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S~ABSTRACT

A procedure for determining the meo:. and covariance errors in
.n •a 0 filter operating in cartesian coordinates was found. The re-
sults obtained from this procedure were compared to an a-c filter
operating in polar coordinates.

Assuming tha; the input measurements in polar coordinates were
Gaussian distributed, it was shown that at the output of the coordi-
nate transformations the noise could be approximated accurately by
a Gaussian distribution for typical radz data. Closed-form solutions
under steady-state conditions were found for the output covariances
for the polar coordinate filter and for the cartesian coordinate filter
when the target is stationary. These covariances depended upon a,
0, and the measurement variances. For moving targets, the cartesian
coordinate filter yielded output covariances which were nonstation-
ary. Thneir va•ues depended upon q, 0, measurement variances, target
trajectory, target speed, and sampling time. The mean errors were
discussed. Under fading conditions both the mean and covariance
errors increased during the fading time.
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DESCRIPTION OF AN a-• FILTER
IN CARTESIAN COORDINATES

1.0 INTRODUCTION

In the last several years, there has been a considerable amount of interest in auto-
matic detection and track-ing for search radar systems. Several systems exist with vwving
degrees of automation such as MTDS, NTDS, and the SPS-43. Others are being proposed
such as the Gillfillan and APL systems for the SPS-48, the JPTDS program for the SPS-49,
and the AEGIS system. Even with these efforts there is still a need to improve system
performance under various conditions.

NRL Report 7434 recently studied the effects of maneuvering targets, measurement
noise, false targets, and fade conditions on the ability of an ot-0 filter operating in polar
coordinates to maintain a track (1). Even mrre recently NRL Report 7505 discussed the
ability of this polar coordinate filter to hand off its track from the search radar to the
track radar (2). In both of these reports a considerable amount of difficulty was en-
countered in either maintaining or handing off a track at close ranges when a polar co-
ordina':_2 filte: was used. This was due to large range and azimuth accelerations at the
close ranges. In the cartesima coordinate system these large accelerations are not en-
cvuntered., However, th- nonlinear tr a,,ormations encountered between the two coor-
dinates change the noise processes. it is the purpose of this report to describe analytically
the a-9 filter operating in cartesian coordinates and compare these results with the results
of the polar coordinate filter.

Section 2.0 describes the probability densities under the coordinate system transfor-
mations. Section 3.0 describes the gene-al characterixs ic of the filter and the mean
errors between the predicted and true target's positions. Section 4.0 describes the covari-
ances at the output of the filter system. Section 5.0 studies the mean and covariance
errors under fading conditions and presents the results of a simulation calculating the
probability of placing tne bpxm of the tracking radar on a target using the track set up
by the a-0 filter. Conclusions are given in Section 6.0.

2.0 THE NOISE PROCESS

In the study of zny filter it is essential to know the charactpniistica of the desired
signals and the noise which excite the filter. The mean motion of the targets is studied
in Section 3.0. The description of the noise processes proceeds as followsc

The block diagram of the filtering system is shown n Mig. 2.1. The polar coordinate
radar measurements are Rm in range and Or in azimuth, where Rm and 0 m are assumed
to be uncorrelated, Gaussian., amplitude-distributed random variables with means O,,, Am11
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TRANSFORM TRANSFORM
x.A co, X. RP
X. R. Cos 0 IERR0 *
Y, R, Sin 8.. TILEn'/

Fig. 2.1--Filter system

%ind variances Ohm, 06M In addition, the mneasurements are assumed to be independent
from scan to scan of the search radar. ThiL section is concerned with determining ap-
proximate probability densities p(Xrn, Ym), piXp, Yp), and p(Rp, p).

2.1 Polar to Cartesian Coordinate Transformation

The probability density of the polar coordinate iadar measurement is

1 F( _ - 0,2

p(RmO 1 - p 1IRmRm)2  (0m +

L L
P( 'O)- 2 WtORm O L 2 L mR . . 21

Contours describing constant values of the probability density function are plouted for
two different cases in Figs. 2.2 and 2.3. Observing the central (10-8) regions of these
densities, one finds that this region appears to be a correlated Gaussian process in the
(Xm, Ym) coordinates. ThiF observation is next investigated.

SA cartesian coordinate system (,q) is defined asshown in Fg.2.2 and 2.3. For

an arbitrary point (Rm, Ome) in polar coordinates, the values of p and q in the p-q rectan-
gular coordinate system are found to be

p Rm[2 - cos (Omre j-m (2.2)

q = Rm sin (O. -m) (2.3)

wituh the aid of Fig. 2.4. For cases when (Om - Y, ) is less than about 50, Eqs. (2.2) and
(2.3) can be approximated by

p P = Rr-m (2.4)

q = Rm(Om - 4n.) (2-5)

with very little error. For exam-ple, if o,. = 0.5 degrees, one would be at 10 ae. or in
the far tail region before the approximation beg-i'is to be significantly in error. Furfher-
more, if R,, does not significantly deviate from Rm, one c-n further approximate Eq.
(2,5) as

M. "M)- (2.6)
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aO@(m sinI(C,-fr)/2)

'Rm, 66ý

ARBITRARY .POINT N
POLAR COORDINWATES

•-p R,.12-c-s'°6,nm- j P)-9,

z "

q Rsn 8 -W.

S~Fig. 2.4--Geometry requzirs~i to compute p and q
in termrA of polai coordinates

SFor example, if qRmtR,, " 0.01 as would be the case for Rm =4.18 nani. and oRm of
S250 ft, one would be in error by 1% at one standard deviation and 5%/ at five standard

.•deviations. At longe mriges th~e errr is much less.

_•.. Equations (2.A) and (2.6) are linear transformations and therefore p and q are
S• Gaussin distributed, at least to the extent in which the approximations are valid. By

rotating :he (p, q) coordinates and shifting the mean, one obtains the (X-. ,,
-•_ ,coordinates

SXm - Xm =p cos Om - q sin 0., (2.7)

Ym - fm p •in -Om + q cos -(2.8)

2 fAgain, oleese inea ormayio% at ond therefore thde variables (X5, Ya iare Gan a

aus n ie en iibutdd:
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P(xML Ym)) 
(Ym=m -21

2 V a m rrs Ym

"(X X 2 ( -

x{ in1- PXmYm -Y
p(2.9)

where

Xm2 2 R 2 + \2i (210

i2 6M) sn2
Rpg (2.11)

+(2nO-)COS2ými

[B M in 0(M~)21 i2 (2.12)

Pxmym -20 m (2.12)

[n = Rim Cos k." (2.13)

"Ym = Rm sin Om. (2.14)

An independe-nt procedure for obtaining Eqs. (2.10) through (2.14) is also shown in the
appendix.

The two density functions ",sed in plotting Figs. 2.2 and 2.3 are approyimated by
p(Xm, Ym) shown in Eq. (2.9), and -.he results are shown in Figs. 2.5 and 2.6. In
comparing Fig. 2.2 with 2.5 and 2.3 with 2.6, one finds that the central and near tail
regions of the two densities p(Xm, Yi) and p(Rin, Om) are essentially the same. The apW
proximation begins to break down in the far tail regions. However, it is the central and
near tail regions which control the system. An., point in the far tail usually results in
saturation or in this case no target being accepted.

2.2 Effect of Linear Filter

Since p(Xm, Ym) is essentially Gaussian, the output of a linear filter is also Gaussian
distributed; i.e.,
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p(Xm, Yin) 8 16
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Fig. 2.5-Constant contours of p(Xm, I'm)
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Fig. 2.6-Constant contours of p(Xm, I'm)
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p(Xp, 1) = Y1
21T Up p/ .

(xP p)2xp -Xp)(YP- Yp) (Yp - 7p)2

IXpý Yp-xp0v

Sx exp L (2.15)

This is because the output of any filter can be written as a linear ctmbination of the
inputs, and, since the sum of Gaussian random variables is Gaussian distributed, the out-
put of the filter is Gauwsian. The means and co-v-riances will be investigated in detail
later.

2.3 Cartesian tc Polar Coordinate Transformation

Contours describing constant values of the probability density function given in Eq.
(2.15) are plotted for two different cases in Figs. 2.7 and 2.8. Observing these figures, it
appears that the central and near tail regions of these densities are Gaussian distr.buted in
polar coordinates. This conjecture is investigated. The (p, q) axis system is defined in
Figs. 2.7 and 2.8. The (X, - Xp), (Yp - -) axis is rotated so as to coincide with the p-q
axis. Then,

4' -

it

Xp 3536
YP: 3 556A

_ y':016Z.

'075

SpVX,, Y,) 3

2- p(Xp V 5xI10 ap(X.~~3

p('(P. YPj) 8x t'o

I 

2o/ R

.V
i ~Fig. 2.7--Constant contours of p (Xp, Yp)
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4 55
yxp

i 8 t C , op( 5 IO

i i-4

fined i) Eq (2.4 andS (2.5 ar vaid

•O01T 2 3 4 5

XV

SFig. 2.8--Constano p (Xp, Yp)

( p)P cos Op. (Yp- p) sin (2.16)

]q =-(Xp - X•p) sin + (Yp - Yp) cos ýp. (2.317)

i For small angular and range deviations in the coordinates (Op, Bp), the approximations de-

fined in Eq. (2.4) and (2.5) are valid:

SRp- Rp =p ('118)

R -(Op -'p) -. q. (2.19)

GCmbining Fq,. (2.16)-(2.19), one obtaius

XRp X. cos Dp + Yp .M (2.20)

(-Xp sin + j •cos p)/Ik. (2.21)

Since Eqs. (2.20) and (2.21) are linear transformations on Gaussian-fhiswibuted random
variables Xp and Yp, p(Rp, Op) is Gaussian distributp at least over the region in which the
approximation is valid:
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P( 21T1. 0!)

pp(

U2 . 2PRP 8P PR (o 2]
exP{X exp 2 2 (2.22)

where

gRPa2 
=c o 2 g~ + 2uo a p,,y cos U sinfl + %2 n2jT2.3

Xi2p 2p p.,pYp p p ypl

(2.24)

+05ýCFP+ F ) sin20p+ pxpyp xpaycs2

'P (2.25)
0Rp 00p Rp

jj= l (2.26)
p p

O8p =ta-,-' Yp Xp (2.27'

The two density functions used in plotting Figs. 2.7 and 2.8 are approximated by
"p(Rp, Op) shown in Eq. (2.22), and the results are shown in Figs. 2.9 and 2.10. In com-
parng Fig. 2.7 with 2.9 and 2.8 with 2.10, one finds that the central and near tail -egions
of the two densitieE p(Xp, Yp) and p(Rp, Op) are essentially the same. Again as in Section
2.1, the approximation begins to break down in the far tail regions. However, these
regions are of little interest.

2.4 Discussion of Resudts

The section showed that if p(Rm, Ome) was Gaussian distributed with small variances,
p(Rp, Op) was also Gaussian distributed over the central and near tail regions of the dis-
tribution. The means and variances after each of the coordinate transformations were
found. The means and variances following t:he linear filter will be investigated later.

3.0 FILTER DESCRIPTION

The a-P filter is defined in this section and a few of its characteristics are shown.
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V,: 3 536
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Fig. 2.9-Constant contours of p (Rp. Op)
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Fig. 2.10-Constant contours of P(Rp, Op)
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SS 3.1 Filter Definition

The filter in the x coordinate is described by

ILX(k) (~I -a (I - o) T [~k -1J_ 0-1[X )(3),•. It,. I -PITm (1-9) Vxj L. - 1)j L07_

IX(k)
[Xp(k+jpnj = [1 iT/V] L J , for j =1, ... m. (3.2)•-• [x(k +iV [(k)]

Similarly, the description in the v coordinate is

Y F(I -,a) (I- a)Ti Y(k-1) ja-- + Y,.(k)] (3.3)
LVY(ki L-f-IT (1--) LVy,,(k-l)j jI/Tj

S• Fr(k)l
[Yp(k+jlm)] = [1 jT/mtl tor j= 1 ... m. (3.4)

:V"(k)7

Since the equations are identical in each of the coordinates, it is sufficient to show a few
of the characteristics in the x coordinate.

3.2 Frecpaency Response

Using z-transform analysis, we define the transfer functions (3) as

1 xzOz z + ,efo
G X z) 2 (3.5)_____

= X(z--- z2 
- z(2- a- ) + (1- ()

V=(z) (PIT) z (z - 1)
Xm(z) = z2 z(2-a- P) + (I-a) (3

and for j = m we can define the transfer function

Xp(z) + )
Gp=Xm(z)( z 2 - z(2-a-fP) + c1-a) (3.7)

By placing z = ejT into Eqs. (3.5)-(3.7), the magnitude and phase, defined as
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m agnitude iG,'- I&' IGp I

phase Ox OU OP

can be found as a function of a,, 0, and .oT. G. and G, are plotted for a given case in
Fig. 3.1. This ,•ure shows that X(k) is the result of passing Xm(k)-through a low-pass
filter, and Vx(k) is the result of differentiating Xr. (k). The frequency of the input signal,
the sampling time T, and the filter parameters a and • control the filter's respoi.se.

It is useful to place Eq. (3.5) into the form of a classical second-ox-der system (3):

02 z +Gxz+--6- (3.8)

2= z 2 exp (-co 0 T) cos wdT + exp (-2w0 T)

1.5- 90-

10 3 0

05 •-90

or -1;30r•
°o 0 25(2r) 0 50 (2r,) 0 025(2-0 0•c)1(2w)- 0

•-• 15 !80

>I0 -a go

0i

05 0

0 I-goc

0 025'(2v) 0.50(27) 0 025(2v) 0 50(2v)

=1- e-2,O0 (3.9)

S=1 + e-2t'OT - 2 e-twOT cos walT. (3.10)

The inverse relations are

1009

m ~ ~ 5 0mm rm•m=mmm m m m ~ m l ~ m• m I ~ m m m m m l m
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a--P

F11  (3.11)

1 -I.4 (2--) (3-12)

S+l= trOS

arid

(A•0 E23.13)

where W, cd. and w0 , are the clasic damping coefficients, damped natural fequency, and
natural frequency of a second-order system.

3.3 Errors Under Sinusoidal Excitation

A target having a circular motion is used to represent a turjIng target The geometry

is shown in Fig. 3.2. The eqaations of motion are

Xm -m + Xm Cos wet (3.141

-I and

Ym =Ym I+ sin wot (3.15)

,v =V V-ELOCTY

Ig = NORMAL
ACCELEPRATl,?N
giv

~V2 /g

_%-I

NN

X.,1  X,

r' Fig. 3.2-Target geomnetry

S EY
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11e waveforms produced by the circular-motion target are passed through the filter de-

scribed by Eqs. (3.1)-(3.4). Since Xm, Ym and the operations are wEll defined, it is pos-
sible to obtain a closed-form. solution for R(k + jim) and O(k + Jim). However, the
closed-form solutions are lengthy and involved. It is easier to simply compute numerically

the results under various conditions. The error between the predicted position Yp(k + jim)

and the true target position is computed as a function of time as shown in Fig. 3.3. The

envelope of the peak error is sinusoidal, as would be predicted from ':near system theory.

In addition, the envelope of the lower peaks is almost sinusoidal and would be if j 0.

The error shown is valid only ax the sample instants.

12• 'F z = 6 ,6 W•.,?

V 1v00 ft/s

S a: 05
ai 02

ST4s 4s

S411 M3

X 0
20 40 1OO 170 -:0 S

_ TIE (S)

x•-4-

-12 L

Fig. 3.3-Error betweena predicted and true position for a circular-motion target

The errors between the predicted and true ranges and the predicted and true azimuihs

are computed next. Various examples are shown in Figs. 3.4. 3.5, and 3.6. In these fig-

ures, we find that the amount of filtering affects the envelope of the peak error and the

ripple errors. Although not shown, the target trajectory and the sampling time also affect

the error.

3.4 Comparison of Mean Errors for Cartesian and Polar Coordinate Filters

The a-3 tracker in polar coordinates is described by

R~) 1-c) ( -a)~ -F-

(1-a (1-)7] R (k-1) I1 . . .(3 .16 )

VR~k)1 m P) Vm mk - 1) T
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I V ý it )0 f/s B9 z 0
X; r a is T 4s

~00000M M32

ASII
m- N 60 'V120 !40

zL i i-S.'~-4L,-

514 V¶J I1A A luRIL
af e 20s iv\ Ko .60

Fig. 3.4-Mean error between predicted and true positions for a circular
target trajectory using an a-P tracker in cartesian coordinates

v10ft.% e:0i6 T=4s
"41 g = 966 ft/s2  o0r5 M2 =32

-- oo, R 0,0 ft

v: v• 20 1 1

z I

ik-.
5.1 W AO t

-441--;5-

Fig. 3.5--Mean error between predicted and true position for a cir-ul1r

target trajectory- using an a13 tracker in car siman coordinates

)i F • mk-in (&.17)

L bi

Rp(t +jirm) = R(k) (jim.) T VR(k) 3.18)

.Op(k + 0i/) = 6(k) + (j/:m) T It). 3.19)
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I Y v P'ft/s Tf4 s

M-32
41 • O=6,000 ft

"w - , 2" 40i, 100 120 140 rso

Z

"II'

]

~Vl4A
0,. 80

1 TSIE -S)

I Fig. 3.6-Mean error between predicted and true position for a circular

target trajectoty using an a-P tracker in carte-ian coordinates

For the same circ'lar flight path as shown in Fig. 3.2, the error between the true and
predicted positions in range and azimuth is computed and the results are shown in Figs.
3.7 and 3.8. As shown in these figures, the errors in the polar coordinate tracking system
at the near ranges are larger than the c.rtesian coordinate ones. Th's is due to the large

1 00 t;:/s Tz4s

-I00.000 ft

0-85

Z0 \o K0 TWo I'oW r Io

w>40 6 o N 1

-. I IS

Fig. 3.7-Mean error between. pretfcted anid true positions for a circular
target using an a- tracker in~ polar coec-dinates
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V z11011 fl/s
g = 96 6 Wes"

8, 20z,00o0 ft
0 0.56

T 4s

Z0.

WES

!.--4 60 140 160

TRE (S)

-16j

Fig. 3.8-Mean error between predicted and true positions for a circular
ta-get trajectory using an a(P tracker in polar coordinates

accelem.aor. s set up by the trajectory in polar coordinates. At the tar ranges we find that
the error, in either tracking system are nearly the same. This point can also be illustrated
by computing the er.oron using boih systems for a constant-velocity, straight-line flight
path. For the cartetan syseeem in steady state the error is zero. Figure 3.9 shows a
typical errcr s'-tuence for tracking in the polar coordinate system. Again, at the far
ranges th-. mean tracking errors are essentially the same for either sysiem. At short
ranges tLhe mean error in the polar system can become quite large due to the target mo-
tion and orientation with respect to .he radar.

3.5 Discussion of Results

This section investigated the mean response of the filter. It was briefly described
how cor 0, T, iarget trajectory, and range affected the error between the predicted and
true positions of the target. It was found that a-P trackers operating either in polar or
cartesian coordinates, were essentially equivalent at the far ranges in the mean errors.
The mean errors in the polar coordinate tracking system were much larger than in t:Ae
cartesian coordinate system at short ranges.

4.0 RESPONSE TO NOISE

This section is concerned with computing the comriances of the noise at the output
of the filter after the measurement noise described in Section 2.0 has passed through the
filter descibed in Section 3.0.

0l l I l ll l l
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AZSYUTH POSITION (Degrees)

r-15

Fig. 3.9-Error between pr-dicte'd and true target positions at sampling
instants jTlm for a straight-4:ne target trajectory (tracking in polar
co'ordinates)

4.1 Corariance Equations

, i

Equations (3.)-(3.4) can be written in the form (4)

W(k)= A W(k-1) + r V(k), (4-1)

where

X(k) 0

W ~ k (k)V k)r)

Y(k) LYm (k)j 0

LVy (k) _ PIT

a(1- ) (1 - O)T 0 0

-PI/T (1-13) 0 0
•~ A=

• 0 0 (1 - ax) (1 - a)T

L 0 0 -P/ (T I - 6) j

The covariance equations can be written as
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P(k) A AP(k -1)A + r QikW (4.2

where

r P,..(k,) P,~(k) Pý,,Qe) P,

VAXL, UvxIx(k, 'Y~
P (k)s pXPX~IPxý(

Pvxek Py k y=k ,V k
(kxQ) R ~(k) Pyy(k) P, (kc

.xV cov(X, VX), etc.

- Qx(k) Qy (k)]

Q~(k)= CO(XmXi) (k)

Q,,(k) cov(Xm, Xm) PYX

Qy~y' ov(.,,) Xmym xm aYm

QyyQk) cov(y 7,, Ym) gym

The covazriance equations, for the filter are

p L )/ (1 - a)(1 - 213) (1-a1-

PWIxk PT)2  -20(l - Pl)/T (1-

[PI(k -1) f

XPxv (k-i1) + 4/ [Qk)(.31 (4.3)k
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--P y () (I -a)2 2(1 - LT 1 -A

Pyvy(k) = -(l-cx)/iT (1-a)(1- 23) (1-a)(1- )T

:•_ -- • Py,•k) 0!7 -20(l - P)IT ( )

P"y-- -y (k - 1) - 2

•-<•-iX .•(•l)+ aPI [Qyy(k)] (4.4)

and I
P•--i- yx l/k) (1 -a)2 (1 - ot)2T (1 - a)2T •(1 - a)2T2

-P=(k)= -P(1-a)lT (1 -a)(1 - -3(1-)) (1- )11-3)T

SPv~y(k) -P11 - a)/ T -P(1 - ot) (I1- p)(1 - a) (1 - ct)(1 - P•)T

_PvvY(k) _ WT)2  (-PIT)(1 -l ) (-PIT)(1-13) (1- -P2

.Pyx(k - 1) a2

x PV exy(k - 1) + afPT . ()(45 Sx + (4.5)
_x -- 1)°I-- Tg•~_ .'|Pz(k-1) 

C, S:- 
U e ,,(k - 1) /T)2

Forming the covariances of Eqs. (3.2) and (3.4) yields

=P P(k) + 2(jim)TP,,(k) + (jlm) 2 T 2Pv,,x(k) (4.6)

uYp Py,(k) + 2(jizmTPyy(k) + (j/m) 2T 2Pvy1 y(k) (4.7)

Sp.ypCxpO/p Pyx(k) + (j~m)2[PvY,(k) + P0'y(k)] + (jlm)2T 2Pv~,y(h). (4.8)

For stationary noise inputs dosed-form solutions can be found for Eqs. (4.3)-(4.5) by
placing P(k + 1) = P(Q) and solving the resulting algebmaic equations. However, it is easier

to obtain solutions by recursively solving Eqs. (4.3)(4.5) until a steady-state solution is
obtained. It is necessary to eliminate T as a parameter by substituting Ay = Vy T and

LAx = VT into the original filter equations. The resulting covariance equations are of the

some form as Eqs. (4.3)-(4.8) with T = 1. (The covwuiances are independent of sampling
time.) Solving Eqs. (4.3)-(4.8) yields the following restilt:

4<
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F o 2 /Q (k) = u2 (k)/Qyy(k) = p ap pyp/Qxy(k). (4.9)

0;P xx YP~Y "P (4.9)X

For all admissible a- P, and j; for T = 1; and for F = f(&, P, j).

A simple procedure for determining the solution for stationary targets is next
described.

4.2 A Simple Stationary Solution

For the system shown in Fig. 2.1 the measurement means and covariances are trans-
formed into OXm, aym" Pxmym, X., IYm by Eqs. (2.10)-(2.14). One then computes the
covariances at the output of the filter by Eqs. (4.3)y(4.8). The resuits c2,_, u2, PRpO,
0p, and Rp are then computed by Eqs. (2.23)-(2.27). If the target is stationary the input
process to the filter is stationary (Eqs. (2.10)-(2.14)), and therefore the out put of the
filter has a stationary solution given by Eq. (4.9). In addition, 6m = Op and Rm Rp.
The output of the filter can then be written as

a2 F a2 cos2 0P + F(RpOm) 2 sin 2 ip (4.10)

a 2 -F; o sin2 O + F(Rpa 2 cos2 p (4.11)Yp - m P 'in

PxpypGxpoyp 0.5 F axmoym -(jP 0Dm) 2 sin 20P (4.12)

Substituting Eqs. (4.10)-(4.12) into Eqs. (2.23)-(2.27) results in

F2 : FU2  (4.13)
Rp Rm

=p 0a (4.14)

PRp1 p = 0 (4.15)

Rp = Rm (4.16)

and

0p = 0.. (4.17)

BAt this is the same solution as would have been obtained if the system shown in Fig. 4.1
had becn used. The equations describing the system are

F R(k)] F(1-a) ,l-,)Tj[R(e-1j (j)] (4.18)

LVR(k)J T- /r (kT- 1) L

-•PIT
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R, RD

LINEAR Fig. 4.1-E~quivalent system to Fig. 2.1 under

FILTER linear approx-rnations used in Section 2.0

(k) (I I- a)T[0(ko L Om (k)(4.19

Rprk+ j/m) R R(k) + (jlm)TVR(k) (4.20)

and

Opkji'm) O 0k) + (j/m)TVq(k). (4.21)

The covariance equations are formed in the same manner as before:

£FPRR (k) 1( (I Ct42 a(c)2T (1-at)2T2LPRVR(k) j P (I - a1-)/T (1 - c)(1 -2p3) (1 - c)(1 - P)T

PVV ) (flIT)2' -213(1 - 13)IT (1 p)2

FP'?R(k -1) a2~

PvRV-R(k -l) (1/T)21
L(
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Poo (k) L (1 - ) 2  2(1 - a) 2 T (1 -a) 2 T 2

POvo (k) -4(1 - a)/T (1 - ot)(1 - 203) (1 - 0)(1 - O)T

Pvo Vo (k) (O/f)2 -20•(l - O)IT (1 -0)2

S-' -
Poo (k -1)

X Pov8(k-1) + c3/T [Qo0(k)] (4.23)

Pv v(k 1) (fliT) 2

"?p PRR(k) + 2 (jlm)TPRVR(k) + (j/m)2 T2 PVRVR(k) (4.24)

q02' Poo(k) 2(j/m)TP6v0 (k) + (j/m) 2 T 2 Pvo0 V(k) (4.25)

PRpOp = 0 because 0,, and Rm are uncorrelated. (4.26)

Since Eqs. (4.3), (4.4), (4.6), and (4.7) are identical with Eqs. (4.22)-(4.25) in form,

02 F 2  
(4.27)

ORm

= F02(4.28)

PRpOp 0 (4.29)

Rp = Rm (4.30)

p =m (4.31)

Eqs. (4.13)-(4.17) are identical to Eqs. (4.27)-(4.31), a fact which shows that the system
of Fig. 2.1 is the same as that of Fig. 4.1. To justify this result the following argument
is given. The system shown in Fig. 2.1 is redrawn in Fig. 4.2. Recall that in Section 2.0
the polar-to-cartesian and cartesian-to-polar transformations were shown to be approxi-
mately linear over the region governing the means and covariances. The order of operation

POLAR TO 4 IER CARTESIAN
CARTESANSFR FILTER TO POLAR

8.TASOM Y P TRANSFORM ep

Fig. 4.2--Filter system
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for linear operators can be changed, yielding the system shown in Fig. 4.3. For stationary
target case the two transforms cancel, yielding Fig. 4.1.

.•R.
-•RM X, Rn Rp

"POLAR TO CARTESIAN
CARTESIAN TO POLAR LINEAR

TRANSFOWM TRANSFORM FILTER

Fig. 4.3-Interchange of linear operations

The value of F can be computed as follows: P(k) is set e-'al to P(k - 1) and the
resulting algebraic equations are solved;

PR tk) _ Poo(k) 2P - 3Ut + 2x2(

Rm 02 a(4 - 2ar - P) (.2

PRVR(k) PeP ov(k) _ (2a - P)

2 Y4- 2u - (4.33)

PvRvR(k) Pv, ve (k) P [2a 2 - 0r + 20 - ct11

-R2m 2r (4 - 2a- P)

SF = o2 /,2 PRR(k) PRvR(k) PVRVR(k)
2- R2 + (21/rn) + (I/m) 2  (4.35)

The peak variance occurs for j = m. In Fig. 4.4. F is plotted vs a and P forj = m. Ob-
serving this figure one finds that the amount of ,tmoothing (a and P) controls the peak
noise levels. In addition, the noise varies betweeii each scan of the search radar from k
to k = 1. This is plotted vs j in Fg. 4.5 for large m. Observing this figure one finds that
the noise is nonstationary but periodic with time under steady-state conditions.

i 4.3 Some Nonstationary Solutions

A target is flown at a constant velocity in a stzaight-lbne trajectory as shown in Fig.
4.6. The measurement standard deviations are assumed to be uRm = 250 ft and 6 m=

0.50. Equations (2.10)42.14) are used to obtain O4. Cqm, PxmYm, Xm, im n terms of
the measurement variances and target trajectory. Using these results with Eqs. (4.1),
(4.2), and (4.3)-(4.8), we find o2, a4, PRpG,, Fp, and Op. The results for several trajec-
tories and values of smoothing coefficients are shown in Figs. 4.7-4.12. in all cases only
the envelope of the peak noise (j = m) is shown. The covariances will have a ripple
between samples (k) and (k + 1). In addition the doeted lines show the covariances if the
target is stationary. Figures 4.7-4.12 show that the output noise processes are in general
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YI p TARGET TRAJECTORY
VELOCTY v

x
-X

I Fig. 4.6-Straight-line target trajectory
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• Fig. 4.8--Covariance of preddicted range Fig. 4.9--Covariance of predicted range

ard azimuth for straight-line target tr2- and azimuth f~r straight-iine trajectory
jec-tory -km = 2 n.mi., v =2000 .ft/s, Xm =2 r.ini., v = 2000 ft/a, T =8 s,

O = 0.1,/= 0.005 a = 0_56, =0.852

a

nonstationary and depend upon the target trajectory and velocity, the sampling time, and

the filter parameters. "

A circular- Right path is flown as sho%,,• in Fig. 3.2. The covariances of the predicted
rang an azmut at sho]) n Fgs.4.1-4.16 asa function of time for various condi-

tions. Again only the- envelope of the peak variances is plotted ij m). At the far
ranges or low velocities the variances of range and azimuth approach the stationary solu-

tion values, although at the long ranges it was found that the correlation did not go to
zero but was a function of the turning motion. Again it is found that the covariances
can be a function of target trajectory, velocity, and range; sampling timie; measurement
uncertainty; and filter parameters.

The effect of the faster sampler (J = 1I.... m) is shown in Fig. 4.17. Obser~ing this
figure one finds that the covariances ripple between the scan time of the search radlr in
na similar manner as found for the stationary solutions.

th itrpaaees
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2/2
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Fig. 4.10-Covariance of predicted range Fig. 4.11 -Covariance of predicted range
and azimuth for straight-line trajectory and azimuth for straight-line target tra-
Xm = 30 nmL, v = 2000 fts, a= 0.56, jectory Xkr = 30 n.mi., v = 500 ftfs,
.=0.85 a =1.0, • =1.0

4.4 Discussion of Results

The covariance equations were found for both the polar and cartesian coordinate
filters. A simple closed-form solution was found for the covariances m both filters when
the target was stationary in space. For these cases the output correlation was zero and
the output variances only depended upon a, P, and the input measurement variances.
For nonstationary targets the cartesian coordinate filter yielded output covariances which
depended upon a, P, input measurement variances, target trajectory Pnd speed, and
sampling time. In general the covariances increased as one came near the radar and
tended to approach the statioL ry target solutions at the far ranges except that the cor-
relation depended upon the turning motion.

5.0 COMPARISON OF POLAR AND CARTESIAN COORDINATE c• FILTERS
OPERATING UNDER SHORT FADE CONDITIONS

This section is concerned with evaluating the tracking performance of the polar and
cartesian a- filters for short fade conditions and for the track handoff problem. Sectio:'
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5.1 describes the mean errors due to short fades, and Section 5.2 describes the effects on
the covariances. Section 5.3 presents the results of the simulation on the track handoff
problem.

N-I
5.1 Mean Errors

The predicted value strategy used for processing information under fading conditions
is defined as follows. When a fade occurs the predicted position is set equal to the meas-
ured position. The 4-• filter equations in cartesian coordinates given in Eqs. (3.1)-(3.4)
reduce to

T X (k(5.1)

~~[ k 1)( L k

[VL(k)J

[Y(k))] T] [ [Y(k - )] 53

and

FY(k)
Y,(k+j/m) = 11 .iT/M] I (5.4)

during the period of the fade. Otherwise they are the same as before. Observing Eqs.
(5.1)-(5.4), one finds that they are of the same form as Eqs. (3.1)4(3.4) except that
a = = 0. Therefore Eqs. (3.1)(3.4) can be used to represent the system under fading
conditions, except that a and P are time varying between these set values and a = P = 0.

In a similar manner the filter in polar coordinates is found to be represented by Eqs.
(3.16)(3.19) with time-varying coefficients of a = P 0 ar•d the original set valuEs of i

and P corresponding to a fade and no-fade condition. Under fading conditions the polar
coordinate filter moves the target along curvilinear lines at the last known radial and
traverse velocities duting the fade. The cartesian coordinate filter moves the target along
straight lines at the last known velocity.

Several consttant-velocity, straight-line target trajectories as shown in Fig. 4.6 were
flown. In all cases using the cartesian coordinate filter, the mean error between the pre-
dicted and true target positions was zero under the fading sequences. By using the polar
coordinate filter, the mean error between the predicted and true target azimuths was
found under several conditions as shown in Figs. (5.1)-(5.4). A one in the fading sequence
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Fi& 5.1-Error between predicted and true target positions at sapmpring
instants k (ji = mn) for straight-line target tracctofyunefaigcdtoc
(tracking in olar coordinates)i

L5 - OFADE SQEC

101

Re 140,000 ft WITH FADES

05I~OU FADES

--!00 -52. -350 -17 0 0 s
AZUT PO110 -, - -es

"L~ -0.5
0.
-J

-,0[

-15
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instants k (j m) for straight-line target trajectory' tunder fading conditions
(tracking in polar ioordinates)
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I •represents a fade, whereas a zero corresponds to no fade. in all cases the envelope of the
errors at sample instants (j = m) is shown, ignoring the ripple errors due to the faster
sampler. These figures indicate that the error becomes larger as the target comes closer
to the radar and when the filter uses heavier smoothing. In addition the error grows dur-
ing the time the fade is present. The reason this occurs is that the target is being pro-
jected along curvilinear lines during the fades and is woving in a straight line. The error
situation would be reversed if the target were moving along a traverse line rather than a
straight line.

A target is flown in a circular trajectory and the mean errors betweern the predicted
and true positions are computed for a given situation including a sequence of fades. The
results are shown in Figs. 5.5 and 5.6. These figures show that at leas' at the farther
ranges and short fading conditions the error is approximately the same using either the
polar or cartesian coordinate system, filter.

In general it appears that at the farther ranges where the near effect accelerations
are not present in the polar coordinate system, the mean errors in either filter system
under short fading conditions are nearly the same. The polar coordinate filter performs
better for constant-velocity targets moving in the polar directions, whereas the cartesian
coordinate flter performs better for targets moving in straight lines.

V - OC)fl/s T=4s
966 ft/s

2  M= 32
FADE SEOUENCE
(1000100010---)

"4L 056
9B:085

0
r•+. F

0 20 40 60 ) 1 120 140 ,,0

i 1
-41LL
-8i

WITHIJ FADESS; ~WrqHOUT FADES

CZ: 0 -1-

0v 204-2 0 2 K 6

-2 1

Fig. ,.5-Mean error between predicted and true positions for a circular
target trajectory using an ct--f filter in cartesian coordinates under fading
".cnditionlr
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V = 1100 4(1" FD SEQUENCE2F = 96-6 ft/s2(WOO)D-

= 05 V I

UJ )0 0 8 -. 0
UJ~~~4 0 0 4 6 8 10K

T-

N"

-2

i ~Fig. 5.6--Mean error betweer. predicted and uue positions for a circular
i ~target trajectory using an a-• filter in polar coordinates under fading

conditions

5.2 Covariance Descriptfion

Under fading conditions and using the predicted position strategy as outlined in Sec-
tion 5.1, th.= covariances are described in the same manner as in Section 4.0 except that
when a fade occurs a and • are set equal to zero. A constant-velocity target is flown in a
straight line and the covatiances are computed under a fading condition for two cases as
shown in Figs. 5.7 and 5.8. The cartesian coordinate frilter is used and the envelope of
the covariances (j = mn) is shown. The covariances increase during a fading condition.
The convariances were computed using the polar coordinate filter and are shown in Fig.
5.9. Unlike the cartesian coordinate filter, in this case the covariances are independent of
target tra.jectory, speoed, and sampling time.

A circular flight path is flown and the co-varnances are computed using the polar and ,
cartesian coordinate filters. The results are shown in Figs. 5.10-5.12, which show that '
the covariances increase as the target fades.

A H FADE
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5.3 Track Handoff Problem

In this section, the abilities of the polar and cartesian a-3 filters to perform the track
handoff problem are compared. Since the details of the track handoff simulation are
given in Ref. 2, only the basic facts will be presented here.

The geometry of the situation is shown in Fig. 5.13. The coordinates of the target
at time t = 0 are (xo, y0 , %), its height when crossing the y axis is hf, its ground speed is
v, and its heading is A. The radar coordinates are (0, 0, hr).

TARCGET

TARGET FLIGHT PATH.• - I

h"o/A

RADAR xo

Fig. 5.13--Geometry of radar and tafget

The simulation is run in the following manner: The target is assumed to be detected

on every scan of the search radar. Initially, three target positions are generated, and the
a-j3 filter is initialized. After each additional detection, the u-0 filter is updated and is
used to continuously estimate the target's coordinates. Starting with the third sample, the
center of the tracking scan pattern is centered on te predicted position of the target.
The search pattern of the tracking radar is initialized, and during each update time, the
program calculates whether or not the target is located within the acceptance beam of the
tracking radar (Section 5.4). The simulation continues until the target crosses the y axis.
The output of a single case is a series of correct and incorrect handoffs between the
search and tracking radars. Many cases are runs, and the probability of handing off as a
function of range is estimated.

The initial simulation was run with the following target parameters: x0 was uni-
formly distributed between 121,600 ft (20 n.mi.) and 122,600 ft, y0 = 0, .ho = 10,000
ft, hf = 5000 ft, A is uniformly distributed between 5.90 and 6.1°,* and V is uniformly
distributed between 2100 and 2300 ft/s. The radar is at a height of 80 ft, has a range
resolution of 250 ft and a scanning rate (update time) of 4 s, and measures the azimuth
position with a standard deviation of 0.50. The deviation accuracy of the radar will be
varied in the simulation. it will have a standard deviation of 1', or else the radar (a 2-D
radar) assumes that the elevation of the target is always 120 (the bottom of the 240 scan
pattern of the tracking radar is set on the horizon). The filter parameters are a = 0.6
and P = 0.9 for range, a = P = 0.5 for azimuth, and a = 01.5E and 3 0.85 for X and Y.

*This makes the target pass within 2 mi of the radar.
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For each of the two elevation accuracies and two filters, 50 cases were run; and the

probability of the target being in the beam of the tracking radar or. the last scan pattern,
vs the target range, is shown in Figs. 5.14 and 5.15. It is obvious that one can hand off
targets at closer ranges using the X-Y filter. This is because of the large acceleru-;on• in
the R-O coordinate system for crossing targets.
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Fig. 5.14--Probability of handoff using R-0 filter
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B 5.4 Discussion of Results

SThe mean errors in the polar and cartesian filters were found to increase during fades
unless the target was moving at a constant velocity along the polar or cartesian coordi-
rnates, respectively. For short fades at the longer ranges, there seemed to be very iittle
difference between the mean errors in either system. The covariances increasedl during
fading conditiorns.

One can hand off targets at closer -ranges using the X-Y filter. This is because of the
large accelerations in the R-0 coordinate system for crossing targets.

6.0 CONCLUSION

This report describes an approximate analytical procedure for determining the errors in
an a-3 filter operating in crtesian coordinates. These errors are separated into meam and
covariance errors and w-- compared to the errors in an a-P filter operating in polar coordinates.

The polar to cartesian and cartesian to polar coccedinate transformations are shown
to be approximately linear over the space in which the central and near tail regions of
the probability density lie. Since the measurement probability density is Gaussian, Jr is
shown that the probability densities after the transformations can be approximated with
a high degree of accuracy with Gaussian densities as long as the far tail region is of little
zoncem. Using this result, we find the covariances at the output of the filters. Closed-
form steady-state solutions are found for the covariances in the polar coordinate filter
and for stationary targets using the cartesian coordinate filter. These covariances depend
upon c, 0, and measurement variances. For moving targets, the cartesian coordinate filter
yieldb output covariances which are nonstationary. Their values depend upon ca, 3, meas-
"urement variances, target trajectory, target speed, and sampling time. In steady state and
for the far ranges, the output variances using the cartesian coordinate filter approach the
variances obtained from the polar coordinate filter. At the near ranges, the covariances
are in general larger in the cartesian coordinate filter as compared to the polar coordinate
filter.

At the far ranges the mean errors using either filtering system are essentially the
same. But at the close ranges the mean error in the polar coordinate system its i- general
larger than in the cartesian coordinate. filter.

In the study on the effects of short fades using the predicted target strategy, it was
generally found that both the mean errors and covariances increased during the time of
the fade.

In the study- of the track handoff problem it was found that one could hand off
targets at closer ranges using the X-Y filter. This is because of the large accelerations in
the R-0 coordinate system for crossing targets.
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Appendix

CAWMULATION OF MEANS AND COVARIANCES OF RADARI MEASUREMM'S IN TERMS OF CARTESIAN COORDINATES

A radar measurement is given in range R and azimuth V,, where R and 0 are assumed

to be uncorrelated, Gaussian-distriibuted random variables with means 0 and R, and
j variances al and ao. The problem is to determine the means and covariances of the

two quantities X and Y defined as

j X = R cos 0 (Al)

Y=Rsin0. (A2)

In the calculations the following two facts are used extensively. The approximation

+2 0121 U N2r9 (A3)
T- N !
N-1

is used because the azimuth standard deviation c0 in radians found in typical search radars
is small. The integral

++ 22 'i. e-b214a 2

e-a2X2 cos bX dX = , where a > 0 (A4)-@ ~2a '

is used in each of the calculations.

The major steps in the calculations are the following.

Mean of X, X

X =E[R] E[cos 0l where E[R]= R

= f cosO e-(1/2)[(0-)/Oe) 2 ] d&.

M(iange of variable o =6 -

E[cos0 [Cos co COos o - sin sin 0] e(-112)(wJq/)2 dto

44
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2 COS e(l1 1_,r )2 o w2

I E[cos ] = cosos f" co e d

E[ccsO] = e-a2/2 cos

S= e--2/cosO; for small a0 , X = Rcos0 Eq. (2.13)

Mean of Y,Y

Similar to calculation of X

Y=R e72,2 in W ; for small 0, Y=R sin Eq. (2.14)

Variance of Y, VAR X

VarX = E[X 2 ] - (E[X])2 = E[R2] E~cos2 0] -

= 1 ; : C O S2 0 g -( II2 ) [ (0 - VF) / ° e)2 ] d

E [cos2 O 01d

SE[COS2 01 X dO

1 1 J e1(I2)[(0- /)I- )/•° ] dO

fi

I
i• ~ ~~+ "x X /"- COS 2ff e-(12[8•/e2 dS.

Let -0 ;

E[cos2 •L+1 X 1 [ cos (2w + 20) e(-112)(wIO )2 dco
2 2 NfI- oo LP

Ecos2 01 1 (cos 2w cos 26- sin 2w sin 2F)
2 2 r- "- 0

X e(-lls)wlo)2 dA.,

E[cos2 O1 1 2 2CoO 2Y (e1/,78"•° 2 2 • '• o0 cos 2 o e dw

2 f2rg
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E[cos2 0] =+ e7 0 cos 2 0

E[R 2  
=R + (R) 2

VarX =E[RR21 EI[cos2 0] fo -2a

iVar X OR2 Co 2 + - 02 si2 Eq. (2.10)

j Variance of Y, Var Y

Similar to calculation of Var X, for smalllog~,

VaYosin2  + (Rc~o 2 .Eq. (2.11)

Covariance of X and Y, Cou XY

cov XY= E [XYI -E([XI BE[Y] E [LR 2 E [cos 0sinO 01

E[cos0 sinG] =- lj 1 sin 20 e~I)(~I)~dO

E [cos 0 sine 0 S 4 0 (sin 2w cos 2

1-cos 2w sin 20) e (1/2)(wI08) 2 dw

E~cosO sinO] = fi2 cus 2w "0" d

Elcos0 sinG] = -eC2002 sin 2W

E[LR 2 ] gR + (Rj) 2

cov XY R[R 2] E [cos 0 sin 0] -X;for small ae,

covXY 2 -sin 20 -- sin20 Eq. (2.12)


