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POPULATION MIXTURE MODELS AND CLUSTERING ALGORITHMS 

by 

Stanley L. Sciove 
University of Illinois at Chicago Circle 

Abstract. 

The problem of clustering individuals is considered within the 

context of a mixture of distributions. A modification of the usual 

approach to population mixtures is employed. As usual; a parametric 

family of distributions is considered, a set of parameter values being 

associated with each population«  In addition, with each observation is 

associated an identification parameter, indicating from which population 

the observation arose. The resulting likelihood function is interpreted 

in terms of the conditional probability density of a sample from a mixture 

of populations, given the identification parameter of each observation. 

Clustering algorithms are obtained by applying a method of iterated 

maximum likelihood to this likelihood function. 

AMS 197O subject classification.  62H5O; Secondary 62E10. 

Key words and phrases. Mixture of distributions, cluster analysis, isodata 

procedure, k-means procedure, Mahalanobis distance. 
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POPULATION MIXTURE MODELS AND CLUSTERING ALGORITHMS . 

by 

Stanley L. Sclove 
University of Illinois at Chicago Circle 

Summary. 

The problem of clustering individuals is considered within the context 

of a mixture of distributions. A modification of the usual approach to 

population mixtures is employed.- As usual,  a parametric family of distri- 

butions is considered;, a set of parameter values being associated with each 

population.  In addition^ with each observation is associated a parameter 

indicating from which population the observation.arose. The resulting 

likelihood function is interpreted as the conditional probability density 

of a sample from the mixture of populations,, given the population identi- 

fications of each observation. 

The relation of this conditional mixture model to the standard mixture 

model is discussed^ it is shown how the concept of the conditional mixture 

model provides a probability model for cluster analysis,  and it is shown 

how to use the model to provide a plausible general method for clustering. 

Given a parametric family of distributions,  an appropriate clustering 

algorithm is obtained by applying a method of iterated maximum likelihood 

to the resulting likelihood function.  The algorithms resulting by application 

of this general method are, then,- interpretable as schemes for estimating the 

parameters of probability models. 



Special attention is given to the case of multivariate normal popu- 

lations with common covariance matrix. This case is of special interest 

because application of the general method produces Mahalanobis-distance 

versions of two well-known clustering algorithms^ isodata and k-means, 

thereby relating these algorithms to a probability model for the clustering 

problem. Other models given special attention are the multivariate normal 

distribution with different covariance matrices, and multinomial models, 

especially the model based on an assumption of local independence as used 

in latent structure analysis« 

1.  Introduction. 

The problem of clustering to be considered here is as follows: 

given a sample of p-vectors x ,x ,. .»,x ,  that is, a sample of p 

observations on each of n individuals, put the individuals into groups. 

Of course the problem needs more formalization if we are to be able to 

do anything meaningful with it. 

We begin by defining a clustering as a partition of the set of 

observations, that is, a collection {C ,C ,...,C, ] of disjoint sets 

such that each observation belongs to one and only one set C . Each set 

C  (g=l,...,k) is a cluster. 
o 

In this paper we shall assume that the integer k is specified in 

advance.  (A modification1- of the >algorithm'-tb: be' presented allows Some- of 

the- clusters to join or'split-)1 thereby permitting fewer or more than k 

clusters to be formed. See Section 6.2.) 
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As has been suggested before [see, e.g.,  Fleiss ard Zubin (1969)], 

it seems reasonable to!-;consider a population mixture model for clustering 

problems» With the g-th population is associated the probability density 

function h (x), g^l,..»,k. When we are working with some parametric 

family, say indexed by a parameter ß, h  takes the form h (x) =h(x; ß ). ~   g g ^    ~< ~g 

The densities (or parameters) are unknown, this being the distinction 

between the present formulation of the clustering problem and the classical 

classification problem, sometimes',termend"identification", "discrimination", 

or "allocation".  In the classical problem, the densities or parameters are 

known, or else a training set of data is available, from which the densities 

or parameters can be estimated. 

Now with Individual i  (i=l,.„„,n) associate the group identification 

parameter 7. which is equal to g if and only if Individual I belongs 

to group g(g=l,2,..o,k). Each individual gives rise to a pair  (X,/). X 

is observable;  7 is not»  It will thus be seen that this problem fits 

into the framework of an empirical Bayes problem [see, e.g., Robbins (1964)], 

but in the present paper this aspect will not be studied explicitly. 

In the terminology used by 1-Ieyman and Scott (1948) in a study of con- 

sistent estimation, the parameters 7.  are "incidental" parameters because 

each of them refers to a finite number of observations (one in the present 

case), while the parameters ß  are "structural" parameters because, if 

we allow n to tend to infinity, each of them is associated with an infinite 

number of observations» 

In the context of this model, to "cluster" is merely to estimate 

the 7. 's, i=l,..,,n individuals.  "'",• ', .; . ' : ,•;•!•: ' ,J ; t.- • , ;'..'.'.     :' 
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It is convenient to reparametrize somewhat» Replace 7. by the 

k-vector 0. which consists of k-1 zeros and a single 1; the position 

of the 1 indicating which group Individual i belongs to; that is, 

0. has a 1 as its y.-th element and O's elsewhere» The density of 

X., given 6.,  is 

k 
(1.1) f(x |e ) = L.   0 h (x )  , 

where 0 .  is the e-th component of 0., 
gi        ° ~i 

2"  The probability model. 

This model should be compared and contrasted with the usual population 

mixture model, in which any observation x.  is chosen from Population g 

with probability it ,  so that the density of X.  is 
g ~i 

k 
(2.1) j(x.; it ,. ..,jr ) = 2 it h (x )  . 

~   -*-     •"-   p-=i  ^ " ~ 

The probability model that will be used here for the clustering problem 

is as follows.  It is assumed that pairs  (X.,6.), i=l,...,n, have been 

sampled randomly, in the sense that their joint density is 

1=1 ~i ~i 
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(The notation which will be used here is the-.standard notation in 

which f and F are generic symbols for probability density functions 

and cumulative distribution functions, respectively, f„ denotes the 

probability density function of the random variable X, f denotes 

the joint density of X and Y, fyi„ denotes the conditional probability 

density function of Y,  given X, etc» For the moment we suppress the 

subscript i.) 

The conditional density of X given '©is 

f?l?(-'!) * I ^V-' 

The marginal density of    0    is taken to be the point multinomial, 

f  (e)  = rt      jr       ..,.. jr , 
6  ~ Id K. 

6    ^0    or    1,    2k    9    = 1,    n    > 0,    Sk    rt    = lrf-.Thus.- * .,     .•',-.«':     . 
g g-lg g g-1 g      ••.•••• g 

is the probability that a randomly selected individual comes from 

Population g. 

First it will be shown that the standard mixture density is indeed 

the marginal density for X resulting from this model. Somewhat more 

generally, let Z = (Z ,Z .„.„,Z ) be a random vector.  If the conditional 

density of X given Z is 

k 
f |  (x|z) = Z    z  h (x)  , 
AIZ ~ ~     ,  g g ~ 



then the marginal density of X is 

k 
fv(x) = 2 E[Z ]h 60 
t ~ g*=l   S g ~ 

To see this, note that we have 

fY(x) = / f Y 7(x,z) dz 

= / fY.7(x|z) f (z) dz 
A | Zi ~ ~   ZJ ~   ~ 

k 
= / s z h (x) f (z) dz 

g=i 
s e ~ s ~ ~ 

k 
- E [/z f7.(z)dz] h (x) 

k 
L    E[Z ] h (x) 

g=l   s  § 

From this it follows that if  6 = {®^ ,<$,.. ..,©)     has the point 

multinomial density 

f (e) = JT,  JT0 ... JT, 
e ~    -L  2     k 

jt > 0, E  jt = 1, 0  - 0 or 1, E  0  = 1, then the marginal density 
g      g=l g      g g=lg      ; & i 

of X is the standard mixture density: 

f„(x) = E it h (x) 
x ~   „_n g g ~ 
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For, under this model the random variable Z = 8  is Bernoulli with 

parameter n ; hence E[8 ] = re . 
g g    g 

Now suppose that pairs  (X.,8.),  i=l,...,n, are sampled randomly, 
»*i fvi 

in the sense that their joint density is (2,2).  Of course, then the 

X's are independent, and the 8's are independent. Then the conditional 

density of X_,X ,,..,X , given .8 ,©,,.,,®      is 

(2.3)     fY V    In ra   (x-,..'.,x    |e   ,,....,0) v^ -^'      Xn >. • 1 IA    8-, ) • •»^8    '-I ~n ~1 ~n 
~1 ~<n ~1 ~n 

fX, ,8n,...,X   ,©   (5L'~l"m''Zn'~r? 
~1 ~1 ~n ~n  ^____ 

a, j t • 1 jö    <vi ~n ~1 »n 

n 
n fv   0 (x.,e ) 

.V®-(~i) 
1-1 ~i 

n 

n  C   In   ^x- 'e-)fn   &Q .   ,  X. 18.   ~i ~x    8.   -av- 1=1 ~i ~i    ~i 
n 

1=1   ~x 

n 
= .n/x.|8.(5il2i

) 

1=1  ~i   „.1 



It is (2.3) which is the "likelihood" in the conditional population 

mixture model.  In the context of this models then, to cluster is to 

estimate the 0.'s, the values of the identification parameters. 

Versions of this model have been used recently by Scott andSymons 

(l97l) and S„ John (1970), but the model dates back at least to Gibson 

(l959) j> where it is called the latent profile model.  This model has 

been discussed by Anderson (1959)° 

The likelihood approach to clustering is illuminating in that it 

sometimes shows how ad hoc optimality criteria (objective functions) 

which have been proposed for the clutering problem relate to particular 

probability models»  For example, Scott and Symons (l97l) show how various 

optimality criteria relate to maximum likelihood clustering in multi- 

variate normal populations, 

Note that we can equivalently write (l.l) as a product: 

(2.4) f(x. |0.) = n [h (xj] 

The form (2.4) is often more convenient, and we shall use it in what 

follows» 

It is easy to allow for the presence of a "training set" of data -- 

a prior set of observations for each of which we know the group identi- 

fication«  Letting m  be the number of prior observations in the g-th 

group and denoting the prior observations from the g-th group by w ,, 

1=1,...,m  ,  we can write the likelihood as 

k   s n  k       6   . 
n n h (w .)   n n [h (x.)] gl , 

,=1 1=1 g ~gi 1=1 g=l § -1 



if we treat all the observations W ,,  g=l,...,k, i=l,...,m , and 
~g* g 

X.,  i=l,...,n as statistically independent. We do not explicitly 

treat the case of prior observations any further here. 

3°  The clustering algorithm. 

Using the form (g.k),  one sees that under the random sampling 

mechanism mentioned above the joint probability density function of 

X ,X ,...,X , given 0,0,»„»,0  is 

n  k       9   . 
n ii [h_(x.)] gl , 
i=l g^=i ö " 

•or, in parametric form, 

n  k 6 . 
n  n [h(x ;ß0] gX 
i=i g=i . ~x ~s: 

The likelihood is to be maximized over all assignments of individuals 

to groups and over all permissible parameter values» Many ad hoc schemes 

can be applied to this maximization problem» For example, one way to 

maximize is to start with a given clustering G ,«>,.,C ,  take each 

observation successively and shift it to the first cluster for which a 

shift results in an increase in likelihood,-^and loop/through1 the data';.1, 

until no individual changes clusters. 

The algorithm to be described hereis an' iterated, that is, a back-and- 

forth procedure of maximizing this likelihood function, in that we first 

maximize with respect to the 0's  (holding the ß's fixed at initial 



values), then we maximize with respect to the ß's  (holding the 0's 

fixed at the values obtained in the previous stage), then we again 

maximize with respect to the 6 "'s     (holding the ß's fixed at the values 

obtained in the previous stage), etc. We stop when no 0 changes, i.e., 

when no individual changes clusters -- or when we have used a pre- 

specified amount of computer time. 

An alternative for starting the procedure Vis ..to..: start- with, an'-,initial 

clustering rather than with initial guesses • of thel^ß's. - .- 

It is clear that, for fixed values of the ß's, say ß's, the 

likelihood is maximized, for each i, by taking 

(3.1) 

= 1 if h(x jß) = max  [h(x;ß ) 
;i ~i ~g   1<£<k        ~x ~Z 

=  0 otherwise. 

(in case of ties an arbitrary choice is made.) In other words, clustering 

proceeds by allocating Individual i to that group for which the esti- 

mated probability density of the observation x.  is largest. 

Note that, having tentatively estimated the y~s     (or, equivalently, 

the 6's) at any stage, that is, having tentatively clustered the 

individuals, estimation of the ß's  is reduced simply to ordinary 

maximum likelihood estimation in the particular parametric family at 

hand. 

Let T denote the set of .0' 's And B the set of ß's. Write 
~i ~g 

L(B,T) to denote the likelihood. Let B^S'     denote the value of B 
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which maximizes    L    at the s-th stage of the.'.iteration >  and similarly 

(s) 
let I    denote the value of T which maximizes L at. the-s-th stage 

of the iteration. Then T    maximizes L(B^  ,l) with respect to T, 

and B    maximizes ließ,!     with respect to B. As a function of 

B, • I^B,^8"'1') is the section of its,!) at T^T^"1^ and L(B^
S
%T) 

(s) 
as a function of T is the section of L(B,T) at B=B  „ We may refer 

to this back-and-forth maximization as section-wise maximization.  It is 

an example of the'relaxation method (or. .Southwell's method' ); see Ortega 

and Rheinboldt (19JÖ, -pp. ,22JÜ!f^-and Southwell-' &9kQ  and 19I4-6). - 

It is true that 

L(B(s+l),I(s)) >L(B(s),T(s))  , 

and 

L(B(S),T(S+1)) >L(B(S),T(S))  - 

that is, at no stage of the procedure can the value of the likelihood 

be decreased; however, there is no guarantee of convergence to the 

global maximum (neither do alternative.clustering algorithms guarantee 

convergence to the global maximum of their objective functions). 

To see how the procedure can fail to converge to a global maximum, 

suppose it happens that L(B^,T^) > L(B,2VS})J for all B, or 

CO (s-1 ) (s) 
L(BS  ,1A   J)  >L(B  ,T), for all T.  Then the procedure will terminate 

at the s-th stage, without having necessarily reached a global maximum. 
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That is, if, having maximized with respect to one of the variables B 

and T, we happen to find ourselves at a (relative) maximum with respect 

to the other, we may not reach a global maximum. 

•Back^and-rforth iterative methods such as the one developed here 

are familiar in other estimation problems, notably in weighted least 

squares estimation, where we iterate between estimating the weights and 

the regression coefficients, and in factor analysis, where we iterate 

between estimating the communalities and the factor loadings. 

k.      Application to particular distributions. 

Now we consider application of this general clustering method to 

particular families of distributions. First we consider normal distri- 

butions with common covariance matrix, for it is in this case that it 

becomes clear how the model establishes a link with some existing cluster- 

ing procedures. 

4.1. Multivariate normal populations with common covariance matrix. 

In the case of p-variate normal populations with means  |~t , 
~g 

g=l,...,k, and common covariance matrix £, the likelihood takes this 

form: 

(2n)"
nP/2 |E|"n/2 exp [4 L      Z  Ö i^i-O' S"1^-^)] 

i=l e=l &  ~  ~S ~s 

Here (3.1) is equivalent tc 
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0.-1 if     (x.-p. )! E     (x.-u )  «=    min     [(x.-|i.)'  Z     (x.-|ij} 
gi ~i  ,-g ~      ~i ~g i<g<fc      ~1  ~i! ~x  ~^ 

(k.l)   

= 0 otherwise« 

That is, Individual i is assigned to that group .to whose tentatively- 

estimated centroid he is closest, where the distance is in the metric 

of the tentatively estimated covariance matrix. Having estaimted the 

0's, we have multivariate normal observations arranged into groups; 

maximization with respect to the (a's and E is accomplished by taking 

the sample mean vectors as estimates for•the u's, and the within-groups 

sum-of-products matrix gives the estimate of E, The procedure is 

iterated: using new estimates \x  , g-1,.»- ,k, and E, fr.l) is applied 
o 

•So /\ , " 

again«  Then new (a s and a new Z are calculated, etc*  The matrix 

E can be updated efficiently» Also., the Mahalanobis distances in (hd) 

can be efficiently computed as follows» These distances are of the form 

v'M v, where v = (x.-u)  and &"'£'.£i:-   TO evaluate a quadratic form 

v'M v, given M and v., one notes that, algebraically, • the solution 

x of the system Mx = v is x = M T» Numerically, this solution x 

can be obtained efficiently, without doing all the arithmetic operations 

-1 -1 
required to obtain M . One then computes the value of v'M v simply 

as v'x .  [See Anderson (1958), p. IO7.] 

Relationship with the .hisodata' prooedure. This scheme is a 

Mahalanobis-distance version of Ball and Hall's (1967) isodata clustering 

procedure.-  (Earlier documentation of isodata by Ball and Hall exists, 

but the 1967 reference is perhaps-the most accessible,,) The isodata scheme 

=13- 



proceeds as follows..  One starts with tentative estimates of cluster 

means and assigns each individual to the mean to which he is closest. 

(The isodata scheme uses Euclidean distance., or modified Euclidean 

distance in which different weights are assigned to the p dimensions.) 

The cluster means are then re-estimated, and one loops through the data 

again, reassigning the individuals, etc. Note the similarity to our 

scheme. We start with tentative estimates of the u's and £  (it 

seems a good idea to take the initial estimates of the u's to "be 

outside the convex hull of the data.? and it is easy to take the initial 

estimate of £ to be the identity matrix1) .and assign each individual to 

the mean to which he is closest, using Mahalanobis-distance in the 

metric of the tentatively estimated covariance matrix. The u's and 

Z are then re-estimated, the individuals are re-allocated to clusters, 

etc. 

An important difference is that our scheme employs Mahalanobis- 

distance rather than Euclidean or weighted-Euclidean distance. And it 

is worth emphasizing that it is the Mahalanobis distance based on the 

within-groups sum-of-products matrix that arises here^ -some data 

analysts use the total sum-of-products matrix, which, as Chernoff (197O), 

for example, has argued,:is not appropriate. I have done data.analyses 

using both the total and the within-groups sum-of-products matrices, 

and the total sum-of-products matrix gave poor results, while the within- 

groups sum-of-products matrix gave good results. 
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For example,, consider the Fisher iris data [Fisher (l9J>6)],   con- 

| sisting of p=4 measurements on each of 50 irises in each of k=3 

species.  If the sample centroids of the three species are computed from the 

I group-identified data and the 150 flowers are then assigned to that centroid to which 

they are "closest"., then only three misclassifications are made when 

the distance is in the metric of the within-groups covariance matrix,, 11 

I        misclassifications are made if Euclidean distance is used, and 20 mis- 

classifications are made when the distance is in the metric of the total 

j 
I covariance matrixl 

One further point along these lines: Mahalanobis-distance is the 

same as Euclidean distance in terms of principal axes. Hence some data 

)        analysts transform the raw data into scores on principal components, so 
1 

that they can simply use Euclidean distance. Their mistake is that they 

I 
[        use the principal components of the total sum-of-products- matrix-  The 

Euclidean distance they calculate is then the same as Mahalanobis-distance 

in the metric of the total sum-of-products matrix, which is not appropriate. 

I have programmed three algorithms in APL [I.B.M. (l969)> Iverson 

(1962)] -- the algorithm developed here, in which at any stage the dis- 

tance is in the metric of the tentatively-estimated covariance matrix, 

an algorithm in which Euclidean distance is used at each stage, and an 

algorithm in which at each stage the distance was in the metric of the 

total covariance matrix» Results of two rums of each of the three 

algorithms on the Fisher iris data will be given here. In one run, the 

initial centroids (initial estimates of the three mean vectors) were 

flowers in the same species ("difficult initial centroids").  In another 
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run, the initial centroids were three flowers from the three different 

species. 

RESULTS OF TWO RUNS OF EACH OF THREE ALGORITHMS 

Metric 
Difficult 

initial centroids 
Easy- 

initial centroids 

Number of mis- 
classifications 

The adaptive . 
metric of the 
algorithm, 
starting with 
Z=I (Euclidean 
distance) 

Euclidean distance 16 

Number of  Number of mis- Number of 
iterations classifications iterations 
before con- before 
vergence convergence 

Ik 

11 16 

Distance in the 
metric of the 
total sum-of- 
products matrix 

ko 10 2Q 

Relationship with the k-^means procedure. Arranging the computation 

a little differently, updating the estimates of the u's and E after 

each individual is assigned rather than waiting until all individuals 

have been assigned, produces a Mahalanobis-distance version of MacQueen's 

(1966) k-means procedure. 

Thus, a link has been established between some of the better known 

ad hoc clustering procedures and a probability model for the clustering 

problem. 
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J+,2o Multivariate normal populations with different covariance matrices, 

The algorithm generated for this case turns out not to he simply- 

to use a different Mahalanobis distance for each cluster.  The complica- 

tion which occurs is analogous to that in "classical'5' classification 

(discriminant analysis), where one is led to quadratic discriminant 

functions if the covariance matrices differ« 

The details are as follows.  The likelihood in this case is 

/_ n  k     ~6   ,/2 n  k 
(2*rnp/2 n  n |z I gl  exp[4 2  2 0 .(x.-|i )'Z_1(x„-u )] 

i=l ~i   ~g i=l s=l  gl -1 ~g _g ~x ~g 

In this case (j.l) becomes 

(k.2) 0 . = 1 if setting ' &  = g maximizes 
gi 

\z£r
:i  exp[4(x.-^)' ^(x.^)] 

=.  0 otherwise. 

Maximizing the expression in (k.2)   is equivalent to minimizing 

»nlf^l + (*!'&'  h1^!^ 

It has been noted [see, e.g., Day (.1969)] that in the standard 

mixture model for this case the supremum of the likelihood is infinity. .• This 

Is reflected in the fact that in our algorithm it would be possible that 

at some stage one of the clusters would consist of a single individual, 

so that the tentative estimate of the mean of that cluster would be the 
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vector of observations for that individual, and the tentative estimate of 

the covariance matrix of that cluster would be undefined.  It is also 

possible for the observations in a given cluster to be very close to 

lying on a lower-dimensional subspace, so that the tentative estimate of 

the covariance matrix could have an arbitrarily small determinant, and 

the maximized likelihood could be arbitrarily large, for the contribution 

i^ i—ns/2   /    / \ of Cluster g to the maximized likelihood is  |Z |  '     exp(-pn /2), where 
g g 

n  is the number of individuals assigned to that cluster, 
g 

^••3' Multinomial models. 

Multinomial models are of special interest because they relate to 

the analysis of questionnaires and of patterns of medical symptoms. 

Suppose each variable X , v=l,...,p, is a dichotomous variable (indi- 

cating a Yes or No answer, or presence or absence of a symptom).  It is 

not reasonable to assume the X's independent in the whole (mixture) 

population.  It is sometimes assumed, however, that within subpopulations, 

they are independent.  This model of local independence is employed in 

latent structure analysis [Lazarsfeld and Henry (1968)].  If we let 

ß  = Pr(X .=1) = 1 - Pr.{X .=0}  , "ve    "• vi ' l vi ' 

for the g-th subpopulation, then under the assumption of local independence 

the density in the g-th subpopulation is 

v=l 
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The "clusters" are the subpopulations. 

5.   Comparison with the method based on the standard mixture model« 

Wolfe (197O) has considered clustering based on the standard 

mixture model. Under that models the posterior probability that 

Individual i belongs to Group g is 

•st  h (x„ ;ß ) 

(5.1)  g g ~X ~g 

^W^eP 

If we can obtain estimates for  ß ,  st   ,   g=l>. . • >k,  they can be substi- 

tuted to provide an estimate of (^.l), 

it  h (x „ : ß ) 
(5-2) , g ~1-^- 

Z it h(x. ;ßj 
j     ~.     JO ~ -L *>'-t' 

Individual i is assigned to that Group g for which the estimated 

posterior probability of group membership (5=2) is largest«  (Recall 

that, with the conditional mixture models Individual i is assigned to 

that Group g for which the estimated density h(x.;ß )  is largest») 

Wolfe has provided computer programs for the case of normal dis- 

tributions. As is well known.,' the maximum likelihood equations for 

mixture problems are messy. Wolfe solves them by a multivariate Newton- 

Raphson method.  This involves the assignment of arbitrary initial values 

-19- 



to the parameters; to start the iterative solution, as does the general 

method described here. 

Perhaps, a word may be said by way of further comparison of the 

standard and conditional mixture models, The likelihood in the standard 

model is 

n 
n fY (x.) , 
1=1 ~1 

or 

«•/ 

. . fx.le. (iJSt'^e.^i' • 
1=1 w   „,1 ~1 ~1 

whereas the likelihood in the conditional model is 

n 

15=1   ~1 ~1 

so that in using the conditional model we are using the factors 

f  I  (x.|0.) rather than a smoothed version of them, namely 
A , I ©. ~i *vi 

Px.le.^i^e.^ =E 
* ~i ~i      ~i ~i ~i 

- fY (x.) 
-3, 
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Note that 

n n k 0 . 
max    H f  |  (x.10.)     max    n  H [h (x.)] gl 

3 ,...,0-1=1 „i'ri    A   0 , ...,0 1=1 g=l s -1 

n     k       0 . 
= n max n [h (x )] gl 

i=l 0. g=l g ~1 

=. n max f  |   (x.|e.) 
1=1 0. ^i1?! ~X -1 

~i 

> n  f |  (x |e ) dF (0) 

n fY  (x,) 
i=i ?i -1 

1=1    -1  -1        k 

no matter what the values of jt. ,...,« . Thus 

-l""'?n ^ ~1 ~x        Ä1,...,ir i=l     ^     K 

i.e. 
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max   L(e . o„.,0 ; X. ,. .. ,X ) >   max   L ' (it. ,. . . ,rr ; x. ,. .„,x )  , 
~1    ~n ~1    ~n = 1     k ~1    ~n 

2l'""2n V""Äk 

n 
where L ' (it, , » . . ,it ; x. . *.,x ) = II j (x.; it. ,. . . ,it. )  denotes the 

1     k ~1    ~n   . . °  ~i  1     k 
i=l 

likelihood corresponding to the standard model.  If it is legitimate to 

compare likelihoods under the two different models, this shows how 

"overfit" occurs when we use conditional models; the same concepts apply 

to the shrinkage problem' in regression analysis when we predict using 

an estimated regression function. 

Note that; under the assumption or random sampling from the k 

populations, the it 's of the standard model can he estimated after 

clustering based on the conditional model; we can take as the estimate 

the proportion of individuals assigned to Population g: 

.  n       n 

g  n i=1 gi   n 

n /\ 
where n = Z. .0 „  is simply the number of individuals assigned to 

g   1=1 gi 

Population g.  That is, under an assumption of random sampling, we can 

use results obtained from working with the conditional distribution of 

X to estimate parameters of the marginal distribution of X . 

These two types of models, conditional and unconditional, arise in 

other statistical contexts as well, notably analysis of variance [Eisen- 

hart 's (19^7).classification of effects as "Model i" or "Model II" is 

now standard] and factor analysis [see Anderson and Rubin (1956)]» 
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6.   Some remarks on statistical inference. 

Again let L(B,T) denote the likelihood as a function of the 

structural parameters B and the incidental parameters T; given the 

data» The maximum likelihood estimate of (B,T; is the value (B^T; 

for which L is largest. The quantity L(B,T) is the corresponding 

maximum value of the likelihood» To approximate (B,T)j one uses the 

algorithm. Let 

\(B,T) = L(B,T)/L(B\T)  . 

Let F denote the asymptotic =(as; In ; tends to infinity) cumulative 

distribution function of --2 In x(B,T): lim Pr(-2 In \(B,T) <X} = F(X). 
n-*co 

Suppose that F is independent of  (B,T).  For example., it may be the 

cumulative distribution function of a chi-square distribution with an 

appropriate number of degrees of freedom; it is necessary to investigate 

the extent to which the large sample theory of the generalized likelihood 

ratio applies when there are incidental parameters, 

6.1.  Confidence sets. 

Let x  denote the upper-a percentage point of F.  Then 

1 - a  = F(x ) = Pr{-2 In \(B,T) < x } = Prf-2 In L(B,T) < X + 2 In L(B,T)} , 
\JJ LX KJC 
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so that 

•(B,T): -2 In L(B,T) < XQ; + 2 ln(B,T)J 

is an approximate 100(l-a)/0 confidence set for  (B,T). 

Denote by (B,T) the estimates produced "by the algorithm. Then 

L(B,T) < L(B,T). Thus a conservative confidence set -- one that contains 

more values of (B,T) than the true confidence set and has confidence 

coefficient at least l-CH -- is 

{(B,T): -2 ln(B,T) < x +2 1II(B,T) 

6.2» Some remarks on choice of k. :,"-\<-  :.".,!' .• •:<::':"•:....••> •' -::\   >c  m I .i...;h 

•The algorithm can be run with different choices of k and the 

results can be compared» Note that the likelihood function is a different 

function for different values of k» Denote this dependence upon k by 

denoting the likelihood by L (B ,T ). Let B ,  T  denote the maximum 
k    k k        k  k 

likelihood estimates» Following Wolfe's approach for the standard mixture 

model, one might make a sequence of hypothesis tests to decide on k, 
s\ y\ 

first comparing L (B ,T ) with L (B -T ),  then if necessary comparing 
C.        £- C- I)        J        J 

/^       ^    \ /***       ^ 
L (B ;T ) with L, (B, ,T, ),   etc. Wolfe uses the asymptotic chi-square 

distribution of the generalized likelihood ratio here; even in the context 

of' the standard mixture model this may not be the asymptotic.• distribution.'- - 

An alternative approach to the choice of k,, is to follow a suggestion 

of MacQueen and introduce refinement and coarsening parameters R and C 

such that two clusters coalesce when their centroids are less than R units 
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apart and a cluster splits when its diameter (maximum distance "between 

any two of its members) exceeds  C. 

7.   Conelus ions. 

A modification of the usual mixture model has been employed to 

provide a probability framework for clustering problems,, A general 

method of producing clustering algorithms which correspond to a method 

of iterated maximum likelihood has been given»  The general method given here 

is a plausible method for clustering which'is linked to a probability model 

and which is comparatively easy to program»  In the case of multivariate 

normal.Jdistrihutions with common covariance matrix the general method 

produces clustering schemes which can be viewed as improved versions of 

some existing schemes» 

The focus here has been on the parametric case., but the methods dis- 

cussed mightbe applied'to the nonparametric case by estimating the densities 

h (x)  as the clustering proceeds.? using standard methods of density esti- 
g ~ 

mation« 

Clustering algorithms based on a likelihood function are based on 

the raw data matrix, in contradistinction to many clustering procedures 

which are based on a matrix of pairwise similarities or distances» The:latter 

procedures have the advantage of applicability to problems where a raw 

data matrix is not available» When the raw data are available, such 

algorithms have the disadvantage of not extracting all the information 

from the observations and the computational disadvantage of preliminary 

computation of all the pairwise distances (or similarities)» 
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