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13 ANSTRACT

A procedure for determmmg the rean and covariance errors in an &8 filter operating
in cartesian coordinates was found. The results obtained froin this procedire were com-
pared to an off filter operating in polar coordinates,

Assuming that the .aput measurements in polar coordinaias were Gaussian distributed,
B it was shown that at the output of the coordinate transformations the noise could be ap-

= proximated accurately by a Gaussiar distribution for typical radar data. Closed-form solu-
*jons under steady-state conditions were found for the output covariances for the polar
coordinate filter and for the cartesian coordinate filter when the target is stationary. These
covariances depended upon a, §, and the measurement variances. For moving targets, the
cartesian coordinate filter yielded output covariances which were nonstationary. Their
values depended upon «, §, measurement variances, target trajectory, target speed, and
sampling time. The mean errors were discussed. Under fading conditions both the mean
and covariance exrors increased during the fading time.
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ABSTRACT

A procedure for determining the mes:. and covariance errors in
an af} filter operating in cartesian coordinates was found. The re-
sults obtained from this procedure were compared to an of filter
operating in polar coordinates.

Assuming that the input measurements in polar coordinates were
Gaussian distributed, it was shown that at the output of the coondi-
nate transformations the noise could be approximated accurately by
a Gaussian distribution for typical radar data, Closed-form solutions
under steady-state conditions were found for the output covariances
for the polar coordinate filter and for the cartesian ccordinate filter
when the target is stationary. These covariances depended upon «,
8, and the measurement variances. For moving targets, the cartesian
coordinate fiiter yielded output covariances which were nonstation-
ary. Their values depended upon ¢, f§, measurement variances, target
trajectery, targel speed, and sampling time. The mean errors were
discussed. Under fading conditions both the mean and covariance
errors increased during the fading time.
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DESCRIPTION OF AN o FILTER
IN CARTESIAN COORDINATES

1.0 INTRODUCTION

in the last several vears, there has been a considerable amount of interest in auto-
matic detection and traciting for search radar systems. Several systems exist with varving
degrees of automation such as MTDS, NTDS, and the SP3-32. Others are being proposed
such as the Gillfilian and APL systems for the SPS-48, the JPTDS program for the SP5-49,
and the AEGIS system. Even with these efforts there is still » need io improve system
performance under various conditinns.

NRL Report 7434 recently studied the effects of maneuvering targels, measurement
noise, false targets, and fade conditions on the ability of an a- filter operating in polar
coordinates to maintain a track (1). Even mcre recenily NRL Renort 7505 discussed the
ability of this polar coordinate filter to hand off its track from the search radar to the
track radar (2). In both of these reports a considerable amount of difficulty was en-
countered in either maintaining or handing off a track at close ranges when a polar co-
ordinal. filter was used. This was due to large mnge and azimuth accelerations at the
close ranges. In the cartesian coordinate system these large accelerations are not en-
countered. However, the nonlinear tras=formations encouniered between the two coor-
dinates change the noise processes. it is the purpose of this report to describe analytically
the o filter operating in cartesian coordinates and compare these results with the results
of the polar coordinate filter.

Sectior: 2.0 describes the probability densities under the coordinate system transfor-
mations. Section 3.0 describes the general characteristics of the filter and the mean
errors between the predicted and true target’s positions. Section 4.0 describes the covari-
ances at the outpui of tue filter system. Section 5.0 studies *he mean and covariance
errors under fading conditions and presenis the results of a simulation calculating the
probability of placing the beam of the tracking radar on a target using the frack set up
by the aff filter. Conclusions are given in Section 6.0.

2.¢ THE NOISE PROCESS

In the study of zny filter it is essential to know the characteristics of the desired
signais and the noise which excite the filler. The mean motion of the targets is studied
in Section 3.6. The description of the noise processes proceeds as follows:

The block diagram of the filtering system is shown :n Fig. 2.1. The polar coordinate
radar measurementis are R,, in range and 6, in azimuth, where R, and 0, are assumed
to be uncorrelated, Gaussian, amplitude-distribuied randora variables with means 8, R

1
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fig. 2.1—Filter system

aad variances 01% , ”02,,,* In addition, the measurements are assumed to be independent

from scan fo scan of the search radar. This section is concermed with determining ap-
proximate probability densities p(X;, Y ), p(Xp, Yp), and p(Rp, o).

2.1 Polar to Cartesian Coordinate Transformation
The probability density of the polar coordinate iadar measurernent is

2]
J } 2.1)

|
P

{ !_(Rm - Rm) m 8;’1)

aem

P(Rm,0y) =

27 og_ O OR,,, agm

Contours describing coastant values of the probability density function are plosted for
two different cases in Figs. 2.2 and 2.3. Observing the central (16-8) regions of these
densities, cne finds that this region appears to be a correlateG Gaussian process in the
{Xm, Ym) coordinates. This observation is next investigated.

A cartesian coordinate systzam (p, g) is defined as shown in Figs. 2.2 and 2.3. For
an arbitrary point (R, 0} in polar coordinates, the values of p and q in the p-g rectan-
gular coordinate system are found to be

Rpy[2 - cos (6 - gml.; - §m (2.2)

D
g = Ry sin @, ~ 0.0) (2.3)

with the aid of Fig. 2.4. For cases when (6, - 5,,.,) is less than about 5°, Eqs. (2.2) and
(2.3) can be approximated by

P = Ry ~ Ry (2.4)

Ry (0 — En} {2.5)

q

with very little error. For example, if o5, = 0.5 degrees, one would be at 10 Gg,, OF in
the far tail region before the approximation oegias to be significantly in error. Further-
more, if R., does not significantly deviate from R,,, one can further approximate Eq.
{2.5) as

q = Emggm - _m}- (2.6)



p—r—

O A N 1 N BT W QAR 1 b

Lot T

0l e

A 1o

B

——— -

NRL REPCRT 754¢

p(er am} =5x 10-2‘|

W

q
S -9
PRy, Gn) = 8XIO
YL
4 \ -4
B \\ P(Rpys 8} = 3210
N
3 e
>&
2 -
8, = 45°
- -]
crg’ =
Ry -
' e =005
o) i ! 1 | 1
<] i 2 3 4 5
xm
Fig. 2.2—Constant contours of p{Fm, 0n)
PRy, 8) = SXI02
e
/ p{Rp, 8n) = BxO R, v
- ]
T
9.,
&l
3
PRppy 8t = 3X1G°
>E

(]
-

- I®
ol
8.:5
[
=02
e, oz
1 : 1 i !
0(’ } 2 3 <
e

Fig. 2.3 —Constant contours of p{Rp, 8m)




v,

4 BEN H. CANTRELL

G = 2Ry, sin {(6,,- 8 )/2)
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g = Ry sn(Bp, -8}

Fig. 2.4—Geometry regnir<u to compute p and g
in termx of polax coordinates

For example, if aRmIEm = 9.01 as would be the case for R, = 4.18 n.mi. and oR,, of
250 ft, one would be in error by 1% at one standard deviation and 5% at five standard
deviations. At lorger ronges the error is much less.

Equaticons (2.4) and (2.8) are linear transformations and therefore p and g are
Gaussian distributed, at least to the extent in which the approximations are valid. By
rotating the (p, ¢} coordinates and shifting the mean, one obtains the (X.-. V;;}
coordinates

Xm — X» = pcosBp, - gsin by, 2.0
Y - ¥p = psinbp + gcosbp. (2.8)

Again, hese are linear transformations and therefore th » variables (X,,, Y,,) are Gaussian
distribut=d:
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1
P(Xm, Ym) = - 3
27 Oz, Wy \/“ " Pxiym

T \2 = o % 12
(Xm ~ Xn) -9 (Xm = Xm)(Yin ~ Ym) + (Yo, — Vi)
1 03 P ym O%n Oym 0)2”.
X expi-3 L -
1-2 ;mJF'm
2.9)
where
0%, = 0f costly + (Em (;0,“)2 sin28, (2.10)
s 5 2 = ;
0} = agm sin28,, +(Rmoem) cosZ8, 2.11)
—_ 2 . -—
[agm - (Rm og,n) ] 5in28y,
Prmym = o, Gy (2.12)
Xn = Ry cos G, (2.13)
Yin = Ry sin 8. (2.14)

An independent procedure for obtaining Egs. (2.10) through (2.14) is also shown in the
appendix.

The two density functions used in plotting Figs. 2.2 and 2.3 are approximated by
P(Xm, Y} shown in Eq. (2.9), and :he results are shown in Figs. 2.5 and 2.6. in
comparing Fig. 2.2 with 2.5 and 2.3 with 2.6, one finds that the central and near tail
regions of the two densities p(Xp,, Yn,) and p(R;,, O) are essentially the same. The ap-
proximation begins to break down in the far tail regions. However, it is the central and
near tail regions which control the system. Any point in the far tail usually results in
saturation or in this case no target being accepfed.

2.2 Effect of Linear Filter

Since p(Xp, Ym) is essentially Gaussian, the output of a linear filter is also Gaussian
distributed; i.e.,

N
|
{
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1
p(Xps Yp) =
/- 2
2n 9xp Cyp 1- Ppp
o N
= \2 - v . T2
I (% - %) o Ko~ Xp)(Yp-¥p) Gp—Yp) '
T ap.
X ng xpyp UXP a}’p O‘%p
X exp -5 - (2.19)
L 2 1-p ’%pi‘b

This is because the output of any filter can be written as a linear c« mbination of the
inputs, and, since the sum of Gaussian random variables is Gaussian distributed, the cut-
put of the filter is Gaussian. The means and covariances will be investigated in detail
latey.

2.3 Cartesian tc Polar Ceordinate Transformation

Contours describing constant values of the probability density function given in Eq.
(2.15) are plotted for twe different cases in Figs. 2.7 and 2.8. Observing these figures, it
appears that the central and near iail regions of these densities are Gaussian distribured in
polar conrdinates. This conjecture is investigated. The (p, q) axis syvstem is defined in
Figs. 2.7 and 2.8. The {I, - Xp), (¥, - ) axis is rotated so as to coincide with the p-g
axis. Then,

0N, - %)
5 —
T %,:35%
Yp=3536 -
o, = 008! Xp-Xg:
14
31— c,p= Q6L
p =075
S %%
; . =4
piXp. ) = 5xlo-2'/'k: piXp. Yol = 3x1
2} "
| g
plXg, Yp) = 8%10
[ ond Rp
o
7 ;
() i 2 3 4 5

Fig. 2.7—Constant contours of p{Xp, Yp)
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g=~(X-X)sinf + (Y- ) cosb,. (2.17)

For small angular and range deviations in the coordinates (6, Rp), the approximations de-
fired in Eq. (2.4) and {2.5) are valid:

Ry, - Rp=p (£.18)
Rp(p-8) = g - (2.19)
Combining Egs. (2.16)-(2.19), one obtaius
Ry, = Xpcos by + Ypsinf, (220
6 = (X, sin8, + ¥, cos )R, . (2.21)

Since Eqgs. (2.20) and (2.21) are linear transformations on Gaussian-Yiswributed random
variables X, and Yy, p(Rp, 0p) is Gaussian distributed at least over the region in which the
approximation is valid:
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21 ap,, o, Vi- p§p8P

) =12 = T =2
(R — Rp)™ 2 (Bp — Rp)(6o — )  (6p— Gp)
. ng PR pep GRP aap o,gp
X exp |- 3 E )
L LT PRyt ]
o2 =

27 B cnf 2 nld
Rp—afpcos 6p+20,po,bpxp,bcos8psm0p+oypsm p

of sin* ~ 20y, 0y, px,y, sinbp cos G, + oF cos?f

p
B2

)
-
il

+0.5(.—03p + of.p) sin 28, + pxyy, Ox, Gy, cos 2B,

Pr 6, = =

» - J/¥2 V2
B, = /X2 + V2

- s
B = tanl V/X, .

>

2.4 Discussion of Results

(2.22)

(2.23)

(2.24)

(2.25)

(2.26)

(2.27;

The two density functions used in plotting Figs. 2.7 and 2.8 are approximated by
p{&p, 8) shown in Eq. (2.22), and the results are shown in Figs. 2.9 and 2.10. In com-
panng Fig. 2.7 with 2.9 and 2.8 with 2.10, one finds that the central and near tail regions
of the two densities p(X,,, Yp) and p(R,, 0Op) are essentially the same. Again as in Section
2.1, the approximation begins to break down in the far taii regions. However, these
regions ave of little interest.

The section showed that if p(R;n, 0,) was Gaussian distributed with small variances,

found. The means and variances following the linear filter will be investigated later.

3.0 FILTER DESCRIPTION

P(Rp, bp) was also Gaussian distributed over the central and near tail regions of the dis-
tribution. The means and variances after each of the coordinate transformations were

The «-f filter is defined in this section and a few of its characteristics are shown.
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3.1 Filter Definition

The filter in the x coordinate is described by

l'xaz) fi-a) (1-oT !_X(k-l) t
3 | ! -BIT {_1 -1} l{XMk)] G
%; L x(%) b B/ {1-8) { 3 Lﬁl
4 o
3 Kokt +jim)] = [1 jTim] for j=1,..m. 3.2)
; lvvx(k)
Similarly, the description in the v coordinate is
Y(k) {(1 -9 a-oT[ve-n] [a ! . a3 |
= i mfR) -
| | -8 a-8) J | k-1 t T}
lNyr)
[Yote +im)] =1  jTim] , for j=1,..m. (3.4)
Vy (k)

Since the equations are identical in each of the coordinates, it is sufficient to show a few
of the characteristics in the x coordinate.

3.2 Frequency Respopse

Using z-transform analysis, we define the transfer functions (3) as

o (z LB a)
E 4
3 X(2) a
4 = = 3.
H ] Ce Xn@) 22 -22-a-B)+ (1-q) @.5)
3
-5 G, = ;z(z) S @IT) 2_(2 ) ’ @.6)
23 m@) 22 - 22~a-B) + (1-
and for j = m we can define the transfer function
| he  @B(z- g3 7)
\;; P = Xm(z) = 22 - z(2—a—B) +d1-a ) @7
3 : By placing z = ¢/“T into Egs. (3.5)-(3.7), the magnitude and phase, defined as
;&i\:
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magnitude iG:l |G Gpi

phase bx by P »

can be found as a function of o, §, and w?. Gy and G, are plotted for a given case in
Fig. 3.1. This rigure shows that X(k) is the result of passing X,,{k)through a low-pass
filter, and Vi (k) is the result of differentiating X, (k). The frequency of the input signal,
the sampling time T, and the filter parameters a and 8 control the fiiter’s respouse.

It is useful to place Eq. {3.5) into the form of a classical second-crder system (3):

B - a)

a

(e »

Gy =

. 3.8
2% ~ z 2 exp (~EwqT) cos wyT + exp (~28woT) 3.8)

¢, (Dogrees)
o

-90{-
0 1 d . O | —
0 02z5(2=} 050127} 9] 52527 05G(2)
w? ol
1S— 80—
10—

G,
o
o
|
{
¥y (Degroes)
o
/

0 A H -g0 } |
0 0.25{2» 050(27) O 25{27) 050{2x}

wl

wi

Fig. 3.1—Frequency response of o 8 flter

Equating coefficients beiween Eqs. (3.5) and (3.8), results in

a =1~ g2kwol (3.9)

1

B

1 + ¢~28woT . g ,twgT o wyT . {2.10)

The inverse relations are

[rp——

i 5 0 AR RO NN WAL, WAL H A AN M W S 8 e

Haa s




L b A S, i, g B0

Wﬂlﬂmwm S PR YV TP QLY T NI IR D O B e

NRL REPORT 7546 13

.. (IM/A-a)

£ = 3 i. 2—a B (3.11)
\/Ed\l Vvi- a)} +i_c°s—1(:2\/_f—7-‘c:):i

2_ -

-1
wg = c0 2 \/1____& (3.12)
and
wp = wafy1 - &, {3.13)

where £, wg4. and wy, are the classic damping coefficients, damped natural frequency, and
natural frequency of a second-order system.
3.3 Errors Under Sinusoidal Excitation

A target having a circular motion is used to represent a tumning targei. The geomeiry
is shown in Fig. 3.2. The eguations of motion are

Xn = Xn + 1 X! cos wot {3.14)
and
Ym = Ym + | ¥l sin copt . {315)

v = VELOGTY

= RORMAL
ACCELERATION
we =grv
e = 19
H = vé/g

>
3

Fig. 3.2—Target geometry
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The waveforms produced by the circular-motion target are passed through the filter de-
scribed by Egs. (3.1)(3.4). Since X,,,, Y}, and the operations are well defined, it is pos-

ible to obtain a closed-form solution for R(k + j/m) and 0(% + jim). However, the
closed-form sciutions are lengthy and involved. 1t is easier to simply compute numerically
the resuits under various conditions. The error between the predicted position Xp(k + j/m)
and the true target position is computec as a function of time as shown in Fig. 3.3. The
envelope of the peak error is sinusoidal, as would be predicted from 'inear system theory.
In addition, the envelope of the lower peaks is almost sinusoidal and would be if j = 0.
The efror shown is valid only a the sample instants.

2 g = 956 fissd
v = 10D fiss
az= U5
B =02
8t T=4s
1 M= 32 | 1/1
g ]
4
= 4l 744
: 'L
;E 0 \._; 1 /i 1 J
Lo 20 40 / 60 80 0
§ ‘\ TIME (S) \
=
X =4;- !
: \ I\
H

-2

Fig. 3.3—Error betweer: predicted and true position for a circular-motion target

The errors between the predicted and frue ranges and the predicted and true azimuwhs
are computed next. Various examples are shown in Figs. 3.4, 3.5, and 3.6. Ir these fig-
ures, we find that the amount of filtering affects the envelope of the peak error and the

ripple errors. Aithough not shown, the target trajectory and the sampling tirae also affect
the error.

3.4 Comparison of Mean Errors for Cartesian and Polar Coordinaie Filters

The a-f§ tracker in polar coordinates is described by

[rRy | [a-@ a-of)[re-1] [«
= l i +] uRm(k)] (3.16)
{Vr(k)] | -BIT  (1-8) ||Vr(k-1}] |8/T;
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For the same circilar flight path as shown in Fig. 3.2, the error between the true and
predxcted positions in range and azimuth is computed and the results are shown in Figs.
3.7 and 3.8. As shown in these figures, the errors in the polar coordinate tracking system
at the near ranges are larger than the cartesian coordinate ones. This is due to the large
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accelerzions set up by the trajeciory in polar coordinates. At the far ranges we find that
the errors in either tracking system are nearly the same. This poirt can also be illustrated
by computing the errors using both systems for a constant-velocity, straight-line flight
path. For the carfeswn sysiem in steady state the error is zero. Figure 3.9 shows a
tvpical errcr sequence for tracking in the polar coordinate system. Again, at the far
ranges {h. mean tracking ervors are essentially the same for cither sysiem. At short
ranges the mean ercor in the pojar system can become quite large due io the target mo-
tion znd orientation with respect to che radar.

3.5 Discussion of Resulis

This section investigated the mean response of the filter. It was briefly described
how «, 5, T, iarget trajectory. and range affected the error between the predicted and
true positions of the target. It was found that o-ff frackers operating either in polar or
caresian coordinates, were essentially equivalent at the far ranges in the mean errors.
The mean ervors in the polar coordinate tracking system were much larger than in the
carfesian coerdinate system at short ranges.

4.0 RESFONSE TO NOISE

This section i concerned with zomputing the covariances of the noise at the output
of the filter after the measurement noise described in Section 2.0 has passed through the
filter described in Section 3.C.
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4.1 Covariance Equations

Equations (3.1)+{3.4) can be written in the form (4)

W) = AW(E-1) + T V(&), @1
where

=3 x() ] "o 0]
Va(k) Xin (k) BIT 0

1 W) = V(k) = =

E Y(k) Y (k) 0 «

| Vy () | i BIT |
- 1-a) (@A-aT 0 0o |

-BIT (1-8) 0 0

= A = .

e 0 0 l-a) (1A-oT

7 | o 0 BT (-8 |

The covariance equations can be written as
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P(k) = APR-1) AT + T Q@7 4.2)
where
[ Pk Py, (B) Poy(k) Py (k)
?Uxx (-k) vav: (k) ’;}xy (k} vavy (k )
Pik) =
PlB) Py (k) Pylk) Py (%)
| Puyell)  Popy () Poy(e) By (i) |
Py, = covlX, Vyj, ete.
[Qu k) Q. )
Q(R} = |
| Qutt @,
Quc(k) = coV(Xp, Xp) = 0F,
Qxy(k) = cov(X,,;, Y,) = P mym %m Fvm
Qi) = cov({¥,, ¥,)) = o2 .
The coviariance eguations for the filter are
P (k) 1-a)? 2(1- @)*T 1 - %72 _I
Po k) | =] BA-o)T (1-®)(1-28) (1-0)1-HT
Py ue(R) L ®IT)? -28(1~B)T a-g*
3 P i%-1) a?
X| Pyt =1) | +| ofIT |[Quelt)] (4.3)
‘ _ 2
: Pt -1 | | GIT!
.




BEN H. CANTRELL

Byy (k) 17T (1-a? 2(1 - )3T 1-w)?72 7

Py (&) {=|-B1-a)T (1-a)(1-26) (1-a)(1-B)T
Fayey ) /T ~23(1 - BYT a-p?

B P, (k-1) —} [" o2
X | Py fe-1) |+ oBT | [Qyy (k)] (4.4)
S 1)_3 B/ T)>

and
‘Pyx(k}ﬂ B 1-a)? (1- )T (1-a)?T (1 - a)2T2 i
Py (k) _ f1-a)T (1-0a){1-§) —B(1-w) Q- -pT
Py y(k) i $A-a)yT $B1-a) 1-f- A-a)@-/T
Pay® | | GD ADA-H  HDA-H  A-F |
—.Pyx(k—].)« [ 2 ]
P.(k-1) | | of/T
X P -1) + T [Qy )] - 4.5)
| By k-1 | | GITY

Forming the covariances of Egs. (3.2) and (3.4} yields

0Z, = Pee(R) + 2(j/m) TPy (k) + (jIm)>T?Pyy (k) (4.6)
- 02, = By(k) + 20Im) TPy () + (Im)PT?Py (K) (e.1)

PapypOzpOsp = PyxlB) + (Im)T{P, . (k) + P, y(k)] + ( j/m)szvavy(k). (4.8)

For stationary noise inputs closed-form solutions can be found for Egs. (4.3)-(4.5) by

= placing P{k +1) = P() and solving the resuiting algebraic equations. However, it is easier
{0 obtain sclutions by recursively solving Egs. (4.3)-(4.5) until a steady-state solution is
obtained. It is necessary to eliminate T as a parameter by substituting Ay = V, T and

= Ax = V,T into the original filter equations. The resulting covariance equations are of the
3 same form as Egs. (4.3)-(4.8) with T =1. (The covariances are independent of sampling

T = B time.) Solving Egs. (4.3)-(4.8) yields the following result:




o-

=

o

NRL REPORT 7548 21
= 02 1Qux(l) = 0} (R)IQyy(R) = Py O, 0y [Quy(R) . (4.9)

For all admissible . 8, and j; for T = 1; and for F = f(a, B, j).

A simple procedure for determining the solution for stationary targets is next
described.

4.2 A Simple Stationary Solution

For the system shown in Fig. 2.1 the measurement means and covariances are trans-
formed into Oy, Oy, Pxpym Xm> Ym by Egs. (2.10)-(2.14). One then comput&s the
covariances at the output of the filter by Eqs. (4.3)-(4.8). The rasuits UR}” 00 s PRpBp»
Bp, and Rp are then computed by Egs. (2.23)-{2.27). If the target is statxonary the input
process to the filter is stationary (Egs. (2.10)-(2.14)), and therefore the ovutput of the
filter has 2 stationary solution given by Eq. (4.9). In addition, §,;, = b—p and I_Zm = }_Zp
The output of the filter can then be written as

ofp =F oR cos? B + F(Rpag )? sin® 6, (4.10)
o} = Fop sin® 8, + F(R,05,)? cos, (411)
Papyp OxpOyp = 05 F 0y 0, (oR ~(R, 9,,) )sin 28, . (4.12)

Substituting Eqgs. (4.10)-(4.12) into Eqs. (2.23)-(2.27) results in
agp = Fagm (4.13)
ogp = Fof (4.19)
PRy, = O (4.15)
R, = R, (4.16)

and

6, =8,. (4.17)

But this is the same solution as would have been obtained if the system shown in Fig. 4.1
had becn used. The equations describing the system are

R(k)_‘ [a-w {1-)T| 1’3(&—1)‘\ " p
= | % [Rn(®)] (54.18)
i

Va(®) | ) L BT (1-f) |[Vetk-D] | BT
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The covariance equations are formed in the same manner as before:

L

-

Pgr(k-1)

BEN H. CANTRELL

Fig. 4.1—Equivalent system te Fig. 2.1 under
linear approximations used in Section 2.0

a-w? 2(1-a)’T
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(1-a)?
$Q1-o)/T
BTy
i Pgg(k - 1)
X | Py (k-1)
Py, v, (k-1)

2(1-a)2T
1-a)(1-28
-28(1-B8)/T

—

a2

(BIT)?

-

(1 - a)2T?
Q1-o01-B)T

{1-8)%

+| ofIT |[Qpg(k)]

URP = PRR(k) + Z(j/m)TPRVR(k) + (jlm)2T2PVRVR(k)

Pyg(k) + 2(jIm)T Byy, (k) + (jim)*T? Py, v, (k)

because 8,, and R, are uncorrelated.

23

(4.23)

(4.24)

(4.25)

(4.26)

Since Egs. (4.3), (4.4), (4.6), and (4.7) are identical with Eqgs. (4.22)-(4.25) in form,

2

!

=6

- 2
= FoRm

n

2
Fogm

"

0

= R

m

m -

(4.27)

(4.28)

(4.29)

(4.30)

(4.31)

Egs. (4.13)-(4.17) are identical to Egs. (4.27)-(4.31), a fact which shows that the system
of Fig. 2.1 is the same as that of Fig. 4.1. To justify this result the following argument

is given. The system shown in Fig. 2.1 is redrawn in Fig. 4.2. Recall that in Section 2.0
the polar-to-cartesian and cartesian-to-polar transformations were shown to be approxi-
mately linear over the region governing the means and covariances. ‘The order of operation

Re

Xm X, R,
POLAR TO CARTESIAN
CARTESIAN t:tig: TO POLAR

6, TRANSFORM Y, Y, TRANSFORM 8,

Fig. 4.2—Filter system
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for linear operators can be changed, yielding the system shown in Fig. 4.3. For stationary
target case the two transforms cancel, yielding Fig. 4.1.

R Xm R Rp
POLAR TO CARTESIAN
CARTESIAN TO POLAR g

8., TRANSFORM Y, TRANSFORM 6, - 3,

Fig. 4.3—Interchange of linear operations

The value of F can be computed as follows: P(k) is set exial to P(k - 1) and the
resulting algebraic equations are solved;

Pp k) Pog(k) 2B - 3af + 2a®

i g a@-2a-B (4.32)
PrvpR)  Poy,(k)  B(2a-p)
2 ¢ x4-2a-h) (433)
Pypvp®)  Pyv, (k)  B[20® - o® + 2B~ af] 434
o2 T e (4 - 2a-f) 4.54)
Rom Bm
Pgr(k) Ppyg (k) Py vo(k)
= 0} o} =—T3—+ (@ilm) —g'— + (iim)}? —5"—.  (4.35)
aEm aRm ORm

The peak variance occurs for j = m. In Fig. 4.4, F is plotted vsx and § for j = m. Ob-
sexving this figure one finds that the amount of smoothing (« and ) cor:trols the peak
noise levels. In addition, the noise varies betweer: each scan of the search radar from k&
to 2 = 1. This is plotted vs j in Fig. 4.5 for large m. Observing this figure one finds that
the noise is nonstationary but periodic with time under steady-ctate conditions.

4.3 Some Nonstationary Solutions

A target is flown at a constant velocity in a straight-line trajectory as shown in Fig.
4.6. The measurement standard deviations are asumeé to be og,, = 250 ft and og,,, =
0.5°. Equations (2.10)-(2.14) are used to obtain a,m, “ym' Pxyym> Xm> Ym in terms of
the measurement variances and target trajectory. Using these resulis with Eqgs. (4.1),
(4.2), and (4.3)-(4.8), we find oR o?e PR, Pp, and B,. The resuits for several trajec-
tories and values of smoothing coefﬁcxents are shown in Flgs 4.74.12. in all cases only
the envelope of the peak noise (j= m) is shown. The covariances will have a ripple
between samples (k) and (2 +1). In addition the dotied lines show the covariances if the
target is stationary. Figures 4.7-4.12 show that the output noise processes are in general
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a=0.1,8=0005 a=056,5= 085

nonstationary and depend upon the target trajeciory and velocity, the sampling time, and
the filter parameters.

A circular fiight path is flown as showa in Fig. 3.2. The covariances of the predicted
range and azimuth are shown in Figs. 4.13-4.16 as a function of time for various condi-
tions. Again only the envelope of the peak variances is plotted ; j= m). At the far
ranges or low velocities the variances of range and azimuth approach the stationary solu-
tion values, although at the long ranges it was found that the correlation did not go to
zero but was a function of the turning motion. Again it is found that the covariances
can be a function of target trajectory, velocity, and range; sampling time; measurement
uncertainty; and filter parameters.

The effect of the faster sampler {j =1, ... m) is shown in Fig. 4.17. Observing this
figuze one finds that the covariances ripple between the scan time of the search rzdar in
a similar manner as found for the stationary solutions.

e AR B A B i
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4.4 Discussion of Resulfs

The covariance equations were found for both the polar and cartesian coordinate
filters. A simple closed-form solution was found for the covariances in both filters when
the target was stationary in space. For these cases the output correlation was zero and
the output variances only depended upon «, 8, and the input measurement variances.

For nonstationary targets the cartesian coordinate filter yielded output covariances which
depended upon «, §, input measurement variances, target trajectory 2nd speed, and
sampling time. In general the covariances increased as one came near the radar and
tended to approach the stationary target solutions at the far ranges except that the cor-
relation depended upon the turning motion.

5.0 COMPARISON OF POLAR AND CARTESIAN COORDINATE o-f FILTERS
OPERATING UNDER SHORT FADE CONDITIONS

This section is concerned with evaluating the tracking performance of the polar and
cartesian a-f8 filters for short fade conditions and for the track handoff problem. Sectiox
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5.1 describes the mean errors due to short fades, and Section 5.2 describes the effects on
the covariances. Section 5.3 presents the results of the simulation on the track handoff
problem.

5.1 Mean Errors

The predicted value strategy used for processing information under fading conditions
is defined as follows. When a fade occurs the predicted position is set equal to the meas-
ured position. The a-f filter equations in cartesian coordinates given in Egs. (3.1)-(3.4)
reduce to

X(k) 1 7] [xe-1)

= (5.1)
V, (k) 0 1||V.(k-1)

['X(k)"

Xpk+j/m) = [1 . jTIm] | (5.2)
0
Y(&) 1 T I_Y(k—l)-

= {5.3)
V)| o 1 Lvy(k—n_

and

Y (%)

Y (k+jim) = {1 jT/M] . 5.4)
Yy (k)

during the period of the fade. Ctherwise they are the same as before. Observing Egs.
(5.1)-(5.4), one finds that they are of the same form as Egs. (3.1}{3.4) except that

a = f = 0. Therefore Egs. (3.1)(3.4) can be used to represent the system under fading
conditions, except that « and § are time varying between these set values and a = = 0.

In a similar manner the filtsr in polar coordinates is found io be represented by Egs.
{3.16)-(3.19) with time-varying coefficients of a = § = 0 and the original set values of a
and § corresponding to a fade and no-fade condition. Under fading conditions the polar
coordinate filter moves the target along curvilinear lines at the last known radial and
traverse velocities duing the fade. The carfesian coordinate filter moves the target along
straight lines at the last known velocity.

Several constznt-velocity, straight-line {arget trajectories as shown in Fig. 4.6 were
flown. In all cases using the cartesian coordinate filter, the mean error between the pre-
dicted and true target positions was zero under the fading sequences. By using the polar
coordinate filter, the mean error between the predicted and true target azimuths was
found under several conditions as shown in Figs. (5.1)-(5.4). A one in the fading sequence
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Fig. 5.1 —Emror between predicted and true target positions at sampling
instants & (7 = m) for straight-line target trs;ectory under fading conditions
(tracking in polar coordinates)
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Fig. 5.2—Emror between predicted and trus r&rget positions atl sampling
instants k (j = m) for straight-line target trajectory under fading conditions
(tracking in polar coordinates)
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Fig. 5.3—Emror between predicted and true target positions at sampling
instants k& (j = m) for straight-line target trajectory under fading conditicus
(tracking in polar coordinates)
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Fis. 5.4—Errors between predicted and true target position at sampling
instantr k (j = m) for straight-line target trajectory under fading conditions
(tracking in polar coordinates)
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represents a fade, whereas a zero corresponds to no fade. In all cases thes envelope of the
errors at sample instants (j = m) is shown, ignoring the ripple errors due to the faster
sampler. These figures indicate that the error becomes larger as the target comes closer
to the radar and when the filter uses heavier smoothing. In addition the error grows dur-
ing the time the fade is present. The reason this occurs is that the target is being pro-
jected along curvilinear lines during the fades and is mroving in a straight line. The error
situation would be reversed if the target were moving along a traverse line rather than a

straight line.

A target is flown in a circular frajectory and the mean errors between the predicted
and true positions are computed for a given situation including a sequence of fades. The
results are shown in Figs. 5.5 and 5.6. These figures show that at least at the farther
ranges and short fading conditions the error is approximately the same using either the
pelar or cartesian coordinate system filter.

In general it appears that at the farther ranges where the near effect accelerations
are not present in the polar coordinate system, the mean errors in either filter system
under shoit fading conditions are nearly the same. The polar coordinate filter performs
better for constant-velocity targets moving in the polar directions, whereas the cartesian
coordinate filter performs better for targets moving in straight lines.

RANGE ERROR (kft)

AZIMUTH ERROR (Degreas)

D

<

-2

v = {100 /s T=4s
9= 966 f1/s? Frb:“.séeowws
R =106, 000 ft (1000I000iC---)
~ a = 056
B =085
.
o W, 20
8

»

& »

IRY W
R

Fig. 5.5—Mean error between predicted and true positions for a circular
target trajectory using 2n a-f filter in cartesian coordinates under fading
=cnditions - )
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v = 1100 1A FADE SEQUENCE
2 0 =966 f/d (10001000100--)

R = 100,000 f*
2=056
- B=085
T=4s

1 M=32

RANGE ERROR (kf1}

AZIMUTH ERROR (Dagreas}

Fig. 5.6 —Mean error between predicted and true positions for a circular
target trajectory using an aff filter in polar coordinates under fading
conditions

5.2 Covariance Description

Under fading conditions and using the predicted position strategy as outlined in Sec-
tion 3.1, thz covariances are described in the same manner as in Section 4.0 except that
when a fade occurs « and § eare set equal to zero. A constant-velocity target is flown in a
straight line and the covariances are computed under a fading condition for two cases as
shown in Figs. 5.7 and 5.8. The cartesian ccordinate filter is used and the envelope of
the covariances (j = m) is shown. The covariances increase during a fading condition.

The convariances were computed using the polar coordinate filter and are shown in Fig.
5.9. Unlike the cartesian coordinate filter, in this case the covariances are independent of
target trajectory, spced, and sampling time.

A circular flight path is flown and the covariances are computed using the polar and
cartesian coordinate filters. The results are shown in Figs. 5.10-5.12, which show that
the covariances increase as the target fades.
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Fig. 5.7—Covariances of predicted rsnge and azimuth for
straight-line target trajectory X;; = 30 n.mi., v = 2000 ft/s,
T=4,a=0.56, 8= 0.85, for fade sequence (10001000100....)

Fig. 5.8—Covariances of predicted range and azimuth for
straight-line target trajectory Xy, = 2 nmi, v= 2000 ftfs, T=
4, a=0.56, § = 0.85, for fade sequence (10001000100....)
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Fig. 5.11 —Covariances of predicted range and &
azimuth for circular flight path Ry, = 210.2 3
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5.3 Track Handoff Problem

In this section, the abilities of the polar and cartesian off filters to perform the track
handoff problem are compared. Since the details of the track handoff simulation are
given in Ref. 2, only the basic facts will be presented here.

The geometry of the situation is shown in Fig. 5.13. The coordinates of the target
at time t = 0 are (xy, ¥y, ), its height when crossing the y axis is hy, its ground speed is
v, and its heading is A. The radar coordinates are (0,0, h,).

TARGET

— /?
TARGET FLIGHT PATH_—— |
//

- !

Fig. 5.13 —Geometry of radar and target

The simuiation is run in the following manner: The target is assumed to be detected
on every scan of the search radar. Initially, three target positions are generated, and the
of filter is initialized. After each additional detection, the af filter is updated and is
used to continuously estimate the target’s coordinates. Starting with the third sample, the
center of the tracking scan pattern is centered on the predicted position of the target.
The search pattern of the tracking radar is initialized, and during each update time, the
program calculates whether or not the target is located within the acceptance beamn of the
tracking radar {Section 5.4). The simulation continues until the target crosses the y axis.
The output of a single case is a series of correct and incorrect handoffs between the
search and tracking radars. Many cases are runs, and the probability of handing off as a
function of range is estimated.

The initial simulation was run with the following target parameters: x; was uni-
formly distributed between 121,600 ft (20 n.mi.j and 122,600 ft, y, = 0, by = 10,000
ft, hy = 5000 ft, A is uniformly distributed between 5.9° and 6.1°,* and V is uniformly
distributed between 2100 and 2300 ft/s. The radar is at a height of 80 ft, has a range
resolution of 250 ft and a scanning rate (update time) of 4 s, and measures the azimuth
position with a standard deviation of 0.5°. The deviation accuracy of the radar will be
varied in the simulation. It will have a standard deviation of 1°, or else the radar (a 2-D
radar) assumes that the elevation of the target is always 12° (the bottom of the 24° scan
pattern of the tracking radar is set on the horizon). The filter parameters are a = 0.6
and § = 0.9 for range, & = 8 = 0.5 for azimuth, and o = ¢.5¢ and § = 0.85 for X and Y.

*This makes the target pass within 2 mi of the radar.
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For each of the two elevation accuracies and two filters, S0 cases were run; and the
probability of the target being in the beam of the tracking radar on the last scan pattern,
vs the target range, is shown in Figs. 5.14 and 5.15. It is obvious that one can hand off
targets at closer ranges using the X-Y filter. This is because of the large acceieraiicns in
the R-8 coordinate system for crossing targets.

w
5 10
& O 4°x 24° SCAN PATTERN (8 SEC);
= ELEVATION ASSUMED TO BE 12°
b O 4°x 6° SCAN PATTERN (4 SEC);
DZ 08  ELEVATION ACCURACY = 1C*
W
by
28
206
WX
o~
bt
e
32 oal AZMUTH ACCURACY = 05°
" UPDATE TIME = 4 SEC
I
- PRELIMNARY RESULTS
58 52 RADAR RANGE EQ NOT NCLUDED
Sozl
>
- TARGET VELOCITY = 2200 FT/SEC
2 PASSED WITHN 2 MLES OF SHP
< STARTS AT 10,000 FT; ENDS AT 5000
< o) i i ] i 1 .
£ 0 1 20 30 40 50 60 iE] 80 90 100
RANGE N KILO FEET AT WHICH LAST SCAN WAS BEGUN
Fig. 5.14—Probability of handoff using R-8 filter
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Fig. 5.153—Probability of handoff using X-Y filter
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5.4 Discussion of Results

The mean errors in the polar and cartesian filters were found to increase during fades
unless the target was moving at a constant velocity along tke polar or cartesian coordi-
rates, respectively. For short fades at the fonger ranges, there seemed to be very iiitie
difference between the mean errors in either system. The covariances increased during
fading conditicns.

o

One can hand off targets at closer ranges using the X-Y filter. This is because of the
large accelerations in the R-8 coordinate system for crossing targets.

6.0 CONCLUSION

This report describes an approximate analytical procedure for determining the errors in
an o-f filter operating in cartesian coordinates. These errors are separated into meuan and
covariance errors and ar- compared to the errors in an a-f filter operating in polar coordinates.
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The polar tc cartesian and cartesian to polar coordinate transformations are shown
to be approximately linear over the space in which the central and near tail regions of
the probahility density lie. Since the measurement probability density is Gaussian, it is
shown that the probability densities after the transformations can be approximated with
a high degree of accuracy with Gaussian densities as long as the far tail region is of little
concern. Using this result, we find the covariances at the output of the filters. Closed-
form steady-state solutions are found for the covariances in the polar coordinate filter
and for stationary targets using the cartesian coordinate filter. These covariances depend
upon «, B, and measurement variances. For moving targets, the cartesian coordinate filter
yields output covariances which are nonstationary. Their values depend upon «, §, meas-
urement variances, target frajectory, target speed, and sampling time. In steady state and
for the far ranges, the output variances using the cartesian coordinate filter approach the
variances obtained from the polar coordinate filter. At the near ranges, the covariances

are in general larger in the cartesian coordinate filter as compared to the polar coordinate
filter.
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At the far ranges the mean errors using either filtering system are essentially the
same. But at the close ranges the mean error in the polar coordinate system is in general
larger than in the cartesian coordinate filter.
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In the study on the effects of short fades using the predicted target strategy, it was

generally found that both the mean errors and covariances increased during the time of
the fade.

In the study of the track handoff problem it was found that one could hand off
targets at closer ranges using the X-Y filter. This is because of the large accelerations in
the R0 coordinate system for crossing targets.
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Appendix

CALCULATION OF MEANS AND COVARIANCES OF RADAR
MEASUREMEN1S IN TERMS OF CARTESIAN COORDINATES

A radar measurement is given i range R and azimutk U, where R and 6 ave assumed
tc be uncorrelated, Gaussian-distributed random variables with means @ and R, and

variances of and of. The problem is to determine the means and covariances of the
two quantities X and Y defined as
X =Rcost {Al)

Y=Rsind. (A2)

In the calculations the following two facts are used extensively. The approximation

o0 N
a2 (-203)
ez""=1+z:*zv%“‘”'1‘2"3 (A3)
N=1

is used because the azimuth standard deviation gy in radians found in typical searca radars
is small. The integral

f X% cos X dX =——g—> wherea> 0 (Ad)
[4]

is used in each of the calculations.
The major steps in the calculations are the following.

Mean of X, X

X = E[R] E[cos 8] where E[R] = R

Efcos6] = — f‘” cos§ & (112)O-B)00)?] g5

Ver gy L

Change of variable w =8 - §

i 2
EICOS 0] = \/_2; - f {COS w cos 6 — sin w sin 0] e(—112){wlcg) dw
g J-oo
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Efcos0] = 25959 f cos 0 - ANEaPW? 4o,
\/Zﬂ 0'8 0

Efces8] = 9812 cos T

X= R 082 cosf; forsmallog, X = Rcosd
Meanof YV, Y

Similar to calculation of X

T-Re%26nG; forsmallog, ¥ =Rsind

Variance of ¥, VAR X

Var X = E[X2] - (E[X])? = E[R?] E[cos? 0] - X?

pteo 0) = =L [ et 0 ONODIY g
0'9 < oo

Efeos? 0] = & x — j“' 2 E-D0)?] g
0y Lo

$

Sl 1 J’ cos 27 W2 NE-B0)] gg
2 \/-2—7F08 o0

D0

- o 2
Efcos® 8] = % + %—X N J cos (Zw + 28) e-12)wl0)” g,
Veértog Joo
2 1.1 1 > - . =
Elcos® 0] = 5 + X ——— {cos 2us cos 26 — sin 2w sin 2€)
2 (2]
< V2# g P
(-1/2)(wlg)?
X e dw
Efcos? 0] = % 4 2c0s20 cos 20 ¢ MV 4,

2 \/rf‘!? Oy oo

45

Eq. (2.13)

Eq. (2.14)
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a 952 —
Efcos* 6] =%+-§-—e2°" cos 20

E[R?] = of + (R)?
Var X = E[E®] E[cos? 6] - (5)*; for small g,
Var X = o2 cos?8 + () o sin?
Variance of Y, Var Y
Similar to calculation of Var X, for small 0p ,
Var Y = o} sin? 8 + (R)" 0f cos?T .
Covariance of X and Y, Cov XY

cov XY = E[XY] - E[X1 E[Y] = E[R2] E[cos0 sinf] - X ¥

> 2
EfcosOsinf] = 11 sin 20 & (U2)0-8)/05)°] 4
2 \/ﬁ Oy oo

w=0-17
. 1 = =
Efcosf sinf] = —— f (sin 2w cos 26
2V2rt o L

+ cos 2w sin 20) e(—1I2)(w/oe)2 dew

P 2 o
Efcos@ sinf] Sin28 cus 2w e‘(llo""&) “% dw
‘m 00 oo

]

2 —_
E{cos 0 sin 0] %-e““""o sin 28
E[R?] = o + (R)*
cov XY = E[R?) E[cos@ sin§} ~ XY; forsmall g, ,

oZ _ Ra? _
conY-:—i—sinzﬂ ——2—-sin20.




