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Abstract.

The problem of clustering individuals is considered within the
context of a mixture of distributions. A modification of the usual
approach to population mixtures is employed. As usual; a paramefric
family of distributions is considered, a set of parameter values being
associated with each population. In addition, with each observation is
associated an identification parameter, indicating from which population
the observation arose. Thé resulting likelihood function is interpreted
in terms of the conditional probability density of a sample from a mixture
of populations, given the identification parameter of each observation.
Clustering algorithms are obtained by applying a method of iterated

maximum likelihood to this likelihood function.
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Key words and phrases° Mixtufe of distributions, cluster analysis, isodata
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POPUTATION MIXTURE MODELS AND CLUSTERING ALGORITHMS

by

Stanley L. Sclove .
University of Illinois at Chicago Circle

Summary.

The problem of clustering individuals is considered within the context
of a mixture of distributions. A modification of the usual approach to
population mixtures is employed. As usual; a parémetric family of distri-
butions is considered, a set of parameter values being associated with each
population. In addition, Wifh each observation is associated a parameter
indicating from which population theobserva-tion_'arols_e° The resulting
likelihood function is interpreted as the condifionél probability density
of a sample from the mixture of populations, givén the population identi-
fications of each observation. |

The relation of this conditional mixture model to the standard mixture
model.is discussed; it is shown how the concept of the conditional mixture
model provides & probability model for cluster analysis, and it is shown
how to use the model to provide a plausible general method for clustering.

Gilven a parametric family of distributions, an appropriate clustering
algorithm is obtained by applying a method of iterated maximum likelihoed
to the resulting likelihood function. The algorithms resulting by application
of this general method are, then; interpretable as schemes for estimating the

parameters of probability models.



Special attention is given to the case of multivariate normal popu-
lations with common covariance matrix. This case 1s of special interest
because application of the general method produces Mahalanobis-distance
versions of two well-known clustering algorithms, isodata and k-means,
thereby relating these algorithms to a probaﬁility-model for the clustering
problem. Other models given special atteﬁtion are the multivariate normal
distribution ﬁith differenﬁ covariance matrices, and multinomiai models,
especially the model based on an assumption of local independence as used

in latent structure analysis.

P Introduction.

The problem of "clustering" to be considered here is as follows:
given a sample of p-vectors §1,§2,Q.,,§n, that is, a sample of D
observations on each of n individuals,‘put the individuals into groups.
Of course the problem needs more formaiization if ﬁe are to be‘able to
do anything meaningful with it.

We begin by defining a clustering as a partition of the set of
observations, that is, a collection {Cl’CB’°'°’Ck} of disjoint sets
such that each observation belongs to one and only one set Cg' Fach set

Cg (g=1,...,k) 1is a cluster.

In this paper we shall assume that the integer k i1s specified in

LR X,

advance. (A modificatiodl of thealgorithm to be presented alldws Some of =
the clusters to join ofAsﬁliﬁg‘thereby'permitting fewer or more than k

clusters to be formed. See Section 6.2.)
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As has been suggested before [see, e.g., Fleiss amd Zubin (1969) 1,

it seems reasonable to.consider a population mixture model for clustering
problems. With the g~th population is\associated the probability density
function hg(§), g=l,...,k. When we are working with some parametric
family, say indexed by a parameter B, hg takes the form hg({)::h(§; Eg),
The densities (or parameters) are unknown, this being the distinction
between the present formulation of the clustering problem and the classical
classification problem, sometimes termed " identification"”, "diserimination",
or "allocation". In the classical problem, the densities or parameters ére
known, or else a training set of data is available, from which the densities
or parameters can be estimated.

Now with Individual i (i=l,,uo,n) associate the group identification

parameter 74 which 1s equal to g if and only if Individual i Tbelongs

to group g(g=l,2,...,k). Each individual gives rise to a pair (%,y)« X

is observable; ¥ 1s not. It will thus be seen that this problem fits

into the framework of an empirical Bayes problem [see, e.g., Robbing (196L4)],
but in the present paper tThis aspect will not be sgtudied explicitly.

In the terminology used by Neyman and Scott (1948) in a study of con-
sistent estimation, the parameters 5. are Yincidental" parameters because
each of them refers to a finite number of observations (one in the present
case), while the parameters é are "structural” parameters because, if
we allow n to tend to infinity, eagh of them is associated with an infinite
number of observations.

In the context of this model, to "cluster" is merely to estimate

the "/i'SJ 120, sww,n  individuals. B S5 oo % e HS 48 B OGE we ok
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It is convenient to reparametrize somewhat. Replace Yy by the
k-vector Qi which consists of k-1 =zeros and a single 1, the position
of the 1 indicating which group Individual i Dbelongs to; that ié,
Gi has a 1 as its yi-th element and O's elsewhere. The density of

~

§i’ given ei, is
k
. = I )
(1.1) £(x, lo.) A= egihg(gl) )

where egi is the g~th component of ei.

2. The probability model.

This model should be compared and contrasted with the usual population
mixture model, in which any observation X, is chosen from Population g
with probability ng, so that the density of Xi is

. k
8 i ; T = 4 5
(2.1) Iy myseeesm,) nghg(gi)
g=1
The probability model that will be used here for the clustering problem
is as follows. It is assumed that pairs Cxi,@i), i=l,...,n, have been

sampled randomly, in the sense that their joint density is

(2.2) T g (x58,) -
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(The notation which will be used here is theistandard notation in

which f and F are generic symbols for probability density functions

and cumulative distribution functions, respectively, ﬁg denotes the

probability density function of the random variable X, fX ¥
2

fY]X denotes the conditional probability

denotes

the joint density of X and Y,

density function of Y, given X, etc. For. the moment we suppress the

subscript i.)

 The conditional density of X given © is

k

) = % 6h {x)

)= 2 o8, (@)
g...

The marginal density of © 1is taken to be the point multinomial,

e 8] e
f (6) = 7 l-ﬁ 2 oipie T k
B ~ 1 2 " Tk ’
8] = 0 oxr l; Zk o = l} 3T > O} Zk ¢ = :‘l“v;' \THUS"* To e '.:-:-1~. ‘i -
g g=l g g - g=lg. ¥ g

is the probability that a randomly selected individuwal comes from

Population g.

First it will be shown that the standard mixture density is indeed

the marginal density for X resulting from this model. Somewhat more

generally, let Z = (Zl;ZE,.oo,Zk) be a random vector. If the_conditionél

density of X given Z is

k
£ (xlz) = £ zn (x)
%I% 2~ gl 88 &



then the marginal density of X is

k
f (x) = = E[Z I (x)
}EA" g=1 g &~

To see this, note that we have

il

£(x) = J fx,z(f’E) dz

~ ~ T

Il

]

k
/ gzl z, b (x) fg(g) dz
k

gi;l [fzng'(%Z#,)—d%] hg(}'g)

I

k
= Blz 1 n, (x)

]

From this it follows that if @ = (@1,@2,,,,,@K) has the point

multinomial density

k k
x ~0,Z g =1, =0 or 1, % .6 =1, then the marginal densit
g p) g=1"g > g ) g=1"g p) g1 Y

of X 1is the standard mixture density:

k
£ = X h
X(g) T g(%)

-

Pe g=1



For, under this model the random variable Zg = @g is Bernoulli with

arameter = ; hence E[® ] =1 .
P g [ . g

Now suppose that pairs (Xi,@i), i=l,...,n, are sampled randomly,
in the sense that their joint density is (2,2). Of course, then the
X's are independent, and the @'s are independent. Then the conditicnal

density of X, ,X ,qg.,Xn; given @.,0 _,

1% St By L8

(2;3) L l:°'°yxn[@ a,P’@n(§17°°"§nlgl"°°’€n)

f e 15,07 5 piate s Xt O
%l’@l,n. ,’}En,e) (Nl’ l )~n)~n)

f@l,.g.,,@ (61’.-9,9:[17

i

H f (X ;9 )
—l ~1-~1

n T (e )
l—l 91

1~l %1'@

(s, 19,5 (03).

Y (0))
£ (8.
i:l @l ~L

n
RSAELR



It is (2.3) which is the "likelihood" in the conditional population
mixture model. In the context of this model, then, to "cluster” is to
estimate the ei's, the values of the identification parameters.

Versions of this model have been used recently by Scott and.Symons

(1971) and S. John (1970), but the model dates back at least to Gibson

(1959), where it is called the latent profile model. This model has
been discusséd by Anderson (1959).

The likelihood approach to_clustering is illuminating in that it
sometimes shows how ad hoc optimality criteria (objective functions)
which have been proposed for the clutering problem relate to particular
probability models. For.example, Scott and Symons (1971) show how various
optimality criteria relate to maximum likelihood clustering in multi-
variate normal populations-.

Note that we can equivalently write (1.1) as a product:

8 .

k gi

(2.4) flx.18.) = 1T [n (x.)] .
- &~

~ls i )
The form (204) is often more convenient, and we shall use it in what
follows.

It is easy to allow for the presence of a "training set" of data --
a prior set of observations for each of which we know the group identi-
fication. Letting mg be the number of prior observations in the g-th
group and denoting the prior obsérvations from the g-th group by W

gt’

Z=l,,,,,mg, we can write the likelihood as

k g n k 0

T 1 h(wz) T U (h (x,)]8% ,
g=l £=1 & "8 o1 g=1 &

_8-
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if we treat all the observations Wgzg g=l,.00,K, £=l,,,.,mg, and

~

Xi, i=l,...,n as statistically independent. We do not explicitly

treat the case of prior observations any further here.

%, The clustering algorithm.

Using the form (2.4), one sees that under the random sampling

mechanism mentioned above the joint probability density function of

§1,§2,a,a,§n, given @lfgzgoao,@n is
n k 6 5
T 1 [hg<§fl)] & ;
i=l g=1L
or, in parametric form,
n k e i
m W [n(x;e )1 % .
i=1 g=1 .7+ "8

The likelihood is to be maximized over all assignments of individuals
to groups and over all permissible parameter values. Many ad hoc schemes
can be appl;ed to this maximization problem. For example, one way to
maximize is to start with a given clustering Ol;é@;jck, take each
obgservation successively and shift it to the first cluster for which a
shift results in an increase in likelihood,wgnd7lwopgthTOugthhe.dataq
until no individuval changes clusters.

The algorithmT&)bedescribedhéred£'anTiﬁeratéag'thabis,a back-and-
forth procedure of maximizing this likelihood function, in that we first

maximize with respect to the 6's (holding the PR's fixed at initial



values), then we maximize with respect to the ?’s (holding the 6's
fixed at the values obtained in the previous stage), then we again
maximize with respect to the 6's (holding the E's fixed at the values
obtained in the previous stage), etc. We stop when no 6 changes, i.e.,
when no individual changes clusters -- or wheén we have used a pre-
gspecified amount of computer time.

An alternative fér &starting the procedureiis to:start. with an’initial
clustering rather than with initial-guesses-of.ihéingrs.,.‘,

It is clear that, for fixed values of the PB's, say B's, the

likelihood is maximized, for each i, by taking

© >
i

-1 if h(§i3§g> max {h(xigéﬂ)}

gt 1<k~

(3.1)

0O otherwise,

(In case of ties an arbitrary choice is made.) In other words, clustering
proceeds by allocating Individual 1 to that group for which the esti-
mated probability density of the observation X is largest.

Note that, having tentatively estimated the y7s (ory equivalently,
the ©6's) at any stage, that is, having tentatively clustered the
individuals, estimation of.the B's 1is reduced simply to ordinary

-~

maximum likelihood estimation in the particular parametric family at

hand.
Let T denote the set of @, 's and B the set of Bg"so Write
Nl ~
L(B,T) to denote the likelihood. Let 5(s) denote the value of B

-10-
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‘which maximizes L at the s-th stage of the| 1 eratlan, and similarly

let T(S) denote the value of T which maximizes ‘L at the s-th stage

(s) )

of the iteration. Then T maximizes L(B(S

(s) (s=1)

and B maximizes L(B,T with respect to B. As a function of

(S‘l))

,T) with respect to T,

B, L(B,T is the section of L(B,T) at T=T(S-1) and L(B(s) i)

°

as a function of T 1is the section of L(B,T) at B=B(S) -We may refer

to this back-and-forth maximization as section-wise meximization. It is

an example of the'relaxation method (or.?Southwell’s method"); see Ortega

1950 and T9L6). . -

and Rheinboldt (1970, pp. 2L4Ef.) and’ Soutiwel

It is true that

L(B(S+l),T(S)) z L(B(S),T(s))
and

L(B (s+1)) L(B ) (s))

1y

that is, at no stage of the procedure can the value of the likelihood
be decreased; however, there is no guarantee of convergence to the
global maximum (neither do alternative clustering algorithms guarantee
convergence to the global maximum of their objective functions).

To see how the procedure can fail to converge to a global meximum,
suppose it happens that L(B(S),T(S)) > L(B,T(S)), for all B, or
L(B< (S 1)) > L(B(s) T), for ail Tc Then the procedure will terminate

at the s-th stage, without having necessarily reached a global maximum.

-11-



That is, if, having maximized with respect to one of the variables B
and T, we happen to find ourselves at a (relative) maximum with respect
to the other, we may not reach a global maximum.

© .Back-and-forth iterative methods such as the one developed here
are familiar in other estimation problems, notably in weighted least
squares estimation, where we iterate between estimating the weights and
the regression coefficients, and in factor analysis, where we iterate

between estimating the communalities and the factor loadings.

4, Application to particular distributions.

Now we congider application of this general clustering imethod to
particular families of distributions. First we consider normal distri-
butions with common covariance matrix, for it is in this case that it
becomes clear how the model establishes a link with some existing cluster-

ing procedures.

h.1. Multivariate normal populations with common covariance matrix.

In the case of p-variate normal populations with means p ,
g=l,...,k; and common covariance matrix 2, the likelihood takes this
form:

: k

(gn)-np/E lzl‘n/e

n
1 ' "'l
exp [~ 2 =z o .(x.- T (x.- 1 =
. P 2i=l o=l gi'~i Eg) = (~1 Bg)

Here (3.1) is equivalent to

Sijlos
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)

PN A"'l ~ . A . A_l ~
. if X~ D X, = = min (X.~ ') 2 K= )
(4 ) gi (~1 Eg) = (ml Eg) 1<0<k ( 2y Bﬂ = (~1 EZ }
L ] l I

= 0 otherwise.

That is, Individual i 1is assigned to that group;to‘Whose-tentatively—
estimated centroid he is closest, where the distance is in thé metric

of the tentatively estimated covariance matri%?. Having estaimted the
0's, we have multivariate normal observations aprgngsd-into groups;
maximization with respect to the E's and X is accomplished by taking
the sample mean vectors as estimates for the' E*s, and the within~groﬁps
sum-of-products matrix gives the estimate of Z. The procedure is
iterated: using new estimates Eg, gL v 75 -and g, (4.1) is applied

again. Then new '

[ =4

~ , :
s and a new X are calculated, etc. The matrix

~

~ can be updated efficiently. Also, the Mahalanobis distances in (%.1)

can be efficiently computed as follows. These distances are of the form

- & o far SDusRl
V?M_lv, where = (Xi_LQQ and M'=3. To evaluate a quadratic form

~

1

KYM_lg, given M .and v, one notes that, algebraically, the solution
X of the system M§ =V is X = M—lYZ-HNuMerically, this solution X
can be obtained efficiently, without doing all the arithmetic operations
required to ohtain M—l, - One then computes the value of Kimnlz simply

as v'x. [See Anderson (1958), p. 107.]

Relationship with the "isodate procedure.. This scheme is a

Mahalanobis~distance version of Ball and Hall's (1967) isodata clustering
procedure. (Barlier documentation of isodata by Ball and Hall exists,

but the 1967 reference is perhaps the most aéCessiblec) The isodata scheme

~13-



proceeds as follows. One starts with tentative estimates of cluster
means and assigns each individual to the mean to which he 1s closest,
(The isodata scheme uses Euclidean distance, or modified Euclidean
distance in which different weights are assigned to the p dimensions.)
The cluster means are then re~estimated, and one loops through the data
again, reassigning the individuals,; etc., Note the similarity to our
scheme. We start with tentative estimates of the p's and 2 (it
seems a good idea to take the initial estimates of the B’S to be
outside the convex hull of the data, and it is easy to take the initial
estimate of X to be the identity'matrix);and‘éssign-each individual to
the mean_to which he is closest, using Mahalanobis-~distance in the
metric of the tentatively estimated covariance matrix. The E's and
L are then re—estimated, the individuals.are re-allocated touclusters,
etc.

An important difference is that our scheme employs Méhalanobis—
distance rather than Euclidean or weighted-Euclidean distance. And it
is worth emphasizing that it is the Mahalanobis distance based on the

within-groups sum-of-products matrix that arises here; some data

analysts use the total sum-of-products matrix, which, as Chernoff (1970),
for example, has argued, lsnot appropriate. I have done data analyses
using both the total and the within~groups sum—éf~products matrices,

and the total sum-of-products matrix gave poor results, while the within-

groups sum-of-products matrix gave good results.

~1h-



For example, consider the Fisher iris data [Fisher (1956)1, con~
sisting of p=4 measurements on each of 50 irises in each of k=3
species, If the sample centroids of the three species are computed from the
group-identified data and the 150 flowers are then assigned to that centroid to which
they are "closest”, then only three misclasgifications are made when
the distance is in the metric of the within-groups covariance matrix, 11
misclagsifications are made if Euclideén distance is used, and 20 mis-~
classifications are made when the distance is in the metric of the total
covariance matrix.

One further point along these lines: Mahalanobis-distance is the
same as Fuclidean distance in terms of principal axes. Hence some data
analysts transform the raw data into scores on principal components, so
that they can simply use Euclidean distance. Their mistake is that they
use the principal components of the total sum-of-products matrix. The
Euclidean distance they calculate is then the same as Mahalanobis-distance
in the metric of the total sum-of-products matrix, which is not appropriate.

I have programmed three algorithms in APL [I.B.M. (1969), Iverson
(1962)]1 -~ the algorithm developed here, in which at any stage the dis-
tance is in the metric of the tentatively-estimated covariance matrix,
an algorithm in which Euclidean distance is used at each stage, and an
algorithm in which at each stage the distance was in the metric of the
total covariance matrix. Results of two rums of each of the three
algorithms on the Fisher iris data will be given here. In one run, the
initial centroids (initial estimates of the three mean vectors) were

flowers in the same species ("'difficult initial centroids”). In another

-1 5«



run, the initial centroids were three flowers from the three different

species.
RESULTS OF TWO RUNS OF FACH OF THREE ALGORITHMS
Difficult Fasy
Metric initial centroids initial ceéentroids”
Number of mis-~ Number of Number of mis- Number of
classifications iterations classifications iterations
before con- before
vergence convergence
The adaptive . 6 14 . 3 5
metric of the
algorithm,
starting with
$=I (Buclidean
distance)
Euclidean distance 16 11 16 ' 3
Distance in the 4O 10 29 6

metric of the
total sum~of-
products matrix

Relationship with the "k-means' procedure. Arranging the computation

a little differently, updating the estimates of the B'S and X after
each individual is assigned rather than waiting until all individuals
' have been assigned, produces a Mahalanobis-distance version of MacQueen's
(1966) k-means procedure.
Thus, & link has been established between some of the better known

ad hoc clustering procedures and a probability model for the clustering

problem.

-16-



4,2, Multivariate normal populations with different covariance matrices.

The algorithm generated for this case turns out not to be simply
to use a different Mahalanobis distance for each cluster. The complica-
tion which occurs ig analogous to that in "clagsical' classification
(discriminant analysis), where one is led tc quadratic discriminant
functions 1f the covariance matrices differ.

The details are as follows. The likelihood in this case is

n k -6 /2 n k

- -1
()™ 1 1 Jz | & epldz zoe (G ) e )]
i=l g=1 © i=l g=1 & 8 T8 .

In this case (3.1) becomes

(h.2) @

gl 1 if setting £ = g maximizes

nj—

15 - 1 _A 1 ;\".-L. "..‘A

i

0 otherwise.

Maximizing the expression in (L.2) is equivalent to minimizing
enls | + (x ) gml(x ~ﬁ ) .
= ~i e ThE N1 R

It has been noted [see, e.g., Day (1969)] that in the standard
mixture model for this case the supremum of the likelihood is infinity.  This
is reflected in the fact that in our algorithm it would be possible that
at some stage one of the clusters would consist of a single individual,

so that the tentative estimate of the mean of that cluster would be the

_,17 -



vector of observations for that individual, and the tentative estimate of
the covariance matrix of that cluster would be undefined. It is also
possible for the cobservations in a given cluster to be very close to
lying on a lower-dimensional subspace, so that the tentative estimate of
the covariance matrix could have an arbitrarily small determinant, and
the maximized likelihood could be arbitrarily large, for the contribution
B I-Hg/2
g

of Cluster g tothe maximized likelihood is exp(—png/2), where

ng is the number of individuals assigned to that cluster.

L.3. Multinomial models.

Multincmial models are of special interest because they relate to
the analysis of questionnalres and of patterns of medical symptoms.
Suppose each variable X , v=l,...,p, is a dichotomous variable (indi-
cating a Yes or No answer, or presence or absence of a symptom)° It is
not reasonable to assume the X's independent in the whole (mixture)

population. It is sometimes assumed, however, that within subpopulations,

they are independent. This model of local independence is employed in

latent structure analysis [Lazarsfeld and Henry (1968)]. If we let

Brg = PriX, =1} =1 - Pr{X =0} ,

for the g~th subpopulation, then under the assumption of local independence

the density in the g-th subpopulation is

( ) 15 XVi l_X%i
h (x.; = 1II -B.. .
g ~1’§g =leg (1 ng)

~-18-



The "clusters" are the subpopulations.

5. Comparison with the method based on the standard mixture model.
Wolfe (1970) has considered clustering based on the standard
mixture model. Under that model,; the posterior probability that

Individual 1 belongs to Group g is

©h (x.;8 )
g g ~i'~g
(5.1) % ( | i
S oh (x.;B
P A’

If we can obtain estimates for B , n , g=l,...,k, they can be substi-

~

tuted to provide an estimate of (5.1),

% h(x.;p )

(5.2) Sk B
T h(x.;é )

p=1 /s R

o

Individual 1 1is assigned to that Group g for which the estimated
posterior probability of group membership (5.2) is largest. (Recall
that,; with the conditional mixture model, Individual i 1is assigned to
that Group g for which the estimated density h(§i3§g> is largest.)
Wolfe has provided computer programs for the case of normal dis-
tributions. As is well known, the maximum likelihood equations for
mixture problems are messy. Wolfe solves them by a multivariate Newton-

Raphson method. This involves the assignment of arbitrary initial values

-19-



to the parameters, to start the iterative solution, as does the general

method described here.
Perhaps a word may be said by way of further comparison of the

standard and conditional mixture models, The likelihood in the standard

model is

Hf (X i)
i=l i 7

or

n-l ~1 ~

n
'nf o, (%10, aFg (0.)
i=1 i

whereas the likelihood in the conditional model is

n £y x.le,)
i=l ~1l@
so that in using the conditional model we are using the factors

(x Ie ) rather than a smoothed version of them, namely

. I@
Nl ’V

~

ff (x le ) c:tF~ (,) =E [f}glg(:gilgi)] .:- £ (x) -

<D0
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Note that

max

~1

B, 5e00,0
) ;Nn

n k o) s
max i I [h gxi)J g
?-l} o8 0 )gn i:l g:-l g ~

n
1 fX.|®,<§i’€i) =
1=1 ~1i'X1i

n k '
T max T [b (x )] &

il

I
=
=
m
M
.

IS)
—
2
He
=
N

"
=
H
>4
—
>
N

1

)

H -j(x.;ﬂ.,)aoaﬁj'[
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max L(6. ,...,0 ; X ’°°"§n) > max L'(nl,,,.,nk; §l,..,,§n)

el ~n’ <L
gl;aooygn Tfl; aijk.
n
where L'(nl,e..,nk; §1’°°"§n) = i? j(fij nl,ua.,nk) denotes the

likelihood corresponding to the standard model. If it is legitimate %o
compare likelihodds under the two different models, this shows how
Moverfit" occurs when we use conditional models; the same concepts apply
to the "shrinkage problem”" in regression analysis when we predict using
an estimated regression function.

Note that, under the assumption or random sampling from the k
populations, the ng's of the standard model can be estimated after

clustering based on the conditional model; we can take as the estimate

the proportion of individuals assigned to Population g:

l n N n
io=2 5 by =P,
g e

where n = Z? g .
g i=l"gi

is simply the number of individuals assigned to
Population g. That is, under an assumption of random sampling, we can
use results obtained from working with the conditional distribution of
% to estimate parameters of the marginal distribution of % g

These two types of models, conditional and unconditional, arise in
other statistical contexts as well, notably analysis of variance [Eisen-

hart's (1947) classification of effects as "Model I" or "Model II" is

now standard] and factor analysis [see Anderson and Rubin (1956)].
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6. Some remarks on statistical inference.

Again let L(B,T) denote the likelihood as a function of the
structural parameters B and the incidental parameters T, given the
data. The maximum likelihood estimate of (B,T) 1is the value (B,T)
for which L is largest. The quantity L(ﬁ,f) 1s the corresponding
maximum value of the likelihood. To approximate (ﬁ,%), one uses the

algorithm. Let

K(B:T) = L(B_,T):./L(g,@) o

Let F denote the asymptotic {asi 'n . tends to infinity) cumulative

distribution function of --2 1m A(B,T): Lim Pr{-2 1n A(B,T) <x} = F(x).

R0
Suppose that F is independent of (B,T). For example, it may be the
cumulative distribution function of a chi-square distribution with an
appropriate number of degrees of freedom; it is necessary to investigate
the extent to which the large sample theory of the generalized likelihood

ratio applies when there are incidental parameters,

6.1l. Confidence sets.

Let %u denote the upper-o percentage point of F. Then

A A
1L=-a-= F(xa) = Pr{-2 In A(B,T) < x,} = Pr{-2 1n L(B,T) < x, +21n L(B,T)} ,
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so that

((B,T): -2 1n L(B,T) <x *+ 2 10(B,T) )

is an approximate 100(1-0t)% confidence set for (B,T).

Denote by (ﬁ,f) the estimates produced by the algorithm. Then

L(ﬁ,%) < L(],:‘;,T)u Thus a congervative confidence set -~ one that contains
more values of (B,T) than the true confidence set and has confidence

coefficient at least 1-00 ~-- is

((B,1): -2 1n(B,T) <x, + 2 1n(B,T)} .

6.2. Some remarks on choice of k. “lnoon D carthoet ey hoowe s ian

‘The algorithm can be run with different choices of k and the
results can be compared. Note that the likelihood function is a different

function for different values of k. Denote this dependence upon k by

N ~

denoting the likelihood by Lk(Bk,Tk), Let B, T, denote the maximum

likelihood estimates. Following Wolfe's approach for the standard mixture
model, one might make a sequence of hypothesis tests to decide on k,
L5(§5,§5>, then if necessary comparing
-L5(§5,§5) with Lh(ﬁh}fh)’ etc. Wolfe uses the asymptotic chi-square

first comparing L2(B2,T2) with

distribution of the generalized likelihood ratio here; even in the context
of the standard mixture model this may not be the asy‘rﬁpd;oti&cdi's.’tiributf:t'on.,: =

An alternative approach to the choice of k., is to follow & suggestion
of MacQueen and introduce refinement and coarsening parameters R and C

such that two clusters coalesce when their centroids are less than R units

) I



apart and a cluster splits when its diameter (maximum distance between

any two of its members) exceeds C.

o Conclusions.

A modification of the usual mixture model has been employed to
provide a probapility framework for clustering problems. A general
method of producing clustering algorithms which correspond to a methed
of iterated maximum likelihood has been given. The general method given heré
is a plausible method for clustering whichiis linked to a probability model
and which is comparatively easy to program. In the case of multivariate
normaldistributions with common covariance matrix the general method
produces clustering schemes which can be viewed as improved versions of
some existing schemes.

The focus here has been on the parametric case, but the methods dis-
cussed might be appliedto the nonparametric case by estimating the densities
hg(§) as the clustering proceeds; using standard methods of density esti-
mation.

Clustering algorithms based on a likelihood function are based on
the raw data matrix, in contradistinction to many clustering procedures
which are based on a matrix of pairwise similarities or distances. Theﬁlatter
procedures have the advantage of applicability to problems where a raw
data matrix is not available. When the raw data are available, such
algorithms have the disadvantage of not extracting all the information
from the observations and the computational disadvantage of preliminary

computation of all the pairwise distances (or similarities).

-25-



Acknowledgemenﬁs.

This research has been supported by National Science

Foundation Grants GP-22595 at Carnegie~Mellon University and GP
at. Stanford University and Office of Naval Research Contract #NO00LL -

67-A-0112-0030 (NR-042-03L4) at Stanford University.

-26~



(1]

[2]

[3]

(4]

[5]

[6]

[71]

[8]

[91

[10]

REFERENCES

Anderson, T. W. (1.958)., An Introduction to Multivariate Statistical
Analysis. John Wiley and Sons, Inc., New York.

Anderson, T. W. (1959). Some - scaling models and estimation pro-
cedures in the latent class model. Probability and Statistics:
The Harald Cramer Volume, U. Grenander, ed., 9-38. Almgvist
and Wiksell, Uppsalsa.

Anderson, T. W., and Rubin, Herman. (1956). Statistical inference
in factor analysis. Proc. Third Berkeley Symposium Math.
Statisti and Prob., J. Neyman, ed., 5; 111-150, University
of California Press, Berkeley and Los Angeles.

Ball, G. H., anid Hall, David J. (1967), A clustering technique for
summarizing multivariate data. Behavioral Scilenceg 12, 153~

155,

Chernoff, Herman. (1970). Metric considerations in cluster analysis.

Proc, Sixth Berkeley Symposium Math., Statist. and Prob. 1,
621~-629.

Day, N. E., (1969). Estimating the components of a mixture of
normal distributions. Biometrika 56, 463-475.

Eisenhart, C. (1947). The assumptions underlying the A.0.V. Biometrics
5, l_‘zlo

Fisher, R. A. (1936)° The use of multiple measurements in taxonomic
problems. Ann. Eugen. 7, 179-188.

Fleiss, J. L., and Zubin, J. (1969). On the methods and theory of
clustering. Multivariate Behavioral Research 4, 235-250,

Gibson, W, A. (1959)9 Three multivariate models: factor analysis,
latent structure analysis, and latent profile analysis.
Psychometrika 24, 229-252,




[11] International Business Machines Corp. (1969). APL-360 Primer, 2nd
ed., (IBM Publication GH20-0689-1). IBM Corporation, Technical
Publications Dept., White Plains, New York.

[12] Iverson, Kenneth E. (1962). A Programming Language. John Wiley and
Sonsy Inc.,, New York.,

[13] John, S. (1970). On identifying the population of origin of each
observation in a mixture of observations from two normal
populations. Technometrics 12, 553-563, :

[14] Lazarsfeld, Paul F., and Henry, Neil W. (1968). Latent Structure
Analysis. Houghton Mifflin Co., Bostor.

[15] MacQueen, J. (1966). Some methods for classification and analysis
of multivariate observations. Proc., Fifth Berkeley Symposium
Math., Statist. and Prob. 1, 281-297.

[16] Neyman, J., and Scott, E. L. (1948). Consistent estimates based
on partially consistent observations, with particular
reference to structural relations. Econometrica 16, 1-32,

[17] Ortega, James, and Rheinboldt, Werner. (1970). Iterative Solution
of Nonlinear Equations in Several Variables. Academic Press,
New York.

[18] Robbins, Herbert. (1964). The empirical Bayes approach to
statistical decilsion problems. Ann. Math. Statist. 35,
1“200 h

[19] Scott, A. J., and Symcns, M. J. (1971). Clustering methods based
on likelihood ratio criteria. Biometrics 27, 387-397.

[20] Southwell;, R. (1940)0 Relaxation Methods in Engineering Science:
A Treatise on Approximate Computation. Oxford University
Press, London.

[21] Southwell, R. (1946). Relaxation Methods in Theoretical Physics.
Oxford University Press (Clarendon), London and New York.

[22] Wolfe, John H. (1970). Pattern clustering by multivariate mixture
analysis. Multivariate Behavioral Research 5, 329-350,

D8



UNCLASSIFIED

Securdty Clazsification

DOCUMENT CONTROL DATA - R&D

(Sscurity claceidication of Hile, body ef aboteacl snd tattor sausi bo satered vhen €is ovarell seport le clasaiiied)

1. CRIGINATING ACTIVITY (Cosporate authon)

20. REPORT SEGCURITY € LASSIFICATIONR

DEPARTMENT OF STATISTICS

STANFORD UNIVERSITY, CALIF. 26. anouw

I3 Re

PORT TITLE
POPULATION MIXTURE MODELS AND CLUSTERING ALGORITHMS

4. DESCRIPYIVE NOTES (Type of report and inclusive dotan)

TECHNICAL REPORT

5. AU

THOR(S) (Last name, flret neme, inltisl)

SCLOVE, Stanley L.

Y§ REPORY DATE 7a. TOYAL NO. OF PAGES 75, NO. OF REFS
H February 1, 1972 28 22
B4 CONTRACT OR GRANT NO. fa. ORICINATON'S REPORT NUMBER(S)
s NOOOX4~67-A—-0112-0030 "
ﬁ b PROJECT NO. i ll
" e NR”042_034) 9b. OTHER ngnou'r NO(S) (Any other numbere that mey be aselgned
f thie rapor

d.

e

#71 NSF GP-32326X

'O AVAILABILITY/LIMITATION NOTICES

Reproduction in whole or in part is permitted for any purpose of the
United otates Government

11. SUPPLEMENTARY NOTES 12. SPONSORING MILITARY ACTIVITY

Office of Naval Researct
Arlington, Va.

M e AT A TR AARS: | ERT + ofG en

rerray

13 ABSTRACT.

The pr-olem ~f clustering individuals is considered within the context
of a mixture &f distrioutions. A modification of the usual approach to
population mixtures is employed. As usual, a parametric family of dis-
tributions 1z considered, a set of parameter values being associated with
each population. [n addition, with each observation is associated an
identification parameter, indicating from which population the observation
arose. The resulting likelihood function is interpreted in terms of the

conditinnal prouvabilivy density of a sample from a mixture of populations,

given the identification parameter of each observation. Clustering a.lgorithms

are obtained oy applying a method of iterated maximum likelihood to this

Likelihood funciion.

i
¢
4
:

|

H

DD

Ve 1473 UNCLASSIFIED

Security Classification



UNCILASSIFIED
Security Classification

18, LINK A LINK 8 - LINKC

KEY WORODS noLy WY ROLE WY ROLX wT

mixture of distributions
cluster'analysis
isodata procedure
k-means procedure

Mahalanobis distance

INSTRUCTIONS
1. ORIGINATING ACTIVITY: Enter the name and address impoaed by security classificallion, uning standard statements
of the contructor, subcontractor, grantee, Depsrtment of Do such as:
fense actlvity or other organization (corporats author) Issulng (1) “"Qualified requosters may obtain copiee of this
the report. report from DDC.’*
2a. REPORT SECURITY CLASSIFICATION: Enter tha over (2) “Foreign announcement and dlssemination of this

all security classification of the report, Indicate whether Y]
“Restricted Data® is included, Marking ia to be In accord. report by DDC 1§ not suthosized,
ance with sppropriate aecurity regulationa. (3) U. 8. Government agencles may obtain coples of

this report directly from DDC, Other qualified DDC
2b, GROUP: Automsattc downgrading is specified in DoD D1-
rectlve 5200, 10 and Armed Forces Industrial Manuel. Enter seers shall requent thoough

the group number. Aiso, when applicable, show that optional g M
markings hsve been uaed for Group 3 and Group 4 as author« (4) “U. S. military agencles may obtain coplea of thﬁ
ized. report directly from DDC, Other qualified users

3. REPORT TITLE: Enter the complete repori title in ali ahall request through

capital letters, Titles in ail casca should be unclaeasified, "
If & meaningful title cannot be selected without classifica ‘
“tion, show titie classification in all capitals in parenthesle (3) *All distribution of this report Is controlled. Qual-
immediately following the title. Ified DDC usera shall requeat through G

4, DESCRIPTIVE NOTES: If appropriate, enter the type of oW
report, e.g., Interim, progrese, summary, annual, or final, If the report has been furnished to the Office of Techalcal

Givo the inclusive dates when a specific reporting period la

oy oaun Services, Department of Commerce, for sale to the public, Indl.

cete this fact and enter the price, if known,
S. AUTHOR(S): Enter the name(s) of euthor(s) as ahown on 11, SUPPLEMENTARY NOTES: Uae for additlonal explana-
or in the report. Enter laat name, first name, middie initial tory notes.
1f wmilitsry, show rank and branch of service. The name of
the principal author is an abuolute minimum requirement, 152- dSPONSOR”:G MXLXTA‘:QY AC’II‘XV‘TYl Enter the nat?e of

; = Lo the depuartmental project office or laboratory aponsoring (pay-
6. REPORT DATL: Eater the dute of the report as day, ing for) the reaearch and devetlopment. Include address.,
month, year; or month, year. If more than one dute appears
on the report, use date of publication. 13. ABSTRACT: Enter an abstract glving a briel and factual

. iy - summary of the document indicative of the report, even though

7a. TOTAL NUMBER Ol PAGLS: The total page count it may also appoar elsewhere in the body of the technical re-
should follow normal paglnuiion procedures, L.e., enter the port. If udditional space is required, a continuation sheet ahall
number of pages containing information, be attached. '
76. NUMBER OF REFERENCES. Enter the total number of It 1s highly desirable that the abatract of classified reports

reflerences cited in the report. be unclassified. Each paragraph of the abstract ahail end with
8a, CONTRACT OR GRANT NUMBEK: If appropriate, enter an indication of the military security clasaification of the in-

the appiicable number of the contract or grant under which formation in the psrsgraph, represented sa (T5), (S), (C), or (U).
the report waa written. There {a no limitation on the length of the ubstract. How-
85, 8¢, & 8d. PROJECT NUMBER: Enter the appropriste ever, the suggested length is from 150 to 225 words,

militery department identification, auch aa project numher,

subproject number, system numbera, task number, etc, 14. KEY WORDS: Key words are technically meaningful terms

or short phrasea that charscterize a report and may be uaed as

9a. ORIGINATOR'S REPORT NUMBER(S): Inter the offi- Index entries for cataloging the report. Key words must be

clal report number by which the document will be identified selected 50 that no security classificstion is required. Identi-
and controlled by the originating activity, This number must fiers, such ay equipment model designation, trade name, military
be unique to this report. . project code name, geogruphic location, may be uaed as key

95, OTHER REPORT NUMBER(S): If the repoit hus been words but will be followed by an indication of technical con-
asaigned any other report numbers (olther by the originator text. The assignment of linka, ralea, snd weights is optional.

or by the sponaor), alao enter this number(s).

10, AVAILABILITY/LIMITATION NOTICES: Enter any lim~
itations on further disaemination of the report, other than those,

DD n595'34 1473 (BACK) Unclassified

Security Classification



