic heating and cool- 

ing with superheated steam and liquid nitrogen, high frequency currents, 

microwaves, induction, fusion and vaporization, nuclear heat (penetration), 

electric arc (drill), plasma drill, electron beam, and lasers. Carstens (3) 

reviewed several of these methods again in 1972, and described an additional 

method of forming an internal thermal inclusion and fracturing rock (4). 

Considerable research has been accomplished in the past four years, parti- 

cularly on electron beams (5), lasers (6 and 7), with flame jets (1,8,9 and 

10), high temperature penetrators (11), plasma jets (12), resistance wire 

and electric arc heaters(13). 
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Coiled wire resistance heaters made of Kanthal wire at 1000oC were 

found (UMR) to fracture hard granite when they were placed in pneumatically 

drilled holes, but heaters failed after short term usage. However, electric 

arcs from carbon electrodes generate an effective thermal inclusion in solid 

granite and multiple holes create thermal stress fields which will fracture 

over distances of 2 feet or more at reasonable electrical energy levels. 

Tests to date have yielded promising results for application. 

Several approaches have been suggested in the last decade for the possible 

use of heat application within the rock mass to cause fragmentation. The 

fracture of rock by internal heating by means of electrical conduction through 

the rock has been the subject of several patents by Sarapu (14), the first 

issued in 1965. In a study of laser effects on rock Zar (6) proposed that 

a heated annul us on the surface of a hard rock face would cause the rupture 

of a section of the rock face. However, this assumes that the rock is free 

from fractures, joints, etc. 

Thirumalai (15) was the first to report in 1970 on a method of formation 

of a controlled internal thermal inclusion, in this instance by dielectric 

heating. Laboratory test blocks of granite and basalt, somewhat larger than 

jne foot on a side were fragmented without melting by localized heating be- 

low 600oC, the heated volume being less than 2 percent of tne  total rock 

volume. As a first approximation, a thermal inclusion was considered to 

exert a prjssure on the inside of a cylindrical hole in an infinitely thick 

cylinder. However, quartzite blocks could not be fragmented by dielectric 

heating because of its electrical resistance. 

The total electrical energy required to fracture Dresser baselt blocks 

varied from 0.067 to 0.100 kwhr, and the volume to thermal inclusion from 

105 to 206 cc. For granite the electrical energy was 0.10 kwhr and the 
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volume of the thermal inclusion was 206 to 350 cc. Time for fracture was 

less than 2 minutes. In a recent test (December 1972) at UMR a 2 foot cube 

of Missouri red granite was fractured by means of a rock (partially fused) 

melt created in a drill hole in the center of the rock with carbon electrodes. 

The total electrical energy was approximately 1 kwhr and the volume of the 

melt about 380 cc, the total heated volume of rock being larger. This re- 

presents about 0.2 percent of the total volume of the block. Similar results 

were obtained in granite in situ. (See Research Results). 

The amounts of electrical energy per unit volume of rock broken are in 

the ratio of 1.6:1 for Missouri red granite cubes as compared to the basalt 

and granite cubes fractured by Thirumalai. The tine for fracture and the 

total energy applied vary approximately as the volume of the block, indicating 

that the cube root law for energy usage may apply for similar rocks and test 

geometries. 

In each of the above experiments, as in investigations reported by 

Nixon (5) with electron beams, radial cracks as well as cracks normal to 

the axis of the hole or inclusion were formed. Nixon (5) reports that tem- 

perature distributions were calculated by empirical formulas, with the assump- 

tion of a 1700oC melting temperature at the boundary of an advancing cylin- 

drical cavity. Stresses were calculated by means of a finite elemtnt pro- 

gram utilizing values of Young's modulus, Poisson's ratio and thermal coeffi- 

cient of expansion as functions of temperature. Both tangential and radial 

stresses near the cavity were found to be compressive, while in the cold 

zone the radial stresses were tensile. 

Nixon also came to the conclusion that for transient penetration and 

heating the compressive stresses and gradients are typically larger by an 

order of magnitude than the tensile stresses and gradients. The expan- 

sion of the cavity along its axis and the radial growth of the heated region 
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cause tensile stresses in the axis-radius plane and in the tangential direc- 

tion. At depths equal to the melt cavity and below, the tensile stresses 

in the r-axis plane are larger than the tangential stresses, creating favor- 

able conditioning for a crack normal to the axis. The calculations were 

confirmed only by the behavior of blocks of quartzite, however, but not with 

other types of rock. Similar stress patterns occur in rock for quasi-static 

cylindrical heat sources. 

Thirumalai proposed an application of dielectric internal heating of 

ore and rock in stopes w'iere two free faces exist for displacement relief. 

However, the feasibility of breakage by this means was not tested. Thiruma- 

lai (16) also suggested two types of tunnel rounds using thermal inclusions, 

one with a cut at the bottom of the face, and a V-cut type round with no 

strain relief other than the tunnel face. The feasibility of sue,' tunnel 

rounds also was not investigated. 

Investigators at LASL (17) have proposed a somewhat similar approach to 

hard rock tunneling utilizing a heating head which forces heated rods into 

the face by melting which, it is postulated, will cause local thermal stresses 

to spall rock fragments from the face. However, for effective spallation it 

has been found in experiments at UMR that effective fractures (two or three 

directions) are not caused oy internal heating unless sufficient displacement 

relief is provided so that cracks can be initiated and propagated. "No cut" 

rounds of similar design have proven usable with explosives, but the frac- 

ture process in the latter case depends upon high order stress waves. 

The specific energy of rock removal by drilling and other methods has 

received much attention in the literature. As pointed out earlier in this 

report the energy of breakage or of other type of rock removal by itself 

is not a sufficient criterion for evaluating the economic feasibility of 

a method. Many of the costs per foot of drilling and of costs per foot 

of advance of tunnel face are determined largely by the rate of advance. 
7 
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A more meaningful measure of the energy effectiveness of a given 

method of rock breakage is the rate of advance per unit of specific eneryy, 

i.e., the (cm/min)/(joules/cc). Calculated values obtained from drilling 

data given by Maurer (2) are: 

Diam hole 
cm 

Pneumatic 

Jack hammer 3.8 

Drifter 4.8 

Blast hole 7.6 

Rotary (mining) 

Roller 20 

Diamond 5 

Rotary (oil field) 

Roller drag 20 

Diamond 20 

Jet piercing 20 

(cm/min)/(joules/cc) x 103 

Hard rock  Very hard rock 

2.85 

6.66 

3.33 

95.2 

17.8 

5.95 

1.42 

1.35 

2.64 

1.49 

5.95 

1.11 

0.952 

0.357 

10.0 

The lower rate-high energy methods appear to be usable only in special 

applications such as exploratory drilling, and not in operations where rapid 

rate of advance and removal of large volumes of rock are required. 

A comparison of the rates of advance per unit of absorption of energy 

in drill penetration (Fig. 1) shows that for their particular application 

pneumatic drills have the highest rate of advance for energy input into 

the rock. Their actual rate of penetration is also the most favorable, i.e., 

three to six times faster than diamond drills of the same diameter, and 120 

times faster than drilling by melting the rock. As shown elsewhere herein 

even though the energy consumption may be high, critical variable costs per 

foot are determined largely by the rate of advance. 

8 

\ 

■b *Mrii 



o 

• 

c- oo ■tj 
o 0) ,— E 
X C71 ^—^. c 
o r— 
o r— 

^^ ^ 
w •»— 
(U s- 

r— ■o 
3 

eg o t- 
o ■«■» o 
•— 4- 

c 
c o 

•r- •r- 
E 4J 

<0 
E i- 
o •P 

0) 
c 

1 
o «♦- 
T- o *» 
£ 01 

*-* 
o ä S- 
r" b 

(U 
1 

c >, 
UJ 

s. 
ai 
c 
0) 

o 

5: 

I 
V) 

Ol 

I o 

unu/uD - uo^B-^ausd ^o a^ey 

i^k^MMM ^a 



w w^** 

Displacement Relief 

If one considers a section of a heated cylindrical hole near the cor- 

ner of a quadrant of an infinite elastic body, after the heat has been ap- 

plied for a certain time there is a biaxial compressive stress immediately 

around the hole which changes to (tangential) tension with increase in dis- 

tance from the hole. With increase in time the compressive zone increases 

as does the tensile zone, the magnitude of the latter decreasing with con- 

stant hole diameter. If the medium were infinite, radial cracks would form, 

their orientation depending upon imperfections in the medium. However, if 

there is one free face within a distance b such that the magnitude of the 

tensile stress is affected by the free surface, a crack will propagate from 

the hole normal to the free surface, but it will not widen because of the 

constraining effect of the mass. If two fret* surfaces exist within a criti- 

cal distance b of the stressed hole, then two cracks will propagate from 

the hole normal to the two free surfaces. One of the objectives of the 

proposed experimentation is to determine the value of b for given rock pro- 

perties, hole size, and energy level. 

For three dimensions an octant of an infinite mass (the corner of a 

large cube) is considered, with multiple holes drilled parallel to one 

face. The problem becomes as indicated above one of determining the 

optimum distance from a free surface (burden), the spacing, plus depth 

of the hole. The holes act as loci for stress concentration and fracture 

guides. However, three planes within critical distances of the thermal 

inclusion are required for controlled fracture. 

10 
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Theory of Theraal Fracture of Rock 

It is a well established principle of blastinci that a cylindrical 

column of explosive must have a free face to which to break. With stress 

waves generated by explosives the free face provides a meatis for spalla- 

tip;i by reflected waves to occur and subsequent fracture to the explo- 

sive will take place in a properly designed round. Each hole is placed 

so that it will provide the necessary free faces to which other holes 

may break. The expanding explosive gases also assist in breaking the 

rock. 

The process of fracture from thermal inclusions is different in 

several ways from fracturing by explosives. When a heater is placed in 

a hole in the rock a thermal stress is generated around the hole. The 

immediate periphery of the hole is in biaxial compression with a tensile 

stress beyond. The magnitude of the tensile stress depends upon the pro- 

perties of the rock, the temperature and the radius of the hole. 

The nonstationary state of stress due to a constant temperature 

suddenly applied to a spherical cavity in an infinite medium was analyzed 

theoretically by Sternberg (18). The radial displacement of the cavity 

surface is zero for all time. The temperature drops rapidly with distance 

away from the cavity surface (Fig. 2) and does not penetrate beyond 3 

cavity radii (a) for x = 3 (T - {$ , t« time, K = diffusivity). Radial 
a 

displacement increases with time as does the radial stress, which is al 

ways compressive. 

The tangential stress at a given r/a greater than one is compressive, 

becomes tensile and then compressive again with increase in time. The 

magnitude of the tensile stress decreases with r/a. 

For constant diffusivity, the magnitude of the tangential tensile 

stresses is largest for small values of r/a, or for large values of the 

cavity radius, and increases linearly with the cavity temperature. I 



w 

(o) lb) 

Fig. 2. Temperature distribution, displacement and thermal 
stresses around a spherical cavity in an infinite 
medium U ■ r/a). (18) 
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The curvet in Figure 2 may serve as approximate guides to the thermal 

stress history around the thermal inclusion created by carbon electrodes 

in a hole in solid granite face. However, the cavity in granite increases 

in size with time and some of the rock properties are temperature dependent. 

Also, the stress pattern is altered by the presence of the drill hole. 

The analysis by Sternberg (18) agrees qualitatively with that by 

Nixon (5), the latter being the (cylindrical) finite element thermal 

stress analysis for electron beam penetration. That is, the magnitudes 

of compressive stresses are ten times those of the tensile stresses, and 

for longer heating times the zone of tension extends considerably beyond 

the heated zone. 

The initiation and propagation of fractures in rock in the configura- 

tions used herein due to internal thermal stresses are controlled by two 

important factors, (1) the magnitude and direction of the tensile stresses, 

and (2) strain relief due to compressibility of the rock or nearby traction- 

free surfaces. Computations are based upon the classicial fracture theories, 

Displacement Relief and Fracture 

When a high temperature source is placed in a cylindrical or spherical 

cavity in an infinite (rock) medium, thermal stresses are induced in pat- 

terns as indicated above (18). This may be shuwn graphically (Fig. 2) for 

a given time after a temperature T has been applied to the surface of 

the cavity. 

When the tensile stress exceeds the strength of the material a 

crack normal to the stress direction will form. However, the distance 

it will propagate and the amount it will widen depends upon displacement 

relief. In nonporous hard granite it has been found that the rock cannot 

move normal to the crack unless there are three planes or faces of strain 

\ 
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relief within critical distances. (In this respect thermal stresses 

function differently than explosively induced stresses which will create 

craters with only one free face). With less than minimum displacement 

relief only hairline fractures are formed, extending into the cavity 

and a short distance into the rock. However, where free faces are pre- 

sent and multiple heater holes furnish stress fields which reinforce 

each other, cracks propagate for longer distances and widen to 1/4 

inch or more due to the expansion of the rock around the cavities. The 

blocks of rock formed by the fracture are easily removed. That is, ther- 

mal forces have demonstrated a significant amount of follow-through in 

dislodging the fractured blocks in experimental tests. (See below). 

Electric Arcs 

A review of some of the important characteristics of electric arcs 

was made (19) in relation to an investigation of the feasibility of their 

use in drilling oil wells. Their performance in air and water was of 

direct interest in these studies, and much of this information is of basic 

interest in the rock fragmentation research with which this project is 

concerned. 

The low voltage required for arcs may be advantageous for rock break- 

age, i.e., it is generally easier and safer to use in underground environ- 

ments. McMaster (19) reports that the voltage drop (dc) at the cathode 

is of the order of the least ionization potential of the gas or vapor 

in which it burns. The arcs employed in drilling experiments were sub- 

ject to severe transients and rapid fluctuations in length, position, 

current and voltage so that the average characteristics might not corre- 

spond to a steady state operating condition. The temperature of the arc 

column in air has been measured and varied from 4330oC to 7330oC at 
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atmospheric pressure, and as high as 10,760oC in the center of the arr 

column for high current arcs. It is noted that the temperature of the 

surrounding gas just a few hundredths of an inch from the boundary of 

the arc is nearly ambient. Also, the temperature of the electrodes can- 

not exceed their boiling temperature, and herce, very large temperature 

gradients exist at the ends of the arc and at its bouidaries. Conduc- 

tion, convection, and ionization potential affect the voltage gradient 

and arc-column diameter. If the ionization potential is lowered by the 

presence of easily ionized substances, the voltage gradient and tempera- 

ture are reduced. 

Heat is lost from the arc-column by conduction, convection, and dif- 

fusion through the surrounding gas. It is estimated that about 15 per- 

cent of the heat is lost by radiation. Most chemical compounds, parti- 

cularly gases, are completely dissociated at arc temperatures, and con- 

tribute to transfer of heat. That is, dissociated atoms, ions and elec- 

trons diffuse from the arc column, and when they recombine in the cold 

surroundings they give up their energy of dissociation. 

The voltage gradient of the arc is related to the current by 

ill E » B/i' 

where 

E ■ voltage gradient 

i ■ current 

n and B ■ constants 

For nitrogen and air, n ■ 0.60, and for steam n ■ 0.59. Its value for 

the material in the arc-column in molten reck is not known, but for 

basalt, granite, and quartzite the arc becomes stable after a melt Is 

15 
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formed. The above is an opposite effect than that described by Ohm's 

law. This negative characteristic requires a series resistance to 

maintain a stable arc. 

The current density in high current arrs may be as high as 20,000 

amps/in2. An amount of heat, approximately equal to the voltage drop 

at the electrode times the arc current, is produced at each electrode, 

and an additional amount from the recombination of dissociated molecules. 

Arc stability, or its ability to reignite after short circuit, or 

after each reversal of alternating current is determined by the arc charac- 

teristics and the recovery-voltage capabilities of the power source. It 

has been found that superposition of high frequency voltages may add to 

the stability of arcs. An arc is usually started by bringing the elec- 

trodes in contact, or by "striking the arc", preferred voltages for dc 

being 60 to 150 volts and for ac, 80 to 200 volts. 

Cost Analysis 

The direct costs for excavation are usually considered under the cate- 

gories of fixed costs, or those which are constant per foot of advance, 

and variable costs, which are constant per day charges, and consequently 

vary with the rate of advance. Examples of fixed costs are power and bit 

wear, and variable costs are equipment and labor costs. Overhead costs 

also fall into the last category. 

It is not possible to make a simple comparison by category of the 

direct costs of rock breaking or removal by such methods as tunnel boring 

machines, drill and blast, and excavation utilizing heating processes, 

because of differences in the operational characteristics of each. Also, 

each method has different types of trade-off costs. For example, the 

smooth walls created by tunnel boring machines may reduce the cost of 

16 
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tunnel support, and one method may require less ventilation than an- 

other, or incur higher muck removal costs. 

Hence, a fair comparison of methods would need to include cost fac- 

tors in all categories which are affected by the overall operation. 

Costs for Rock Breaking and Drilling 

In a study of excavation costs in rocks in the NE Corridor by Harza 

Engineering Company in 1968 (20) rock breaking costs were given for four 

general types of rock: 

X. Rocks assumed to be mineable with boring machines with relative 

drill ability factors between 5 and 7, average unconfined compressive 

strength 4000 to 32,000 psi. 

Y. Same as X with higher average compressive strengths, 18,000 to 

32,000 psi, 65 percent of rock type is mineable with boring machines. 

Relative driliability factor of 1 to 4. 

Z. Rocks of somewhat the same strength as Y, but requiring conven- 

tional drill and blast methods. 

D.G. Difficult ground associated with faults, gouge, susceptible to 

squeezing. 

The representative direct rock breaking costs were categorized as 

fol'ows by percentage distribution: 

Unit X Y Z 06 

Labor 33 39 50 30 

Equipment 62 54 38 65 

Materials 5 7 12 5 

It is notable that labor costs are the highest for drill and blast (Z) 

partly due to the cyclic nature of this method. It is notable also that 

costs per foot increase almost linearly with the excavated diameter (Fig. 3) 
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Because of the high labor costs of drill and blast, novel methods 

of breaking hard rock have a considerable margin of capital which can 

be expended for additional energy and equipment if the method is auto- 

mated and has other requisite cost advantages similar to boring machines, 

Thus, for a tunnel driven by a thermal  fragmentation method, poss- 

ible trade-offs for increased drilling costs will be labor reduction, 

reduction in cost of breakage energy, higher rate of advance and other 

factors yet to be defined. 

In analyses of pneumatic drilling costs it has been found that the 

factors of greatest cost are for labor, equipment, and maintenance (21). 

Amortization or rental charges per foot for equipment are less for two 

or three shift operation. 

For a single 2 in. pneumatic drill the costs are approximately as 

fol1ows: 

Per hr 

Compressor $ 3.75 Bit Cost $25.00 

Drill 4.25 Life 2000 ft 

Labor (2 men) 7.00 Reconditioning $15.00 

Fuel (4 gal) 0.60 Rod cost/ft $ 0.03 

2" carbide bit and rod 3.00 

$18.60 

Rate of drilling in hard granite (overall) 60 ft/hr 

Cost/ft = $0.31 

19 

^^^■^UtaMBfllBHtfBaMK 



A method of excavation employing thermal fragmentation may be semi 

continuous or ultimately continuous in operation. One procedure would 

permit simultaneous drilling of heater holes and slots, or another the 

cutting of a slot first and simultaneous drilling of heater holes and 

fragmentation. Mso, after the rock is fractured, rock removal is ac- 

complished by rock splitter or impact tool. Direct costs may be esti- 

mated as follows: 

Example: 10 x 10 tunnel 

Hole spacing:        2 ft centers 

Depth of round;      2 ft 

Number of heater holes: 36 - 2-1/4" - 72 ft total 

Slots:  2 - 2" x 2' x 10'     240 ft of 2" diam hole 

Advance:      16 ft/shift = 576+ 
1920 
2496 ft of hoi e 

Equipment Costs: 
Cost/hr Total/hr 3 Shift 

10 small drifter drills 150 cfm 3.50 ea 35.00 11.67 

4 large drifter drills 400 cfm 4.75 ea 19.00 6.33 

1 compressor 3000 cfm 4.50/drill 63.00 21.00 

Jumbo 5.00 5.00 1.66 

Fuel  (compressor 5 gal/drill) 10.50 10.50 10.50 

Rods 0.40 5.60 5.60 

Bits      .40/drill 0.40 5.60 5.60 

Maintenance and miscellaneous 0.50 2.00 2.00 

Labor (3 men) 9.00 9.00 9.00 

$154.70 $73.36 

Cost per ft of hole 0.49 0.24 

Drilling costs/ft of tunnel    $37.00 

Drilling costs will be reduced if the hole spacing can be increased 

as expected. 
20 
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THERMAL FRAGMENTATION RESEARCH 

Research was begun at UMR on thermal fragmentation of hard rock in 

1969 and has been carried out in three phases: 

1. Heat weakening and surface chipping. 

2. Mechanical slot cutting and thermal kerf removal. 

3. Investigation of a thermal round similar in design to an explo- 
sive round. 

In phase one the surface of blocks of selected igneous and metamor- 

phic rock was subjected to heat from a small flame jet torch causing 

shallow fractures. The rock was then chipped off with a traversing 

jackhammer. It was found that while the surface of most of the rocks 

tested was weakened by heat, rock removal by impact was not enhanced 

by the heating process. 

In phase two slots 1-3/4 inches wide by six inches deep were cut in 

the surface of three-foot cubes of granite, quartzite and basalt, with 

six-inch ridges in between the slots. When heat was applied to the bottom 

of the slots the ridges between were readily fractured off from the rock 

face. 

Phase three has been devoted to the investigation of the feasibility 

of developing a thermal round which will function in principle in a man- 

ner similar to an explosive round. The application of heat at the bottom 

of deep slots within the rock in phase two demonstrated clearly that the 

rock is much more effectively fractured if the heat energy is deposited 

within the rock. 

Thirumalai (4) had shown earlier that thermal inclusions generated 

by dielectric current would readily fracture small blocks of basalt but 

not quartzite. Thus, a positive method of heating was desired which is 

independent of the electrical properties of the rock. In the first ex- 

periments coiled nichrome wire was wrapped in a spiral on alundum cores 
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and placed in pneumatically drilled holes in three-foot cubes of qua^t- 

zite and granite. The heaters successfully fractured the rock parallel 

and perpendicular to the heater holes, but the r.ichrome wire burned out 

at sustained temperatures of 600° to 700oC. Kanthal wire resistance 

heaters were employed at temperatures of 900° to 1200oC. These fractured 

the rock more readily, but also burned out in heater holes in granite at 

sustained temperatures of 1000oC. They were employed successfully to 

fracture granite in place with nine-inch burden on the holes and with 

three directions of strain relief. 

Experimental Results - Thermal Fracture 

It has been found that coiled wire electric resistance heaters 

one foot long and 1-3/4 inches in diameter will generate from 3.5 to 

4.5 kw at temperatures from 900oC to 1200oC. They will successfully 

fracture a strong granite in place with 10-inch burden and spacing to 

a depth of 15 inches where three free faces are present. However, there 

is a little follow-through by radial compression and fractured blocks 

are sometimes difficult to remove. Also, in spall able rocks such as 

granite, flakes of minerals spall off from the cavity walls anc1 clog up 

the heater coils, causing them to burn out after 15 to 20 minutes of 

use. 

The results obtained with coiled wire heaters indicated that higher 

temperatures were desirable, and that the heater should be of an economi- 

cal type that could furnish high temperatures in a hole in rock without 

breaking down. Refractory metal heaters of a type similar to those used 

for the LASL melting drill (11) were considered, but the cost was too 

high ($750 each) for funds available. 
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Electric arcs with carbon electrodes were suggested and tested. 

Depending upon the size of electrodes and other factors, from 10 kw 

to 20 kw of power are easily obtainable in a 2-inch drill hole. Tem- 

perature of the arc is in the neighborhood of 10,000oC. While carbon 

electrodes are brittle, with reasonable care they can be used under 

difficult working conditions. 

In an initial test two 1/2-inch electrodes were placed in a 

2-1/4 inch diameter hole in a granite block with about 5 to 6 kw power 

from an arc welder. The block broke with a loud noise in 6 minutes, 

using about 0.6 kwhr, and producing a fracture completely through the 

block parallel to the heater hole, as well as breaking the top half of 

the block into three large segments. The heat developed a hollow, bulb- 

shaped thermal inclusion about eight inches long and a four-inch maximum 

diameter. The mass of the inclusion was made up of partially fused granite 

and mineral flakes, of 380 cc volume, representing 0.2 percent of the vol- 

ume of the rock. The time and energy requirements for tests at UMR and 

those of Thirumalai (4) indicate that the cube root law of energy scal- 

ing may apply. The upper limit to the amount of heat energy which can 

be deposited usefully in a drill hole remains to be determined. Similar 

tests were conducted on 30-inch blocks of quartzite and basalt with the 

following results; 

Type of Rock 

Block Breakage 

Dimensions Power (kw) 
Fracture 
Time 

Mo. red granite 24 x 24 x 20 6 9 min 

Mo. red granite 24 x 24 x 24 5 6 min 

Sioux quartzite 16 x 30 x 30 5 2J5 min 

Dresser basalt 30 x 30 x 24 6 3 min 
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The Missouri red granite is less brittle and stronger than the 

quartzite, which broke easily, probably due to the high coefficient 

of thermal expansion of quartz and its change from a to 6 quartz as 

its temperature is increased. Basalt fractured readily even though 

it contains little or no free quartz, its lava being very liquid. 

As indicated above, coiled wire heaters fractured granite in 

place with 10-inch burden and spacing, but blocks were difficult to 

dislodge and heaters burned out after 20 minutes service. Separated 

blocks were removed quite easily by mechanical mears. 

Field tests with electric arc heating were also performed in solid 

granite in place with three face displacement relief. In the first test 

the burden and spacing were 12 inches, the power about 12 kw and the time 

to first fracture about 4 minutes, or about C.8 kwhr per hole. The heaters 

were left on several minutes and the cracks widened to M/4 inches. In 

the second test the burden, spacing and depth were increased to ±16 inches 

and fracturing at the same power level occurred in about 5 minutes. Three 

minutes continued heating widened the cracks as before. No additional 

major cracks were formed, however. (See Fig. 4). 

The conclusion drawn from the arc heater tests is that thermal frac- 

turing is technically feasible with proper strain relief provided 

Thermal Round Concepts 

There appear to be several concepts of thermal rounds which will 

function to break the rock. The prinary problem is providing strain re- 

lief. The possible "cut" portion of a round may be patterned after ex- 

plosive tunnel rounds, which use draw, V, pyramid, and burn cuts. These 

are discussed below. (Fig. 5). 

In the first experimental field test at a granite quarry two per- 

pendicular slots 2 inches wide by 30 inches deep were cut in the granite 

24 

*m* 



W V 

I 

• 

Fig. 4.   Fracture pattern for three heater holes at slot Intersection In 
thermal round 
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■!n the center of the tunnel face with a pneumatic (drifter) drill. 

Such a slot requires about five times as much drilling as an explo- 

sive round. At an estimated cost of 30i/foot of drill hole the total 

cost of drilling for a 15 x 15 foot tunnel 216 feet of drill hole is 

required or i64.80/ft of tunnel. Assuming for illustration that half 

of the work time is used for drilling at a rate of 24 inches/min, 15 

drills would be required for 100 foot/day tunnel advance. The total 

energy for breakage is estimated at a maximum of 2 kwhr per foot length 

of heater hole (36 holes) to be 72 kwhr. At 3</kwhr the energy cost 

for breakage would be $2.16/foot of tunnel. 

The initial hole size required is determined largely by the space 

required for insertion of the heater, although for carbon electrodes, 

two small diameter holes intersecting at the desind depth may be drilled, 

Two holes may furnish better loci for crack formation, and the melt would 

conceivably be formed more readily and efficiently. 

The most effective temperature for inducing stresses in the rock 

is theoretically the highest that can be applied because higher tempera- 

tures result in greater heat flow and sharper stress increases at large 

distances. Carbon electrodes first create an arc (10,000oC), causing 

the rock to spall, melt, and change chemical and physical form. After 

a melt is formed most of the heat generated still comes from the arc, 

but is transferred by several complex processes. Hence, the effective 

temperature in the cavity is the melting temperature of the rock, which 

is usually lower than 1700oC for silicate rocks. With any type of heater 

that causes the rock to melt the cavity is being continually enlarged, 

which is advantageous. That is, the larger the cavity the greater the 

stresses are at 'arger distances from the cavity. 
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Results of tests performed to date at UMR indicate that thermal 

fragmentation by heat deposition In holes drilled by pneumatic drills 

requires from 1 to 2 kwhr per ft of hole for breakage. A hole spacing 

of 2 feet, which may be about optimum for 12 kw carbon electrode heaters, 

is similar to hole spacing required for explosives. Explosive energy 

equivalent varies from 0.4 to 0.6 kwhr/lb for 40 percent to 75 percent 

dynamites, with about 1 lb per ft of hole for strong rocks. 

While electrical breakage energy requirements, based upon tenta- 

tive information, are about 3 times greater for explosives than for 

thermal fragmentation, electricity costs about 2 to 3</kwhr, dynamites 

at 50</lb range from $0.83 to $1.25/kwhr. Most inexpensive awnonium 

nitrate-fuel explosives are not suitable for breaking hard rocks. 

The time required for automated insertion of heaters such as carbon 

electrodes in a hole is a very small fraction of that required for load- 

ing explosives. More important is that the operational characteristics 

of the proposed system will permit simultaneous dril ing, fragmentation 

and mucking. That Is, the operation as planned will be semi-continuous 

or continuous. 

Although for single short slots of 2-foot length it was not possible 

to obtain effective fracture of rock on the sides of the slot, it may be 

that a single long slot in the face will be sufficient to provide dis- 

placement relief for breakage. Also, V, pyramid, and burn cut type re- 

lief offer possibilities for successful application. The more promising 

of these may be investigated In the remaining six months of Contract No. 

USOI H-0220068 after tests are completed for optimizing parameters for 

the three face relief configurations. 
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Characteristics of Thermal Fragmentation Method of Excavation: 

Drilling required: 

Drilling energy: 

Percent of face drilled: 

Breakage energy: 

Rock melted: 

Ubor at face: 

Character of muck: 

1 ft of hole/cu ft of rock removed 

200 to 390 j/cc 

0.2 kwhr/cu ft 

Maximum of 0.3X 

4 men in 15 x 15 tunnel 

Small fragments to 3 ft cubes 

Continuity: 

Down time: 

Heat developed: 

Noise and vibration: 

Gases created: 

Environmental problems; 

Equipment costs 

Services: 

Tunnel wall stability: 

Equipment required: 

Semi cyclic to continuous 

Minimal 

Negligible 

From pneumatic drilling only 

Small amounts - easily removed 

Minimal 

Nominal, for drills, jumbos, etc., costs 
for modification and redesign 

« 

Electrical power 

Compressed air, assists ventilation 

Some slight fracturing of surrounding rock 

Standard drilling equipment - modified 

Mountings for electrodes 

Improved electrodes 

Estimated time to prototype:   1 year 

Estimated time to full operation: 3 to 4 years 
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Theory and Computation 

The computational analyses which Involve the determination of the 

optimum spacing, hole depth, hole size and slot configuration, uses a 

package of finite element and related computer codes. These codes are 

as follows: 

1. GRDCHK,  To check the Input data and to plot the finite 

element grid, 

2. S70,    Finite element conduction code for the solution 

of the transient temperature problem, 

3. TCP,    Temperature contour plotter, 

4. TTST,   Finite element code for the solution of transient 

thermal stress problems with temperature distribu- 

tions given for different times, 

5. SRPLT,   To plot various stress regions, 

6. FRACTR,  To check for the fractured elements and to plot 

the probable fracture contours, 

7. 1DNLSS.  One-dimensional finite element program for the 

solution of steady state heat conduction problems 

where element conductivity can be expressed as 

8. 1DNLT, 

9. 2DNLSS, 

10. 2DNLT. 

K(T) - K0 + KaT + KjT
2 + KjT* 

One-dimensional finite element program for solution 

of transient heat conduction problems where element 

conductivity can be expressed as K(T) ■ K + KJ ♦ 

K2T* ♦ KjT1 and the product of density and heat 

capacity as p(T)C(T) • Co ♦ C,T + C2T2 ♦ CiT». 

Two-dimensional version of IDNLSS, 

Two-dimensional version of 1DNLT. 
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Codes GRDCHK and SRPLT were developed by the Engineering Mechanics 

Department at the University of Missouri-Rolla. The conduction code 

S70 was originally developed by Wilson (22). Code FRACTR is based on 

the equations and analysis given by Lauriello (23). All codes have been 

modified and codes TCP and TTST are specially developed for this analysis. 

The transient thermal stress analysis code can be used for plane or 

axisymmetric bodies with temperature dependent material properties. 

Theoretical development of equations for this code has been given by 

Jones and Crose (24). Nonlinear steady state solutions are obtained 

by iterations (1DNLSS and 2DNLSS). Nonlinear transient solutions are 

obtained by incremental loading and iteration within each increment 

(1DNLT and 2DNLT). All one-dimensional programs can handle constant 

temperature, constant flux or convection boundary conditions. 1DNLT 

has the added capability of allowing a radiation boundary condition. 

The computer codes (1-10) have been developed or they are being 

developed for application to three models which represent the fracture 

conditions for hard rock tunneling via the semi-continuous thermal 

round method. The models Have been derived from three views of the 

actual hole-slot configuration. The two-dimensional models selected 

describe the significant thermal stress and fracture areas. A one- 

dimensionil model is also being used to study such basic phenomena as 

the type of thermal boundary condition that most accurately describes 

experimentally observed phenomena, temperature dependent thermal and 

elastic properties, etc. 

The geometry and temperature field make the conduction, thermal 

stress, and fracture problems three-dimensional. The thermal round 

configuration is a semi-infinite region with vertical and horizontal 
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relief slots cut to facilitate fracture. The slots are cut using over- 

lapping holes from pneumatic drills. Other methods may prove desirable 

■•n future research. Heater holes are drilled to slightly more than the 

desired depth of fracture. The heaters, carbon arc, etc. are placed in 

the bottom of the holes forming a thermal inclusion. The nature of the 

temperature and resulting thermal stress field is such that the rock is 

first fractured (cracked) along the line of a series of holes either 

horizontal or vertical. A second and very important fracture occurs on 

a plane perpendicular to the hole axes passing through the center of 

the thermal inclusion. This fracture is parallel to the work face and 

makes possible the removal of a layer equal to the depth of the thermal 

inclusions. 

The first type of experimentally observed fracture suggests that 

the significant process parameters could be studied using a two-dimensional 

model containing the hole diameter and spacing parameters (Fig. 6). 

The second type of fracture suggests that some important parameters 

relative to the process development could be studied using another two- 

dimensional model. This model is obtained by passing a cutting plane 

along a series of holes and observing the geometry that is projected 

on the cutting plane (Fig. 7). 

The stress state in the elastic rock surrounding the heater and 

molten rock inclusion results primarily from the temperature field (thermo- 

elastic stresses). The thermoelastic stresses can be determined from 

finite element Models of the heater and melt geometry as previously 

described. The program package has been modified to solve the stress 

problem with variable (temperature-dependent) thermal and elastic proper- 

ties. 
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Fig. 6.    Multiple hold model showing typical section for analysis 
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Fig. 7. Multiple slot model showing typical section for analysi; 
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Two-dimensional finite element programs for the study of fracture 

propagation in rock are also available. The stress from the finite 

element stress analysis can be used via the Griffith and McClintock- 

Walsh theory (24) to predict whether cracks will propagate in hard rock 

and the extent to which they will propagate. From the crack geometry 

the controlling parameters (hole spacing, size, depth, etc.) can be 

optimized and the feasibility of the proposed technique for hard rock 

tunneling can be postulated. 

Theoretical modeling of the type described in this section should 

augment and accelerate a future experimental prototype program. Final 

optimization studies could be made as a part of the prototype program. 

These would utilize information obtained from the most recent field and 

laboratory tests. 

Typical results from the two-dimensional model for temperature and 

stress are shown in Figures 8 and 9. 

Typical results from the one-dimensional model for temperature using 

nontemperature-dependent and temperature-dependent properties are shown 

in Figures 10 and 11. 

\ 
\ 
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Fig. 8. Temperature distribution, case 1, t = 60 sec 
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Fig. 9.    Maximum principal stress in KSI, case 1, t = 60 sec 
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