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ABSTRACT 

W« will be concerned with one-good economy. The good 

can be used at any period of time for production or consump¬ 

tion. If X units are put into production in period t 

then units become available as outputs in period 

t_+_l ; where u,t is a random variable with known distribu¬ 

tion. If £ units are consumed in period t this produces 

u^c) units of satisfaction or utility to the society in that 

period. Our main interest is the study of qualitative proper¬ 

ties of optimal solutions for a problem in which we maximize 

the total expected utility accumulated in t periods. 

In deterministic cases, i.e., the output is known with 

certainty, the basic tools are prioee and compétitive polioiee. 

D. Gale has suggested the introduction of similar concepts for 

the stochastic cases, and it turns out that after this is done, 

we get a better understanding of the problem and a powerful 

tool in the proof of theorems. Our main purpose here is to 

introduce the appropriate price concept and then exploit it 

in several directions to obtain new information on various 

stochastic problems. 

The concepts of price snd competitiva policy are Intro¬ 

duced. end It la shown that a competitiva policy la optimal. 

Fur -f(x;u) and „(c) Increasing, differentiable and strictly 

con«,., optimality condition, are obtained and It 1. shown 

that every optimal policy 1. competitive. Por the case in which 

i(»;w) - 8(a) + w . f'(xjw) and „• (c) are convex functlona 

we obtain a result that permits u. to compare optimal consump¬ 

tion policies With the corresponding policies of a deterministic 



case in which f(x;a>) - g(x) +½ , where û Eu . Finally 

the case f(x;u) = x + u is studied in more details and it 

is shown that the limiting policy satisfies the following 

inequalities 0 < c(y) < u for 0 < y < +“ , and that 



0. INTRODUCTION 

/ 

We will be concerned with one—good economy. The good can be used at any 

period of time for production or consumption. If x units are put into pro¬ 

duction in period t. then ft(x;a>t) units become available as outputs in 

period Jt +_1 ; where <i)t is a random variable with known distribution. If 

ç units are consumed in period _t this produces ut(c) units of satisfaction 

or utility to the society in that period. Our main interest is the study of 

qualitative properties of optimal solutions for a problem in which we maximize 

the total expected utility accumulated in t_ periods. 

In deterministic cases, l.e.( the output is known with certainty, the basic 

tools are prices and competitive policies. D. Gale has suggested the introduc¬ 

tion of similar concepts for the stochastic cases, and it turns out that after 

this la dona, we get a better understanding of the problem and a powerful tool 

in the proof of theorems. Our main purpose here is to introduce the appropriate 

price concept and then exploit it in several directions to obtain new information 

on various stochastic problema. 

This thesis la divided into 5 sections and 1 appendix. In Section 1 we 

introduce the concepts of price and competitive policy, and it is shown uai.ig 

the fundamental equation of Dynamic Programming that competitive policy is optimal. 

In Section 2 for f(x;u) and u(c) increasing, differentiable and strictly 

concave, optimality conditions are obtained and it is shown that any optimal 

policy is competitive. Section 3 is devoted to the study of the basic proper¬ 

ties of prices and optimal policies. In Section 4 we study the case 

f(x;w) - g(x) + o> which has applications to the income fluctuation problem 

considered by H. E. Yaari [16] and B. Miller [9]. In this section we generalize 

one result obtained by L. J. Mlrman [10] which permits us to compare optimal 

consumption policies with the corresponding policies of a deterministic case 

in which f(x;w) - g(x) ♦ w , where ü - Ew . Bounds for limiting policies and 
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sufficient conditions for capitel growing as it is defined ln E. S. Phelps [11] 

are also obtain«!. Finally in Section 5 w. consider the "incoes fluctuation 

problen" in which f (x;w) - x + w . This problem was introduced by M. E. Yaari 

[16], and we obtain the surprising fact that the limiting policy satisfies the 

following inequality 0 < c(y) < ü , for 0 < y < -H» and it is also shown that 

lim c(y) = Û . 
jr*» 

L-cmmas, theorems and corollaries are numbered by section in the order that 

they appear and the end of a proof is represented by ■ . 



1. COMPETITIVE POLICIES 

In this section we consider a very general one-good econo»y. The good can 

be used at any period of time either for production or conauaption. If « 

unite are put into production in period t then unlts o£ the 3ame 

good ere available aa outputs in period t + 1 , where wc is a randoa variable 

with known distribution.* If c units are consuaed in period t this produces 

» (c) unite of satisfaction, or utility, to the society in that period. The 

functions f'Otia') a„d ut(c) are called the production and utility function, 

la general it will be assumed that the rendo» variables wt are independent 

and ft<x;wt) > 0 , with strict inequality if r > 0 . Furthermore we will 

aleo assume that f'fx;/) and u^c) are continuous function. 

Our problem is: given tost we have y0 „nits of the good at t ■ 1 , how 

should w. consume, invest, in each period in order that we maximire the total 

expected utility accumulated in T periods. We should mention that the defi¬ 

nition, and theorems are very natural extension, to the stochastic case, of the 

definitions and theorems given in D. Gale [5] for the corresponding deterministic 

case. 

In order to simplify the exposition, we will assume that ^ arei.i.d., 

“t<C) E Stu<C) and 2 1 all t where 6 is a discount 

factor which can be any nonnegative number. 

Let Vt(y) be the maximum expected utility that we get when y ls the 

stock âVâilâbl© and w© hav© r j_ 
P rods to go. Then, the usual Dynamic Program¬ 

ming formulation leads us to the following functional equations: 

Vt(y) - max {u(c) + 6EV. .(fixju,))} 
c-bc=y “ C--L 

c>0,x>0 

for t > 1 

r 

For a given x ,f (x;aj ) is a random variable. 
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and 

Vj^y) = max {u (c) } 
c+x=*y 

c>0,x>0 . 
SB m 

Where E stands for the expectation operator, and will be simply denoted by 

L when the random variable is easily understood from the text. 

The amounts that we decide to save and consume when y is the stock 

available when t periods are left, will be denoted by the pair 

Definition: 

A T period policy is a sequence of pair of functions 

i(xt(y),ct(y))}tj^ T such that 

3:t(y) + ct(y) “ y 

*t<y> l 0 . ct(y) > 0 

Definition: 

for t - 1, ..., T . 

A ? pericd policy .T U optional if (,t(y) ,ct(y)) 

is a solution of 

Vt(y) - max {u(c) + ÔEV (f(x;u)))} 
c+x-y 

C>0,x>0 

for all t and 

Definition: 

A f period policy U^W.c^y»)^.T is competitive if ^ ^Uis 

sequence of nonnegative functions {pt(y)},. _ such that: 

s 

It is also assumed that x (v) and n o •. 
xfcty; and c^y) are Borel measurable functions. 
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(1.2) 

(1.3) 

<=t(y) maximizes u(c) - pt(y)c 

subjecc to c > 0 

Xt(Y) ^1°115668 0E(Pt_1(f(xt(y);a.))f(X;(o)) - pt(y)x 

subject to X > 0 

P0(y) = 0 . 

Condition. (1.1) and (1.2) ha„e „at«.! eC0a0nlc iatetptetatlon,. « tha 

numbers pjy) .re taken as the prices of one unit of goods when y 1. the 

stock available and t periods are left then (1.2) obviously at.tes that a (y) 

1. chosen to msrimlze the „petted profit, while condition (1.1) 1. the cljlcal 

condition of consumption theory which, at least when u(c) is differentiable. 

says that price is equal to marginal utilitv anH 4 
isiuaj. utility and (1.3) is an ending condition. 

Theorem 1.1 

If a policy {(xt(y),ct(y))}t=i.T is competitive then it is optimal, 

and furthermore y maximizes 

Vt(z) - Pt(y)z 

subject to z > 0 . 
as 

Proof ; 

The proof will be done by induction. 

I. For T ■ 1 we have. 

^(y) - max (u(c)} 
C+X=y 

C>0,X>0 . 

Let (x,c) be any pair such that x + c 

we get 
y » x > 0 , c > 0 . Now, from (1.1) 

* 
It is also assumed that 

Pt(y) is a Borel measurable function. 
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u(c) - p^yic < u(c1(y)) - Pj^iyJCj^Cy) for ail c > 0 . 

Thus 

(1.4) uícj^íy)) - u(c) > p^y) (.c^y) - c) 

Pj^yMx - »^^(y)) . 

From (1.2), we have 

6Ep0(f (xj^y) ;w))f (x^y) ;<i)) - p1(y)x1(y) > 

6Ep0(f(x1(y);m))f(x;u) - Pj^iyJx for ail x > 0 . 

Hence, using (1.3) 

Pj^yMx - Xj^iy)) > 0 (1.5) 

Finally, from (1.4) and (1.5), it follows that 

u(c^(y)) > u(c) for all 0 < c < y . So, (Xj.iy) .c^^iy)) 

is optimal. 

To show that y maximizes 

^i (z) - P1(y)z 

subject to z > 0 , 

let (x^(z),c^(z)) be an optimal solution to 

V^(z) = max (u(c)} 
c+x-z 
c>0,x>0 . 

Now, from (1.4) and (1.5) replacing c by c^(z) and x by x^(z) we get 

(1.6) u(c1(y)) - uic^z)) > P1(y)(c1(y) - Cj^iz)) 



and 
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U'n P1(y)(x1(r) - x1(y)) > 0 . 

Adding (1.6) and (1.7) we have 

uCc^y)) - p1(y)y > u(Cl(z)> - p^y)* for all z > 0 . 

So, 

vl(y) “ P1(y)y > Vj^iz) - P1(y)z for all z > 0 . 

II. Assuae it i. true for T - t - 1 , i.e., any competitive policy 

for a t - 1 period is optimal, and y maximizes 

vt-i(z) ~ pt-i<y>* 

subject to z > 0 . 

Now, 

vt(y) nax {u(c) + 6EV .(fixfu))) 
c+x-y 

c>0,x>0 . 

Let (x,c) be eny pelr euch that c + x - , , x > 0 , c > ü . Thue. from (1.1) 

we get 

Or, 

(1.8) 

u(c) - pt(y)c < u(ct(y)) - pt(y)ct(y) for all c > 0 . 

u(ct(y)) - u(c) > Pt(yMct(y) - c) 

- Pt(y)(x - xt(y)) . 

From (1.2) we get 
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6EPt-l(f(Xt(y);U)f (Xt(y);U,) " Pt(y)Xt<y> m 

¿Ept_l(f(xt(y);u)f(x;iD) - Pt(y)x for all x > 0 . 

So, 

(1*9) Pt(y)(x - xt(y)) > 6Ept_1(f(xt(y);u)f(x;u) - 

¿Ep^líf (xtiy) (xtiy^u) • 

Now, from the induction hypothesis, y maximizes 

Thus, 

Vi<'> - pt-i<*>‘ 

subject to z > 0 . 

vt-i(f(xt(y);w)) ' Pt_i(f(xt(y);u))f(xt(y);'*>) i 

vt-i(f(x;u)) " Pt_1(f(xt(y);w))f(x;u) . 

Or, taking the expected value, rearranging and multiplying by 6 we get 

(1.10) 6Ept_1(f(xt(y)u))f(x;a») - dEp^f (xt(y) ;w)f (xt<y) ;w) > 

6EVt^(fixju)) - dEV^j^f (xt (y) ;u)) . 

From (1.8), (1.9) and (1.10) we get 

u(ct(y)) - u(c) > dEVt l(f(x;u)) - dEVf ^(f (xt(y) ;w) . 

Or, 

u(ct(y)) + dEVt_1(f(xt(y);w)) > u(c) + dEVtl(f(x;u)) 

So, (xfc(y),ct(y)) is optimal. 



To show that y maximizes 

vt<z) “ Pt(y)z 

subject to z > 0 , 

let (xt(z),ct(z)) be an optimal solution to 

Vt(z) - max {u(c) + 6EV (f(x;w))} 
c+x-r c-i 

c>0,x>0 . 
m w m 

From (1.1) and (1.2) we have 

(1*11) u(ct(y)) - u(ct(z)) > pt(y)(ct(y) - ct(*)) . 

and 

(1.12) 6Ept_1(f(xt(y);W))£(xt(y);U) - (xt(y);W)£(^(,);„) 

> pt(y)(*t(y) - *t(z)) . 

But from (1.10) replacing x by xt(z) and rearranging we get 

<1,13) 6EVt_1(f(xt(y);w)) - «*Vt.1(f(xt(*);«)) > 

ÂEPt-1(í(xt(y)í-))f(xt(y);u.) - 6Ept_1(f(xt(y);w))f(xt(z);u,) . 

Thus, from (1.13) and (1.12) it follows that 

(1.14) ÍEVt—1(f(,e(y)¡.)) . 4^(1(^(.)1.) . pt(y)(.t(y) - ,t(,)) 

Now, adding (1.11) and (1.14) we get 

u(ct(y)) + ¿EVt_1(f(xt(y);u)) - u(ct(z)) - 6EVtl(f(xt(z);U)) 

i Pt(y)(y - *) 
or, 
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2. CASE OF CONCAVE UTILITY AND PRODUCTION FUNCTION 

From now on we will assume that the functions f(x;w) and u(c) are 

strictly concave, increasing and differentiable. The reason for making this 

assumption, is to obtain the converse of Theorem 1.1. 

First we will show that V^(y) inherit the basic properties of the 

function u(c) . 

Theorem 2. i 

The function Vt(y) is Increasing and strictly concave for all t . 

Proof ; 

The first part is immediate, the second, will be done by induction. 

I. For t - 1 

Vj/y) - u(y) 

since u(c) is increasing. So, V^(y) is strictly concave, since by assumption 

u(c) is strictly concave. 

II. Assume that vt_^(y) strictly concave. Now, 

í2*1) V (y) - max (u(c) + 6EV .(f(x;u))} 
c+Tt-y 

c>0,x>0 . 

Pick Pj . y2 c [0,1-) , and l.t (x,(Pj),ct(y^) and («t<y2>,ct(y2)) ba th. 

corresponding solutions to (2.1). Let, y be a convex combination of y^ and 

y2 » 1*e'* ÿ " + X2y7 * X1 + A2 “ 1 » À1 i 0 * X2 « 0 * 

Then, 

V (ÿ) - max (u(c) + óé (¾)) 
c+x-y C’A 

c>0,x>0 . 
m 9 m 

Where, 





12 

(2.2) Vt(y') - py' < Vt(y) - py . 

Now, choos« any c' , x' > 0 and let y' - c' + x' . Then, 

(2.3) u(c’) + «♦^(x1) < Vt(y') 

from the definition of Vt(y) . So, from (2.2) and (2.3) we get 

(2.A) u(c') + ¿^(x1) - p(c' + x') < V^iy’) - py* 

< Vt(y) - py 

■ u(ct(y)) + ÖAt_1(xt(y)) - p(xt(y) + ct(y)) . 

Thus, 

(2.5) u(c') - pc* + «♦t_1(x') - px' < u(ct(y)) - pct(y) ♦ 6^t.1(xt(y)) - px^y) . 

Now, either xt(y) > 0 or ct(y) > 0 since y - ct(y) + xt(y) > 0 . Suppose 

ct(y) > 0 , then for x’- xt(y) in (2.5), we get 

(2*6) u(c') - pc' < u(ct(y)) - pct(y) for all c' > 0 . 

Or, u(c) - pc has a maximum at c£(y) > 0 . Then, 

(2.7) u'(ct(y)) - p . 

In an analagous way for xt(y) > 0 we get 

(2.8) “ P*' < - P*t(y) . for all x' > 0 . 

Or, “ P* has a maximum at xt(y) > 0 . So, 

(2.9) p - «♦'t_1(xt(y)) • 

In splta of the fact that Vt(y) Is differentiable for y > 0 , the 
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function ct(y) need not be. Consider the following case 

f(x;u) = X + a , 

u(c) - log c 

and, w assumes the values a - 1 a - ? 
1 • a2 ¿ wlth corresponding probabilic 

*1 " 1/2 and ff2 - 1/2 . Now, 

v2 (y) «"ax {log c + E log (x + w)} 
c+x-y 

c>0,x>0 . m w m 

Which is equivalent to maximize 

(2.10) log c + \ log (y - C + ai) for 

Taking the derivatives in (2.10), we get 

(2.11) 1 2 w 
- » S -i_ 

C i-1 y “ c + ai 

Making c - y in (2.11) ve get a critical value 

c > 0 

y - 
"a 

I ï1 
i-1,2 *i 

4 
3 ’ 

below which, we coo..« ,u the etock of good, evelleble, 1..., 

c2(y) " y for 0 < y < ÿ . 

For y >ÿ the aolutlon of (2.10) is given by 

r (y) - ft.*. + 9 - 4y^ ♦ 12v 17 

es 
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Now, taking the right end left hand side derivatives of c2<y) , at the point 

y we get: 

dc2(y) _ _ 1280 
dy y 2432 

and 

dc2(y) 

dy 

+ 

y 
i . 

Which shows that c2(y) nondifferentiable at the point y . This example 

could be generalised for the case in which w is any discrete random variable 

with a finite range. 

To prove the converse of Theorem 1.1, we need to define the prices P^(y) • 

The natural candidates are of course, V’(y) . 

For some problems, when we follow the optimal policy, the level of stock 

is always positive. Hence, for those cases we do not need to define the prices 

pt(0). On the other hand, when this is not the case, in order to define the 

prices pt(0) , we must show that the functions Vt(y> have a derivative from 

the right at the point y - 0 . 

If f'(o;u) - «Hi , or u'(o) - - and f(o;w) - 0 with positive probability, 

it can be shown from (2.7) and (2.9), that for the optimal policy xt(y) > 0 

whenever y > 0 . In the Appendix it is shown that the functions Vt(y) are 

differentiable from the right for y - 0 , whenever u’(0) < +“ and 

f ' (0;w) < «h» . 

Definition: 

A problem is admiaaiblo whenever either the level of stock is alwavs 

positive for the optimal policy, or the functions Vfc(y) are differentiable 

for y • 0 . 
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Theorem 2.3 

If a problem is admissible then the optimal policy is competitive. Fur¬ 

thermore (xt(y),ct(y)) satisfies the following relations 

(2.12) 

and 

Pc(y) > u'(ct(y)) with equality if ct(y) > 0 . 

(2*13) Pt(y> ^ fiEPt_1(f(xt(y);u))f'(xt(y);w)) 

with equality if xt(y) > 0 . Where pt(y) - v¿(y) . 

Proof : 

In (2.5) replacing p by pt<y) , ♦t.1(x') by EV^(((«•;„)) ue get 

(2‘U) u<c') - Pt(y)C + 6EVt l(f(*•;„)) . pt(y)x- 

i n(cc(y)) - pt(y)ct(y) + «EV^, (f (^ (y) ;u) . p^y)^) . 

Now, setting x* * x^iy) we get 

(2.15) u(c') - pt(y)c' < u(ct(y)) - pt(y)ct(y) for all C* > 0 . 

So, the competitive condition (1.1) holds. To obtain (2.12) we observe that 

cfc(y) maximizes 

u(c) - Pt(y)c 

subject to c > 0 . 

Hence, 

Pt(y) > »•'(Cj.iy)) , 

with equality if ct(y) > 0 . In a similar way, setting in (2.14) c' •* c (y) 

we get 
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ÍEV^Cfíx») - pt(y)x* 

» 6EVt-l^f^Xt^y^;W^ “ Pt(y)xt(y) 

That is, xt(y) maximizes 

ÓEV^fíx;«)) - pt(y)x 

subject to X > 0 . 

So, 

(2.16) Pt(y) > fiEPt_1(f(xt(y);«))£,(xt(y);u) , 

with equality if xt(y) > 0 , which is (2.13). 

Now, multiplying (2.16) by x - x£(y)* , and using the concavity of f(x;w) 

we have 

(x - xt(y))pt(y) > 6Ept_1(f(xt(y);M))f,(xt(y);w)(x - xt(y)) 

- «Ept-i<fCxt(y)i“))(f(xi«) - f(xt(y);w)) . 

Or, 

Ept-i(f(xî“))fixîu)) " pt(y)x - EPt-i(£(xt(y)îw)) “ pt<y>xt<y> 

for all x > û , that is, competitive condition (1.2) holds* 

From now on the derivatives of Vfc(y) will be denoted by pt(y) , and 

will be called prices. 

The prices p£(y) are continuous decreasing functions since they are 

the derivatives of concave functions. The continuity Is defined on (0,+00) , 

and on [0,+») if Vt(y) are differentiable at y ** 0.** 

* 
xt(y) > 0 , (2.16) is an equality; and for xt(y) - 0 , x - xfc(y) > 0 

and hence the direction of the inequality does not change. 

**For a proof see W. Fenchel (4). 

— -- 
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From now on we will assume that all problems are admissible. In all proofs 

we Will not make any distinction between the cases in which the level of stock 

is always positive and those for which p^O) is well defined. 

Theorem 3.1 

The functions xt(y) , ct(y) are nondecreasing functions. Furthermore. 

xt<y)(ct(y)) is increasing whenever xt(y) > 0(ct(y) > 0) 

Proof : 

Let y' > y > 0 . First we will show that ct(y') > ct<y> . Consider 

the following cases: 

Case i. 

t(y ) 0 and ct(y) > 0 . ¿hen from the optimality conditions (2..12), 

it follows that 

Pt(y’) = “’(^(y')) 

and 

Pt(y) = u,(ct(y)) . 

Thus, 

“'(^(y')) < u* (ct(y)) 

by monotonicity of pt(y) . 

So, 

CtCy') > ct(y) 

by monotonicity of u'(c) . 



Case ii. 

ct(y') > 0 and ct(y) - 0 . It immediately follows that 

ct<y') ¿ ct(y) • 

Vow, we will show that ct<y’) - 0 and ct(y) > 0 is not possible. From (2.12; 

we have 

Pt(y') > u'(0) 

an'-’ 

Pt(y) - u'(ct(y)) 

But 

Pt(y,) < pt(y) 

Hence, 

u'(0) < u'(ct(y)) . 

Which is a contradiction. An analagous proof holds for x^(y) , except that 

we use the optimal:’tÿ condition (2.13).* 

Theorem 3.2 

The functions xt(y) and ct(y) are continuous. 

Proof : 

From Theorem 3.1, xt(y) and ct(y) are nondecreasing functions. Thus 

for y > 0 

lim ct(y) » c (y ) < c (y ) - lim c (y) 

y*y y+ÿ 

% 
The same proof given by W. A. Brock and L. J. Mirman [2]. 

- — .. ^mÉÊËÊÈÊ 
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lim xt(y) 

y+y 
Xy(y ) < xt(y+) = lim xt(y) . 

y|y 

xt(y) + ct(y) = y . 

xt(ÿ ) + ct(y~) = y 

xt(ÿ+) + ct(y+) = y . 

From which we get 

I*y(ÿ ) - *t(y+)] + [Cjtÿ") - ct(p+)J - o . 

Since, both xjy) end ct<y) ere nondecreeeing in y , both teron; of the see, 

must be equal to zero. Hence 

Ct<r) = ct(y+) 

and 

xt(ÿ") = xt(ÿ+) . 

Which implies the continuity of ct(y) and x (y) 

Theorem 3.3. 

pt(y) ^ pt-i^y^ for al-1 f * 2 •* 

In general we need to prove this only for 
it will follow for y = o . 

y > 0 . By continuity of P^y) 



I 

since» Cjiy) < y and u'(c) is a decreasing function. 

II. Assume that it is true for t - 1 , i.e., p^y) > . We need 

to consider two cases depending on the values that xt(y) and xt ^(y) assume. 

Case 1. 

0 ■ xt(y) « y » 0 < ^ y • Then, from the optimality condition (2.13) 

we get 

(3.1) 

and 

(3.2) 

Pt(y) > iEpt_1(f(xt(y);«1)))f,(xt(y);w) 

Pt-1 'y) " ÂEpt-2(f(xt-l(y)î“))f,(xt-l(y)îw)) * 

Now, suppose that pt(y) < P^jLÍy) . Hence, 

(3.3) 

and consequently 

ct(y) - ct-l(y) 

— --.,..,1 n- i i 
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(3.4) 

xt(y) - xt-i(y> • 

From (3.1) and the Induction hypothesis we get 

(3.5) 
Pt(y) > <^Ept_1 (f (xt (y) .y) \f » (y) ,u)} 

^ 6EPt.2(f<*t(y);«))f,(xt(y);u)) 

So, from (3.5), (3.4) and the monotonicity of pt(y) and f.(x.w) , we w 

pt<y> > 6EPt-2(f(xt-i(y);^)f,(Vi(^iu) 

a pt-i(y) by (3.2). 

Which is a contradiction. 

Case il, 

° = Xt(y) = y * Xt-l(y) “ 0 * Erora (2.12) we have, 

Pt(y) > «'(cjy)) 

and 

pt-i(y) = u'(y) 

Hence, 

Pt(y) ^ Pt-i(y) 

since, ct(y) < y and u.(c) ls a decreaslng functioa B 

It is an immediate consequence the following corollary 

Corollary 3.4. 

Ct<y) • and xt<y) i xt l(y) f0r all t » j 
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We can now prove a result which will be needed later when we consider 

infinite horizon problems. 

Theorem 3.5. 

The limiting policy x(y) - lim x (y) and c(y) - lim c (y) exist and are 
t-K» t-H» t 

nondecreasing continuous functions. Furthermore the sequence of functions 

xt(y) and ct(y) converge uniformly in any finite closed interval. 

Proof : 

From Corollary 3.4 we have 

xt+i(y) i xt(y) for all t , y > 0 

and 

ct+i<y> < ct(y) for all t , y > 0 . 

But ct(y) > 0 and xt(y) < y for all t . Hence, 

x(y) - lim x (y) 
t-x» 

and 

• c(y) - lim c (y) 
t-x- 

are well defined functions. Now, since xt(y) , ct(y) are nondecreasing 

continuous functions, it follows that x(y) and c(y) are also nondecreasing 

functions. The continuity of x(y) and c(y) will follow by the same argu¬ 

ments used in Theorem 3.2. From the fact that a sequence of monotonie functions 

converging pointwlse to a continuous function on a closed Interval converges 

uniformly the theorem is finally proved ■ 
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The derivative, of the utility function, u(c) . log c , u(c) . CY0 , y , j _ 

u(c) - k.,-c and the production function f(aiu) . < y < usuall>. 

in the literature are convex function,. For those case, we can state the fcl- 

lowing theorem. 

Theorem 3.6. 

If u'(c) and f'(x;u) are convex functions then pt(y) 1, also convex for 

all t . 

Proof ; 

For t ** 1 it is immediate, since 

P1(y) » u'(c) . 

Now, assume that Pt_1(y) is convex; and suppose that 

i.e., there exist y and y e (0,-H») , and A x 
4 12 

that for ÿ - Àiyi + x2y2 „e have 

Pt(y) is not convex, 

» 0 » + A2 - 1 such 

(3.6) 

We need to consider three case, depending „„ the values that x;(y) a„„M, 

at V1 * y2 and y . 

Case i. 

° - Xt(yl) i yi » 

inequalities holds. 

° - Xt^y2^ - y2 ’ 0 K xt^ < F » and whenever the three 

Then, from (2.12) and (2.13) it follows that 

(3.7) 

Pt^) > u,(ct(y1)) 

Pt(y2) > u'(ct(y2)) 

Pt(ÿ) - u'(ctG)) 



¿t* 

and 

(3.8) 

xipt*yi> - 6XiEPt-iíf(xt(y1)i<*»))f,(xt(y1);«)) 

A2Pt(y2) - ÄA2Ept-l(f(xt<y2);“))f,(xt(y2)iw)) 

Pt(ÿ) - ÔEpt_1(f(xt(ÿ);u))f,(xt(ÿ);u)) 

Now, from (3.6) and (3.7) we have 

u'(ct(y)) > A1u,(ct(y1)) + A2u,(ct(y2)) 

1 “'(^(yp + x2*t(y2)) 

by convexity of u'(c) . Thus, 

ct(ÿ) i Xict(yi) + X2Ct(y2) 

by monotonicity of u'(c) . And consequently 

<3*9) xt(ÿ) I AiXt(yi) + *2xt(y2) . 

Now, from (3.6) and (3.8) we get 

Pt(ÿ) > «A1Ept_1(f(xt(y1);«))f,(xt(y1);cü)) 

(3-10) + ^2Ept_1(f(xt(y2);a>))f»(xt(y2);u))) 

> 6Ept-1(f(A1xt(y1) + A2xt(y2));a}))f(A1xt(y1) + A^y^;to)) . 

Where in the last inequality we used the fact that 

* 
is convex. 

♦ Vi00 “ EPt-i<f(xiw))f,(x;«) 

Finally from (3.10) and (3.9) we have 

<KX> £ p ,(f(x;u))f,(x;u) 
functions Is also convex. 

as a product of nonnegative, decreasing and 
So, Ept_^(f(x;w))f'(x;w) is convex. 



Pt(ÿ) > ÄEPt_1 (*t (y) ;«*»)) f ' (xfc (ÿ) ¡u) 

m Pt(ÿ) 

by (3.7). Which !• a contradiction. 

Case ii. 

VV " 0 » 0 < \(y2) < y2 , *t(ÿ) - 0 . Then fron (2.12) we have 

pt<yi> " «’(yj) 

<3,ll) pt(y2) - ^(ct(y2)) 

Pt(ÿ) “ u'(y) . 

So, fron (3.6) and (3.11) we get 

«'(y) > X1u*(y1) + A2u’(ct(y2)) 

> V'(yl) + A2U'(y2) 

> u'(y) . 

Case ill. 

Xt(yl) " yi » C < *\(y2) < y2 and xt(ÿ) ~ ÿ . Th# proof i# the 

In Case i except th.it (3.9) 1« obtained in the following way: 

y * Vl + x2y2 • 

iut» " T1 t *t(ÿ) - ÿ and xt(y2) < y2 . So, 

xt<y) > + A2Xt(y2)B 
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4. THE CASE OP f(x;M) » g(x) 4 u 

One reason for studying this case is its application to the "incone 

fluctuation problem" in which a consumer is faced with the following situation: 

He has a _t period planning horiaon and at each period he must decide how much 

to consume and save, in order to maximize his total expected utility. If x is 

the amount saved at period t , then the available income in the next period is 

rx + w , i.e., f(x,w ) - rx + u , where uC is a nonnegative bounded random 

variable and r > 1 is the interest factor of a riskless investment. B. Miller [9] 

considers the case in which u(c) - log c , borrowing is allowed with some 

constraints, w* are independent and special constraints are imposed on the 

consumption. M. E. Yaari [16] considers the case r - 1 , are i.i.d., borrowing 

is allowed at zero interest rate and no constraints are imposed on the consumption, 

(this case will be considered in more detail in Section 5). The "income fluctuation 

problem" differs from those cmsidered by E. S. Phelps [10] and N. H. Hakansson [8] 

in that they consider r as a random variable and u,1 is known with certainty. 

From now on when we talk about an "income fluctuation problem," it is understood 

that no borrowing is allowed, 0<ct(y)<y and ^ are i.i.d. random variable, 

with range [a,A] , a > 0 and A < 4« .* 

Our main interest in this section is to obtain bounds for the limiting policy 

(by comparing it with various cases of perfect certainty), which we know 

from Theorem 3.5, is a continuous nondecreasing function. First we introduce some 

notation: 

Notation 

1) If f(x;w) - g(x) + a t then the corresponding prices and policies will 

be denoted by pj(y) and (xj(y),cj<y)) . 

The method used here could be applied to the stationary case of B. Miller f9’ 



ii) If f(x;w) g(x) + « , th«n the corresponding prices and policies will 

be denoted by p"(y) and (x“(y),c“(y)) . 

Íil> If f(x*w) ’ 8'x> + A . then the corresponding prices and policies will 

be denoted by p£(y) and (xj(y),cj(y)) , 

iv) and as the usual pt(y) and (*t(y).c^y)) stand, for the case 

f(*;w) - g(x) + u . 

Th« optlMllty condition (2.12) «nd (2.13) .re for 1. 11. m 

(4.1) 
Pt<1') i ä«'«(T))pi.i(.(hI(T)) 

Pt<y) i u'(ct(y>) 

With / - a , u and A respectively, and for iv. 

(A. 2) 
Pt(y) i ««'(«tWJBp^iigU^y)) +tt) 

Pt(y) > u'(ct(y)) . 

Now we will prove a theore. that will give a lower bound for 

we will coapare ct(y) with the optimal consumption policy c*(y) 

consumer" who assumes w £ a . 

ct(y) , i.e., 

of a "pessiaietic 

Theorem 4.1 

pt(y) m Pt<y) for all t , and consequently ct(y) > cJ(y) for all t 

Proof: 

The proof will be done by induction. 

I. Tot t - 1 It 1. tru. .Inc. p^y) . pj(y) . u.(y) 

». A-it i. tro. for t - 1 . 1.«.. pt i(y) . . to 

consider two cases depending on the values that *t(y) 
assumes. 
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Case i. y 

xt(y) - O . Then ct(y) - y and pt(y) - u'(y) . So, pt(y) < p®(y) 

since c*(y) < y and u'(c) is decreasing function. 

Case ii. 

*t<y> > 0 . By contradiction suppose that pt(y) > p*(y) . Then, 

(A.3) ct(y) < c*(y) 

and 
i 

(A.4) xt(y) > x»(y) . 

Now, from the optimality condition (A.2) we get 

<4-5> pt<y) - íg,(*t(y))Ept.1(g(xt(y)) + w) . 

Thus, 

(4-6) ptM - ^'(«JiyjjEPt-ifg^^y)) + «) . 

since from (A.4) »^(y) > xt(y) and g'(x) and Pt_j^(y) ar« decreasing functions. 

Now, from (4.6) using the fact that P^j/y) is decreasing, and the induction 

hypothesis we get 

pt(y) i 6*'(xt'y>)pt-i(*(xî<y>) + a) 

< i*,(*î<y))p;-1(8(x;<y)) + *) 

< Pj(y) by '4.1) , 

which is a contradiction.« 



An inunediate consequence is the following corollary. 

Corollary 4.2. 

If c(y) - 11» ct(y) and ca(y) - um c*(y) then c»(y) ; c(y) 

In a similar way wa can prove the following theorem and corollary that 

A. compare c (y) with the consumption nf an •• ad i 
t isumpcxon ctty; of an 'optimistic consumer" who 

assumes u = A . 

Theorem 4.3. 

pt(y) ^ Pt(y) for all t and consequently cjy) < c^(y) for all t 

Corollary 4.4. 

If c(y) - 11m ct(y) .„d cA(y) . Urn cA(y) then c(y) < cA(y) . 
t***» m 

If -. conalder the caaea in which ,'U) and u-(c) are convex functions, 

». will be able to compare, the optimal policy ct<y) with th. correapondlng 

solution c“(y) „f the det.rminl.tlc probl«. In which w 1. r.plac.d by 

* - Em , 1..., ». will show that ct(y) < c“(y) . Thl. r.ault gawrallc. th. 

one obtained by L. J. Mirman [10] page 184. 

Theorem 4.5. 

If g'(x) and u'(c) are convex function« then pt(y) > p“^) f ^ 

consequently ct(y) < c“(y) . 

I. It is true for t - 1 , since p^y) - p“(y) . u.(y) # 

II. Assume that it is true for t - 1 . We need to consider two cases 

depending on the values that x“(y) assumes. 

Case i. 

xt(y) > 0 . By contradiction suppose that 
Pt(y) < p“(y) . Thus, 

t 

(4.7) 
:t(y> >c?(y) , 

--- - 
J 
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and consequently 

(4*8) xt(y) < x“(y) . 

Now, from (4.2), (4.8) and the fact that g(x) is increasing, 

Pt_^(y) are decreasing functions we get 

(4*9) Pt(y) > 68,(xt;(y))Ept_;L(g(xf;(y)) + u) 

> «g,(x“(y))Ept_1(g(x“(y)) +0,) . 

But, from Theorem 3.6 we have that pfc(y) is a convex function. 

(4.9) using the convexity and the induction hypothesis we get 

Pt(y> > S8’(*"(y))Ept-1(g(x“(y)) +0,) 

> 58,(x“(y))pt-1(g(x“(y)) +01) 

> i8,(x“(y))p^1(g(x“(y)) +5) 

■ p“(y) 

by (4.2), which is a contradiction. 

Case il. 

*“(y) ■ 0 . Then, 

and 

Now, 

ct(y) - y 

0) 
Pt(y) ■ u’(y) . 

Pt(y) > u'(ct(y)) 

*(x) and 

Hence from 
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So ) 

Pt(y> > Pt(y) 

since ct(y) < y and u'(c) is a decreasing function ■ 

And it is an inmediate consequence the following corollary. 

Corollary 4.6. 

If cU(y) 

Theorem 4.7. 

lim c (y) then c(y) < cW(y) 
t-H» " 

The limiting policy satisfies the following inequalities 

(4.10) c (y) < c(y) < cA(y) . 

Moreover if u'(c) and g'(x) are convex functions then 

(4.11) 

Proof : 

ca(y) < c(y) < c^iy) 

It is an inmediate consequence of Corollary 4.2, Corollary 4.4 and 

Corollary 4.6 ■ 

Example: , 

As an example of application of the last theorem consider the following 

"income fluctuation problem" 

f(x;u) = rx + (u , r > 1 

u(c) * AcY ,A>0 0 < y < 1 

and we assume that órY < 1 , 6r > 1 and me [0,A] . 
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The limiting policies ca(y) and c^y) can be computed* and they are 

and 

ca(y) (i - (&Ty)l~y)y 

c (y) Z y for 0 < y < U) 
sa * m 

cû(y) » (l - + - 2-) for y > a) . 

so, 

(l - (6rY)1”Y)y < c(y) < 

(l - (6rY)i_Y)y < c(y) < (l - (irY)1_Y)(y + -JÜ—) 
r - 1' 

y for 0 < y < w . 

for y > ui ^ m 

Lemma 4.8. 

If the sequence of numbers {pt(y)} is bounded above then x(y) = lim 

t-+“ 

satisfies the following relation 

(4.12) 

where p(y) - lim p (y) 
t-H» 

Pt(y) > ¿g'íxíyJÍEpígCxíy)) + W) , 

Proof : 

From (4.2) we have, 

Pt(y) > ««'(^(yJJEp^igix^y)) + a)) 

But, from Corollary 3.4 xt(y) < x(y) , so 

(4.13) Pt(y) > ¿8,(x(y))Ept_1(g(x(y)) + o)) . 

—E. S. Phelne fill page 741. 

(y) 

— i ■ 
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Now, the left hand side of (4.13) converges, since {pt(y)} is a nondecreasing 

sequence (Theorem 3.3) bounded above. Hence, taking the limit as t -*■ » and 

using the Theorem of monotonie convergence we get (4.12) ■ 

Another way to study the limiting policy c(y) is using the relation 

(4.12). But in order to apply it, we first need to find a bound for pt(y) . 

In some cases such a bound can be obtained from those of p*(y) since 

■ Pt(y) ^or ^ ^ 8'(x) ÿ 1 » u(c) is bounded above and below 

then the following theorem will give us a bound for pt(y) that does not depend 

on the computation of p*(y) . 

** 
Theorem 4.9 

If u(c) is bounded above and below, g'(x) >r>l , 6-1 then 

£ 

where M - r _ ^ (n - u(0)) , and n is such that u(c) < n for all c . 

For the remainder of this section we will assume that pt(y) is bounded 

in a convenient interval. 

Now we are able to obtain an upper bound for c(y) of an "income fluctuation 

problem." This bound does not depend on the computation of cA(y) and it is 

also independent of the utility function. 

Theorem 4.10. 

If g(x) - rx , 6r > 1 , then the limiting policy satisfies the following 

inequality 

c (y) < - y + - • 
■ r r 

A 
E. C. Titchmarsh [15]. 

** 

For - proof see D. Gale and W. R. Sutherland [6J. 
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Proof : 

From (4.12) we have 

P(y) > 6rEp(rx(y) + w) 

> Ep(rx(y) -f w) 

since ôr > 1 . Hence, 

P(y) 1 P(rx(y) + A) 

and 

y < r(y - c(y)) + A 

by monotonicity of p(y) . So, 

C i ~~r~~ y + ^ ■ 

A sharper bound can be obtained for the cases in which u'(c) is convex. 

Theorem 4.11. 

Tf g(x) “ rx , 6r > 1 , and u'(c) is convex then 

c(y) < - ^1 y + - • 

Proof : 

From (4.2) we get 

(4.14) Pt(y) > 5rEpt_1(rxt(y) + w) 

- Ept-l(rXt(y^ + 

- Pt-l*rxt*y* + 

p(y) is the limit of a sequence {p (y)} of decreasing continuous function and 
hence nonincreasing. c 



by convexity of P^iy) .* Now taking the limit as t 

Hence, 

y < r(y - c(y)) + Û 

by monotonicity of p(y) . So, 

c(y) < r—y + - 
m r ' r 

Now, we will introduce the concept of capital growing as it ia defined 

by S. E. Phelps [11] . 

Definition. 

If yC (observe the superscript) is the stock of capital at the beginning 

of period t , when we follow a policy (x(y),c(y)) , we will say that capital 

grows for this policy if E[yt+1] > yt . 

Theorem 4.12. 

If fig'ix) > 1 , g'(x) and u'(c) are convex functions then for the 

limiting policy (x(y),c(y)) the capital grows. 

Proof : 

From (4.2) we have 

(4.15) pt(y) > ¿g,(xt(y))Ept_1(g(xt(y)) +U) 

- Ept-l(8(xt(y)) + w) 

since 6g’(x) > 1 . From (4.15) using the fact that xt(y) < x(y) , g(x) is 

Increasing and Pt_^(y) i* decreasing we get 

Theorem 3.6. 
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(4.16) Pt(y) : EPt_1(g(xt(y)) + a) 

- Ept-i(8<x(y>) + 

- pt-i(E(8(x(y» + ^ 

by convexity of Pt_^(y) • Now, taking the limit as t » we get 

P(y) > P(E(g(x(y)) + u)) , 

and finally from the monotonicity of p(y) it follows that 

y < E(g(x(y)) + u) 

Ne finish this section with the following example, 

Example : 

Consider the following "income fluctuation problem" 

f(x;fa>) “ rx + w , 

u(c) - log c , 

and 0 < 6 < 1 . For u(c) - log c , p*(y) can be computed and it is 

pj(y) 
1 + 6 + ...+ 6 

y 

n-1 

Then, 

Pt(y) i pt(y) 

(1 - 6)y 



So, pt(y) converges. Now using the convexity of u’U) end Theorem 4.12 

we will get that for the limiting policy <x(y),c(y)) the capital grow. 

whenever 6r > 1 . Now, from Corollary 4.2 and Theorem 4.11, if. follows that 

for 6r ¿ 1 

(1 - 6)y < c(y) < —~ 1 y + - . 

We should also mention that we could prove using the concept of 

tive policy" that the limiting policy (x(y).c(y)) is also optimal, 

would take us too far from the purpose of this paper. 

"competi- 

But this 

* 

This is the reault obtained by B. Miller (9] page 19. 
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5. CASE OF f (x:iii) » x + ui . 

In this section we will consider the "income fluctuation problem" with 

r - 1 and « - 1 . Now, when the consumer saves an amount x at period t. , 

the available income in the next period is x + wt , i.e., - x + ^ . 

When * is the initial income, the earning a.1.ut are known with 

certainty and u(c) is strictly concave, it is known that it 1. optimal to set 

the consumption level ct<y) at 

ct(y) 

If T + “ converges to an average û* as t - » , then the optimal 

consumption level will converge to min (y.«) . m the stochastic case, in 

which (/ are i.i.d. random variables, it is natural to expect that c (y) 

will converge to c(y) - min (y.5) , since the expected average income ' 

“ + ‘i* + “ will converge to S - Eo)11 by the 1«, of large numbers. In 

this section we will show that this is not true whenever u'(0) < • and 

w H u> are nondegener.te random variable. In fact, we will obtain the sur¬ 

prising result that 0 < c(y) < S for 0 < y < - . M. E. YMri [16] consider, 

the case r - 1 , 6 - i , borrowing is allowed at zero interest rate, no con¬ 

straints are imposed on ct<y) . i..., ct(y) c (-,4-) and obtins the result 

that c(y) • lim c (y) ■ u for all y . 
t— c 

Th* ran8e of th* random variable w s / i, an interv^ [O.AJ , 0 < A < 4- 

and if v(0,t) 5 Prob[ui < c],c > 0 , it will be assumed that 1 > v(0,c) > 0 for 

A > c > 0 . We also assume that u’(0) < 4- and without loss of generality that 

u(0) - 0 . 

Th. function*! .,untlon. of th. Dyn»mlc Progr.min, fomul.tIon nr. now. 
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(5.1) 

\ 

Vt(y) " max tu(c) + EV .(x + u)} 
c+x-y t_1 

c^U,x_^0 for t > 1 

V1'y) - max {u(c)} 
c+x-y 

C¿0,X>0 , 

and the optimality conditions are 

K , 9t(y) Î EPt-l(\iy) + 

with equality if xt(y) > 0 , and 

<5‘3) Pt<y) > “'(C^y)) 

with equality if cfc(y) > 0 . 

Theorem 5.1 

The function Vt(y) l, differentiable for y > 0 , .nC for all t 

more V¿(0) - u^O) . 

Proof : 

Por y > 0 it has been proved in Theorem 2.2. For y - 0 Theorem A2 

holds, since u’(0) < 4« , u(0) - 0 and f'(x;U) - 1» * 

Thaorem 5.2. 

The policy ct(y) satisfies the following inequalities 

(5.4) 
for all t . 

Moreover if u'(c) is convex then 

(5.5) < c 

* 

Hence the problem is admissible. 

for all t . 

Further 
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Proof: 

From Theorem 4.1 and Theorem 4.3 ve have without any aeeuaption about u*(c} 

that 

cJ(y) < ct(y) < c£(y) 

fl V A 
But, it la known that ct(y) ■ “ and ct(y) - 

holde. Now, for u*(c) convex, ueing Theorem 

ct(y) « cj(y) to* 

Hence, 

ct(y) < f + ~ " « 

since it Is known that ct<y) ■ min ^y,^ + " t ^ . So, (5.5) holds ■ 

Now we will obtain the surpria ins fact that c(y) is uniformly bounded. 

Corollary 5.3. 

The limiting policy c(y) satisfies the following inequalities 

0 < c(y) < A . 

Moreover If u'(c) is convex then 

0 < c(y) < w . 

for all t . 

■In ^y.^ + " ~~ a| . So, (5.4) 

4.5 we get 

all t . 

Proof : 

It follows Immediately from Theorem 5.2 by taking limits as t • In (5.4) 

and (5.5) ■ 
« 

idUL«A- 

The sequence of functions (pc(y)) converges uniformly In any finite and 
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mm 

closed Interval to a continuous nonincreasing function p(y) 

Proof : 

It converges pointwise, since 

pt(y> i pt-i<y> 
and 

Pt(y) - V^(y) 

< V’(0) 

• u*(0) 
* 

by concavity and Theorea 5.1. Nov, froa the fact that ct<y) > J > 0 

for y > 0 (Theorea 5.2), and the optimality condition (5.3) ve have that 

Pt(y) - u'(ct(y)) for all y . 

Taking the liait and using the fact that u’ic) is a continuous function and 

ct(y) converges by Theorea 3.5, ve vill have that 

p(y) - u'(c(y)) . 

So, P(y) 1» continuous, since c(y) is continuous from Theorea 3.5. Nov, the 

theorea follov. fron the fact that (Pt(y)) i. . ..quenCe 0f monotonie functions 

converging pointvise to a continuous function, consequently it converges unifomly 

in any finite closed intervals 

Lew* 5.5. 

The Halting policy <x(y),c(y)) satisfies the follovlng relations 

(5.6) p(y) • u'(c(y)) 
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and ' 

(5.7) P(y) ^ Ep(x(y) + w) 

with equality if x(y) > O . 

Proof : 

From the Optimality conditions (5.3) and (5.2) va get 

Pt(y) - u'(ct(y)) 

since ct(y) >0 for y > 0 and pt(0) - u*(0) , and 

pt(y) > EPt>i<*t(y) + «> 

with equality if xt(y) > 0 . Now, taking the limit and using the fact that 

(Pt(y)> convergea uniformly in any finite closed interval va get (5.6) and 

(5.7) » 

Lemma 5.6. 

If c(y) - 0 for some y > 0 then c(y) : 0 . 

Proof: 

Let ÿ - sup (y I c(y) - 0)* . If ÿ - +- we have dona. Now suppose 

that ÿ < 4- . Then, 

p(ÿ) • Ep(y +■ u) 

and 

p(ÿ) - u'(c(y)) 

■ u'(0) . 

f 

The supremum is actually achieved from the continuity of c(y) . 
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Now, for w > 0 , c(y + w) > 0 and p(y + w) < u'(0) . Let c 

such that 0 < E < A . Then 

p(y) - Ep(y + (d) 

r A mJ P(y + w)v(dai) + / p(y + (it)v(du) 

0 e 

< u'(0)v(0,e) + p(ÿ + e)(1 - v(0,e)) 

< u’(0)v(0,e) + u'(0)(1 - v(0,e)) 

< u*(0) 

which Is a contradiction 

Theorem 5.7. 

If c(y) > 0 for y > 0 then p(y) l8 strictly decreasing 

Proof: 

By contradiction suppose not, i.e. 

(5.8) p(y.) . 

there exits 

p(y) - P . 

y* > y > 0 

Let, 

ÿ " «ln {y | p(y) - p , 0 < y < y'}. 

Now, y > 0 since c(y’) > 0 and 

p(y) ■ p(y’)’ 

- u'ícíy')) 

< u'(0) . 

be any number 

such that 
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Hence 

(5.9) 

From (5.2) we have that 

(5.10) 

and 

p(y) > p(y) for y < y 

P (ÿ) > Ep(x(ÿ) + bi) 

(5.11) p(y') = Ep(x(y’) + w) 

Hence, from (5.8), (5.10) and (5.11) we have that 

Ep(x(y') + w) > Ep(x(y) + u) 

So, 

(5.12) 

But 

Elp(x(yf) + w) - p(x(y) + «)] > 0 

(5.13) E[p(x(y') + u) - p(x(y) + u)] < 0 

since x(y') > x(y) and p(y) is nondecreasing. From (5.12) and (5.13) we 

have 

E[p(x(y’) + w) - p(x(y) + w)J » 0 

Hence, 

(5.14) p(x(y’) + w) - p(x.(y) + w) for u - 0 , 

since <j)(u) = p(x(y') + w) - p(x(y) + u) Is nonpositive, continuous and 

v(0,u) > 0 for u > 0 . From the fact that p(y) » p(y') It follows that 

(5.15) x(y') - x(y) + y' - ÿ . 



Thus from (5.15) and (5.14) we have 
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P(x(ÿ)) = p(x(9) + y' - ÿ) , 

end consequently for y c [x(y) , x(y) + y* - y] we have 

p(y) = p(x(y)) . 

U *(9> ' ° • th,n C<y) ■ 0 for y E I-W . *<?> + Y' - ÿ] which contradicte 

the fact that c(y) . 0 for y > 0 . Por x(ÿ) > 0 considar the following 

cases : 

Case 1. 

x(y) + y’ - ÿ > ÿ . Then it follows that p(x(y)) - p(ÿ)* which 

contradicts (5.9) since x(ÿ) < ÿ . 

Case ii. 

_ X<y) + y' " y < y • N<,w r«PMt Proof starting with the new interyar 

t*(y),x(y) + y» _ y] and computing the new 

ÿ » min {y | p(y) = p(x(ÿ)) , y > 0 . y < x(y)} . 

The repetition of Case ii will generate a sequence of intervals which are non- 

overlapping, have nondecreasing lengths and are all contained in the interval 

[0,y'] . So, Case ii can be repeated only a finite number of times ■ 

V (y) 
Now we will Show that lim — « u(<õ) . 

T-X» T 

Lemma 5.8. 

vT(y> 
m > u(0i) , where ü « Ecu . * 

T-H» 

y e [x(y) , x(y) + y' 

**irhia proof is similar 

- y] and hence p(x(y)) = p(ÿ) . 

to the one given in M. E. Yaari [16]. 

m3* - ' -—-^ - -- 
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Proof : \ 

vT(0) 
It si’rfices to show that lim —— > u((o) , since V_(y) > V_(0) . For 

X-H» 1 T * T 

VT(0) , consider the policy ct(’', = min (y,û) for all 1 < t < T . If y1 

(observe the superscript) is the stock level at the beginning of period t when 

we follow the policy ct(y) - min (y,ü) , then 

yt - max (y1-1 + z^O) t > 2 

y1 « 0 . 

Where zt = w - m , and hence Ez6 ■ 0 . 

When yk = 0 , we have at the kth period (trial)* a renewal point, since 

at this point the process will start all over again. If N(T) is the u-iaber 

of renewals in T periods, then the expected return from the policy ct(y) - 

min (y,u>) for a T period problem is greater or equal to u(ü)(T - E(N(T)) - 1) 

Hence 

V (0) > u(õ») (T - E(N(U)) - 1) . 

Thus to show that 

vt(°) 
11» —ÿ— > u(u) 
T-H» 1 

it suffices to show that 

llm Mi . o . 
T-K» 

Let be the number of Trials between the ith and (i 

From the Renewal Theory we have 

l)11*1 renewals. 

lf E 

T-H» 1 ETi 1 

Trial is the usual terminology in Renewal Theory. 
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and 

^-0 it lim -,2 ^ = 0 if Er, - « 
X-*-» i 

But, from the Random Walk Theory it can be shown that Etj 

So, the lemma holds■ 

Lemma 5.9. 

vT<y> 
lim  =— < u(w) . 
T-H» 1 

Proof : 

It suffices to show that 

vT(y) < Tu^ + ^ 

It is true for T - 1 , since V1(y) < u(y) . Assume it is true for t , i.e., 

(5-16) vT(y) < tu^ i) for all y . 

Now, 

(5.17) vt+i(y) “ u<ct(y)) + ^t^t-iy) + «) 

< a(ct(y)) + Vt(xt(y) + Û) 

by concavity of Vt(y) . Thus, from (5.16) and (5.17) we get 

(5.18) vt+iW = u<ct(y)) + tu^(xt(y) + Í) + — 

■(t + ^(r+r u<ct<y))+ r+r u(t(xt<y)+1;) 

(t + 1)u(~+ i<y+ o“)) 

** 
For a proof see S. Ross [13]. 

k 
See W. Feller [3] page 397. 
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by concavity of u(c)> 

From the previous two lemmas we can state the following Theorem. 

Theorem 5.10. 

The sequence Vfc(y) diverges as t . In order to study the behavior 

of the limiting policy c(y) we will define a special function, ht(y) , that 

has the same properties of Vt(y) , but which sequence converges. 

Definition. 

Let ht(y) = Vt(y) - Vt(0) . 

Using the fact that 

Vt(0) = u<0) + EV^iw) 

since by assumption u(0) - 0 , it can be shown that the function ht(y) satisfies 

the following relations 

ht(y) + vt(0) - V^iO) iu(c) + Eht_^(x + u)} max 

c+x-y 

c>0,x>0 
a m 

(5.19) 

hj^y) * Vx(y) - max {u(c)> 
c+x-y 

c>0,x>0 
» a 

and 

t-1 

Vt(y) - ht(y) + E (5.20) 

Theorem 5.11. 

The function ht(y) is strictly concave, increasing and differentiable 

Í 



Suppose {fn) is a sequence of functions, differentiable on Ia,b) and 

such that Un(x0)) converges for some xQ on [a.bj . If the sequence of 

derivative. converges uniformly on [a,b] , then Un) converge, uniformly 

on [a,b] to a function f and 

f’(x) - lim f'(x) a < X < b . 
n ■ » 

Theorem 5.13. 

The sequence of functions ht(y) converges uniformly in any finite interval 

[0,bj . Furthermore if h(y) - lim h (y) , then 
t— c 

h'(y) - lim h (y) - p(y) 
t H. 

Proofs 

I» ht(0) • 0 for all t . Hence 
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lim h (0) - 0 

t-M» c 

II. ht(y) is differentiable for all t , y > 0 . 

. ! 

III. h^(y) - pt(y) converges uniformly on any finite interval [0,b] 

by Lemma 5.4. 

Hence, the theorem follows from the previous lemmas 

It is an inmediate consequence the following corollary. 

Corollary 5.14. 

lia Eh (w) ■ Eh(ui) . 
t-M. 

Leaaa 5.15. 

Eh(u) - u(u) . 

Proof : 

From (5.20) we have 

t-1 

Vt(y) - ht(y) + J 

Nov, dividing by t , and taking the limit we get 

u(u) - Eh(u) . 

Where we have used the following facts: 

vt(y) 
I. lis —-— • u(u) from Theorem 5.10. 

t-1 

I EK(u) 
Val 

II. lia--- • Eh(w) from corollary 5.14. 



ht(y) 

m. lia t - o , Bine* ht(y) i, uniformly boundad in any finit# 

interval* 

Lenma 5.16. 

lim V (0) - V (0) - u(i) 
t-H* 

Proof ; 

Pro. th. definitions of »t(0) . »^(0) end w. 

vt<0) " vt-i(0> ‘ “<°) + Evt.1(«> - vtl(o) 

" Eht-li“) * 

Norn, taking tha limit and u.ing Corollary 3.14, Lemma 5.16, get that 

Um V (0) - V (0) - uto* 
t-M» ^ A 

Lemma 5.17 

h(y) + u(S) - u(c(y>) + Eh(*(y) + o>) . 

Proof : 

From (5.19) we have 

ht(y) > vt<o) - V^iO) u(ct(y)) ♦ Eh^x^y) ♦ W) . 

How, taking the lilt, u.ing Lemma 5.16 and th. uniform conv.rg.nc. of 

in any finite Interval we get 
ht (y) 

h(y) + “(“) - u(c(y)) + Eh(x(y) ♦ w)m 

Theorem 5.18. 

The limiting policy c(y) la .l„ay. po.itiv. for y > o . 
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Proof : 

By contradiction suppose not, i.e., c(y) - 0 for some y > 0 . Hence, 

fron Lemma 5.6 cty) 2 0 . Now, from Lemma 5.15 we have 

(5.21) u(w) ■ Eh(u) . 

But 

p(y) - u'(0) for all y , 

since c(y) 20 . Hence, 

(5.22) h(y) ■ u’(0)y . 

Finally, fron (5.21) and (5.22) we get 

u(w) - u'(o)w . 

Which is a contradiction, since u(c) is strictly concave« 

Leaaa 5.19. 

The function h(y) Is strictly concave. 

Proof : 

From Theore« 5.18 c(y) >0 for y > 0 , hence from Theorea 5.7 p(y) - h’(y) 

is strictly decreasing and consequently h(y) is strictly concave« 

Now, we are able to show the surprising fact that c(y) < ü for 0 « y < 4- . 

Theorea 5.20. 

The Halting policy satisfies the following inequalities 

0 < c(y) < w for 0 < y < 4- . 
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Proof: 

From Lemma 5.17 we have 

h(y) + u(ü) - u(c(y)) + F.h(x(y) + «) . 

Now, suppose by contradiction that for some y < *- , c(y) - ¿ . Hence 

h(y) + U(i) ■ u(w) + Eh(y - ¿ + «) . 

Thus, 

h(y) - Eh(y - w -f w) 

< h(y) 

by strictly concavity of h(y) . Which is a contradiction ■ 

Theorem 5.21. 

lim c(y) • Ü 

r— 

Proof : 

Suppose not, i.e., lim c(y) - ó < w . Hence lim h'(y) - lim u'(c(y)) - u’(6) . 

y^* y^- r~ 

From Lemma 5.17 we have 

(5.23) 

Now, from the 

(5.24) 

wh,r* yjy) 1 

u(w) - u(c(y)) - Eh(y - c(y) + «) - h(y) . 

mean value theorem we get 

h(y - c(y) •»•«)- h(y) - h^MMw - c(y)) , 

ly - c(y) w,y) if c(y) > w and yjy) c (y,y - c(y) «► w) 

if c(y) > u Replacing (5.24) in (5.23) we get 
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u(ü) - u(c(y)) « Eh'(yu(y))(w - c(y)) . 

No«, Caking the liait ai y + m and using the fact that yu(y) ^ •* when 

* 
y ♦ “ we get 

u(u) - u(6) ■ Eu'(6)(u - 6) 

- u'(6)(« - 6) 

which la a contradiction since u(c) is strictly concave and w < 6 . 

Now we will obtain some properties of the capital y( accumulated in t 

periods. 

Theorea. 

t ** 
The sequence of capitals {y } convergea almost surely to . 

Proof: 

It suffices to show that yC converges almost surely, since cither {yt} 

does not converge or it converges almost surely to 4* . From the optimality 

condition (5.7) we have that 

(5.25) PÍy1) > Elpiy1*1) I y1) . 

Now if we define pC £ p(yC) we will have froa (5.25) that 

(5.26) P1 > Elp1*1 I PC] 

where we have used the fact that p(y) is a strictly decreasing function and 

hence, for a given p* , y* is uniquely defined. Fron (5.26) we have that 

{pC> la a positive Supermartingale and hence it converges alaost surely to a 

random variable p . Since p(y) is a continuous strictly decreasing function 

it is possible to define a continuous function g(p) such that 

* . 
"w « - c(y) + w < A since 0 ^ c(y) < w and w < A . 

**l aã in debt to Professor R. Radnor for insisting on this point. 
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y‘ - »(p*) . 

Th. Theorem now toll», fro. the feet th.t (p') converge, elmo.r .„rely arld 

g(p) is a continuous function • 
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APPENDIX 

Without loss of genersllty we will sssume that u(0) - 0 whenever 

U*(0) < 4» . 

Lemma A.l. 

If u'(0) < +» And 1 < p < 4« then 

Vt<y) - Vt<°> i tu(^i) . 

Where p i* the sup {fío;«)} . 
hi 

Proof: 

The proof will be done by induction. 

I. For t ■ 1 we have 

v1(y) - u(y) . 

Hence, 

Vjiy) < u(py) , 

since u(c) is increasing, and p > 1 . 

II. Assume that it is true for t - 1 , i.e., 

Vl^ - vt.i<W £ (t - . 

Now, 

(A.2) Vt(y) - Vt(0) - 

Also, 

—s 
57 

u(ct(y)) + <EVt.1(f(xt(y);w)) - ÍEV^tf (0;w)) 
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(A.3) f(xt(y);a>) < f (0;ai) \+ pxt(y) for all u 

From (A.2) and (A.3), and using the fact that Vt(y) is nondecreasing we get 

(A.4) Vt(y) - Vt(0) < u(ct(y)) + «EV^f <0;U) + pxt(y)) - fiEV^Cf (0;W)) 

< u(ct(y)) + «(V^ipx^y)) - 7^(0)) . 

Hence, 

/p^ ^"x (y) \ 
vt(y) - Vt(0) < u(ct(y)) + (t - Du\- -t- ^ ) 

by the induction hypothesis. So, 

Vt(y) - vt(0) < t[(¿ a(ct(,)) + u(—¿---jy> )] 

i tu (i ct(y) + ^ xt(y)) 

by concavity. Hence, 

Vt(y) - Vt(0) < tu(^- (ct(y) + xt(y))) 

- tu 

Theorem A.l. 

If u’(0) < +• and 1 < p < +» then 

V’(0) < pViO) 

Proof : 

Dividing (A.l) by y > 0 we have 

vt<y> - V°> t /Dt 
• y u(^‘ y) 

Now, taking the liait as y -► 0+ we get 

..-.-.. ..—-- 



V'(0) < p^’ÍO) .1 

Lemma A.2. 

If u'(0) <4« and p < 1 then 

i 

(A-5> Vt(y) - vt(0) < tu(^) . 

Proof: 

For t = 1 we have 

Vj/y) * my) . 

Hence, 

vi<y> < “(y) . 

Assume that it is true for t - 1 , i.e., 

Vi« - Vi(0> ; <' - «“(rh-) • 

Now, (A.4) still holds, hence 

*A’6) Vt^ " Vt^0) = u(ct<y)) + 6(vt_1(pxt(y)) - ^(0)) 

= u<ct<y) + <Vi(xt(y)) ' Vi(0)) • 

Where the last inequality follows from the fact that V^iy) i, increasin? 

and p < 1 . 

From (A.6) using the induction hypothesis we get 

Vt(y) - Vt(0) < u(ct(y)) + (t - l)u(ri-I xt(y)) 

- t(i u(ct(y)) + S~± u(_i_ ^ 

tu(c ct(y) + r *t (y>) 

59 
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Theorem A.2. 

If u' (0) < ® and p < 1 then 

V'(0) - u'(0) 

Proof: 

First we have Immediately that 

(A. 7) Vt(y) - Vt(0) > u(y) . 

Then, from (A.5) and (A.7) we get 

u(y) < Vt(y) - Vt(0) < tu(^ y) 

Dividing by y > 0 we have 

u(y) < Vt^y) ~ Vt<°> t /l \ 

y ^ 7 - 7 u\7 y) 

Now, taking the limit as y -► 0+ we finally get 

V¿(0) - u’(0) J 

__ —... -- 


