v RN TR T R N = e W = TN PR T

g a

AD-758
ON THE PROPERTIES AND APPLICATIONS OF
PROGRAM SCHEMAS
Ashok K. Chandra

Stanford University

Prepared for:
Advanced Research Projects Agency

March 1973

DISTRIBUTED BY:

National Technical Information Service

U. S. DEPARTMENT OF COMMERCE
5285 Port Royal Road, Springfield Va. 22151

4
L "r‘&:ﬁ“ R vy
~ %mmm\r-ﬂm S e L e e

P S e ¥ e
G R R LN 2
AR LR
N reeemCHRW PSR IRINIR “

STANFORD ARTIFICIAL INTELLIGENCE LABORATORY

MEMO AIM-188

STAN-CS-73-336

ON THE PROPERTIES AND APPLICATIONS OF
PROGRAM SCHEMAS

BY

ASHOK K. CHANDRA D N

mr?r’ﬁr il
rl -

[g APR 13 .7
jL TiT

JL ¥ R T T

S—

SUPPORTED BY é e
ADVANCED RESEARCH PROJECTS AGENCY
ARPA ORDER NO. 457

AD 758646

MARCH 1973

Reproduced by
NATIONAL TECHNICAL
INFORMATION SERVICE

U S Deportment of Commerce
Springfield VA 22151

COMPUTER SCIENCE DEPARTMENT
School of Humanities and Sciences
STANFORD UNIVERSITY

DISTRIBUTION STATEMENT &

Approved. for public release;
Disuribution Unlimited

STANFORD ARTIFICIAL INTELL1GENCE LABORATORY MARCH 1973
MEMO AIM-188

COMPUTER SCIENCE DEPARTMENT
REPORT STAN-CS-73-3%3%6

ON THE PROPERTIES AND APPLICATIONS OF PROGRAM SCHEMAS

by

Ashok K. Chandra

ABSTRACT: The interesting questions one can ask about program schemas

include questions about the '"power" of classes of shemas and
their decision problems viz. halting, divergence, equivalence,
etc. We first consider the powers of schemas with various
features: recursion, equality tests, and several data structures
such as pushdown stacks, lists, queues and arrays. We then
consider the decision problems for schemas with equality and with
commutative and invertible functions. Finally a generalized
class of schemas is described in an attempt to unify the various

classes of uninterpreted and semi-interpreted schemas and schemas
with special data structures.

This research was supported in part by the Advanced Research Projects
Agency of the Office of the Secretary of Defense under Contract No.

The views and conclusions contained in thisg document are those of the
author and should not be interpreted as necessarily representing the

official policies, either expressed or implied, of the Advanced Research
Projects Agency or the U.S, Government.

Reproduced in the USA. Available from the National Technical Information
Service, Springfield, Virginia 22151.

.

_1-

B A T

Acknowledgment

I would like to express my sincere gratitude to my advisor,
Professor Zohar Menna, for his stimulating suggestions and his constant
guidance and encouragement during the course of this research. I also
take this opportunity to thank my Professors, in particular, Roberf
Floyd and Donald Knuth, for teaching me what research is all about.

My fellow students contributed to this work through their helpful
discussions, and Phyllis Winkler did so in a more tangible fashion by
her excellent typing and her unwavering helief that my iterations on
the manuscript would eventually converge.

I dedicate this work to my parents.

Preceding page blank

Table of Contents

Chapter 1. Introduction .

Chapter 2. Translation Problems .

2.1 Introduction .

2.1.1
2.1.2
2.1.3

2.1.h

Flowchart Schemas .

Augmented Schemas .

Recursire Schemas .

Halting, Divergence, and F.eedom
Equivalence .

Isomorphism .

Herbrand Schemas

Value Languages . . .

Discussion and Proofs
2.1.9.1 On the Treatment of Equality
2.1.9.2 Proof of Theorem 2.1 .
2.1.9.3 Proof of Theorem 2.2 .
2.1.9.4 Proof of Theorem 2.3 .

2.1.9.5 Proof of Theorem 2.k .

Value Languages of Schemas .

2.2.1
2.2.2

2.2.3

Flowchart Schemas .

Recursive Schemas
Proofs of Theorems on Value Languages .
2.2.3.1 Proof of Theorem 2.7 .
2.2.3.2 Proof of Theorem 2.9 .
2.2.3.3 Proof of Theorem 2.10 . .

2.2.3.4 Procf of Theorem 2.11 . .

2.3

Chapter 3.
3.1

3.2

The Power of Classes cf Schemas
2.35.1 On the Number of Variables in Schemas
2.5.2 Equality Tests .
2.3.3 Counters, Stacks, Recursion, Arrays, etc.
2.3.4 Proofs on the Power of Schemas, and
Detailed Examples
2.3.4.1 Proof of Theorem 2.13 .
2.3.4.2 Proof of Theorem 2.1h .
2.3.4.3 FExample 1 -~ Inverse of a Unary
Function
2.3.4.4 Example 2 -- Herbrand-like
Interpretations
2.3.4.5 Example 3 -- The Witch Hunt .
2.3.4.6 Example 4 -- Translation of Flowchart
Schemas with One Counter
2.3.4.7 Proof of Theorem 2.16 .
2.3.4.8 Troof of Theorem 2.19
2.3.4.9 Proof of Theorem 2.20 (Maximal

Classes of Schemas) . .

Decision Problems .
Introduction
Equality Tests « « . « . .
3.2.1 DNotation .
3.2.2 §Solvable Classes .
%.2.3 Unsolveble ClaSSe€S « + + + + o o o o o o + o

3.2.4 Proofs fur Schemas with Equality .

65
65
68
72

78
73
81

83

85
86

88

97

105

110
110

112

113
115

118

e e -

q
\ X

K
! 3.2.4.1 Proof of Theorem 3.1 118
? 3.2.4.2 Proof of Theorem 3.2 129
3.2.4.3 Proof of Theorem 3.3 131
5.2.4.4 Preof of Theorem 3.4 137
i 3.2.4.5 Proofs of Secondary Results 141
5.5 Commutativity and Invertibility 14k
3.3.1 Imtroduetion 1LL

4 3.3.2 BSchemas with Commutative and

Invertible Functions ¢« . « 146
3.5.3 Application to Finite Automate Theory 18
.; ool | pm o oo o s SR R — -
3.3.4.1 Proof of Theorem 3.5 . . + v o « o . . . 153
3.3.4.2 Proof of Theorem 3.6 160
.y 3.3.4.3 Proof of Theorem 3.7 167
3.3.4.4 Proof of Theorem 3.6 171
Chapter 4. Generalized Flowchart Schemas e e . 17k
.5‘;‘ | bl Introduetion v e w w w e a e 1TH
' .. k.2 Definition of Generalized Schemas . . « . . . + . « . . . 177
4.2.1 Basic Definitions . . « 177
T b.2.2 Some Examples 181
4.3 Equivalence of Schemas . . +« + v v v v v v v v 184
1 L.3.1 Introduction « « + v v v b v v e e e e e 184
E“ L.3.2 Defimitions+ o 185
h.3.3Examples.....................187

3

vi

4

SRR

4.5

L.6

Classes of Schemas .
L.h.1 Introduction« .« ¢ 4 o 4 .. e
L. h.2 ¥lowchart Schemas « « « « « « « o« &
4.4.2.1 One-variable Schemas .
L4.4.2.2 n-variable Schemas « . . .
L.4.3 Flowchart Schemas with Markers and
Boolean Variables .
4h.h.,3.1 Markers .
4.4.3.2 Generic Variables
4. 4.4 Counters, Stacks, Arrays, and Other Features
L4 4.1 Counters
h.oh b2 Arrays
4.4.4.3 Pushdown Stacks
L.4.4.4 Queues
L.4.bh.5 Lists
Properties of generalized schemas . . . 1 ., . .
4.5.1 Interpreted Schemas, Herbrand Schemas, and
Oracle Schemas
4.5.2 The rundamental Theorem of Maximal Schemas
4.5.3 Decision Problems . « + « « « « « « &
4.5.3.1 The Halting Problem
4.5.3.2 The Divergence Problem
4.5.3.3 The Equivalence Problem
Proofs « « v v v v o 0 e e e e e e e e e e e s
4.6.1 Proof of the Translation Lemma

4L.6.2 Proof of Lemma %.1

vii

197
197
198
200
201
202
202
204
205

206

206

211

e e e s

4.6.4 Proof of Theorem 4.3

4.6.6 Proof of Theorem 4.5

References . ¢« ¢« o o o ¢ o8 o o« o &

viii

4.6.3 Proof of Lemma 4.2 . .

4.6.5 Proof of Theorem L4.h .

o o . 221

. 225
. . 225

o id 2

. 228

—t

PRSP WO o
z i

Chapter 1. Introduction

Program Schemas and Their Applications

A program schema is a camputer program in which the basic functions

and predicates are left unspecified. . Essentially, a program schems

depicts the control structure of the program, and lcaves most of the
details to be specified in an interpretation for the functions and
predicates of the schema. Thws, a schema is not encumbered with the
details of the actual domain of the values it computes on. This basic
approach can be used to develop a machine-independent theory of
computation. Of course, it is not intended that such & theory will
replace the other approaches that have proved useful, such as recursive
function theory, complexity theory, automata theory, the fixpoint theory
of computation and Scott's lattice-theory approach to computation.
Instead, it is expected to supplement these by providing a model for
computation in which certain useful facts can be expressed, clarified,
and understood.

Some of the applications of schemata theory are the following.

1. Comparing the power of programming features. By "power" we mean
the ability to program in a "natural" way. Interpreted programs are
not very useful for comparing power because interpreted programming
languages are caught very casily in the mire of Turing machine computa-
bility. For exeample, iterative programs with Jjust three counters can
compute any "computable" function. Yet, all programmers are aware that

recursion is more "powerful" than iteration alone, and that a pushdown

stack can be used to eliminate recursion. These notions become trans-
parent at the level of schemas. It is not expected, of course, that
schemas will give a complete characterization of the intuitive notion
of power since even informally there does not seem to be complete
agreement on this notion. But it is hoped that schemas will give an
approximation one step better than interpreted progrems, and possibly

lead the way for further studies.

2. Another application of schemata theory is in the study of prog;am
optimization. This is to be expected because optimization often involves
changing the control structure of a program without altering the outcome
of the computation. Closely related to the question of program optimiza-
tion is the problem of recursion removal. To give an example, consider
the recursive progrem

P(y) <= if B(y) then a else F(£(y))
where p represents some predicate test, f represents some function,
end & is some constant. It is clear that the recursive call F(£(y))
can be replaced by iteration: change the value of the variable y to
f(y) and repeat the "if p(y) then ..." statement. In fact, this kind
of an optimization has been introduced in many compilers. Now, consider
the following program

F(y) <= if p(y) then a else g(y,F(£(y))) -
Can this recursion be replaced by iteration? The answer is yes, though
in general the iterative progrem takes more time than the recursive

program. Sometimes, however, we can make use of particular properties

of the functions f and g to obtain more efficient code. For example,

if the function g is associative, this fact can be used to transform

the recursive program into one that is essentially iterative (analogous

e A e)

to the earlier example):

F(y) <= if p(y) then a else G(yv,f(y))

G(x,y) <= if p(y) then g(x,a) else G(g(x,y),f(y))
This example points out a limitation of the assumption that all base
functions and predicates be completely uninterpreted, because if such an
assumption is strictly adhered to, then the translation described above
is not valid because it assumes the associativity of the function g .
What has happened is that by an insistance on modeling only the control
structure of our program (by saying that all base functions and predicates
must be uninterpreted) we have obtained a model that fails to embody the
same essentinl relations on the domain of the program we were trying to
model. It seems, therefore, that in order to have a useful theory of
computation we must back off from a rigid stance of completely uninterpreted
base functions and predicates, and should allow semi-interpreted schemas

in the theory.

5. A third application of schemata theory is proving properties about
deterministic processes (by "deterministic" we mean deterministic as
against intuitive, and not as against stochastic, or nondeterministic

as in automata theory). For our purposes computer programs are the most
important of the deterministic processes (readers who have spent long

hours trying to debug programs might object to the use of the word

"deterministic" as applied to computer programs -- nevertheless, we

persist). Another example of a deterministic process is a finite auto- 3

maton. A side effect of proving properties about schemas, and one that -
has received scant attention to date, is that once certain properties

are proved about schemas they apply to all the processes that are modeled

-
[S

by the schems (see Chandra [1972]). In this way several results can be
proven simultaneously simply by proving the corresponding result for an
appsupriate schema; and conceivably, schemas could also be used to inter- ;
relate various results in different fields of the theory of computation.

To give an example, the equivalence of two programs can be proven,
ir many cases, by proving the equivalence of the corresponding schemas.
Frequently, however, we need some additional information about the inter-

relations between the base functions. Consider the following two programs

on natural numbers, where x and y are the inputs, and 2z is the output. b’
(1) z < X¥y
(2) X, =03 ¥; = V3

Mylléoggb_eg_jﬂxl"x"'xl; yl"yl'leid;

A
We certainly cannot prove the equivelence of these two programs by
replacing the various functions (multiplication, addition, subtraction)
by uninterpreted functions. Instead, we need the property that
multiplication is related to addition in a certain way, in fact, multi-

plication is defined by the function F in (3) below. Using this

additional piece of information we can prove the equivalence of (1)

and (2) as follows.

(3) F(x,y) <= if y = O then O else xtF(x,y-1)

.Br'

g : (%) F(x,y) <= if p(y) then a else g(x,F(x,£(y)))
4 (5) F(x,y) <= G(%,¥585Y)
? G(x,y,xl,yl) <= if p(yl) then x, else G(x,y,g(x,xl),f(yl))
5 (6) % = a3 yy =¥)
while — p(y,) do begin x; «~ &(%,%))3 ¥ f(y,) end
;¥ 2 m %
!g We replace {3) by its corresponding schema (4), translate it to an
ﬁ equivalent schema (5) and finally change the form to make it purely
4 . jterative (6). Now, in this schema, if we substitute the meanings
of the base functions and predicates we have precisely the desired
‘?‘ program (2). One might well ask why we used schemas in this example.
.il ’ The reason is that this clearly separates the semantic part of the
;. procedure from the syntactic part since the steps (4) to (5), and (5)
to (6) were purely a matter of symbol menipulation. But there is a very
; . desirable side effect of this method. Having proved the equivalence of
'}' (%) and (6) once. =< can also use it to prove the equivalence of the
2 programs (7) and (8) where the operation of exponentiation (xV) is
: . defined by the function F in (9).
(1) z =%
E (8) %y =13 ¥y ~¥;
‘ v_ih_iigyl/:Oigllg_g_i_nXl'-X*xl;ylel-lgr_lg;
Z =X
’ (9) F(x,y) <= if y = O then 1 else x*F(x,y-1)

al

¥
i
t
3

sV e el e o

o AT e WS T Vi e I €

L P

We should state that the preceding is merely an intuitive
elaboration rather than any attempt at a formal presentation of what

schemas can be useful for.

Historical Remarks

R

$
The study of program schemas can be traced back to the work of

Tanov [1958, 19(0] where he treated the entire data space of a program
as being representable by a single value which could be changed by
applying functions, or tested by applying predicates to it. These base
functions and predicates were assumed to be total, but otherwise
uninterpreted. This model of computation is quite closely related to
finite state machines and, as may be expected, the problems of termina-
tion and equivalence of Ianov schemas are decidable. In this regard,
the work of Rutledge [1964] is also to be noted.

But this simpie model of computation is not adequate for describing
most computations. To obtain & better description we would require that
the functions and predicates of the schema be related in some way. For
example, the data space in real computations is usually divided into
individual components, and functions and predicates are applied to these
components. A convenient wey of handling the subdivision of memory
(Paterson [1967, 1968], Luckham, Park and Paterson [1970]) is to consider
schemas containing several variables (also called registers), one for
each component of the data space. The base functions and predicates
are left uninterpreted. We argue in Section k.1, however, that these
basic concepts, viz., the explicit subdivision of data space and the use
of wninterpreted base functious and predicates, are not as general as could

be desired, and we attempt to remedy this situation.

Shy a 3 e T - " - gy —

L=

o gy e

e P

— v PR sty . el Y amsre s A

Subsequant wprk in schemata theory has been in studying the effects
of additional features, for example, the use of recursion, counters,
pushdown stacks, arrays, parallel computations, partial functions in the
interpretations, etc. Without attempting a complete list of contributions,
we note the important works of Karp and Miller [1969], Paterson and
Fewitt [1971], Strong [1971], Garland and Luckham [1971], and Constable
and Gries [1972]. It is interesting to note that the earlier works
tend to focus on the decision problems of schemas, namely, the halting,
divergence and equivalence problems for schemas, and subsequent works
mainly deal with the problems of translation from one class of schemas

to another class.

Outline of the Thesis

In this thesis we restrict our attention to schemas with no explicit
inputs: zero-ary functions (individual constants) serve the role of
inputs. The interpretations for & schema describe total functions and
predicates over arbitrary domains -- we do not allow partial functions
or predicates in an interpretation.

The chapters have been organized so as to separate the main results
and the intuitive discussion from the detailed proofs and examples which
relatively few readers would like to plow through anyway. Most of the
material requires no prior knowledge of schemas, but many of the proofs
assume a familiarity with the basic methods used by other researchers.

Most of the notation and introductory material on schemas is contained

in Section 2.1. Section 2.2 discusses a relation between schemas and formal

languages via value languages of schemas. This leads up to a discussion

on the power of various classes of uchemus in Section 2.5. Chapter 5

deals with the decision probiems of schemas. Tae first part (Section %.1)
considers uninterpreted flowchart schemas with equality tests. The
second part (Section 3.2) considers semi-interpreted schemas, and, in
particular, corsiders the effect of commutativity and invertibility
relations on the decision problems. The final chapter, Chapter k4,
introduces a class of generalized schemas. The formalism of a first
order theory is used to unify the data structures used by schemas with

the base values on which the schemas compute, and it is shown that much

of conventional schemata theory can be represented within this framework.

Chapter 2. Translation Problems

2.1 Introduction

In this section we introduce the basic definitions and terminology
to be used in later sections. Only the simplest of proofs are given in
the main exposition, the others ere postponed to Section 2.1.9.

In the development of many theories (e.g. number theory) it has
turned out that the most fundamental questions (e.g. what is a natural
number) are answered quite late in the development. Part of the reason
for this is that the answers to tnese questions are unnecessary for an
intuitive understanding of much of the theory, and the formalism necessary
to answer them can detract from the simplicity of the rest of the theory.
In accordance with this view, we will be quite informal on many points,
namely, on the following questions:

() what is a schema,
(b) what is an interpretation corresponding to a schema,

(c) what is an uninterpreted schema,

o
4

(d) what does the "value of a variable" mean.
The answers to these questions are obvious for the schemas we present in
this chapter and in the next one, and we dispense with formalities until

the last chapter which defines a formal notion of schemas.

2.1.1 Flowchart Schemas

A flowchart schema S has a finite number of variables represented

by the symbols MR PYRERFR A ZyrZpyeceaZ It uses uninterpreted

functions fl’f2""’fr and predicates PysPps - s Py called the base

functions and base predicates. We should caution the reader at this point

that we will not restrict ourselves to the use of Just these symbols to
denote variables, functions and predicates when convenience and clarity
demand otherwise. Some of the base functions may be zero-ary functions,

also called individual constants, and usually denoted by the symbols

8185z c0e A term 1 can be built up using the variables Yy2e02¥y

of the schema and the zero-ary functions, and applying the other functions

to them. We use the notation 'r(yi Yy s+++) to indicate that no
N

variables other than v ,yi s+ o&ppear in the term 7 , for example,
1l "2

T(yl’yB) indicates that no variable other than y, and Y5 appears
in 7 , but it is not necessary that both have to appear. In accordance

with this nomenclature, 71() denotes a constant term, that is, a tarm

that has no variables in it. A monadic schema is a schema in which only

zero-ary and unary functions and predicates are used.

An interpretation I over a domain D contains the funciions and

predicates fi,...,fi,pi,...,pi which correspond to the function and

predicate symbols fl""’fr’Pl""’p" of a schema. If fj is a k-ary

function symbel, then f{ : Dk - D ; likewise, if P is a k-ary
predicate symbol, then. pi g Dk - B where B 1is the boolean domain
{true,false} . We will usually not distinguish between the symbols fi
and f§ ; and ve will write the latter simply as f, , with the

interpretation I Dbeing understood.

A schema is said to be uninterpreted if all interpretations which specify

(at least) all the base functions and predicates of the schema, are allowed.

A schema is said to be interpreted (partially interpreted) if not all

Ty T AL

A —

interpretations are allowed. If I is an interpretation that is allowed

for S, we say I is an interpretation for 5 , and S admits I .

It is clear that a scheme uses two kinds of values -~ base values
which are elements of the domain D of the interpretation, and

boolean values, which are elements of the domain B . Now the mystery

of two kinds of variables vy and z, can be clarified. The variables
of the form vy take on base values, and variables zs take boolean

values. The yi's are called data variables, or just variables for

short; the zi's are called boolern variables.

An atomic formula is a boolean value, a boolean variable, or

p(Tl,...,Tk) where p 1is a k-ary predicate. We use the symbol O
to denote an atomic formula or a negated atomic formule -- sometimes
called a primitive formula. In accordance with the nomencleture for
terms, a() indicates a constant atomic formule (or negated atomic
formula) .

The statements of a flowchart schema are of the following types

(there is a single start statement in the schema):

Start statement:

START
(yl’ ""yn’zl’ “‘sz) A

(Tl().v e "Tn()’al()’ .. -:am())

|

Halt statement:

Can() >

e

Loop statement:

Assignment statement: l
(yl} RN EIE ---)Zm) "——I
er""’Tn’al""’ah>
Test statement:
True False

The assignment statement simultaneously reassigns the .alues of all
variables. Often, only a few of these are to be changed, and for

convenience, we allow the abbreviations

L L

¥y =% z, - Q
I l

which indicate that all variables not explicitly mentioned are unchanged.

To represent flowchart schemas we will usually use the more compact

ALGOL-like notation, allowing the use of labels (LJ’LQ"") and goto

12 q

i me g r—

€

,s

¥

statements. In additicn, we also allow the use of block structure,
if-then-else statements, while statements, and nonrecursive procedures
with the tacit understanding that these features can be eliminated,

using goto statements instead to get a "legal" flowchart schema.

Ianov schemas are about the simplest kinds of flowchart schemas.
A Tanov schema has a single variable Y , and its statements are of the

following types:

(1) START y ~ a ,

(2) HALT(y) ,

(3) LOOP ,

() y < £(y) , and

(5 if p,(y) then goto L, else goto L, .

A flowchart schema with equality is a flowchart schema with the

addition that atomic formulas of the form

are also allowed.

Currently there seems to be a little misunderstanding as to the

role of schemas with equality. In our treatment a flowchart schema with

equality is not a vartially interpreted schema because absolutely no
restriction is placed on the interpretations allowed. This point is
considered in greater detail in Section 2.1.9.

The class of flowchart schemas will be denoted by c() , and

flowchart schemas with equality by ¢{=) . The class of flowchart schemas

that use no more than n data variables is C(n var) , and similarly

C{n var, =) for equality schemas. Note: schemas in ¢{(n var) or in

T AU T e o o s i T i
& i o - r TSP

e——— T

PR, T ST SR P BV S T T ———

¢{n var, =} may have an arbitrary number of boolean variables.

2.1.2 Augm.uted Schemas

We will also consider flowchart schemas augmented with (structural)
features designed to make the schemas more powerful.

A counter is a variable (usually denoted by the letter ¢) whose
values are non-negative integers. All counters used by a schema are
initialized to zero by the start statement. The operations allowed
on a counter are
(1) cC ~ct+l,

(2) ¢ ~c-1, and

3) if ¢ = 0 then goto L, else goto L,

»

where Ll’LE are arbitrary labels. The subtraction (diminish) operator
in ¢ ~c-1 is on natural numbers, that is, 0-1 =0 . The class of
schemas with counters is designated @{c) , schemas with at most one
counter ((1c) , with a counter and equality @(1c,=) , and so on in the
obvious way.

A pushdown stack (usually denoted by the symbol s) is & last-in

first-out store which can hold values of both types (data, and boolean).
A schema with a stack can "push" a data value and a boolean value into
the stack, it can "pop" them from the "top", and it can test to see if
the stack is empty. The statements allowed are:

(1) s « push(s,y,z) , and

(2) if s = A then goto L else begin (y,z) ~ top(s); s « pop(s) end ,

b

where y denotes an arbitrary data variable, z a boolean variable,
A the empty stack, and L a label. The start statement in a schema
initialjzes all stacks to be empty. The class of schemas with pushdown

stacks is C(pds) , with at most one stack C(lpds) , etc.

A gqueue (usually denoted by q) is a first-in first-out store.

A schema with a queue can "add" values at one end, and "remove" them
from the other end (first(q)) , and it can test to see if the queue

is empty. The statements for a queue are:

(1) q ~ add(q,y,z) , and

(2) if q = A then goto L else begin (y,z) « first(q); q - remove(q) end

The start statement initializes all queues in a schema to be empty.

A list (usually denoted by £) is a structure as in LISP. The
functions car , cdr , cous , and the predicate atom Play the same
role as in LISP (atom(x) is true if x is a data value, or A (nil) ,
and false otherwise). The statements allowed are the following:

We use " lval " to represent A , a data variable, or a list

variable,
(1) ! ~ lval

(2) ! -~ cons(lvall,lvalz)

(3) if £ = A then goto L,

(ka) if atom(2) then goto L,

clse if — atom(car(f)) v car(2) = A then goto L, .

else y, - car(!)

(k) if atom(2) then goto Ly

else if — atom(edr(2)) v cdr(f) = A then goto L,

else y, - cdr(2)

(5a) if atom(li) then goto L else ‘j - car(li) o

(5b) if atom(li) then goto L else ‘,j - cdr(li)

where l,ei,lj represent list variables, and L,Ll,L2 represent labels.
The start statement of a schema initializes all list veriables to A 4
(nil) . The class of schemas with lists is c(list) .

An array (A) is a one-dimensional, semi-infinite sequence of
"locations" that can take on data and boolean values, and can be accessed

by subscripting the array with a counter. The statements allowed are:

(1) (vsz) « Ale] ,
and
(2) Ale] ~ (y,2)

where A 1is an array, c¢ is a counter, Y 1is any data variale,
and z is any boolean variable. In addition, the start statement is

changed to initialize all arrays. It has the form
START (yl, EEPYANE2P ...,zm) - (-rl(), . ..,'rn(),oz:L)s ...,am()>
(AJ_’ .. ’Ak> - (Ti():ai(): 50 -’Tl;()’al'{()>

where A c "Ak are all the arrays used in the schema. The start

1’

T L L T TR
P e e T r

el N T

S i (R B2 " e
AT T A TN e e s e R I SR T 0

e

ek
e o3 g

e

i w-.

statement initializes all data locations of an array A.j to 13())
and all boolean locations to a&() . The class of schemas with arrays
is denoted ((A) , and arrays with equality by ¢(A,=) , etc. Note:
the use of an array implies the use of counters, i.e., schemss in

¢(A) do have an arbitrary ~vmber of counters.

2.1.3 Recursive Schemas

A recursive schema is a set of mutually recursive function
definitions (of defined functions FO,Fl,...). The functions are
passel a vector of data and boolean arguments (the simple case ~-
"call by value" -- is assumed even though it does not always lead to
the least fixed point: see Morris [1968], and also Cadiou [1972]),
and they are allowed to return a vector of values.

Given a vector (y,z) of data values y = Yqs¥pr+-es¥, » and
boolean values z = ZqsZpy ey 5 WE define the notation for picking

off the i-th data or boolean values as follows:

Y, (y,2) =y; end Z,(¥,2) =z,
provided i does not exceed the maximum index (in either case). If
a vector has n data values and m boolean values, we say its type

is (n,m) . A vector of type (1,0) is a data element, and a vector

of type (0,1) is a boolean element.

17

e

We can now define a recursive schema. It is a set of definitions

of the form:

Foy <= ro(f‘);

Fl(}-’: E) <= if al(i: E:F) then ‘Fl(i‘, E:f‘) else 'Fi(s’: E:F)5
1"2(3-’) z) <= if sz(}-r, z,F) then ;2(}-": z,F) else 'Fé(};: z,F) 3

Fk(B-’: E) <= if 0"1{(5: z,F) then 'Fk(B-’: E:f‘) else 'Fl'{(l-’: E:i)i

where F = <F1’.F2; ceopF) and y,2 represent arbitrary vector aréuments
in each case, 70 is of type data, and Oti is of type boolean. Terms
can be constructed using the arguments y,z of the defined function,

and applying the base functions, defined functions, and the notation

Yi’zi for extracting an element from a vector. It is implicitly assumed

that there is no type mismatch.

The computation rule for terms in the schema is leftmost innermost,
with the exception that if exactly the same function call appears more
than once in a function definition it will not be computed more than
once -- rather, the values returned by the first call are substituted
in the others (in fact we could have prevented multiple identical terms
from appearing by a more complicated notation). This is one of the
reagsons for allowing functions to return vectors, i.e., it results in
relatively efficient computations. For example, consider the schema S
below (unnecessary parentheses are omitted):

§: F, <= h(YlFl(a,_a),Y2Fl(a,a)) g

F,(y1s¥p) <= if p(y;) then (y;5¥,)

18

g

Caead B

1
]

Not calling F, both times in (inFl(f‘yl,gyg),YgFl(iyl,gyg))

results in an exponential saving in the length of the computation.

The class of recursive schemas will be denoted (¢(R) . The number

Fe—m e SR o e iy T . .l

of "variables" in a recursive schema is the maximum number of data
&
elements either passed as arguments to, or returned from, a defined
g function. The class of recursive schemas in which no defined function
is passed more than n data variables, and no function returns more than
| n data values is denoted ((R,n var) ; similarly, the class of recursive
schemas which allow equality tests is denoted ¢(R,=) , etc.
In the rest of Section 2.1 whenever we refer to an arbitrary
uninterpreted schema we mean a schema from C(pds,q,list,A,=) U C(R,=) .
We can get an interpreted schema by restricting the interpretations
allowed. One way of doing this is by specifying that every interpreta-

tion for a schema satisfy some formula in predicate calculus; but mostly

the schemas we consider will be uninterpreted.

2.1.4 Halting, Divergence, and Freedom

Definition. A schema is said to halt if it halts on every interpretation.
i Definition. A schema is said to diverge if it diverges on every

interpretation, that is, it does not halt on any interpretation.

T

\ ’ 19

- ‘. Ll o AN »Mm g

Definition. Let 80’81’82”" be the statements of a flowchart, or
an augmented flowchart schema S . Then, a path in S is defined to
be a finite or infinite sequence

(bprtystps «ne)

where for each 1 , ti is s‘j for some j , if sj is a start, halt,
loop, or an assignment statement, or ti is (sj,true) , or (sj,false)

it sj is a test statement, and the sequence mus‘ have the property that

(1) t, 1s the start statement, and no other t; 1is the start
statement,
only the last element in the sequence (if any) can be a halt or
a loop statement,
if ti is the start statement, or assignment statement, then
ti+1 corresponds to the statement following ti in the schema,
if t, is (sj,true) then ti+l corresponds to the statement

1

following the test sj if it takes the true exit; and similarly

for (sj,false) .

Definition. We can similarly define the notion of a path in a recursive

schema. Let S be a recursive schema, and FO’Fl’FQ"" be its defined
functions, and sl,sz,... be the corresponding tests 4z the if-then-else
definitions. Then a path in S is a finite or infinite sequence

(G

where for each i , ti is either (enter Fj} s (exit Fj)) (sj,true) ;

or (sj,false) . The first element, tO , is (enter FO) » and only the

last element, if any, can be (exit FO) . The significance of the ti's

L e

is obvious, and we say that a path must have the property that the
sequence of ti's must obey the computation rule for recursive schemas,
(that is, leftmost innermost, with substitutivity for identical terms in

the same function definition).

Definition. Given a schema S and an interpretation I for S, the

path of the computation of S on I 1is denoted by Path(S,I) .

Definition. A schema is said to be free if every path in the schema

can be taken by its computation on some interpretation.

As example, the schema Sa is not free because the path
(so,(sl,false),(sg,true)) cannot be taken for any interpretation.
In fact, even the schema Sb is not free because no interpretation can
take the false-exit from statement L5 (even though the true-exit and
the false-exit both lead to the same statement). The schema SC is

free, as is the recursive schema Sd . However, the recursive schema

Se is not free because the test F2(y) can only take the true exit.

Sa: START y ~ a; comment: call this statement 503

Lz if p(y) then goto L,; comment: call this 513

if p(a) then goto L

15 comment: call this 553
L,: HALT(y) ; conment: call this 83
Sb: START y ~ a3 comment: call this statement so;
it p(y) then goto L; comment: call this S5
if p(a) then goto L; comment: call this 8,5
L: HALT(y) . comment: call this 533

21

Bt SR NLE A T TR e N WU [Sy e

e o

S : START y ~ a;

while p(y) do y ~ £(y);

HALT (y)
Sd: FO <= Fl(a);
Fy(y) <= if F,(y) then f£(y) ‘else g(y);
Foy) <= if p(y) then F,(£(y)) else F,(g(y))
Se: FO <= Fl(a');

F,(y) <= if F,(y) then f(y) else g(v);.

Fo(¥) <= if p(y) then true else F (&(y)) -

Freedom, as defined, is not a very useful concept for augmented
schemas bécause some of the functions and tests are totally interpreted.
Thus, if a counter schema tests " ¢ = 0 ", then all paths in the schema
cannot be taken because the outcome of this test is fixed once we fix
a path leading to this test. The same is true, for example, for a stack

(a schema attempting to pop a stack must test if it is empty), a queue,
or a list.

2.1.5 Equivalence

Given a schema S and an interpretation I for S we use the

nctetion Val(S,I) to denote the output (of the computation) of S

on I =--if § does not halt, then Val(S,I) is undefined.

Definition. Given two (uninterpreted) schemas S1 and 82 y We say

that 8, includes 5, (Sl‘g 82) if for every interpretation I for

22

g

i\

Sl and 82 (that is, 1 specifies all base functions and rredicates
used in both § and S,), if Val(Se,I) is defined, then so is

Val(Sl,I) and Val(Sl,I) = Val(Sg,I))

Definition. Two schemas Sl and 82 are said to be equivalent
(Sl = SQ) i Sl < 82 and 82 < Sl > that is, for all interpretations
I for Sl and 82 s if one schema halts, then so does the other with

the same output.

The notion of equivalence (=) is sometimes also called output

equivalence, or strong equivalence.

It is immediate that the relation = is reflexive and symmetric.
It is also transitive, but this proof requires a little care. The only
is ive = g = =
problem is that given Sl > and 82 S5 » to show that Sq S5 we
have to show that if I 1is any interpretation for S, and S. then

1 3

Val(Sl,I) = Val(Sj,I) - But I may not be an interpretation tor s,
and SQ (or for 82 and 85 » Tor that matter) because 82 may contain
some superfluous functions or predicates. To overcome this problem, we
note that if I' is any interpretation for Sl B 82 and S3 » then
Val(Sl,I') = Val(Se,I') = Val(SE,I') . And from this, the desired result
follows, for if I 1is any interpretation for Sl and S3 » We can extend
it to I' by adding the new functions and predicates of 82 (arbitrarily)
and then Val(Sl,I) = Val(Sl,I') = Val(Sj,I') = Val(Sj,I) :

An alternative definition of equivalence (and a corresponding on:
applies to inclusion) is that 5, =8, 1if for every interpretation I,
for Sl there is an isomorphic interpretation 12 for 82 (let © denote

the isomorphism o: Il - 12 s 1.e., 8 1is a one-one mapping from the

......

o g r—

e

domain of Il onto the domain of I2 that preserves functions and
predicates) such that if Val(Sl,Il) or Val(SE,Ia) is defined, then
both are defined, and Val(sa,Ia) = Q(Val(sl,Il)) .

The two definitions are the same owing to a basie notion
regarding schemas -- that the behavior of a schema over two isomorphic
interpretations is the same, i.e., the paths of computation are the
same, and the values of all variables correspond under the isomorphism
at each step.

- - -A fundamental notion of -equivalence is-that if we want to find a-
schema equivalent to some given schema S , then the schema to be found
need not have any function or predicate symbol other than tnose in § .
This result is implicitly used all the time in the theory of schemas,

apparently without ever having been clearly formalized.

Theorem 2.1 (Redundant predicates and functions)

Given uninterpreted schemas S and Sl such that § = Sl sy We

can find a schema 82 equivalent to S such that

(i) S, has no function or predicate symbol not in both S and 8, »
(ii) S, has exactly the same features (that is, equality, recursion,
number of variables, counters, stacks, queues, lists and arrays)
as those of Sl c

This theorem may also be called the "interpolation lemma for program
schemas".
For a proof, see Section 2.1.9. In this connection it may be

remarked that if we are given any schema S and a flowchart schema Sl

2k

(Slec(=)) equivalent to S , then there exists a schema 82 also

equivalent to S having properties (i), {ii) above, and also preserving

the freedom of S1 y i.e., (iii) 82 is free ir end only if Sl is

free. This, in itself, is not astonishing. But it should be noted that

; . we said "there exists a schema 82 "y not that we can find it (as in the

s theorem). It may come as a surprise that if we wish to preserve freedom,
" then 82 cannot be effectively found in general! This is demonstrated

lt along with the proof of this remark in Section 2.1.9.

E Definition. We say a class of schemas 02 is more powerful than another

; & class ey (cl 502) if for every schema in C, ‘there is an equivalent

schema in 02 .

Note that the meaning of the symbol " <" is quite different when

applied to individual schemas, and when applied to classes of schemas.

Definition. A class C, 1is strictly more powerful than N (Cl < 62)

o

w if clsce,butnot (}2561

Definition. Two classes (31 and ",2 are equally powerful, or
£ equipollent, (c.l = (',2) if C’l 5(}2 , and (',2 Scl .

18 2.1.6 Isomorphism

Intuitively, saying that two schemas are isomorphic means that they

perform their computations in the same fashion. This differs from

R

equivalence which says that two schemas always produce the same output

even though they migit perform their computations by quite different
algorithms; for example, one schema might be more efficient than
another as far ¢s the numter of operations is concerned.

Several notions of isomorphism can be defined. We consider some of
these possibilities informally before presenting our definition. The
strongest notion, of course, is the identity relation between schemas.

A weaker definition (call it Nl) is that two schemas are isomorphic if both

compute exactly the same statements (i.e., statements that look the same)
in the same order, for each interpretation. Under ihis notion, if the
roles of two variables are interchanged the schemas are not Nl-isomorphic,

as in the case of the two schemas S Sg below:

f b

Spt START {¥,,¥,) = (8,8); g} START (yy,¥,) - (8,8);

vy - 1y, s ¥y = £(yy)s3
HALT(y,) HALT(y,,)

A weaker notion (call it N,) is that two schemas are isomorphic if the

same terms are computed (in the same order). Thus the schemas Ss Sg

above are Ne-isomorphic because both compute the term f(a) only. But

the schemas Sh ’ Si below are not Ne-isomorphic:

Sh: START y ~ a; Si: START y +« a3

y - fg(y) y - &e(y);

HALT(y) vy - £(¥);

HALT(y)

because S computes fg(a) and S; computes first g(a) , and then

fg(a) . A weaker notion (N5) breaks down the computation of terms into

=)

ez

| its constituent parts meking S_, 5 N,~-isomorphic, but not S, , S
}:: below:

Sj: START y « a; Sk; START y « a;
. » if y = b then y ~ f(a); if y = b then y ~ £(b);

HALT(y) T HALT(y) .

The definition given below is a still weaker (and to us, a more

: reasonable) definition that operates on elements of the interpretation
rather than on terms. It should be stated, however, that the decidability
and undecidability results of the next chapter remain unchanged if any

! » of the notions Nl ’ N2 s or N5 is substituted instead.
Definition. Given a schema S and an interpretation I for S .

4 Let Seq(S,I) denote the (possibly infinite) sequence of vectors of

the form
(f, eys.- .,ek) -- where f is a k-ary function symbol,

’ (p, €5 .,ek) -- where p is a k-ary predicate symbol,

<=’el’ e2> ’
(HALT, el) y Or

’ (L0OP)
where the ei's are elements in the domain of I -- that are evaluated
during the computation of S on I .

4

For example, if for the schema S j above, I 1is over the domain
{1,0,2,...3, a=b=0, and f is the "add-one" function, then
l’ ’ Seq(SJ.,I) = {{ =,0,0),(f,0), (HALT,1)) = Seq(8,,I) .

e7

o

Definition. Two schemas S1 and S2 are isomorphic (denoted Sl ~182

or 8, = S,) if for every interpretation I ,
isom

Seq(Sl,I) = Seq(SE,I) .

It is obvious from the definition that if two schemas are isomorphic

then they are equivalent. The converse, of course, is not true.

2.1.7 Herbrand Schemas

Definition. Given a set of function symbols (containing at least one

zero-ary symbol) and predicate symbols, a Herbrand interpretation on the

set is defined as follows: the domain is the set of (fully parenthesized)
constant terms using the function symbols; the functions are defined in

the usual way for terms, and predicates are arbitrary.

An example may help clarify the definition. Given the set of
symbols {a,f,g,p} where a is a zero-ary function symbol, f and g
are unary function symbols, and p is a unary predicate symbol, a
Herbrand interpretation for this set has the infinite domain

{"a","f(a)", "g(a)", "£(£(2))", "T(g(a))", - -] -

where, for example, by "f(a)" we mean the term f(a) itself, consisting
cf a string of four synbols -- "f" , "(", "a" , and ")" . 1In the
interpretation, the value of the function f applied, for example, to
the element "f(a)" is the element "f(f(a))" , and similarly for g .
The value of p applied to any element in the domain can be arbitrarily

true or false.

28

Definition. Given an interpretation I over a set of function and

predicate symbols, the Herbrand interpretation IH corresponding to I

is a Herbrand interpretation whose predicates are defined as follows: !
if p is a k-ary predicate symbol, and TysTps s =y Ty are (fully '
parenthesized) constant terms, thea __p('rl,'re, - .,'rk) is true in IH |

if and only if it is true in I . §

As an example, consider the set of symbols f{a,f,g,p} , and let I ‘
be an interpretation with domain {0,1} such that & =0, f(x) =x, |

g(x) =1-x , and p(x) dis true for x =0 and false for x =1 . Then '

T! is over the infinite domain mentioned above, and p("a") , p("f(a)") ,
¢ p("g(g(a))") ete., are true, and p("g(a)") , p("f(g(a))") etc., are

false. In general, p(y) is true if y has an even number of g's .

IJ Definition. An uninterpreted schema S is said to be a Herbrand {
|
% schema if for every interpretation I for S, Path(S,I) = Path(S,IH) . !
ko i
18 In Chapter L this definition is extended to interpreted schemas i
. i
A as well.
[Definition. An inherently non-Herbrand schema is a non-Herbrand
schema for which there is no equivalent Herbrand schema.
» Examples are given below (schemas S ’ -So). &
The following simple but very useful theorem indicates why the %
notion of Herbrand schemas is useful. We say that a schema S is free
» ;

29

o el PR

-1

on a set of interpretations @ 1if for every path in S +there is some
interpretation in § on which the computation follows that path; a schema
S halts (or diverges) on § 4if it halts (diverges) for every interpreta-
tion in § ; we say that S, < S, on ¢ if for every Ied , if Val(Sl,I)
is defined then Val(Sl,I) = Val(Se,I) ;-and similar definitions apply

for equivalence and isomorphism. We use & to denote the class of

Herbrand interpretations.

Theorem 2.2 (Fundamental theorem of Herbrand schemas)

\ If Sl and 82 are uninterpreted Herbrand schemas then
(a) Sl halts if and only if Sl halts on % ,
(v) Sl diverges if and only if Sl diverges on ¥ ;
(e) 5, =5, if and only if §; =S, on ¥,
‘ (4) 8, <8, if and only if 8, <§, on ¥,
(e) Sl ~ 8, if and only if Sl ~8, on ¥,
(£) 8, is free if and only if 8, is free on ¥ .

Parts (a), (b), and (f) are immediate from the definition of
Herbrand schemas; and part (c) follows from (d). For proofs of (d) -3

and (e) see Section 2.1.9.

We would now like to know what kinds of schemas are Herbrand

schemas. The next theorem implies that it is the tests of equality

o

that tend to make schemas non-Herbrand.

A

T T DRI, - QT T

20

o . I —— s i NP S — g . P
S e e e TR S P P T P L e

Theorem 2.3 (Schemas without equality are Herbrand)
If S is an uninterpreted schema without any equality test then

S 1is a Herbrand schema.

Thus, the schemas in () , ¢{(n var) , ¢(pds,q,list,A) , C(R) ,

etc., are #ll Herbrand schemas. Iri géneral, however, it is not partially

B e
TR R i e

solvable if a given schema is a Herbrand schema. This follows directly
from the fact (see, for example, Luckham, Park and Paterson [1970]) that

the divergence problem for (2 var) is not partially solvable. This

is so because if we are given a schema Se(2 var) and we replace all
) halt statements in § by
if a = b then HALT(y) else HALT(y)

(where a,b are zero-ary functions not present in S) to get a schema

o]

in ¢(2 var, =) , call it S' , then S' is a Herbrand schema if and

only if S diverges.

Examples. Consider the schema O ’ below:

o~
O

IRV FTERE IS - e T

S,: START y -a.l;

= a, then HALT(y) else LOOP . ' k.

SR

if e

RS TRRAN

5%
oy
L

This is a non-Herbrand schema because for every Herbrand interpretation
ay ;é 8y s though a, can equal ap for some non-Herbrand interpretations.

In fact, S ’ is an inherently non-Herbrand schema, because if there is

a Herbrand schema, say SE , equivalent to S ’

Herbrand interpretations. But consider an interpretation I <for which

; then S; loops for all

] ’ halts, then S; too must halt for I , and hence must also halt for _\,."'
the Herbrand interprestation corresponding to I (since S)'Z is a Herbrand

schema by hypothesis) -- a contradiction.

31

LT

However, the use of equality tests does not necessarily make
a schema inherently non-Herbrand, or even non-Herbrand. Sm is a
Herbrand schema that uses equality tests. It is equivalent to a
(Herbrand) schema without any equality tests (Sn) and also to a

non-Herbrand schema (So) with equality tests!

Sm: START (yl,ye) - (a,a);
L:if p(y;) then
@ if p(y,) then

| begin y, = £(y;);
p = £(¥,)

goto Lj

end
else if y, = a then HALT(y) else LOOP

eise if y; =y, then HAIT(y) else LOOP .

S : START y « aj
L:if p(y) then

begin y « f(y);

' goto L
end
else HALT(y)

S START y «~ a3
L:if p(y) then

if y = £(y) then LOOP i

else begin y « £(y);

goto L;

end

else HALT(y) .

Sy
A\
ro

2.1.8 vValue Languages

Given a (fully parenthesized) term T , let [r] denote the

string 7 with all parentheses and all zero-ary function symbols removed.

For example, [f(g(f(a)))] = fef .

Definition. Given a schema S , let” % denote the set of Herbrand

interpretations for S , then the value language L(8) of the schema S
is defined by '

L(S) = {[7] | B®ew, Val(s,H) =7}

For example, the value language of the recursive schema SP
*
is L(Sp) = {xxR | xe{f,g} } where 2 means the reverse of the

string =x .

Sp: Fo <= Fl(a.);
F (y) <= if B(y) then y else Fy(¥);

Fo(y) <= if q(y) then fF,f(y) else gF,8(y);

Theorem 2.4 (Value languages are r.e.)
The value language of any schema S (that admits all the Herbrand

interpretations g) is recursively enumerable.

The proof is quite simple, and is given in Section 2.1.9.

Value languages have been studied mostly for monadic schemas. They
can be used to prove theorems regarding the power of classes of schemas.
The following lemma is a slight generalization of one given by Garland

and Iuckham [1971].

33

IR 1 R S, s e BT i B AT el L T, ™

(Basic theorem of value lanuages)

Theorem 2.2

For unintecpreted schemas Sl 5 82 s if S

<S8

1 then L(Sl) c L(Sg)

2

The proof is trivial, for if L(Sl) ¢.L(Se) then there is a string

xeL(S

l) such that fo(Sg) . Now, consider any Herbrand interpretation
H for §; for which [Val(Sl,H)] = X , then [Val(Sg,H)] # x because
xfL(8,) , and hence S, £ 5, -

Note that this theorem holds whether or not the schemas § S

1’ %2
are Herbrand schemas.

Corollary 2.6. For schemas S, 8,, if 8 =8, then L(Sl) = L(Sg)

This is usually used to prove the negative result: given two
classes c1 and 62 of uninterpreted schemas such that for some
S,€2, there is no S,eC, for which L(Sl) = L(Sg) then we can conclude

that ey $(’,2)

2.1.9 Discussion and Proofs

2.1.9.1 On the Treatment of Fquality

In our treatment, equality is viewed as a basic construct in schemss,
on par with others like assignments, goto statements (in flowchart
notation, the arrows leading from one statement to another) or the use
of more than one variable in schemas.

Alternatives have been suggested, but our approach seems to be the
most natural. One alternative is to treat equality as just another
(diadic) base predicate, call it P_ . Then, a test like T, =T, is

viewed as just a notation for the strict form p=(71,72) . However, the

3k

A
¥

hid
<«r

g | A S

schema is no longer uninterpreted, but every interpretation must satisfy
the formula VxYVy p=(x,y) = (x=y) . In other words, p_ is treated as
pseudo-equality. The problem is that the equivalence of partially
interpreted schemas has to be defined (it is not desirable to define

it for the special cases where zero or one of the predicates is pseudn-
equality). The definition of Sectioh 2.1.5 (i.e., S, and S, are

1

equivalent if VI if S, admits I , and S? admits I then

1
Val(Sl,I) = Val(Se,I)) is inadequate because it is not transitive in
general. Equivalence is defined in Chapter L4 for partially interpreted

schemas (it is based on the alternative definition given in Section 2.1.5).

If this definition is used, we would find that the trivial schemas Sl

and 32 below are not equivalent using the p_ formalism, while clearly
we would like to say that they are indeed equivalent. 1In fact we would

find that the uninterpreted schema S, is a "generalization" (see

2
Section 4.3) or Sl because more interpretations are allowed for 82 than
for Sl . It may be noted that Sl and 32 are equivalent in our formalism.
Sl: START y « al;
if a, = a, then HALT(al) else HALT(ae).

S,: START y « 8 j

HALT(az)

Another approach that has been suggested is to treat equality as

just a (diadic) base predicate, say q_ . The schema is to be partially

interpreted, with Q_ being an equivalence relation also satisfying

P B NI TIAR va

substitutivity; i.e., if £ ,f2,...,fr and pl,pz,...,ps are the

other basz functions and predicates in a schema with ranks il,...,ir

and Jjj,...,J, respectively (let k be the maximum of these), then i

25

every interpretation for the schema is to satisfy the formula ¢ ,
where
¢ is VXle2Vx3 q=(xl,xl)
A q=(xl’x2) = q=(x2!xl)
A q=(xl’x2) A q=(x2!x3) Y q=(x1’x5)
A LSRR (q=(xl,yl) Ao A q=(xk,yk)) -
9B 0y ey)58y (g5 o003,)

1
A oo

A q=(fr(xl""’xir)’f(yl’""yir))

A pl(xl’ D0 "le) = pl(yl! b "yjl)

A oo

A ps(xl! ""le) = Ps(yl) ""yjs) O

This approach "works" for the introduction of equality in, say, first
order predicate calculus where the property of interest is the validity
of formulas -- a formula y with equality is valid (satisfiable) if

and only if ¢' A @ is valid (satisfiable) where y' 1is obtained from

vy by substituting q_ for equality. Unfortunately, this approach does
not seem to be viable for schemas, where the equivalence of schemas should
be preserved on replacement of equality by a_ - Observe that the schemas
5, and S, are nob equivalent if a, = a, is replaced by q=(al,a2)

in Sl » because it is possible for ay and 8, to be distinct elements

even if q=(al,a2) is true, i.e., the outputs of Sl and 82 are not

the same. Of course, the outputs are equivalent under the relation q_ |

for every interpretation, but as mentioned, equivalence of schemas should

be defined for some general class and not for a special case where there

is one equivalence relation. 4

Why all this discussion on equality? It goes back to the basic
question "what is a program schema". The intuitive notion is that of
a machine that computes on uninterpreted (or partially interpreted)

domains, as against "real" computations on interpreted domains. One aim

of the study is to present stable (or "maximal") classes of machines

similar to the Turing machines for real computations. What properties
should schemas possess? As with real computations, the requirements

of finiteness, nonrandomness, and discreteness seem reasonable -- see

e.g. Rogers {1967]. In addition we may require the following:

(1) first order functions and predicates;

(2) total functions and predicates;

(3) the computation of a schema should be fully characterized by an
interpretation (and the inputs, if eany);
computations on isomorphic interpretations must be the "same"
for any one schema;

(5) 1in any one step & schema should be eble to "look at" at most a

finite number of elements of the domain of the interpretation.

Of course, one may relax any of these conditions to study what classes

of machines are obtained. In Chapter 4 we introduce a class of schemas
having all the above properties. In addition, a slightly stronger version
of (3) above is used: the computation of a schema is fully characterized
by the values of the functions and predicates applied to the reachable
elements in the domain -- the set of reachable elements is the smallest
set (containing the inputs, if any, and) closed under function

applications. In this class of schemas we obtain a maximal subclass

T

for the uninterpreted schemas, and a maximal subclass for the
uninterpreted Herbrand schemas (i.e., schemas whose computation is
the same for any interpretation and its corresponding free interpre-
tation), and as may be expected, the use or the non-use of equality

Plays a crucial role in distinguishing the.subclasses.

2.9.9.2 Proof of Theorem 2.1 (Redundant functions and

predicates)

Proof of the Theorem

Given uninterpreted schemas § » Sy such that § =g then

1 1’
there is a schema 82 equivalent to S, having no function or predicate
symbol other than those in both § and Sl » and having exactily the

same features as Sl ;

Proof. Firstly, irf there is no zero-ary function symbol common to
both S and Sl then both must diverge for all interpretations because
if not, consider the interpretations for S and Sl -~ as the sets of
terms generated by S and Sl are mutually disjoint, if § halts on
any interpretation then it halts on one in which the reachable elements
of S and of Sl are disjoint, and for this interpretation the output
of Sl can never equal that for S . So in this case the construction

of 82 is trivial.

38

Al

&

]

&4

2

b #

z

il

Now, if § and Sl have a common zero-ary function, say a , then

we obtain S, from S, u4s follows: if f is any (k-ary) function in

S1 and not in § , then replace any term of the form

e b L) -

f(Tl’...,Tk) by a,

and if p is any (k-ary) predicate of S1 not in S , then replace any
atomic formula

p(?l,...,Tk) by true .

Now, to prove that § = S2 » let 1 be any interpretation for S and §

5 ¢

We change I to I' by first deleting all functions and predicates of
Z(Sl) -Z(Se) from I (if any), and then adding the functions and
predicates of E(Sl) -Z(Se) as follows: the value of each new function
f applied to any set of elements in the domain is "a", and all new
predicates are "true" for all arguments. Clearly, Val(s,I') = val(s,I)
and Val(Se,I') = Val(Se,I) because the functions and predicates of

Z(Sl) -E(Se) do not appear in S or S Also, on I' , the computa-

5
tions of S, and S, are identical, and hence Val(S,I') = Val(Sl,I') =

Val(Se,I') - This gives the desired result, i.e., Val(s,I) = Val(Se,I) .

-

i

Redundant functions and predicates with preservation of freedom

Given a schema S and a flowchart schema §; (Sle(',(z))
equivalent to S , then there exists another flowchart schema 82
also equivalent to S having the same features as Sl and no base
functions or predicates other than those i{l both S and Sl s such

that S is free if and only if § is free. But S, cannot be

2 1 2

effectively found, in general.

Proof. §=8§,, Slec(=) . We first construct a flowchart
schema Si equivalent to S and having no base functions and predicates

other than those in S , suca that SJ'_ is free if S1 is free
(but it may also be free if S, is not).

The idea behind the construction is similar to that in the proof
of the theorem. The application of any new predicate p (p 1is in Sy s
but not in S) yields "true", and the ‘ralue of any new function f is
a special element we call "bad". The schema Si simulates the computation
of Sl , keeping track of all "bad" variables. S) can be described us

1

follows. It has 273" "copies" of Sl -- where n 1is the number of
data variables, and m is the number of boolean variables. Fach data
variable can be good, or bad, each boolean variable can be good, bad-truc,
or bad-false. If in Sl there is an assignment

vy - or z; - Q@
where T (or @) conteins a bad value (for some copy in §j) or a new
predicate, “hen this assignment is not made (in that copy), but the
variable becomes bad, i.e., S! transfers to the appropriate next

1

statement. Further, if zs becomes bad, the value it takes is governed

Lo

!
i
i

3

by the rule that any pvedicate on the value "bad" is true, and
"bad - bad" yields true, but "bad - good" yields false (where "good"
stands for some term that is not bad). The same applies to any bad
test -- the test is not actually made, but the appropriate exit is
assumed.

Now it is easy to see that Si ; Sl . The proof is very similar to
the proof for the theorem (above).

Further, Si is free if Sl is free. Suppose Si is not free.
Then there is some path from the start statement to a test such that the
outcome of the test is predetermined by the path. But as Si makes
tests only on {constant) terms that can only be obtained by applications
of functions of S , we see that in the corresponding path in Sl , any
computation following this path must take the same exit. This is so
because (a) any interpretation of the form having the "bad" element
appended, must take the same exit, and (b) for any interpretation I ,
we can obtain the corresponding interpretation B with a "bad" element,
such that if I follows the path, then its e«it is the same as that of B .
is free, then Si is the required

we can cimply append to the beginning

Now, if the given schema Sl

schema 82 , otherwise to obtain 82

of 8! some trivial tests to force it to be non-free.

= a

Unsclvability of the translation

Our translation was not effective because in the last stew the

decision 2s to whether Sl is free or not was not effective.

We will prove that the translation to 82 is not solvable in

general in a very informal way. We use Paterson's proof [1967] of the
unsolvability of freedom aid convert it to the unsolvability of freedom
for schemas in (1 var, =) by using the method of simulating two
variables with only one presented in the proof of Theorem 3.3. The
resulting class (call it o) has schemas with no predicate, one
zero-ary function g ; and unary functions, one of which is called f .
There is a single variable ¥ which, at intervals, takes values
a,f(a),fr(a), fff(a),...
We will change this class ¢ somewhat to 31 by adding & unary

predicate p , and whenever in g schema S'e¢®' the variable ¥y has

value fl(a) in the above sequence, the new schema S. makes a test

1l

p(¥) - If p(y) is false, the schema § halts, otherwise it continues

1
like S' . In addition, any halt or loop statement in S' is replaced
by a cycle that tests
p(r(2)),0(e" N a)) p(1* (), ...
such that Sl halts if any of them is false. Now, Sl is free if and
only if S' is free, and hence the ‘reedom problem for this new class
is unsolvable. But, each schema Sl in this clasc c1 is equivalent
to the schema S :
S = START y + a;
while p(y) do y ~ f(y);
HALT(y) .

Hence, if our desired schemas S? exists, it must have one variable y ,

functions a and f » and predicate p . But the freedom problem for

k2

1 [z 5
E e»

L

as
K>

“

such a class of schemas can be shown to be solvable. We do not give a
rigorous proof here, but only indicate it.

Given a flowchart schema S with only a zero-ary function a s
onc unary function f , and one unary predicate p , to show that the
freedom problem for S is solvable we observe that without loss of
generality we can assume that every circular path (cycle) in S must
have at least one predicate or equality test.

Now, if any reset (i.e., y ~ fi(a)) appears in a cycle, then §
must be nonfree for the same test would be made twice (with the same
value for y) by going around the loop.

Secondly, if after the "true" exit from any equality test (i.e.,
tla = g , i = ij y Or fiy = ij) there is a cycle then the
schema must be nonfree because either the false exit can never be taken,
or else there are only a finite number n of distinct elements in
a,fa,fga,fju,... » and hence by going around the cycle n+l times some
test would be made twice.

Now, if the schema S is not obviously nonfree by the above
criteria then we can determine whether or not it is free by constructing
a finite state automaton that accepts all input tapes unless the schema
is nonfree. We use the terminology in the proof of Theorem 3.1.

The input tape of the automaton represents a path through the schema.
The first symbol specifies all resets the path goes through, and true
exits from equality tests. Subsequent symbols update each of these
subpaths starting from the resets and true exits. The automaton simulates
the computation of all possible interpretations simultaneously along all

these cubpaths (except for any true exit from a fly = ny test, which

is simulated when computation reaches that statement). Note that the

nunber of equivalence classes of all interpretations remeins bounded.
The input tape is accepted unless it represents a valid path which

cannot be traced by an interpretation.

Hence, if we could fing 82 effectively, we would have converted an

unsolvable problem into g solvable one -- g contradiction.

a

2.1.9.5 Proof of Theorem 2.2 (Fundemental theorem of Herbrand

schemas)
For Herbrand schemas, the notions of (a) halting, (b) divergence,
(c¢) equivalence, (d) inclusion, (e) isomorphism, and (f) freedom,
for a1l interpretations » are equivalent to the same notions for the

Herbrand interpretatiaons.

Proof. (Informal) (), (b), (f) These are immediate from the

definition of Herbrand Schemas.
(c) This follows directly from (d) below.

(d) The "only if" part is trivial. For the "if" part, assume it is
false. Then Sl < 82 on % , but there is some interpretation I such

that Sl halts on I and 82 does not halt with the same value. Now,

Ly

3 R T TV : e

-

L2

&

consider the Herbrand interpretation H corresponding to I . As Sl

is a Herbrand schema, S. halts on h .

1

(i) 1f Val(SE,I) is undefined then so is Val(SE,H) as 8, is a

Herbrand schema, and hence SJ é 82 on % -- a contradiction.

(ii) S, halts on I , and hence it also halts on H , and

2

val(s,,H) = Val(SE,H) , but Val(Sl,I) £ Val(SE,I) . We show that

this is impossible by considering the (natural) homomorphism

©: H-I from H onto

the reachable elements in I (i.e.,

elements that can be expressed in constant terms). Then, we see

by induction on the number of steps in the computation that at

each step the values cf variables in the computations of Sl on H

and I correspond with respect to © ("variables" includes

arrays., stacks, qusues, counters, etc., and recursion is also

handled -- and O is extended to be the identity function over

elements, like integers,

that are not in the domain of H), and

similarly for S . Then we have G(Val(Sl,H)) = Val(Sl,I) , and

G(Val(SE,H)) = val(se,x)

Val(Sl,I) = Val(SE,I)

, but Val(Sl,H) = Val(SQ,H) , and hence

-- g contradiction.

(e) The "only if" part is trivial, and the "if" part follows on lines

very similar to the proof of inclusjon: if it is false then there must

be a counterexample, say for an interpretation I , and Seq(Sl,I) and

_Seq(Se,I) do not agree after

some finite number of steps, but

Seq(Sl,H) = Seq(SE,H) and values of variables correspond at each step

for computations on I and H

-- which yields a contradiction.

e~ T R Y T Y D A R LI

T ——— —

2.1.9.4 Proof of Theorem 2.3 (Schemas without equality are

Herbrand)

Schemas that have no equality {ests are Herbrand ‘schemas.

Proof. (Informal) Assume the theorem is false. Then there is a
schema S and an interpretation I for S (let the corresponding
Herbrand interpretation be H) such that the paths of the computations
of S on I and on d are different. Then they must first be different
after a finite number of steps k . Then as in the proof of Theorem 2.2 (d),
the values of variebles in the two computations correspond for k-1
steps, and the k~th step must be a predicate test (since it must be a
test, and tests on booleans yield the same value, and tests of equality
are forbidden). But the outcome of the predicate test must be the same
in both computations (by the definition of H corresponding to I) ==

a contradiction.

a

2.1.9.5 Proof of Theorem 2.4 (value languages are r.e.)

The value language of any schema S is recursive enumerable. 1

It is easy to see that given any finite path in S (starting 1
from the start statement) it is decidable whether or not the computation
of 8 on some Herbrand interpretation follows this path. Also, given

any path from the start statement to a halt statement, the output (for

3

Herbrand interpretations) is fixed by the path, that is, if Hl ’ H2 are z

two Herbrand interpretations on which the computations of S +traverse g

the same path, then Val(S,Hl) = Va.l(S,He) .
We can now construct a partial recursive function from integers to

strings whose range is precisely the value language of S : i

L6 "

"3
%9
&
.' i
i
t

"Let n be the input. Generate the n-th finite path in 8 (by
any predefined ordering) and if it ends at a halt statement and
cen be traversed by some Herbrand interpretation, then output
[Val(S,H)] where H is any such interpretation; otherwise
diverge."

completes the proof. L O

Value Languages of Schemas

In this section, all schemas are assumed to have only monadic

functions (zero-ary and unary) and arbitrary n-ary predicates, unless

otherwise stated.

2.2.1 Flowchart Schemas

Theorem 2.7

The value languages of flowchart schemas (with monadic functions) that
are free on the Herbrand interpretations are precisely the regular sets.

As a corollary, the vaiue languages of free flowchart schemas with
monadic functions and no equality, are regular (see Theorems 2.3 and 2.27).

The proof is given in Section 2.2.3. It can be shown that the class
of one-variable flowchart schemas (even with resets y -a, and boolean
variables, but without equality) can be translated to equivalent free
schemas without equality, but with several variables. Then, from the

proof of the above theorem and the Corollary 2.6 we have

Theorem 2.8. The value languages of schemas of ¢(1 var) with monadic

functions, are the regular sets.

b7

et [SR CRIEIN e P - e
e T W e

e

Wt o Rl e S AR i

TR -

sl =
. 5 gt -

The fact that all regular sets can in fact be generated is implicit
in" the proof given for the previous theorem in Section 2.2.3.

From Theorem 2.7 it follows that the following schema Sa is
an inherently non-free schema, that is, it cannot be translated into an

equivalent free flowchart schema (without equality tests).

Sq: START (y,,¥,) « (&,a);
while p(y;) doy - f(y;)3
while p(y,) do begin y, «~ &(¥;); ¥, = f£(y,) end;

HALT(y,)

The schema S is inherently non-free because L(Sa)

{g"f" |n >0}

which is not a regular lansuage. Note that the comment after Thecrem 2.1
is implicitly used here in the unstated assumption that any equivalent
free schema must have only monadic functions. However, Sa is indeed

equivalent to a free recursive schema, and S, is an example.

b
Spt Fy <= Fl(a);

F,(y) <= if p(y) then gF,f(y) else y .
The Theorems 2.7 and 2.8 do not apply to nonmonadic functions.

As an example, consider the schema Sc

Sc: START y +~ a;

while p(y) do y ~ £(y,¥);

HALT(y)
It has one variable, and it is free, but the value language L(Sc) is

n
(£ -ll n >0} , which is not even context free.

L8

o

:]
35{ Theorem 2.9
The value languages of monadic schemas of ¢(2 var) are the
g_. recursively enumerable sets.
This is a slight generalization of a similar theorem due to Garland
and Luckham [1971], in which they show that the value languages of
. monadic schemas of () are the r.e. sets. i
o !
.‘ 2.2.2 Recursive Schemas i
P S Theorem 2.10 .-’
The value languages of recursive schemas (with monadic functions) l
3
that are free on the Herbrand interpretations are precisely the context 1
1 E¥ free languages. ;
As a corollary, the value languages of free recursive schemas with {
monadic functions and no equality, are context free. i
¢ !

The proof can be found in Section 2.2.3. It follows from this
that although the schema Sa in the previous section could be translated
into an equivalent free recursive schema (Sb) s the schema Sd cannot,

for its value language is {f'g"f" |n >0} which is not context free.

e e T I e it s

Sy: START <yl,y2) -~ (a,a);

while p(y;) doy; - f(y,);
vhile p(y,) do begin y, - &(y,); ¥, - f(y,) end;
Yo -~ a3 |

vhile p(y,) do begin y, - £(y,); v, - (y,) end; |]

HALT(yl) : ;

PR —

Theorem 2.11

The value languages of schemas of C(R,1lvar) with monadic functions, ;

no resets, and no defined function inside atomic terms, are the context

free languages.

k9

Note: an atomic term a is a predicate or equality term used in a
test (if o then ... else ...) or as a boolean argument. If in any
function definition Fi <= if @ then (-r,al,az, «oo) else (r',ai,aé, S e
i £0, the tertms 7 or t' contain a zero-ary function ay , we call
this a reset.

F This theorem is a generalization of a.similar theorem by Garland
: and Luckham [1971], and the proof is presented in Section 2.2.3. This
theorem does not follow from Theorem 2.10 (as did Theorem 2.8 from
Theorem 2.7) because there exist one-variable recursive schemas that
cannot be made free. The following example, schema Se s 1s due to

Ashcroft, Manna, and Pnueli [1971].

St Fy <= Fl(a);

Fl(y) <= if p(y) then F2Flf(y) else y;

Fo(¥) <= if q(y) then f(y) elsey .

The theorem shows that the

schema S q’ for example, cannot be translated
into a recursive schema with one variable (and satisfying the conditions

of the Theorem 2.11).

From the general result of McCarthy [1962] that any schema in
¢{n var) can be effectively translated into en equivalent schema of

C(R,n var) , and using the Theorem 2.4 we have the following.

Corollary 2.12. The value languages of monadic schemas of C¢(R, 2 var)

are the recursively enumerable sets.

2.2.3 Proofs of Theorems on Value Languages

2.2.3.1 Proof of Theorem 2.7

The theorem states that the value languages of' flowchart schemas
(with monadic functions) that are free on the Herbrand interpretations,
are precisely the regular sets.
50

T T S T e T TR

I

&

-3

(1) We first show the easy part, that is, that all regular sets can
be generated. Given any regular set over I = {fl,fe, ...,fr] , we
consider the deterministic finite state automaton A that accepts the
regular set. Let its states be Q = {qo,ql,...,qk} where q, is the
start state, and F c Q 1is the set of final states, and the next-state
function is 8 : Qx& - Q . We construct a flowchart schecma S with
one variable which uses unary functions symbols fl, f2’ ,fr ’

a8 zero-ary function symbol a , and unary predicates P1sPps - 5P,
(note: it would suffice to use log,a(r) predicates, but this construction
is slightly simpler). We label statements Lo, Ll, ,Lk in correspondence
with the states Qprdys e rly of A . In addition there is one halt
statement L : HALT(y) . The start statement in S is:

START y ~ a; goto Lo

Let d.i ; denote 5(qi, fj) . Then for 0 <i <k the statements of
)

the schema are: if qeF (i.e., a final state) then

Ly: if pl(y) then begin y ~ fl(y); oto Ldi) end
J

else if pe(y) then begin y ~ fQ(y); goto Ldi] end
J
else if pr(y) then begin y « fr(y); goto Ly end

Hifes

else goto L

and if qiyfF then

Li:

else if pr(y) then begin y ~ fr(y); goto Ly end
i, r
else I0OP

51

\§

o 2 Ry W T I AR T B Y PTG WL e dokini i
e 2 s i ae sl ae: B e BB Lt i kL e e i o S L

Now, the schema S is clearly free, and the computation can reach any
statement L, with value x (in the Herbtrand domain) if and only if
the string [x] takes the automaton from the start state to state q;
(recall that [x] denotes the string x with parentheses eond unary

function symbols removed). Thus the value language for S equals the

given regular set.

(2) We now show that the value language of a free flowchart schema
(with monadic functions) is regular.

Let S be a free flowchart schema, with variables yl,ye,...,yn g
and unary functions & = {fl’fz""’fr} - Without loss of generality
we assume S has a single halt statement: HALT(yl) . We label the
start statement, and all the assignment statements of § by Ll’L2""’Lk .

Let xi,J denote the set of strings in 2* corresponding to the
possible values of the variable yj after statement Li is executed
(on a Herbrand interpretation). In addition, let X denote the set
of strings corresponding to the possible outputs -- in other words,

X 1is the value language.

We will now demonstrate a set of recursive equations relating
the X's and having the property that
(a) the least fixed point exists, and is regular, and
(b) the least fixed point corresponds to the values of the X's for

the computations.

X, . suppose {L, ,L. ,...,L, } are the statements of § for which
i, J il i, ig
there is a path from Li to Li without passing through any assignment
)
52
i R o 2

e s ——

statement. Now, each of the L;'s 1is an assignment statement of the
form (yl,...,yn) - Crl,...,fn) . Let the termm in Li for yj be 7T

(= TJ)

If v 1s a constant term, we use the equation

X, . <= {7
izl

If, on the other hand, 71 1is sequence of functions applied to one
of the variables, say Yy then we use

xi,j <= [t]xi ot {r]x.l

+ ...+ {1]X.
", oo (7] s

gom
where + stands for union, and [t] is the notion introduced earlier,
but extended to nonconstant terms as well ((1] is the string 7 ,
omitting all purentheses, zero-ary functions, and variables). Note that
the start stetement is treated just like any other assignment statement.

X: Suppose {Li seeesly } are the statements of § for which
1 5

there is a path to the single halt statement of § (HALT(yl)) . Then,

we use

X <=X,

55

(2) We have a right-linear set of recursion equations (on strings),
and such a system has a unique least fixed point, namely, the regular
sets (one for each of the X's) obtained by these equations treated as

productions.

(b) For convenience, we will rename x’xl,l""’xk,n to be Yl’Y2""’Ym 3
and we define the sets

1,0 ¥,0% 0 =Y =9

and

Yi,c+l = ’i(Yl,c’YQ,c"°"Ym,c)

where 91 is the function used in the recursive definition (for Yi)

Y, <= F(Y,Y,.0 ,Y)

Then, the least fix-point ?i for Y. is given by

Y. = U Y, = the least fix-point . (*)
i i,c
t <>

We define Zi o to be the set of strings corresponding to the
J
variable Yi (which is same Xi j or X itself) obtainad in not more

2

than ¢ steps of the computations of the schema S (for all Herbrand

interpretations) where a "step" is defined to be the execution of the
start statement, an assignment statement, or a halt statement (i.e.,
not loops or predicate tests). By definition,

U 2z,
cew G

is the set of strings corresponding to the varieble Yi in all possible

computations. We have to show that

Y. = U 2 ’
c <o

1,¢

s

but for the induction to work we will prove the stronger result, that

for all i<m

(i) To show that Y. c U Zi,c
c<w

We will prove that Y. .C , and then by equation (*) the

»C Zi,k+‘c
result follows.
The start step is trivial as Yi o= ® . For the induction step,
3

c >0, assume it is true for c , to show it for c+l .

Case 1. Y, <= X (where x = [t] 4is a constant) is the recursion
equation for Yi . Now, as the schema is assumed to be free, and all
statements are reachable, and there are only k start and assigmment
statements, the statement corresponding to Y i must be executed within

k+l steps, i.e., Zi,k+c+l = {x} , and, of course, Yi,c+l = {x}, and

hence Yi,c+1 (& Zi,k+c+l .

Case 2. Y, <= XY, +...+x¥; , (x = [t]) , where the statements

1 s

corresponding to Yi ,...,Yi lead to the statement for Yi without
1 s

any intervening assigmment (or halt) -- note: only Yl corresponds to

the halt statement. Since the schema is free, all paths can be taken,

and by the definitions of Yi,c , and Zi, we have
Yi,c+l=ﬂil,c+”‘+XYi ,e (def)
C X2, P X2y T (ind hyp)
1 s
. Zi,k+c+1 ’ {deh)

25

e g

(i1) To show that |1 2. cyY

i A
C<w a 1

We will prove that Zi, c © Yi, o

The start step is trivial, for after zero steps of the computation,

all Zi,O'

is true for c, to prove it for c+1

§ &re @ . PFor the induction step, ¢ >0, assume the result

Case 1. If y. <=x, then Yi,c+l = {x}, and Zi, can only be ¢

i c+l
or f{x}.
Case 2. If Y, <=xY, +...+xy, then, as before,
i i i
1 s
Zi,c+l = xzil,c+-...+-xzis’c (def)
XY, + ...+ XY, i
c YYll,C XYls,C (ind hyp)
= Yi,c+l (det)

This completes the proof of Theorem 2.7.

2.2.3.2 Proof of Theorenm 2.9

The value languages of monadic schemas of ¢(2 var) are the
recursively enumerable sets.

We use the fact that a recursively enumerable set is generated by
the outputs of a Turing machine, and that all r.e. sets can be so
generated. Luckhem, Park, and Paterson [1970] have shown how a two-
variable schema § using a unary function f and a unary predicate p

can simulate a Turing machine computation such that S diverges unless

56

Rt ¢

&

the Turing machine halts, and if the machine halts then its output can
be "read off" by the values p(yl),p(f(yl)),p(ff(yl)),p(fff(yl)),...

in some coded form, where ¥y is one of the variables of the schema.
We modify the schema S so that before halting it resets Yo to a
(y2 - a) , and then proceeds to apply the appropriate functions to Yo
as read off by the variable Yy s and then halts, outputing Yo We
thus obtain a subclass of @(2 var) whose value languages are the r.e.
sets, thus proving the theorem by recourse to the Theoren 2.4 that the

value language of any schema in ¢(2 var) is r.e.

2.2.3.3 Proof of Theorem 2.10

The value languages of the recursive schemas (with monadic functions)

that are free on the Herbrand interpretations are the context free languages.

(1) We will first prove the simpler part, that is, that all context
free languages can be generated.
Let G be any context free grammar over the nonterminals

F.,F » and the terminals f is the start

12 f2"" s where ¥

2’-0- l’ l
symbol. We assume G is in Greibach normal form, that is, all

productions have the form

Suppose there are at most m productions for any Fi s> then in our

schema we will have m-l unary predicates pl,pe,...,pm_ In the

5 -
schema we will allow definitions like (a) Fi(y) <=7 , and also

(b) nested if-then-else's , with the understanding that these features

o1

N

- 2 X o
-mmmwmmmarmmmxﬁﬂ‘hvamm o PP T T T ST ey

g Y

are easily eliminated by (a) substituting, and (b) adding new
defined functions, without destroying the property of freedom in our

particular construction. The schems, is:

Fy <= Fl(a) A
and for each Fi in G, if there are n ~-productions for Fi R

F

g " Fp Ty p e Fl,klfjl

Fi —.Fn,l Fn,2 Fniknfjn

then the corresponding defined function in § is:

else .

See it 2,) (9) e By (only ()

else 1 (...(£; (7))
n

It is easy to see that this schema is free, and its value language

equals the language generated by the grammar G .

(2) We now prove that the value language of any free recursive schema

is context free.
Given a free recursive schema S using only monadic base functions,
we construct a context free grammar G such that the value language

of § 1is the came as the language generated by G, S has the form

58

2

&d

- Ty
e e

ﬂ
-
t‘ i
,:é S: FO<=10();
| e - -
3 » '~ 1]
1 ¢ Fl(y,z) <= if @, then T, else 7]
= . L -
Fk(y,z) <= if o then Ty else T}
We will assume that no short-cut notation is used; for example, if F
returns just one data value, to obtain it we must write Yl(F(.)
instead of just F(...) . Similarly, if F, returns a vector that,
matches the arguments for Fy 5 We must write F2(Y1(Fl(o0 .)),Y2(Fl(. 5 o)) o
instead of FQ(F]_()) .
The terminals of the grammar G to be generated are the unary
function symbols of § . The nonterminals have the form

: (Yi’Fj’yk)

L.

: (which has the foilowing significance: if the defined function F,j is
entered with any string x for its k-th dats argument, then (Yi’F,j ,yk)
represents the possible strings x' that could have been added to the

{ left of x such that the i-th data argument of Fj can exit with this

value (i.e., x'.x). The other type of nonterminal is

e e Bl

which represents the strings Yi(FJ.(. ..)) could exit with no matter
what the arguments.

To construct G , we first define the following notation:

(v]yi

where T is any term (which may use the defined functions) to be s set

of strings as follows:

59

F) seieeaian

(1) for any zero-ary function a : [a]y =

i
- " *
(2) for any ¥y o [yi]yi = A */
and for j £ 1i [yj]yi =Q
(3) for any unary f : [(£(7)]. =f.[7]
Y4 o5

(h) a‘nd‘ [YJ(F(Tl’Tg,"'))]yi = ‘}s{J(Yj’F’yk)'[Tk]yi

for all k wvarying over the data arguments of F .

And similarly, ([t]. is defined as follows:

0
(1) for any zero-ary function a : [a]O = A
(2) for any y, : ly;15 =@
(3) for any r : [f(‘r)]O = f.[T]O

(4) and [Yj(F(Tl,Te,...))]O = (Yj,F)-+ E(YJ,F,yk).[Tk]O

Note: we are using both the signs U and + (for strings) to mean
union,
As an example

[YQ(F(fg(a):Yl(G(Y5:yl:a:fy3)):hYB))]y3

= (YE’F’yE)(Yl’G’yl)
+ (Ye} F’ ye) (Y13 G’ yh) f
+ (Ye’F}yB)h

and

*
Y Note that the notation is a little informal. We should strictly
write [yi]yi = {A} , etec.

' Tk qw‘. Ve e, e,
; o T o A oS v P e i s . : S

e S e R P RSy & P o
N T Pl e e e e o -

Rkl i -

]
[Y2(F(fg(a) ’Yl(G(y3’yl’ a, fy5)) ’h}’3))]O
4
= (YQ’F)

+ (Y5 Fy) fa
® + (Y, Fy,) (¥,0)

+ (YQ’ F, y2) (Yl’ G, Y3)

¢! 2 Given the free schema, we can separate the defined functions into two
classes -- those that can eventually return, and those that must diverge.

This can be done by building up the set of functions that can halt;

starting with the null set:
F(...) <= if @ then 7 else 7'

F can halt if O can halt (i.e., all defined functions in it can halt)
and so can one of T or T'

The construction of the grammar G ignores all boolean varisbles,
all tests, and all defined functions that must diverge. If the start
function F_. diverges, then the language is the empty set. Otherwise,

0
we build G as follows:

(1) Fy <=) .

The start nonterminal in G is (Yl,Fo) g

(Y,F) = [v()],

K3
‘é (2) Fi(yl’y2""’zl’22"") <= if a then T else T!
' where F; is a function that can halt (which implies that @ can halt).
1 b ¥ Then, for all Yj’yk (that make sense for Fi)y HiE T = er,re,...) P :

61

and it can halt, then 3
and

(YJ,Fl) =) [TJ]O

and similarly for rt!'

We can show that G generates the value language cf S on lines
similar to the proof of Theorem 2.7. We consider a Herbrand interpre-
tation over the given base functions and Predicates and also over a
special set of zero-ary functions bl’b2""’bn where n is fhe number
f of variables in § . Then, for any Fi and integer c , we associate
the sets (Yj’Fi’yk)é which stand for the possible strings x , suckh

. that if Fi(yl’yQ"°"Zl’22"") is entered with ¥y =b b

17 Y2 =0 veey
then Yj(Fi("')) exits with value x. b (for all possible values of

the zi's) without executing recursive calls of depth more than c .

And similarly, (Yj’Fi)é stands for the strings x such that

Yj(Fi("')) exits with value X.a, (for any k , and the same arguments
to Fi as before). Note: by the depth of recursive calls we do not
include recursive calls required to evaluate any test o in

Fi <= if a then T else T' . We can then show by least fixed-point

arguments that

‘ U (Y,F.,y) = L (Y-,F-,Y)
1 ccw J 1 k/c G i1k

where the right hand side represents the strings generated by the
nonterminal (Yj’Fi’yk) in the grammar G ; and similarly for (Yj’Fi) .

Thus LG(Yl,FO) does represent the possible output strings in this

62

i
1
3
i

i
X

augmented Herbrand interpretation (with the additional zero-ary functions

bl’b2""). But the computation for]b never computes any element

x.bi » and hence the possible output strings are the same for unaugmented

Herbrand interpretations (without the bl’be""). 0

2.2.3.4 Proof of Theorem 2.11

It is easy to see that all context free languages are generated by
one-variable monadic recursive schemas without resets. The construction
in the previous section applies.

To show that only context free languages are generated, let S be
a given one-variable recursive schema such that no atomic term has a
defined function, and § has no resets. We define the depth |1| of
a term T (constant or variable) to be the depth of nesting of function
symbols |ai| = |yi| =0, |f(11,...,1n)| = max(|11|,...,|1n|)+l . Let k
be the largest depth of any term used in S . A specification state
of § defines all predicates on all terms 1() and 7(y) such that
IFOl, 7 (y)| <k . In addition, it may also specify y = 1() for some
7() with |1()| <k -- in which case the values of predicates respect this
specification. Now, given the specification state @ for ¥y, it is
clear how it may te updated, i.e., we can determine all possible Q'
for f(y) (for any unary function f). Note that the updating is done
only for the Herbrand interpretations. Also note that n-ary predicate
symbols and equality tests are handled by this mechanism.

Without loss of generaliéy we can assume that in S , no defined
function is passed any boolean arguments -- any schema S can be trans-
lated into this form by creating many copies of each defined function,
and testing all boolean arguments of the (old) function before the (new)

function is called (this yields nested if-then-else's which can then

63

be eliminated). Then, as the schema cannot test any booleans returned
by functions, we can simply remove them and get an equivalent schema

that uses no booleans at all.

Now, from the schema &S we construct a context free grammar G

as follows. The nonterminals are of the form

(@',7,,Q)

where Q,Q' are specification states, and there i. a special start
symbol: (FO) - Given a term 7 and specification states Q',Q we

define a set of strings (notation Q'[T]Q) of terminals and nonterminals

of G as follows:

(1) Q'[ai]Q is A 1if the predicates over constants agree on
Q and Q' , and in Q' , y = a, is specified; otherwise
Qlrly is @

(2) Q'[y]Q is A if Q' =Q ; otherwise it is ¢ .

(3) Q'[fi('r)]Q is U fi.Q"['r]Q where the union is taken over
all Q" that can be updated to Q' by applying fi .

) Q'[Fi('r)]Q is U (Q',Fi,Q").Q"[T]Q for all Q" .
We can now define the grammar G .

(1) Fy <=7 is converted into the following productions for the
start symbol (FO) of G :
20!
for all Q',qQ .

— 9 — 1
(2) Fi(y) <= if T, =7, then 7 elser

For all Q in which the terms T, and T, are equal (note:

6L

- -

. - -

T T

"_-'Il-l'f:'l__r - -l s

LR S . e SO S A PR 3 - i 4 -

)
T T do not use any Fi)
: i » '
3 (Q':Fi:Q) -Q [T]Q
| for all Q' , and for all other Q :
3
t F. —] T'
K
S) t
’i (3) Fi(y) <= if pj(Tl,Te,...) then T else 7T
i
¥ For all Q in which pj(Tl,TE,...) is true:
T
| (Q':Fi:Q) "Q'[T]Q
i and for all other Q :
N (Q',F,Q) =Q'lr']
|
a
' } This lemma includes the following simple generalizetions over a
p |
¥ similar result of Garland and Luckham: (1) boolean variables,
4 (2) tests on constant termms and terms using the variable vy ,
|
! (3) equality tests, and (%) n-ary predicates.
|
-.I 3’
i
! 2.5 The Power of Classes of Schemas
‘?';: 2.3.1 On the Number of Variables in Schemas
[)
'i It is evident that any flowchart schema S which uses n boolean
é variables can be translateu into an isomorphic (and hence equivalent)
} L flowchart schema with no boolean variables. This can be accomplished

] by creating at most oft "copies" of S , one copy for each possible

set of values for the n boolean variables.

65

Similarly, any recursive schema can be translated into an
equivalent recursive schema in which no argument of any defined function =
1s a boolean varisble. We now wish to show that the same is true for

the values returned by the defined functions as well. In fact, we will

show a stronger result: that any recursive schema Sl can be translated

into an equivalent recursive schema 82 which uses only data values,

and each defined function rasturns just one value. It is possible, however,

that the number of operations executed by 82 may be an exponential of

the operations of Sl (for any interpretation).

Theorem 2.1%3. Every schema Slec(R) (or in C(R, =)) can be effectively

translated into an equivalent schema 82 in the same class such that
only data arguments are passed to each defined function in 82 » and each

defined function returns exactly one data value (and no boolean values) .

For the proof see Section 2.3.L.

Now that we have succeeded in restricting each defined function to
returning just one value (while retaining the power of all recursive
schemas), the natural question that arises is whether we can also restrict
the number of arguments to be one, or if not, to two, or to some integer n . ﬁ
And a similar question may be asked for flowchart schemas. Value language 1
considerations show, for example, that one-variable flowchart schemas
cannot give us the power of all flowchart schemas -- the value languages

are regular (for monadic functions), whereas for two-variable schemas

S Rl

the value languages are all the r.e. sets. The following theorem puts

such speculation to rest.

66 ?

Theorem 2.1k

(a) ¢{0 var) = ¢(R,0 var) ,
(b) () § ¢(R,1 var) , and

() ¢(n+1 var) £ ¢(R,n var) for n>0 .

Part (a) of this theorem is trivial.

Part (b) was shown by Paterson and Hewitt [1970] by showing that
no flowchart schema is equivalent to the following recursive schema Sq
(we use nested if-then-else's with the comment that they can be

removed to obtain a strictly "legal" one-variable recursive schema):

S, Fy <= F(a);

F(y) <= if p(£f;(y)) then if p(f,(y)) then y

else F(fz(y))

else if p(F(fl(y))) then F(fg(Y))

else a

This schema checks to see if there is an infinite sequence

£, ,f, ,f. ,... , each i, =1 or 2, such that all the tests
1y 71,7 iy J

p(fi (a)),p(f. f, (a)),p(fi £, £, (a)),... are false. The schema E
1 2ty o) Sl E

halts only if no such sequence exists.

Part (c) of this theorem can be shown by demonstrating that the
following problem can be solved witﬁ an (n+l)-variable flowchart schema,
but not with any n-variahle recursive schema (without equality). The
problem is:

" if there exist integers i,j, 0<i<n, O0<j such that

p(g’f'(a)) is false then halt (with output a), else diverge ".

For details, see Section 2.3.L.

67

C(R)

: Ly
i b
Flowchart Recursive
schemas 3 schemas
(n var) - (n var)
o 1
1
0

Figure 2.1

o

relating flowchart and recursive schemas. In Figure 2.1 an arrow

A - B indicales the relation " B is strictly more powerful than A ".

2.5.2 Equality Tests

A problem is said to be a Herbrand problem if it can be solved by

gsome Herbrand schema. Otherwise, if it can only be solved by an

inherently non-Herbrand schema it is called a non-Herbrand problem.

The cons:quence of this theorem is that we can draw the diagram

All schemas in ((pds,q,list,A), C(R) are Herbrand schemas, and none

¢(=) , for example, given two zero-ary functions a, s 8,

P, =" if a; = a, then halt (with output al) , otherwise diverge "

a 1

68

of them can solve any non-Herbrand problem. However, there exist some
very simple non-Herbrand problems which can be solved by schemas in

the problem

AL v e ERE > e

can be solved by the schema

START y «~ al; 2

t if a) = &, then NALT(y) else LOOP ,
: I!r demonstrating that ¢(=) £ c(pds,q,1ist,A) , and (=) £ C(R) .
| %; " To demonstrate the power of eguality tests we present two other
E (more interesting) non-Herbrand problems that can be solved by schemas
i in (4 =)
.8
Example 1 -- Inverse of a Unary Function
; The problem is:
[E - Pb = " given a unary function symbol f , a zero-ary function :
' constant a , and a finite number of other n-ary function
1 symbols, n >0 , write a program schema that under any
1 % Py interpretation will yield a value of "f'l(a)" as output. 4
? That is, it should find an element y that can be
: E expressed in terms of the given function symbols such
.[P that f(y) = a ; and if no such element exists, the
T | schema should diverge ".
i
‘ This is a non-Herbrand problem because for no Herbrand interpretation
& does there exist an element y such that f(y) = a , and hence, if any

Herbrand schema § claims to solve it, S diverges on all Herbrand
interpretations, and hence on all interpretations (by Theorem 2.2) and

this is certainly not the desired behavior. A schema that solves the

—_—r— - =
-a
e

problem is presented in Section 2.3.k.

»
8

69

et e e

Example 2 -- Herbrand-like Interpretations

Given a set of function and predicate symbols of which there is at
least one zero-ary function, we say that an interpretation I for this

set is Herbrand-like if there exists some Herbrand interpretation H

such that there is a 1-1 homomorphism from H into I . TIn other words,
an interpretation I is Herbrand-like if and only if for every pair of
distinct terms T, and T, (made up of the given functions) the
elements in I corresponding to tl and t2 are distinet.

Now, consider the following problem:

Pc =" given an interpretation for & set of function and predicate
symbols, of which at least one is a zero-ary function a b
determine if the interpretation is not Herbrand-like. If
the interpretation is not Herbrand-like then halt with

output a , else diverge ".

This problem is inherently non-Herbrand in nature because a schema that
solves this problem must diverge for every Herbrand interpretation. But
for certain other interpretations the schema should halt. A schema with
equality tests that solves the problem PE is presented in Section 2.3.l4.
The problem Pb is an abstract model closely related to certain
problems in real life Programming. As an illustration, consider a
directed graph (with an identified rcot node) in which each node has two
identified pointers leading from it. Pointers mey lead to a terminal
node "NIL". The problem is to determine whether or not the given graph
is a tree. This problem may be modeled by the above problem with two

monadic functions representing the two pointers, and with the difference

70

. P e
b e A——.

o

S R e T R

G

that the search for the equality of two "terms" is conducted not for the
entire set of all terms, but for those terms not representing NIL. The
correspondence is that the interpretation is "Herbrand-like" for this set
of terms if and only if the corresponding graph is a tree. Another
related problem is that of determining if a given LISP list is circular.

Here, the two pointers from a node réfresent the car , and the cdr
of the list represented by the node.

While equality tests are necessary to solve some non-Herbrand
problems, equality can be used to solve Herbrand problems as well.

We give two examples of Herbrand problem which are solved by schemas

with equality.

Example 3 -- Fxpose the False One (or, the Witch Hunt)

The problem is

Py = " if there exists an element x of the form gt (a) ,

i,j 20, such that p(x) is false, then halt (with

output a), otherwise diverge ".

Our discussion on Theorem 2.14 indicates that no flowchart.or recursive
schems (without equality) can solve this problem. However, there is a
non-herbrand schema in @(=) that can solve it -- see Section 2.3.k.

And yet, it may be noted that Pd is a Herbrand problem for it can be

solved by a schema in cfc) .

Example 4 -- Translation of Flowchart Schemas with One Counter

The recursive schema
Fy <= F(a);
F(y) <= if p(y) then f(y) else F(G(£(y)));

G(y) <= if q(y) then g(y) else a(a(g(y)))

71

o e

B I S R I L s L B/ WEVRY

is a canonical form for schemas in C(lc,=) in that any schema in ¢(lec, =)

is equivalent to the above schema by giving appropriate meanings to

a,f,g,p,q9 . (Note: these functions and predicates need not be total,

bul. each can be implemented ucingg only iteration.) This recursive schema

can be translated into an equivalent schema from C({lc) . Plaisted [1972]

showed that it could also be translated into a rather large schema from

c() . However, the use of equality gives a simple schema cquivalent to

the recursive schema. And, in fact, this can be used as a basis to show

that any schema in ¢(le) or ¢(lc,=) can be converted quite easily

into an equivalent schema in C¢(=) . For details, see Section 2.3.h,

Now, the relations between classes of schemas with and without

equality can be summed up as follows:

Theorem 2.15. ((features) < ¢(features, =) , where by "features" we

mean such things as variables, counters, stacks, queues, lists, arrays,

recursion, but excluding equality itself.

2.3.3 Counters, Stacks, Recursion, Arrays, etc.

In this section we wish to demonstrate the relationships between 4
the various classes of schemas, and in purticular we wish to show the |

partial ordering suggested by Figure 2.2.

z, ein, =)

G{CJ 7}

&(e)

Figure 2.2. The power of schemas

T2

®

In the figure, all arrows A — B indicate that " B is strictly more

powerful than A ". Classes that cannot be linked by the transitive

closure are indeed unrelated, for cxumple, C{A) £¢(=) , und (=) £ C(A)
The following suffice to prove the relations shown in Iigure 2.2

above.

Theorem 2.16

1-4) ¢(R) >¢() , CR,=) 2C(=) , C(A) >¢fe) , ClAy=) >Clcy=) -
5-8) ¢fc) >¢() , ale,=) >¢(=) , c(A) >C(R) ; C(4,=) >C(R,=) -
-12) (=) >&) 5 C&(R,=) >C(E} , e(c,=) >Clc) , clA,=) >c(h) .
13-15) C(A) (=) , ¢(R,=) g cle) , cle,=) EC(R)

O

(
(
(
(

Of these, (3)-(6) and (9) - (12) are immediate, (1) and (2) have been
known for a long time -- see McCarthy [1962], and (7), (8) follow easily
from a similar result due to Constable and Gries [1972] and using
Theorem 2.13. Part (13) is immediate because schemas in (=) can
solve non-Herbrand problems (e.g. P, in Section 2.3.2) and these
cannot be solved by schemas in ((A) . For proofs of (1k), (15), see

Section 2.3.4.

Theorem 2.17 (Cne-counter Theorem)
(a) ¢() = 2(le) , and
(®) ¢(=) = c(le,=) -

This was proved by Plaisted [1972]. Intuitively, the reasoning is
that given a one-counter schema, one can get rid of the counter and
replace it with a few variables which can then simulate the counter by
"eounting" on the interpretation itself, that is, on the values taken on

by the other variables of the schema along the path of the computation.

73

bbb L Sl

Theorem 2.18 (Two-counter Theorem)

(a) C(c) =¢(2c) , and

(b) C(c,=) = C(2c,=)

To see that ¢(c) = ¢(2c) , and C(e,=) = ¢(2c,=) , observe that

two counters are adequate for simulating the behavior of n counters
for any n (Hopcroft and Ullman [1969], pg. 100) as follows: let

ci,cé,...,cﬁ be the n counters, and ¢ 7 Gy be the two that are to
1 1 1 1 1
c 5 c5 cj, cn

simulate them -- the value of ¢y is to be 2 & 375717 cee T

where ™ is the n-th prime number: then, incrementing ci is like

n

multiplying ¢y by my decrementing ci is like dividing 1 by T s

and testing ci for zero is like testing if uf divides ¢, == all

these operations can be parformed by using ¢, to temporarily store an

2

integer. :

Theorem 2.19 (Recursion vs. a Stack, and a List)
(a) c(R) =c(1 pds) = ¢(1 1list) , and

(o) C(R,=) = (1 pds,=) = (1 list,=) .

That a pushdown stack is at least as powerful as recursion is not
unexpected -~ the concept that recursion can be implemented by a stack
has been around for a long time in the theory of compilers. The converse,
that recursion is as powerful as a pushdown stack is perhaps not so
obvious; but it is certainly not mysterious considering that in recursion
~we allow the defined functions to return a vector of arguments (see,
however, Theorem 2.13). Relating stacks to lists, it is clear that a list

can do anything a stack can. That one list is nct (strictly) more

Th

R
*

L

ST —

powerful than a stack is interesting, but is not of any overwhelming
importance because this result seems to depend on the kind of basic
statements list schemas are endowed with.

Our last theorem deals with the equivalences of a large number of

classes of schemas, sometimes also called the "maximal" classes.

Theorem 2.20 (Maximal Classes of Schemas)

(a) c(pds,q,list,A) = ¢(1 pds,lc) = (2 pds) = (1 list,le)
= ¢(2 list) =¢(1q) = ¢(14) , and
(b) G(PdS:Q:liSt:A: =) = G(l pds,lc, =) = 6(2 pds, =) = G(l list,lc, =)

= ¢(2 1list, =) = ¢(1q, =) =C(14, =)

To prove this theorem it suffices to prove
C(pds,q,1ist,A) = ¢(1 pds,1c) = ¢(1lq) , and

C(pds,q,1ist,A, =) = C(1 pds,1c, =) = C(1g, =)

because a list is at least as powerful as a stack, and a stack is at least
as powerful as a counter; and further, the operation of a stack can be
simulated with an array (with counters to subscript it, of course). The
proof is indicated in Section 2.3.k. Note that to use an array, at least
one counter is required; and one counter is also sufficient in that the
class of schemas in C(1A) with just one counter is as powerful as ((14)
itself, and similarly for ~(1A4,=) . We may also remark here that for
schemas restricted to monadic functions, flowchart schemas augmented with
two variables have all the power of the maximal classes, that is 9
C(2c,monadic fns) = ¢(pds,q,list,A,monadic fns) , and

C(2c,=,monadic fns) = ¢(pds,q,list,A,=,monadic fns)

75

It is interesting to label the vertices in Figure 2.2 in another way
as shown in Figure 2.3. This figure can be treated as a unit cube where

the axes are labelled as follows:

x-axis: "add a counter",
¢ y-axis: "delete a counter, and add a stack", and]
: z-axis: "add equality tests".

: ?\“Nhhlff’;’k (1 pds,lc, =)

C(1 pds, =) { &(2c, =)

2(1 pds, 1

e{1 pds) el(2¢c)

(1c)

C(1e) = ()

C(le, =) = &(=)
) e(ae) = ¢(e)
| Cl2e, =) =cle, =)
1 (1 pds) = C(R) = (1. list)
J C¢(1 pds, =) =C(R, =) =C(1 list, =)

C(1 pds,1c) =C(A) = C(1 list,1le) = C(2 pds) = (2 list) = C(lq)
= (18) = C(pds,q,1ist,A)

(1 pds,lc, =) = (4, =) = ¢(1 list,1lc, =) = (2 pds, =) = C(2 list, =)

=(C(lg, =) =C(1A, =) = ¢(pds,q, list,A, =)

Figure 2.3

76

B o

?
Note that the Figures 2.2 and 2.3 are "isomorphic".
» Intuitively, there seem to be three inherent factors that
determine the power of schemas.
(1) The amount of data space. Flowchart schemas, even with counters
¢ and equality tests have a fixed fin}te amount of space, that is, the
number of data variables. It is for this reason that they cannot compute
; very larze terms that require the saving of an arbitrarily large number
: * of data values. For example, no schema in ((c, =) is equivalent to
E the recursive schema
% Fy <= Fl(a);
F '
F,(y) <= if p(y) then h(F(£(y)),F(g(y))) else y
Recursive schemas act as if they have an unbounded amount of space, as
b] do schemas with stacks, queues, lists or arrays. The amount of space
available to a schema is, however, not a limitation when only schemas
with monadic functions are considered since in that case any (constant)
z term can be computed with only one data variable by applying the proper
base functions in the right order.
(2) The control capability. DBoolean variables and counters are
x examples of control features. We have seen, however, that boolean
variatles add no inherent power (except to make a schema more compact).
And two counters add as much control capability as one might want because
o2 we can simulate the computation of a Turing machine (with zero input).

The question then is whether or not one counter adds any power. The

answer is that it depends on the schema. For example, the addition of

¥

one counter to flowchart schemas adds no power, whereas the addition of

a counter to ((lc) , or to (L pds) does indeed add power. Adding a

it ot o o B it e U s |l ad i e e U e i A1 i il

. p g T A o v o x

counter to (2 pds) or to (lg) , or to the corresponding ones with

equality, adds no power because these classes seem to be amnipotent

anyway as far as control capability is concerned. The features of

recursion and a pushdown stack act as if they provide some control

capability (to flowchart schemas), but not as much as two counters. {
Similarly, equality tests too provide some control capability as
evidenced by the fact that a schema in (=) can solve problem P

d
(Example 3 in Section 2.3.2) which cannot be solved by ~(R) .

(3) The test capability. 1In our standard classes of schemas we placed

no restriction on the kind of tests (on data items) allowed except as

to whether equality tests were permitted, or were banned. Ancther
restriction that could be placed is the maximum depth (of nesting of
function symbols) of terms allowed. For example, if we allow only tests
of the form p(y) and p(f(y)) in ore-variable monadic schemas without
resets, we would obtain a class strictly more powerful than the Ianov

1 schemas (which allow only p(y)). In general, we find that

] ¢(n var, depth d+1) > ¢(n var, depth d) ,
and

C(n+l var, depth d) > ¢&(n var, depth d)

o e

These can be shown by constructing a schema quite similar to the one

used in the proof of Theorem 2.1%4.

2.3.4 Proofs on the Power of Schemas, and Detailed Examples

o R e I sl SO Bl

2.3.4.1 Proof of Theorem 2.13

e s,
2 & onazndee v, il

The theorem states that every schema Slec(R) (or in (R, =)) can

-

be effectively translated into an equivalent schema 32 in the same class

3
o3 €T o s el e

78

P

b

=

<>
«y

DL S —— TS— e e T Y N S T g RS BRI S T e - e Ry A — — R R I e T —

such that only data arguments are passed to the defined functions in 82 s
and each defined function returns just one data value and no boolean

values.

Proof:

Step 1: S1 - S5 c It is trivial to see how S1 can be converted into

an equivalent schema S5 such that in S5 no boolean values are passed
to any defined function. This can be done as follows: if any defined
function F in S1 is passed m ©boolean variables, then in 82 we
have 2" defined functions correspc:iing to F , one for each possible
set of values the boolean variables may tuke. Then, if in any function
definition of S1 » if F 1is called with some arguments, then the proper
function in 82 is called without any boolean values. This may involve
testing the boolean arguments before the call (as they may be predicate
or equality tests) yielding nested if-then-else's , which, of course,

can then be eliminated by using additional defined functions.

Step 2: S5 - Sh 5 Now, given the schema S5 s We wish to convert it

into an equivalent schema Sh such that defined functions return no
boolean values, only data values, and all arguments are data values too.
To do this we will change the defined functions in S5 so that they
return data values instead of their boolean values. These data values
will be treated as if they are really booleans by applying some fixed
test on them.

We now have the problem of discovering what data values are to

correspond to "true" and "false", and what fixed test we are going to

ad ool il &

e o [

R R e e o

use. This is the concept of finding a "locator" (Constable and Gries [1972]).

79

it

L v

In the class ({R,=) this is trivial, for we can simply test to see
if all zero-ary ?unctions are equal. If they are, we apply all base
functions to them to see if we can generate a new element. If not, then
all terms must yiéld the same value, and now the outcome of the computation
is quite easily determined. Otherwise, we will find two constant terms
T, 0 T (of deptﬁ at most one), whose values are distiﬂct. Then we can
simply use Ty to sgtand for "true", s to stand for "false", and the
test on a value x to see if x is true or not is " x = Ty LI

In the class (C{R) , on the other hand, our problem is a little
more difficult. We proceed on the lines of Consteble and Gries [1972]
to build a flowchart with "exits", which executes the computation of the
recursive schema until it tests some predicate more than once, and it turms
out to have different outcames (true, and false) in two of the cases; in
which case the flowchart exits (Sh has one copy of S, for each exit).
Suppose Pi(xl’°°°’xk) is true, and pi(xi,...,xk) is false then the
recursive schema can begin normal operation, and each defined function
returns the set of vectors =x

«oy%X instead of returning a true value.

1l k

and returns x! ..,xi instead of a false value. Of course, each defined

i

function has to be passed the data values xl,...,xk,xi,...,xk as arguments

(as well as the standard arguments). It is easy to see that a flowchart
can simulate the computation of the recursive schema because if a function

F. 1is called recursively within another call to F, then the arguments

i i

of the earlier call do not have to be remembered for the schema would exit

before the second call "returns". Now, of course, we convert the flowchart

locator into recursive definitions to get the required schema Sh c

»:i,s.

Step 3: Sh -8 Finally, we translate Sh into the desired

5

schema 82 where each defined function returns Jjust one data value
(and all arguments are data values too). This is done as follows.
Suppose any defined function F in Sh returns a vector of n data
values, then we replace it by n functions (in S,) s call them

F -sF . Then, any term like Yi(F("')) in 8 is replaced by

1
Fi("') in 82 s and of course, each Fi returns just one value -- the
i-th value that F would return. That Fi("') does indeed equal

Yi(F("')) for all arguments in the computation of the recursive schemas
can be proved by induction on the depth of recursion, simultaneously for
all defined functions; but we dispense with such formalism which doesn't

add to the intuitive concept of the proof.

This completes the construction, and the proof.

2.3.4.2 Proof of Theorem 2.1kL

To prove that there exists a schema S in ¢(n+l var) such that
no schema in (R,n var) is equivalent to it.

The desired schema S is:

S: START (yo,yl,...,yn) - (a,a,...,a)}
yl '- f(yo); ye il f(yl); coe) yn - f(yn-l);
while p(y,) A p(y) A ... A B(y)) do
(Ygr¥ps - o¥) = &(¥p)s8(yy)s---58(y)))s

HALT(a)

Suppose there is a schema S in ¢(R,n var) that is equivalent

1

to 8 . Without loss of generality, assume that in Sl no defined

A — W

e A - TR
R o

4

P LT P -,

et a6, - S 5 o s i

function is passed any boolean arguments (see step 1 in the proof of
Theorem 2.13). Also, without loss of generality assume that Sl has no
function other than a,f,g , and no predicate other than P (Theorem 24I0E
Now, consider the computation of Sl on a Herbrand interpretation in
which all p(x) are true. Then the schema Sl must be in a "loop", that
is, for some defined function F » F 1is called at successively larger
recursion depths (possibly with different arguments) -- this is because

if F calls itself recursively then the schema must loop (because F is
passed no bovleans, and the only tests, other than those on booleans
returned, are p(r)). We define the "type" of the elements of the Herbrand
domein as follows -- any element of the form fi(a) » 1<n, is said to
be of type (0,i) , any element of the form gjfi(a) s J>1,1<n,

is said to be of type (1,i) , and all other elements have type (0,n+l) .
Now consider two calls to F in which the types of all variables repeat.
Then after the same interval they will repeat again, and again, and so on,
because exactly the same gequence of "statements" are beiné executed. We
call this a cycle of the computation. Now, as F has at most n arguments,
there must be some type number (L,m) , O <m < n, such that no argument
in F has type (1,m) . Now, if we consider the finite interval in s
cycle, only a finite number of values of type (1,m) <can be tested (by

the predicate p) during this time, an® the same values are tested over
and over again. Hence, as there are only a finite number of operations
executed before the cycles start, the whole computation can check only a
finite number of values of type (1,m) . Now, if we change the interpretation

slightly by making the predicate D on one of the untested values of type

(1,m) to be false, then the computation of §

1 must be the same as before,

e

¥
1
i

l

*

¥

that is, Sl diverges, whereas S halts on this interpretation --

contradicting the assumption that Sl is equivalent to S .

0

2.3.4.3 Example 1 -- Inverse of a Unary Function

For simplicity we assume that th only functions are a single
zero-ary function a , the given unary function f and a binary
function g . The possible terms are therefore:

a, f(a) , g(a,a) , £(£(a)) , g(£(a),f(a)) , gla,f(a)) , ..o
The schema for any other set of functions is similar to the one for this
particular case.

Symbols Cl’CQ’CB stand for counters. Strictly, the only operations
allowed on counters are adding and subtracting one, and testing for zero.
For convenience, however, we will also allow other statements such as
c, - 0, ¢, - Cj , and tests like ¢, = Cj , as it is clear that these
operations cen be performed using only the legal operations and

additional counters.

(1) --

START (y,z) « {(a,true), A « {(a,true);
Al0] -~ ¥3

(2) =-- c, ~c, -0

(3) --- REPEAT: {y,z) - Alcy];

() == it £(y) = & then HALT(y);

e, = eytls Ale,] = (£(y),2)3

c, = e tls Ale,] « (e(ysy),2);

CIA I IC

3 T G5

2, G2 .
o T it o et e b e i
S T D o S I A PRSI O A T S

e e ea—— -

while ¢y £ 0 do

begin

C, ~¢C

) 3
c, - 02+l; A[CEJ - (g(A[c5],Y),Z>

2

-l;

c,~c+1; Ale_
2 PRl AT

end ;

] - (g(y,a[cﬁl),2>

¢, - cl+l;

(5) =-- goto REPEAT.

After the initialization phase (lines (1) to (2)) (ignoring all booleans):

Al0] =a , ¢, =¢,=0

After completing one pass through the outer loop of the program (lines

(3) to (5))

Al1] = £(a) , Af2] = g(a,a) , ¢, = 1, c,=2,

and after a second pass
A[3] = £(f(a)) , Al4] = g(f(a),f(a)) ,

Al5] = g(a,f(a)) » Al6] = g(f(a),a)) Cl =2 , ¢c,=6

The algorithm works as follows: two pointers ¢y and s reference the
array. A[cl] represents the '"current" value. If the current value is
not an inverse, as determined by line (4), it is composed with values
preceding it in the enumeration by function applications, and the rew
values obtained are added to the array.

It can be shown by induction that the process of enumeration
generates and tests each possible term exactly once. This means that
an inverse will be found if it exists. The point at which the test of

the inverse is made could be changed to effect time efficiency but

without altering the main features of the program.

8L

A 4

2.3.4.4 Example 2 -- Herbrand-like Interpretations

We assume that the only functions are a single zero-ary function
a unary function f and a binary function g . Therefore the set of
terms includes
&, f(a) , gla,a) , £(f(a)) , e(f(a),f(a)) , e(a,f(a)) ,

the same as in the previoué éxample. The required schema is:
START (y,y',z) « {a,a,true) » A~ (a,true);
AlO] ~ {y,2);

REPEAT: (y,z) « Ale,];

:while c, #0 do

= begin

| ¢, = ¢)y-1; (¥'52) — Aley];

!
ify' =y then HALT;

while ¢, #0 do
begin

¢, —c.-1;

3)
c, = cotl; A[Cg] - (g(A[CB]:y):Z>5

¢, = e tl; Ale,] - <g(y,A[c5]),Z>;

end

ey - cl+l;

(5) =-- goto REPEAT.

e sii £ e niint

_—

This program is quite similar to the Previous one in the manner of
enumeration of terms. The fact that each term is generated exactly once

1s used in making the test (4) to check if a value is repeated.

2.53.4.5 Example 3 -- The Witch Hunt L

"To find an element x of the form g']fl(a) » 1,5 >0, such that

p(x) 1is false". The desired schema of (=) wuses seven varisbles --

ya’yb’yl’yQ’YB’yh’YS' <

(1) -- START s Ypr¥19¥pr ¥35¥)5¥5) = (8,8,8,8,8,8,a);
if - p(a) then HALI(a);
(8) == NEXT:y; -y;
while y, #y, do ;‘
begin if y) = £(y,) then goto RESET;
¥y - &(y;)
end;
(3) -- if ¥y = £(¥,) then goto RESET;
Yy = ()5
if —\P(Yb) then HALT(a);
Gp¥p) = s,)s
(k) -- while Y1 # ¥y, do
begin y; « &(yy); vy = £(y,);
Y3 = VL3 V) < Vs
¥hile ¥ £ ¥, do begin y; ~ &(y;); ¥, ~ &(y,) end; .‘
if - P(Yh) then HALT(a); 5
@)= end;

goto NEXT;

86 3

(6) -- RESET: (y15¥,) = (Vgs¥y?s
FATL: y; ~ &(vy)3 ¥, «~ £(vp)3

vhile y, F v, do

begin y5 - ye;
while y, £y, do

begin if V5 = g(yh) then goto FATIL;
Vs © 8(ys)
end;
ify, = g(yu) then goto FATL;
V5 = 8(y3)s
¥, - 8(y);
end;
SUCCEED: Yy © Vo3
(7 -- goto NEXT.

The operation of the schema may briefly be described as follows.
The schema effectively "counts" on the range of values from ¥, to Yy s
all of which are guaranteed to be distinet. The part of the schema
between lines (2) and (3) checks to see if counting can be done on a
larger domain: from s to f(yb) . If so, then the "slice" of values
shown in the figure below are tested to see if the predicate p is

false for any of them.

kot el e Pt o

L 4
‘
j
" i J
- i Yo 1§
° = apply T]
i
. Yy >
11 @
U 3
¥y
4
apply g T

If, however, the domain from ya to vy, cannot be extended, then the

-

segment of the schema from lines (6) to (7) resets v, and vy .

2.3.4.6 Example 4 -- Translation of Flowchart Schemas with

One Counter
The recursive scheme
Fy <= F(a);
F(y) <= if p(y) then f(y) else F(G(f(y)));

G(y) <= if q(y) then g(y) else G(G(g(y)));

can be translated to a flowchart schema with one program variable y

and one counter ¢ .

88

T T——

—

1

v e

G

]

L

START y +~ a3

while - p(y) do

begin
y - £(y);
while true do A
if a(y)
then begin
Yy - 8(y)s
(1) --- if ¢ = O then goto DONE;
(2) --- C e~ c-1
end
else begin
Yy - &(y);
(3) --- c ~ct+l
end;
DONE: end;
HALT(£(y)) .

The corresponding equivalent flowchart schems with equality uses

three variables instead of a counter:

Y,

g TePresents a zero counter,

Y, simulates the counter, and

Yy is a temporary varieble.
The idea is that A simulates a counter by using the value gn(yé) to
represent the integer n . Therefore, the statement Yo © ¥y stands
for ¢ «~0, e g(yc) stands for ¢ ~ ¢+l , and thelstatements

[yt ~ ¥, vhile g(yt) # y, do iy g(yf); yils yt] stand for ¢ ~c-1 .

89

S —
- 2

1
]
:
i’ \

We have to be careful, however. The term gn(ya) stands for the
integer n, n >0, only if for no two distinct i, < n are the
terms gi(ya) and g‘j(ya) equal. Interpretations for which the
counter is required to coint up to an integer n where there exist
i <n, 14, such that gi(ya) = gj(ya) are called looping
interpretations. It is easy to see that for looping interpretations
the given recursive schema never halts. The required program schema is
therefore easy to construct.
START <y’ya’yc’yt> - {a,a,a,a);
while — p(y) do
begin
y - £(¥);
Vo " V5 Yo = Vs

while true do

if a(y)
then begin
y - &(y);
(1) --- if y, =y, then goto DONE;
Ly = R S T i R
(@) --- : while g(y,) £y, do v, - &(¥,); ;
[g
end T

i ik bl o

i

g

P
o

o]

o3

0
a»

else begin
v - &(y);

[l Yy = Yy B

I while y, /vy, do | check
for a

I if y, = g(yé) then LOOP I looping
inter-

I else y, - g(yt);| preta-
tion

if y, = g(yc) then LOOP;

() B ¥y, - 8&ly,)

DONE: end;

HALT(f(y)) .

Note that this flowchart schema is equivalent to the given recursive

schema even when the functions and jredicates are not total.

Proof. (=) = ¢(le,=)

Since ¢(=) < (le,=) , we only have to prove that C(=) > C(lec,=) .

Given a schema in c(lc,=) s we reduce it to a canonical form §S'
(for one counter schemas) which is a recursive sch.ma whose base
functions a,f, g, and predicafes P, a need not be total, and we
can give a meaning to a, f, g, p,q in terms of the base functions and
predicates of S that makes the schema §S' equivalent to S . Further,
the "meaning" for all a,f, g, p,aqa is flowchartable. Thus, we would
find that since we have a schema 8" in (=) equivalent to §' , if
we substitute the mednings of the functions and predicates we would obtain
a schema in C(=) equivalent to S . For convenience below, after every

statement ¢ ~c+l in S insert a (distinct) null statement, say

91

L4

Yy =¥y The cunonical form 5' below can be simplified comewhat,
e.£. the term F(G(f(y))) can be changed to F(G(y)) -- we choose not

to do so here. The schema §' is

St Fy <= F(a);
F(y) <= if p(y) then f(y) else F(G(f(y)));

G(y) <= if q(y) then g(y) else G(G(g(y)))

We will represent the meanings of a, Ps;a,f, g by nonrecursive
subroutines. Without loss of generality assume that there are no loop
statements in § , that all halt statements are of the form HALT(yl) b
and that all statementec are labeled. Suppose y = (yl,...,yn) and
z = (zl,...,zm) are the variables in S . Consider any interpretation
for S with domain D . Then the domain D' for &' is D& x{T,F}m+1
where { = rlog2 s1 and s 4is the number of statements (or labels)
in S5 . We will represent an element in D' as a vector (y,z,L) where
L 1is a label whose value corresponds to a label in § (L is to be

implemented by booleans).
(i) If the start statement in § is
START (y,2) = (7(),&()); goto L,
then a is (f(),&(),Li) .
(ii) f({y',2',L')) is

begin data y; boolean z; label L;

Yy-y'3zez'; L L'

REP: goto u;
Ll: STATEMENTl;
L2: STATEMENTE;

L_: STATEMENTS;

= e —

i

2

4

Above, & variable declared 1label I. represents a vector of (¢

booleans, and we allow statements like goto L. where I is a

label variable (it is clear how this statement is to be implemented).

If in S we have then STATEIVIEINTi is
(a) Ly (,2) = (5,0); ¥,2) = (1,0)3 L - Ly;
goto LJ- goto REP
(b) L;: if o then goto Lj if a then L ~ Lj else L « L ;

else goto I_.k goto REP

(c) L, HALT(y,) RETURN ({y,2, L))
(d) L,: ¢ ~ c+l; goto L RETURN((&,E,LJ))
(e) Lz ¢~ c-1; goto Lj L - LJ.; goto REP

(f) L,: if 2 =0 then goto Lj L ~ LJ.; goto REP

else goto L,
(i1i) g({y*,z',L')) is like the function f except for parts (e), (f):
(e) L;:c «—c-l; goto L; RETURN((&,E,LJ))
(£) I;: if ¢ =0 then goto Ly L ~I,; goto REP .

else goto Lk

(iv) »p({y',z',L')) is

begin date y; boolean z; label L;

<?;’:E)L> e £ (3-")2',11' B
if isplus(L) then RETURN(false)
else RETURN(true)

end .

93

Above, the function isplus(L) 4is defined to be true if I is
the label Lj in a statement c¢ ~ ct1; goto L, , and false
J

{ otherwise.

(v) Q(<§")E':L'>) is

! begin data y; boolean Z; label L;

<§;£)L> = (3-")7.";11' W)l 8
if isplus(L) then RETURN(false)
else RETURN(true)

end

If the value computed by F(a) is (yl, RPN AP ..,zm,L> then

¥y represents the output of S .

S' implements the computation of the one-counter schema S by
representing the value of the counter by the number of defined functions
G that effectively exist in the recursion stack at any time. When the
defined function F is being "executed" the counter is zero.

This shows how to convert any schema in ((lc,=) to an equivalent

schema in (=) , which completes the proof.

2.2.4.7 Proof of Theorem 2.16

¢&(R,=) 2 ¢(c)

We will use the fact that schemas in (@(c) can simulate Turing

machines, and that the halting of schemas in C(R,=) over a given

finite domain is decidable, to demonstrate a diagonalized argument.

9l

R N g o T e) s PR s ks e i

The required schema Se@(3c) 1is defined as follows.

The schema S uses three counters. The initialization phase of §

is the following:

START y ~ a;

while p(y) do begin y ~ f(y); ¢ « c+l end;

E, After this phase the schema makes no use of the variable y , or the
base functions or predicate (except in the halt statement). Let the
& value of the counter ¢ be n when it exits from the initialization

phase. Let In denote the following interpretation: the domain has

ntl elements,

£ €yr € e

i

the value of & is e., and f and P are defined by:

; 0
3 it [=y f(ei) =& p(ei) = true
f(en) = e, p(en) = false

The schema S then simulates the computation of the n-th schema Sn in
CORN=NNIGn ithe interpretation In . The schema Sn will diverge if
and only if some defined function calls itself recursively with exactly
the same arguments (data and boolean values). If S, balts with output a ,
then S loops, otherwise S halts with output a .

This completes the description of the required schema S ; and it
is clear that it is not equivalent to any schema in (R, =) , because

if it were equivalent to, say, the m-th schema, we find their outputs

% VoY

on the interpretation Im disagree -- a contradiction.

O A IR T AT

Q&

Cfc, =) é C(R)

We can show the equivalent result that there is a schema in (R)
not equivalent to any in (Gfe,=) . It is

8: Fy <= F(a);

F(y) <= if p(y) then h(F(£(y)),F(e(y))) else ; .
This is the schema demonstrated by Paterson and Hewitt [1970], and their
proof, shown for () , also applies to ¢(c,=) .

Let L be defined to be the term a , and Totl to be the term
h(f(Tn),g('rn)) - Also define the Herbrand interpretation H ~ to be:
p(t) is false if the depth of nesting of function symbols in T is n 9
otherwise it is true. Then, Val(S,Hn) =7 . Ncw, suppose there is a

schema S'eC(ec,=) equivalent to § . Without loss of generality, we

can restrict all terms appearing in S' to have depth at most one

(depth of terms &y, 1is 0, of terms f(a) , f(yi) ARl o T

f(f(a)) , h(f(a),y) is 2, etc.). Then we see that if S' has m
data variables then S' cannot compute any terms e if n>m (for
Herbrand interpretations). Thus the outputs of S and S' over Hm+l

must disagree and S and S' cannot be equivalent.

il anaia s liol -

s

-
<y

b4

2.3.4.8 Proof of Theorem 2.19

To prove that
(a) ¢(R) = (1 pds) = (1 list), and

(b) (R, =) =C(1 pds, =) =C(1 list, =)

C(R) SC’/(l Pds) » C(R, =) SG(l pds, =)

We do not describe the construction in detail because it is
obvious. Given a recursive schema S we construct a schema with a
stack S' as follows: S' can stack boolean variables to code any
finite piece of information. S' has a set of variables that represent
the arguments of a function call, another set to represent the values
returned, and some for temporaries. When a recursive call is to be
made, the old arguments and some temporaries (values of earlier calls
from the same defined function -- required to build up terms) are stacked,
as well as the local context, the new arguments are sct up, and
computation is begun on the new defined function. When a function returns,
values (and the context) are unstacked. S' halts if the stack becomes

empty.

¢(1 pds) SG(R) » C(1 pds, =) SC(R’ =)

Given a schema S with one pushdown stack, we construct a recursive
schema S' equivalent to S, such that 8' wuses equality tests only
if 8 wuses them. TFor the sake of conveanience, we will allow certein
features in recursive schemas that are not strictly allowed, but can be
easily eliminated to get a legal recursive schema. These include the

following:

. < .
dalaean,, SRSV N Sl S

ey

(1) Nested if-then-else's .

(2) Passing labels as parameters (arguments and values returned) and
nonlooping goto-statements in a recursive definition. Labels can be
implemented by a vector of booleans, and transfers can be implemented
by nested if-then-else's . We also allow return-statements which

explicitly return values from the defined functions.

Without loss of generality, S has a single halt statement of the
form HAIm(yl) , and has no loop statements (Li: LOOP can be replaced
by L: (y,2) «~ (¥y,2); goto L;). In the schema S we label all assign-
ment statements, test statements, the halt statement, and also all

statements operating on the stack as follows:

s « push(s,y,z) L;: s « push(s,y,z)
if s = A then goto L Lt if s = A
else begin LY ptrengBosopl
(y,2) « top(s); else begin
s « pop(s) (y,2) «top(s);
end s « pop(s);
end

Notice the strange placement of the label Lj after the test s =7 .
In addition, we have a dummy label Lhalt which is assumed to be
entered after the halt statement.

The recursive schema §S' has four defined functions:

F -= The starting function. Thie calls FA 5
F -- When this is executed the stack is empty. FA may call

itself iteratively (i1.e., a compiler can treat it as iteration

98

i St A

ruther than recursion). It returns enly when the schema §

) halts. FA may also call the function F .

F =~ This ic the work-horse. This is similar to the function used

in converting a flowchart schema into a recursive schema. It

) calls FS when something ic pushed into the stack.
FS -- The number of recursive calls on FS represents the height
of the pushdown stack.
’
These functions are defined as follows. Recall that the notation
Yi("') is used to pick the i-th data element of & vector. We also
: ’ use ¥(...) to pick all data elements from a vector, and Z(...) to
pick all boolean elements. Similarly, we will use the notation L(...)
1 to pick the label from a vector (only one will be used) .
i
- Fy ¢ If the start statement in § is
: L START (§,2) « (,d); goto L
: then
:] Fo <= Y (7, (1,84 L,));
3
]
| 7 ¢ FA(fz,E,L) <= gotc (F(y,2z,1));
! L 2 L rccurn(expl);
Ly: return(expe);
For any 1 :
4 (1) rr Li is the dummy statement Lhalt then the expression exp. 1is
{ ? F(&, E,L) .
|',’

%

- ®,
iy, B =

(2) 1t L; 1is the "weird" label in

if 8 = A

Li:then goto Lj

else begin (y,z) ~ top(s); s « pop(s) end

then the expression exp, is

FA(IP(F, 5,0, 285, 5,1), 1,)

The value returned by F will have the same type, i.e., (¥,z,L) ,

and it represents the "current" values of the variables and the

label of the next statement to be executed. Notice that the effect

of exp, is to stick the values returned back into F (in the next

call to FA) and continue the execution from where it was left off.

@) 1 L; is anything else -- this can never happen, and exp; is

arbitrary.
F: F(y,2,L) <= goto L;
L retgrn(expl);
L,: return(expg);
If L, is

i
(1) The dummy statement Lot

or the halt statement itself
(2) L;: (,2) ~ (5,8 gote Ly
(3) L;: if a then goto Lj

else goto Lk

100

then exp; is

(i! 5) Lha.lt>

F(f,&,LJ.)
if o then F(y, E,LJ.)

else F(i,E,Lk)

R —

G TR W £ RS 8 W [T v oL,

rather than recursion). It returns only when the schema §
F » halts. F, may also call the function F .
H
F -- This is the work-horse. This is similar to the function used
in converting a flowchart schema into a recursive schema. It
* calls Fs when something is pushed into the stack.
E i: Fs -- The number of recursive calls on Fs represents the height
3
:, f of' the pushdown stack.
18
" These functions are defined as follows. Recall that the notation
§
1 Yi(. -+) 1s used to pick the i-th data element of a vector. We also
1 % e use ¥(...) to pick all data elements from a vector, and Z(...) to
E &
FE
) pick all boolean elements. Similarly, we will use the notation IL(...)
]
' to pick the label from a vector (only one will be used).
' t 2 FO g If the start statement in S is
" START (y,z) « (7,Q); goto L3
then
L e Fo <= Y, (F,(T,3,L,));
F,: FA(S-’; z,1) <= goto L(F(y,2,L));
* Ll: M(explh
L, return(expe);
X
I E For any 1i :
(1) 1f L; is the dummy statement L a1 then the expression exp, is
» F(y,2,L) .

9

, ; s : ni el
T mmﬂm TR Ry HrPvrms

!

i

(2) 1f L; 1is the "weird" label in
if s = A
Li:then goto Lj
else begin (y,z) ~ top(s); s « pop(s) end

then the expression exp, is ol '
T | FA(YF(S-U z, L), ZF (3, E:L):LJ-) .

The value returned by F will have the same type, i.e., (§,E,L) ’
and it represents the "current" values of the variables and the

label of the next statement to be executed. Notice that the effect

of exp, is to stick the values returned back into F (in the next

| call to F,) and continue the execution from where it was left off.

(3) 1rf L; is anything else -- this can never happen, and exp, is
arbitrary.
Fel: F(y,2,L) <= goto I
L: return(expl);
L,: return(expz);
If Li is then exp, 1is
\ =
} (1) The dummy statement Lhalt (J,z,Lhalt)
} or the halt statement itself
(2) L;: (y,2) =~ (7,3); goto Lys F(7,8,L,)
(3) L;: if @ then goto L if @ then F(&,E,LJ.)
else goto L else F(§,E,Lk)
100

o s AN s e i e Y

- 6

(%)
(5)

'm-

Li: s « push(s,y,z); goto Lj FS({/:E:LJ-:ZV: z)

Li: if s = A (i,E,Lj)

Lj: then goto ...

The only case not shown cannot occur, and the expression for it is

arbitrary.

Fs(l-/: E: Lyy,z) <= goto L(F(l-f: E: L));
L;: return(expl);

L,: return(expz);

(Note -- there should be no ambiguity as to the roles of the two

L's above). For any i , if Li is a statement of the form
if s = A

L.: then goto Lj

else begin (yk,zm) - top(s); s ~ pop(s) end

then the corresponding exp. is

I“(B-f':g':Lj)
where y is obtained by substituting y for Yy in the vector
F(y,2,1) ; end 2' is obtained by substituting z fcr z in
the same vector. If this has caused any confusion, it may be pointed
out that Yy really stands for the k-th data element, and similarly
for z

m

The only other possible case is that Li is Lhalt » and in

this case exp, 1is F(y,z,L) .

a

C(1 pds) < {1 list) , C(1 pds), =) <c(L list, =)

A pushdown stack can be simulated by a list as follows. 1In the
construction below, L' is an arbitrary label (transfers *o L' can
never be taken in actual computation), and y' 1is a dummy variable.
The list schema uses a zero-ary ﬁmctioq a to represent "true'", and

A to represent "false".

Pushdown stack List
s « push(s,y,z) L - cons(y,?);

if z then £ ~ cons(a,!t)

else £ « cons(A,2)

if s = A then goto L if £ = A then goto L;
else if atom(z) then goto L'
i begin . else if — atom(car(2)) v car(2) = A
i
{ {y»z) ~ top(s); then goto L2
s « pop(s) else y' « car(L);
E end z ~ true;
i
! goto Lj;
LE: z «~ false;

if atom(£) then goto L'

else £ «~ cdr(2);

if atom(2) then goto L!

else if — atom(car(2)) v car(t) = A

then goto L'
else y ~ car(2); f
if atom(£) then goto L'

else £ «~ cdr(?)

B S ————

102

(1 list) < (1 pds) , (1 list, =) <C(1 pds, =)
¢ The list operations can be simulated by a stack as follows. The
top three pairs in the stack represent either the car or the cdr of
the 1lisl, the rest of Lhe stack represents the rest of the list. 'The
‘vr ¢ only exception to this is when both the car and the cdr of the list
: are lists. When a schema has just one list £ , this can only happen
: by the execution of a statement
| ¢ £ ~ cons(£,1)
that is, the car and the c¢dr are the same. This is represented by
a boolean value in the sctack that represents a "doubled" list. The
i; 9 representation of a list by a stack can be done as follows (a is any
{ zero-ary function):
1 list stack representation
g
;) .
1 a T
a T
. a ¥
§ (
‘-.
C a it
an atom - y
u T
y T
¢
103

stack representation

e S TR TR T M T T

L=

| ®

O

list stack representation

a [

L.1

)

Note: the stack representation of a list is not unique, but depends

on the way the list is built up. Now, it is clear how the list can
be manipulated by its stack representation. We have been able to
renrescnt the list by a stack because a schema with a single list

cannot generate lists of any great complexity.

2.3.4.9 Proof of Theorem 2.20 (Maximal Classes of Schemas)

(1 pds,lc) Ea(PdS:QJ list,A) , (1 pds,lc, =) > ¢(pds,q,list,A, =)

We first demonstrate that a schema with a pushdown stack and two
counters can simulate the computation of any schema S with any number
of features -- pushdown stacks, queues, lists, arrays, counters. We
will take recourse to the large body of knowledge on the programming

of Turing machines (Church's thesis).

105

T

Now, two counters can similate a Turing machine computation (on a
blank tape). We are using the term "Turing machine" somewhat loosely
here because we will allow the machine to output as it computes, and
also in some special state to accept a yes-no input (from the environment)
before deciding what to do next. Our two-counter Turing machine will
keep track of the values in all the pushdo;m stacks, queues, lists,

arrays, and counters of the schema S . Data values will be kept in

symbolic form, that is, as (constant) terms. Of course, an infinite

amount of memory is not required to keep track of arrays -- the Turing
machine need only remember those array locations that were assigned to
since the beginning of the computation, and know about the value the
array was initialized to by the start statement. If S executves a test
on data elements (a predicate or equality test), then the Turing machine
"outputs" a list of instructions as to how all terms are to be constructed
and the test to be made -~ the output is a postfix-polish form of the
expression (it uses only constant terms -- no variables). Postfix polish
can be executed on the pushdown stack and the outcome of the test is
transmitted to the Turing machine. Our two-counter machine can output

one character (say, the n-th character) as follows: if are

¢ s S5
the counters, cq is set to 2.k where k is some odd integer, and

c, is 0 (see the construction of a two-counter machine from a multi-

counter machine in the discussion on Theorem 2.17). The output can then

be detected by:

phe (cl mod 2) = 1 then goto OUTPUTO;

¢, e /2

ir (cl mod 2)

1 then goto OQUTRUTL;

106

?
‘ o NS cl/2;
9 if (¢, mod 2) = 1 then goto OUTRUT2;
where it is obvious how the test (c:L mod 2) = 1 , and the assignment
@ ¢, - 01/2 can be implemented.
Now, the schema in (1 pds,2c) we obtain has the following
: interesting vroperty. Whenever it executes a statement like
4
s « push(s,y,z)
or like
if 5 = A then goto L
g else begin (y,z) «~ top(s); s - pop(s) end
the value of the counter <, is zero. Hence we can implement c, in
: 1 the stack itself by stacking a false value to represent 02 =0, and
subsequently a true value for each increment to the value of Cy - This
will not interfere with the above stack operations since we simply throw
t 3 away the false value, execute the stack operation, and then reinstate it.
' We note that if the functions of the schema are monadic, then 2(2c)
can simulate ¢(pds,q,list,A) (and similarly for ¢(2c, =)). 1In the
g above description of a schema with one stack and two counters, the stack
‘ was only used to construct (constant) terms. When the functions are
monadic, any term can be computed with just one variable, and hence any
T n-ary predicate test can be performed with n-variables. This shows that
c(2c,monadic fns) = 2(pds,q,list,A,monadic fns) , and that
c(2¢, =,monadic fns) = ¢(pds,q,list,A, =,monadic fns) .
¥ Q :

107

L wom

¢(1lq) >c(1 pds,lc) , (g, =) > (1 pds,le, =)

Since a pds is at least as powerful as a counter, it suffices to
show that C(1q) >¢(2 pds) , C(lay, =) >C(2 pds, =) (the proof is a
little simpler). Given a schema S with two stacks Sy and S, 5 We
wish to construct a schema S' with a queue that is equivalent to § .
But this is easy because both stacks can be packed in a queue, with
booleen variables to mark the ends, and the values can be circulated.
The detailed construction is as follows. For convenience below, we use

the notation tf(1l) for "true", and tf(2) for "false", and we define

macres rem(L,y,2,q) , and reset(i) as follows:

rem(L,¥,2,q9) if q = A thnen goto L else
begin (y,z) ~ first(q);
q «~ remove(q)

end

reset(i) L:rem(L',y',2',Q);
q ~ add(q,y',2');

begin rem(L',y',2',4) 3

q - add(q,y',2');

goto L
end;

rem(L',¥',2',4) 3
add(a,y',2');
if z' # t£(i) then goto L
where L' 1is an arbitrary label, " a " is a zero-ary function in & ,

and y' and 2z' are new variables in the schema S' (with the queue)

that are not present in S .

108

START (yl,ye, ERFEIFL N 5)) START (y',yl,ye, soonfly Zys 5

|

i

. !

- Schema S -- two stacks (sl, 32) Schema S' -- one queue ;
D

1

- (-rl,'r,a,...,al,an,...) - (a,'rl,'re,...,true,al,('xe,...); i

) q - add(q,a,false); :
| a - 8a4(q,8, (1)) |3
' q ~ add(qg,a,false); |
fe q - add(q,q,t1(2))
s, = push(si,y, z) reset(i); {

q + add(qg,a,true);

i 3 q « add(q,y, z)
if s = A then goto L else reset(i);
4 begin (y,z) -~ top(s); rem(L',y',2',q) ;
T {
{: s « pop(s); if — z' then
end begin q ~ add(q,y',2');
rem(L',¥v',2',q); I
CE G ‘
q ~ add(q,y',2z');
goto L ! \
- end; 3
| ©
rem(L',y,2,q)
a
(' !
S

3
i
109 !

Chapter 5 Decision Problems

Introduction

We consider the following decision problems for classes of schemas:

The halting problem -- to decide whether a jiven schema in the

class halts on every interpretatibn.

The divergence problem -- to decide whether a given schema in the
class diverges on every interpretation.

The equivalence problem -- to decide whether two schemas are
equivalent (decide if 5, = 8,).

The inclusion problem -- given two schemas Sl and 82 to decide
whether it is true that for every interpretation either both schemas

halt with the same output or S, diverges (decide if S, > S,)

1
The isomorphism problem -- to decide whether two schemas are

isomorphic to each other (decide if 5, ~8,).

t should be stated that for "conventional" schemas, i.e., all
schemas introduced in the previous chapter, the problems (a)-(e) are in

general unsolvable, but the following problems are partially solvable:

The halting problem -- to decide whether a given schema in the
class halts on every interpretation.

The nondivergence problem -- to decide whether a given schema
ever halts.

The nonisomorphism problem -- to decide if two schemas are not

isomorphic to each other.

The notable exceptions are the equivalence and inclusion problems.

In general, the equivalence and inclusion problems as well as their

110

negations are all not partially solvable.

A class of schemas is said to be solvable if its decision problems
(a)-(e) are solvable; similarly, a class is unsolvable if its decision
problems (a)-(2) are unsolvable. Of course, some classes may be neither
solvable, nor unsolvable.

The class of Tanov schemas, which consists of one-variable flowchart
schemas using only monadic functions and predicates and no resets is
solvable. However, even very simple classes of two-variable schemas are
unsolvable. For example, the class of schemas with one constant a , one

other function symbol f , one predicate ©p , and statements of the forms:

(1) START (y,¥,) = (8,a)
(2) HALT(a)

(3) LOOP

(M) vy - £(y,)

(5) if p(y;) then goto L, else goto L,

is unsolvable. TFor this reason, in this chapter we will almost exclusively
consider schemas with only one variable to determine how large a class can
be constructed before it becomes unsolvable.

Also note that for solvability considerations the use of boolean
variables is irrelevant as they can be eliminated. Hence we will only
consider schemas without boolean variables.

In Section 3.2 we consider uninterpreted one-variable flowchart
schemas in which equality tests are allowed. TIn view of the fact that
all decision problems for uninterpreted one-variable schemas without
equality tests are solvable, it may be somewhat unexpected that the class
of one-variable schemas with general equality tests is unsolvable. But
we show that if only some restricted equality tests are allowed the

resulting classes are solvable.

s

FrE

In Section 5.3 we consider some semi-intcrpreted schamas, in
particular, those obluined when (o) Lwo unwry funelions arce spee i Mied
to commute, and (b) when some unary function is invertible, i.e.,
composition of the function with its inverse ie the identity function.
We find that with commutativity or invertibility alone, the decision

problems are solvable, but if both are allowed, they become unsolvable.

5.2 Equality Tests

2.2.1 Notation
We consider flowchart schemas with a single variable y , and we
use the symbols
(1) a,al,az,... to represent individual constants (or zero-ary
functions, if you will),
(2) f)fl,fz,... to represent n-ary functions (n >1) , and
) P»PsPyy -+ tO represent n-ary predicates (n > 0) .

We use the notation t() to represent a constant term, i.e., & term
not containing the variable y , and 1 , 7(y) to represent an arbitrary
term.

The assignment depth |[t(y)|| of a term t(y) is defined as follows:

IrOfl =0,

Iyl = o,

Hfi(Tl;---;Tr)\F=max{HTlH,---,Wfrn}+l » where at least one of the

T7.'s 1s nonconstant.

J

[y o T T —— WA Laoenany

The depth |1| of a term t is the maximum depth of nesting in

the term, and is defined by:
\ai\ SAUR)
lyl =0,
|fi('rl, L1 .,'rr) | = max{\'rll, 21 |'rr| i

We also say that |'r| is the depth of nesting of 7

Note that for nonconstant monadic temms 7 , ||| = |*| , but in general

kil < 7| . For example, Hf(g(a),y)“ =1, out |f(g(a),y)]| =2 .

3.2.2 Solvable Classes

Consider the rather general class 01 of flowchart schemas with

one variable. Schemas in C',l contain the following statement types

(Ll and L2 are arbitrary labels in the definitions below):
Start statement: START y +~ ay
Final statements: HALT(t) or
LOOP
Assignment statement: y -1
Predicate-test i p.('rl, ..+,T_) then goto L
statement: = 3 E
else goto L2 i
Equality-test if 1, =1, then goto L
= "1 2 — 1
statement:

else goto L2

The equality tests allowed must, however, satisfy the condition that
either T, O T, is a constant term, or else there exist terms

(¥ Té(yj such that both |[+1(y)| and I*4(3) || are less than or

O T - Y T g TR T mam—

equal to 1, and 7, and 7, are of the forms 1i(1) » and Té(T)
respectively for some term 7T . Note: Ti(T) is a term obtained from
1i(y) by substituting all occurrences of y simultaneously by 7 ;
and similarly for Té(T) . Note also, that as a special case of this

condition, tests of the form T, =71, with Ddoth ”Tl“’”TQH <1 are
allowed (simply by choosing T to be the term y itself). Another
example of a test that is allowed by this condition: f£(t) =1t , where T

is some unary function and T is an arbitrary term -- this is allowed

because we can choose 7] to be f(y) and T, tobe y.

Theorem 3.1 (Solvability of ¢,)
The class cl is solvable, i.e., for (!:L B
(a) the halting problem is solvable;
(b) the divergence problem is solvable;
(¢) the equivalence problem is solvable;
(d) the inclusion problem is solvable;

(e) the isomorphism problem is solvable.

This theorem includes as special cases the results of Ianov [1960],
Rutledge [196l4], and also recent extensions by Pnueli [private communication],

and Garland and Luckham [1971]. The proof is presented in Sestion 3.2.L4.

As a special case of this theorem, the class of all one-variable

schemas without equality tests, @(1 var) , is solvable.

As another special case, the class of one-variable monadic schemas

allowing resets, and equality tests of the forms:

0 =7, 5 ¥y =50) , and £;{y) = £,(0)

is solvable.

Ol By

Consider, next, the class (%, of schemas, similar to the class Cq s
but with a change in the form of equality tests allowed, viz., the

equality test statements allowed are of the form:

< if T, =T, then goto Ll else goto L2 ’

but this time the restriction is that either Tl or 12 is a constant

term, or else ”Tl” = ”72“ .
[Theorem 3.2 (Solvability of Co)

The class 82 i¢ solvable.
As a special case, the class of one-variable monadic schemas
allowing resets and equality tests of the forms:

1,(y) =7,00 , or T, =71, where It | = |7,

is solvable.

3.2.3 Unsolvable Classes

It should well be asked why we have the "strange" restrictions on
the form of equality tests above. The answer is that even slight
generalizations of the restrictions above yield, astonishingly, classes
whose problems are unsolveble. We demonstrate this on two classes.

Consider the class 63 consisting of one variable y , one
constant a , no predicates and only monadic function constants.

Statements in schemas of c3 are of the forms:

Start statement: START y ~ &
Final statements: HALT(a) or
1.oOP

115

&

S s e e e e S

" Assignment statement: y - fi(y)
Equa.hty-‘f:est if fi(y) = f;](fk(y)) then goto Ly
statement:

else goto L2

% differs from cl in that terms of assignment depth two are

effectively used in equality tests; and it differs from 02 in that

rr— T ey

terms tested for equality do not have the same assignment depth.

Theorem 3.5 (Unsolvability of Cs)
The class ('3 is unsolvable, i.e., for (',j R

(a) the halting problem is unsolvable;

|
;
L
:

(v) the divergence problem is not partially solvable;
(c) the equivalence problem is not partially solvable:
. (d) the inclusion problem is not partially solvable;

' ¢ (e) the isomorphism problem is not partially solvable.

For the sake of completeness we should mention that the non-
2 equivalence and the non-inclusion problems for this class too are not

partially solvable. Of course, the halting, non-divergence and non-

L

isomorphism problems are partially solvable, which .follows from the

' s general result mentioned in Section 3.1. For the proof, see Section 3.2.kL.
We introduce, next, the class ch of one-variable monadic schemas

similar to (',j but with the difference that equality tests allowed have

s the following form:

if y =1 then goto L, else goto L, |

where T may have any of the forms:

116

the form ¥i = f(yi) are unsolvable.

fi(Y) ’
£,(£53)

or

£4(£5(£,(¥))

Theorem 3.4 (Unsolvability of ¢,) Y

The class ch is unsolvable.

Classes c1 and c.2 are solvable, whereas c3 and Ch are
unsolvable. On comparing these classes it is clear that there is a
very sharp demarcation between classes of one-variable schemas that are
solvable, and those that are unsolvable, depending on the form of
equality tests allowed. It should perhaps be asked how many function
symbols suffice to render a class unsolvable. It can be shown, for
example, that for the class c3 » merely four functions are sufficient.
It is more interesting to note, however, that these function symbols can

be '"coded" using only two function symbols so “hat schemas with one

variable, two functions and general equality tests, i.e., tests of the

form Tl(y) = Tz(y) »_are unsolvable. Note: the number of functions

does not include the ever-present constant (or zero-ary function) a .

So far we have restricted our consideration to schemas that have
only one variable. The reason is obvious: one-variable schemas provide
the most interesting solvable classes. When more variables are allowed,
even a very few features tend to make the schemas unsolvable. For

example, schemas with two variables, two functions and tests only of

It is even more interesting, though probably not surprising, that
schrmas with single function too are unsolvable; for example, the class

of one function schemas having tests only of the form g 213 |8
il).

unsolvable (four variables suffice in this case).
The proofs of these secondary results are also presented'in

Section 3.2.4.

y

3.2.4 Proofs for Schemas witn Equality

5.2.4.1 Proof of Theorem 3.1 (Solvability of Cy)

For convenience, in this proof we change our notation for terms
very slightly: 1t stands for an arbitrary term and 1() stands for a

constant term as before, but 7(y) represents a non-constant term.

3.1(a), (b), (c) The solvability of the halting, divergence and

equivalence problems follows from the solvability of inclusion:

(a) Given a schema S of ¢y » S halts if and only if S' >H where
H represents the schema START; HALT(a) that always halts with
output a , and S' is the schema S with all halt statements
changed to FALT(a) .

(b) Given a schema S of q » S diverges if and only if LE>ISE
where I represents the schema START; LOOP that always loops.

(c) Given two schemas S. and S. of ¢y » 8;,=8, if and only if

1 2 1 2

S, >S5, and S, >8§

1 2 2 1L

Z

2.1(d To show the solvability of the inclusion problem we will

first present a proof for schemas in c1 using only monadic functions

and predicates, and then indicate how it may be extended to include
non-monadic functions and predicates as well.

We first describe classes of canonical interpretations that play a
role for the monadic schemas in 31 similar to the role of Herbrand
interpretations for Herbrand schemas (see Theorem 2.1.2).

For any integer k >0 , we describe Lhe class of interpretations
Jk (over a set of monadic fuictions and predicates) as follows. The
elements of the domain of an interpretation Ie&k are equivalence
classes of constant terms. However, each constant term need not be
present in some equivalence class. First, consider the set of terms
7() such that |t()| <k . Equivalence classes may consist of arbitrary
non-overlapping subsets of these terms as long as substitutivity relations

are preserved, for example, if k >3, and f(g(al)) » f(a are in

o)
the same equivalence class, then f(f(g(al))) ; f(f(ae)) must together
be in some class, as must g(f(g(al)) . g(f(ae)) ; but g(al) s 8, may
be in different classes. All constant terms () , with |r()| <k

are in some equivalence class, and these are called the initial elements

of Dom(I) . We will rank the terms in an equivalence class first by
depth, and then by (some) lexicographic order, and choose the smallest

as the representative of the class. We denote a class by [1()] where

7() is the representative. Also, if 71() is any element in a class,
not necessarily its representative, we use {r()} to denote the class. §
Since the equivalence classes will be non-overlapping, these notations

make sense.

Functions are defined on the initial elements in the obvious way.

If |t1()| <k then £([r()]) = {f(r())} . If all initial elements are

119

z

of the form [r()] with |T()| < k , then there are no other elements

in Dom(I) . Otherwise, if [r()] is an element of Dom(I) , |r()| >k ,

then new equivalence classes may consist of terms from the set

{£(7()) | £ is a unary function symbol} , and for any function symbol f ,

if there is a class, of which f£(7()) is an element, then

£(lt()]) = {£(r())} , otherwise f£([{r()]) is either [tr()] ; or some

initial element.

All predicates on Dom(I) are arbitrary.

This defines the class of interpretations &k 5

Now, given an arbitrary interpretation I' , we define the

k
corresponding interpretation I in & (notation I' - I) in the

obvious way. Two terms are in the same equivalence class (in I) only

if their corresponding values are equal (but the converse is not

necessary). We have, in addition, the following rules:

(1)

(2)

)

(¥)

for any 7,() , 7,() , such that |1l()| <k, |12()| <k , the
two terms are in the same equivalence class in I if and only if
their values are equal in I' .

It [t()], [r'()] are classes in I such that |1()| >k,
|*'()| <k, then if the values of f£(1()) and t'() are equal
in I' then f£([r()]) =[v'()] in I .

If [t()] isaclassin I, and 7() and f(r()) are equal

in I' then f£([t()]) = [*()] in I .

If [7r()] is a class in I such that in I' , the value of
£(1()) equals the value of g(t()) , and f£(1()) does not equal
7'() , forany t'() with |r'()| <k, then in I the terms

f(r()) and g(r()) are in the same equivaience class.

120

T e L e Saiin B
- 2 T Lo 3

(5) If [v()] is a class in I , then p([t()]) 4is true in I if

and only if p(t()) is true in TI'

By the construction of interpretations in Jk » this describes a unique I
corresponding to I' , and a homomorphism © from I onto the reachable

elements (i.e., elements that can be represented as constant terms)

of I

Lemma. Given any monadic schema 3631 » and an integer k such the.
for every term T wused in 8, |1| <k , then for any interpretation
I' for 5, if I E I and 6 is the homomorphism ©: I - I s then
(1) Path(S,I') = Path(S,I) , and

(2) Val(S,I') = ©(Val(S,I)) if both are defined.

Proof: The lemma follows by induction on the number of steps in the
simultaneous computation of S on I' and on I with the induction
hypothesis that after n steps, the paths are the same and the values

of the variable y in the two computations are related by o .

It follows from this lemma that to prove halting, divergence,
equivalence, isomorphism or freedom, it suffices to prove these for
the interpretstions Jk (for appropriate k) because if the outputs
of two schemas on an interpretation I' are distinct, they are also %

distinct on the corresponding interpretation I . 3

This result (for inclusion and isomorphism) is used throughout in

the proof below, where whenever we say "an interpretation", we mean an

e e s aicie Bl

| interpretation from the class Jk 5

Given two monadic schemas, change all assignment statements
y -~ 1(y) sc that the only kinds of assignment statements are of the
form y « fi(y) or y -a, , and halts are of the form HALT(y) . Let
the resulting schemas be called Sl s 82 . To explain the algorithm
for deciding whether or not Sl > 82 , we first introduce the concept
of a state vector.

Given an interpretation for the schemas Sl s S, and a value for

2

the variable y , we define the specification state of the variable y

to mean the true/false values of all predicete and equality tests
the schema(s) could possibly make without changing the value of the

variable y . To make this notion concrete, let k be the maximum

depth of any term used in the schemas Sl and 82 . Given a value
[t()] for y , the specification state of y includes the following:
the description of all initial elements and all equivalence classes
of the form [t1*(t())] where |7'(y)| <k ;
the values of all terms t'(y) where |7'(y)| <k ; and
the values of all atomic formulas p(7'(y)) for all p , and

It ()] <k .

We define the incomplete specification state like the specification

state except that k is replaced by k-1 in the definition above. We
define the state vector of the variable y to be the incomplete
specification state as well as the current statement just executed.

Now, given the two schemas Sl and 82 we construct a finite state

automaton which effectively simulates the computations of Sl and 82

in parallel. The input tape represents an interpretation (from 3)

for the schemas Sl ’ 82 , appropriately coded. The sutomaton accepts

———

the input tape unless either (i) both schemas halt with different

outputs, or (ii) 82 halts and Sl either loops or can be made to 3
diverge. The finite automaton can detect the latter case (for the

appropriate input tape) because the "principal instance" of the second

schema will enter the same state vector twice after the first schema has

halted. Now, the finite state automaton aécepts all input tapes if and

only if Sl > 82 ;

The description of the automaton and the input tape follows. The

oy

automaton effectively simulates the computations of the schemas by
running the computations for a (large) number of instances of the
variable y in parallel. For each assignment statement in the schemas
and each constant term *() , where |T()| < k there is an instance

of y which indicates the computation as would be executed starting
Just after that statement and with the variable y set to value of 7()

In addition, there is a principal instance for each schema. It corresponds

to the start statement and the initial value of Yy, i.e., it corresponds
to the "real" computation of the schema. As the automaton steps through
the two schemas (as determined by its input tape) the automaton keeps
track of a finite amount of bookkeeping information, viz., the variousﬁ
instances that have equal values, the various instances that halt or

loop forever, and, of course, the state vectors for instances that have

not halted or looped up to that point (called active instances).

In addition, the automaton remembers the initializing character

(explained below), and if S, has halted, then it also keeps track of

2
the set of state vectors of the principal instance of Sl subsequent

to the halting of 82 .

The first character of the input tape is a special charachter

T called the initializing character. It describes all elements of Lhe

form [1()] , where |1()| < 2k-1, and gives the values of all terms
7() , and all atomic formulas like p(t()) , where |v()| < 2k-1.
& With this amount of information the automaton can simulate the execution
of all instances of y so that for each instance either it halts or loops or
reaches a value [1()] such that \T()l =k .

& All subsequent characters on the input tape are called updating

characters. If m 1is the number of instances in Sl and S2 , and
we let X denote the finite set of specification states, then an
{ updating character is an element of X" . 1In other words, one updating
character provides the following information for each instance in both
schemas:
d ((1) the description of all "new" equivalence classes, i.e., for all
classes [*(y)] , |*(¥)] = k-1, and all function symbols f ,

the description of equivalence classes amongst the terms of the

, fom £,(t(¥) 3

(2) the values of all terms 7(y) , |#(y)| = k ; and

i

(3) the values of all atomic formulas pi(T(y)) e =k .

When an updating character is read, the automaton already has an incomplete
specification state for each instance. If for any active instance, the
information given by the updating character fails to match the incomplete

specification state for that instance (and the information of the

initializing character), the automaton detects the tape as representing 5
an infeasible interpretation. Whenever any infeasible interpretation is
detected, the input tape it accepted. Further, the automaton checks that

the "updates" are equal for instances known to have equal values --

S adiid

otherwise the interpretation is infeasible. If the updating character
passes these "feasibility" tests the automaton Tthen steps each active
instance through the schema in which that instance cccurs. The following
cases are possible: :
(1) The next statement is a HALT or a IOOP statement -- record it.
The instance becomes inactive, but all instances that beccme inactive
by halting with this value are remembered in the finite memory.
(2) The next statement is a test statement -- tae outcome is known, L
hence continue the process (check for a loop) .
(3) The next statement is y-a; -- the instance becomes identical
with the instance that started from this statement with v#lue ay &
(check for a loop).)
(4) The next statement is y « fi(y) -- |
(a) If y = fi(y) then y is unchanged -- continue the process,)|
checking for a loop. |
(b) v £ £.(¥) £.(¥) =7() with |t()| <k -- the instance
becomes identical with the instance that started from this s
statement with value 7() .
(c) vy # £y fi(y) £7() for all () such that kO] <x --

the process stops.

The automaton continues reading input characters until either both Sl
and 82 halt or loop, or until S2 loops (while Sl is still active).
If, however, S2 halts and Sl is still active, all state vectors for

the principal instance of Sl are remembered and if it ever loops or

repeats a state the input tape is rejected.

125

The reason that this specification state approach works with
limited equality tests is that the finite specification state carrics
sufficient information to allow it to be updated such that all feasiblé
updates represent feasible interpretations. The converse, that for
every feasible intgrprefafion there is a feasible update at each step,
is trivial. This is not true for géneral equality tests, e.g., in the
classes 63 and ch if a specification state were to carry all infor-
mation necessary to update it, the amount of information would grow
without bound as the computation proceeded.

To generalize to non-monadic schemas in cl s We describe the
canonical interpretations &k similar to those for monadic’ schemas.

The elements of the domain are, as before, equivalence classes

over terms. There is, however, a special element denoted by [A]

' This corresponds to terms that cannot be built up. For any interpretation

in Jk ,» the value 6f all functions having [A] as any argument is [A] ;
and the value of all predicates having [A] as any argument is (arbitrarily)
true. We now describe the other elements in Dom(I) . The "initial
elements" are the equivalence classes over all terms 7() where lTO) <k,
satisfying substitutivity, of course. As before, we rank terms first

by |T()| » and then by (some) lexicographic order, and we use the

notations [7()] and {1()} as before.

Functions over initial elements are defined as follows. If all
20017, 01 <k, then £(0ey (01 5,01) = (205505 000m,)3
where f is an r-ary function. If [7r()] is in Dom(I) , T >k,
then new equivalence classes may consist of terms from the set T of

terms 7'(1()) where 7'(y) is a non-constant term with |T'(y)| <k,

as follows:

126

(1) Let T, €T be the set of terms 7'(7()) where k)l =1,
and where 7'(y) is (non-constant and) of the form f(tl,...,rr) : Y
where for each i , either T, is simply y or else T, is a
‘constant term and [Ti] is an initial element. Then equivalence
classes on Tl are arbitrary, and we define the value of L

f([rl],...,[rr]) to bef/ {f(rl,...,rr)] if such a class exists,

otherwise it is either [1()] or some initial element.
(2) Let T,cT Be the set of terms <'(v()) where @) =2, w
7' (y) ié of the form f(rl,...,tr) where for each i , [1i] is
an equivalence class (at least for some i , ”71“ =1) and there iﬁ
" exist non-constant 35Ty for which 7, £T. . Then for each

J
. there is & class [7'(1())] consisting of just

term 7' (v())eT

tﬁe singleton, and the value of f([«l],...,[rr]) is defined to be

this element. : ’ ot
(3) TB’:"’Tk may generate additional new elements in a manner similar
.E . to (2) above.

Ali function applications not specified above have value [A] , and
all predicates taking arguments from Dom(I)-[A] are arbitrary.

This defines.the class of interpretations Jk » and for monadic
functions.and predicates it is the same as the earlier class Jk
introduced (except for the unreachable element [AD).

Now, given an arbitrgry interpretation I' , we obtain the

corresponding Tedy (1 K I) as before, having the Property that there

1s a surjection 6: Dom(I)-[A] =D that prreserves the values of predicates

m _ :
o/ With a little corrupted notation we have allowed [y] to stand for

[t()] where 7() is the value of y , and we continue to use y and
7() interchangeably.

127

oo e

and functions. Here, D is the set of k-reachable elements in

Dom(I') which is defined to be the set of elements in Dcm(I')
corresponding to the terms 7() that can be built up by wssignments:

y v-rl(); y - Tg(y); 0O Tn(y) , where for all 1i , ‘Ti‘ <k .
The desired lemma can then be proved, that is, if every term T used
in Sa31 has depth at most k , then if TI' ﬁ I then

Path(S,I') = Path(S,I) , and Val(S8,I') = ©(Val(S,I)) . The rest of
the proof is almost identical to the prouf above, except that we cannot
impose that all instances can be simulated exactly in step, but some
instances may get up to a bounded number (k-1) of steps ahead of
others -- but this is no problem, the automaton simply remembers these

relationships, and always updates those (active) instances lagging behind.

This completes the proof of inclusion. But before the reader starts
sharpening his pencil to write a program for proving the equivalence of
programs by this method, a note of caution seems to be in order. The zize
of the automaton grows quite rapidly with the size of the input schemas.
Perhaps the verb "explode" would be more appropriate. To decide if

S, >8

3 where both S

1 52 are the trivial schema

2
START y « a; HALT(y)

the automaton is trivial. But if we add an assigmment statement and

change the schema to

START y « a3

while p(y) do y ~ £(¥);

HALT (y)

then the automaton (in a brute force construction) has some 30 billion

states and an alphabet of size 500 million. Of course, large improvements

C i
e o e S T —

128

are possible to make the decision procedure feasibly in practice by
more careful definitions of canonical interpretations, specification
states, and the automaton construction (e.g. if the automaton merely
counts the number of steps of Sl after 82 halts, instead of keeping
track of all state vectors entered), but that is not our purpose in the

v e

proof.

3.1(e) The proof of isomorphism is similar to the prcof of inclusion,
except that the automaton not only keeps track of which instances are
equal in value at each step, but also which equal instances have an
isomorphic history. The automaton can then detect if for any input

tape the computations of the two schemas are not isomorphic.

3.2.4.2 Proof of Theorem 3.2 (Soivability of Cyo)

The proof of Theorem 3.2 is somewhat similar to that for Theorem 3.1,
but the canonical interpretations and the automaton to be constructed
have to be a little more general. Intuitively, the reason for this is
the following. For schemas in the class cl » if two instances "diverge"
in their values, then from that point onwards their predicate and
equality tests are independent of each other. Not so for schemas in C? 0
For a schema in C? » two instances may diverge and then come together
again, for example, the following may happen. We denote two instances
by Y and Yy 3 then say, both are equal, and one, say ¥y o tests
f(f(f(f(yl)))) = f(f(f(g(yl)))) » and it is true. Then ¥, epplies
Yy - f(yl) and Y, applies oS g(ya) s namely, they diverge. But
they can converge again if the function f is applied three times to

each.

129

e b e Ol i T - Rl o e

I S T S R S

; i We will demonstrate a quick proof for the inclusion problem. The
1 » solvability of halting, divergence and equivalence follow from this, and
isomorphism can be shown to be solvable in much the same way.
Given (monadic or non-monadic) schemas Sl,SECGE, to decide if
® Sl 2»82 we describe the canonical interpretations for Sl ’ 82 . Let

k be the maximum depth of any term used in Sl or in 82 » We define

N A T T TR

the effective assignment depth //1()// of constant terms 7() as

) follows:

JxOf = 1f 10| <x then 0 else |r()|-k

The canonical interpretations &k are defined as follows. The domain

of an interpretation IeJk is equivalence classes over all constant

terms, but all elements of an equivalence class must have the same effective

assignment depth, and equivalence classes must satisfy substitutivity.
The values of functions are defined in the obvious way, that is,
f([Tl],...,[rr]) is [f(rl,...,fr)} if such a class exists, otherwise
it is some initial element; and the predicates are arbitrary. It is to
be noted that all equivalence classes are finite, but unbounded, i.e.,
the input tape of the automaton to be constructed cannot specify the
entire description of the elements, but that will not be necessary.

The automaton simulates the computation of all instances in

parallel keeping a total specification state instead of specification

states for each instance. Let Y = [yl,...,ym} denote the set of all

instances. The total specification state contains the following: %_

amap D: Y -~ {0,1, ...,k-l}m giving the relative effective
assignment depths of all instances (at least one of which is zero),

(2) the values of all: 'rl(yi) = Te(yj) , Where 'rl(y) 4 1'2(y) are
non-constant terms, and H'rl(y) ||+D(yi) = ||12(y)||+D(yJ) £l
i.e., the effective assignment depths of both 'rl(yi) and Te(yj)
are the same (because we will have "th:zt the values of Yy Y5 have
depth >k),

(3) the values of all: 'rl(yi) = 12() , where H‘rl(y) H+D(yi) shiey)
l*,0) <k, ana

(L) the values of all p('rl, ...,'rr) where Tys+ee»T are all terms

’

on some y, , (or constant), and for non-constant 'rJ.

|1'J.|+D(yi) < k , and for constant TS |1'J.| <k.

The rest of the execution of the automaton, i.e., the initialization,

updating, simulation and halting, is on the lines of the earlier proof.

3.2.4.3 Proof of Theorem 3.3 (Unsolvability of Cs)

5.5ga!!§b! We define a class c',s of schemas having two variables

Y1 and Yo s and whose statements consist of the following:

Start statement: START (yl,ye) - (a,a)

Final statements: HALT(a) or
LOOP

Test statement: Yy - f(.‘{i);

if p(yi) then goto L;j else goto Ly

It was shown by Luckham, Park and Paterson [1970] that the halting

Problem for the class cs is unsolvable, and that the divergence problem

is not partially solvable. \

2

To show the halting problem for to bte unsolvable we reduce

N
N

the halting problem for 25 to that for c.j ; that is, we describe un

algorithm that takes any schema S in the class ¢, as input and

> p)
yields a schema Sé in the class 43 such that Sé halts if =and only
if S5 halts. Similarly, to show that the divergence problem for 63
is not partially solvable ve describe an algorithm that takes 5. as

p)
input and yields as output a schema Sg in the class 63 such that
Sg diverges if and only if S5 diverges. We will unify the construction
for the two cases by constructing for both cases a schema S5 in the
class c3 but augmented with a special final statement called the

reject statement:

REJECT statement: REJECT .

The reject statement signifies that the interpretation is unacceptable
and is rejected. The idea is the following. There exists a map from

interpretations of S, that are not rejected onto the interpretations

>
of S_ such that the computation for S5 under an interpretation halts

)

if and only if the computation for S5 under the corresponding interpre-
tation halts.
Now it is clear that if' we replace all reject statements in S3 by

HALT statements to get Sé , then 8! halts on every interpretation if

and only if S_ halts on every interpretation. Similarly, if we rcplace

5
all reject statements by loop statements to get S% » then Sg

diverges on every interpretation if and only if S_ diverges on every

>
interpretation.
Given a schema S_ in cs we construct the corresponding schema
S3 in 63 (with the addition of REJECT statements) as follows. Ve use

172

the variable y of S3 to represent the latest variable tested in SS ’
i.e., Yy, or Y, - The function f vplays the same role in S3 as

in S5 . We use a new function g called a "test function") and tests

of the form

if p(y) then ... else ...

in S5 s will take the form

if g(y) = g(e(y)) then ... else ...

in S In addition we use two "control" functions f., and f, . Their

oA 1 2
roles are the following: if y stands for Yo (of S5) then fl(y)
will equal the value of f(yl) at that instant in the camputation unles:,
of course, a reject statement is reached earlier. The role of f2 is
analogous, i.e., if y stands for ¥y, then fe(y) will equal the
value of f(ye) ’

The schema S5 simulates a computation of S5 as follows. In
the diagram below the elements a , f(a) , f£(f(a)) , £(f(f(a))) are
represented by contiguous squares from left to right. We superimpose
on this diagram the computations of both S3 and S5 . Suppose, at some
instant in the computation of 95 ’ ¥ is at point A, and Yo is
at C , and suppose ¥y is being "read". S5 makes certain that the
f2 pointers from the squares scanned, point to the right of Yo -
Suppose that when ¥y reaches point D the schema S5 starts "reading"
from Yo - S3 checks that the fl pointers from the squares scanned,
point to the right of D (i.e., to F).

133

T

ot g ., 3y i 2 ’ e

S A . T e P]
a1
3
!
t & t 3
:]{ 4
{ [TTTT 5
| Al B D|F c E |
{
i 1 -;
¥ il 2 :
push yl -

f2 I 1
¢ Al B D|F c E
TIT1]
| i
e i Y2
push y, -
(S5 reads ye)
Q
We are now in a position to describe the construction of 85 ¢
Without loss of generality we will assume that in Ss the first test
; statement tests the variable Yy 85 will effectively contain two
copies of S5 » except, of course, for the start statement. We will
| call these copies A and B . We will label statements of 85 by
}.Z / Ll’L2’ L5, <+« « The corresponding statements in S5 will be labelled |
" AT.;:BLy A Blpy ALy BL 5 < - -
(i) The start statement in 8, i y %
& START <yl’y2> - (a,a);

goto L;3 2 1

15k

DAL Y o, & S e e e

The corresponding statements in S3 are:
START y «~ a;
if £(y) £ fe(y) then REJECT else goto AL 5
Note that the test f(y) # f,(y) 1is not strictly an allowed

statement. We use this form for clarity: it can really be

"simulated" by the statements:

H

if £(y) # £,(£;(y)) then REJECT;

Hy

if fe(y) £ fl(fl(y)) then REJECT else goto AL, 5

! (ii) For any tests statement L, in S5 y if L, 1is of the form:

L.t yy = £(yy)s

if p(yl) then goto Lj else goto L3
' the corresponding statements ALi and BLi are:

AL.: if £,(y) # £,(f(y)) then REJECT;

Yy - I(y);

H

if g(y) = g(g(y)) then goto ALJ. else goto AL, ;

=

Bl : 1f t(y) / J',,(t'](y) Lhen RiJIes

y = £ {¥);s

if g(y) = g(g(y)) then goto ALJ. else goto AL, ;

(iii) For any tests statement Li in S_. of the form:

p

Lt vy « T(¥,)5

b5 p(ye) then goto Lj else goto L3

ALi and BLi are similar to the above, except, one has to

inrterchange fl with f2 and A with B .

(iv) Halt and loop statements remain unchanged.

This completes the construction.

The main reason that the schema S5 can simulate the computation
of S5 is that each fl) f2 "pointer" is checked at most once from
each square. If pointers werec to be checked twice and it turned out
that they were required to point to different values there might exist

no interpretation satisfying this condition -- the result would be that

all interpretations of 85 would be rejected.

2;2121 The non-partial solvability of the equivalence problam follows
directly from the non-partial solvability of the divergence problem
(part (b)), since a program schema in c3 diverges if and only if it
is equivalent to the schema:

START y +~ a;

IOOP .

3.3(d) The non-partial solvability of the inclusion problem follows
immediately from the non-partial solvability of the equivalence problem

since S. = § if and only if 8

1 o _ >8 and S >8

] 2 2 1°

3.3(e) The non-partial solvability of the isomorphism problem also
follows directly from the non-partial solvability of the divergence

problem. Given a schema S in the class c3 » construct a new schema S

also in c,5 obtained by replacing each halt statement in S by the
statements:
y <« £(y);

HALT(a) .

Then S and S' are isomorphic if and only if S diverges.

j{ :
136 %

3.2.4.4 Proof of Theorem 3.4 (Unsolvability to e,)

The proof goes along lines quile similar to the proof Tor Theocrem %.%.
We first define a subset c,6 of the class of schemas c.5 . Schemas
in 06 » like those in 65 s have two variables ¥y and Y5 » one
function symbol f , and one predicate symbol p . However, 66 has
the constraint that in any path through.a";chema of 66 » after each
statement that tests the variable ¥y there must be either one or two
statements that test Yo (followed by a halt or loop statement or another
test of y1) -- note the form of the test statement of 05 defined in
the proof of Theorem 3.3(a), (b). Each "statement" in C (other than
a start, halt, or loop) is a compound statement of any of the following

two forms (labels L;L) L, --. are arbitrary):
L: yy = £(y;);
if p(y,) then
begin

T 2 f(ye); iy p(ye) then goto L, else goto L,

end
else
begin

Yo = f(yz); flat p(yz) then goto L5 else goto Ly,

end.;

L: yy = £(yy)3
if p(y;) then
bet'ziﬂ

Yo = 1(¥,)

if p(y,) then
begin

Yo ~ f(ye); if p(ye) then goto L, else goto L,

end

e

else

begin
T = f(ye); if p(ye) then goto L5 else goto L

end.

end

P

else
begin
-+« COpy of the above, except exits are LS-LB

end;

Lemma,. The class c6 is unsolvable.

Proof: The proof of unsolvability of 66 is similar to tue proof of

the unsolvability of the class cz,5 . The class c.5

class of two-headed automata. On the other hand, the clags 66 corresponds

is analogous to the

to a restricted class of two-headed automata in that after each timeo
head #1 reads a character from a binary alphabet, head #2 reads one or

two characters; then head #1 reads again. Thus it is clear that head #1

can get at most one character ahead of head #2. This restricted two-

headed automaton can simulate a Turing machine computation for an

1 appropriately coded input tape as follows. The input represents a

sequence of "instantaneous-descriptions'" of the Turing machine computatiomn,
but between any two consecutive instantaneous descriptions are a sequence
, of incomplete descriptions, each one bit l(mger than the previous. Now,

'r on lines similar to Iuckham, Park and Paterson [1970] the restricted

two-headed automaton accepts an input tape if and only if it represents

1 the Turing machine computation alluded to above. The unsolvability of
| 0’6 is now obvious.

Now, given a schema S6 in 0’6 we construct a schems sh in ch

(with reject statements) as follows. This time Sl+ will have just one

AN

"copy" of S, , but will have six function symbols: f,g, f. , p o 6
By 6 12 %27 2304y
(i) The start statement in ¢ 1is
START <yl,y2) 5 <a’a‘);
goto L;
The corresponding statement in o is:
START y ~ a3
s Sy I‘l(y) then REJECT;
goto L;
(ii) The statement in S), corresponding to a test statement of the
first kind is:
L: if y # fg(f(fl(y))) then REJECT;
¥y - £2(£,3));3 comment: short for y « fl(y) and y « £(y);

if y = g(y) then

o)

L

begin
if y £ £(£(£,(y))) then REJECT;
y = £(£,(¥));3

if y = g(y) then goto L, else goto L,

end

else

begin
if y # £,(£(£,(y))) then REJECT;
y = 2(£,(¥));

if y = g(y) then goto L5 else goto I

end;

(iii) The statement in 8) corresponding to a test statement of the

second kind is:

s
E ¥ I Bl - fe(f(fl(y))) then REJECT;
2 S f(fl(Y))i
o if y = g(y) then
begin
: LR fB(f(fe(y))) then REJECT;
ke y = £(£,(¥));
if y = g(y) then
E begin
s AR = fh(fB(y)) then REJECT;

i f5(y);
if y # £,(£(£,(y))) then REJECT;
¥ f(fu(y))i

if y = g(y) then goto L

R R e

1 else goto L2

e

end

e I“:J

140

else

begin
if y # £),(£5(y)) then REJECT;
Y - 15(9);
if y # £,(£(£,(y))) then REJECT;
y - £(8,(3);

if y = g(y) then goto L3 else goto Ly

end
end
else
begin
... as above, but with exits LS-L8
end;

This proves the unsolvability of 3.k(a), (b), and the parts (c), (d),

and (e) are immediate from these. 0

3.2.4.5 Proofs of Secondary Results

In the following results the number of functions does not include

the ever present zero-ary function.

(1) Schemas with one variable, two functions and general equality tests.

The class of flowchart schemas with one variable, two functions
(no predicates) end general equality tests is unsolvable.

If completely general equality tests are allowed it is easy to see

that two function constants suffice to render the class of schemas

unsolvable because more function letters can be "coded" in terms of two

ey

- e

T A

L

TR T T L P S M O R Gl

functions. In the proof of Theorem 3.3 we change the construction of
83 from 85 » Somewhat, by making the following substitutions: for all
terms 71 , simultaneously substitute

£(£(r)) for (1)

f(g(r)) for g(r)

g(£(r)) for £(x)

g(g(r)) for £,(r)

All the unsolvability results go through on making this substitution.

(ii) Schemas with two variables, two functions and restricted equality

tests.
The class of flowchart schemas with two variables and two functions
(no predicates) with tests only of the form Tq = f(yi) are unsolvable.
Consider the class c7 which is the same as c,5 but with the
difference that there are two functions f and g , and no predicate
constant.
in

Every schema S can be reduced to an equivalent schema

&
3 %
SY in 67 by replacing every test statement of the form

v; < £y

i p(yi) then goto Lj else goto L

by a test statement of the form
¥y - £(yy)s

ify, = g(yi) then goto Lj else goto L -

It is easy to see that for any finite or infinite path through 85 s if
there exists an interpretation for which 85 executes statements along

this path, then there is an interpretation for which S. executes

7

1k

statements along the corresponding path. This establishes the

unsolvability of the class c7 .

(iii) Schemas with one function, restricted equality tests.

Schemas with one function using tests only of the form T yj
are unsolvable.

Consider the class of two-counter programs having statements of
the following kinds:

(1) START (e;5c,) « (0,0)

(2) c, =c;tl

(3) c, —¢;-1

(%) if c; = 0 then goto L, else goto L,
(5) HALI(e,)

Such progrems can simulate the computation of a Turing machine on a blank
tape and hence their halting and divergence is unsolvable. Now, given

a two-counter program, we construct a corresponding four-variable schema
with variables Y19 Yo s y5 ’ Yy such that the schema halts if the
program halts, and the schema diverges if the program does not halt
(note: we will use reject statements as before). The statements

corresponding to (1)-(5) above are

(1) START <yl’ Yo }’5: yh) -~ (aya,a,a)

(2) vz = £(y;);

e y3 = T then REJECT;

Yy <8
while y) £ y; do if) =y, then REJECT else y, - £(y,);

yi b yB;

143

(3) y5 o L2
if y; # y; then
begin

Leyy, = £(y4) 3

—_—

if y, £ y; then begin Y5 = ¥),3 goto L end;

il Y33 #
end :
E
(B) vy -8 -
plie y3 =Y then goto Ll else goto L2
(5) HALT(a) .
k2
This demonstrates the unsolvability of the one-function schemas.
:
4

' 5.5 Commutativity and Invertibility
3.3.1 Introduction

‘4; We now consider some classes of semi-interpreted schemas in which i

some of the base functions are related. 1In particular, we consider
one-variable monadic flowchart schemas for which the class of possible
',; interpretations may be restricted by the following specifications: ?
(i) two functions may be cpecified to commute (unary functions f and g
K
are said to commute if f(g(x)) = g(£(x)) for all x), \

& (ii) some function is invertible (a function f is invertible if there i
exists another function £ T such that f(f_l(x)) = f-l(f(x)) =X !
for all x).

®
J
:
8

1hh

N

Thus, for a schema S, if f and g are specified to commute,
then all interpretations are not allowed for § 3 only those interpreta-
tions are allowed that satisfy the formula vxf(g(x)) = g(£f(x)) . TFor a
consideration of the inclusion, equivalence, and isomorphism problems
for such semi-interpreted schemas we will only relate two schemus if
they are compatible, i.e., they have the ;éme specifications about
commutative and invertible functions.

We show tnat with either commutativity or invertibility alone,
the decision problmes of one-variable schemas remain solvable, but with
both commutativity and invertibility they become unsolvable: we also
relate some of these results to the equivalence problem of multi-dimensional
automata.

All the schemas to be described below have a single variable (y)

l and one zero-ary function a . All other functions and predicates are

unary. Unless otherwise specified, statements are of the following types:

(1) START y ~ a

(2) HALT(r)

(3) w1ooP

(M) ¥~ £.(3)

(G i pi(_'r) then goto L, else goto L,

S D |

[where fi is a unary function, p:.L is a unary predicate, 7T(y) is an

arbitrary term that may or may not contain the variable Yy , and Ll

‘ and L2 are arbitrary labels.

1ks

3.3.2 8Schemas with Commutative and Invertible Functions

Consider the class cl of monadic flowchart schemas defined us
follows. A schema S i;_jgl contains one variable y , a zero-ary
function a , and an arbitrary number of unary functions fl’fe""
and unary predicates PysPoycee - In addition, there is a set E of
pairs of functions {fi,fj} ‘hat are specified to commute. Thus, if
{fi,fj}cE then for any interpretation for S and any element x in

the domain of the interpretation we must have fi(fj(x)) - fj(fi(x))

We refer to c1 as the class of commutative schemas.

Theorem 3.5 (Solvability of ey)
The class of commutative schemas is solvable, that is, for the
class 31
(a) the halting problem is solvable,
(b) the divergence problem is solvable,
(c) the eyuivalence problem is solvable,
(d) the inclusion problme is solvable,

(e) the isomorphism problem is solvable.

For proofs, see Section 3.3.h.
Next, consider the class 02 of monadic flowchart schemas defined
as follows. A schema 8 in ﬂ2 contains one variable y , a zero-ary

function a , and unary functions f-l,f,fl,fe,... and unary predicates
PysPprece s where f and f-l are specified to be inverses, that is,
for any interpretation for S , and any element x in the domain of the

interpretation, we must have f(f-l(x)) = f-l(f(x)) =

Theorem 5.6 (Solvability of O)

The class 02 of schemas with an invertible function is solvable.

For the proof, see Section 3.3.k.
Finally, consider the class of schemas that have both the commuta-
tivity and invertibility constraints. We wish to show that ihe decision

problems for this class is unsolvable. For this, we exhibit the class o,
T e DA

of periscopic schemas defined as follows (we call these schemas

"periscopic" schemas because of their obvious relation to periscopic
automata introlduced in Section 5.3). A schema S 1in 03 has one
variable y , one unary predicate p , the zero-ary function a , and

three unary functions f - » £, g that are related by:

¥x f(f‘l(x)) = f'l(f(x)) =X

vx £(g(x)) = g(f(x))

Note: +this also implies that the functions f-l and g commute.
Tests in § have either the form p(y) or p(g(y)) , and we also

restrict halt ctatements to have the form HALT(a) .

Theorem 5.7 (Unsolvability of s)

Periscopic schemas are unsolvable. In other words, for 03
(a) the halting problem is unsolvable,
(b) the divergence problem is not partially solvable,
(c) the equivalence problem is not partially solvable,
(d) the inclusion problem is not partially solvable,

(e) the isomorphism problem is not partially solvable.

e T

!

A question raised by this theorem is whether tests of the form
p(e(y)) are really necessary for making the class 63 unsolvaple.
We might ask, for example, whether periscopic schemas withcut tests
p(e(y)) might be solvable. The next theorem says that this is indeed
the case.

Consider the class ch of schémas whicl. is like 03 except that

the only tests allowed are of the form p(y)

Theorem 5.8 (Solvability of o))

The class 3ﬁ is solvable.

3.32.3 Application to Finite Automata Thenry

From the above solvability and unsolvability results we wish similar
results for finite automata. 1In general, the input tape of the automata
we consider will be an infinite n-dimensional tape (with a root, or
origin). We consider classes of automata by restricting the kinds of
input tapes allowed and the possible ways the reading head of the
automaton can move. An automaton may accept or reject its input tape,
or it may run forever, in which case the tape is rejected.

Note that for automata we can consider the problems of acceptance,
rejection, equivalence, inclusion and isomorphism as analogous to the
problems of halting, divergence, equivalence, inclusion and isomorphism
for schemas. The acceptance (rejection) problem is to decide if an

automaton accepts (rejects) all input tapes, an automaton A, includes

1

an automaton A2 if the set of tapes accepted by Al contains all tapes

148

accepted by A2 » two automata are equivalent if they accept exactly
the same set of input tapes, and two automata are isomorphic if for every
input tape they "visit" and read exactly the same squares of the tape in

the same order. We say that a class of automata is solvable if all these

L these problems are solvable for the class.

- =

] Schemas in c.l are closely related to finite automata on

n-dimensional infinite tapes. An n-dimensional automaton is a finite

state machine with one reading head that is initially at the "origin"

of its n-dimension infinite tape. The symbols of the tape are from

some finite alphabet £ . The reading head of the automaton can, however,
move only in the positive direction along any dimension. The automaton
may halt and accept or reject the tape, or it may never hult (in which
case the tape is rejected). We will represent the transition graph of

the automaton by a program which has statements of the following kind:c:

TR S S T o p—s

(1) LO: START, goto S(Lo,o)
(2) 1L,: ACCEPT
I (3) L,: REJECT
(4) L, : move(J), goto 6(Li,o)

where move(j) means "move one step in the j-direction", and ® is a
function from labels and tape symbols to labels -- o stands for the 1
symbol read from the tape (which is an element of £), and no S(Li, a) ‘
can ever be the label LO
From Theorem 5.5 we obtain

for the start statement.

- J—

Corollary A. The class of n-dimensional automata is solvable.

To show this we construct for every n-dimensional automaton A

& corresponding schema SeCy (of Theorem 3.5). It will be obvious that

1k9

RN T WAL v L pec R . e IR T o T

the acceptance, rejection, equivalence, inclusion, and isomorphism
problems for n-dimensional automata are the same as the halting,
divergence, equivalence, inclusion, and isomorphism problems for the
corresponding schemas.

Given an n-dimensional automaton A on £ = {cl,...,cm} , We
construct the corresponding schema Secl as follows. S has n unary
functions fl,...,fn » each pair of which commutes, and (m-1) unary
predicates Pl""’Pm-l . Statements in the automaton A and the

schema S correspond as follows:

Automaton A Schema S
START START y «~ a
N WACCTH! L.: HALT(a)
i i
Li: REJECT Li: LOOP
Li: move(j), Li:) [fj(Y)5
goto B(Li,d) sl pl(y) then goto S(Li,dl)

else if pg(y) then goto B(Li,ce)

else if Rn-l(y) then goto 5(Li,cm_l)

else goto o(Li,cm)

The head of the automaton corresponds to the variable y of the schema,

the input tape for A corresponds to the interpretation for § sy moving
the head in direction j corresponds to applying the function fj s and
acceptance or rejection in A corresponds to halting or divergence in S .
Note that for an input tape for A there correspond several interpretations

for 8, but it is obvious that the decision problems for the automata

150

il i

are reduced to the decision those for schemas (see also the canonical

interpretations for ¢, in the proof of Theorem 3.5).

It is clear that two-way finite state automata (on linear two-way
infinite tapes) are related to schemas in C, with unary functions
f,f " in the same way as n-dimensional automata are related to

schemas in cl . It follows, then, that

Corollary B. The class of two-way automata on one-dimensional infinite

tapes is solvable.

Of course, this result is not new, but we mention it to show that
it is derivable in a straightforward way from Theorem 3.6.
As we have done for classes 01 and 62 » we describe a class of

autcmata related to 63 that we call periscopic automata. A periscopic

automaton has one head which can move on a two-dimensional infinite tape.
We call the dimensions "horizontal" and "vertical". The head can move
freely in the horizontal direction (i.e., left or right), but vertically
it can move only upwards. However, attached to the head is a little
"periscope"” so that the automaton can read the symbol just above the
head without moving the head verticallv up. For our purposes it suffices

to take the input alphabet to be of size two (we may sey Z = {T,F}).

"submarine" j L1; :
with a S i i)

"periscope"

T T

151

The relation between a schema Se(’,,3 and the corresponding periscopic

automaton A 1is obvious. An interpretuation for S corresponds Lo an

input tape for A , application of the functions f , f-l and ¢ in 85
correspond to moving the head of A right, left, and up respectively.
It is the test p(g(y)) in S that gives the automaton A its

periscopic vision. It is then easy to see from Theorem 3.7 that
Corollary C. The class of periscopic automata is unsolvable.

It is clear from this (and the proof of the theorem) that if we
provide the automaton with any kind of periscope at all, e.g., arbitrarily
high, inclined, or even pointing downwards, but not just horizontal, (for

that is equivalent to no periscope at all), then the problems for the

=

automata all remain unsolvable (and similarly for the corresponding
.3 schemas) .
a We say a periscopic automaton has periscopic vision if at least in
one state it tests the symbol at the periscope. An automaton without

b4 periscopic vision is Just an automaton that can move left, right and up,

g

but not down, and can only look at the symbol under its reading head.

Theorem 3.8 shows that the decision problems for such automata are

E-
i i o

X solvable.

o _-E‘Pfr.. '

Corollary D. The class of automata without periscopic vision is

solvable.

e
el .

i SR

g 152

i

3.3.4 Proofs

2.3.4.1 Proof of Theorem 3.5

We first give a proof of the solvability of the inclusion problem
for a subclass ci of 61 in which any schema contains just two functions
fl 5 f2 that commute, and one predicatg P for which the only tests
allowed are of the form P(¥) , and halt statements have the form
HALT(y) . We will then give the proof of the solvability of Cy s

which will be on lines similar to the first proof.

Proof for Ci : We sketch the proof for the inclusion problem. Given

two schemas Sl and 32 of Ci » to decide if S < 32 . Now, without

1
loss of generality we can assume that both S, and 32 are free, for

if they are not, they can trivially be made free. We also assume that
from each assignment statement in Sl and 32 > @ halt statement can be
reached, for otherwise we can replace such a statement by a loop
statement.

Consider the class 4§ of interpretations of the following kind.
The demain of the interpretation is the set of strings

1) %
{Fi F% | 1, 3 > 0} c:{Fl,FE} . The functions a, f,s £, are defined as

2
follows:
0 _0
a is Fl F2 = A
o L) : i+1 _j
fl(Fl FE) is F] 7T,

i A al o gl
fé(Fl FE) is FI F

Ihe predicate p is arbitrary.

153

e -

- & .v o C 2\
G LT S

Interpretations § play the same role for the class ,ci that
4 ? Herbrand interpretations play for Herbrand schemas. If we associate with
any interpretation I' an interpretation Iec$ such that p(Fi Fg)

3 is true in I if and only if p(fi fg(a)) is true in I' , and

.

£ D consider the homomorphism 6: I - I' mapping Fo 7 into the element
. P il 42 .
fi fg(a) of I' -- note, by the commutativity of fl ’ f2 this map

: 3 is onto the reachable elements of I' (that is, elements that can be

. » expressed as constant terms). Then, if we consider the computation of
a schema Seci under I and I' , they go through exactly the same
sequence of statements of § , and the values of the variable correspond

"9: L (under ©) at each step.

i1 We can show that §) <5, if and only if §, <, for the inter-

pretations in § . The "only if" part is trivial. For the "if" part,

A -

1

32 either loops or halts with a different value. Then, if we consider

the computations of S.L and S? under the interpretation Ies

¥ 2 suppose Sl é 82 . Then, for some interpretation T » S. halts, and

1 & corresponding to I' , we see that Sl halts, and S?

halls with a differcnt value (by the existence of the homomorphism

cither loops or

8: I -I'). Thus 8, £ S, for the set of interpretations 4 .

] 2’; . ' = . g
: Now, given two schemas Sl, 82601 s to decide if Sl < 82 we decide
if Sl < 82 for the set of interpretations & . We construct a finite
state automaton A that simulates the computations of both Sl and 82
g > (in step) for an interpretation Ied represented by the input tape of A .
f D P

The tape consists of two tracks, cne for each schema, and symbols on each

track are from the set {T,F} representing the value of the predicate p 1

. f

o applied to the current value of the variable Y . It is the responsibility

154

of the automaton to detect whether or not the tape represents a

feasible interpretation. At any instant in the computetions of Sl

i, 3
and 82 s let the values of the variable y be Fll Fgl in Sl » and

iy,
DR O x ’ Ao A o
Fl F2 in SE (since the schemas are in step 1l+,3l = 12+,J2 BT

the count c¢ denote If the count is zero, the predicate js)

il-12 :
must have the same value on both tracks, else the values on the tracks
may be arbitrary. The autometon A accepts an input tape unless Sl
halts and 82 does not halt with the same output for the interpretation
represented by the tape. Thus, the inclusion problem is reduced to the
problem of deciding if a finite state automaton accepts all input tapes.
M its finite memory the automaton retains the following data:
(1) the current (assignment) statement executed by S, » and by S,

and

the value of the count c¢ provided |c|4§ min(sl,se) where 5,58,

are the number of assignment statements in Sl P 82 3

The automaton operates as follows:

Read the input tracks (if the end-of-file is read, accept the tape).
If ¢ =0 and the tracks read (T,F) or (F,T) then accept the
tape ("impossible" interpretation).

Using the values of p(y) from the tracks, "find" the next

statements (other than test statements) for both schemas.

If the next statement for S. 4is a halt statement then reject the

1

tape unless ¢ = 0 and 82 also halts. If §, loops then accept

1
the tape.

i ——— i

(&) If S, balts or loops on the next statement, reject the tape
because as Sl Ia frec (over interpretations in g) it can be
made to reach a hult statement -- and it will apply at least one
more function letter, thereby giving a different output from that
of S2 o

(5) (Both next statements are assignment statements.) If S. executes

1
y - fl(y) and §, executes y - f2(y) then increment ¢ by 1 ;

2
if 8, executes y - fz(y) and S, executes y - fl(y) then
decrement c¢ by 1 ; otherwise leave c unchanged. If the new

value of |c| exceeds min(s;,8,) then reject the tape, otherwise,

goltom (i)

The reason that the input tape can be rejected if le| exceeds
min(sl,SE) is that because S, and 5, are free and "independent"
for the next c steps, they can both reach halt statements without
executing any statement twice (for some interpretation) -- and, of course,
the outputs can be equal only if both reach halts at the same time and
¢ =0, but that is impossible because ¢ changes by at most one in
each step.

This completes the proof of the solvability of the inclusion problem

(and hence also of the halting, divergence and equivalence problems)

for Ci .

Proof for cl o The solvability of the halting and divergence are

trivial because schemas in cl can be made free. This can be done by
making many copies of the schema, one for each partial specification

state (see the notation in 3.2.4). A partial specification state

156

for schemas in cl 1s a mapping from the set of atonic terms p(1)
such that |r| <k, into {true, false,unknown} provided it is
consistent, i.e., it obeys commutativity relations, and if the value
of ¥ is 7() , then |t()| >k (for the initial part where |r()| <&,
computation is done by expanding the schema out as a tree).

The solvability of equivalence follow; from the solvability of
inclusion (below). h

For the proof of inclusion (Sl < SE) we proceed as before by
constructing an automaton A that accepts its input tape unless Sl
1| halts and S2 does not halt with the same value.

First we describe the canonical interpretations for the schemas.

Given Sl and 82 over unary functions fl""’fh and predi:ates

;E pl,...,pm and a sel E of pairs of function symbols that commute, we
define a class § of interpretations as follows. We define an

equivalence relation on strings on T = {Fl,...,Fn} by the transitive

s

closure of: xl,xeez* s Xy E X, if X = X, 5 or there exist 1,3 <n
such that {fi’fj}GE and x2 can be obtained from xl by interchanging
an occurrence of Fi with an adjacent occurrence of Fj . The domain
of an interpretation Tc8® is the set of equivalence classes of strings 4
of 2* (an equivalence class is denoted by {x} where x is a string
in the class). The value of the function constant & is {A} , and

functions fl,...,fn are defined in the obvious way, that is

fi({x}) = {Fi-X}

o |t S

where the dot (.) means the operation of concatenation, and the

predicates Py5+-.»D are arbitrary.

m

157

HrT A

We note the following property of the domain of the interpretation

*
(*) F.eZ and x,yeZ , then x.Fi =y.F, if and only if x =y .

The "if" part is trivial. For the "only if'" part, assume X'Fi = y.F‘i

and trace the position of the "rightmost™ Fi as X'Fi as transformed

to y.F:.L by interchanging symbols (which correspond to pairs that are

elements of E):

x.Fi =xl —oxe - ... -xr =y.Fi .

Now, if we consider X15X s e0yX! where x! is the same as X, , but
] O T i i
with the rightmost F:i removed. Now it is easy to see that

X=X =2x! - ... 2x' =
17 % r =Y

that is, x =y . This completes the proof of the property (*).
Also, on lines very similar to the proof of ci we see that

Sl < 82 if and only if Sl < 82 for the interpretations of ¢ .
We can now describe the automaton A . ILet k denote max { |7 |}

of all terms 7T wused in Sl and S, . Now, a symbol on a track of the

input tape gives the values of all P, (t) for all 7t such that

|| = x ror S; eand S, . At any point in the simultaneous computations

of Sl and 82 » let the variables y in Sl and 52 have values {yl}

and {yz} Iy = REE --%; , and Vo =FJ.1FJ.2...FJ.r . Then we

Sy r
define the "unsaturated strings" SRR of Sl s S2 as follows: set

Xy - ¥y o x2 -¥s - Find the rightmost symbol Fi in Xy that is

A t 1"
7S 5e 8

JEY' 1" . N 3 s 3 1" s 1"
x2 =)(2 Fi X5 then if F.1 comnutes with each symbol in xl and in x2

then set - x]'_ x"l ’ Xy T xé xg s and repeat this process.

common to both x, and x, (if one exists), say x

We describe the proof for the case where halts are of the form HALT(y) .

The general case HALT(t) is easy to incorporate into the proof.

158

Since the schemas are free, any statement from which g halt cannot
be reached is replaced by the loop statement.

In its finite control the automaton remembers
(1) the current (assignment) statement executed by S, and S,
(ii) for both Sl and S, » the values of all pi(T) for all non-

constant terms Tt such that |1| < k-1, and for all constant

terms 7() such that |r()| <k, and

(iii) unsaturated strings xl,xeez such that X) X, have no symbol
in common and lxll = |x2| < min(sl,s2)+k where s, s, are
the number of assignment statements in Sl’ 82 .

From the property (*) we see that the values of the variable 7y
in Sl and 82 are equal if and only if the unsaturated strings Xy X,
are both 4 . If there is some symbol common to both Xy x2 then we can
show that the values of y in Sl and 82 have diverged, never to come

¥
together again. To show this, let Fi be the rightmost such symbol in 4

X, , and suppose it is "pushed" as much to the right in both x, and x, j
1 1 2

as possible. If it cannot reach the right end of Xy (modified) then ‘ §
] the modified xl, x2 have the form '
. F.F :
X, is SR | J
x2 is .o Fi oo

where Fy» Fj do not commute ({f&,fj}éE) and Fj' does not occur to

the right of Fi in Xy o Then, by extending Xy X, to the left we !

cannot make them equivalent for the order of the rightmost Fi

and F, *
J
1 must be ‘reversed in the two. On the other hand, if Fi cannot reach

the right end in X, we have a similar aryjument. Hence if such a condition

occurs the automaton rejects the input tape. f

159

T WP

.. B
e cal I

After observing this, we sce that the lengths of the ungaturated
strings (|x1| = |x2|) can chanye by al most one in any step, and if
\xll = ¢ > k then the two schemas are "independent" at least for Lhe
next (c-k) steﬁs, so that if ¢ exceeds min(sl,52)+k the automaton
can reject the input tape (see the argument in the proof for ci Vo

We use the specification state approach of Section 3.2.4. We note
that the automaton can check for the consistency of the values of p(T)
(given on the input tape) for the two tracks using the same argument of
unsaturated strings, and that halts of the form HALT(t()) can be
handled in a straightforward way; from which we conclude that the
irclusion problem has been shown to be solvable.

The proof of the solvability of the isomorphism problem for c1 is
similar to the above, except that it is much simpler since unsaturated
strings can never be anything other than A for otherwise the schemas

are not isomorphic.

7.3.4.2 Proof of Theorem 5.0

Schemas in class ¢, have the flavor of two-way finite aulomata.
[

Applying the function f corresponds to moving the head right, applying

& corresponds to moving it left. There are some differences, however.

(1) the "input tape" is two-way infinite,
(1i) the schema outputs values,
(1ii) the schema can test predicates on terms, and there are functions

other than just £ and £ .

160

P S

Nevertheless, a proof somewhat similar to that for a two-way automaton

works.

Given two schemas Sl and 52 of c2 having functions
f,f'l, l""’fh » define the class § of canonical interpretations for

Sl and 82 as follows: the domain is the set of strings of

il {F,F-l,Fl,...,Fn}* for which symbols F and F-+ do not appear
adjacent to each other. The predicates pl,...,pm are arbitrary. As
in the previous section, Sl < 52 (respectively Sl and 82 are
isomorphic, Sl halts, Sl diverges) if and only if Sl.f 52 for
interpretations of (respectively Sl and 52 are isomorphic for ¢,

§, halts on g, 5, diverges on 4).

(a) Halting. Given a schema Secg » to decide if S halts, we
construct a finite state automaton A that accepts all input tapes if
and only if S halts. The automaton A simulates the computation of §
on an interpretation (from &) represented by the input tape. At any
point in the computation there is a value v we call the "pivot"

element -- it is an element of Z* whose first symbol is not F or

*
F = . For any element x of g , the specification state (88) of x for

an interpretation is defined to be the values of all p(t(x)) for all 3
terms 1(x) for which |1(x)| <k where k is the depth of the largest

term used in S . The incomplete specification state (ISS) is the values

for all |T(X)| < k-1 . The state vector is a label L, (that is ;

executed) along with an ISS. 4 symbol on the input tape of the automaton

represents the specification states of a pair of elements. Consecutive

symbols give the specification states for the pairs

SRLTE WY

2

(vyv) (F-l-V:F-V) ’ ((F-l)2°V:F

W (FH3 v P ... 1]

where v is a pivot element) -- until the pivot element is changed (as
determined by A). The first element of a pair is called the left
element, the second the right element.

The first pivot element is A (corresponding to the function
constant a). The automaton works as follows. It retains a table of
"instances" and "outcomes". For both the left and the right value
there is an instance of the variable y for each assignment statement Li

|
of S , which corresponds to the computation if Li is exited with this 13

value for y . In addition, there is one primary instance which

corresponds to the real computation of the schema. Let ((F_l)r.v,Fr.v) 5

r >0 , be the current elements, with v as the pivot. The outcome for 14
i

each instance can be one of five possibilities:

(1) halt, J '

(2) exit (with some state vector) -- it corresponds to an execution |

)

of an assignment y ~ fi(y) (fi is not £ or f£T) I
(3) out-left (with some statement L,) -- it corresponds to executing

e 585 f_l(y) where (the old) y had value (F"l)r.v ,
() out-right (with some statement L,) -- it corresponds to

L;: ¥y - £f(y) where y had value F'.v 3

b R

(5) diverge -- the computation for this instance either enters a loop

statement, or diverges.

R

162

(F-l)r.v

Lt —

out-left out-right
Instances Qutcomes

primary instance halt

(real computation) exit ISS
Yy left out-left Li
(statement Li exited out -right Li

with value (F-l)r.v) diverge
yi right

(statement L, exited

with value F'.v)

In its finite memory the automaton has
the current table of instances and outcomes,
the incomplete specification states (ISS) of the next pair to
read in,
the value of r if r < k ; and the value 7() of the pivot

element v if IT()I S I8 o

We call (i) and (ii) the complete state of the schema. The schema,

also retains
(iv) all complete states entered for the current pivot element, and

(v) all state vectors for all pivot elements entered.

The reason for (iv) is that if the complete state repeats, the

schema can be made to diverge with the primary instance making

assignments only like y ~ f(y) and y -~ f-l(y) . The reason for (v)

1s that if the state vector for a pivot element repeats, the schema can
be made to diverge because pivot elements are independent, i.e., all
information regarding previous tests is "lost" (except the ISS) when
an assignment like y ~ fi(y) is made.

The automaton operates as follows:

Read the specification state for the pivot element. The I3S part must

match the required ISS (unless this is the first element -- A) --
if not, accept the tape, otherwise set up the required tables.

If the primary instance halts -- accept the tape.

If the primary instance diverges -- reject the tape.

If the primary instance exits then we have a new pivot element --
if its ISS repeats, reject the tape, else go to step (1).

If the table repeats -- reject the tape.

Read the next pair of predicate states. If it is an "impcssible"
interpretation, accept the tape, otherwise update the tables and

ro Lo step (2).

(b) Divergence. This can be proved like the halting problem, only
the automaton is simpler. It does not need to remember the information
(iv), (v); instead, it simply simulates the computation and rejects the
input tape if the primary instance halts, and accepts it if the inter-

pretation is "impossible", or the end-of-file is reached.

From the proof it follows that it is solvable whether or not a
schema would always diverge when any new pivot element is entered with
any specified state vector. This fact is used in the proof of inglusion

below.

(e) Equivalence. The solvability of equivalence follows from the

solvability of inclusion below.

(d) Inclusion. Given two schemas 519556, » to decide if S, <8

L 2’
we construct an automaton A , similar to the sutomaton in part(a), such
that A accepts all input tapes if and only if Sl.f 82 . The automaton
simulates the computation of all instances of both schemas. The possible
outcomes for each instance are
(1) halt, with some value x ,
(2) exit, with some state vector and some value X -- it corresponds

to an execution of y ~ f,(y) where f, isnot f or £, ana

x is the (old) value of y ,
(5) out-left, with some statement L; »

(4) out-right, with some statement L »

(5) diverge.

The automaton need not (and indeed cannot) remember the value x
for all halt or exit outcomes; it suffices to remember the egquivalence
classes of outcomes that halt or exit with the same value, and the values

of only those instances that halt with output 7() , It <x .

In its finite memory the automaton stores (as in the proof of halting):

(i) the table of instances and outcomes for both Sl and S, ,

(ii) the incomplete specification state of the next pair,

165

S B e b ol kv A e g g e e i e

ol B s

(iii) the value of r , if r < k ; and the value 7() of the pivot

element v if |1()| <k .

] In addition, the automaton has the capability of storing

5 (tables of instances |

and outcomes for 82 , and ISS of next pair). This is required 1 3

in steps 2(iv) and 4(iv) below. 3

(iv) an arbitrary set of complete states of S

For simplicity we only show the proof for schemas in which a halt must
have the form HALT(y) . The general case HALT(r) is easy to incorporate.
The automaton operates as follows. On seeing an end-of-file it accepts

the tape. Otherwise it reads a pair of specification states from the tape,

checks if they match with the known incomplete specification states. If not,

the tape is accepted ("impossible" interpretation). If they match, then

(1) if the principal instance for schema S, diverges, then the

1

tape 1s accepted,

(2) if 8, halts then
¥ (1) if 8, halts with the same value -- accept.
i (ii) if S, halts with a different value -- reject.
| (11i) if S, exits -- reject.
_' i e (iv) if none of the above, then continue simulation of 52 and
construct the set of complete states until either (i), (ii)
4 or (iii) above applies, or a comple'e state repeats -- in
o which case reject the tape, ‘
' (3) if §; exits in a state vector which must loop (decidable -~
g see the divergence problem) then accept the tape,
o« (%) if 8, exits in a state vector from which it can halt, then
1 (1) if S, halts, then reject,
; (e & 0 at 8, exits with a different value, then reject,

166

S

it 5 an g
=03
e et e

(iii) if S, exits with the same value, continue simulation of

both S, 8, ,

(iv) if none of the above, then continue simulation of S, >
constructing the set of complete states until (i), (ii),

or (iii) above apply, or a complete state repeats, in which
case reject the tape,

(5) if none of the above, continue simulation of both S, and 52 .

1

This completes the proof.

(e) Isomorphism. An automaton is constructed as in case (d) above,
except it also keeps track (in the table of instances and outcomes) which
instances undergo isomorphic computations. Then, the automaton rejects
a tape if the computations of the principal. instances of both schemas

are not icomorphic at any step.

3.3.4.3 Proof of Theorem 3.7

To show the unsolvability of schemas in (,',5 s We reduce thr halting
problem for null-input Post machines to the halting and divergence
problems for 0,,). . A Post machine over {a,b} is a machine operating
on strings, and having the following stutements:

START (x)
HALT
LOOP
X ~ X.a
X « X.b

if x = A then goto Ll
else if head(x) = a then begin x « tail(x); goto L, end
elee begin x ~ tail(x); goto L5 end

167

I) (g T e L S8 i ol Bl i i — Sl Th N ’ bpalh o i

where Ll’ L2, L5 are arbitrary labels, and head(x) represents the
first symbol of x , and tail(x) represents the rest of the string x .

Given a Post machine M we will construct a schema & which looks
like a schema of 83 eXcept it las special statements called reject
statements. Replacing reject statements by halt statements gives us a
schema that halts if and only if the machine M halts on input A ,
and repiacing them by loop statements gives a schema that diverges if
and only if M does not halt.

The idea is that any interpretation for S can be represented by a
grid of integer nodes in a half plane (doubly infinite along the x-axis).
The constant function a corresponds to the origin; applying the function
f corresponds to moving right, applying f-l corresponds to moving
left, and applying g corresponds to moving up. At each node we have
a T or F value, corresponding to the value of the predicate p (see

the canonical interpretation for the class Ci in Section 3.3.k4.1).

(a) zf(a)

f-l(a) a f(a) f(a)

The schema § can simulate the computation of M on this plane
as follows. It uses two horizontally adjacent nodes to "code" a letter
(either a , b or e =--a special end marker: a corresponds to TT ,

b to IF, e to F-). In this mammer, the schema will "lay off" a

168

- i (o S5 bl A

current value of the string x (of M) in one row of nodes, enclosed

by end-markers. The next string (after M executes one step) will ve

laid off on the next higher row. The schema § will simply check this

computation. TIf the interpretation doesn't agree, the interpretation

will he rejected.

In our schema S we will allow the use of predicate tests of the

form p(f(y)) , p(e(f(y))) , etc., since these can be implemented

using only the allowed statements (y ~ f(y); plely)); vy« f-l(y)

for the test p(g(f(y))) , ete.). The correspondence between statements

in M and those in S can be set up as follows.

We first defin» the macros

CHECK = y « ff(y);

while p(y) do
begin if p(y) ® p(e(y)) then REJECT;
if p(f(y) ® p(sf(y)) then REJECT;
o7 o g

end; comment ® reprecents exclusive-or;

CHECKA

if - p(e(y)) then REIECT;

if — p(ef(y)) then REJLCT;

Hy

CHECKB = if - p(g(y)) then REJECT;

H

if p(gf(y)) then REJECT;

CHECKE = if p(g(y)) then REJECT;
BACKUP = y ~ £ £ “(y)

while p(y) do y ~ f'lf'l(y)s

The correspondence between statements in M and those in § :

Statement in M

START(x)

if x = A then goto Ll
else if head(x) = a then
begin x «~ tail(x);
goto L2;
end

else begin x « tail(x);

goto L5;

Statements in S

START y «~ a;
if p(y) then REJECT;
if p(ff(y)) then REJECT;

HALT(y)
Loop

CHECKE; CHECK; CHECKA;
y < £f(y); CHECKE;

y - f‘lf'l(y); BACKUP;
¥y - 8y);

CHECKE; CHECK; CHECKB;
¥y « £f(y); CHECKE;

y « 27 y) s mackup;
Rl Gy

if - p(r£(y)) then goto Ly;
if p(£ff(y)) then
begin y «~ ff(y); CHECKE;
CHECK; CHECKE; BACKUP;
y - 8ff(y);
goto Ly;
end
else
begin y ~ f£(y); CHECKE;
CHECK; CHECKE; BACKUD;
¥y - eff(y);
goto Ly

end

This completes the proof of the unsolvability of the halting

problem and the non-partial solvability of the divergence problem which
in turn implies the non-partial solvability of equivalence, inclusion,

and isomorphism.

3.3.4.4 Proof of Theorem 3.8

The main difference hetween a schema in cﬁ and a schema in c3
is that in ¢y, » after an assignment statement y « g(y) the subsequent
path of computation is completely independent of the outcomes of earlier
predicate tests. [For this reason, the proofs of the solvability of
halting, divergence and isomorphism of 62 alsoc work for Ch p

The solvability of equivalence follows from the solvability of
inclusion (below).

For the proof of inclusion we proceed along lines similar to the b
corresponding proof in c2 . But, first we observe that any interpre-
tation for schemas in Cn can be represented as a half plane (as in
the case of 05). We use the notion of "distance" between two values,
which denotes the horizontal distance between them on Lhe planc.
Secondly, from cach statement Ut 7 i(y) of a schema § we can
decide whether or nol § must loop, and if not, we can find lhe
shortest number of steps ng in which § can be made to halt after
executing Li .

Now, given two echemas Sl’Seech » to decide if 5. <S5, , let ¢

1 2 1
denote max{ni} for statements Li: vy~ g(y) in §, from which S,
can halt; and similarly s is for 82 . We construct an automaton A

that simulates the computations of Sl and S2 as in the proof for C? c

5%
eRaAaTE

=

However, its table of instances and outcomes is somewhat different.
) It keeps track of the "distance'" between those outcomes that exit
provided the distance is no more than cl+c2 ¢

“& The rules for accepting/rejecting an input tape are as follows.

_§ » If an end-of-file or an "impossible" interpretation is seen, the tape
j 1 is accepted. Otherwise
'T% (1) if the principal instance for schema Sl diverges, then the
 § ? tape is accepted,
L (2) if 8, halts then

(1) if §, halts with the same value -- accept,

(i) if S, halts with a different value -- reject,

(iii) if 8, exits -- reject,

(iv) if none of the above, then continue simulation of 82 and
construct the set of complete states until either (i), (ii)
or (iii) above applies, or a coaplete state repeats -- in
which case reject the tape,
if Sl exits in a state vector (since the incomplete specification
state is null, the stale veclor congsists cimply ol one label)

from which &, must loop, then accept,

U1
if Sl exits in a state vector from which it can halt, then
(1) if 8, halts, then reject,
(LR ok S, exits with a value more than c e, distant, then reject,
(iii) if S, exits with a value distant d from 8, , d <cytc,,

then the next symbol read must be a "special symbol". If

X X, are the values with which S S exit, then we have

12 72 D

a sequence of values

172

Blx)) = 2y ~ 2y = o0 = zg = 6(x,)

-1

sueh that each Ziy] = f(zi) or each Zipy = it (Zi) . Then
this special symbol provides the values of
P(Zl)!P(Zg)! OF ')p(zd_l)

Exit fxit

Sl 82

1| “q

Xy %,

The special symbol is uced to set up the in fance-outcome
table again, and eontinue simulation,

(iv) if none of the above, then continue simulation of 82
constructing the set of eomplete states until (i), (ii), or
(iii) above apply, or a complete state repeats, in whiech

case reject the input tape,

(v) if none of the above, then continue simulation of both Sl
and 5, .
Phe jucbilicalion tor B(id) above is Lhal it IR ex il more
an ¢
Lhan LYJ“’lJ;) aparl, {:.L can be mode Lo hall, and :1;) will cibther Joop,

or can independently be sent to halt statement with a different value

(under some interpretation).

This completes the proof.

Chapter & Generalized Flowchart Schemas

.1 Introduction

Tanov {1900 considered the dala-space of a progres Lo be represent-
[4 able by a single valuc, thal could be changed (by applying a function)
or tested (by a predicate). These base functions and predicates were
assumed to be total, but otherwise completely uninterpreted. The idea
. was that by this mechanism one could model the control structure of
1 computations and possibly even prove some useful properties about real
programs, e.g., halting and eguivalence. Unfortunately, the problem
1 4 with this simple modcl was that two programs which computed the same
] value for all possible inputs but went about their task in slightiy
ditterent. waye were breated as being non-cquivalent, under this model --
’ we had losh Loo mueh inlormabion, Fiecbly, by numkijuﬁ tLhe base Lanelions
and predicates totally uninterpreted, and secondly, by treating the
whole of the data space as being a single element in the domain.

; L4 The latter objection was partially answered by Luckham, Park and
Paterson [1970] when they tireated the data space as consisting of a
finite number of parts which could be manipulated by the program.

& While an improvement, this medel too could not usefully represent

computations in which memory requirements increase with the duration

of the computation. Also, quite basic control features, c.g., markers
were missing. Subsequently there have been scveral attempts to answer

that laiter objection by considering the subdivision of Lhe memory into

greater and even greater detail -- labels, label stacks, counters,

markers, boolean variables, one- and many-dimension arrays, lists, ctc.,

17k

have been congidered. ‘fhece may be called structural Features, and one
can conslruct an endless number of' thece -- stacks of arrays, arrays ol
stacks, arrays with a dynamic number of arguments, general data structures
like those of ALGOL 68, and so on. While it is true that most of these
do not add any "inherent" power to the schemas, i.e., any schema in one
class can be translated into an equivalent schema of another class, one
cannot be completely satisfied with a "minimal" class since the aim of
the study of schemas is to model computations, not just to obtain a
machine capable of computing the partial recursive functionals. This
is akin to the similar state of affairs for partial functions -- a three
counter machine (that can increment, decrement, and test a counter for
being zero) can compute all the partial recursive functions, and yet it
is hardly a good model for computer programs.

Are we then arguing for a profusion of classes of schemas, one
for eacli subset of possible data types, with little unifying thecory?
No. On the contrary, it would be quite useful to construct a rather
general class of schemas from which many of the others can be obtained
as subclasses.

while significant effort has been devoted by researchers to answer
the second objection to Ianov's model, viz., the problem of a single
data space, relatively little effort has been devoted towards the first
objection, i.e., that one loses too much information in considering all
the base functions and predicates to be uninterpreted. Onc would like
to specify, for example, that two functions commute, or that a certain
relation is transitive. 1In studies, most of these notions have not been

integral parts of schemas in the discussion of properties of classes of

e s Chnn o2t

schemas, but they crop up, in an ad hoc way, when a specific schema

z is used to model a specific program.
4 It is our intention to handle these two basic problems in a

uniform way, viz., by defining the class of generalized flowchart

& schemas. Generalized schemas have the inherently sound philosophy of
Tanov that the complete data space of a program can be represented as
a value (in some domain) but that operations on it may have the effect

" of modifying specific parts of the memory while leaving others unchanged.

A generalized schema S = (F,9,P) 1is a flowchart F (with a single
variable), an attached formula ¢ of first order predicate calculus
3 with equality, and a set P of function and predicate symbols, which
corresponds to the set of base function and predicate symbols of the
schema. The relevant interpretations for S are those that satisfy o ,
(not all possible interpretations (as in the case of totally uninterpreted
base functions and predicates). We show that generalized schemas have
the power of modelling the other classes of schemas, i.e., those that
concentrate on the subdivision of memory. The other dilemma between
the completely interpreted programs and the completely uninterpreted
program schemas is saticfied by specifying as much or as little about
the interpretation (by the formula ¢) as may be desired for any
specific application.

This chapter introduces the class of generalized flowchart schemas
and shows some of the possibilities of modelling structural subdivisions
of memory and other useful properties. We then show how most of the
classical theory of schemas can be represented by these schemas, and

finally we prove the fundamental theorem of maximal schemas that states/

o i .

/
that schemas with arrays and equality tests are, in some sense, a maximal

’

class.

4.2 Definition of Generalized Schemas

4.2.1 Basic Definitions

In the rest of this chapter whenever we say "schema" we mean a
gencralized schema. Sometimes we also use the phrase ¢-schema to meun
2 generalized schema. Schemas of the earlier chapters will be called

conventional schemas.

A schema 8 = (F,9,P) consists of a flowchart F , a formula ¢ of
first order predicate calculus with equality and a finite set P of function
and predicate symbols. The flowchart F has a very special form. There is
only one variable (we call it y), and statements consist of the following:

Start statement START y «~ ()

Halt statement HALT (1(y))

Loop statement LOOP

Assignment ctatement v« (y)

Test statement if a(y) then goto L, else goto Ly »

where 1() represents a constant term, 1t(y) represent: any term, and

a(y) represents any atomic formula, i.e., a predicate or equality test.
For convenience we will use ALGOL-like notation inste on strict flowchart
notation. We hence allow the use of labels and oto statements, with the
tacil understanding that there exists no cycle counsisting entirely of
goto-statements.

An interpretation I for a schema § = (F,@,P) is one that specifies
at leas{ the functions and predicates used in F , @ and P . But the
only interpretations of interest are those that s¢5isfy @ -- we write

I |= @ if the interpretation I satisfies @ , and we say that

I is an interpretation for S .

WPV RIS e st Ty i

If S 1is a schema and I is an interpretation for § » We use the

notation Dom(I) +to mean the domain of the interpretation, and

R I T S :.\._h- £ 14-' .

Val(S,I) to mean the output of the computation of S on I . If g

diverges on I then Val(S,I) is undefined. Similarly, Path(S,I) is
the path of the computation of S on I (for an exact definition of
a path, see Section 2.1.4). Also, if § = (F,9,P) , we use the notation

Z(S) to denote the set of function and predicate symbols appearing in § ,

i.e., in F, @ s Or in P .

Definition. Given an interpretation T on & domain Dom(I) over a

set of function and predicate symbols Q , we define the subinterpretation

I' of I with respect to a set P of function and predicate symbols in
the following way: the domain Dom(I') of I' 1is the smallest subset
of Dom(I) closed under the functions in PNQ , and the values of the
functions and predicates of P NQ are the same in I' as in T . Note

that if P does not contain any zero-ary function then the domain

Dom(I') is empty. We use the notation I/P to represent the subinter-

Pretation of I with respect to P .

Definition. A schema S = (F,®,P) is said to be well-founded if for
every two interpretations I;,I, for S (i.e., I, - ® and i E o)

such that there is an isomorphism O from (Il/P) to (IE/P) » then
(i) Path(S,Il) = Path(S,Ie) , and

(ii) if the computations halt, then val(s,Ie) = O(Val(S,Il)))

The significance of a set P that makes S = (F,9,P) well founded

is that for any interpretation for g » knowledge of merely the Tunctions

178

S S LR A s

—

" G i e e e i L a oo

and predicates P 1s sufficient to characterize the computation.

Given T and © , a minimal set P for which (F,9,P) is well founded
represents the minimal set of functions and predicales whose values are

sufficient to fully characterize a computation. If only the valucs of a
smaller set of functions and predicates are fixed, then there is some

indeterminacy as to what the schema will do, i.e., there are two
interpretations both of which satisfy ¢ , and also agree over the fixed

values, but the paths of the computations on I. and 12 are different,

1
or the outputs are different.

We will only be interested in schemas that are well founded, and
in the rest of this chapter, all schemas considered are well founded
unless olherwlice specified.

[t should be noted that if O = (I,¢,P) is well founded and 11 3 1?

are interprelations for $ whose subinterpretations with respect to P

arc isomorphic, thern (a) if the computation of S on Il halts

then its computation on I, also halts after exactly the same number

2
of steps, and (b) the outputs of the two computations Val(Sl,Il) and

Val(SQ,I are elements of Dom(Il/P) and Dom(Ig/P) respectively.

)
It follows from the definition that

() given any F and 9 , if we let Q denote the set of function
and predicate symbols in F , then (F¥,9,Q) is well founded.

(b) if (F,9,P) is well founded, and Q ic any set such that Pcq ,

then (F,9,Q) 1is also well founded, and

(e) if ¢ is "false", then (F,9,P) is well founded for all F and P .

It is also easy to see that ia general it is not partially solvable

whether a schema S 1is well founded. This follows directly from the

179

e e e L e TR o o

8.0
!

S - WAL DL . ML 9900t 2 A T T A

t~et (intuitively plausible to all schematologists, and proved in

vection 4.5) that the divergence problem for @-schemas is not partially

solvable. The unsolvability of well foundedness should not shock us

S N T L A Y A

unduly. The corresponding problem for conventional schemas, too, is

el min
i o

not partially solvable. For, consider a conventional schema § with a

)

i
Tz

statement HALT(b) where b is a zero-ary function not used in the

Lok

T T R Y R e e s
T I e R g e G
®

2 rest of S . Now we ask if the computation of S can be specified if

we give an interpretation for S , but refuse to specify the value of

% o ey

4 the zero-ary function b . If the HALT(b) statement happens to be

I disconnected from the rest of S , the answer is yes, but in general i

e L

it is unsolvable.

Sl mae

The correspondence between conventional schemas and generalized

L_, schemas can be represented by the following table.

1 Conventional schema @-schema
| The total data space The variable vy
| Functions and predicates The set P
: Interpretasion (1/P) ’
b | The structure of the data Predicates and functions other k
space, and totally than those in P , related by
interpreted features the formula ¢ .

(like counters)

This also shows why we are interested only in the well founded schemas;
for, in a conventional schema, if we specify only the values of a subset
of the base functions and predicates, it may not be adequate to characterize
the computation, and this represents an "incompleteness" in the schema.
A schema S = (F,9,P) halts for an interpretation I if the 3

computation of the flowchart F under I reaches a halt statement.

180

A schema (F,9,P) is said to halt if it halts for every interpretation

I for S (i.e.; I |- @). Similarly, a schema is said to diverge
if for every I for S the schema does not halt. A schema S is
frec if for every path K in § there is an interpretation I for &
such that K = Path(S,I) .

In the special case where @ is "false", the useless schema
(F,false;P) both halts and diverges as there is no I for which
I |= false . 1In the other special case where © is "true" the schemas
So obtained are the conventional one-variable schemas, i.e., (1 var) --
these are very similar to the Ianov schemas except that in Ianov schemas
the assignments and tests are somewhat simpler.

This describes the class of generalized schemas. We can take
interesting subclasses of these schemas by restricting the kinds of
flowcharts and the formulas ¢ allowed. 1In fact, by specifying o
we can obtain schemas that behave as if the schemas had several variables
(conventional n-variable schemas), or counters, or pushdown stacks, or
other structural features. In éach case, however, the single variable)2
corresponds to the entire data space of the schema. We will consider

this aspect in Section L.h.

L.2.2 Some Examples

We now give some simple examples of generalized schemas.

lixample 1
Consider the schema Sa = (Fa,ma,Pa) . There are iwo zero-ary
functions 8y 8q and two binary functions f,,f. . The formula ?,
is:
181

Rl G il f e b

ek BB o o R

e e g [T

by Ay
A YXYYE (%,5) = £(¥5%) A £.06y) = £.(y,x)
A VXVYVZf+(f+(X’Y)’Z) = f+(x,f+(y,z)) A (F.(%,¥),2) = f.(x,f.(y,2))

A ¥x f+(x,ao) =X A i’.(x,al) =X

A ngy f+ (X,y) = a'O

AVE (xfag) - BE.(xy) = 8

h ¥x¥yvzf. (x:f+(Y:z)) = f+(f.(x,y),f.(x,z))

A £.(5,(53),2) = £,(£.(x,2),2.(v,2))

The flowchart Fa qegle

START y «~ al;
vhile y # ay doy - f+(b’;al)3

HALT (aO) ’

and the set P is {al,f+} :

An interpretation for the schema Sa is a commutative field.
The schema halts if and only if the characteristic of the field is

finite. Note that the zero-ury function a. is not in Pa , but the

0

schema is well foundead.

Example 2

Consider the schema Sb = (Fb,qu,Pb) : Sb has one zero-ary

function a , three unary functions f , car , cdr , one binary function

cons , and one unary predicate p .

182

T S S e

—————

B e il s L

§
3
3

b

9, is ¥x ¥y car(cons(x,y) = x A cdr(cons(x,y)) =y

F, is START y « cons(a,cons({(a),a));
Ll:y ~ cons(ff(car(cdr(y))),y);
if p(car(y)) then HALT(car(y));
y - cons(f(car(cdr(y))),v);
if - p(car(y)) then HALT(car(y));
goto L
and

Pb iS {8., f:P}

The schema halts. In fact, the output of Sc on any interpretation I

can be piven by the following formula:

Val(s,,1) = if p(f”(a)) then t”(a)
else if — p(f(a)) then f£(a)
else if p(£7(a)) then £°(a)
else if - p(f~(a)) then £°(a)
else if p(f'(a)) then f'(a)

else fB(a)

The notion of the equivalence of the two schemas will be defined in the
next section but intuitively the schema Sb is "equivalent'", in some
sense, to the schema Sc = (Fc,¢c,Pc) defined below (we use the

abbreviation f2(a) for ff(a) , etc.):

183

START y - a;

if p(f (a)) then HALT(f a))
p(f(a)) then HALT(f(a));
(£(a)) then HALT f5(a)),

_-—.p a)) then HALT(f a)),

if p(£7(a)) then HALT(£' (a));

HALT(f(s))

{a,£,p} » i.e., the same as

4.3 Equivalence of Schemas

4.3.1 Introduction

What does it mean to say that two schemas Sl and S? are

equivalent? Saying Sl and 82 are equivalent means that the outputs

of Sl end SE should be the same if both schemas are made to compute
on the same interpretation. However, there is one point that this cimple
notion overlooks. T4 is that all rclevant interpretations for the first
schema need not be the same as all the relevant interpretations for the
second schema, as in ihe case of Example 2 in the previous section where
the functions car , cdr and cons represented structural features in
Sb which were absent in SC . The values in the domain of an interpre-

tation for a schema represent the data space of the schema, and correspond

to both the structural and the non-structural aspects. However, it is

only the non-structural aspects that are crucial for the definition of

18k

|

— e ———— T

equivalence. It is precisely this dichotomy between the structural and

the interpretive aspects of a schema that dictates a little care in

the definition of equivalence. This problem does not arise in conventional
schemata theory because these two aspects of schemas are well segregated,

and it is because we wish to give a unified treatment that we are forced

to confront the issue.

4.3.2 Dpefinitions
We remark again that all schemas considered below are assumed to be

well founded.

Definition. We say that two schemas 5y = (Fl,¢l,Pl) and S, = (F2,¢2,P2)

are compatible if Pl = P2 .

Definitjon. S2 = (F2,¢2,P) is a generalization of Sl = (Fl,¢l,P>
e
VIl for Sl iers Il F= wl

a1, for s, 1i.e., I, |= 9, eand

d an isomorphism 6: (Il/P) - (IE/P)

such that if Sl halts on Il t!.en 82 also halts on 12

Val(SE,IE) = G(Val(sl,Il)) ; and if Val(Sl,Il) is undefined then

and

Val(SE,IE) is also undefined.

If 82 is a generalization of S, we write S. < §

1 A & QT
Note that the definition of well foundedness implies that for any

interpretation Il for Sl » if there exist two interpretations 12, 15

for S, whose subinterpretations over P are isomorphic to (Il/P) s Leeo,

185

8, (Il/P) - (IQ/P)

and 65 (Il/P) - (15/P) 5
then if Val(Se,Ie) = e?(Val(sl,Il)
then Val(s2,12) = 95(Val(52,12)

%
i
It is clear from the definition that generﬁlization is reflexive
/

and transitive.

4 !
Definition. 82 = (F2,¢2,P) includes (is at 1dast as defined as)
S, = (F),®,P) if:
(i) VIl for Sl y 31, fTor 82 and 3 an isomorphism

9: (Il/P) - (Ie/P) such that if S, halts on I, then S, also

halts on I, , and Val(s2,12) = 9(Va1(sl,11)) , and

(i) Y1, for S,, &I, for Sl and 3 an isomorphism

9: (Il/P) - (Ie/P) such that if S, helts on I, then S, also

1 2

halts on I, , and Val(Se,Ie) = G(Val(Sl,Il)) ;

TS includes S we write S <8

2 1 1 e

Definition. We say that two compatible schemas Sl and S, are
equivalent (ol = S2) if 8 < S, » and S, < S, -

gen gen

Alternatively, Sl =S if and only if S

5 < 82 , and 82 = Sl .

1

We should now ask what is the significance of our definitions of
generalization, inclusion, and eqiivalence, and whether the definition

of equivalence corresponds to the usual notion of equivaleace. These

186

questions will become clearer in Section 4.4 where we model several
conventional classes of schemas by subsets of the P-schemas.

We may note herc, however, that the notion of "generalization" is
not immediate in conventional schemas, but it goes something like this --
say two schemas (or computer programs) have been written to compute
some mathematical function, but the firs£ o% these schemas does not
campute it for £ll possible cases as the cecond one does. Then we
would say that the second schema is a generalization of the first. As
an example, suppose we want to compute the gamma function, rounded off
to, say, ten decimal places. One way of doing it is by computing the
factorial function, in which case the program would work correctly for
the positive integers. Another way is to use any of the converging

series ior the gamma function. Je would then say that the second program

(or schema) is a generalization of the first.

1. Consider the schemas § of Section 4.2.2. We have

b’ *e
&
Sb -3 L)c .
ad (=
2. Consider the schema 54 = <fa’¢d’Pd> where
Py is Yx £+(x,al) =a, - (x = ao) 5
F is START y al;
while y £ aj doy - £, (y,ay);

HALT(aO) 5
and

P, is fap,f,]

o

Comparing S5 With the schema S, (of Section 4.2.2) we see that,

but not S. < 8 » because the characteristic of a commutative

field must be a prime (if it is finite), i.e., if Id is an interpre-
tation for S, such that 8, = &, , or a, = f+(f+(f;(al,al),al),al) #
f+(al,al) etc., then there is no interpretation I, for 5,6 such
that Ia/{al,f+] is isomorphic to Id/{al,f+}. Hence 5, is a

strict generalization of Sy (we write B S4). Note that the
gen

notion of generalization is not synonymecus with usefulness, for it may
be argued that Sa is more useful than Sd . The notion of generaliza-
tion is more akin to the notion of subset in the theory of languages,
where any language over an alphabet ¥ 1is a subset of the regular

*
language £

h.h Clasces of Schemas

L.h.1 Introduction

We now show how most conventioral flowchart schemas can be
represented as generalized schemas (@-schemas), and demonstrate that
many of the well known results regarding the power of classes of schemas
apply to @-schemas as well. In fact, it even turns out that formalizing
a schema as a @-schema sometimes reveals some point overlooked when
talking about schemas in an informal way. To illustrate, suppose we
wish to define ~cnventional schemas with lists, and we introduce the
primitives car , cdr , cons , A , and atom » and allow their free use

in schemas (see also Morris [1972]), then we wouid find that we cannot

188

prove the well foundedness of the corresponding generalized schema. The
reason is that certain error conditions may be encountered where the
computation is not well defined, e.g. in attempting to take the car

of A of or an atom . This accounts for our careful definition of
list schemas in Section 2.1.2. The notation ¢(n var) , &) , c(=) ,
c{pds) , ¢{list) , ¢(A) , etec., for conventional schemas (described in
Section 2.1) will also be used for the corresponding ¢@-schemas. 1n fact,
we will call a @-schema correspondingt to a conventional schema a

conventional @-schemas.

We first define the notions of generalization, inclusion and
equivalence for partially interpreted conventional schemas (in what
follows we will consistently use the superscript * for conventional
schemas, for interpretations for them, and ior classes of conventional
schemas) . E(S*) denotes the set of function and predicate symbols
in 8 . We say 1 is for P (where P is a set of function and
predicate symbols) if I specifies at least all the functions and
predicates in P . We use I* for S*,P to denote (1* for S*)

¥
and (1 for 1)

X X T o \ .
5, > 5, (let. P denote L(ul) U 2(u2)) Vi, for S0P
en
X * * * * *
41, for S§,,P &9 (Il/P) - (12/P) s.t. either both Val(s;,I;)

B * X . * ¥ * X
and Val(Se,Iz) are undefined, or else Val(Se,Ie) = O(Val(sl,Il)) :

% * * *
5, > 8, (let P denote Z(Sl) U £(8,) :

g * @
(1) VIl for 8,P &I,

3 N * ¥
and if Va1(32,12) is defined ther Val(Sz,Iz) =

* — * *

for 5,P s.t. &6: (I,/P) « (I/P) ,
ol M

Q(Vul(Sl) Il)) H

1389

* * *
82,P HIl for Sl’

) * X L * * %
and if Valﬂ%,lz) is defined then Val(b2,12) = G(Val(Sl,Il)) :

* *
and (ii) VI, for P os.t. 30: (I,/P) - (I/P) ,

* . .
§ 32 and 32 > Sl ;3 or alternatively, if

b *
.l—_2 l g n 'ggn

*

§ 5. & S, >8 .
2 2a=1
We had not defined the notion of generalization for conventional
schemas before, but it can be checked that the above definitions for
Y inclusion and equivalence are the same as the earlier definitions for the

schemas considered in Chapters 1-3. Tiie earlier definitions, however,

do not apply to "arbitrary" partially interpreted conventional schemas.

b 4 The translation of conventional schemas to @-schemas will be
performed as follows. 1In the @-schemas, symbols used for the basge "
3 functions and predicates (corresponding to those in the conventional
E 3 schemas) are distinguished from those used for the interpreted features.
Given a conventional schema S* over the base functions and predicates
P , we construct a flowchart } and a formula @ such that the
- 1 corresponding @-schema is S5 = (F,9,P) . Next, given a class cf of
conventional schemas, the corresponding class (¢ of @-schemas is

¥* ¥*
constructed as follows: if S ¢ , then the corresponding § (F,%,P)

¥ is in ¢, and so are schemas (F,9,P') where Pc P', but P’ may
col.tain some new function and predicate symbols. The reason for this
is that if we wish to compare (for inclusion or equivalence) two

g conventional scnemas whose corresponding @-schemas are (Fl,wl,Pl) and
(F2,¢2,P2) » it is possible that P, P P, ; hence we will compare,
instead, (Fl,wl,PlL'Pz) with (F2,®2,P1LJP2)

After we describe the translation of conventional schemas to @~-schemas,

we can then gc about reproving most of the results regarding conventional

schemas in the @-schema formalism. However, much of this work can be

190

ﬁ_ﬁw’———- ’ —

avoided if the translation process obeys the conditions of the basic

translation lemma below. The lemma says that if certain conditions are

E

:

!

|

! satisfied then many of the interesting results for conventional schemas

‘ carry over to @-schemas as well.

i‘ Let S* be a conventional schema, and let its statements be

{ SgrSyree a8y A statement can be of "typé' -- start , halt , loop ,

| assigmment , or test . The flowchart F of the corresponding @--schema

S = (F,9,P) will have one statement corresponding to each statement

f in S* » and the types match, and P = Z(S*) . For convenience, we will
call the statements in F by the same names as those in S* i Bhotdor

] 8928y eees8y

The conditions for the basic translation lemma are the following

(we use the notution I, » I, to denote "Il and I, are isomorphic") :

0. S 1s well founded.

i (For individual schemas) Let B, o P = 5(5") .

(8) VI for P if &I for S s.t. (I/P) ~(I+/P) then
81, for S,P, s.t. (Il/P+)~(I+/P+).

®) Y1

»* * *
, for B if I for § s.t. (I,P) = (I,/P) then

* * ¥* ¥*
31, for §,P, s.t. (I/B) - (1,/B,) .
2. (For the translation process)
* * ¥*
() ¥I for § &I for S s.t. &0: (I /P) « (I/P) and
* ¥ ¥
Path(S,I) = Path(S ,I) , and Val(S,I) = o(Val(s',I")) ir
both are defined.
¥* * *
(b) Y1 for S II fer S s.t. 36: (I /P) «» (I/P) and
* ¥ * ¥
Path(S,I) = Path(S ,I) , and Val(S,I) = e(Val(S ,I))

if both are defined.

191

DF (For classes of conventional schemas) Interpolation lemma.

L T T . * * * % * *
VCysCps81s8, 5 if S1€C) , SyeC, , Sy =S, then

0% *

* * N * *
385(62 S.t. Sl -3 05 ’ Z(Sl) = Z(SB) .

It is easy to see that for uninterpreted conventional schemas 9
2(a) follows from 2(b) owing to the well foundedness of S . To see
that this is indeed the case, let I be any interpretation for S .

* *
Then, as S is uninterpreted, there is an I for S* such that

*
I /P is isomorphic to I/P, i.e., there is an isomorphism
0
6+ (I /P) - (I/P) . Now, from part 2(b), there is an interpretation 4
* , 6 e
for S such that 6, (I /P) (Il/P) » and Path(S,Il) = Path(S ,I) ,
* %
and Val(S,Il) = Gl(Val(S »I')) . But from the well foundedness of §S ,
as eloe'l: (1/p) - (Il/P) » we have Path(S,I) = Path(S,Il) , and
Val(S,Il) = Glbe__l(Val(S,I)) » from which the desired result follows,
(o, - * *
i.e., Path(S,I) = Path(s*,1%) , and val(s,I) = eoelloel(Val(s o Y-
* ¥
o(val(s ,1)) .
If we can prove the above condition to hold in the translation
process, then the following consequences apply.
For individual schemss
*
(1) S halts if and only if S halts, and in general, S halts on I
*
if and only if S halts on (I/P) .
*
(2) s diverges if and only if § diverges, and in geaeral, S

*
diverges on I if and only if S diverges on (I/P) .

* * *
(3) & Z(8;) = Z(8,) then S) < 8, iff 5, < 8, .
gen gen
* * . * 3
(W) 1t }:(sl) = z(se) then S, <8, iff §, <8, .
* * r 8 T
(5) 1f ZI(5;) = Z(8,) then s, = §, iff 8, =5, .

(6) S 1s free iff § is free.

For classes of schemas
+* ¥*
(1) ¢ g0, 1ff ¢ <c, -

8) ¢ =c,

iff ¢ =
i Ol =Gy
(9) The halting problem (respectively divergence, equivalence, inclusion

problem) is solvable for ¢ if and only if it is solvable for c* ¢

For a proof, see Section 4.6.

In our translations from conventional schemas to @-schemas we show
that the basic translation lemma applies by proving part 2(b) above,
by induction on the number of steps in the computation. This is done as
follows. Given an interpretatirn I* for S* » Wwe construct an inter-
pretation I for S such that (I*/ P) is isomorphic to (I/P) , and
we define a function &: M — Dom(I) where M is the set of possible
configurations of the data space (memory) of S* « Then we show that at
each step in the computations of S* and S , the configuration of the
data space in S* and the value of the variable y of S are related

by the function & .

L.4.2 Flowchart Schemas

L.4.2. One-Variable Schemas

ror Tanov schemas, and general one-variable flowchart schemas with
equality tests (but without boolean variables), the translation to ¢-schemas
is trivial. Given a one-variable schema S* the corresponding @-schema
is § = (F,true,P) , where F is identical to the flowchart of S .
Proving that the basic translation lemma applies in this case is
also trivial. Since the set P of functions and predicates in S* is

the same as the set of functions and predicates of §) S is well

195

* *
founded. Now, given an interpretation I for § s choose I +to be
* *
the same as I , then the set of memory values of S is just

*
Dom(1) , and by choosing & +to be the identity function we see that

the condition of the basic translation lemma is satisfied.

4.4.2.2 n-variable Schemas

.x.
Given an n-variable flowchart schema S with variables
yl,ye,...,yn » no boolean variables, and predicates and functions P 9
to construct S = (F,9,P) , we add (n+l) new functions:

comb,vl,Vé,...,vh . The formula ¢ is:

Vlex2 e VX vl(comb(xl,xe,...,xn))
A v2(comb(xl,x2,...,xn))
R s

A vn(comb(xl,xe,...,xn)) X

To construct the flowchart F we first define the translation

T(T(yl,...,yn)) of a term T(yl,...,yn) which uses the functions of P
and the variables Ypo 0000V, (any or all of them may be missing). The
translated term uses only the functions from P U {vl,...,vn} and the

variable y . The translation may be defined as follows:
(a) T(x()) =<() ,

= \
(b) T{yl) i Vi(YI J

(€) H(EW.5:0-5%,.)) = f(T(t,)y...,T(1,)) , where f is a k-ary function
i k 1 k
letter.

We can now define the statements of the flowchart F by setting up

*
& correspondence from statements of the schema §

194

*
Statement of §

Statement of F

: START (yl,...,yn) - (Tl(),...,‘ru()) START y ~ comb(‘rl(),...,‘rn())
1 HALT (1) HALT(T(t))
LOOP LOOP
1~ " T(ry) = T(rp)
p(Tl,...,Tk) p(T(fl),...,T(1k))
(yl,...,yn) - (11,...,1n) y - comb(T(‘rl),...,T(‘rn))

We can prove the well foundedness of S , and the basic translation

lemma simultaneously by induction on the number of steps of the

computation.

_—

* *
Given an interpretation I for S we can get an interpretation I

for 8 (such that I | 9) as follows: the domain of T , Dom(I) is

defined to be the closure of the following:
*
(a) Dom(I') < Dom(I)
(b) if el,ez,...,enesDom(I) then the vector (el,...,en)(:Dom(I)

(without loss of generality we may assume that vectors like this

*
are not already present in Dom(I)).

The functions and predicates of P are defined as follows: if q

is a k-ary function or predicate, qeP . then q(el,...,en) in I is

*
defined to equal the value of q(el,...,en) in I if el,...,en are

*
all elements of Dom(I) , otherwise it is arbitrary. The function comb

!] is defined as follows:
l Comb(el,ea,...,en) = (el,...,en) .
i

195

o

The functions v

X
y++-yVv_ are defined as follows: if ecbom(l) tLhen
1 n

vi(e) is arbitrary, otherwise e is a vector of elements in Dom(I) ,

e = (el,...,en> , and vi(e) =e -
*

Now, the data space of S at any instant is a set of values

[yl =€ s¥y =€y 0¥, = en} where €s:-€ are elements of

Dom(I*) . We define the function & mapping this data space into the
element (el,...,en) of Dom(I) . Also, it is clear that I*/P and
I/P are isomorphic.

Now the induction hypothecis after i steps in the computations
of S and S* (under I and I* respectively) is that the paths up
to that point are the same, and that v = b(m) where m is the date
space of S* after i steps, and v is the value of the variable y
of S . The initial step and the induction step of the proof are easy
to check.

We remark here that there are other possible translations of n-variable
schemas to @-schemas that yield relatively more netural interpretations I
corresponding to I* . We give an example below. Here, we introduce the same
functions as betfore, i.e., comb,v.,...,vn s but also a new predicate:
jodata . et 1'1,1':?,... be Lhe tumelions off P (:in('.lmlzi e Lero=ury

tunctions), and let r be the largest rank of all these; then ¢ ic

LLSEER L (isdata(xl) A e A isdata(xr)) -
isdata(fl(xl,xz,...))
A isdata(fz(xl,xz,...))

A

A ¥Xy e VX (1sdata(x1) R des B 1sdata(xr)) -

|
s

vl(comb(xl,...,xn)) =X

]
e

A v?(comb(xl,...,xn)) 2

A

196

RS —S ————————— = S

.

Ty w——

and the flowchart F 1is the same as in the earlier construction. In
this construction, the domain of the interpretation I need not contain
vectors whose elements are also vectors. However, it should be noted

that if these two translations yield schemas Sl and S_, corresponding

2

*
to a conventional schema S , then Sl = S? .

L.4.3 Flowchart Schemas with Markers and Boolean Variables

L.k.3.1 Markers
*
Give a flowchart schema S with n variables Yyrees¥, » M

marker variables z .32, and p marker constants M ..,Mp , and

l’.. l’.
predicates and functions P, to construct S = (F,9,P) we add

m

(ptm+tn+l) new functions: cornb,vl,...,vn,wl,...,w'm,Ml,...,Mp . The

formula ¢ 1is:

Ml;éMel\leMBA.../\Mp_lfMp

A VylVyz...Vyanl...Vzm vl(comb(yl,...,zm)) =¥

A

[}
«

A vn(comb(yl,...,zm))

A wl(comb(yl,...,zm)) =2z,
A
A wh(comb(yl,...,zm)) =z

The flowchart F 1is obtained on lines very similar to that described in

Section 4.4.2.2. The addition is that a test (zi =M,) is translated

J/

to a test (wi(y) = Md) -- note that M, in the test (zi = MJ)

J

corresponds to a marker, whereas in the test (wi(y) = MJ) , the MJ

is a zero-ary function.

197

) proved as before by constructing the function & and using the additional

induction hypothesis that at any point in the computation the value of

-

! Well faundedness of S and the basic translation lemma can be
2

; cach z‘j y 1l£j<gm,; is Ml or M2 OF. ... @r Mp

© Flowchart schemas with boolean variables can be treated as marker-

Ees
-1
k schemas where the markers can have one of two velues called "true" and

'r "faise".

.) L.4.%3.2 Generic Variables ‘ "

A generic variable in a conventicnal schema is an untyped variable
whose value can be either a data element or a marker -- in other words,

the "type" is assigned at run-time rather than at campile time. Schemas

"ETTLS

with generic variables differ from other schemas in that there can be an

"unexpected" error condition of type mismatch. Under such ccnditions

& B ST

the schema is assumed to loop.

E
Given a flowchart schema S with n generic variables Yyreeos¥, »

p marker constants Ml""’Mp » and function symbols fl, ...,fm with

rank Tys++.p¥ respectively (some of the r's may be zero), let r

denote max(o:'l,'.-.*.,rm) - Now, the corresponding @-schema S = (F,9,P)

i is given as follows. We introduce m+p+2 new functions:

PV The formula ¢ is:

Ml’ e "Mp’ ism,comb,v

......,-u_q

M, £ My A M, £ Mg A oo A Mooy # My
A ism(Ml) A ism(Mg) g waz it iSm(Mp)
A Vlexz...er(ﬂ ism(xl) Aeee A ismfxr)) -

- ism(fl(xl,.--;xrl))

.
A = ism(fm(xl,...,xrm))

Y]

AN L) LSV E vl(comb(xl,...,xn)) =X
A cee
A vn(comb(xl,...,xn)) =X

The flowchart F can be defined by setting up a correspondence between
statements of S* and statements of F . Without loss of generality

we assume that no statement of S* applies a function or predicate to

a marker constant (for it can be repliaced by the loop statement). We
will use the'fUnction T defined in Section 4.4.2.2, extended to include

markers by letting T(Mi) = Mi . If rl,...,rk are tems we use

Y(Tl,...,Tk) to denote the set of variables y, appearing in TyeeoTy s
and if Y = {yk yeeerYy } is any set of variables, we use ism(Y) as
1 g
an abbreviation for (ism(yi) v ism(yi V¥ 550 W ism(yi D) .
1l 2] s

199

3 A e g

)
, Statement of S Statement of F
) START (yl,...,yn) - (Tl(),...,Tn()> START y «~ comb(fl(),...,rn())
HALT(T) if ism(Y(t)) then LOOP else HALT(Tt)
d 100P LOOP
E y; =My ¥y =M,
; ’ if p(rl,...,rk) then goto Ll ir ism(Y(Tl,...,rk)) then LOOP E
| else goto L, else 3f (T(ry), .-, 2(x,))
? then goto Ll else goto L2 ;
| r
i <yl’ ...,yn) - ('rl, g .,‘rn) ir iSm(Y(-ril, T ik)) then LOOP {
_ else y ~ comb(T(Tl),.. ,T('rn))
L
where Til,...,zik are the tems in 11,...,rn that contain at least
one function symbol. It can be shown by induction that the @-schema S
z is well founded. However, the translation does not satisfy the basic
i translaticn lemma to the letter because extra tests are introduced. This,
| however, does not violate the spirit of the lemma inasmuch as all
1 broeperties except f{reedom are considered. |
.
L.h.k Counters, Stacks, Arrays, and Other Features 1
: 3 In this section a conventional flowchart schema iz aisumed Lo have é
a finite number of discrete elements: variablec, counters, stacke, i
arrays, queues, lists, etc. In the corresponding @-schema, the
¥ mechanism of the functions comb , Vl""’vh is used to assemble and

to extract the various components as in the earlier sections, and the

200

1
!

corresponding axioms will not be repeated. Similarly, the assignment
to variables, and predicate tests, as well as halt and loop statements
are handled as before. In this section we will concentrate only on

the translation of these special features into @-schemas.

4L.4.k.1 Counters

I'he operations allowed on counters are setting a counter to zero,
testing a counter for zero, and incrementing and decrementing a counter
(decrementing a counter whose value it zero leaves it unchanged) .

To translate a counter schema into a p-schema we inticduce three
new functions: a zero-ary funct:on zero, ard two unary functions
plusone and minusone. The axioms ave:

¥x(plusone(x) £ x)
¥x minusone(plusone(x)) - x

minusone(zero) = zero

Note that the axiom " ¥x plusone(x) # zero " follows from these.
We cee that we can define some new features withun the Cramework

of p-schemas very easily:

(1) counters that take positive and negative values

(ii) testing two counters for equality

(iiij comparison of two counters

(iv) addition and multiplication of counters

(v) "counters" that take on rational values

(vi) schemas that can output counter values. On the other hand,

inputing an arbitrary counter value is restricted, owing to the

first order notions of @-schemas.

-

ar

B L e = M e e

L.h.h.2 Arrays

One dimensional semi-infinite arrays without booleans can be
"described" by using functions :con ani ass (which stand for "contents",
and "assignment" respectively). Con(c,A) represents the contents of]
array A at location c , and ass(x,c,A) represents the array obtained
by assigning the value of array A ¢t location ¢ to be x .

¥x¥cV¥c'¥a con(c,ass(x,c,a)) = x
A c' fc - con(c’.ass(x,c,a)) = con(c',a)
The value of A[c] is translated to con(c,A) , and an assignment
Alc] -~y 1is tranclated to ass(y,c,A) .

The start statement is used to initialize all the locations of a1
array to some constant tertm 1T() . ¥For this, we introduce a zero-ary
function "init" in the @-schema which represents an array with all its
locations having value f , by the axiom

Yc con(c,init) = ()

In like manner we can define arrays whose locations take data, boolean
and marker values, multidimension arrays, arrays that are infinite in both
directions, and an interesting feature: arrays that are referenced by

terms.

h.h.4.3 Ppushdown Stacks

One-track Stacks

A conventional schema with a one-track pushdown stack can push data
values on top of the stack, pop them, lovk at the top element of the stack,

and test the stack to see if it is empty. Statements allowed are:

202

(1) s~ push(s,y)

() if s =A then goto L
¢lse begin y - Lop(s); s « pop(s) end
We introduce the funztions: top , pop, push , and A . The axioms
are self-explanatory:
¥s¥x push(s,x) £ A
A top(push(s,x)) = %
A pop(push(s,x)) = s
Tne resulting @-schema we get is well founded. However, if in the

original conventional schema we allowed arbitrary use of push , top ,

and pop , e.g., if statements allowed were

(1) s ~ push(s,y)
(2) 4if s = A then goto L. else goto L

)
(3) vy - top(s)

(¥) s - pop(s)

then the resulting ¢-schema may not be well founded. And with good
reason. The operation of the original schema may not be well defined for all
cases, e.g., what happens when an empty stack is popped? As an added
axiom we can specify

pop(A) = A
but the @-schema may still not be well founded. The value of top(A) is
undefined. To overcome this, we mey specify that there are an infinite
number of date elements " a " (a zero-ary function), at the bottom of
an "empty" stack; we then have the axiom

top(A) = a

and the resulting schema is finally well founded.

203

T —

G

4

Two-track Stacks

A stack with two tracks has one track for data value:, and one for
markers (booleans can be represented as markers). We could allow markers
and data values to be mixed ir a single track, but we again have the

ad-hoc condition that the schema loops in case of type-checking error.

This is the notion of a stack introduced in Section 2.1.2. The statements

allowed are:
(1) s - push(s,y,z)
(2) if s = A then goto L
else begin y - topl(s); z - topz(s); s ~ pop(s) end
The axioms are:

¥x¥s¥m push(s.x,m) £ A

A topl(push(s,x,m)) X

A tope(push(s,x,m)) m

A pop(push(s,x,m)) = s

L.4.L.4 Queues

A schema with a one-track queue can insert a value at one end of the
queue, can test to see if the queue is empty, and if it is not the schema

can look at, or delete a value at the other end. The axioms:

¥x¥q add(g,x) £ A
A first(add(A,x)) = x
A remove(add(A,x)) = A
A (a £ A) - first(add(q,x)) = ¢ rst(q)

A (a9 £ A) - remove(add(g,x)) = add(remove(q,x))

20k

G e [Wi e sl i e S B
——

A two-track queue is a queue that has two tracks, one for data

values and one for markers (see Section 2.1.2). The axioms are:

l ¥x¥q¥m add(q,x,m) £ A
| A firstl(add(A,x,m)) =X
A firstg(add(/\,x,m)) =m
' A remove(add(A,x,m)) = A -

A(Q £ A) = firstl(add(q,x,m)) = firstl(q)

A(a A - first,(add(q,x,n)) first,(q)

A (qa # A) - remove(add(q,x,m)) = add(remove(q,x,m))

L.h.h.5 Lists
Axioms for lists are very similar to the axioms for pushdown stacka;.
The schemas differ mainly in the tyre of statements allowed (cee Section
2.1.2), for if stack schemas allowed the construction of a stack of stacks,
and a stack of stack of stacks, etc., we would have a list structure.
Let £, ...,fm denote the function symbols of the schema, let

1

their ranks be r

l,.-.,!‘m) md let r = mﬂ)((r

SEEREY rm) . We have
atom(A)
A VXy VX atom(fl(xl, ba .,xrl)) A (£(xq, .. .,xrl) £ A)

A L)

A a.tom(fm(xl, ...,xrm)) A (fm(xl, ...,xrm) # A)

A Vlex2 - atom(cons(xl,xg))

A ¥x,¥x, ca.r(cons(xl,xg)) =X

A cdr(cons(xl,xa)) =X, .

205

& s L i

h.5 Properties of Ceneralized Schemas

4 4.5.) Interpretcd Schemas, Herbrand Schemas, and Oracle Schem

When we suy that a conventionnl schema it uninterpreted, we mewn

that any interpretation over its base functions is relcvant for the

v schema. We say it is uninterpreted even though its structural features
are interpreted, e.g., the operatioﬁ of pushing a value into a stack, or
of incrementing a counter, is well defined. We would like to make this 1
s notion somewhat more formal, and apply it to our generalized schemas. |
!
Definition. A well founded schema S = (F,9;P) 1is said to be unirnterpreted [
_ if for every interpretation I for P there is an interpretation I' for €
o
S whose subinterpretation over P is isomorphic to I , i.e.,
YI for P, 4I' for S, i.e., I' [¢ , such that
. € an isomorphism 6: (I/P) - (I'/P) :
i |
Note: we use (I/P) above instead of I because there may be some E
elements in Dom(I) that are not reachable, i.e., not expressible in |
O terms of the functions of P (and, of course, there may be some ;
functions and predicates defined in I that are not in P). i
As un example, let wa denote &
. ¥x £(g(x)) = g(£(x)) = x i
and let Fa denote
. STAKT y ~ f(a);
while p(y) do v « £(¥);
HALT(8(y)) e 1
s then 8§ = (Fa,wa,{a,f,p}) is uninterpreted, but 5! = (Fa,wa,{a,f,g,g}) '

206

is not. Note that both Sa and Sé are well founded, but

(Fa,wa,{a,g,p}> is not.
For another example, let P, be the same as @a , anil Fb be
START y + a;
while p(y) do y ~ £(y);

HALT(g(y)) .)

Now. P = {a,f,g,p} is tiL. winimal set for which 5, = (Fb,wb,Pb)

is well founded, and Sb is not uninterpreted.

We should ncte that all the conventional @-schemas (i.e., @-schemas
corresronding to ((marker,pds,q,list,A)) are uninterpreted schemas.
If H d1s the Herbrand interpretation corresponding tov an interpre-

tation I (see definition ia Section 2.1.7), we write I EI{.

Definition. A well founded schema S = (F,p,P) is called a semi-Herbrand

schema if
() YI for S, 3 for S, such that (1/P) B (ﬁ/P) , and
(b) VH for s, VI, such that (Il/P) 5 (H/P) , 3I for S, such

that (Il/P) = (I/P) .

Note that the definition of a semi-Herbrand schema depends only on ¢
and P, and not really on F . Saying that a scheme S is semi-Herbrand
simply means that for every interpretation for S the corresponding
Herbrand interpretation is allowed for S , and that for every Herbrand
interpretation for S all corresponding interpretations are also allowed
for S . Any uninterpreted schema is semi-Herbrand, as is any schema in

which @ is equality-free.

207

Definition. A semi-Herbrand schema & = (F,9,P) is said to be a

Herbrand schema if

VI, for S, if (I/P) & (H/P) then Path(s,T) = Path(S,H) ,

and Val(S,I) corresponds to val(S,H) .

Note that Val(s;I) and Val(S,H) correspond in the obvious
sense, i.e., Val(S,I) is the value in I of the term val(S,H) of
functions of P .

By this definition it is clear that all the conventional ¢-schemas
without equality tests (in the flowcharts) are Herbrand schemas (see
also Theorem 2.3, Section 2.1.7). This is not true, however for the

P-schemas in general, for consider the schema Sc = (FC,QC,PC) where

P is VXV p(x,y) « (x =y)

F, is START y ~ a3 if p(y,az) then HALT(y) else LOOP

and

B, is {al,ag,p}

Sc is not a Herbrand schema because for the interpretation I where
a) = a, and p(al,ae) is true, there is no corresponding Herbrand
interpretation for S, + Further, Sé = (FC,QC,{al,az}) is also non-
Herbrand because the‘interpretation H corresponding to T has
a, = the term ”al" » &, = the term "a2" » and p(al,ae) = false , but
the paths for I and for H are not the same. So, we cce that we can
obtain the effect of equality tests without actually using them in the
flowchart.

We should mention that the notions of interpreted schemas and
Herbrand schemas are independent. Both Sc and Sé above are non-
Herbrand, but Sc is interpreted, whereas Sé is uninterpreted. Also,

consider wd and F. below:

d
208

Pq is ¥x p(x) = - p(f(x))

and

Fy is START y « a; if p(y) then HALT(y) else LOOP .

schemas, but Sd is interpreted, whereas 'Sé is uninterpreted.
Given a class § of interr~etations, a schema § is said to
halt on § if S halts on every interpretation I for S, where

led ; and similarly for divergence and freedom. And we say that Sl < 32
gen

on '91’&2 if VIl for Sl 5 Ileal, 312 for 82 9 12€J2 » and
@ an isomorphism @: (Il/P) - (I2/P) such that either both schemas
diverge, or Va.l(Se,Ie) = Q(Va.l(Sl,Il)) -~ compare with the definition

of 5, < S, . And similarly for inclusion and equivalence.
gen

Given schemas Sl = (Fl,tpl,P) and 32 = (Fe,tpe,P) , let 7{1 be
the class of interpretations H for Sl such that (H/P) 4is a Herbrand

interpretation; and similarly for 112 » then:

Theorem 4.1 (Fundamental theorem of Herbrand schemas)

For Herbrand schemas S S

177¢

(a) Sl halts if and only if it halts on 711 »

() S, diverges if and only if it diverges on M s

(c) Sl = 32 if and only if Sl * 32 on 1 5%, »

(@) s, <8, if end only if 8, <8, on ¥, ¥, ,

(e) 5, <8, if and only if 8, < 8, on ¥y ¥, , and
gen gen

(f) 5, is free if and only if S, is free on ¥ -

209

For thc proof, see Section L.6G. This theorem is an extended and
relatively morc formal version of Theorem 2.1.2 (in which the class of
Herbrand schemas was comparatively restricted).

There is another propcrty about conventional schemas that we would

like to capture. It is that in a single step a conventional schema can

do only a "gsmall" amount of work, i.e., it can execute an assignment
statement or makec an atomic test. We can generalize the notion of a
schema to what may be called a "logic-theory machine". A logic-theory
machine is like an ordinary schema except that it can also make quantified
tests, and in gencral, a test can be any well formed formula (an even more
"powerful" machire would be one that can also build up formulas as
strings, or trees). A tesct that effectively looks at an infinitc number
of values may be called an oracle test, and a "schema" that can make such

i tests may be called an oracle schema.

Definition. We say that a formula V 1is over a set P of function and
predicate symbols if it uses no function or predicate symbols other than

those in P .

Definition. Given a well-tounded cchema B - (V,®,F) , we ray that §

is a non-oraclc schema if

(a) for every path in F from thc start :tatement to a test, there
ex.sts a quantifier free formula V() over P such that for all
interprectations {for S) that follow this path, the outcome (true
or false) of the test equals the value of ¥() for the interpre- g

tation, and

210

(b) for every path in F from the start statement to a halt statement,
there is a quantifier free formula ¥(x) over P such that all
interpretations (for S) that follow the path, for all elements x
in the interpretation, the output of the halt statement is x if

and only if W¥(x) is true.

Lemma 4.2

Every well-founded schema is a non-orescle schema.
)

This property of schemas (proved in Section 4.6) is an important
one, and is used in the proof of the theorem of maximal schemas

(Theorem L.3).

L.5.2 The Fundamental Theorem of Maximal Schemas

Constable and Gries [1972] suggested that the class c¢f (conventional)
schemas with arrays, C(A) , are a maximal class of (uninterpreted)
schemas. Chandra and Manna [1972] showed that for a "reasonable"
definition of uninterpreted schemas, arrays, by themselves, are not
adequate, and that equality tes%s too are required -- and that the class
C(A,=) 1ie strictly more powerful than ({A) . We show here that the

class (C(A,=) is indeed maximal in our generalized schema formalism.

Theorem 4.3 (Theorem of maximal schemas)

The class (¢ of uninterpreted schemas is equivalent to the class
C(A,=) of generalized schemas correspunding to the conventional schemas
with arrays and equality tests; and, in fact, a schema in C can be

effectively translated into an equivalent schema in ((A,=) .

For the proof of this thecrem, see Section 4.6.

Intuitively it does zeem Lhat tor conventional schemags, the clasc
C(A) is indeed "maximal" in some rense. Chandra and Manna | 172
conjectured that ((A) may be maximal for Herbrand schemas. We show

that this is indeed the ease for our generalized schema formalism.

Theorem 4.4 (Theorem of maximal Herbrand schemas)

The class (¢ of uninterpreted Herbrand schemas is equivalent to
the class ((A) of generalized schemas corresponding to the conventional
schemas with arrays; and, in fact, a schema in C can be effectively

tranclated into an equivalent schema in (A) .

For the proof of this theorem, see Section 4.6.

h.9.% Decision Problems

We consider the following decision problems for the class of

¢-schemas.

i The halting problem -- given a p-schema S , to decide if it halts
for every interpretation for S .

2. The divergence problem -- given a @-schema S , to decide if it

diverges for every interpretation for § .

i The equivalence problem -- given two comprtible @-schemas Sl and

S) » to decide if they are equivalent. We also consider the

peneralization problem (to decide if 5, £ 5,) and the inclusion
gen

problem (to decide if Sl < 82)

212

§.9.5.1 The Halling Problem

Thecorem k. 5

The halting problem for @-schemas is not solvable, but it is

partially solvable.

The unsolvability of the halting problem for @ -schemas can be

shown in many ways (e.g., by using the unsclvability of the halting

problem for several classes of conventional schemas), but perhaps the

simplest is the following. Consider the class of schemas » of the form
(F,9,P) where @ and P are arbitrary, and F is:
START y = a; LOOP
Then a schema in the class halts if and only if ® is unsatisfiabic --
which is a well known unsolvable problem.
The proof of the partial solvability of the halting problem is also

quite easy, but we defer it to Section L.6.

r’

&

L.5.3.2 The Divergence Problem

The complement of the diverirence problem is called the non-divergence

problum, i.e., civen a schema, Lo decide if it halts for any (relevant)

interpretation.

Theorem h.6

Both the divergence problem and the non-divergence problem for

schemas are not partially solvable.

The divergence problem is not partially solvable because the
divergence problem for one-variable schemas with equality is not partially
solvable (see Chapter *). The non-divergence problem is not partially
solvable because the schema (F,9,f{a}) where F is

START y ~ a; HALT(y)
halts for some interpretation if and only if ¢ is satisfiable --
a problem that is not partially solvable.

It is interesting to note that while the non-divergence
prchlem is partially solvable for all conventional schemas (e.g., those
of Section L.h), it is not partially solvable for @-schemes. One should
ask what it is about @-schemas that causes this difference. The next

theorem attempts fo answer this question.

Lemma h.z. The non-divergence problem for uninterpreted schemas is

partially solvable.

This follows directly from the fundamental theorem of maximal
schemas and the fact that the divergence problem for the clacs of

conventional array schemas is partially solvable.

21k

4.5.3.3 The Equivalince Problem

The complement of the equivalence problem is called the non-
equivalence problem, i.e., given two compatible @-schemas, to decide
if the schemas are not equivalent. Similariy, we have the non-generaii-

zation problem and the non-inclusion problem.

Lemma 4.8. For schemas

(a) the equivalence problem is not partially solvable,

(b) the non-equivalence protlem is not partially solvable,
(¢) the generalization problem is not partially solvable,

(d) the non-generalization problem is not partially solvable,
(e) the inclusion problem is not partially solvable,

(£) the non-inclusion problem is not partially solvable.

The parts (c), (d), (e) and (f) follow directly from (a) and (b).
Parts (&) and (b) follow from the fact that the equivalence and the
non-equivalence problems for one-variable monadic schemas are not

partially solvable (see Chapter 3).

4.6 Proofs

L.6.1 Proof of the Translation Lemma

We will only show the following parts of the lemma. The others

follow analogously.

(4) S, <5

@ eyse i dsd.

n
L3

15

e

L

R i . =11

2 €

* *

1f Sl 582 then S]. 582 3

* *
Let P denote Z(Sl) » which is the vame as 8(82) , and

Sl — <Fl."pl)P> ’ Se = <F2)¢2’P) J

Given:
Y1, for Sy » 81, for 5, s.t. 3e: (Il/P) - (IE/P) i
if Val(Sl,Il) is defined then Val(Se,Ie) =9(V8.1(Sl,Il)) (a)
and
Vi, for §,, El, for S5, s.t. 3e: (Il/P) »(IE/P) "
if Val(Sl,Il) is defined then Va1(32,12) =9(Val(Sl,Il)). {b)
To prove:
* * * * x *
VI, for Sy » &I, for 5, s.t. 3e: (Il/P) - (IE/P) g
* * * * ot ¥*
if Val(Sl,Il) is defined then Val(Se,Ie) =9(V8.l(Sl,Il)) (a')
and
* * * * ' *
Vi, for Sy, 31, for S, s.t. Fo: (../7) - (IQ/P) 5

if Vval(S.,I.) is defined the Val(Sh,1.) - 6(val(S ,1)) (b)
l’ 1 S ine n 0 2, 2] = ul, 1 .

We will chow (a'), and (b') follows in a similar fashion.

* *
Given any Il for Sl » by condition 2(b) of the translation lemma,

* X

*
41, for 5 end 36: (Il/P) - (Il/P) ¢4, L Val(Sl,Il) is defined

- *
then Val(Sl,Il) = el(Val(Sl,Il)) . Then, by (a) above, ZI. for §

2 2
and 26,: (Il/P) - (12/p) s. 6. if Va.l(Sl,Il) is defined then
Va1(32,12) = 92(Val(sl,11)) - Finally, by condition 2(a) of the trans-
* *
a3 - *e «
lation lemma, 312 for 5, and Hei, (12/P) (12/P) 4. {f
1(s is defined th 1(8,.,1.) 1(ss, 1 h
val(2,12) s define en Va (.:2,12 = 95(“- (32,12)) . Thus we
<. * *
have a 6 (6 = 8, *9, eel) y @ (Il/P) - (12/p) , and if

(‘* « * * X *
Val(ul,Il) is defined then Val(Se,Ia) = Q(Val(Sl,Il)) ¢

216

3* *

If S, <S, then S, <5

2 1l 2’

This proof is analogous to the proof above (by interchanging the

starred schemas and interpretations with the unstarred ones).

If ¢, <SC, then C) <Cp -

Given: VSlecl E{Sacc,a s.t. S

1 5 To prove that
VS* * S* »* t * *
lecl 2602 s.t. Sl E 82

*
Notation. If S 1s any conventional schema, and S 1s the

*
corresponding generalized scheme we say S = S . Also, if S., S

1778

are any two generalized schemas such that Sl = (F,cp,Pl) and

82 = (F,cp,Pe) and P, C P, then, too, we say Sl =5, .

* »
Proof. Given any Slecl . Let S;_asl . Then Slecl by

construction of ‘31 . By hypothesis, Hsecc2 s.t. Sl] Let

5
*
8, = (Fl,wl,P) where P =Z(S) and S, = (Fe,cpa,P) . Now, by the

* *
! = .e.
construction of c::2 5 "Sjec? and Ssecce g.t. 82 S5 = 82 5 H(Ehs

*
s5 = (Fe,tpe,Pl) and z(sa) =P C P . We wish to show that this is
*

* *

1l

¥*

Part (1) 1

S 82 L]
gen

»* 3* f S*
3 ¢ Wlg e B

* ¥* * * * ¥
30: (Il/P) - (12/P) » end Val(fi,,I,) = €(val(s,,I;)) or both are

*
To prove that YIl for S »P

undefined.

¥ *
L for § . by 2(b) of the lemma 81, for S, ,

* * *
cCME (Il/P) - (Il/P) P Va.l(Sl,Il) = 91(Va.l(Sl,Il)) or both are

undefined. Now, as Sl = 82 we have, by definition, 312 for 82 5

g0,: (Il/P) - (12/P) » end Val(S,,I)) = 92(Val(sl,11)) , or both are

For any I

217

undefined, and as S',) =85, , Val(SB,Ie) = 92(Val(Sl,Il)) or both are
¥* ¥* ¥*
undefined. From 2(a), 315 for 85 » 305. (IB/Pl) - (12/Pl) s
* * *
Val(Se,Ie) = 93(Val(82,15)) . Finally, by 1(b), YI, for P,
* * * * ¥* *
81, for S§,,P s.t. ge),: (Ie/P) « (I,/P) . We choose I, tobe I, .
* * * * *
So 81, for S,,P , 39): (I,/P) = (I}/P) » and as E(S,) C P we
* * * * e
have \'3.1(82,15) = Gh(Val(Se,Ie)) . This gives us the required

* * * * pe. it
9: (Il/P) - (IE/P) a4, Val(Se,Ie) = e(Val(Sl,Il)) » and, in fact,

., =

© 1s 6,7 ¢0;7 00,0, .
* +*
Part (i1) S, < S, .

gen

This proof is analogous.

* *
If c1562 then clsce 3
* *

v* * q* * Ly
Given Slecl _Secc.z gL, S, ®E'§

1 o + To prove that

' s, t -
Slecl Seec2 8.6 Sl E 82 4
Given any Slccl . By the construction of cl g 385ccl »

o My *
Hu)lecl g.%. Sl = 85 > Sl . Let Sl = <Fl’¢lypl> and 85 = <Fl’¢l’P> ’

PC P, . By hypothesis, 35« s.t. § =g
1 Yy hypothesis, “jCC‘Q s5.t. Thall. 8

interpolation lemma for conventional cchemas (condition 3 of the

Then using the

*

g * By
*

Let 32 = Sh , then Sh = (Fe,(pe,P) 5 She",,a » and by the construction

% # * 4
translation lemma) ES,eCr, 5.t E(Se) = Z(Sl) =P, and S

of 62 5 (F2’Q2’Pl>€c2 . Let S, denote (Fe,Qe,Pl) . This is the

desired schema; we have to prove that Sl = 82 .

Part (1) S, < S
gen

2 .

To prove that YI, for 8y, 31, for s, s.t. 3e: (Il/P) »(Ig/p) g

and Val(Se,Ie) = G(Val(Sl,Il)) or both are undefined.

218

L4 N .

Q
Given any Il for Sl . Then Il is also for S, and

* * *
Val(Sl,Il) = Val(s3,11) . By 2(a) &I, for 5, , 3e,: (Il/P) - (Il/P)
e s; , we find that
* * * * * * *
21, for §,, &,: (Il/P) - (Ia/P) s.t. Val(s,,I,) = ez(xnl(sl,xl)) .

629G *
s.t. Val(S5,1;) = 6,(Val(Sy,I;)) - As S

By 2(b), &I, for S, , o (I3/F) = (I,/P) s.t. Val(5),I,) =

* %
QB(Val(Sa,lz)) or both are undefined. By 1.(a), as I, is for P, and

(Ih/P) - (Il/P) » 3I, for S,,P , Foy: (Ie/Pl) - (Il/Pl) . Hence

-1

ll
9 9,49,

-1
2057 (Ih/P) - (IQ/P) and by the well-foundedness of §, ,

-1
]

diverge. But 12 is an interpretation for S

<l < =
Val(sy,I,) = 0 *© 9931(Va1(Sh,Ih)) - o7 (val(sy,1;)) or all

o » and

&l .
Val(Sa,Ig) = Val(Sh,Ig) =9, (Val(Sl,Il)) or all diverge. This completes

the proof that Sl < 82 ¢
gen

Part (ii) S, < S

gen

2 &

This is proved likewise.

L.6.2 Procf of Theorem L.1

Given Herbrand schemas Sl = (Fl,Ql,P) and 82 = (F2,¢2,P) , Lk
X, be the class of interpretations H for S, such that (H/P) is a

Herbrand interpretation, and similarly for Né s, then

(a) Sl halts if and only if it halts on Ni ’

(b) S1 diverges if and only if it diverges on %, ,

219

T

I
2]

1]

(¢) 8, =8, if and only if S

on ?(l,”e ’

1% 8
() s <8, if and only if S, <S§, on W, ,

(¢) 8, < §, if andonly if S, < S, on W, ¥,
gen gen

(f) S, is free if and only if it is free on &, .
1 ik

Proof: For cases (a), (b), (f) the "only if" part is trivial; and so

is the "if" part because if any path is taken by the computation of Sl

on any interpretation I , then the same path is taken by the computation

on some interpretation Hei{l 6
We show the theorem for case (e), and the other cases can be
proved analogously.

The "only if" part is easy, because given Sl < 82 o e Hld[l
gen

is an interpretation for Sl , then there is an interpretation 12 for
S, such that (H,/P) and (I/P) ere isomorphic, and the outputs
correspond, but there is an interpretation szfe isomorphic to 12 ’
and hence we have that (Hl/P) and (HE/P) are isomorphic, and their

outpute correspond.

The "if" part can be proved as follows Given that Sl < 8

on %(1,312 y 1.e.,

VHl for Sl’ Hlezll,

'3]{2 for 82 B
are undefined (note: the isomorphism is identity),

H,e¥, , and Val(Se,He) = Val(Sl,Hl) , or both

to show that Sl = 82 5 T8y,
gen

VIl for Sl

EI2 for 82 , and

g an isomorphism 9:(Il/P) “ (IE/P) , such that

Va.l(Sg,Ia) = O(Val(Sl,Il)) » or both diverge.

Now, given any Il for Sl » by the definition of Herbrand schemas,

i h
there exists an H, for §, such that (Il/P) - (Hl/P) , and

Val(s corresponds to (the term) Val(Sl,Hl) , or both diverge.

l, Il)

From the hypothesis, there is an H2 for S Heeale » such that

2)

And again, as S is a Herbrand schema, for

Val(Sl,Hl) = Va.l(Sa,H o

2)'

h
any I} for which I} - (H2/P) » there is an I, for S, such that

(Ié/P) = (IZ/P) and Val(S,,I,) corresponds to val(S,,H,) . We will
choose Ié simply to be (Il/P) . We now have the desired © :

it is simply the identity function, and either both Val(Sl,Il) and
Val(SE,IE) are undefined, or they are equal because both correspond to

the same term.
=

4.6.3 Proof of Lemma 4.2

Every well-founded schema is a non-oracle schema.

Given a well-founded schema S = (F,9,P) and a path in F from the
start statement to & test or a halt statement, we can represent the
conjunction of all tests (every test a(y) is changed to a'() by
substituting the value of y) executed along this path (or their
negations if the false exit is taken by the path) by a formula 9, -

Then every interpretation that follows this path in the schema satisfies
® A CPl , and every interpretation that satisfies @ A ?, follows this path.

221

~

We use the result (see, for example, Shoenfield [1967], Section 5.5,
) Lemma, h) that given sentences 1, V', and a set P of functions and
predicates, if wherever I, [(I I, |- 1 , and (Il/P) isomorphic
to (I,/P) we have i |- v* if and only if T, b V' , then there
» exists a quantifier free sentence V¥ over P such that T = (V' « V)

is valid.

7 i I T e e 1, O LY I i e el B ™

Suppose our given path in F leads to a test statement, then the t
? test can be represented 25 a simple atomic test o only on constant I
terms, and we have, by the well-foundedness of S , that whenever

I, - oA % I, F oA Py (Il/P) isonorphic to (I,/P) we have

Il I- & if and only if 12 |- Q@ . We hence have a sentence V¥ such

that @ A@, - (@« V) , and by the deduction theorem @ A N |- (@),

i.e., for all interpretations that follow this path, the outcome of the

¥ test equals the value of the quantifier free formula V¥ over P (which

is the requirement for a non-oracle schema).

If, on the other hand, the given path in F leads to a halt statement,

1 W s &

G then the output is some (constant) term t() . If we now introduce a
new zero-ary function ao into interpretations for the schema, we have
that whenever I, - %A ¢, > I, - oA P s (Il/.PLJ{aO}) isomorphic
to (IZ/IPU{aO}) » we have I, - 8, = () if and only if I, |- 8, = 7()
by the well-foundedness of S , and hence there is a formula W(ao)
(we call it w(ao) instead of V¥ for convenience) such that

- = - - o 14 2
? AP (a,o 7() W(ao)) But a, doessn't appear in @ A Dy s
and hence ¢ A ? - ¥x(x = 7() = ¥(x)) , and again by the deduction
theorem ¢ A Py - vx(x = %() = ¥(x)) , which is the desired result.

This concludes the proof of Lemma k4.2. 0

4.6.4 Proof of Theorem 4.3

The class ¢ of uninterpreted schemas is equivalent to
the class (@{A,=) of @-schemas corresponding to the conventional
echemas with arrays and equality tests.
i Given a schema S = (F,9,P) in (@ we will construct a conventional
schema S* with arrays (and counters) and equality tests having the
symbols of P as its base functions and predicates, such that for any

; »*
interpretation I for S, Val(S,I) = val(S ,I/P) . We can then

translate S* into a generalized schema Sl in the standard way (see
Section 4.4). It should be noted that since it is unsolvable if any

given schema S is an element of (¢ , our translation process will g0
through even for schemas not in ¢ . However, it will not necessarily

be correct. If the given schema S is interpreted, then S, will not

1l
| be equivalent to S , but will be a strict generalization. If § is

_not well founded, then, of course, equivalence is not well defined.

{ We will meke use of the fact that a conventional schema with counters
can simulate the behavior of any schema except when it comes to making
T . tests, or halting, in which case, it has to make use of its base
functions and yredicates.
S* proceeds as follows. It simulates the computation of § ’

keeping track of the value of the single variable of § (as a constant

term). It also keeps track of any tests that S has made along the

path. This is kept as a formula « = ai A a2 A cee A ah where each ai

is an atomic formula or a negated atomic formula. When S comes io & i
*

test B, S enumerates all valid formulas until it comes to one of the

form

223

PAQ = (V~B)
where V 1is a quantificr free formula that uses only the base functions
and predicates from P (note: we are using here the completeness theorem
for first order predicate calculus with equality, and the fact that S

*
is non-oracle). S then makes the appropriate tests to determine if ¥

is true or false, and updates a to al Aeer AQA B if Vv 1is true,

or to) A eee A Cc'n/\—rB if ¥ 1is false. When S comes Lo a haltl
statement HALT(t(y)) , S° enumerates all valid formulas until it comes
to one of the form

?AQ = ¥x((x =17) « ¥(x))
where T represents 1(y) in which the value of y (as a term) is
substituted for y , and V¥(x) is quantifier free, and uses only the
symbols of P . When such a formula is found, S* enumerates all
elements reachable by applying functions of P, and halts on the first
element x “>r which V¥(x) is true.

A final note seems to be in order. To be very formal, the class
(A,=) is to be interpreted not just as the class (¢ of cchemas
corresponding to the conventional schemas with arrays and equality,
but the class obtained by renaming the function and predicate symbols
of schemas (in @) in 21l possible ways (distinct symbols must, of
course, remain distinct). The reason is that in the translating
procass we used certain function and predicate symbols which couldn't

appear in the set P of any schema (F,9,P) in ¢ .
a

4.6.5 Proof of Theorem L.k

Every schema in the class of uninterpreted Herbrand schemags can
be effectively translated into an equivalent @-schema correcponding
to a conventional schema with arrays.

Given an uninterpreted Herbrand schema S = (F,9,P) we construct
conventional schema s* with arrays (and counters), as in the previous
section, such that the generalized schema corresponding to S* is
equivalent to S .

S* simulates the computation of S , keeping track of the value of
the single variable of S (as a constant term). It also keeps track
of the tests S has made along the path of the computation, as a
formula & . When S comes to a test B, S* enumerates all valid
formulas until it comes to one of the form

eAa = (v~p)
where ¢ 1is quantifier-free and is over P . (Actually we can show
that there always exists an equality-free of this kind, but that is
unnecessary.) S* now makes the appropriate tests to determine for
Herbrand interpretations. For this reason it doesn't need to make any
tests of equality. The same exit would be taken for all interpretations
for S by the Herbrand property, and hence S* can update o and
continue simulation of S .

When S comes to a halt statement HALT(7(y)) » s* enumerates
all velid formulas until it finds one of the form

e AQ = ¥x((x=17) = ¥(x))

where T represents T(y) with the value of ¥ substituted for the

variable y ; and ¥(x) 1is quantifier-free, and over P . S* enumerates

225

P ——— L T

——

-hh--.-_._.".-_-__:__:__

=

all elements reachable by applying functions of P, and halts on the

first element x for which y(x) is true assuming a Herbrand inter-
o

pretation. When S is converted to a generalized schema Sl s> Lhe

outputs of S and Sl are the same for all interpretations by the
Herbrand property of S .

-

L.6.6 Proof of Theorem L.5

To show that the halting problem for @-schemas is partially
solvable.

The partial solvability of the halting problem can be shown by
reducing this problem to the validity problem of formulas of first
order predicate calculus, with equality, which is partiaily solvable.
We use the approach used by Manna [1968, 1969]. Given a flowchart F 5
we associate with F fermula y(F) of predicate calculus such that F
halts for all interpretations if andonly if (F) is valid, v(F) is
constructed as follows. lLet all statementz of F be labeled I‘l' 3c ..Ln

Associate, with each statement Li s & predicute 9y - Let. ' be the

conjunction of the axioms obtained as chown below:

226

-

Statement Axiom ¥
START y = 7(); goto L, 4 (v()) |
L,: HALT(1(y)) ¥x q,(x) ~q l
.
L,: LOOP (no axiom) |
Lyt ¥ = 1(y); goto Ly Vx g, (x) = q (r(x))
Lyt if a(y) then goto L, ¥x qy(x) A a(x) - a,(x)
else. goto L A ay(x) A= a(x) =g, (x)

Then (F) is ' -q (q is introduced in the axiom for a halt
statement). We then find the schema (F,9,P) halts if and only

it @ - ¥(F) is valid.

227

T

o y—

?
References
’ Ashcroft, Manna and Pnueli [1970). E. Asheroft, Z. Manna and A. Pnueli,
"Decidable properties of monadie functional schemas," in Theory of
Machines and Computations, (Kohawvi and Paz, Eds.), Academic Press,
3

pp. 3-18.

Chandra [1972]. A. K. Chandra, "Efficient compilation of linear recursive
programs,"” Report no. CS-282, Computer Seience Dept., Stanford
University, April 1g972.

Chandra and Manna [1970). A. K. Chandra and Z. Manna, "Program schemas
with equality," in Proceedings of the ¥ourth Annual ACM Symposium
on the Theory of Computing, Denver, Colorado, May 1-3, 1972, pp. 52-6k.

Cadiou [1972]. J. M. Cadiou, "Recursive definitions and their computations, "
Pu.D. Thesis, Report no. CS-266, Computer Seience Dept.. Stanford

University, Mareh 1972.

Constable and Gries [1972]. R. L. Constable and D. Gries, "On eclacses of
program schemata," in SIAM Journal of Computing, Vol. 1, lo. 1,

Mareh 1972, pp. (6-118.

Garland and Luckham [1971]. S. J. Garland and D. C. Luckham, "Program
sehcmes, recursion schemes, and formal languages," UCLA report
no. ENG-715k, June 1971.

Hewitt [1970). C. Hewitt, "More comparative schematology," Artificial
Intelligence Memo, no. 207, Project MAC, Mass. Institute of Tecanology,
August 1970.

Hopcroft and Ullman [1969). J. E. Hoperoft and J. D. Ullman, Formal

Lanjuaces and Their gRelation to Automata, Addison-Wesley, 1969.

Ianov [1958]. TIu Ianov, "The logical schemas of algorithms," Problems

and Cybernetics, Vol. 1, pp. 75-127, (Russian edition).

Ianov [1960]. 1Iu Ianov, "The logical schemes of algorithms," English

translation in Problems of Cybernetics » Vol. 1, Pergamon Press,

New York, 1960, pp. 82-1ko0.

Karp and Miller [1969]. R. M. Karp and R. E. Miller, "Parallel program
schemata," Journal of Computer and System Sciences, Vol. 3, No. 2,
Mey 1969, pp. 147-195.

Luckham, Park and Paterson [1970]). D. C. Luckham, D. M. R. Park and
M. S. Paterson, "On formalized computer Programs," Journal of
Computer and System Sciences, Vol. 4, No. 3, (June 1970), pp. 220-2k9,

Manna [1963]. 2. Manna, "Termination of algorithms," Ph.D. Thesis,
Computer Science Dept., Carnegie-Mellon University, Pittsburgh, Pa.,
April 1968.

Manna [1969]. 2. Manna, "Properties of programs and the first-order
predicate calculus," Journal of the ACM, Vol. 16, No. 2, April 1969,
pp. 2kL-255.

McCarthy [1962]). J. McCarthy, "Towards a mathematical science of
computation,” PROC. IFIP, 1962, pp. 21-3k.

McCarthy [1963]. J. McCarthy, "A basis for a mathematical theory of

computation,"” from Computer Progremming and Formal Systems,

North-Holland, Amsterdam, 1963, pp. 33-70.
Miller [1972]. R. E. Miller, "A boundary between decidability and
undecidability for perallel program schemata," in Proceedings of

an ACM Conference on Proving Assertions about Programs, Las Cruces,

New Mexico, Jan. 6-7, 1972, pp. 116-120.

229

Milner [1970]. R. Milner, "Equivalences on program schemas,'" Journal
of Computer and System Sciences, Vol. 4, No. 3, June 1970, pp. 205-219.

Morris [1968]. J. H. Morris, "Lambda-calculus models of programming
languages," Ph.D. Thesis, Project MAC, Mass. Institute of Technology,
MAC -TR-57, (December 1968).

Morris [1972]. J. H. Morris, "Recursion schemas with lists," in
Proceedings of the Fourth Annual ACM Symposium on the Theory of
Computing, Denver, Colorado, May 1972, pp. 35-4k.

Paterson [1967]. M. S. Paterson, "Equivalence problems in a model of
computation," Ph.D. Thesis, University of Cambridge, England
(August 1967). Also Artificial Intelligence Memo, No. 1, Masc.
Institute of Technology, 1970.

Paterson [1968]). M. S. Paterson, "Program schemata," in Machine

Intelligence % (Michie, Ed.), Edinburgh University Press, pp. 19-31.

Paterson and Hewitt [1970]. M. S. Paterson and C. E. Hewitt, "Comparative
schematology," in Record of Project MAC Conference on concurrent
systems and parallel computation, ACM, New York (December 1970),
pp. 119-128.

Plaisted [1972]. D. Plaisted, "Program schemas with counters," Proceedings
of the Fourth Annual ACM Symposium on the Theory of Computing,

Denver, Colorado, May 1-3, 1972, pp. 4h-51.

Rogers [1967]. H. Rogers, Theory of Recursive Functions and Effective

Computability, McGraw-Hill, 1967.
Rutledge [196L4]. J. D. Rutledge, "On Ianov's program schemata," J.ACM,
Vol. 11, No. 1, (Japuary 196L), pp. 1-9.

Shoenfield [1967]. J. R. Shoenfield, Mathematical Logic, Addison-Wesley

(1967) .

250

17 T S A

Strong [1971a]). H. R. Strong, "Translating recwsion equations into
flowcharts," Journal of Computer and Syster: Sciences, Vol. §
(June 1971), pp. 254-285.

Strong [1971b]. H. R. Strong, "High level languages of maximum power, "

Proc. IEEE Conference on Switching and Autamata Theory, 1971,

-

ppo l-hu

231

