
piniiiwuiiipppi^ii,.jiMiiumi.iia •^«WWWiPWliPpiiipiiiWII^^

AD-758 646

ON THE PROPERTIES AND APPLICATIONS OF
PROGRAM SCHEMAS

Ashok K. Chandra

Stanford University

J
Prepared for:

Advanced Research Projects Agency

March 1973

DISTRIBUTED BY: m\
National Technical Information Service
U. S. DEPARTMENT OF COMMERCE
5285 Port Royal Road, Springfield Va. 22151

Billlll II II fl"ll' ■■■■•■--■^--^■«--^-■'-■■■■^-.-. ^ ■■-■■. :^,..~^-^-..-^ -—-■■■—- L '»fril i^.nit I . -^-.LV:^..-.,.. ^- .,-..^v.. .-,-..

Pr^-.T ■^!i-<<^*3^^?|^ -f^^-'*,^■l' ■J'■ ^ww M^fW,» -:w J n U.K?fl|!^!#i^(P^!IJ!|ifl!lll«!lipUiJlliÄ WWP) ^f .if .-^«"■fT'

STANFORD ARTIFICIAL INTELLIGENCE LABORATORY

MEMO AIM-188

STAN-CS-73-336

CO

CD
00

ON THE PROPERTIES AND APPLICATIONS OF

PROGRAM SCHEMAS

BY

ASHOK K. CHANDRA ' D D C

r:'\ APR 19 1973

SUPPORTED BY

ADVANCED RESEARCH PROJECTS AGENCY

AR PA ORDER NO. 457

c

MARCH 1973
Reproduced by

NATIONAL TECHNICAL
INFORMATION SERVICE

U S Department of Commerce
Springfield VA 22151

COMPUTER SCIENCE DEPARTMENT

School of Humanities and Sciences

STANFORD UNIVERSITY

"bl^TKIBUTION STAfEMOfT

Approved, for public release;
Dislribution UnHmiled

«HÜ ■.«MuMMMlM ^ -— iiiri<n^iifi«i ft ■ -

uii.,i i.,!..^! imi.iniiiinnngpvs^HRi.ii. j niiii|igniHaiinp>pui '" " "< ""mtijwnmsmimmfmmi

^

STANFORD ARTIFICIAL INTELLIGENCE LABORATORY MARCH KTM
MEMO AIM-188 y'5

COMPUTER SCIENCE DEPARTMENT
REPORT STAN-CS-75-536

ON THE PROPERTIES AND APPLICATIONS OF PROGRAM SCHEMAS

by

Ashok K, Chandra

ABSTRACT: The interesting questions one can ask about program Schemas
include questions about the "power" of classes of shemas and
their decision problems viz. halting, divergence, equivalence,
etc. We first consider the powers of Schemas with various
features: recursion, equality tests, and several data structures
such as pushdown stacks, lists, queues and arrays. We then
consider the decision problems for Schemas with equality and with
commutative and invertible functions. Finally a generalized
class of Schemas is described in an attempt to unify the various
classes of uninterpreted and semi-interpreted Schemas and Schemas
with special data structures.

This research was supported in part by the Advanced Research Projects
Agency of the Office of the Secretary of Defense under Contract No.
SD-I85.

The views and conclusions contained in this document are those of the
author and should not be interpreted as necessarily representing the
official policies, either expressed or implied, of the Advanced Research
Projects Agency or the U.S. Government.

Reproduced in the USA. Available from the National Technical Information
Service, Springfield, Virginia 22151.

-i

^-^"^~-"- ^-^;,...-,J....1.,.L .,...., nin-lf"-' ■ - ■■■■■" V-.-1,..-..- .^..a^...—- - ,.-.., ^- ,-., ._„,_■„,..... , 1 , mif—..-. ..^-^^I.-.I—,--^^.---.. ,J.., ■■^.:.,.,-..,.-. ,.: .. u-jjji

Wi™p*'l»»w»*!»B»!Wlw«W5»w^!H?!<^W!^»w<»7«B*»^

>

Ac knowledgment

I would like to express my sincere gratitude to my advisor,

Professor Zohar Manna, for his stimulating suggestions and his constant

guidance and encouragement during the course of this research. I also

take this opportunity to thank my Professors, in particular, Robert

Floyd and Donald Knuth, for teaching me what research is all about.

My fellow students contributed to this work through their helpful

discussions, and Phyllis Winkler did so in a more tangible fashion by

her excellent typing and her unwavering belief that my iterations on

the manuscript would eventually converge.

I dedicate this work to my parents.

Preceding page blank
111

..^^.^^.■.^..^■..^^..^^^■«■w^^ ■■-'■'■■■•■"■-■'-'it-iilMiiiitrtiiii'fi ■■ ■'iriifiiM ^■■>-"-^-- ■^■■■■•'■.^ ,. M|[| .-,...^^:^~^--J.^.aJ^*M^-<.^^ ^"i-lii' i 'i iiMiti

■ I nil I, |||p|MIH» If HIHI II HIHIHI II lllllillMW.f.iWWPffWi'H m lllipuwwiipnni IIUHlWIINl |||l|lnl|IHHIIM|illM II pill I l|ll|l|l|ll i| M Mill III I | wj |IIJMllll|IM

Table of Contents

Chapter 1. Introduction

Chapter 2. Translation Problems

2.1 Introduction

2.1.1 Flowchart Schemas q

2.1.2 Augmented Schemas nj,

2.1.5 Recursive Schemas 17

2.1.4 Halting, Divergence, and Freedom jQ

2.1.5 Equivalence 22

2.1.6 Isomorphism p,-

2.1.7 Herbrand Schemas 28

2.1.8 Value Languages ^

2.1.9 Discussion and Proofs xh

2.1.9.1 Qn the Treatment of Equality ty

2.1.9.2 Proof of Theorem 2.1 jg

2.1.9.3 Proof of Theorem 2.2 ^

2.1.9.4 Proof of Theorem 2.3 45

2.1.9.5 Proof of Theorem 2.!+ 1^

2.2 Value Languages of Schemas ur,

2.2.1 Flowchart Schemas w

2.2.2 Recursive Schemas ^9

2.2.3 Proofs of Theorems on Value Languages 50

2.2.3.1 Proof of Theorem 2.7 CQ

2.2.3.^ Proof of Theorem 2.9 55

2.2.3.3 Proof of Theorem 2.10 cy

2.2.3.4 Proof of Theorem 2.11 g*

iv

^MMMMaiiftMtfMUiMttlWillwiMttaMMiMi» Aiiill ■■ - - "'„i „ ii'JIiHIM»

^MPP1" sfmimmmm tmtivimmmmimmmmmmmm.ii>ji.

{

2.3 The Power of Classes of Schemas 65

2.5.1 On the Number of Variables in Schemas 65

2.3.2 Equality Tests 68

2.3.5 Counters, Stacks, Recursion, Arrays, etc. ... 72

2.3.h Proofs on the Power of Schemas, and

Detailed Examples lQ

2.3.^.1 Proof of Theorem 2.15 73

2.3.^.2 Proof of Theorem 2.lU 81

2.3 A.5 Example 1 -- Inverse of a Unary

Function 85

2.3.h.k Example 2 -- Herbrand-like

Interpretations 85

2.3.1+.i; Example 3 — The Witch Hunt 86

2.5.^.6 Example k — Translation of Flowchart

Schemas with One Counter 88

2.5.^-7 Proof of Theorem 2.l6 9U

2.5.1+.8 Proof of Theorem 2.19 97

2.5.1+.9 Proof of Theorem 2.20 (Maximal

Classes of Schemas) 105

Chapter 5- Decision Problems 110

5.1 Introduction 110

5.2 Equality Tests 112

5.2.1 Notation 112

5-2.2 Solvable Classes 115

5.2.5 Unsolvable Classes 115

5.2.U Proofs for Schemas with Equality 118

.

-

.

0

"

.

.

''-''■ "'""■■,-"-'■' ■•- nMtMHiiimi i iiaiiiiiiiliiiiiitfiiiiMiiriiiirimi i ■ -n 1. ■,-- ' ■ - ---■ -—..>-— -,—

»™W"'*TOB«!!PfPppiW!«»,'"™n?*m^^

9

5.2.U.1 Proof of Theorem 5.1 u8

5.2.U.2 Proof of Theorem 3.2 129

3.2.U.3 Proof of Theorem 3.3 131

3.2.M Proof of Theorem 3.U 157

3.2.1M Proofs of Secondary Results ila

3.3 Conmratativity and Invertibility j)^

3.3.1 Introduction -jj^

3.3.2 Schemas with Commutative and

Invertible Functions ^g

3.5.3 Application to Finite Automata Theory Ik8

3.5.^ Proofs 2.^3

3.5.1+.l Proof of Theorem 3.5 153

5.5.^.2 Proof of Theorem 5.6 160

3.3.^.5 Proof of Theorem 3-7 167

3.5AA Proof of Theorem 3.6 171

Chapter h. Generalized Flowchart Schemas I7I).

h.l Introduction 2J7k

h.2 Definition of Generalized Schemas 177

k.2.1 Basic Definitions , 177

h.2.2 Some Examples I81

k.3 Equivalence of Schemas jßl±

^.5.1 Introduction I8I4.

U.5.2 Definitions 185

^.5.5 Exajuples 187

VI

■Mtmn.r.fKi- ■ I.^II IIIIM^MIII''--^^"-'-'--"-'''^^-'—•'-- -iflniii'iiirt-' ■-'-'«-' ■■'■■■■■■ .*.. „.^..t--— .. .- _,-..-..,:......,; ■-,.^^,..,

••W!IlWWW«|lf5^W"PmW|l|^»pilp|JB»KBBB^»pwWWI»W»ilS^

.

k.k Classes of Schemas 185

l+.U.l Introduction 188

k.k.2 flowchart Schemas 19?

h.h.2.1 One-variable Schemas 19>

U.U.2.2 n-variable Schemas I9U

U.U.5 Flowchart Schemas with Markers and

Boolean Variables 197

U.U.5.1 Markers 197

U.U.5.2 Generic Variables 19°

U.U.U Counters, Stacks, Arrays, and Other Features . . 200

U.U.U.I Counters 201

U.U.U.2 Arrays 202

U.U.U.5 Pushdown Stacks 202

U.U.U,U Queues 20U

U.U.U.5 Lists 205

U.5 Properties of generalized schemas 1 206

U.5.1 Interpreted Schemas, Herbrand Schemas, and

Oracle Schemas 206

U.5.2 The Fundamental Theorem of Maximal Schemas . . . 211

U.5.5 Decision Problems 212

U.5.5.1 The Halting Problem 213

U.5.3.2 The Divergence Problem 2lU

U.5.3.3 The Equivalence Problem 215

U.6 Proofs 215

U.6.1 Proof of the Translation Lemma 215

U.6.2 Proof of Lemma U.l 219

..

vi 1

—■'■-■ ■- -- IIIIM*IMII»1-— — ■" IU....... .■....^u.^L,.^,». r
 - ■"--—■ '

^...ll.llipjpfjlipiMIWLUJ^

'*M>MtTmil»iwMm.l.,l,..i

U.6.5 Proof of Lemma k.2 221

h.G.h Proof of Theorem U.5 225

I+.6.5 Proof of Theorem h.k 225

h.6.6 Proof of Theorem U.5 226

References 228

Vlll

iriiii iiiimiir^^,^'^^^*''vt1iiiMiw«titfiiiiii»'iiiiiiiiiiii^ - i ■ * •

l.-iilWWPW'ISflfflll^.^WBWIlW»» imp li*"WWIJIMWMIWl'ITOV'»'!«l«l""BVWf.liJI»,i«J'lli'iiU*WlJ«Wliny>WI..,,LulI.B(H«lW!Ji.lJI^ ■^m1

Chapter 1. Introduction

Prograjn Schemas and Their Applications

A program schema is a conputer program in which the basic functions

and predicates are left unspecified. . Essentially, a program schema

depicts the control structure of the program, and leaves most of the

details to be specified in an interpretation for the functions and

predicates of the schema. Thus, a schema is not encumbered with the

details of the actual domain of the values it computes on. This basic

approach can be used to develop a machine-independent theory of

computation. Of course, it is not intended that such a theory will

replace the other approaches that have proved useful, such as recursive

function theory, complexity theory, automata theory, the fixpoint theory

of computation and Scott's lattice-theory approach to computation.

Instead, it is expected to supplement these by providing a model for

computation in which certain useful facts can be expressed, clarified,

and understood.

Some of the applications of schemata theory are the following.

1. Comparing the power of programming features. By "power" we mean

the ability to program in a "natural" way. Interpreted programs are

not very useful for comparing power because interpreted programming

languages are caught very easily in the mire of Turing machine computa-

bility. For example, iterative programs with just three counters can

compute any "computable" function. Yet, all programmers are aware that

recursion is more "powerful" than iteration alone, and that a pushdown

'""-—j-"- ■■ -"^-^ ■-■■ --"■- ■ - . - . iiinriira^i-fr.itHM.taiiM^aMtnijaJlTtriiMMilfiiiiir1 ii.f..fcl[iiiiiii«iiiiiii i^M^rhiiiMaMM

'■'mmimw. WWW»lWBW-WV!«»!' «n '^ßmi^ßwj^m^^r ►ÄÜSWWP«1""»

stack can be used to eliminate recursion. These notions become trans-

parent at the level of Schemas. It is not expected, of course, that

Schemas will give a complete characterization of the intuitive notion

of power since even informally there does not seem to be complete

agreement on this notion. But it is hoped that Schemas will give an

approximation one step better than interpreted programs, and possibly

lead the way for further studies.

2. Another application of schemata theory is in the study of program

optimization. This is to be expected because optijnization often involves

changing the control structure of a program without altering the outcome

of the computation. Clceely related to the question of program optimiza-

tion is the problem of recursion removal. To give an example, consider

the recursive program

F(y) <= if P(y) then a else F(f(y))

where p represents some predicate test, f represents some function,

and a is some constant. It is clear that the recursive call F(f(y))

can be replaced by iteration: change the value of the variable y to

f(y) and repeat the "if p(y) then ..." statement. In fact, this kind

of an optimization has been introduced in many compilers. Now, consider
■

the following program

p{y) <= ü p(y) then a eM£ g(y*F(f(y))) •

Can this recursion be replaced by iteration? The answer is yes, though

in general the iterative program takes more time than the recursive

program. Sometimes, however, we can make use of particular properties

of the functions f and g to obtain more efficient code. For example,

G

~ . — ■■■ — - - ■ ■
--'-■■ ..,i.^....u.....^aa^^t»m^m,^i^a... -■•■ ■■— - —

^™'*»™™5W^pyOTWWTi™w^i™^Ww™^^ «"'"

if the function g is associative, this fact can be used to transform

the recursive program into one that is essential]^ iterative (analogous

to the earlier example):

P(y) <= if p(y) then a else G(y,f(y))

G(x,y) <= if p(y) then g(x,a) else G(g(x,y), f(y))

This example points out a limitation of the assumption that all base

functions and predicates be completely uninterpreted, because if such ar

assumption is strictly adhered to, then the translation described above

is not valid because it assumes the associativity of the function g .

What has happened is that by an insistance on modeling only the control

structure of our program (by saying that all base functions and predicates

must be uninterpreted) we have obtained a model that fails to embody the

same essentip.l relations on the domai'i of the program we were trying to

model. It seems, therefore, that in order to have a useful theory of

computation we must back off from a rigid stance of completely uninterpreted

base functions and predicates, and should allow semi-interpreted Schemas

in the theory.

5- A third application of schemata theory is proving properties about

deterministic processes (by "deterministic" we mean deterministic as

against intuitive, and not as against stochastic, or nondeterministic

as in automata theory) . For our purposes computer programs are the most

important of the deterministic processes (readers who have spent long

hours trying to debug programs might object to the use of the word

"deterministic" as applied to computer programs -- nevertheless, we

.x^» ■ m** m

^—^—

We certainly cannot prove the equivalence of these two programs by-

replacing the various functions (multiplication, addition, subtraction)

by uninterpreted functions.. Instead, we need the property that

multiplication is related to addition in a certain way, in fact, multi-

plication is defined by the function F in (3) below. Using this

additional piece of information we can prove the equivalence of (1)

and (2) as follows.

:

o

persist). Another example of a deterministic process is a finite auto-

maton. A side effect of proving properties about Schemas, and one that

has received scant attention to date, is that once certain properties

are proved about scheraas they apply to all the processes that are modeled

by the schema (^ee Chandra [1972]). In this way several results can be

proven simultaneously simply by proving the corresponding result for an

appropriate schema; and conceivably, Schemas could also be used to inter-

relate various results in different fields of the theory of computation.

To give an example, the equivalence of two programs can be proven,

in many cases, by proving the equivalence of the corresponding Schemas.

Frequently, however, we need some additional information about the inter-

relations between the base functions. Consider the following two programs

on natural numbers, where x and y are the inputs, and z is the output.

(1) z - x*y

(2) .x1 «- 0; y1 - y;

while y1 / 0 do begin x ♦- x+x ; y •- y -1 end;

O

■v

...,■—. ~^^^-.w.......lJ.^.l>fi..j.,i„..M,^

(5) F(x,y) <= if y = 0 then 0 else x+F(x,y-l)

(h) F(x,y) <- if p(y) then a else g(x,F(x,f(y)))

(5) F(x,y) <= G(x,y,a,y)

Gfoy^y^ <= if viv^ then \ else Gix-Mgi*,*-]),*^))

(6) x1 - a; y1 - y;

while -n pCyJ do begin x^^ - gCxjX^ ; v1 - f(y1) end

z - X-.

We replace (5) by its corresponding schema (U), translate it to an

equivalent schema (5) and finally change the form to make it purely

iterative (6). Now, in this schema, if we substitute the meanings

of the base functions and predicates we have precisely the desired

program (2) . One might well ask why we used schemas in this example.

The reason is that this clearly separates the semantic part of the

procedure from the syntactic part since the steps {h) to (5), and (5)

to (6) were purely a matter of symbol manipulation. But there is a very

desirable side effect of this method. Having proved the equivalence of

{h) and (6) once,- --.c can also use it to prove the equivalence of the
, y.

programs (?) and (8) where the operation of exponentiation (x) is

defined by the function F in (9).

(7) z - xy

(8) x^^ - 1; y1 - y;

while y-L / 0 do begin x1 - x*x1; y1 - y^l end;

z •- x

(9) F(x,y) <= if y = 0 then 1 else x*F(x,y-l)

— —-- - -- ^--^—J- ■-- ■■ mmil ■ miinrmii—MI-- -- ,. ^^.^^^^u^w...-..,-,..,.■■......^■■■■■..■,^M«^»aMf»uai^a.JaM

»

We should state that the preceding is merely an intuitive

elaboration rather than any attempt at a formal presentation of what

Schemas can be useful for.
■

Historical Remarks

The study of program Schemas can be traced back to the work of

lanov [I958, i960] where he treated the entire data space of a program

as being representable by a single value which could be changed by

applying functions, or tested by applying predicates to it. These base

functions and predicates were assumed to be total, but otherwise

uninterpreted. This model of computation is quite closely related to

finite state machines, and, as may be expected, the problems of termina-

tion and equivalence of lanov Schemas are decidable. In this regard,

the work of Rutledge [I96U] is also to be noted.

But this simple model of computation is not adequate for describing

most computations. To obtain a better description we would require that

the functions and predicates of the schema be related in some way. For

example, the data space in real computations is usually divided inta

individual components, and functions and predicates are applied to these

components. A convenient way of handling the subdivision of memory

(Paterson [I967, I968], Luckham, Park and Paterson [1970]) is to consider

Schemas containing several variables (also called registers), one for

each component of the data space. The base functions and predicates

are left uninterpreted. We argue in Section h.l, however, that these

basic concepts, viz., the explicit subdivision of data space and the use

of uninterpreted base functions and predicates, are not as general as could

be desired, and we attempt to remedy this situation.

6
i4»

■~—*i~'"~'- " '■-- ^^-.^-—»t^.^.»^-a*.-„ , 1 ■ ,...., .

D

■

I

. mm m ,, :,■.... 1 Mt MlMH

Subsequsnt work in schemata theory has been in studying the effects

of additional features, for example, the use of recursion, counters,

pushdown stacks, arrays, parallel computations, partial functions in the

interpretations, etc. Without attempting a complete list of contributions,

we note the important works of Karp and Miller [I969], Paterson and

Hewitt [1971], Strong [1971], Garland and Luckham [I97I], and Constable

and Gries [1972]. It is interesting to note that the earlier works

tend to focus on the decision problems of Schemas, namely, the halting,

divergence and equivalence problems for Schemas, and subsequent works

mainly deal with the problems of translation from one class of Schemas

to another class.

Outline of the Thesis

In this thesis we restrict our attention to scheraas with no explicit

inputs: zero-ary functions (individual constants) serve the role of

inputs. The interpretations for a schema describe total functions and

predicates over arbitrary domains -- we do not allow partial functions

or predicates in an interpretation.

The chapters have been organized so as to separate the main results

and the intuitive discussion from the detailed proofs and examples which

relatively few readers would like to plow through anyway. Most of the

material requires no prior knowledge of schemas, but many of the proofs

assume a familiarity with the basic methods used by other researchers.

Most of the notation and introductory material on schemas is contained

in Section 2.1. Section 2.2 discusses a relation between schemas and formal

languages via value languages of schemas. This leads up to a discussion

 ■ mi - -

^^^^^^^^^^^^^^ ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^"

on the power of various clasr.es of ucheraas in Section 2,3. Chapter :)

deals with the decision problems of Schemas. Tie first part (Section 5.1)

considers uninterpreted flowchart Schemas with equality tests. The

second part (Section 5.2) considers semi-interpreted Schemas, and, in

particular, considers the effect of commutativity and invertlbility

relations on the decision problems. The final chapter. Chapter k,

introduces a class of generalized schemas. The formalism of a first

order theory is used to unify the data structures used by schemas with

the base values on which the schemas compute, and it is .shown that much

of conventional schemata theory can be represented within this framework.
.

.

.

 , -"-•• -»^Jj-J

IM- ' ■ i-y ' ,,_,., J,.-J, , , . .11 . . -J.' i

:

I
»

Chapter 2. Translation Problems

2.1 Introduction

In this section we introduce the basic definitions and terminology

to be used in later sections. Only the simplest of proofs are given in

the main exposition, the others are postponed to Section 2.1.9.

In the development of many theories (e.g. number theory) it hac

turned out that the most fundamental questions (e.g. what is a natural

number) are answered quite late in the development. Part of the reason

for this is that the answers to these questions are unnecessary for an

intuitive understanding of much of the theory, and the formalism necessary

to answer them can detract from the simplicity of the rest of the theory.

In accordance with this view, we will be quite informal on many points,

namely, on the following questions:

(a) what is a schema,

(b) what is an interpretation corresponding to a schema,

(c) what is an uninterpreted schema,

(d) what does the "value of a variable" mean.

The answers to these questions are obvious for the Schemas we present in

this chapter and in the next one, and we dispense with formalities until

the last chapter which defines a formal notion of Schemas.

2.1.1 Flowchart Schemas

A flowchart schema S has a finite number of variables represented

by the symbols y^y^ .. .,yn, z^z^ ...,z . It uses uninterpreted

functions f^fg, ...,fr and predicates p^Pg, ...,p called the base

ÜMM

' \ ' , ' ' ^
/

functions and base predicates. We should caution the reader at this point

that we will not restrict ourselves to the use of just these symbols to

denote variables, functions and predicates when convenience and clarity

demand otherwise. Some of the base functions may be zero-ary functions,

also called individual constants, and usually denoted by the symbols

a1,a2;... . A term T can be built up using the variables y,,...,y

of the schema and the zero-ary functions, and applying the other functions

to them. We use the notation T(y. ,y ,...) to indicate that no
1 ^

variables other than y ,y ,... appear in the term T , for example,
1 *2

T(y1>yj) indicates that no variable other than y and y appears

in T , but it is not necessary that both have to appear. In accordance

with this nomenclature, T() denotes a constant term, r.hat is, a tarm

that has no variables in it. A monadic schema is a schema in which only

zero-ary and unary functions and predicates are used.

An interpretation I over a domain D contains the functions and

predicates f-^ • •-jf^p.^ .. .,p5 which correspond to the function and

predicate üymbols f-^ ■ •., f^p^ .. .,p,. of a schema. If f. is a k-ary

function symbol, then f* : Dk - D ; likewise, if p. is a k-ary

predicate symbol, then.- pj : Dk - B where B is the boolean domain

(true,false] . We will usually not distinguish between the symbols f.

and fj , and we will write the latter simply as f. , with the

interpretation I being understood.

A schema is said to be uninterpreted if all interpretations which specify

(at least) all the base functions and predicates of the schema, are allowed.

A schema is said to be interpreted (partially interpreted) if not all

10

,

«Mil ■■— ■ ■■rTiiiilM*niimiMiiMiiM'M«iMiii'lniTliiit i ■ --" ..>~~..~.,-*.. ^.■.^u^*—^—>..... iMii^iiyhn>rmi ,mm»i -'■'■■--—* - -.-...--L.-i-.-—^-^-uww-u,. ^*.—.,...-.^-.,■.-■■. .M.fl1| p,....!.-.. riinniini i

m^mmm^m^Kumnmm PW .ID mijmwHiipmmmmmmmmmmsmmmmmm mmmmKmmmmmmmmmmBmmm

interpretations are allowed. If I is an interpretation that is allowed

for S , we say I is an interpretation for S , and S adjnits I .

It is clear that a schema uses two kinds of values -- base values

which are elements of the domain D of the interpretation, and

boolean values, which are elements of the domain B . Now the mystery

of two kinds of variables y. and z. can be clarified. The variables

of the form y. take on base values, and variables z^ take boolean

values. The y.'s are called data variables, or just variables for

short: the z.'s are called boolean variables.
' i

An atomic formula is a boolean value, a boolean variable, or

p(T ,...,T.) where p is a k-ary predicate. We use the symbol a

to denote an atomic formula or a negated atomic formula -- sometimes

called a primitive formula. In accordance with the nomenclature for

terms, a() indicates a constant atomic formula (or negated atomic

formula).

The statements of a flowchart schema are of the following types

(there is a singlo start statement in the schema):

Start statement;

START

^•••'VZl''-"Zm> -

(T1(),...,Tn(),a1(),...,am())

T
Halt statement;

HALT(T)

11

 ■.- •. .,.., ,..,.,; . . „,;.

-- —^ - , inn nufa ■ i m\\m**at*mimai

n— mmmmmm mn.",..' -HH.u^H-HUiiii.iiu.iujj i,..fliiiu,)MI!WI!J|]««uijpjJPi»i|ll^i^^_wip»J#|lt!».l)J«!».Jn5flfW!^^|l

Loop statement;
U

Assignment statement:

Test statement;

1

T

True/ \ False

The assignment statement simultaneously reassigns the /alues of all

variables. Often, only a few of these are to be changed, and for

convenience, we allow the abbreviations

i.
y.-t

T

1
z. »- a
i

T
which indicate that all variables not explicitly mentioned are unchanged.

To represent flowchart schemas we will usually use the more compact

ALGOL-like notation, allowing the use of labels (L-j,!^, ...) and goto

12

-

O

c

.

■

UM limn' — -" " ■ -"■"

' l..^* i,W!L UJ^I Jl^^l ■^tpr- iwppiiiilwiww'^iiiiiiis^iiiyiipp^iipwiiBipp^^ tmmmmmmmmmmmmmmm^mmwm.

statements, in addition, we also allow the use of block structure,

if-then-else statements, while statements, and nonrecursive procedures

with the tacit understanding that these features can he eliminated,

using goto statements instead to get a "legal" flowchart schema.

lanov schemas are about the simplest kinds of flowchart schemas.

A lanov schema has a single variable y , and its statements are of the

following types:

(1) STAJiT y - a ,

(2) HALT(y) ,

LOOP , (5)

iS)

{9.

y - ^(y) > and

if p1(y) then goto L, else goto L« .

A flowchart schema with equality is a flowchart schema with the

addition that atomic formulas of the form

T1 = T2

are also allowed.

Currently there seems to be a little misunderstanding as to the

role of schemas with equality. In our treatment a flowchart schema with

equality is not a partially interpreted schema because absolutely no

restriction is placed on the interpretations allowed. This point is

considered in greater detail in Section 2.1.9.

The class of flowchart c-chemas will be denoted by C{) , and

flowchart schemas with equality by ^(=) . The class of flowchart schemas

that use no more than n data variables is C(n var) , and similarly

G^n var, =) for equality schemas. Note: schemas in (3(n var) or in

13

"■ ■ " ■ -""■ iir- -- - - - - -- ■ -

■Pilillippil^lHFPPWW^w'WWWwPWWW^W^^

C.(n var, =) may have an arbitrary number of boolean variables.

2-1.2 Augmented Schemas

We will also consider flowchart schemas augmented with (structural)

features designed to make the schemas more powerful.

A counter is a variable (usually denoted by the letter c) whose

values are non-negative integers. All counters used by a schema are

initialized to zero by the starb statement. The operations allowed

on a counter are

(1) c - c+1 ,

(2) c - c-1 , and

(5) ^ if c = o then goto L. else goto L0 ,

where L^ are arbitrary labels. The subtraction (diminish) operator

in c - c-1 is on natural numbers, that is, 0-1=0. The class of

schemas with counters is designated C-(c) , schemas with at most one

counter ^Ic) , with a counter and equality C(lc,=) , a^d so on in the

obvious way.

A pushdown stack (usually denoted by the symbol s) is a last-in

first-out store which can hold values of both types (data, and boolean).

A schema with a stack can "push" a data value and a boolean value into

the stack, it can "pop" them from the "top", and it can test to see if

the stack is empty. The statements allowed are:

(1) s -push(s,y,z) , and

if s - A then goto L else begin <y,2) - top(s); s - Pop(s) end ,

Ih

(2)

: i

-- - - ^*m~*~~~. —' ' "

IUIII.II|«I^III iiMJuiiwwiMi »i M.mmmmmr& UIUIHWIWWII« mi^wm*^m^m^nm 1 ' •"

where y denotes an arbitrary data variable, z a boolean variable,

A the empty stack, and L a label. The start statement in a schema

initializes all stacks to be empty. The class of Schemas with pushdown

stacks is (^(pds) , with at most one stack (3(lpds) , etc.

A queue (usually denoted by q) is a first-in first-out store.

A schema with a queue can "add" values at one end, and "remove" them

from the other end (first(q)) , and it can test to see if the queue

is empty. The statements for a queue are:

(1) q - add(q,y,z) , and

(2) if q = A then goto L else begin <y, z) - first(q); q - remove(q) end

'■ i-

The start statement initializes all queues in a schema to be empty.

A list (usually denoted by £) is a structure as in LISP. The

functions car , cdr , cc.is , and the predicate atom play the same

role as in LISP (atom(x) is true if x is a data value, or A (nil) ,

and false otherwise). The statements allowed are the following:

We use " Ival " to represent A , a data variable, or a list

variable.

r.

(i)

(2)

(5)

i - Ival

i - cons(lval ,lval)

if I s A then goto L,

::

15

fmutmmmmMmt ■ ■- ■ - - -

«1 >- mwlHIM^BJBfW!! *H*lf" ^^pSIffR»pipi^^5»BW,W5^B^|p|iiS«BI||K^^Mra?P^WP^?WjpB^H^?^l^^*f^^^?«S|pBf!^H^^

(^a) if atom(l) then goto L

else if n atom(car(l)) v car(l) = A then goto L0

else j^ - car(l)

(hh) if atom(/) then goto Ln j_

else if -i atom(cdr(l)) v oäx(t) = A then goto Lp

else y. - cdr(£)

(5a)

(5b)

if atom(f.) then goto L elae I. - car(i.)
i j x

if atom(f.) then goto L else i. - cdrff.) — i a o v i7

where '^^^i. represent list variables, and L^Lp represent labels.

The start statement of a schema initializes all list variables to A

(nil) . The class of Schemas with lists is C'(list) .

An array (A) is a one-dimensional, serai-infinite sequence of

"locations" that can take on data and boolean values, and can be accessed

by subscripting the array with a counter. The statements allowed are:

(1)

and

(2)

<y*z) - A[C] ,

A[c] - <y,z) ,

where A is an array, c is a counter, y is any data variable,

and z is any boolean variable. In addition, the start statement is

changed to initialize all arrays. It has the form

START <y1,...,yn,z1,...,zm) - <T1(),...,Tn(),a1(),...,ü!ni()>

(A^...,^) - <T^(),a|(),...,T^(),a^())

where A^, ...,A. are all the arrays used in the schema. The start

Ü

• •

:.

o

0

o

o

16

^ *. ,.„..^.,^..-,^,.,....,.t....,.._...| ,, ... |nitt|i^..^.w(■ , __ ^ ^ ^_

J»HP"«iW|WPP^(y ■ ■iiiiipm ii»^.Kmwimmmmumimi^immm>mm^mmmfi'm..iiit>imvm.mJ,,w,ii<mniiiui u IIIMIIUUI IUI .„ m. ,.,m m'>.-mim'i'm»i > m Mmnmm m >" MI I»'I *. ■ itn^ HU ■

statement initializes all data locations of an array A. to T'.() ,
J <J

and all boolean locations to 0;'. () . The class of scheraas with arrays
J

is denoted (3(A) , and arrays with equality by (3(A, =) , etc. Kote:

the use of an array implies the use of counters, i.e., schemes in

(j(A) do have an arbitrary '^mber of counters.

2.1.3 Recursive Scheraas

A recursive schema is a set of mutually recursive function

definitions (of defined functions FQ,?,, ...). The functions are

passed a vector of data and boolean arguments (the simple case --

"'call by value" — is assumed even though it does not always lead to

the least fixed point: see Morris [I968], and also Cadiou [1972]),

and they are allowed to return a vector of values.

Given a vector (y,z) of data values y = y-,,y2> • •-.»y > and.

boolean values z = z.,,z?,.. .,z , we define the notation for picking

off the i-th data or boolean values as follows:

Y1(y,z) = yi and Z±{y,z) = zi

provided i does not exceed the maximum index (in either case). If

a vector has n data values and m boolean values, we say its type

is (n,m) . A vector of type (1,0) is a data element, and a vector

of type (0,1) is a boolean element.

1?

'-'-•"■■ ^---"-'-' -j—■ ■ - '■--'' ^JL^^^^.^^^,1 ■■--'•-" -.-^w.. -^ .-. iiflHmiMrtiinniiMWWniiii^^

pi^Bmilitfjp^R^IjWPW^WP^Swpsw^^

We can now define a recursive schema. It is a set of definitions

of the form:

F0<=T0(F);

F-j^z) <= if 0^(7,2,]?) then f-jjyjZjF) else f£(y,z,f);

F2(y,z) <= if a2(y,z,F) then T2(y,z,F) else f^(y,z,F);

L..

Fk(y,z) <= if ^(y,^?) thenTk(y,z,F) else T^(y,z>f) j

where F = (F^Fp,>Fk) and y,z" represent arbitrary vector arguments

in each case, T is of type data, and a. is of type boolean. Terms

can be constructed using the arguments y,z of the defined function,

and applying the base functions, defined functions, and the notation

Y.,Z. for extracting an element from a vector. It is implicitly assumed

that there is no type mismatch.

The computation rule for terms in the schema is leftmost innermost,

with the exception that if exactly the same function call appears more

than once in a function definition it will not be computed more than

once — rather, the values returned by the first call are substituted

in the others (in fact we could have prevented multiple identical tmais

from appearing by a more complicated notation). This is one of the

reasons for allowing functions to return vectors, i.e., it results in

relatively efficient computations. For example, consider the schema S

below (unnecessary parentheses are omitted):

S: F0 <= h(Y1F1(a,a),Y2F1(a,a)) ;

F;L(y1,y2) <= if p(y;L) then <y1,y2>

else <fyiF1(fyi,gy2),Y2F1(fy1,gy2)) .

18

,.

iiiiit'iififa't-t'~'"--'',"'"'iiiTmiirniiiiiil infill . ..;,-■„.„■ .^.-.J.,^.^ , ~-r—~
■.'.."•■ > ■

... v -■ •- ;.,. ..

■pp""»«*IBin!!Rnfj»j(WPiii™!wmP'»w™wm^ JLIl,.«^JIllJW«nHiy|ui,,i(JJ,,»w»!|U.,^iiW»lliipiiWJi|»i

i

0

Not calling F^^ both times in (fl^Cfy^gy^^y^Cfy^gyg))

results in an exponential saving in the length of the computation.

The class of recursive schemas will be denoted ^(R) ■ The number

of "variables" in a recursive schema is the maximum number of data

elements either passed as arguments to, or returned from, a defined

function. The class of recursive schemas in which no defined function

is passed more than n data variables, and no function returns more than

n data values is denoted C-^n var) ; similarly, the class of recursive

schemas which allow equality tests is denoted (3,(R, =) , etc.

In the rest of Section 2.1 whenever we refer to an arbitrary

uninterpreted schema we mean a schema from C'(pds,q, list,A,=) u (3(R, =) .

We can get an interpreted schema by restricting the interpretations

allowed. One way of doing this is by specifying that every interpreta-

tion for a schema satisfy some formula in predicate calculus; but mostly

the schemas we consider will be uninterpreted.

2.1.^ Halting, Divergence, and Freedom

Definition. A schema is said to halt if it halts on every interpretation.

Definition. A schema is said to diverge if it diverges on every

interpretation, that is, it does not halt on any interpretation.

19

.,.,.:,-, ..„.. .-. .„■ ^ ^^,^^^^^^^..^U^^. MhWiifMiii --'--"-■■'■■"— — ■ •■r- ■-■■—-"—..■...-

MHI iiuM, in., i ii i ui.mmmmmm* wfmmmmmmmmmm w

Definition. Let s^s^s^... be the statements of a flowchart, or

an augmented flowchart schema S . Then, a path in S is defined to

be a finite or infinite sequence

^O'^l'^ '"}

where for each i , t is s for some J , if s. is a start, halt,

loop, or an assignment statement, or t. is <s.,true) , or <E.,false)

if s is a test statement, and the sequence mus*, have the property that

(i) ^Q is the start statement, and no other t. is the start

statement,

(ii) only the last element in the sequence (if any) can be a halt or

a loop statement,

(iii) if ^ is the start statement, or assignment statement, then

ti+l corresPon(is *o the statement following t. in the schema,

(iv) if ti is <s ,true) then ti+1 corresponds to the statement

following the test s if it takes the true exit; and similarly

for <s.,false) .

O

O

Definition. We can similarly define the notion of a path in a recursive

schema. Let S be a recursive schema, and P.,?,,?-/.-.. be its defined

functions, and s^Sg,... be the corresponding tests is the if-then-else

definitions. Then a path in S is a finite or infinite sequence

(t^t^tg,...)

where for each i , ^ is either (enter F.^ , (exit F.) , (s.,true) ,

or (s^,false) . The first element, t0 , is (enter F) , and only the

last element, if any, can be (exit F0) . The significance of the t.'s

20

 -■ - — ■■ l^>H «IlKIMMmill ^uttmtm Maü

lilWWPWP^iBlilPIBiPBBllBIMBBPliP"^^

is obvious, and we say that a path must have the property that the

sequence of t.'s must obey the computation rule for recursive Schemas,

(that if, leftmost innermost, with substitutivity for identical terms in

the same function definition).

Definition. Given a schema S and "an interpretation I for S , the

path of the computation of S on I is denoted by Path(S,l) .

Definition. A schema is said to be free if every path in the schema

can be taken by its computation on some interpretation.

As example, the schema S is not free because the path

(SQ^ (s1,false), (s2,true)) cannot be taken for any interpretation.

In fact, even the schema S is not free because no interpretation can

take the false-exit from statement L, (even though the true-exit and

the false-exit both lead to the same statement). The schema S is
' c

free, as is the recursive schema S, . However, the recursive schema

Se is not free because the test F2(y) can only take the true exit.

S : START y - a; comment: call this statement s :
0

^l- if P(y) then goto L2; comment: call this s ;

if p(a) then ^oto luj comment: call this s ;

L2: HAlT(y) ; comment: call this s,;

Sb: START y - a; conment: call this statement s ;

if p(y) then goto L; comment: call this s ;

if p(a) then goto L; comment: call this sp;

L: HALT(y) . comment: call this s,;

21

- - --■ ■ .—.. . .——.-_-~—_——■^—... ,. _. ..■_._ __. . — —..

■^—»■■^^^^^w« ■»■■—' "lm" MW>iin>i..i.wii -l-Wi-IU

Sc: START y - a;

while p(y) do y - f (y) ;

HALT(y) .

Sd: ^O-F^J

F1(y) <= if F2(y) then f(y) else g(y);

P2(y) <= if p(y) then F2(f(y)) else F2(g(y)) .

Se: F0<=F1(a);

Fi(y) <= i£ F^W ^s f(y) ^£ B(y) j

F2(y) <= if p(y) then true else P2(g(y)) .

Freedom, as defined, is not a very useful concept for augmented

scheraas because some of the functions and tests are totally interpreted.

Thus, if a counter schema tests " c = 0 ", then all paths in the schema

cannot be taken because the outcome of this test is fixed once we fix

a path leading to this test. The same is true, for example, for a stack

(a schema attempting to pop a stack must test if it is empty), a queue,

or a list.

2.1.5 Equivalence

Given a schema S and an interpretation I for S we use the

notation Val(S,l) to denote the output (of the computation) of S

on I — if S does not halt, then Val(S,l) is undefined.

Definition. Given two (uninterpreted) Schemas S1 and S , we say

that S2 includes S1 {S1 < S2) if for every interpretation I for

u

22

•—»p. t^^'mtmmmm^^^ wimmu^mmi ■■■>

Q

S1 and S2 (that is, I specifies all base functions and predicates

used in both S^^ and Sg), if Val(S2,l) is defined, then so is

ValCS^l) and ValCS^l) = Val(S2,l) .

Definition. Two scheraas S^^ and S2 are said to be equivalent

(Sj 2 S2^ if Sl - S2 and S2 - Si ' that iE' for Bil1 interpretations

I for S1 and S2 , if one schema halts, then so does the other with

the same output.

The notion of equivalence (s) is sometiraes also called output

equivalence, or strong equivalence.

It is immediate that the relation H is reflexive and syraraetric.

It is also transitive, but this proof requires a little care. The only

problem is that given S1 = S^ and S2 = S3 , to show that B- s S, we

have to show that if I is any interpretation for S and S then

Val(S1,l) B Val(S,,l) . But I may not be an interpretation for S

and S2 (or for B and S, , for that matter) because S0 may contain

some superfluous functions or predicates. To overcome this problem, we

note that If I' is any interpretation for S.. , S. and S_ , then
12 3

Val(S1,I
1) = Val(S2,I

1) = Val(S5,II) . And from this, the desired result

follows, for if I is any interpretation for S^^ and S3 , we can extend

it to I« by adding the new functions and predicates of S? (arbitrarily)

and then Val^l) = Val(S1,I') = Val(S5,I') . V&l{Syl) .

An alternative definition of equivalence (and a corresponding on

applies to inclusion) is that S^^ ■ S2 if for every interpretation I

for S1 there is an isomorphic interpretation Ig for S (let 9 denote

the isoraorphism 9: ^ •• Ig , I.e., 9 is a one-one mapping from the

23

 I u , ^ tamt

l(«lWBl^||MWlMll',li™>,UU-MI"_ ilJlllli|ll,llilllll|lWWpPP|(iP|RJPB«W*«'WWIi«lW|-«HI»IJ1* iLUiUlllIIJIJIBilllUllllIIHIllil^W^^WWi" J w,pi IIIJ|IILPJ_ J.l iliiw«p™«»RB«BBIPP«WI»l»,lU J,,iu* .liu] Jl(| pLpuwil

domain of l^ onto the domain of I that preserves functions and

predicates) such that if Val^,]^) or Val(S2,I2) is defined, then

both are defined, and Val(82,Ig) = 0(701(8^1.)) .

The two definitions are the same owing to a basic notion

regarding schonas -- that the behavior of a schema over two isoraorphic

interpretations is the same, i.e., the paths of computation are the

same, and the values of all variables correspond under the isomorphism

at each step.

- -A- fundamental notion of equivalence is-that if we'wänt to find a"

schema equivalent to some given schema S , then the schema to be found

need nox. have any function or predicate symbol other than tnose in S .

This result is implicitly used all the time in the theory of scheraas,

apparently without ever having been clearly formalized.

Theorem 2.1 (Redundant predicates and functions)

Given uninterpreted Schemas S and S such that 8 = 8., , we

can find a schana S equivalent to S such that

(i) S2 has no function or predicate symbol not in both S and S, ,

(ii) S2 has exactly the same features (that is, equality, recursion,

number of variables, counters, stacks, queues, lists and arrays)

as those of S, .

This theorem may also be called the "interpolation lemma for program

schemas".

For a proof, see Section 2.1.9. In this connection it may be

remarked that if we are given any schema S and a flowchart schema S,

21»

 IIIMMIIH Ill-Ill- ■■ -■-■ - ' - - - - ^^———~—*~-*~**—'

mr- -w^BpwBi^iiHpippiBppi^jiippp^^

;;

(Sj^eC^^)) equivalent to S , then there exists a schema S also

equivalent to S having properties (i), (ii) above, and also preserving

the freedom of S1 , i.e., (iii) S2 is free if and only if S1 is

free. This, in itself, is not astonishing. But it should be noted that

we said "there exists a schema S2 ", not that we can find it (as in the

theorem). It may come as a surprise that if we wish to preserve freedom,

then S2 cannot be effectively found in general I This is demonstrated

along with the proof of this remark in Section 2.1.9.

Definition. We say a class of Schemas (* is more powerful than another

class C^ (Q^ < (Jjj) if for every schema in (L there is an equivalent

schema in (3p •

Note that the meaning of the symbol " < " is quite different when

applied to individual Schemas, and when applied to classes of Schemas.

Definition. A class C is strictly more powerful than (^ (C. < C-)

if &]_ < &2 , but not Cg < OH •

Definition. Two classes C~ and '» are equally powerful, or

equipollent, (^ a ß^) if ^ 5 ^2 , and C^ < (^ .

2.1.6 Isomorphism

Intuitively, saying that two Schemas are isomorphic means that they

perform their computations in the sajne fashion. This differs from

equivalence which says that two schemas always produce the same output

25

■ -- -

**~*immmm ■Bra^BWW»WII!PIPi(MPIBWIillP""IWIPP*™PPI«BIW«l^

even though they might tjerform their computations by quite different

algorithms; for example, one schema might be more efficient than

another as far rr. the number of operations is concerned.

Several notions of isomorphism can be defined. We consider some of

these possibilities informally before presenting our definition. The

strongest notion, of course, is the identity relation between Schemas.

A weaker definition (call it N,) is that two Schemas are isomorphic if both

compute exactly the same statements (i.e., statements that look the same)

in the same order, for each interpretation. Under this notion, if the

roles of two variables are interchanged the schemas are not N,-isomorphic,

as in the case of the two schemas S„ , S below:

Sf: START (y^y^) - <a,a);

y1 - f(y2) ;

HALT(y1)

START (y^Yg) •- <a,a>;

y2 " ^J ;

HALT(yy) .

A weaker notion (call it N») is that two schemas are isomorphic if the

same terms are computed (in the same order). Thus the schemas S„ , S

above are Np-isomorphic because both compute the term f(a) only. But

the schemas S , S. below are not Np-isomorphic:

S.: START y - a;

y - fg(y)

HALT(y)

S.: START y - a;

y - g(y);

y - f (y);

HALT(y)

because S, computes fg(a) and S. computes first g(a) , and then

fg(a) . A weaker notion (N,) breaks down the computation of terms into

26

MMIWhu- ^^üwiHa^tuiUHüiMuiaMa

^mmK^mmmtiiumt^^ttg^^gmmmum* ■mni. um p^i^iiin ii m.i,^ ■ W* "'■ -"^i

its constituent parts making S , 3^^ N5-isomorphic, but not S, , Sk

below:

S.: START y - a;

if y = b then y •- f (a);

HALT(y)

S,: START y - a;

if y = b then y - f (b)

HALT(y)

The definition given below is a still weaker (and to us, a more

reasonable) definition that operates on elements of the interpretation

rather than on terms. It should be stated, however, that the decidability

and undecidability results of the next chapter remain unchanged if any

of the notions N, , Np , or N, is substituted instead.

Definition. Given a schema S and an interpretation I for S .

Let Seq(S,l) denote the (possibly infinite) sequence of vectors of

the form

(^e..,.. .,e.) — where f is a k-ary function symbol,

<p,e..,. ..,e > — where p is a k-ary predicate symbol,

<HALT,e1> , or

(LOOP)

where the e.'s are elements in the domain of I -- that are evaluated
i

during the computation of S on I .

For example, if for the schema S . above, I is over the domain

[1,0,2,...} , a = b = 0 , and f is the "add-one" function, then

Seq(SJ,l) = «=,0,0),<f,0),(HALT,l)> = Seq(Sk,l) .

27

 ^^mmtm „.,.........—,—,,.... „„

■^ mmmmm i mimmmmmm*m'^^mmmmmmm*mimtm<* •^^
. „,■„

Definition. Two Schemas S.. and S0 are isomorphic (denoted S,

or S1 = Sp) if for every interpretation I ,

~ S,

isom

SeqCS^l) = Seq(S2,l) .

It is obvious from the definition that if two Schemas are isomorphic

then they are equivalent. The converse, of course, is not true.

2.1.7 Herbrand Schemas

Definition. Given a set of function symbols (containing at least one

zero-ary symbol) and predicate symbols, a Herbrand interpretation on the

set is defined as follows: the domain is the set of (fully parenthesized)

constant terms using the function symbols; the functions are defined in

the usual way for terms, and predicates are arbitrary.

An example may help clarify the definition. Given the set of

symbols (a,f,g,p} where a is a zero-ary function symbol, f and g

are unary function symbols, and p is a unary predicate symbol, a

Herbrand interpretation for this set has the infinite domain

["a,I,"f(a),',',g(a)1,,-f(f(a))",,'f(g(a))", ...]

where, for example, by "f(a)" we mean the term f(a) itself, consisting

cf a string of four syrrbols — "f" , "(" , "a" , and ")" • In the

interpretation, the value of the function f applied, for example, to

the element "f(a)" is the element "f(f(a))" , and similarly for g .

The value of p applied to any element in the domain can be arbitrarily

true or false.

28

- - . .. -..„ ... MioantiuiiaM M^ -^. —

■^.-l-..,*^ »^!^?f«WapfWlBSW*iP^P3aW^^WiBipS«pBpiBWPi^5?piP^l?lW >pt^mmz****i***^***q^^i'&**W!*^***^

■

r

t t

Definition. Given an interpretation I over a set of function and

predicate symbols, the Herbrand interpretation JT corresponding to I

is a Herbrand interpretation whose predicates are defined af. follows:

if p is a k-ary predicate symbol, and T-i>Tp>--^T
k are (fully

parenthesized) constant terms, then P(T1,T2, .. .,0 is true in I11

if and only if it is true in I .

As an example, consider the set of symbols {a,f,g,p} , and let I

be an interpretation with domain [0,1] such that a = 0 , f(x) = x ,

g(x) = 1-x , and p(x) is true for x = 0 and false for x = 1 . Then

IT is over the infinite domain mentioned above, and p("a") , p("f(a)") ,

P("g(g(a))") etc., are true, and p("g(a)") , p("f(g(a))") etc., are

false. In general, p(y) is true if y has an even number of g's .

Definition. An uninte~preted schema S is said to be a Herbrand

schema if for every interpretation I for S , Path(S,l) = PathCS,!11) .

In Chapter k this definition is extended to interpreted schemas

as well.

Definition. An inherently non-Herbrand schema is a non-Herbrand

schema for which there is no equivalent Herbrand schema.

Examples are given below (schemas S. -S).

The following simple but very useful theorem indicates why the

notion of Herbrand schemas is useful. We say that a schema S is free

29

■ata« ■ ■ - - - ■ - ■ —-1

I.Jl.J.illLIJi.lgBlllJJIIMWU.l,1 Jl' .IIU.liJ.U.JUiJ iJ.PMill^J.^*yiAl<ilJ!RU|luipw(prBSJpp|^BB«IWP««'WlS»» Bflssiwp^siwBmw^Brw iBan!.-v«vi»n„,, ulJUJjUlltl.mjl-JJ .^ __ ,_.,.,..■!*WFJI«ll|,«ll.J..*.il*J^|lJfl|f.llJl.'WI

on a set of interpretations J if for every path in S there is some

interpretation in S on which the computation follows that path; a schema

S halts (or diverges) on S if it halts (diverges) for every interpreta-

tion in ,9 ; we say that S, < S on J if for every le^ , if Val(S1,l)

is defined then Val(S ,l) = Val(S ,l) ;-and similar definitions apply

for equivalence and isomorphism. We use M to denote the class of

Herbrand interpretations .

Theorem 2.2 (Fundamental theorem of Herbrand schemas)

If S1 and S^j are uninterpreted Herbrand schemas then

(a) S1 halts if and only if S1 halts on V ,

(b) S1 diverges if and only if S, diverges on V ,

(c) S1 s S2

(d) s1 < s2

(e) S1~S2

(f) S is free

if and only if S1 = S2 on K ,

if and only if S, < S2 on K ,

if and only if S1 ~ S2 on V ,

if and only if S.. is free on % .

o

Parts (a), (b), and (f) are immediate from the definition of

Herbrand schemas; and part (c) follows from (d). For proofs of (d)

and (e) see Section 2.1.9.

We would now like to know what kinds of schemas are Herbrand

schemas. The next theorem Implies that it is the tests of equality

that tend to make schemas non-Herbrand.

50

—'■■— -•- '- ■■" - „.a^^i^^a^uaj..^. — ^ mmta ThiiMrM*l>MJ'^"—'•','- -■■■■■—--■.^.v-.— ...^ ■■■■■-■.-■----

tmmtnmt* ' . :

o

o

O

: * .

Theorem 2.? (Schemas without equality are Herbrand)

If S is an uninterpreted schema without any equality test then

S is a Herhrand schema.

Thus, the schanas in CO j <3(n var) , (3,(pds,q,list,A) , G,(R) ,

etc., are «11 Herbrand schemas. In general, however, it is not partially

solvable if a given schema is a Herbrand schema. This follows directly

from the fact (see, for example, Luckham, Park and Paterson [1970j) that

the divergence problem for (3(2 var) is not partially solvable. This

is so because if we are given a schema SeC{2 var) and we replace all

halt statements in S by

if a = b then HALT(y) else HAUr(y)

(where a,b are zero-ary functions not present in S) to get a schema

in (3(2 var, =) , call it S' , then S' is a Herbrand schema if and

only if S diverges.

Examples. Consider the schema ö below:

S.: START y - a^

if a = a2 then HALT(y) else LOOP .

This is a non-Herbrand schema because for every Herbrand interpretation

a. / a , though a. can equal a for some non-Herbrand interpretations.

In fact, S is an inherently non-Herbrand schema, because if there is

a Herbrand schema, say S' , equivalent to S| , then S' loops for all

Herbrand interpretations. But consider an interpretation I for which

S halts, then SI too must halt for I , and hence must also halt for

the Herbrand interpretation corresponding to I (since SJ is a Herbrand

schema by hypothesis) — a contradiction.

31

 ■ :- — -- --—-— - - - - ■■ -

■ ' ? " / ^—^BWBIWHWP"'«'!"'«""'^»"*""» 1 " ' ' u ' ~^™^^^|

However, the use of equality tests does not necessarily make

a schema inherently non-Herbrand, or even non-Herbrand. S is a
m

Herbrand schema that uses equality tests. It is equivalent to a

(Herbrand) schema without any equality tests (S) and also to a
n

non-Herbrand schema (S) with equality tests:

S!n: START (y^) - <a,a>;

L;if p(y1) then

if p(y2) then

begin ^ - f (y^ ;

^2 " f^'

goto L;

end

else if y1 = a then HALT(y) else LOOP

else if y1 = y2 bhen HALT(y) else LOOP .

■

Sn: START y <- a;

L:if p(y) then

begin y - f (y);

goto L

end

else HALT(y) .

STAKT y - a;

L;if p(y) then

if y = f(y) then LOOP

else begin y *- f (y);

goto L;

end

else HALT(y) .

'62

.._. -■•-—^ -— .—»-.^ ——--.. ■ ■ - — •■ ■— — - ■ -■■■^-'

l^ni.kLlliWlSWIipiÄWW'W^^WWMJW^ nWWWWpipipBW!" i.i im »»IN. p'j''.' . ^'"..iiywujmii in. . mm fr^m^mm MtmuitMmiun.Mrm^mw^

t

::

o

o

ö

o

2.1.8 Value Languages

Given a (fully parenthesized) term T , let ^rj denote the

string T with all. parentheses and all zero-ary function symbols removed.

For example, [f(g(f(a)))] = fgf •

Definition. Given a schema S , ler V denote the set of Herbrand

interpretations for S , then the value lajiguase L(S) of the schema S

is defined by

L(S) = [[T] jaHe^, Val(S,H) = T} .

For example, the value language of the recursive schema S^

is L(S) = {xxR | xe{f,g}*} where xR means the reverse of the

string x .

V Fo<=Fi(a);

FiCy) <= if p(y) then y else ^(y)>

F2(y) <= if q(y) then fF^(y) else gF^Cy);

Theorem 2.U (Value languages are r.e.)

The value language of any schema S (that admits all the Herbrand

interpretations K-) is recursively enumerable.

The proof is quite simple, and is given in Section 2.1.9.

Value languages have been studied mostly for monadic scheraas. They

can be used to prove theorems regarding the power of classes of Schemas.

The following lemma is a slight generalization of one given by Ga.rl&nd

and Luckham [1971]'

55

., ,1-,... .^■„„^.-,-^^~.:,Ju.^ I HOlllHlf"-1-""1"'- M^.:^ .^..J.,^,.:^..W..^V-,JV......... ..^■..-„■J ,-,-w,.-^—...-^ "■^■■■'--''■■'|lilii[t|||||l|||-[||i||||||'|

ppjuu-.j,.™ iAi^iU|WilpiWiipwWWWliiBPPWJUJill|ijlil'^JilJ^ ..iii.i niniii)i)iiiiii«.i»iji,iiijM«iiiiiwi..L*A.ii H.IIU.JIIWWJI.H.IJ)II,I,III.,.I. iim u, II.,II] n »^ppwnwigp)npp!imB;^npffnm^^

Theorem 2.^ (Basic theorem of value lanuages)

For uninterpreted Schemas 8^^,82, if S^^ < S2 then L(S) c L(S)

The proof is trivial, for if 1,(8.,) jt L(S2) then there is a string

xeL(S1) such that x^L(S2) . Now, consider any Herbrand interpretation

H for S1 for which [Val^H)] = x , then [Val(S2,H)] ^ x because

x^L(S2) , and hence S1 ^ 32 .

Note that this theorem holds whether or not the schemas S1 , S0

are Herbrand Schemas.

Corollary 2.6. For Schemas S1 , Sg , if S1 s S2 then L(S) = L(S) .

This is usually used to prove the negative result: given two

classes Q* and Cp of uninterpreted scheraas such that for some

Sle'3l there is no S2€!3'2 for which L(si) = L(S2) then we can conclude

that C^ £c2 ■

2.I.9 Discussion and Proofs

2.I.9.I On the Treatment of Kquality

In our treatment, equality is viewed as a basic construct in scheman,

on par with others like assignments, goto statements (in flowchart

notation, the arrows leading from one statement to another) or the use

of more than one variable in Schemas.

Alternatives have been suggested, but our approach seems to be the

most natural. One alternative is to treat equality as Just another

(diadic) base predicate, call it p_ . Then, a test like T = Tp is

viewed as just a notation for the strict form P_(T,,Tp) . However, the

■

3h

u^~*~--*i*-****~~*~**^^~~**~*jm*m****m^m***äm*llLmi*~~*~~~~*~~~--. -—- — ■ -

■»iwwiiiwijpfpiiBpr-iWBWBp^ ii^uy.»,^ji«i,i.wjiu,iiiiu,iLwiiippwi.w ,1.1 iimmmmmmmmmnmmmmmmmmmmmmmmm

f

X

schema is no longer uninterpreted, but every Interpretation must satisfy

the formula VxVy p_(x,y) = (x=y) . In other words, p_ is treated as

pseudo-equality. The problem is that the equivalence of partially

interpreted schemas has to be defined (it is not desirable to define

lb for the special cases where zero or one of the predicates is pseudo-

equality). The definition of Section 2.1.5 (i.e., S.. and Sp are

equivalent if VI if S. admits I , and S„ admitt: I then
X d

Val(S1,I) = Val(S2,l)) is inadequate because it is not transitive in

general. Equivalence is defined in Chapter U for partially interpreted

schemas (it is based on the alternative definition given in Section 2.1.5).

If this definition is used, we would find that the trivial schemas S,

and S2 below are not equivalent using the p_ formalism, while clearly

we would like to say that they are indeed equivalent. In fact we would

find that the uninterpreted schema Sp is a "generalization" (see

Section U.5) of S. because more interpretations are allowed for Sp than

for S1 . It may be noted that S, and Sp are equivalent in our formalism.

S,: START y - a,;

if a^^ = a2 then HALT(a1) else HALT(a0) .

S2: START y - a^

HALT(a2) .

Another approach that has been suggested is to treat equality as

just a (diadic) base predicate, say q^ . The schema is to be partially

interpreted, with q_ being an equivalence relation also satisfying

substitutivity; i.e., if f.,f2,...,f and p1,P2,...,p are the

other bass functions and predicates in a schema with ranks in,...,i 1 r

and J1, ...,JS respectively (let k be the maximum of these), then

35

 - - Miiiittaii»i ■■ -- ■■-

«"^ H^HiMii.iinwv.iiai tiuv-iwmmmmmmmmmmimmmimm*' tmiwmfHwmmmmm^mmmimmmmmm'mmm^'^mmm

every interpretation for the schema is to satisfy the formula (p ,

where

9 is Vx^Vx.^ q = (x1,x1)

A q=(x1,x2) - q=(x2,x1)

A q = (x1,x2) A q = (x2,x3) - qjx^xj

A Vx1...Vxk (q=(x1,y1) A ... A <lj\,yy.)) -

q=(f (x , ...,x),f,(y1,...,y))
i-L J- x 11

A ...

A <J=(fr(x1'--->x
i)*f(y1*--.,y1))
r r

A p (x ,...,x) H p (y ,...,y)

A ...

A p,.(x , ...,x) H p (y.,...^) .

This approach "works" for the introduction of equality in, say, first

order predicate calculus where the property of interest is the validity

of formulas — a formula | with equality is valid (satisfiable) if

and only if j» A <p is valid (satisfiable) where y' is obtained from

f by substituting q= for equality. Unfortunately, this approach does

not seem to be viable for schemas, where the equivalence of Schemas should

be preserved on replacement of equality by q_ . Observe that the schemas

S1 and S2 are not equivalent if a^^ = a2 is replaced by q_(a ,a)

in S1 , because it is possible for a1 and a2 to be distinct elements

even if qja^a^ is true, i.e., the outputs of S^^ and S are not

the same. Of course, the outputs are equivalent under the relation q

for every interpretation, but as mentioned, equivalence of schemas should

be defined for some general class and not for a special case where there

is one equivalence relation.

36

- ■ ■ --.. - -- , - -

■^^ mmmmnnKmm i" ■MI» in luunnB^^BammawmwpfW ^VfWHH

Why all this discussion on equality? It goes back to the basic

question "what is a program schema". The intuitive notion is that of

a machine that computes on uninterpreted (or partially interpreted)

domains, as against "real" computations on interpreted domains. One aim

of the study is to present stable (or "maximal") classes of machines

similar to the Turing machines for real computations. What properties

should Schemas possess? As with real computations, the requirements

of finiteness, nonrandomness, and discreteness seem reasonable -- see

e.g. Rogers [I967]. In addition we may require the following:

(1) first order functions and predicates;

(2) total functions and predicates;

(5) the computation of a schema should be fully characterized by an

interpretation (and the inputs, if any);

{h) computations on isomorphic interpretations must be the "same"

for any one schema;

(5) in any one step a schema should be able to "look at" at most a

finite number of elements of the domain of the interpretation.

Of course, one may relax any of these conditions to study what classes

of machines are obtained. In Chapter h we introduce a class of Schemas

having all the above properties. In addition, a slightly stronger version

of (5) above is used: the computation of a schema is fully characterized

by the values of the functions and predicates applied to the reachable

elements in the domain — the set of reachable elements is the smallest

set (containing the inputs, if any, and) closed under function

applications. In this class of schemas we obtain a maximal subclass

57

 ^^ItmamjmMm

■ .Hu .j vix*im-*iimmmimmmm!!**i'&&^**' mi^^mmmmmmmmmcfmim ■JH iii«ii™ ^kf^w»

for the uninterpreted schmas, and a maximal subclass for the

uninterpreted Herbrand Schemas (i.e., Schemas whose computation is

the stune for any interpretation and its corresponding free interpre-

tation), and as may be expected, the use or the non-use of equality

plays a crucial role in distinguishing the.subclasses.

2'9-9-2 Proof of Theorem 2.1 (Redundant functions ajid

predicates)

Proof of the Theorem

Given uninterpreted Schemas S , S1 such that 8 » a. , then

there is a schana S2 equivalent to G , having no function or predicate

symbol other than those in both S and S1 , and having exactly the

same features as S, .

Proot. Firstly, if there is no zero-ary function symbol common to

both S and S1 then both must diverge for all interpretations because

if not, consider the interpretations for S and ^ - as the sets of

terns generated by S and S1 are mutually disjoint, if s halts on

any interpretation then it halts on one in which the reachable elements

of S and of S1 are disjoint, and for this interpretation the output

of 31 can never equal that for S . So in this case the construction

of S2 is trivial.

38

aaMHuiaHMiiaiMa

^Pff^w? JPIIII i... iAi.mB^mmimm&mnt*mv*mmwmamzimmmm*rmmm^n&9*m mn m3m9imvs*.i*amvi^mm*^^^mmmm.-^m ■ iwiiHi»ii!i._!i!i^.i _ i_±mnmmwnmmm!mrtimnw?9i^W**i'£*

.

Now, if S and S1 have a common zero-ary function, say a , then

we obtain S2 from S1 us follows: if f is any (k-ary) function in

S^^ and not in S , then replace any term of the form

fC-r^ ...,Tk) by a ,

and if p is any (k-ary) predicate of S1 not in S , then replace any

atomic formula

p(T1, •••>Tk) by true .

Now, to prove that B « Bg , let I be any interpretation for S and S

We change I to I' by first deleting all functions and predicates of

2(3^ -2(S2) from I (if any), and then adding the -functions and

predicates of Z(S1) -£(S2) as follows: the value of each new function

f applied to any set of elements in the domain is " a ", and all new

predicates are "true" for all arguments. Clearly, Val(S,I') . Val(S,l)

and Val^,!') - Val(S2,l) because the functions and predicates of

2(8^ -£(B2) do not appear in S or S2 . Also, on I» , the computa-

tions of B1 and S2 are identical, and hence ValtS,!') ■ Val(S ,1') =

Val(S2,I
l) . This gives the desired result, i.e., Val(S,l) = Val(S, ,l)

*

39

«■ •— i uumiiti^mmtß ui i i iinnmnfM*l,„JMi<>lMUWW umvu •mmmmmxemimiiimm ^■»^^■^»■^■^■«■»^»«»'»IltllUllMl^fl^P^BB.U JI.1I44 I pBPinWW U .■ JMI"-u^|Jii I l)|

Redundant functions and predicates with preservation of freedom

Given a schema S and a flowchart schema S1 (S1Q3(=))

equivalent to S , then there exists another flowchart schema S2

also equivalent to S having the same features as S1 and no base

functions or predicates other than those In both S and S^^ , such

that S? is free if and only if S1 is free. But S2 cannot be

effectively found, in general.

Proof. B ■ 8. > S.eflC") • We first construct a flowchart

schema S' equivalent to S and having nu base functions and predicates

other than those in S , sucn that S' is free if S1 is free

(but it may also be free if S1 is not).

The idea behind the construction is Eimilar to that in the proof

of the theorem. The application of any new predicate p (p is in S1 ,

but not in S) yields "true", and the value of any new function f is

a special element we call "bad". The schema S| simulates the computation

of S. , keeping track of all "bad" variables. S^ can be described us

follows. It has 2n5m "copies" of ß. — where n is the number of

data variables, and m is the number of boolean variables. Each data

variable can be good, or bad, each boolean variable can be good, bad-true,

or bad-false. If in S, there is an assignment

y. •- T or zi - a

where T (or a) contains a bad value (for some copy in S') or a new

predicate, 'hen this assignment is not made (in that copy), but the

variable becomes bad, i.e., S' transfers to the appropriate next

statement. Further, if z. becomes bad, the value it takes is governed

O

•

G

1*0

J

4i -.^m^'ii~rmii*mmmmmimmm^*mmmmmmmmm&mfimmmim^'">M"m^uni-.Hn.it.m^tmmmmr!mrmm^m*m*mii < ■iii]ji)pj^miia»|p»;ni<iWP^^«^^»'w"uiiiiuiJi"w^p^p

by the rule that any predicate on the value "bad" is true, and

"bad ■ bad" yields true, but "bad - »jood" yields false (where "good"

stands for some term that is not bad). The same applies to any bad

test -- the test is not actually made, but the appropriate exit is

I ft
assumed.

Now it is easy to see that S' = S, . The proof is very similar to

the proof for the theorem (above).

Further, S' is free if 3, is free. Suppose S£ is not free.

Then there is somt- path from the start statement to a test such that the

outccsne of the test is predetermined by the path. But as S' makes

tests only on (constant) terms that can only be obtained by applications

of functions of S , we see that in the corresponding path in S , any

computation following this path must take the same exit. This is so

because (a) any interpretation of the form having the "bad" element

appended, must take the same exit, and (b) for any interpretation I ,

we can obtain the corresponding interpretation B with a "bad" element,

such that if I follows the path, then its e/.it is the same as that of B .

Now, if the given schema S, is free, then S| is the required

schema S0 , otherwise to obtain S we can simply append to the beginning

of S' some trivial tests to force it to be non-free.
1 n

€

r.

: Unsolvability of the translation

Our translation was not effective because in the last step the

decision es to whether S is free or not was not effective.

H

■ - ■ - . ,

;2E3EZ!__ -—-^^w^^iT^wiPwmi^iiMW^BIII^HIiipiB^W^Wiwwiww^^

h2

We will prove that the translation to Sg is not solvable in

general in a very infomal way. We use Paterson's proof [1967] of the

unsolvability of freedom a^d convert it to the uitsolvability of freedom

for Schemas in £(1 var, .) by using the method of simulating two

variables with only one presented in the proof of Theorem 3.5. The

resulting class (call it y) has schemas with no predicate, one

zero-ary function a , and unary functions, one of which is called f .

There is a single variable y which, at intervals, takes values

a,f(a),ff(a),fff(a),... .

We will change this class & somewhat to ^ by adding a unary

predicate p , and whenever in a schema B'eCV the variable y has

value f (a) in the above sequence, the new schema B- makes a test

P(y) • If p(y) is false, the schema S1 halts, otherwise it continues

like 8« . In addition, any halt or loop statement in S« is replaced

by a cycle that tests

P(fi(a)),p(fi+1(a)),;p(i
i 2fa)),...

such that S1 halts if any of them is false. Now, ^ is free if and

only if s- is free, and hence the freedom problem for this new class

is unsolvable. But, each schema S1 in this clarc ^ is equivalent

to the schema S :

S = START y - a;

tfhile P(y) do y - f(y);

HALT(y) .

Hence, if our desired schema S^ exists, it must have one variable y ,

functions a and f , and predicate p . But the freedom problem for

0

o

o

■ -- ■ ■ , >_ . , , , - L^-

'.'^•w-'li i j nliM..u^mpi«w»!üww lil)iPIW!B*WlJPPWiiPiWPWWCTWPwi»iiP!Wii^^

»

^

$

such a class of schemas can be shown to be solvable. We do not give a

rigorous proof here, but only indicate it.

Given a flowchart schema S with only a aero-ary function a ,

one- unary function f , and one unary predicate p , to show that the

freedom problem for S is solvable we observe that without loss of

generality we can assume that every circular path (cycle) in S must

have at least one predicate or equality test.

Now, if any reset (i.e., y - f^a)) appears in a cycle, then S

must be nonfree for the same test would be made twice (with the same

value for y) by going around the loop.

Secondly, if after the "true" exit from any equality test (i.e.,

f1a = fJa , f1a = fJy , or f y - f^y) there is a cycle then the

schema must be nonfree because either the false exit can never be taken,

or else there are only a finite number n of distinct elements in

a,fa, f^a,f^a,... , and hence by going around the cycle n+1 times some

test would be made twice.

Now, if the schema S is not obviously nonfree by the above

criteria then wc can determine whether or not it is free by constructing

a finite state automaton that accepts all input tapes unless the schema

is nonfree. We use the terminology in the proof of Theorem 5.1.

The input tape of the automaton represents a path through the schema.

The first symbol specifies all resets the path goes through, and true

exits from equality tests. Subsequent symbols update each of these

subpathc starting from the resets and true exits. The automaton simulates

the computation of all possible interpretations simultaneously along all

these cubpaths (except for any true exit from a f y = fJy test, which

l.;

 i ■ • - -- - ■•■ ■-" ■ mi ■ inim i , Ml I Mi iiliM

is simulated when computation reaches that statement). Note that the

number of equivalence classes of all interpretations remains bounded.

The input tape is accepted unless it represents a valid path which

cannot be traced by an interpretation.

Hence, if we could find S, effectively, we would have converted an

unsolvable problem into a solvable one - a contradiction.

D

8.1.9.5 Proof of Theorem P.? (Fundamental theorem of Herbrand

Schemas)

For Herbrand schercas, the notions of (a) baiting, (b, diTCrgence,

(=) aquivaxence, (d) lnclusion, (e) lsmorphism; ana (f) ^^

for all Interpretations, are equivalent to the same notions for the

Herbrand interpretations.

Proof. (informal) (a), (b), (f) These are .^.^ ^ ^

definition of Herbrand Schemas.

(c) This follows directly from (d) below.

(d) The "only if" part is trivial. por the "if" part, assume it is

false. Then S1 < Sg on v , but there is some interpretation I such

that 81 halts on I and ^ does not halt with the sme value. Now,

kk

1

H...!..^....^.,.^;..^.^^.....! -^ .- - -- - m in ii.^i.-AjiirfWiiitiiMiiiirn^ ^~'^'"''*^m*~^^'~^^a*^M^:Mriik(kM^^

IWBMMBBMUCIMMCMIBMBnWBWWWawaMMUMMij -L1I.IILI.I..L iiiimii wnimil.i]..n«iii.iiiii iiniiii mi 'in'-|i n .-,-■————^»«M—ui—i^n—

^

i

consider the Herbrand interpretation H corresponding to I . As S^^

is a Herbrand schema, S.. halts on H .

(i) If Val(3 ,1) is undefined then so is Val(S2;H) as S2 is a

Herbrand schema, and hence S, ^ S2 on j^ --a contradiction.

(ii) Sp halts on I , and hence it also halts on H , and

Val(S ,H) = Val(S2,H) , but Val^l) / Val(S2,l) .. We show that

this is impossible by considering the (natural) homomorphism

9 : H -♦ I from H onto the reachable elements in I (i.e.,

elements that can be expressed in constant terms). Then, we see

by induction on the number of steps in the computation that at

each step the values of variables in the computations of S, on H

and I correspond with respect to 9 ("variables" includes

arrays; stacks, queues, counters, etc., and recursion is also

handled — and 9 is extended to be the identity function over

elements, like integers, that are not in the domain of H), and

similarly for S., . Then we have 9(Val(S1,H)) = Val(S1,l) , and

9(Val(S2,H)) = Val(S2,l) , but Val(S1,H) = Val(S2,H) , and hence

Val(S1,l) = Val(S2,l) -- a contradiction.

(e) The "only if" part is trivial, and the "if" part follows on lines

very similar to the proof of inclusion: if it is false then there must

be a counterexample, say for an interpretation I , and Seq(S1,1) and

Seq(Sp,l) do not agree after some finite number of steps, but

Seq(S ,H) = Seq(S ,H) and values of variables correspond at each step

for computations on I and H -- which yields a contradiction.

^5

■ - -

,_ ti^u^^ii^M^^m^mmimtiliimm ■■- -"■- ■■-"— ^ ■ m*m
■•'•—•■^in^V'iimm'iiiit\Vi*;u iäuMtiih'äü^

i i iijiii qw.^^iLiuniiMi^PHpiuii .L '■'"u>"iwwui.iii«l»mjiiuni,i,.iijjiiiiji ' J»»«"».«««» «.».unn i" ■III«.IIWI»IIW^IIW"»"IWII«I,».««""JII i.u IB .■■I.JHLI,I^II^]P^«IB

2.1.9.^ Proof of Theorem 2.3 (Schemas without equality are

Herbrand)

Schemas that have no equality tests are Herbrand scheraas.

Proof, (informal) Assume the theorem is false. Then there is a

schema S and an interpretation I for S (let the corresponding

Herbrand interpretation be H) such that the paths of the computations

of S on I and on H are different. Then they must first be different

after a finite number of steps k . Then as in the proof of Theorem 2.2 (d),

the values of variables in the two computations correspond for k-1

steps, and the k-th step must be a predicate test (since it must be a

test, and tests on booleans yield the sarae value, and tests of equality

are forbidden). But the outcome of the predicate test must be the same

in both computations (by the definition of H corresponding to I) —

a contradiction.
D

2.I.9.5 Proof of Theorem 2.^ (value languages are r.e.)

The value language of any schema S is recursive enumerable.

It is easy to see that given any finite path in S (starting

from the start statement) it is decidable whether or not the computation

of S on some Herbrand interpretation follows this path. Also, given

any path from the start statement to a halt statement, the output (for

Herbrand interpretations) is fixed by the path, that is, if H1 , Hp are

two Herbrand interpretations on which the computations of S traverse

the same path, then Val(S,H1) = Val(S,H2) .

We can now construct a partial recursive function from integers to

strings whose range is precisely the value language of S :

h6

 -- -^ - ■ - - - -- I MlflMI-- ^ — -.- ■ - **-■ -,-..-... -^

^MWi^^lii.^H^MIJ^^^

"Let n be the input. Generate the n-th finite path in S (by

any predefined ordering) and if it ends at a halt statement and

can be traversed by some Herbrand interpretation, then output

[Val(S,H)] where H is any such interpretation; otherwise

diverge."

This completes the proof. • ' rn

2.2 Value Languages of Schemas

In this section, all Schemas are assumed to have only monadic

functions (zero-ary and unary) and arbitrary n-ary predicates, unless

otherwise stated.

■

t

2.2.1 Flowchart Schemas

Theorem 2.7

The value languages of flowchart Schemas (with monadic functions) that

are free on the Herbrand interpretations are precisely the regular sets.

As a corollary, the value languages of free flowchart schemas with

monadic functions and no equality, are regular (see Theorems 2.5 and 2.2f).

The proof is given in Section 2.2.5. It can be shown that the class

of one-variable flowchart schemas (even with resets y - a. and boolean

variables, but without equality) can be translated to equivalent free

schemas without equality, but with several variables. Then, from the

proof of the above theorem and the Corollary 2.6 we have

Theorem 2.8. The value languages of schemas of c(l var) with monadic

functions, are the regular sets.

^7

 ,...- ^.—miinmiiiiiriif^ ■ -"- ■

mmmumm

■-^-■■i—-^^-'^ " '-■

HI ; tmmi^^mmiimim .u "mim iij IIUIIIII III)IIIL-I»JJ],IW,IIIIU,IIIII i IIII« JHP ifiiiNu nwiuiuuiji IOIIP MmmmmmmmmmmmmmmmmmiimmTm** > yw w "

The fact that all regular sets can in fact be generated is implicit

in the proof given for the previous theorem in Section 2.2.5.

From Theorem 2.7 it follows that the following schema S is
£1

aji inherently non-free schema, that is, it cannot be translated into an

equivalent free flowchart schema (without equality tests).

Ba: START (y^yg) - <a,a>;

while p(y1) do y - f (y^ ;

^ile p(y2) do begin y^^ - g(y1) ; y2 ♦- f (y2) end;

HALT(y1) .

The schema S is inherently non-free because L(S) = {gnfn I n > 0]
Q» fit " ^~

which is not a regular lan,3uage. Note that the comment after Theorem 2.1

is implicitly used here in the unstated assumption that any equivalent

free schema must have only monadic functions. However, S is indeed
ct

equivalent to a free recursive schema, and S, is an example.

V F0 <= Fl^ 5

F-^y) <= if p(y) then gF^f (y) else y .

The Theorems 2.7 and 2.8 do not apply to nonmonadic functions.

As an example, consider the schema S

Sc: START y - a;

while p(y) do y - f(y,y);

HALT(y) .

It has one variable, and it is free, but the value language L(S) is

[f
2n-l n > 0} , which is not even context free.

0

.

1*8

—■- '■ - - -•■■-■ MMHMMHIItfll^HlklMaM ^ ^-...^-^....u j.,—^1

'-,/' UilWfP^WHW^WpiWWMl". 111.1 "MIWPW^WWPIWWIWB... U.i 1 ll,^^IIIW8W™^Bg«WWPI»ipH^iPiBWBW»W»M|WPU4UlUIW^W^WiW«gwiaH!W|BW^^ MI^IW^

""•- '•' '-, '

Theorem 2.9

The value languages of monadic Schemas of c{2 var) are the

recursively enumerable sets.

This is a slight generalization of a similar theorem due to Garland

and Luckhajti [1971]* in which they show that the value languages of

monadic Schemas or (3() are the r.e. sets.

2.2.2 Recursive Schemas

Theorem 2.10

The value languages of recursive Schemas (with monadic functions)

that are free on the Herbrand interpretations are precisely the context

free languages.

As a corollary, the value languages of free recursive cchemas with

monadic functions and no equality, are context free.

The proof can be found in Section 2.2.3. It follows from this

that although the schena So in the previous section could be translated

into an equivalent free recursive schema (Sj , the schema S^ cannot,
D d

for its value language is (f'Vf" | n > 0] which is not context free.

Sd: START (y^) - <a,a>;

while p(y1) do y1 - f (y^ ;

while p(y2) do begin y^^ - g(y1) ; y2 - f^) end;

y2 - a;

while P^) 42 begin ?! - f(y^; y2 - f(y2) end;

HALT^) .

Theorem 2.11

The value languages of Schemas of &(R,lvar) with monadic functions,

no resets, and no defined function inside atomic terms, are the context

free languages.

mmmmmammm

-VJHJ
wmmmfiirn'm*nmmmmmmm*mmimmm*<'mrmmmmm^^*!*n***^w.''i.tu''-"'*ri'ii 11 HIJI^^H

Note: an atcxnic terra a is a predicate or equality term used in a

teat (if a then ... else ...) or as a boolean argument. If in any

function definition ^ <= if a then (T,^,^, ... > else (T- ,a^a',... > ,

i / 0 , the tems T or T
1
 contain a aoro-ary function a , we call

this a reset.

This theorem is a generalization of a. similar theorem by Garland

and Luckhajn [1971], and the proof is presented in Section 2.2.5. This

theorem does not follow from Theorem 2.10 (as did Theorem 2.8 from

Theorem 2.7) because there exist one-variable recursive schemas that

cannot be made free. The following example, schema S , is due to

Ashcroft, Manna, and Enueli [1971].

Se: F0<. F^a);

F1(y) <= if p(y) then F^fty) else y;

F2(y) <= if q(y) thm f(y) else y .

The theorem shows that the schema Sd , for example, cannot be translated

into a recursive schema with one variable (and satisfying the conditions

of the Theoiem 2.11).

From the general result of McCarthy [I962] that any schema in

C^n var) can be effectively translated into an equivalent schema of

(3(R,n var) , and using the Theorem 2.1+ we have the following.

Corollary 2.12. The value languages of monadic schemas of (3(R, 2 var)

are the recursively enumerable sets.

2.2.5 Proofs of Theorems on Value Languages

2.2.5.1 Proof of Theorem 2.7

The theoiem states that the value languages of flowchart schemas

(with monadic functions) that are free on the Herbrand interpretations,

are precisely the regular sets.

50

 ——■ —"—•—■ ^-^^-^^i ^ ._.

i-i.itiiyw »iMvimmmmiai^**~m*mmimmmmmmmmmm^mmmmmmmmmmmmmmmmmmmmmmmim

(1) We first show the easy part, that is, that all regular sets can

be generated. Given any regular set over Z ■ [f^fp, ...,f } , we

consider the deterministic finite state automaton A that accepts the

regular set. Let its states be Q = {q^,q^,.. .,q] whore q_ is the

start state, and F c Q is the set of final states, and the next-state

function is 6 : Q x£ -* Q . We construct a flowchart schema S with

one variable which uses unary functions symbols f..,^, ...,f ,

a zero-ary function symbol a , and unary predicates p1,Pp,--^p

(note: it would suffice to use log0(r) predicates, but this construction

is slightly simpler). We label statements KyL,,...,L, in correspondence

with the states q^,q , ...,q of A . In addition there it one halt

statement L : HALT(y) . The start statement in S is:

START y - a; goto L« .

Let d. . denote 6(q.,f.) . Then for 0 < i < k the statements of

the schema are: if q.eF (i.e., a final state) then

4* Li : i£ P^y) ^ben begin y - f^y); goto Ld end
1,1

else if p2(y) then begin y - fp(y}; goto L, end
i,2

* else if p (y) then begin y •- f (y); goto L, end

else goto L

and if q./F then

L.
i

else if p (y) then begin y - f (y); goto L, end
i,r

else LOOP .

51

n - %aiw^m9mimifKmmmmmftfKf&>tKKmfm^'^'nmK>i> »- >>>i-i' iKiLiiiim'^m^mmmmmm^mmmmmmmmmimim*~***^^mimm^^im^*iim^^^'ni ^w

Now, the schema S is clearly free, and the computation can reach any

statement L. with value x (in the Herbrand domain) if and only if

the string [x] takes the automaton from the start state to state q.

(recall that [x] denotes the string x with parentheses rnd unary

function symbols removed). Thus the value language for S equals the

givau regular set.

(2) We now show that the value language of a free flowchart schma

(with monadic functions) is regular.

Let S be a free flowchart schema, with variables v .v v
12n '

and unary functions L - [f^fg,. ..,^3 . without loss of generality

we assume 3 has a single halt statement: HALT(y1) . We label the

start statement, and all the assignment statements of S by L ,L ,...,L,

Let X.^ denote the set of strings in Z* corresponding to the

possible values of the variable y after statement L. is executed
J i

(on a Herbrand interpretation). In addition, let X denote the set

of strings corresponding to the possible outputs - in other words,

X is the value language.

We will now demonstrate a set of recursive equations relating

the X's and having the property that

(a) the least fixed point exists, and is regular, and

(b) the least fixed point corresponds to the values of the X's for

the computations.

i^ : suppose [^ ^ , ...,L.) are the statements of S for
ul "2

which

there is a path from Li to L. without passing through any assignment

^

lilMhrtnvri-i'-ihlri-if «irrtiiiiiiiiWfii-rini iiir rti ii-iii«Mi-iiiiM*ftB i^-'1- —■ - ■ "-— ^..--■■^^^—... L_^m*^Jt*^t^^^J^^^^JiMj^1^^s_^^*^^^^

pj.wiiu»mpn^i^^iiiii i ii ii —- ~- -— ^fF

statement. Now, each of the L^'s is an assignment statement of the

form (y:L, ...,yn) - (T^ ...,Tn) . Let the term in L. for y be T

If T is a constant term, we use the equation

X. . <= [T] .

If, on the other hand, T is sequence of functions applied to one

of the variables, say y , then we use

[i i <= [T]Xi m+lT]Xi m+ "•+^Ki m

where + stands for union, and [T] is the notion introduced earlier,

but extended to nonconstant terms as well ([T] is the string T ,

omitting all parentheses, zero-ary functions, and variables). Note that

the start statement is treated just like any other assignment statement.

X : Suppose [L. ,..,!.] are the statements of S for which
1 "s

there is a path to the single halt statement of S (HALTCy..)) . Then,

we use

X <= X. ,+X. n + ... +X. , i^l i2,l ir,l

55

 :■--■■■ — ■MUMMMIM

" w w*m mmmm '■"— ■^Tl»"

(a) We have a right-linear set of recursion equations (on strings),

and such a system has a unique least fixed point, namely, the regular

sets (one for each of the X's) obtained by these equations treated as

productions.

(b) For convenience, we will rename X^. ^....X, tobe Y,,Y ,...,Y : 7 1,1' ' k,n 1* 2' ' m '
and we define the sets

Y = Y 1,0 I2,0 ■ Ym,0 = «P

and

Yi,c+1 ^i^'^c'^c'-'-'Vc)

where ? is the function used in the recursive definition (for Y J •
i v i '

Then, the least fix-point Y. for Y. is given by

■^ = U Y. c = the least fix-point . (*)
C <oo '

We define Z. to be the set of strings corresponding to the

variable Y. (which is sane X. . or X itself) obtained in not more

than c steps of the computations of the schema S (for all Herbrrjid

interpretations) where a "step" is defined to be the execution of the

ctarx statement, an assignment statement, or a halt statement (i.e.,

not loops or predicate tests). By definition,

U Zi c
C<o l*G

is the set of strings corresponding to the variable Y. in all possible

computations. We have to show that

h-'i Zi,c '
C <oo

0

^

^^mtf^mm^mamfvmmimmtmiinmmm^mKigmtfm L UUJLIJIIJLI! wmmmimwmmam^imt^ftW^iBumepmmtmmm

but for the induction to work we will prove the stronger result, that

YJ = U Z. for all i < m .
C <oo

(i) To show that Y. c U Z, n X . Xi c
 C <co '

We will prove that Y. c Z , and then by equation (*) the
i, C X,K+C

result follows.

The start step is trivial as Y. „= cp • For the induction step,
x,u

c > 0 , assume it is true for c , to show it for c+1 .

Case 1. Y. <= x (where x = [T] is a constant) is the recursion

equation for Y. . Now, as the schema is assumed to be free, and all

statements are reachable, and there are only k start and assignment

statements, the statement corresponding to Y. must be executed within

k+1 steps, i.e., Zi k¥c+1 = [x] , and, of course, Yi c+1 = [x] , and

hence Y. „., c Z. ^„.i • x,c+l i,k+c+l

Case 2. Y. <= xY. + ... + xY. , (x = [T]) , where the statements
1 T. 1s

corresponding to Y. ,...,Y. lead to the statement for Y. without
ll 1s 1

any intervening assignment (or halt) -- note: only Y corresponds to

the halt statement. Since the schema is free, all paths can be taken,

and by the definitions of Y. , and Z. we have x,c x,c

Y. ,, = xY. + ... + xY, „ i,c+l i^c iß,c

c xZ. .. + ... + xZ. , .„
1 s

= Z i,k+c+l

(def)

(ind hyp)

(def)

!

!
55

■ — — - - *iiji******läli*am***/J**ka*i*mii**um*~*. . . , _

K^mm. i iummv^Mn Hia^ni^aiQIHIppilBP^nHmB^MMBV^I H.UUJJlllJULllilUllLL.^Hpiipi

(ii) To show that 11 z CY
 c<g, i^c i

We will prove that Z. c Y
i^c ■ i,c

The start step is trivial, for after zero steps of the computation,

all Z.^'s are cp . For the induction step, c >0 , assume the result

is true for c , to prove it for c+1 :

CaMl. If y. <= x , then Y.^^ = [x] , and Z.^c+1 can only be cp

or [x] ,

Cas£_2- if Y <= xY, + ... + xY. then, as before.

51 c+1 = xZ-i f.+ ••• + xZ. fdef)

c xY. + ... + xY
i ,c s'

11,C
(ind hyp)

= Y
i,c+l (def)

This completes the proof of Theorem 2.7.

2'2.5.2 Proof of Theorem 2.9

The value languages of monadic schemas of £(2 var) are the

recursively enumerable sets.

We use the fact that a recursively enumerable set is generated by

the outputs of a Turing machine, and that all r.e. sets can be so

generated. Luckhajn, Park, and Paterson [1970] have shown how a two-

variable schema S using a unary function f and a unary predicate p

can simulate a Turing machine computation such that S diverges unless

56

- - , .

- UjUi^ijjf i"'."1 . siiiwwjiii.H.WI«UJ.LII ^^r>w*wwmw<^mmmfmm*i!m***™mmm^mmir^*mmmimmm^^*ti >mi mu i i .vmummm^Q*immm^*fmm^mi^^mii

t

the Turing machine halts, and if the machine halts then its output can

be "read off by the values p(y1),p(f(y1)),p(ff(y1)),p(fff(y^), ...

in some coded form, where y^^ is one of the variables of the schema.

We modify the schema S so that before halting it resets y to a

(y2 *" a) , and then proceeds to apply the appropriate functions to y

as read off by the variable y^^ , and' then halts, outputing y0 . We

thus obtain a subclass of 0(2 var) whose value languages are the r.e.

sets, thus proving the theorem by recourse to the Theorem 2.k that the

value language of any schona in (3<? var) is r.e.

D

2.2.3.5 Proof of Theorem 2.10

The value languages of the recursive Schemas (with monadic functions)

that are free on the Herbrajid interpretations are the context free languages,

(1) We will first prove the simpler part, that is, that all context

free languages can be generated.

Let G be any context free grammar over the nonterminals

PjjPg,... , and the terminals f^fg, ... , where F, is the start

symbol. We assume G is in Greibach normal form, that is, all

productions have the form

F, - F. F. . .. F. f.
1 h X2 lk J

Suppose there are at most m productions for any F. , then in our

schema we will have m-1 unary predicates p.,p_, ...,p , . in the
i d m-l

schema we will allow definitions like (a) F.(y) <= T , and also

(b) nested if-then-else's , with the understanding that these features

57

"-'-- '■-—— ■ - ■-— --- ^-'—-"- ^.-^- ■ -.. . -—.—.^ ,.■.■—^..,-.....,...■

■^W*P^Pp|P!^|pW"fS'W»^WPB«RWfWW»|IH«^^

mm

58

m

are easily eliminated by (a) substituting, and (b) adding new

defined functions, without destroying the property of freedom in our

particular construction. The schema is:

F0 <= F1(a) ,

and for each P in G , if there are n -productions for F •
i '

^i -F F ... F f.
1 1*1 1,2 1,1^ J1

Fi-Fn,lFn,2 •••Fn,k
fJ
n ^n

then the corresponding defined function in S is:

F.fr) <=if P^y) ^enF^^g.-.p^ (f. (y)))

else

SiSS if P^y) thenF (...(f (y)))
' •'n-l

elseF (...(f (y))) .
Jn

It is easy to see that this schema is free, and its value language

equals the language generated by the grammar G .

(2) We now prove that the value language of any free recursive schema

is context free.

Given a free recursive schema S using only monadic base functions,

we construct a context free grammar G such that the value language

of S is the same as the language generated by G , S has the form

J

.

■.

O

■■-• - " ■- -..^^l.-:^»^^^^..^«...»^. ,..^.^.....,^....^^.:.^..... .n,.,,.., '... itiiiiiiiMiiiifiiiiiigigiin^ i riiiiiMif niiiiMiiMii

" " '■.■»^»^^■•^W*WM.»"Wil"l !• -i IIUUIIll»PWpi?»^ll«iliiifWk»»JJiin»]i.i IIII«I«"*UJIII ■ ii i ■ IIUI.J i ■ jiiaijiinji i , i imuiHJIIJWW ■"•""""TT^^^M

'-..

S: F0<=To05

F-L^Z) <= if a. then T, else f •

Fk(y,z) <= if a then f. else f'

We will assume that no short-cut notation is used; for example, if F

returns Just one data value, to obtain it we must write Y (F(...))

instead of Just F(...) . Similarly, if ^ returns a vector that

matches the argents for F2 , we must write ^(Y^C.. O)^^^ ...)),

instead of FQ(F1(,..)) .

The teminals of the grammar G to be generated are the unary

function symbols of S . The nonteminals have the form

(Wk)
which has the following significance: if the defined function F. is

entered with any string x for its k-th data argument, then (Y.,F.,y)

represents the possible strings x« that could have been added to the

left of x such that the i-th data argument of F. can exit with this
J

value (i.e., x'.x). The other type of nonteminal is

(Y^F.)

which represents the strings Y.(F.(...)) could exit with no matter

what the arguments.

To construct G , we first define the following notation:

[T]
yi

where T is my term (which may use the defined functions) to be a set

of strings as follows:

59

"^ ■■
.^■■-■

(1) for any zero-ary function a : [a] = m
yi

(2) for any y. : [. = ^ */
"" «7 4

and for j / i

(5) for any unary f :

[yü]y. =<p

[f(T)L =f.[T]
"'i ^i

(U) and lY^FCT^,,...))] . U(y.,F,yk).ITk]

for all k varying over the data arguments of F .

And similarly, [T]0 is defined as follows:

(1) for any zero-ary function a : [a] = A

(2) for any y. : [y^ = ^

(3) for any f : [f(T)]o = f.[T]o

ih) and [YJ(F(T1,V...))]0 = (YJ,P)+U(Yd,F,yk)4Tk]0

Note: we are using both the signs U and + (for strings) to mean

union,

As an example

[Y^FCM^^Y^Gdyy^a^fy)),hy))] 5/^y/Jy
5

(Y2,F,y2)(Y1,G,y1)

+ (Y2,F,y5)h

and

!7
Note that the notation is a little informal. We should strictly
write [y^ = {A} , etc.

U

U

o

L.)

0

o

60

tteäaiji^aaaaaiik^., ■: ,, . ■„.-.-■-..„-J/-.-..-. .■;..■.-:..■■ .,.;.-...,...1.i.^.^;.:'.„v.^.:--:vv^-:..:..;^..J.-t^.-.,-:■■ .. .__. , . .. ,. . .■ -^^k--' ^:^\\-^\mkiiiifitfM('iil'ivi;11ifii\t:iilifiirfdÜi

f

<■

X

[Y2(F(fg(a),yi(G(y5,y1,a,fy5)),hy5))]0

= (Y2,F)

+ (Y^F^y^ fg

+ (Y2,F,y2)(Y1,G)

+ (Y2,F,y2)(Y1,G,y3) .

f Given the free schema, we can separate the defined functions into two

classes — those that can eventually return, and those that must diverge.

This can be done by building up the set of functions that can halt;

I ^ starting with the null set:

F(...) <= if a then T else f'

F can halt if 0! can halt (i.e., all defined functions in it can halt)

and so can one of T or T' .

The construction of the grajnraar G ignores all boolean variables,

all tests, and all defined functions that must diverge. If the start

I •
function F- diverges, then the language is the empty set. Otherwise,

we build G as follows:

|# (1) F0<=T()

The start nonterminal in G is (Y,,Fn) :

(2) Fi(y1,y2, ..^z^Zg,...) <= if a then T else T'

where F. is a function that can halt (which implies that a can halt).

Then, for all Y.,yk (that make sense for F.), if T = <T..,T?, ...) ,

61

■
'..■■■"

■ —

and it can halt, then

(VFi'V - ''A,
and

(Yj'Fi> - tVo

and similarly for T' .

We can show that G generates the value language of S on lines

similar to the proof of Theorem 2.7. We consider a Herbrand interpre-

tation over the given base functions and predicates and also over a

special set of zero-ary functions b^b,,,...^ where n is the number

of variables in S . Then, for any F. and integer c , we associate

the sets (Y.jF.jy^ which stand for the possible strings x , such

that if Fi(y1,y2, ...^z^Zg,..,) is entered with y, = b, , yp = bp, ...

then YJ(Fi(...)) exits with value x.bk (for all possible values of

the zi
,s) without executing recursive calls of depth more than c .

And similarly, (Y^F^ stands for the strings x such that

yj(Fi(...)) exits with value x.ak (for any k , and the same arguments

to F. as before). Note: by the depth of recursive calls we do not

include recursive calls required to evaluate any test a in

We can then show by least fixed-point Fi <= if a then T else T•

arguments that

^JVV3^ - WW
where the right hand side represents the strings generated by the

nonterminal (Y^F.^) in the grammar G ; and similarly for (Y.,F.)

Thus L^Y-^FQ) does represent the possible output strings in this

62

Ü

 ':^-^-^^—■—.- —- >

A

..

c

'.

0

o

< ■

augmented Herbrand interpretation (with the additional zero-ary functions

bj^bg,...). But the computation for]' never computes any element

x.bi , and hence the possible output strings are the same for unaugmented

Herbrand interpretations (without the b ,b ,...) a

2.2.5.^ Proof of Theorem 2.11

It is easy to see that all context free languages are generated by

one-variable monadic recursive Schemas without resets. The construction

in the previous section applies.

To show that only context free languages are generated, let S be

a given one-variable recursive schema such that no atomic term has a

defined function, and S has no resets. We define the depth |T j of

a term T (constant or variable) to be the depth of nesting of function

symbols ja. j = |y.| =0 , jf^,.. .,Tn) j = max(JT^, ..., |Tn|)+l . Let k

be the largest depth of any term used in S . A specification state Q

of S defines all predicates on all terms T() and T(y) such that

P () |J jfCy) j < k . In addition, it may also specify y = T() for some

T() with |T()| < k — in which case the values of predicates respect this

specification. Now, given the specification state Q for y , it is

clear how it may be updated, i.e., we can determine all possible Q,'

for f(y) (for any unary function f). Note that the updating is done

only for the Herbrand interpretations. Also note that n-ary predicate

symbols and equality tests are handled by this mechanism.

Without loss of generality we can assume that in S , no defined

function is passed any boolean arguments -- any schema S can be trans-

lated into this form by creating many copies of each defined function,

and testing all boolean arguments of the (old) function before the (new)

function is called (this yields nested if-then-else«s which can then

63

'.■-.''.iWdii

^,—^.^.-..^- rrtMiriiiirtfliiliiliiiiliiliil;.. .^.^..w..^...^..^..,:..^^. ^- ■..■.■^..u:^.*.*:*... -...-.!_^.^w

■

be eliminated). Then, as the schema cannot test any booleans returned

by functions, we can simply remove them and get an equivalent schema

that uses no booleans at all.

Now, from the schema S we construct a context free grammar G

as follows. The nonterminals are of the form

(QSF„Q) r

O
where ^Q« are specification states, and there ie a special start

symbol: (FQ) . Given a term T and specification states Q«.,Q we

define a set of strings (notation ft'^L) of terminals and nonterminals

of G as follows:

(1) Vla^L is A if the predicates over constants agree on

Q and Q' , and in Q- , y = ai is specified; otherwise

Q'ETJQ is cp .

(2) Q'tyL is A if Q- = Q ; otherwise it is (p .

(5) Q'tf-^T)^ is u ^^"[TL where the union is taken over

all Q" that can be updated to Q' by applying f. .

(10 Q'tP^T)^ is U (QSP^Q'O.^'ETL for all Q".

We can now define the grammar G .

(!) FQ ^ T is converted into the following productions for the

start symbol {F) of G :

(F0) -Q'[T]Q

for all Q^Q .

(2) Fi(y) <= ±fx1 = T2 then T else T • .

For all Q, in which the terms T, and Tg are equal (note:

6h

fcfc^- ^.—, .,.^.... , ^.^^^-^ ^^^^^^.^-^-^j^—,—,..- —,J..J—^■,.— —.——^—-,.>.„,.,.■—_

•

T,, T0 do not use any F.)

for all Q' , and for all other Q :

(QSF^Q) -Q'IT'JQ •

(3) Fi(y) <= if p (T1,T2,...) then T else T'

For all Q in which $.{■:,':,,..) is true:

(QSF^Q) -Q'MQ

and for all other Q, :

This lonma includes the following simple generalizations over a

similar result of Garland and Luckham: (1) boolean variables,

(2) tests on constant terms and terms using the variable y ,

(3) equality tests, and {h) n-ary predicates.

2.3 The Power of Classes of Schemas

2.3.1 On the Number of Variables in Schemas

It is evident that any flowchart schema S which uses n boolean

variables can be transiatea into an isomorphic (and hence equivalent)

flowchart schema with no boolean variables. This can be accomplished

by creating at most 2 "copies" of S , one copy for each possible

set of values for the n boolean variables .

65

- —- .-^ -^ -.- . . ^— ^ .^^ ^ L^—■ L^.-..^^^-^^ -ii-iin^iiiniiiiiifmMarM^Mi^ii—■ IM i .._ . - — — —-■»*

Similarly, any recursive schema can be translated into an

equivalent recursive schema in which no argument of any defined function

is a boolean variable. We now wish to show that the same is true for

the values returned by the defined functions as well. In fact, we will

show a stronger result: that any recursive schema S1 can be translated

into an equivalent recursive schema S2 which uses only data values,

and each defined function returns just one value. It is possible, however,

that the number of operations executed by S2 may be an exponential of

the operations of S^^ (for any interpretation).

Theorem 2.13. Eveiy schema S-^R) (or in ^(R, =)) can be effectively

translated into an equivalent schema S? in the same class such that

only data arguments are passed to each defined function in S , and each

defined function returns exactly one data value (and no boolean values).

For the proof see Section 2.3.h.

Now that we have succeeded in restricting each defined function to

returning just one value (while retaining the power of all recursive

Schemas), the natural question that arises is whether we can also restrict

the number of arguments to be one, or if not, to two, or to some integer n

And a similar question may be asked for flowchart scheraas. Value language

considerations show, for example, that one-variable flowchart Schemas

cannot give us the power of all flowchart scheraas — the value languages

are regular (for raonadic functions), whereas for two-variable Schemas

the value languages are all the r.e. sets. The following theorem puts

such speculation to rest.

:>

0

66

tl^>-iirtfMMiilMrtMlimiilii'MBilliiiii[^ ' —'■-•"'■-- - -- ' ■ -■^■' --■-■ --.■.■--: - ■■^....■.Ja... ■■,..■. .■...,..^..: ■..r.^..

wmmm4mmmmmmmmmm*mmmmimmmmimKmKi*if Jf^ wmmmmmiimwmm\mvA*9m*mmmmmmmmmmmmmmnmmmmma^mm l i^ill^.i.l ,y»'.- ■J^fP^B^^

o

0

o

Theorem 2.lU

(a) (3(0 var) H C(R,0 var) ,

(b) C-O ^ C(R,1 var) , and

(c) C^n+l var) ^(3(R,n var) for n > 0

Part (a) of this theorem is trivial.

Part (b) was shown by Paterson and Hewitt [1970] by showing that

no flowchart schema is equivalent to the following recursive schena Sa

(we use nested if-then-else's with the comment that they can be

removed to obtain a strictly "legal" one-variable recursive schema):

Sa: F0 <= F(a);

F(y) <= if p(f1(y)) then if p(f2(y)) then y

else F(f2(y))

else if r(F(f1(y))) then F(f2(y))

else a

This schema checks to see if there is an infinite sequence

f. ,f. ,f. , each i. = 1 or 2 , such that all the tests
i^ i2 i5 J

p(f. (a)),p(f. f. (a)),p(f. f. f. (a)),... are false. The schema
xl x2 11 15 2 ^-l

halts only if no such sequence exists.

Part (c) of this theorem can be shown by demonstrating that the

following problem can be solved with an (n+1)-variable flowchart schema,

but not with any n-variable recursive schema (without equality). The

problem is:

" if there exist integers i,j, 0<i<n, 0<J such that

p(gJf (a)) is false then halt (with output a), else diverge ".

For details, see Section S.J.^-

6?

^—— ■ * -:■ ■. m --- ^—' -■■■l.... 1. - ...- . —U-:, ^....„^I^.-J.IM^ ^..^^

'tmimmmmmmmmmmmmfm* -T-T "rr—^ "U' ■ wmmmm^ftfmm

Flowchart
Schemas
(n var)

dB)

Recursive
Schemas
(n var)

Figure 2.1

The consequence of this theorem is that we can draw the diagrajn

relating flowchart and recursive Schemas. In Figure 2.1 an arrow

A -• B indicates the relation " B is strictly more powerful than A ".

2.5.2 Equality Tests

A problem is said to be a Herbrand problem if it can be solved by

some Herbrand schema. Otherwise, if it can only be solved by an

inherently non-Herbrand schema it is called a non-Herbrand problem.

All Schemas in C-(pds,q,list,A), (3(R) are Herbrand Schemas, and none

of them can solve any non-Herbrand problem. However, there exist some

very simple non-Herbrand problems which can be solved by schemas in

(3(=) , for example, given two zero-ary functions a1 , ap the problem

P = " if a1 = a then halt (with output a..), otherwise diverge "

0

.

68

■M^.,, .,,..- „^.^^.,...,... ..■■„...-^.,. ■ - -^MMBt^amVamiA^^^.^^*;^^ ...I>1..-.J.^J-......-^-^......,1.,J.,...J .^.-.■»■..»j.,,..,..;.- J -i.,.^....^,m^u.nr itiriifrfrlli

Ä

K

n

can be solved by the schema

START y - a.;

if a1 - a2 then ilALT(y) else LOOP ,

danonstrating that C-(=) ^ C.(pds,q,list,A) , and d =) £ c(R) •

To demonstrate the power of equality tests we present two other

(more interesting) non-Herbrand problems that can be solved by Schemas

in C-CA, =) .

Example 1 — Inverse of a Unary Function

The problem is:

Pb = " given a unary function symbol f , a zero-ary function

constant a , and a finite number of other n-ary function

symbols, n > 0 , write a program schema that under any

interpretation will yield a value of "f"1(a)" as output.

That is, it should find an element y that can be

expressed in terms of the given function symbols such

that f (y) = a ; and if no such element exists, the

schema should diverge ".

This is a non-Herbrand problem because for no Herbrand interpretation

does there exist an element y such that f (y) = a , and hence, if any

Herbrand schema S claims to solve it, S diverges on all Herbrand

interpretations, and hence on all interpretations (by Theorem 2.2) and

this is certainly not the desired behavior. A schema that solves the

problem is presented in Section 2.3-h.

69

-■ - _. ^. ,-.,... u.—^-^^-.-^ -~.,-^ ^_ja^^M„. , J... , .,_ _ ,,, ^

". — '■"" wqmm ■ wmmm ■ mtmmmm

Example 2 - Herbrand-like Interpretations

Given a set of function and predicate symbols of which there is at

least one zero-ary function, we say that an interpretation I for this

set is Herbrand-like if there exists some Herbrand interpretation H

such that there is a 1-1 homomo^hism from H into I . m other words,

an interpretation I is Herbrand-like if and only if for every pair of

distinct terms ^ and T2 (made up of the given functions) the

elements in I corresponding to ^ and tg are distinct.

Now, consider the following problem:

Pc = " given an interpretation for a set of function and predicate

symbols, of which at least one is a zero-ary function a ,

determine if the interpretation is not Herbrand-like. if

the interpretation is not Herbrand-like then halt with

output a , else diverge ".

This problem is inherently non-Herbrand in nature because a schema that

solves this problem must diverge for every Herbrand interpretation. But

for certain other interpretations the schema should halt. A schema with

equality tests that solves the problem Pc is presented in Section 2.3.U.

The problem Pc is an abstract model closely related to certain

problems in real life programming. As an illustration, consider a

directed graph (with an identified root node) in which each node has two

identified pointers leading from it. Pointers may lead to a terminal

node "NIL". The problem is to determine whether or not the given graph

is a tree. This problem may be modeled by the above problem with two

monadic functions representing the two pointers, and with the difference

,

70

^S!--M-_li mmmmll^mmmm^ltmam.

mrn^fmrnm^im ■ i unmil ii i Li i i ^^»KHPlpi^^mmiii i ui i IIU i Ulli i^mmr^mt a^^^^MmBwnpnwiir-. "i i i. ii HI WTT

c*

Xf

o

that the search for the equality of two "terms" is conducted not for the

entire set of all terms, but for those terms not representing NIL. The

correspondence is that the interpretation is "Herbrand-like" for this set

of terms if and only if the corresponding graph is a tree. Another

related problem is that of determining if a given LISP list is circular.

Here, the two pointers from a node represent the car , and the cdr

of the list represented by the node.

While equality tests are necessary to solve some non-Herbrand

problems, equality can be used to solve Herbrand problems as well.

We give two examples of Herbrand problem which are solved by Schemas

with equality.

Example 3 — Expose the False One (or, the Witch Hunt)

The problem is

Pd = " if there exists an element x of the form g^f^a) ,

i,J >0 , such that p(x) is false, then halt (with

output a), otherwise diverge ".

Our discussion on Theorem 2.lh indicates that no flowchart-or recursive

schema (without equality) can solve this problem. However, there is a

non-herbrand schema in (3(=) that can solve it -- see Section 2.5A.

And yet, it may be noted that Pd is a Herbrand problem for it can be

solved by a schema in a(c) .

Example h — Translation of Flowchart Schemas with One Counter

The recursive schema

F0 <= F(a);

F(y) <= if p(y) then f(y) else F(G(f(y)));

G(y) <= if q(y) then g(y) else G(G(g(y))) ,

71

■- — - — .~~.,^~*~~*~.*.....
iam^.^.^.^.^-.^^.^./,,,-,.,^^..^^.^.........^,...;.

™Pi^Wimf^l^l^l»^IP™!»w>«WBW!^^

is a canonical form for schemas in ^(lc,=) in that any schema in 0,(10,=)

is equivalent to the above schema by giving appropriate meanings to

a > f > S ^ P , q . (Note: these functions and predicates need not be total,

but, each can be implemented uoing only iteration.) This recursive schema

can be translated into an equivalent schema from C'lc) . Plaisted [1972]

showed that it could also be translated into a rather large schema from

(3() • However, the use of equality gives a simple schema equivalent to

the recursive schema. And, in fact, this can be used as a basis to show

that any schema in C.(lc) or £(lc,=) can be converted quite easily

into an equivalent schema in (3(=) . For details, see Section 2.5.1K

Now, the relations between classes of Schemas with and without

equality can be summed up as follows:

Ü

Theorem 2.15. ^(features) < ^(features, =) , where by "features" we

mean such things as variables, counters, stacks, queues, lists, arrays,

recursion, but excluding equality itself.

2-5.3 Counters, Stacks, Recursion, Arrays, etc.

In this section we wish to demonstrate the relationships between

the various classes of schemas, and in particular we wish to show the

partial ordering suggested by Figure 2.2.

C(R, =)

CCR)

cU, =)

c()

Figure 2.2. The power of schonas

'-'-•"-
J
-
J
—^-■ ■ - ■ - - -.----- - ——- ■ HMMMMMUaltte^ ■ '■--■ ■■- ■ '

Ll^«H*,JJ^'?l"J,■l«■'w*•,:|!■»".,'"■'•»«"»^■»!! J^J JW.IWI^WBilSPPpiiJ-W11111 -ll'^iJ^iMWlilRJ* .Mis«illW|i^;,miUP1WSPiiMiP|«pppppww,<,«MWV-^^^

In the figure, all arrows A - B indicate that " B is strictly more

powerful than A ". Classes that cannot be linked by the transitive

closure are indeed unrelated, for cxurnple, C^A) £c{-) , and OX) t^) '

The following suffice to prove the relations shown in Figure 2.2

above.

Theorem 2.16

{1-k) (XU) >£{) , i3(R,=) >^(=) , C^A) >Cic) , ^(A,=) >C>(c,=) .

(5-8) (l{c) >Ci) , fl,(c,«) >C{=) , ^(A) >C<R) , ^(A,=) >ö(R,=) •

(9-12) C/=) >C() , a(R,=) ^^(F:) , G.(c,=) >C(c) , ^(A,=) > ^A) .

(15-15) ^(A) £&=) , C<R,=) £C-(c) , ö(c,=) ^^(R) •

Of these, (3)-(6) and (9) - (12) are immediate, (l) and (2) have been

known for a long time -- see McCarthy [1962], and (7), (8) follow easily

from a similar result due to Constable and Gries [1972] and using

Theorem 2.15. Part (13) is immediate because schemas in (3(=) can

solve non-Herbrand problems (e.g. Po in Section 2.3.2) and these
cl

cannot be solved by schemas in ^(A) . For proofs of (11+), (15), see

Section 2.3.^.

Theorem 2.17 (Cne-counter Theorem)

(a) Cl) = ^(lc) , and

(b) £(=) H (3(lc,=) .

This was proved by Plaisted [1972]. Intuitively, the reasoning is

that given a one-counter schema, one can get rid of the counter and

replace it with a few variables which can then simulate the counter by

"coimting" on the interpretation itself, that is, on the values taken on

by the other variables of the schema along the path of the computation.

73

- --..-. - - 1 imlMiiiillllilllttMiMMWillifllMiltlMililllilli» „ -■ i^-.-.A^,..

■ -,

Theorem 2.18 (Two-covmter Theorem)

(a) Q,{c) = a{2c) , and

(b) C(c,=) =ö(2c,=) .

To see that c(c) = C-(2c) , and C.(c,=) = C(2c,=) , observe that

two coujiters are adequate for simulating the behavior of n counters

for any n (Hopcroft and Ullman [1969], pg. 100) as follows: let

cl>c2' " ''cn be the n count61"3^ snä- c-i > cp be the two that are to

c' c' c' c^ c1

simulate them -- the value of c is to be 2 3 5 ^ 7 ... T, n
1 n

where TT is the n-th prime number: then, incrementing d is like

multiplying c, by n. , decrementing c! is like dividing c, by TT. ,

and testing c| for zero is like testing if rr. divides c1 -- all

these operations can be performed by using c to temporarily store an

integer.

Theorem 2.19 (Recursion vs. a Stack, and a List)

(a) £(R) s C(l pds) s c.(l list) , and

(b) o(R,=0 = (3(1 pds,-) = CJ<1 list,=) .

That a pushdown stack is at least as powerful as recursion is not

unexpected -- the concept that recursion can be implemented by a stack

has been around for a long time in the theory of compilers. The converse,

that recursion is as powerful as a pushdown stack is perhaps not so

obvious; but it is certainly not mysterious considering that in recursion

we allow the defined functions to return a vector of arguments (see,

however. Theorem 2.13). Relating stacks to lists.,, it is clear that a list

can do anything a stack can. That one list is not (strictly) more

7^

- -■■■ - ■ ■
 ■—•*~~~*~*^—" - ^■^^i.^i.i.^-.u^^^^i^,...,^-^

powerful than a stack is interesting, but is not of any overwhelming

9 importance because this result seems to depend on the kind of basic

statements list schemas are endowed with.

Our last theorem deals with the equivalences of a large number of

• classes of schemas, sometimos also called the "maximal" classes.

Theorem 2.20 (Maximal Classes of Schemas)

g (a) C.(pds,q,list,A) 3 cAl pds,lc) s ^(2 pds) = £(1 list,lc)

=- C{2 list) s £(iq) = ^(IA) , and

(b) C(pds,q,list,A, =) = ^(1 pds,lc, =) = C-(2 pds, =) = (3,(1 list,lc, =)

s e(2 list, =) s e(l(l, ») s ^(IA, =) ,

o

5

To prove this theorem it suffices to prove

ö(pds,q,list,A) H C(l pds,lc) = ^(Iq) , and

G.(pds,q,list,A, =) s (3,(1 pds,lc, =) = C(lq, =)

because a list is at least as powerful as a stack, and a stack is at least

as powerful as a counter; and further, the operation of a stack can be

simulated with an array (with counters to subscript it, of course). The

proof is indicated in Section 2.3.k. Note that to use an array, at least

one counter is required; and one counter is also sufficient in that the

class of schemas in (3{1A) with just one counter is as powerful as (3,(1A)

itself, and similarly for <!.(1A,=) . We may also remark here that for

schemas restricted to monadic functions, flowchart schemas augmented with

two variables have all the power of the maximal classes, that is,

(3(2c,monadic fhs) s (3(pds,q,list,A,monadic fns) , and

(3(2c, =,monadic fns) s C,(pds,q,li8t,A,=,monadic fns) .

75

^^■.-.^,.t,^..;..1»....,^^--..^.^^^ ,,- ,-.«-^^..i.....,....,..J^.aj,^-^.,. ^»inifif.'iiniaahiriWJifiiiriiiiiitiiliiiirf ^iiiiriiiiirfrittitrtrtriiiltifei---Bi'^''i-'--------'-"----^^i

It is interesting to label the vertices in Figure 2.2 in another way

as shown in Figure 2.5. This figure can be treated as a unit cube where

the axes are labelled as follows:

x-axis: "add a counter",

y-axis: "delete a counter, and add a stack", and

z-axis: "add equality tests".
ü

aii pds, =)

a{i pds)

C(lc) = cO

^(lc, =) sC(«)

(3(1 pds,lc, =)

C(lc)

C(2c, =)

G.(2c)

C(2c) = C(c)

C(2c, =) se(c, =)

a{l pds) s (3(R) s (3(1 list)

(3(1 pds, =) 3 ^(R, =) = C(l list, =)

C(l pds,lc) = C{A) = C(l list,lc) H (3(2 pds) - C(2 list) = C(lq)

s CJ(1A) s ^(pds^^ist^)

(3(1 pds,lc, =) = c<A, =) 5 c(i list,lc, =) s C.(2 pds, =) s C(2 list, =)

= C(lq, =) = C(1A, =) = C(pds,q,list,A, =)

Figure 2.5

76

J

g^^^H^^^^g^^l^^. ^^^^^...^^.^^..^.^ ^.^^ ——- — - ^-^-^ Itiilfcli-ft «inii ii
■■ -■ ■-— — ■ ;—^

1

t

Note that the Figures 2.2 and 2.5 are "isomorphic".

Intuitively, there seem to be three inherent factors that

determine the power of Schemas.

(1) The amount of data space. Flowchart Schemas, even with counters

and equality tests have a fixed finite amount of space, that is, the

number of data variables. It is for this reason that they cannot compute

very larGt- terms that require the saving of an arbitrarily large number

of data values. For example, no schema in (3.(c, =) is equivalent to

the recursive schema

F0 <= F1(a);

F^y) <= if p(y) then h(F(f(y)),F(g(y))) else y .

Recursive Schemas act as if they have an unbounded amount of space, as

do scheraas with stacks, queues, lists or arrays. The amount of space

available to a schema is, however, not a limitation when only Schemas

with monadic functions are considered since in that case any (constant)

term can be computed with only one data variable by applying the proper

base functions in the right order.

(2) The control capability. Boolean variables and counters are

examples of control features. We have seen, however, that boolean

variables add no inherent power (except to make a schema more compact).

And two counters add as much control capability as one might want because

we can simulate the computation of a Turing machine (with zero input) .

The question then is whether or not one counter adds any power. The

answer is that it depends on the schema. For example, the addition of

one counter to flowchart scheraas adds no power, whereas the addition of

a counter to C,{lc) , or to (3,(1 pds) does indeed add power. Adding a

77

■ ■ .,..■—■^-^;.->.^;.^r..-■■... J^^..,^^^^, mämmnamut

A'/-

■ ■ '■;;.,..„..,.>, ■..

o

counter to f»(2 pds) or to ^(lq) , or to the corresponding ones with

equality, adds no power because these classes seem to be omnipotent

anyway as far as control capability is concerned. The features of

recursion and a pushdown stack act as if they provide some control

capability (to flowchart schemas), but not as much as two counters.

Similarly, equality tests too provide some control capability as

evidenced by the fact that a schema in (3.(=) can solve problem P,

(Example 5 in Section 2.5.2) which cannot be solved by <l{R) .

(5) The test capability. In our standard classes of Schemas we placed

no restriction on the kind of tests (on data items) allowed except as

to whether equality tests were permitted, or were banned. Another

restriction that could be placed is the maximum depth (of nesting of

function symbols) of terms allowed. For exomple, if we allow only tests

of the form p(y) and p(f(y)) in or.e-variable monadic Schemas without

resets, we would obtain a class strictly more powerful than the lanov

Schemas (which allow only p(y)). In general, we find that

C^n var, depth d+1) > (3(n var, depth d) ,

and

C-(n+l var, depth d) > (3(n var, depth d)

These can be shown by constructing a schema quite similar to the one

used in the proof of Theorem 2.1^.

Ü

O

2.^.h Proofs on the Power of Schemas, and Detailed Examples

2.5.U.1 Proof of Theorem 2.15

The theorem states that every schema S,e(3(R) (or in c.(R, =)) can

be effectively translated into an equivalent schema 3p in the same class

78

ifcriii ^lNll^l^^llTl^■■■ll■lii^-'^■■^"^^':^^•■v^":■l^L^•■-•^'"-;,-^--•■'';-,'■:
.. ■ . Mfll' r MliliiMifililMiin ■ li'illilhii" 11li ^«to-ij^j^.: -'-'■'■'■- -- ' "^

-Tr ,

such that onJ.y data arguments are passed to the defined functions in SQ ,

and each defined function returns just one data value and no boolean

values.

Proof:

%

I

S

y

%

%

Step 1: S^, -• S, . It is trivial to see how S, can be converted into

an equivalent schema S, such that in S7 no boolean values are passed

to any defined function. This can be done as follows: if any defined

function F in Z^ is passed m boolean variables, then in Sp we

have 2 defined functions correspc: ling to F , one for each possible

set of values the boolean variables may c^ke. Then, if in any function

definition of S , if F is called with some arguments, then the proper

function in S is called without any boolean values. This may involve

testing the boolean arguments before the call (as they may be predicate

or equality tests) yielding nested if-then-else's , which, of course,

can then be eliminated by using additional defined functions.

Step 2: S, -* S^ . Now, given the schema S, , we wish to convert it

into an equivalent schema S. such that defined functions return no

boolean values, only data values, and all arguments are data values too.

To do this we will change the defined functions in S so that they

return data values instead of their boolean values. These data values

will be treated as if they are really booleans by applying some fixed

test on them.

We now have the problem of discovering what data values are to

correspond to "true" and "false", and what fixed test we are going to

use. This is the concept of finding a "locator" (Constable and Gries [1972])

79

t^-A^.-■,....-.-,,,,.—...—.-...^.^.^.^^..tm^^-i^^....—.. -........ ,- ,-,.—"'"■iMjiMnmiitiTilliiimriiMriiiirtt^ -.-J.,Ji,.,„...^J-M.J.,w,to..„,,, ^...-.■.-.■.-..■.-.■ttwair tw...,..^^.,..,J..u,

»,••

In the class (j(R*=) this is trivial, for we can simply test to see

if all zero-ary functions are equal. If they are, we app3y all base

functions to them to see if we can generate a new element. If not, then

all terms must yield the same value, and now the outcome of the computation

is quite easily determined. Otherwise, we will find two constant terms

T, , Tp (of depth at most one), whose values are distinct. Then we can

simply use T, to stand for "true", T« to stand for "false", and the

test on a value x to see if x is true or not is " x = T, ".

In the class CCB) , on the other hand, our problem is a little

more difficult. We proceed on the lines of Consteble and Gries [1972]

to build a flowchart with "exits", which executes the computation of the

recursive schema until it tests some predicate more than once, and it turns

out to have different outcones (true, and false) in two of the cases; in

which case the flowchart exits (S. has one copy of S, for each exit).

Suppose p,(x,,...,x,) is true, and p.(x',...,x') is false then the

recursive schema can begin normal operation, and each defined function

returns the set of vectors x,, ...,x. instead of returning a true value

and returns x',...,xJ* instead of a false value. Of course, each defined

function has to be passed the data values x.,.. .,xk.,x',.. .,x' as arguments

(as well as the standard arguments). It is easy to see that a flowchart

can simulate the computation of the recursive schema because if a function

F. is called recursively within another call to F. then the arguments

of the earlier call do not have to be remembered for the schema would exit

before the second call "returns". Now, of course, we convert the flowchart

locator into recursive definitions to get the required schema S. .

80

imu*u~*ä***i*~*miht-^ -- - .-*—■—^. .- ilitmmMitmtäuamitimttmmmtmimmmmmmämiimM

iiiMjiiium > i mi i mit^mmmmm^^^mKmmmm^ii^mmt MJUWI1JIPI.J Jl ..I. Ill wm --""■"■' '■^ 'B^PPWI

Step 5: S. -• S . Finally, we translate S, into the desired

schema S_ where each defined function returns just one data value

(and all arguments are data values too) . This is done as follows.

Suppose any defined function F in Sr returns a vector of n data

values, then we replace it hy n functions (in S-); call them

F,,...,F . Then, any terra like Y.(F(...)) in S. is replaced by

F.(...) in S„ ; and of course, each F. returns just one value — the

i-th value that F would return. That F.(...) does indeed equal

Y.(F(...)) for all arguments in the computation of the recursive Schemas

can be proved by induction on the depth of recursion, simultaneously for

all defined functions; but we dispense with such formalism which doesn't

add to the intuitive concept of the proof.

This completes the construction, and the proof.

^

:•

'■

2.3.h.2 Proof of Theorem 2.lk

To prove that there exists a schema S in ^(n+1 var) such that

no schema in r!.(R,n var) is equivalent to it.

The desired schema S is:

S: START (y^y^ • • .,yn) - <a,a, ...,a);

y1 - f (y0); y2 - f (y^; • • • 5 yn - f (y^);

while p(y0) A p(y1) A ... A p(yn) do

(jQfV^ •">Yn) - <g(y0)^g(y1)^-->g(yn)>;

HALT(a) .

Suppose there is a schema S, in (3(R,n var) that is equivalent

to S . Without loss of generality, assume that in S, no defined

81

■" ; ■ ■ : ^—^.IJJ.-' ■ '■^IIMI#(1lMMM-ilMilt>iMiliiiil»liyMllllllfll11IVlltlll'^^ ■"-■""' -' ^^■--.■--■^---J.-^l --.. .-^^;■.J.i.-..■...^.■^-:J.. ^■..:ii...-^.:-^-aw^i-fll
t
[l|ll-l|-i|1l|M||

muwwiiMi||(|MWflH#lllWMW^ ■w-p— fPP wmsmmm'mmi^iwtlitll^'iKm^^fwimi^^^'m^vf.. -< i ^i,«!!!!

function is passed any boolean arguments (see step 1 in the proof of

Theorem 2.13). Also, without loss of generality assume that S, has no

function other than a,f,g , and no predicate other than p (Theorem 2.1).

Now, consider the computation of S1 on a Herbrand interpretation in

which all p(x) are true. Then the schema Sj^ must be in a "loop", that

is, for some defined function F , F is called at successively larger

recursion depths (possibly with different arguments) - this is because

if F calls itself recursively then the schema must loop (because F is

passed no booleans, and the only tests, other than those on booleans

returned, are P(T)). We define the "type" of the elements of the Herbrand

domain as follows - any element of the form f ^a) , i < n , is said to

be of type (0,i) , any element of the form gJ'fi(a) , j > 1 , i < n ,

is said to be of type (l,i) , and all other elements have type (0,n+l) .

Now consider two calls to F in which the types of all variables repeat.

Then after the same interval they will repeat again, and again, and so on,

because exactly the same sequence of "statements- are being executed. We

call this a cycle of the computation. Now, as F has at most n arguments,

there must be some type number (l,m) , 0 < m < n , such that no argument

in F has type (l,m) . Now, if we consider the finite interval in a

cycle, only a finite number of values of type (l,m) can be tested (by

the predicate p) during this time, anr^ the same values are tested over

and over again. Hence, as there are only a finite number of operations

executed before the cycles start, the whole computation can check only a

finite number of values of type (l,m) . Now, if we change the interpretation

slightly by making the predicate p on one of the untested values of type

(l,m) to be false, then the computation of S1 must be the same as before,

.

82

- iim -- - .J.^.^.~~~**— *-" ^.-..^

that is, S, diverges, whereas S halts on this interpretation

contradicting the assimption that S is equivalent to S .
G

$

♦

2.5.U.5 Example 1 -- Inverse of a Unary Function

For simplicity we assume that the only functions are a single

zero-ary function a , the given unary function f and a binary

function g . The possible terras are therefore:

a, f(a) , g(a,a) , f(f(a)) , g(f(a),f(a)) , g(a,f(a)) ,

The schema for any other set of functions is similar to the one for this

particular case.

Symbols c ,c ,c,, stand for counters. Strictly, the only operations

allowed on counters are adding and subtracting one, and testing for zero.

For convenience, however, we will also allow other statements such as

c - 0 , c •- c , and tests like c. = c . , as it is clear that these
i i j i J

operations can be performed using only the legal operations and

addit i onal c ounter s.

(1) —- START <y, z> <- <a,true>, A - <a,true>;

A[0] - y;

(2) — c1 -c2 -0;

(3) — REPEAT: <y,z)-A[c1];

(k) — if f(y) = a then HALT(y);

c2 - c2+l; A[c2] - <f(y),z);

c2 - c2+i; A[C2] - <g(y^y),z>;

c5 *" Cl;

85

Vb.^-.^.^ :.i^..: ■ .^.^^^^■.^^■.^„^.^^■^^^^ ..^^^ y ■..■-;...., .^.....^ -. ...„..■,..■ ■-^■;.^».J.^,^.1I..^,^V.L:J.^. ^ .._ ■ if ■|-jrf|fi1^>^^-^^^"feJ^J^^ , ...^ ^-V^^.^ irtftfi^aiirlitift

'mm^mimpi^mpmmmmmmmmm IMi,^ J.ui.JllUH.ILIIIIlUIHPIIIIillllppiilp^^ ■•qwyrwm

(5)

'5 *" c5"1;

while c, / 0 do

begin

c.

C2 " C2+1' A[C2]

C2 *" C2+1; A'C2]

end;

C-L - c1+l;

<g(A[c5],y),z>

<g(y*a[c5]),z)

goto REPEAT. o

After the initialization phase (lines (1) to (2)) (Ignoring all booleans)

A[0] = a , c1 = c2 = 0 .

After completing one pass through the outer loop of the program (lines

(3) to (5))

A[l] = f(a) , A[2] = g(a,a) , ^ = 1 , c2 = 2 ,

and after a second pass

A[5] - f(f(a)) , A[10 = g(f(a),f(a)) ,

A[5] = g(a,f(a)) , A[6] = g(f(a),a) , c^^ = 2 , c2 = 6 .

The algorithm works as follows: two pointers c1 and c reference the

array. A[c1] represents the "current" value. If the current value is

not an inverse, as determined by line (k), it is composed with values

preceding it in the enumeration by function applications, and the new

values obtained are added to the array.

It can be shown by induction that the process of enumeration

generates and tests each possible term exactly once. This means that

an inverse will be found if it exists. The point at which the test of

the inverse is made could be changed to effect time efficiency but

without altering the main features of the program.

Ü

o

o

- -^"-- ■ —
■ —■-

 ~—^-... —. ^ -

1 m^^^^^^l^m mm^m^mm$immm*tm.i\ ^a^^M^-g^lJwiiiuiVMJlWlilillli'WBL^ " -

t

2.3.h.k Example 2 -- Herbrand-like Interpretations

We assume that the only functions are a single zero-ary function a ,

a unary function f and a binary function g . Therefore the set of

terms includes

a , f(a) , g(a,a) , f(f(a)) , g(f(a),f(a)) , g(a,f(a)) , ... ,

that is, the same as in the previous example. The required schema is:

(1)

(2)

(5)

W

- START (y,y',z> - <a,a,true) , A - (a,true>;

A[0] - <y,z>;

- e^c^O;

- REPEAT: <y,z) - A[c1];

r ch - cv
while c. ^ 0 do

begin

- c.-l; <ySz> - A[c,,]; | k1

I
if y' = y then ILALT; |

I
end.; |

c2 - c2+l; A[c2] - (f(y),z>j

c - c +i; A[c0] - <g(y,y),z); 2 ^■n ' "2

C5 -c^

while c.z £ 0 do

begin

c3 ^ c5. ■i;

C2 " c2+1' A[C2] " <s(AtC5]^)^z>;

c2 *" c2+1; A[c2] - <s(y^Afc5])>z);

end:

(5)

"-i Cr±'
goto REPEAT.

85

«.W,..-^.-.......!..^..^:^.^.^^..^..,,^^...,. ^...„.t^^C^-C J, - i.— .^^^^-...^.»w..^^-^,^». »^««^^-^■-a^^jaaJ.CgJ..,ai,-„.,>::;. -. -, w..- .-,. ^„-a..^. „^, „ ,. . , .:, ,.:,... ■„,...,..,_».^f_.»i... J^u..ijj ^V.

Am,^muHitMj»vi..ifjmijnitKVHtw-i.^i.«n<'>i.>Ht^i^mmmmammmmnm'"'^.iji'. 1.-.1W.1111 iijji.»iin«i»m^..w.pi-i M I I IUINUH iii>.^wunqcP!^niiPin«^^n«OT«MK^«^7nHM

This program is quite similar to the previous one in the manner of

enumeration of terms. The fact that each term is generated exactly once

is used in making the test (h) to check if a value is repeated.

O

S.3A.5 Example 3 — The Witch Hunt

"To find an element x of the form g^a) , i, j > o , such that

p(x) is false". The desired schema of £(=) uses seven variables -

ya * yb ' yl ' y2 ' y3 ' ^ ' ^5 •

(1) -

(2)

(5)

W

(5) --

START <ya^yb>y1*y2,y5,y^,y5> - <a,a,a,a,a,a,a>;

if -i p(a) then HALT(a);

NEXT: yj^ - ya;

while y^L / yb do

tegln i£ y! = f(yb) then goto RESET;

yl *" g^yl)

end;

11 yb =
f(yb) then goto RESET;

yb-f(yb);

if i p(y.b) then HALT(a);

(yj/yg) - (ya,ya>;

while y;^ / yb do

begin y1 - g(y1) ; ^ - f (y2).

y5 *" yl; yh *" y2;

while y3 ^ y^ do begin y^ - g(y5); y^

!£ -i P(y^) then HALT(a);

end;

goto NEXT;

g(y4) end;

0

o

o

o

o

o

86

'-"'■■-^"'-^■'iiiinniiiaiiillif "—-"■■""-'-'"'"-"•• ^:^^^**<m*i**i~***iiii!ima*iM*~*^^ ..-,^.^,..,.. „..^„^ , „....„.i.,^..-......:.- ,,...,.■.

(6)

t

«

(7)

RESET: (y^yg) - <ya»ya);

FAIL: y1 - g^); y2 - f(y2);

y5 - y1; y^ - y2;

while y5 / yb do

begin y^ - y2;

while y,- /^ y^ do

begin if y5 = gCy^) then goto FAIL;

y5 *- g(y5)

end;

if y^ = gCy^) then goto FAIL;

y5 - g(y5);

2% " sCyij.) 5

end;

SUCCEED: y - y0;

goto NEXT.

The operation of the schema may briefly be described as follows.

The schema effectively "counts" on the range of values from y to y, ,
et D

all of which are guaranteed to be distinct. The part of the schema

between lines (2) and (5) checks to see if counting can be done on a

larger domain: from y to f (yO • If so, then the "slice" of values

shown in the figure below are tested to see if the predicate p is

false for any of them.

87

^.^.^l^Wl^V^*^-.^ ^ ■...*.-.il1t ...^.W- ^»^^W^Ai».L».rik HiWWiriV HMfWii iiifii-V<f iflf-tf bnfi'iri

|l(UJJ*l«IÄ.W.Ml«l|f«P^I,IJI»-W*!l»»^

f

a ya y2

•

x^//

yl • //

y3A

//

yb y
apply g

=» apply f

Z

:'i

If, however, the domain from y to y cannot be extended, then the

segment of the schema from lines (6) to (7) resets y and y. . .;

2.5.^.6 Example h — Translation of Flowchart Schemas with

One Counter

The recursive schema

F0 <= F(a);

F(y) <= if P(y) then f(y) eJLse F(G(f(y)));

G(y) <= if q(y) then g(y) else G(G(g(y)));

can be translated to a flowchar!-. schema with one program variable y

and one counter c .

O

O

o

88

-.

■ ■■i n ' Mia i^nn ml n an ti n i 1 nmnriMn ... -A. ^ ,.. ^ „^..^^-.^-^i

Mi.in.. .1 , ^r™?*™- «VKOW-WW"'.!'/-':»*. .muiMmMimmmsmmHiwmmm'mmmmmmmmm —rr-

Q

STAET y ♦- a;

while -i p(y) do

begin

y - f (y);

while true do

if q(y)

then begin

y - g(y);

i1) -— if c = 0 then goto DONE;

(2) — c - c-1

end

else begin

y - g(y);

(5) — c - c+l

end;

DONE: end;

HALT(f(y)) .

O

i.

The corresponding equivalent flowchart schema with equality uses

three variables instead of a counter:

ya represents a zero counter,

yc simulates the counter, and

yt is a temporary variable.

The idea is that yc simulates a counter by using the value gn(y) to

represent the Integer n . Therefore, the statement y - y stands

for c - 0 , yc ^ g(yc) stands for c - c+l , and the statements

[yt - ya; while g(yt) / yc do yt - g(yt); yc - yt] stand for c - c-1 .

89

>- -J^,,....^..—,.-~..^-/.,^.A-
■■---■ ^__. matmautuuitmi^ii^ ■ n i- ■ —

u ""I "«I lymj ■H" ""^ •> I ■"■"I« M n l^lll.lll .1 III IIIIPB HIPP« m,iiin«ifcJHi,ini< JMI«» i«,i!Bi»™|niiiiinM"j«*i^.™'' - ■uiif («IUIJI

We have to be careful, however. The term gn(y) stands for the

integer n , n > 0 , only if for no two distinct i, j < n are the

terms g (y) and gJ(yn) equal. Interpretations for which the

counter is required to count up to an integer n where there exist

i,d <n , i / j , such that g1(yo) = gJ(yJ are called looping

interpretations. It is easy to see that for looping interpretations

the given recursive schema never halts. The required program schema is

therefore easy to construct.

START <y,ya,yc,yt> - <a,a,a,a);

while -, p(y) do

begin

y - f(y);

ya - y; yc - ya;

while true do

if q(y)

then begin

y - g(y);

if yc = ya then goto DONE; (i)

(2)

yt *" *&' 1
while g(y.) ^ y,, do y. - g(y.);

L
yc "yt

end

90

. ,,.a.,»,,..J,.,.i^»..J..j-:.i.-—;^.——■U^.^.^-.I.J..^»....^^.. - ■-■^~- -■■— ■ - ^■-■■-■• -■■■-.—^- ■■ - -~ :.... ...- -. ■V.-.-^.A. ...^ mi.

IIUJI>.P«I»WIIJUN«WW,"«I-..^1P<" 1 1.1. .lllll.UU L 1 J lllipi»JlllJil.PW..™il M....i.. •" " " "™. « iiij^iuiiiiiiLiii.ipi^mPimiKmi^ii^.iji^ijiiji«!

else begin

y - g(y);

r *t - \; i
while yt / yc do

if yt = g(yc) then LOOP

check
for a
looping
inter-

else y - g(y.); i preta-

L_
if yt = g(yc) then LOOP;

tion

J
(5) yc - g(yc)

end;

DONE: end;

HALT(f(y)) .

Note that this flowchart schema is equivalent to the given recursive

schema even when the functions and predicates are not total.

Proof. £(=) s C-(lc,=)

Since (3(=) <(3(lc,=) , we only have to prove that (3(=) >(3{lc,=) .

Given a schema in C{lc,=) , we reduce it to a canonical form S'

(for one counter scheraas) which is a recursive sch-ima whose base

functions a , f , g , and predicates p , q need not be total, and we

can give a meaning to a,f,g,p,q in terms of the base functions and

predicates of S that makes the schema S' equivalent to S . Further,

the "meaning" for all a , f , g , p, q is flowchartable. Thus, we would

find that since we have a schema S" in ^(=) equivalent to S' , if

we substitute the meanings of the functions and predicates we would obtain

a schema in (3(=) equivalent to S . For convenience below, after every

statement c - c+1 in S insert a (distinct) null statement, say

91

. . ■ ■ --■-■■■ ^ ; -■■ •■-■-■'■-■■-■^'■™^^-i^^~.^^--^^^^~.^^^^-.^.-~^ ■ ■■v-^-.^-^ —■--^-'-'■"^[riti(iari'^i1rtliiiiilirniii[iiiinir-fi«Mii' -ii'iiilir«H^iifli
,iMriM'in inrt r

..'MPiiwiipnsi^ppMiiiwu.iiiiiiiuiJiiiaHiiiJ^yiv.iKiMuiipiuii ujuupnjw^.iiiiiijwuiuinii^nipt(iinfn^^iipi.i!i«iiw»iaiwiiii>ii i)Jiii|iLi.yiiiiiiiu»n.un>iini.uiiiiuii I.!»»I«WW:WIIIW.,*PII ., ii,,iiiip,ipji-ii(jim,wiii lavmjm^mi^.iummivii^^^Kfm

yl " yl ' The c^onlcal form S« below can be simplified somewhat,

e.g. the term F(G(f(y))) can be changed to F(G(y)) -- we choose not

to do so here. The schema S1 is

S': F0 <=F(a);

F(y) <= if p(y) then f(y) else F(G(f(y)));

G(y) <= if q(y) thai g(y) else G(G(g(y))) .

We will represent the meanings of a , p , q , f , g by nonrecursive

subroutines. Without loss of generality assume that there are no loop

statements in 3 , that all halt statements are of the form HALT(y) ,

and that all statements are labeled. Suppose y = (y ,...,y) and

z = (z^...,zm) are the variables in S . Consider any interpretation

for S with domain D . Then the domain D1 for S» is Dn x {T,F}m+£

where I = T log2 s1 and s is the number of statements (or labels)

in S . We will represent an element in D' as a vector <y,z,L) where

L is a label whose value corresponds to a label in S (L is to be

implemented by booleans).

(i) If the start statement in S is

STAP.T <y,z> - <T(),a()>; goto L.

then a is <T(),äf),L.> .

(ii) f(<ySi,,L'» is

begin data y; boolean z; label L;

y - y'; z - z

REP: goto Lj

L^. STATEIvENT,;

L2: STATEMENT ;

L : STATEIffiNT ; s s'

end .

'; L

,.

92

"^'■-"-"■■-- ■ — -- - • •- ■ -■- - - - - -■ --- —^—- ■ - ■ - ' matt

«wtlwl«B!p^|m?rai(PP«BHPPIIPPWW»w»*^'W*"'""

?

s

Above, a variable declared label L represents a vector of I

booleans, and we allow statements like goto L where L is a

label variable (it is clear how this statement is to be implemented)

If in S we have

(a) L±i <y,z> - (f,a>;

goto L.

(b) L.: if a then goto L.

else goto L,

then STATEMENT, is
i

(y^z> - (Tjä); L - L ;
J

goto REP

if a then L »- L. else L

goto EEP

RETURN(<y,z,L))

-v

RETURN (<y,z,L.»
0

L - L.; goto REP
J

(c) L±t HAIff(y:L)

(d) L.: c •- c+1; goto L.

(e) L.: c •- c-1; goto L.

(f) L.: if c =0 then goto L. L *- L.; goto REP

else goto L,

(iii) gC^SzSL')) is like the function f except for parts (e), (f)

RETURN ((y,z,L.» (e) L.: c - c-1; goto L.

(f) L.: if c =0 then goto L. L •- L; goto REP
1 J K

else goto L,

(iv) p(<y,,i,,L'» is

begin data y; boolean z; label L;

<y,z,L) -f(<y',zSL'»;

if isplus(L) then RETURN(false)

else RETURN(true)

end .

93

 i ii inn itiiii—*«i n iw^Bimri—■ ■■■■in MHI koaUMantiM»»^*. Mllllll I l ■»^^—»^—^^

UTimwMiinHWiiiwi i

^mmmmmmfK'^^'^'^'^' "mmm I,,H»BI!"«H* i^ajimi^ijuijpwiiiiiwi f^mV'» wrujpp«

Above, the function iBpluE(L) is defined to be true if L is

the label L in a statement c - c+1; goto L. , and false

otherwise.

(v) qUySzSL'» is

begin data yj boolean z; label L;

<y,5,L> - sUy'^M'));

if isplus(L) then RETUEN (false)

else RETURN (true)

end

If the value computed by F(a) is <y,,• • .,y .z,,.. .,2 ,L) then
-J- n 1 m

y, represents the output of S .

S' implements the computation of the one-counter schema S by

representing the value of the counter by the number of defined functions

G that effectively exist in the recursion stack at any time. When the

defined function F is being "executed" the counter is zero.

This shows how to convert any schema in (3(lc,=) to an equivalent

schema in cX=) > which completes the proof.

2.3A.7 Proof of Theorem 2.16

C-(R,=) £c(c)

We will use the fact that Schemas in C(c) can simulate Turing

machines, and that the halting of Schemas in (3(R,=) over a given

finite domain is decidable, to demonstrate a diagonalized argument.

9h

lii^,i-r,|ilriitrtlfiilMnnitii^nirt't-it>ri1itn'i1iiili,rtliiif--ri1i -'liirtTlltiiifV'-nii-r'ni irilliiManafiir-1-''-' -'- ■ ■^fmmri.t.rtntw- ^-■■■^.^-^>■ ■ ,■ 1 ■,,,1 nin■ iiinriiftifi»j,tUilUt-jrffiMlMirtii'Ja'tllihWili ■ inM -ii r' r'm-r mi-'-rX,sA^väluti-itVii■ 1 i 1 lii'ifakt-'--"■■"-■-^■ ■•■^ ■- '■ ■ ^«

■ HUMP». ^^^^^^^MMWWWWIWi^^^^^^^^i^^^l^gT^lfl^fl'tl'l.'B^^^I^'^^^^fM^W-t^fM^vllM'Wt^l'^^V^^^
iiifirnMaiin n i j

The required schema SP(3(3C) is defined as follows.

The schema S uses three counters. The initialization phase of S

is the following:

STAET y - a;

while P(y) clo begin y - f(y) ; c - c+1 end;

After this phase the schema makes no use of the variable y , or the

base functions or predicate (except in the halt statement). Let the

value of i he counter c be n when it exits from the initialization

phase. Let In denote the following interpretation: the domain has

n+1 elements,

e0.,e1,...,en ,

the value of a is e0 , and f and p are defined by:

i < n f(e.) = ei+1 p(ei) = true

f(en) = e0 P(en^ = false '

The schema S then simulates the computation of the n-th schema S in
n

3(R, =) on the interpretation In . The schema S will diverge if

and only if some defined function calls itself recursively with exactly

the same arguments (data and boolean values) . If Sn halts with output a ,

then S loops, otherwise S halts with output a .

This completes the description of the required schema S ; and it

is clear that it is not equivalent to any schema in C-fR, =) , because

if it were equivalent to, say, the m-th schema, we find their outputs

on the interpretation 1^ disagree -- a contradiction.

QC

■iriiaiiiiiiiiifr'if -■ 11iM.Wi11iMM.ff.111 vii -■ '- ■—--^^.-J-»- - -.,-...■■ -.,—-mrtiuinirii inn i i ■ ^-- *m^h^±****^**.,.,—wi»-^ -. , .. ^ , ,..^.^

'^^•^vswmitm' wm/m«! ■■»»^»WIHieWiBlinm^B^WMPlipwSSWBSllBfMppiWW^p» mw;., , I .1 l|.|l«^ll|ll«lilj|.l IJIJ ^llW^liMWJW.IlWIJHIfLNIipi.llllWJII, «7Mll«l|a.W(llli(M(!)i.i^j|l.

We can show the equivalent result that there is a schema in (3(R)

not equivalent to any in (2-(c.,=) . It is

S: F0<=F(a);

F(y) <= if p(y) then h(F(f(y)),F(g(y))) else y .

This is the schema demonstrated by Paterson and Hewitt [1970]j and their

proof, shown for ö,() , also applies to C(c,=) .

Let T0 be defined to be the term a , and T to be the term

h(f(Tn),g(Tn)) . Also define the Herbrand interpretation H tobe:

P(T) is false if the depth of nesting of function symbols in T is n ,

otherwise it is true. Then, Val(S,Hn) = T . Now, suppose there is a

schema S'e^c,^ equivalent to S . Without loss of generality, we

can restrict all terms appearing in S' to have depth at most one

(depth of terms a,yi is 0 , of terms f(a) , f(y.) is 1 , of

f(f(a)) , h(f(a),y) is 2 , etc.). Then we see that if S' has m

data variables then S' cannot compute any terms T if n > m ffor
n v

Herbrand interpretations). Thus the outputs of S and S' over H
m+1

must disagree and S and S' cannot be equivalent.

96

..^^.■-.-^-^.^■-^--^—v'—-lilffffiirtiMffrtMBiiliM'iiiir ■■■iiil^ ■ ■ --■■■^-■---"■-^«■--■■ -. ■. .-.w, ..,^.- ^..^ZJ.^^^^A^M

im^mtmmuMwß

""■ ■ ■

1,111 < ■»wmmr*» i"1«1. ^^^^■«■i«PSS!aiWkUHIMIPJ"^^^^W»«liW^WW«.>ww.l.w|i iiiaiiiiii|i|i.i niumi »Jd^^iBi

«

2.5.U.8 Proof of Theorem 2.19

To prove that

(a) £(R) = C{1 pds) = 0{1 list), and

(b) ^(R, =) a ^(1 pds, =) s (2.(1 list, =) .

C-(R) <fl.(l pds) , ^(R, =) <C.(1 pds, =)

We do not describe the construction in detail because it is

obvious. Given a recursive schema S we construct a schema with a

stack S' as follows: S» can stack boolean variables to code any

finite piece of information. S1 has a set of variables that represent

the arguments of a function call, another set to represent the values

returned, and some for temporaries. When a recursive call is to be

made, the old arguments and some temporaries (values of earlier calls

from the same defined function — required to build up terms) are stacked,

as well as the local context, the new arguments are set up, and

computation is begun on the new defined function. When a function returns,

values (and the context) are unstacked. S1 halts if the stack becomes

empty.

0(1 pds) < £(R) , 3(1 pds, =) < C(R, -)

Given a schema S with one pushdown stack, we construct a recursive

schema S' equivalent to S , such that S' uses equality tests only

if S uses them. For the sake of convenience, we will allow certain

features in recui'sive Schemas that are not strictly allowed, but can be

easily eliminated to get a legal recursive schema. These include the

following:

97

I IllJMMiililiaiMWllMMiliittliirillil- i -'- .■■^....■.-.■....^.^.....^■.,...,-.. ..-..„■,....-......-;^»U^-^^,^i..^^:^.^..^..^..,«„.J „„l.^.W.,....,....:. ..:..,...:. ^ ..,— .. ^1

■Wl™\k; . ai»,iiigpHiP,Lf,|i™iu.,iJ i9S)p»PBi«(BWpiwrmuiMw,ijjiiwi»wmiu^^^

(1) Nested if-then-else's .

(2) Passing labels as parameters (arguments and values returned) and

nonlooping goto-statements in a recursive definition. Labels can be

implemented by a vector of booleans, and transfers can be implemented

by nested if-then-else* s . We also allow return-statements which

explicitly return values from the defined functions.

Without loss of generality, S has a single halt statement of the

form HALT(y,) , and has no loop statements (l^: LOOP can be replaced

by L.: (y,z) - <y,z); goto L.). In the schona S we label all assign-

ment statements, test statements, the halt statement, and also all

statements operating on the stack as follows:

s «- push(s,y,z)

if s = A then goto L

else begin

<y,z) «-top(E);

s «- pop(s)

end

L.: s <- push(s,y, z)

L.: if s = A

L .: then goto L
j

else begin

<y,z) f-top(s);

s f-pop(s);

end

0

Notice the strange placement of the label L. after the test s = A •
J

In addition, we have a dummy label 1^ lt which is assumed to be

entered after the halt statement.

The recursive schema S' he3 four defined functions:

0

F,

The starting function. This calls F .

FA may call When this is executed the stack is empty.

itself iteratively (i.e., a compiler can treat it as iteration

98

ill m '»r r-"- ■■■■■■-■■■■■■-■-J.»-.-....-...-—^...^...-..^..--...».. —J. -■■■■■■ -^^»u^^.».^.^—.J^.. ... _.. .—._ . ^._

T*^ M.*|M«Ulll!"-lMJUi" !. l»»»il«BWW»PliWPilJMail^*l»UJUJiPHIJJW!lIWWM|llll JaWWi-Ulli ii"il*lBWt>P'.l-»!^."i!I"' ^"T- T, n.,,,,,^,,»^...,,,,,.,, . uu.4, III.,IIUIVII...W..MUIU>I H IJ ii^i.^H,P|U|

-"■ ■■■>■>■■■

rather than recursion). It returns only when the schema S

halts. FA may also call the function F .

F -- This is the work-horse. This is siinilar to the function used

in converting a flowchart schema into a recursive schema. It

calls Fs when something is pushed into the stack.

Fs -- The number of recursive calls on Fs represents the height

of the pushdown stack.

These functions are defined as follows. Recall that the notation

Yi(...) is used to pick the i-th data element of a vector. We also

use Y(...) to pick all data elements from a vector, and Z(...) to

pick all boolean elements. Similarly, we will use the notation L(...)

to pick the label from a vector (only one will be used).

FQ : If the start statement in S is

START <y>2> <- <f,a>; goto L.;

then

A -

F0 <- VV-f^L.));

FA(y,z,L) <= ^otc MFC^Z,!));

L,: rocurnfexp);

L2: return(exp);

♦
For any i :

(1) If L. is the dummy statement L^ then the expression exp. is

F(y,z,L) .

99

^ --—- ■■■ '■■ '' ■■ J- -■.-■--.■ :--■■. --■ ^^...^..--t.-» ■. _.;..,.,., -.,....,„^ .

W^T'^WWipiB^raipW""!"™!!!™^»»»»^

(2) If L. is the "weird" label in

if s = A

L.:then goto L.
i * j

else begin <y,z> ♦- top(s); s »- pop(s) end

then the expression exp, is . ..

FA(YP(y,z,L),ZP(y,z,,L),Li) .

The value returned by F will have the same type, i.e., <y,z,L> ,

and it represents the "current" values of the variables and the

label of the next statement to be executed. Notice that the effect

of exp is to stick the values returned back into F (in the next

call to F) and continue the execution from where it was left off.

(5) If L. is anything else — this can never happen, and exp. is

arbitrary.

F : F(y,z, L) <= ^oto L;

L,: returnCexp..);

L„: return(expj;
• •

if Li
is

(1) The dummy statement 1^ ,+

or the halt statement itself

(2) 1^: <y,5> - <f,5>; goto L.;

(5) L.; if a then goto L.

else goto L.

then exp. is

<^^Lhalt>

F(f,ä,L)
J

if a then F(y,z,L.)

else F(y,z,Lj

100

— - ■——.-- .- —- --■•■ ■- ■ ■ ——-^ ■ -■ — —■ ., L^^^^^i^.

^•z'

I

rather than recursion). It returns only when the schema S

halts. F may also call the function F .

F -- This is the work-horse. This is similar to the function used

in convert lag a flowchart schema into a recursive schema. It

calls F when something is pushed into the stack.

Fs " The number of recursive calls on Fs represents the height

of the pushdown stack.

These functions are defined as follows. Recall that the notation

yi(...j is used to pick the i-th data element of a vector. We also

use y(...) to pick all data elements from a vector, and Z(...) to

pick all boolean elements. Similarly, we will use the notation L(...)

to pick the label from a vector (only one will be used) .

? Frt : If the start statement in S is

START <y,z> <- <f,a); goto L. ;
i

0

then

F0 <=Y1(FA(T,ä,Li))5

FA : FA(y,z,L) <=£oto L(F(y,i,L));

L,: return(exp1);

L2: return(exp2);

For any i :

(1) If Li is the dummy statement 1^ -,+ then the expression exp. is

F(y,Z;L) .

99

■ • -' -■ - -- - ■■-.- -. .- i niia—iii n in ■• ■ i.. i. . . - .. - i —

BBBBKl^p^r ^^^" ^^^^ ̂ RP"

(2) If Lj is the "weird" label in

if s ^ A

L.;then goto L.
u

else begin <y,z> ♦- top(s); s - pop(s) end

then the expression exp is
• *!

FA(YF(y,z,L),äP(y,z,L),L,) .
J

The value returned by p will have the same type, i.e., <y,5,L> ,

and it represents the "current" values of the variables and the

label of the next statement to be executed. Notice that the effect

of expi is to stick the values returned back into F (in the next

call to FA) and continue the execution from where it was left off.

(5) If ^ is anything else — this can never happen, and exp. is

arbitrary.

F : F(y^z ,L) <= goto L;

1^: return(exp);

L0: return(expj;

if L.
i

is

(1) The dummy statement L, ,i
nalt

or the halt statement itself

(2) L.: <y,z> *- <T,ä>; goto L.;
x J

(3) L.: if a then goto L. i — s j

else goto L,

then exp. is

^^alt)

F(f,ä,L.)
J

if a then F(y,z,L.)
J

else F(y,z,L,)

100

..^.„i/,..^^.^^^.;--,,-..^; ..-. .. ■ , i.: ||,y.Avt|tt^<j|Mfj|-|Mtl|^^ w......w.i >..■- ■ - iM.i niii,i»Mi lii'iiil illlllnrilltMr n !■■ HlnililiiiiilltiiiifM

^^^^^^^^^" «M ~m

(k) L^ B «-püsli(s,y,z)i goto L. F.(y,z,L.,y,2)

(5) 1^: if s = A

L.: then goto ..
J

(y>z*L.)

F :
s

The only case not shown cannot occur, and the expression for it is

arbitrary.

Fs(y,z,L,y,z) <= goto L(F(y,z,L));

L,: return(exp);

L2: return(exp);

(Note ~ there should be no ambiguity as to the roles of the two

L's above). For any i , if h± is a statement of the form

if s = A

L.: then goto L. 1 = j

else begin <yk,zm) - top(s); s - pop(s) end

then the corresponding exp. is

where y is obtained by substituting y for y, in the vector
K

F(y,z,L) ; and z' is obtained by substituting z for z in
m

the same vector. If this has caused any confusion, it may be pointed

out that yk really stands for the k-th data element, and similarly

for z
m

The only other possible case is that L. is L , and in
i nciJLx

this case exp^^ is F(y, z,L) .

a

101

f'MilMfiaiiir'"-'-'—■-'-'-"■'-■•■ifii ifiii-liiiiiiltiir —-^ ■■-—..^-. L, . ■—.n .umirmii*"—"•-"———■- ■- ■- --'■ - - ! J-i rn-niiiii iii^ii(iiilib-«iMifcMMiiit^ritmii^l-
/iiir^---J'------,J'-^'^^-^"*A-1--- i iiriit KintitaMiliii

T- ——^-—-■^^^^—^^^^ ^^^^^^^" i p

(3(1 pds) <ö(l list) , CJ(1 pds), =) <^(1 list, =)

A pushdown stack can be simulated by a list as follows. In the

construction below, L' is an arbitrary label (transfers to L1 can

never be taken in actual computation), and y' is a dummy variable.

The list schema uses a zero-ary function a to represent "true", and

A to represent "false".

Pushdown stack

s ♦- push(s,y, z)

if s = A then goto L

else

begin

<y,z> - top(s);

s ^pop(s)

end

List

I - cons(y,je);

if z then t - cons(a,l)

else i *- cons(A,i)

If I = A then goto L;

if atom(i) then goto L'

else if -i atom(car(0) V car(i) = A

then goto Lp

else y' •- car(l);

z *- true;

goto L,;

L'.z- false;

if atom(£) then goto L'

else I •- cdr(l);

L,: if atom(f) then goto L'

else if -, atom(car(l)) v car(l) = A

then goto L*

else y - car(i);

if atom(i) then goto L*

else I - cdr(l)
□

102

 -- —'-^— '-' .-^-.^-^-^^■-»■^«^■.-■u-^-. " '- ——..~- - ■-■'■ —'-—^.■.^^^,^.-.—^ .,.,

T" ■

mmmmmm

\

f

i

(3(1 list) <C<1 pds) , (3(1 list, =) < (3(1 pds, =)

The list operations can be simulated by a stack as follows. The

top three pairs in the stack roprc£!cnt either the car or the cdr ui'

the list, the rei-.t of the stack represents the rest of the list. The

only exception to this is when both the car and the cdr of the list

are lists. When a schema has just one list i , this can only happen

by the execution of a statement

i *- cons(i, £)

that is, the car and the cdr are the same. This is represented by

a boolean value in the stack that represents a "doubled" list. The

representation of a list by a stack can be done as follows (a is any

zero-ary function):

list ;tack representation

U

a T

a T

a F

an atom
a T

a T

y T

105

■tüi wiiil'iiiiiiiiniiiitti'^-^" ■■■^^■^ ^ ■^^-■■-^..-.—L..,^. ^.-......^ fc»^—j-.^——...■-....-- -||iit|fcf1|MMwiüiH.Mj-||j I f - —-- ' ■

— ~— ■

list stack representation

A.I

a T

a T

a F

)

y.i

a T

a T

y T

}

I.A

ly

a T

a F

a F

}
a T

a F

y T

)

loh

. ^ . —.- ... ^:-^l.. ■^.>^-^^.- -- -J- — ---— ■-- - - -^—.^..^ -^ ^.-.

^^^^^^r ^^^^^^^^^^^^^^^^^—

\
list stack representation

£ .i

a

}

$

Note: the stack representation of a list is not unique, but depends

on the way the list is built up. Now, it is clear how the list can

be manipulated by its stack representation. We have been able to

represent the list by a stack because a schema with a single list

cannot generate lists of any great complexity.

a

2.5.I4.9 Proof of Theorem 2.20 (Maximal Classes of Schemas)

^(1 pds,lc) >^(pds,q,list,A) , -3(1 pds,lc, =) > (3(pdE,q,list,A, =)

We first demonstrate that a schema with a pushdown stack and two

counters can simulate the computation of any schema S with any number

of features -- pushdown stacks, queues, lists, arrays, counters. We

will take recourse to the large body of knowledge on the programming

of Turing machines (Church's thesis).

105

■—"-"■'- "-■ '■'■ .-.—.—«- .^-..•-.-i..^..—.^.J...-^.■------»-«-—..vBJ.-a—^^—. „.■ - . ,^ ^-- ■-■■■ir ■ ■'■ ..--..1- MM. rit'-Mifii'llllillm'"-'-■• ' "

*

Now, two counters can simulate a Turing machine computation (on a

blank tape). We are using the term "Turing machine" somewhat loosely

here because we will allow the machine to output ao it computes, and

also in seme special state to accept a yes-no input (from the environment)

before deciding what to do next. Our two-counter Turing machine will

keep track of the values in all the pushdown stacks, queues, lists,

arrays, and counters of the schema S . Data values will be kept in

symbolic form, that is, as (constant) terms. Of course, an infinite

amount of memory is not required to keep track of arrays -- the Turing

machine need only remember those array locations that were assigned to

since the beginning of the computation, and know about the value the

array was initialized to by the start statement. If S execuv.es a test

on data elements (a predicate or equality tett), then the Turing machine

"outputs" a list of instructions as to how all terms are to be constructed

and the test to be made •■- the output is a postfix-polish form of the

expression (it uses only constant terrat; -- no variables). Postfix polish

can be executed on the pushdown stack and the outcome of the test is

transmitted to the Turing machine. Our two-counter machine can output

one character (say, the n-th character) as follows: if c , c are

the counters, c. is set to 2 .k where k is some odd integer, and

cp is 0 (see the construction of a two-counter machine from a multi-

counter machine in the discussion on Theorem 2.17) • The output can then

be detected by:

if (^ mod 2) = 1 then goto OUTRJTO;

c1 - 0^2 j

if (c. mod 2) = 1 then goto 0UTRJT1;

106

'*'- - ■■- JJ^M«.... ^— , — - iiiiniimiii i i i

•w

cl - cl/2'

if (c mod 2) - 1 then goto ÖUTPUT2;

where it is obvious how the test (c. mod 2) = 1 , and the assignment

c1 - C-/2 can be implemented.

Now, the schema in cXl pds,2c) we obtain has the following

interesting property. Whenever it executes a statement like

s ♦-- push(s,y, z)

or like

if s = A then goto L

else begin (y,z) - top(s); s - pop(s) end

the value of the counter c,., is zero. Hence wo can implement c in

the stack itself by stacking a false value to represent c - 0 , and

subsequently a true value for each increment to the value of c^ . This

will not interfere with the above stack operations since we simply throw

away the false value, execute the stack operation, and then reinstate it.

We note that if the functions of the schema are monadic, then ^(20)

can simulate C(pds,q,list,A) (and similarly for (3(2c, =)). In the

above description of a schema with one stack and two counters, the stack

was only used to construct (constant) terms. When the functions are

monadic, any term can be computed with Just one variable, and hence any

n-ary predicate test can be performed with n-variablec. This shows that

(3(2c,monadic fns) s 3(pds,q, list,A,monadic fns) , and that

(3(2c, =,monadic fns) s (3,(pds,q,list,A, =,monadic fns) .

a

107

 , ii*^ lüiü ...^.»...^.^^.^■■^..J.. -.. .■■■■■.■■.. ^ j^^^iüi

" -^-

C-(lq) >C-(1 pdsjlc) , £(lq, =) >(J.(1 pds,lc, =)

Since a pds is at least as powerful as a counter, it suffices to

show that C<lq) > (3(2 pds) , (3(lq, =) > (3(2 pds, =) (the proof is a

little simpler). Given a schana S with two stacks s and s2 , we

wish to construct a schema S1 with a queue that is equivalent to S .

But this is easy because both stacks can be packed in a queue, with

boolean variables to mark the ends, and the values can be circulated.

The detailed construction is as follows. For convenience below, we use

the notation tf(l) for "true", and tf(2) for "false", and we define

macron rem(L,y,z,q) , and reset(i) as follows:

rem(L,y,z,q)

reset(i)

if q = A then goto L else

begin (y.z) - first(q);

q ♦- remove (q)

end

L:rem(L,,y,,z,,q);

q - add^y^z') ;

begin rem(L,,y,,zl,q);

q - add^ySz');

goto L

end;

rem(Ll,y,,z,,q);

add(q,y,,z');

if z' ^ tf(i) then goto L

where L' is an arbitrary label, " a " is a zero-ary function in S ,

and y' and z' are new variables in the schema S* (with the queue)

that are not present in S .

O

O

-.

o

;.

108

. .. —andI■iiltiil f* ■■■ ^--- ^

s^s-S-T"

Schema S — two stacks (s ,s)
 v 1' 2'

START (y^Yg, ...»Z^Zg, ...)

s^^ - pushCs^y^)

if s = A then goto L else

begin <y,z> - top(E);

s H. pop(s);

end

109

Schema S' — one queue

START <y', y^ y2,..., z' > ^ ■'-.„ ••■)

- (a^^Tg,.. .^true^^ctg,...);

q •- add(q,a, false) ;

q - add(q,a,tf(l));

q •- add(q, a, false) ;

q - add(q,q,tf(2))

reset(i);

q - add(q,a,true);

q - add(q,y,z)

reset(i);

remCLSySzSq);

if -1 z' then

begin q - add^y^z1);

remCLSySzSq);

q ^ addCq^Sz');

goto L

end;

remCLSy^q)

^.Jt.w>....j...-—■■^■■..^^-^^.■•i-- ^■■-^^--^^-^^^^.-^.i^^.^.v. ■^ujürti-fdi L-J—■'•^-^■fli'llil-'tiT !■■ tt^^ti^mmmt ■^iUf'to^te.^^^.-^.: - ^.„■^..^..^^..l.^.^.'.-^^^^ltA***'*^,*.--*.'«-!**.*'-**

■ ■

Chapter 5 Decision Problems

O

u

I ;'--

O

5.1 Introduction

We consider the following decision problems for classes of cchemas:

(a) The halting problem -- to decide whether a given schema in the

class halts on every interpretation.

(b) The divergence problem --to decide whether a given schema in the

class diverges on every interpretation.

(c) The equivalence problem --to decide whether two Schemas are

equivalent (decide if S1 - S2) .

(d) The inclusion problem — given two schanas D and S2 to decide

whether it is true that for every interpretation either both Schemas

halt with the same output or Sp diverges (decide if S- > S-) .

(e) The isomorphism problem — to decide whether two Schemas are

isomorphic to each other (decide if S, ~ SQ).

It should be stated that for "conventional" Schemas, i.e., all

Schemas introduced in the previous chapter, the problems (a)-(e) are in

general unr.olvable, but the following problems are partially solvable:

(a) The halting problem --to decide whether a given schema in the

class halts on every interpretation,

(b') The ncndivergence problem — to decide whether a given schema

ever halts.

(e') The non isomorph ism problem — to decide if two Schemas are not

isomorphic to each other.

The notable exceptions are the equivalence and inclusion problems.

In general, the equivalence and inclusion problems as well as their

110

... .. r^. *..:■*..^~:: ■-.- '■ •- -'--^^^■^"'^■•^■^^■-"■^^•^-■--^^--- ^■---—.-■^^-..-:-■ tttk < _u_— ^^ L_ ^^

.' ^

negations are all not partially solvable.

A class of Schemas is said to be solvable if its decision problems

(a)-(e) are solvable; similarly, a class is unsolvable if its decision

problems (a)-(3) are unsolvable. Of course, some classes may be neither

solvable, nor unsolvable.

The class of lanov schemas, which consists of one-variable flowchart

Schemas using only monadic functions and predicates and no resets is

solvable. However, even very simple classes of two-variable schemas are

unsolvable. For example, the class of schemas with one constant a , one

other function symbol f , one predicate p , and statements of the forms:

(1) START (y^) - (a,a)

(2) HALT(a)

(5) LOOP

(l0 yi - fCy^

(5) if p(y.) then goto L, else goto L?

is unsolvable. For this reason, in this chapter we will almost exclusively

consider schemas with only one variable to determine how large a class can

be constructed before it becomes unsolvable.

Also note that for solvability considerations the use of boolean

variables is irrelevant as they can be eliminated. Hence we will only

consider schemas without boolean variables.

In Section 3.2 we consider uninterpreted one-variable flowchart

schemas in which equality tests are allowed. In view of the fact that

all decision problems for uninterpreted one-variable schemas without

equality tests are solvable, it may be somewhat unexpected that the class

of one-variable schemas with general equality tests is unsolvable. But

we shew that if only some restricted equality tests are allowed the

resulting classes are solvable.

Ill

U

U

IMiiniirriiiirir —-- - ---' iir - — -| --■ -■ - - ■■ ■ -——

i Kimmtmq*^***<< « mmmmH.i. T , ■■JKI^^^W MliU,lB»»i«J|IJIflJJ,,.,41SMPIll»,lJI,,",l,U..4U(lJH^p>llLpai^ ^"

;

o

In Section 5.5 we consider some semi-interpreted t;chanaa, in

particular, those obtalnod when (a) Lvro unary [\mct;loiiij are üpt«!:! r.ied

to commute, and (b) when some unary function is invertible, I.e.,

composition of the function with its inverse is the identity function.

We find that with commutativity or invertibility alone, the decision

problems are solvable, but if both are allowed, they become unsolvable.

5.2 Equality Tests

5.2.1 Notation

We consider flowchart schemas with a single variable y , and wo

use the symbols

(1) a,a1,a2,... to represent individual constants (or zero-ary

functions, if you will),

(2) f, f.,f_, ... to represent n-ary functions (n > 1) , and

(5) P^P^Pg;... to represent n-ary predicates (n > 0) .

We use the notation T() to represent a constant term, i.e., a term

not containing the variable y , and T , T(y) to represent an arbitrary

term.

The assignment depth ||T(y)|| of a term T(y) is defined as follows:

Mll = o,

IM = 0,
11^^^ ...,Tr)ll=max|;i|T1||, ...,||Trll}+l , where at least one of the

T.'s is nonconstant.

112

v v^MniiMjftriHmriWM^ —i-..-.-..rv-^....,. :..:... ... ■ . '"■■'•—^^--^ ---■'■■'"»■"^■^-'"l-'^«^'-»''-^

. j .nil 1 wiij^iiyiiiiiniin..« i/i «i^^BwiBBni5^|j,^PSIpiBpifpiiwP»B«wnpi^ww?»w»w»r^^

The depth |T I of a term T is the maximum depth of nesting in

the term, and is defined by:

Ki = o,

|y| -o,

I^CT^.-.^pl = raax{|T1|,...,lTr|}+i .

We also say that |T | is the depth of nesting of T .

Note that for nonconstant monadic terms T , 11TII = M * ^^ in Seneral

HTJI < |T| . For example, llf(g(a),y)ll = 1 , but |f(g(a),y)| = 2 .

u

5.2.2 Solvable Classes

Consider the rather general class (2^ of flowchart Schemas with

one variable. Schemas in &. contain the following statement types

(L, and Lp are arbitrary labels in the definitions below):

Start statement:

Final statements:

Assignment statement:

Predicate-test
statement:

Equality-test
statement:

START y - ai

HALT(T) or

LOOP

y - T

if P.CT,, •. .,T) then goto 1^

else goto Lp

if T- = T2 then goto 1^

else goto L2

The equality tests allowed must, however, satisfy the condition that

either T1 or T_ is a constant term, or else there exist terms

T'(y) , T^(y) such that both l|T^(y)|| and llT^(y)|| are less than or

115

_ •'—"■"'■—■"-"■- ..,....^^^^-^ C:

i.i.iiwi,(^^iiti*j(,i.»miij,iuMjv»^i«iiiiiuj1^.H"j!iBiH+,i „,ü«(awB^ipi«!!>pww»v»,*«!™lw»w-«»i)'i .HMU.ilw»wp»lJM4u«wijiuijiiiuii.",.'Mi ■ ■ »-■««■.-(■iiLuiuuiKiuu'*™"»-!,'»^ "vtmmm

o

equal to 1 , and T and T are of the forms T'(T) , and T'(T)

respectively for some term T . Note: TJ(T) is a term obtained from

TjCy) by substituting all occurrences of y simultaneously by T ;

and similarly for T'(T) . Note also, that as a special case of this

condition, tests of the form T. = T with both HTJ^HTJI < 1 are

allowed (simply by choosing T to be the term y itself) . Another

example of a test that is allowed by this condition: f(T) = T , where f

is some unary function and T is an arbitrary term — this is allowed

because we can choose T' to be f(y) and T ' to be y .

Theorem 3.1 (Solvability of &.)

The class G^ is solvable, i.e., for fl^ :

(a) the halting problem is solvable;

(b) the divergence problem is solvable;

(c) the equivalence problem is solvable;

(d) the inclusion problem is solvable;

(e) the isomorphism problem is solvable.

This theorem includes as special cases the results of lanov [i960],

Rutledge [l^], and also recent extensions by Pnueli [private communication],

and Garland and Luckham [1971]. The proof is presented in Section J-^A.

As a special case of this theorem, the class of all one-variable

Schemas without equality tests, (3.(1 var) , is solvable.

As another special case, the class of one-variable monadic Schemas

allowing resets, and equality tests of the forms:

T^) =^2 , y ^ f.(y) , and f.fr) = f^y)

is solvable.

uX

 - - —. .- — . . . ■.. -. mmf

mp ■ an i uinwPMMWMnp* I L-,l.,U.ll»L»mi,-l|-Ili 1,^,11)11.11. J^'JI'JI» l.-U ^I^.^JJ. ^ ^^PilUllJ

Consider, next, the class &, of schemas, sijtiilar to the class C* >

but with a change in the foiro of equality tests allowed, viz., the

equality test statements allowed are of the form:

if T, = Tp then goto L, else goto L2 ,

but this time the restriction is that either T, or T2 is a constant

term, or else HTJ| = ||Tg|| .

O

Theorem 3.2 (Solvability of C^)

The class <3g is solvable.

As a special case, the class of one-variable monadic schemas

allowing resets and equality tests of the forms:

^(y) = T2() , or ^ = T2 where [TJ - |T2|

is solvable.

5.2.5 Unsolvable Classes

It should well be asked why we have the "strange" restrictions on

the form of equality tests above. The answer is that even slight

generalizations of the restrictions above yield, astonishingly, classes

whose problems are unsolvable. We demonstrate this on two classes.

Consider the cxass C, consisting of one variable y , one

constant a , no predicates and only monadic function constants.

Statements in schanas of C* are of the forms:

Start statement:

Final statements:

START y *- a

HALT(a) or

LOOP

-

115

 ^__. —^ 1 11 i ijnMM—wt,^ mr-imuM^,, in HI - ——

^HRHIIPJ ■
wm**m****m'mm****™™*™mmmmmi^

»

Assignment statement: y •- f.(y)

Equality-test if f.(y) = f,(f, (y)) then goto L,
statement: * J K 1

else goto Lp

C* differs from C^ in that terms of assignment depth two are

effectively used in equality tests; and it differs from (3 in that

terms tested for equality do not have the same assignment depth.

Theorem 3.3 (Unsolvability of fl*)

The class &, is unsolvable, i.e., for C, :

(a) the halting problem is unsolvable;

(b) the divergence problem is not partially solvable;

(c) the equivalence problem is not partially solvable:

(d) the inclusion problem is not partially solvable;

(e) the isomorphism problem is not partially solvable.

For the sake of completeness we should mention that the non-

equivalence and the non-inclusion problems for this class too are not

partially solvable. Of course, the halting, non-divergence and non-

isomorphism problems are partially solvable, which follows from the

general result mentioned in Section 5.1- For the proof, see Section 3.2.1+.

We introduce, next, the class (V of one-variable monadic scheraas

similar to (J^ but with the difference that equality tests allowed have

the following form:

if y = T then goto L.. else goto Lp

where T may have any of the forms:

116

-- - - ^.■-- — -—_.-. _ .. ~.

' ' '•' V"y ' '■"-■^^ - --t..^—,« ^w.i».,J.,ww,....J«J .- ^-™.—i -> ..,,,,_„..,.. , , , xnu, m.n.in.H^^qp^m^p^p

or

W*kiy)))

Theorem j.1* (Unsolvability of ß.)

The class (V is unsolvable.

■

Classes C^ and Cg are solvable, whereas (V and ß. are

unsolvable. On comparing these classes it is clear that there is a

very sharp demarcation between classes of one-variable schemas that are

solvable, and those that are unsolvable, depending on the form of

equality tests allowed. It should perhaps be asked how many function

symbols suffice to render a class unsolvable. It can be shown, for

example, that for the class (* , merely four functions are sufficient.

It is more interesting to note, however, that these function symbols can

be "coded" using only two function symbols so "-hat Schemas with one

variable, two functions and general equality tests, i.e., tests of the

toSS Ti(y) ■ T2(y) > are unsolvable. Note: the number of functions

does not include the ever-present constant (or zero-ary function) a .

So far we have restricted our consideration to Schemas that have

only one variable. The reason is obvious: one-variable Schemas provide

the most interesting solvable classes. When more variables are allowed,

even a very few features tend to make the schemas unsolvable. For

example, schemas with two variables, two functions and tests only of

the form y. ■ f(y.) are unsolvable.

117

— —■ — i ^i-j-n^gjUEj. i

imm^*im*mmmm*mm-0mrwmvim im* " ■Min"" ll. I u i . —'-""•'

It is even more interesting, though probably not surprising, that

schwas with ^ single function too are unsolvable; for example, the class

of one function Schemas having tests only of the fopn v. =y. is
—i i_

unsolvable (four variables suffice in this case).

The proofs of these secondary results are also presented in

Section 5.2A.

3«2.Jl Proofs for Schemas with Equality

3.2,k,l Proof of Theorem 3.1 (Solvability of (>)

For convenience, in this proof we change our notation for terms

very slightly: T stands for an arbitrary term and T() stands for a

constant term as before, but T(y) represents a non-constant term.

3.1(a), {h), (c) The solvability of the halting, divergence and

equivalence problems follows from the solvability of inclusion:

(a) Given a schema S of (^ , S halts if and only if S« >H where

H represents the schema START; HALT(a) that always halts with

output a , and S' is the schema S with all halt statements

changed to HALT(a) .

(b) Given a schema S of ^ , s diverges if and only if L > S ,

where L represents the schema START; LOOP that always loops.

(c) Given two schanas S1 and S2 of ^ , S1 a S2 if and on^r if

S1 > E2 and S2 > Sj^ .

^•1(d) To show the solvability of the inclusion problem we will

first present a proof for Schemas in ^ using only monadic functions

118

„__ i immmtmmmtmmmtmMmmmttM — -

w-r ll-mW^ÄlLH i i.i..i.iiil««»i™i-i.uui»iiu.i,-H4W-..)i*t».' , i-ini-...i..,J .»R*™«»Jrvm..iii iwVIIIURailUFI

and predicates, and then indicate how it may be extended to include

non-monadic functions and predicates as well.

We first describe classes of canonical interpretations that play a

role for the monadic scheraas in C^ similar to the role of Herbrand

interpretations for Herbrand Schemas (see Theorem 2.1.2).

For any integer k > 0 , we describe the class of interpretations

A (over a set of monadic functions and predicates) as follows. The

elements of the domain of an interpretation IfA are equivalence
K

classes of constant terms. However, each constant term need not be

present in some equivalence class. First, consider the set of terms

T() such that |T()| < k . Equivalence classes may consist of arbitrary

non-overlapping subsets of these terms as long as substitutivity relations

are preserved, for example, if k > 3 , and f(g(a1)) , f(a_) are in

the same equivalence class, then f(f(g(a1))) , f(f(ap)) must together

be in some class, as must g(f(g(a)) , g(f(ap)) , but g(a1) , a? may

be in different classes. AU constant terms T() , with |T()] < k

are in some equivalence class, and these are called the initial elements

of Dom(l) . We will rank the terms in an equivalence class first by

depth, and then by (some) lexicographic order, and choose the smallest

as the representative of the class. We denote a class by [T()] where

TQ is the representative. Also, if T() is any element in a class,

not necessarily its representative, we use [T()} to denote the class.

Since the equivalence classes will be non-overlapping, these notations

make sense.

Functions are defined on the initial elements in the obvious way.

If |T()| <k then f([T()]) = [f(T())j . If all initial elements are

119

i^lll'-ll inrir- ■-■ - ■'J-- ■^Ul''~--^■^^"^^-^^-^^^l^M°J^^^"^*m^^l^^■-^ - --■ ' I HI "" ' "''--^1 11 1 I I II 11 I I ■""■ ^- ^ ' -.-.»-^ ^ - ■■.■

W1 pwpwijpiriiwpppwi^uu , i . .iinitiiHi m pm&wt.wf'immtmiiw,»'*-'- (■li«(.MUl,»Ji.'l ! I-I-AU. .1- 11 ,i ^ «i. i.i, IM.^'^^I in i DimiPfaeriüwm^HwJiuji^ TT

9

X

«

of the form [T()] with |T()1 < k , then there are no other elements

in Dora(l) . Otherwise, if [T()] is an element of Dom(l) , 1T()| >k ,

then new equivalence classe-; may consist of terms from the set

(f(T()) | f is a unary function symbol] , and for any function symbol f ,

if there is a class, of which f(T()) is an element, then

■([()]) = [f(T())3 , otherwise f(tT()]) is either [T()] , or some

initial element.

All predicates on Dora(l) are arbitrary.

This defines the class of interpretations A .

Now, given an arbitrary interpretation I' , we define the

corresponding interpretation I in A (notation I1 - I) in the

obvious way. Two terms are in the same equivalence class (in I) only

if their corresponding values are equal (but the converse is not

necessary). We have, in addition, the following rules:

(1) for any T^) , TgQ , such that |T1() | <k , |T2() | < k , the

two terms are in the same equivalence class in I if and only if

their values are equal in I' .

(2) If [TQ] , [T'Q] are classes in I suchthat |T()| >k,

JT'Oj <k , then if the values of f(T()) and T'Q are equal

in I' then f([T()]) - [T'()] in I .

(3) If [TQ] is a class in I , and T() and f(T()) are equal

in I« then f([T()]) = [T()] in I .

(h) If [T()] is a class in I such that in I' , the value of

f(T()) equals the value of g(T()) , and f(T()) does not equal

T'O , for any T'() with \T {) \ <k , then in I the terms

f(T()) and g(T()) are in the same equivalence class.

120

1 -' -■ ^^.--.-...-■-^■), ,. iMMr-'-1' ■iiMiiiiiKirililli n iiini

-<.,J1-J ^.If.p y

(5) If [T()] is a class in I , then P([T()]) is true in I if

and only if P(T()) is true in I' .

By the construction of interpretations in J^ , this describes a unique I

corresponding to I' , and a horaomorphisra 9 from I onto the reachable

elements (i.e., elements that can be represented as constant terms)

of I' .

Lemma. Given any monadic schema SeCs , and an integer k such the L

for every term T used in S , |T | < k , then for any interpretation

I' for S , if I' -• I and 9 is the homomorphism 9 : I -. I • , then

(1) Path(S,I') = Path(S,l) , and

(2) Val(S,I') = 9(Val(S,l)) if both are defined.

Proof: The lemma follows by induction on the number of steps in the

simultaneous computation of S on I' and on I with the induction

hypothesis that after n steps, the paths are the same and the values

of the variable y in the two computations are related by 9 .

It follows from this lemma that to prove halting, divergence,

equivalence, isomorphism or freedom, it suffices to prove these for

the interpretations ^ (for appropriate k) because if the outputs

of two Schemas on an interpretation I« are distinct, they are also

distinct on the corresponding interpretation I .

This result (for inclusion and isomorphism) Is used throughout in

the proof below, where whenever we say "an interpretation", we mean an

interpretation from the class A .
k

121

 --■'■-■'^■^-'•■"^"■^'^■^'-^"—--'- ■■"- .. ^.. ^ „. — — '--iiiiiiii f — —■^~~-^-*->- "j— ^.....-^

™^^— .ji.j«l|iP))|i«pip|in™wi«jB«-'«W'''l",,lll*"»,,'«Jll|«|l|'IWI««I.M."llPI

,%

•

Q

■

Given two monadic Schemas, change all assignment statements

y ♦"^(y) so that the only kinds of assignment statements are of the

form y •- f.(y) or y •- a. , and halts are of the form HALT(y) . Let

the resulting Schemas be called S, , S . To explain the algorithm

for deciding whether or not S, > Sp , we first introduce the concept

of a state vector.

Given an interpretation for the schemas S, , S and a value for

the variable y , we define the specification state of the variable y

to mean the true/false values of all predicate and equality tests

the schema(s) could possibly make without changing the value of the

variable y . To make this notion concrete, let k be the maximum

depth of any term used in the schemas S, and S0 . Given a value

[TQ] for y , the specification state of y includes the following:

(1) the description of all initial elements and all equivalence classes

of the form [T'OTQ)] where [t'Cy)! <k ;

(2) the values of all terms T ' (y) where jf ' (y) | <k ; and

(5) the values of all atomic formulas pOr'Cy)) for all p , and

lT'(y)| <k .

We define the incomplete specification state like the specification

state except that k is replaced by k-1 in the definition above. We

define the state vector of the variable y to be the incomplete

specification state as well as the current statement just executed.

Now, given the two schemas S, and S we construct a finite state

automaton which effectively simulates the computations of S, and Sp

in parallel. The input tape represents an interpretation (from A)

for the schanas S, , Sp , appropriately coded. The automaton accepts

122

''**^;'""-L-:" ■"--" J-.-.i....-....-,...-^......-. .^..w ^..
- ■ - - •^-■'^-■^li^Miidiiii ___

MS

a mi ^■/i
■" ■"" •m^mmimmmmim!imm'''9mmmfmmmmmrmmmm^m^mmmmKmmmi}^^^^ •—■'?■.' "^

the input tape unless either (i) both Schemas halt with different

outputs, or (ii) S2 halts and S1 either loops or can be made to

diverge. The finite automaton can detect the latter case (for the

appropriate input tape) because the "principal instance" of the second

schema will enter the same state vector twice after the first schema has

halted. Now, the finite state automaton accepts all input tapes if and

only if S1 > S .

The description of the automaton and the input tape follows. The

automaton effectively simulates the computations of the Schemas by

running the computations for a (large) number of instances of the

variable y in parallel. For each assignment statement in the Schemas

and each constant term T() , where |T() | <k there is an instance

of y which indicates the computation as would be executed starting

just after that statement and with the variable y set to value of T()

In addition, there is a principal instance for each schema. It corresponds

to the start statement and the initial value of y , i.e., it corresponds

to the "real" computation of the schema. As the automaton steps through

the two Schemas (as determined by its input tape) the automaton keeps

track of a finite amount of bookkeeping information, viz., the various ;

instances that have equal values, the various instances that halt or

loop forever, and, of course, the state vectors for instances that have

not halted or looped up to that point (called active instances).

In addition, the automaton remembers the initializing character

(explained below), and if S2 has halted, then it also keeps track of

the set of state vectors of the principal instance of S, subsequent

to the halting of Sp .

:.

o

.

o

123

"-'-'~ -.t»-!.- ■: - '- ..^ i|||i.,^.u.mou^i>aMi»ai^^-J ■...,„._...,., _.,., ,...-, •-*

^M^^^Hi^iW^mwilllllllU « I IPS^RMPPHMRP^MMP wmmmmmmimmmmmmmivmmmmmmmmmim£mmmiwi*mm ••••-•> ••••

^y

o

The first character of the input tape is a special charachter

called the initializing character. It describes all elements of the

form [T()] , where 1^0 | < 2k-l , und gives the values of all terms

T() , and all atomic formulas like P(T()) , where jfOj < 2k-l .

With this amount of information the automaton can simulate the execution

of all instances of y so that for each instance either it halts or loops or

reaches a value [T()] such that |T() | = k .

All subsequent characters on the input tape are called updating

characters. If m is the number of instances in S, and Sp , and

we let X denote the finite set of specification states, then an

updating character is an element of A . In other words, one updating

character provides the following information for each instance in both

Schemas:

(1) the description of all "new" equivalence classes, i.e., for all

classes [T(y)] , |T(y)l = k-1 , and all function symbols f ,

the description of equivalence classes amongst the terms of the

form f^tiy)) ;

(2) the values of all terms T(y) , |T(y)) = k j and

(3) the values of all atomic formulas p.(T(y)) , lT(y)| k .

When an updating character is read, the automaton already has an incomplete

specification state for each instance. If for any active instance, the

information given by the updating character fails to match the incomplete

specification state for that instance (and the information of the

initializing character), the automaton detects the tape as representing

an infeasible interpretation. Whenever any infeasible interpretation is

detected, the input tape is accepted. Further, the automaton checks that

the "updates" are equal for instances known to have equal values --

12l+

lhai i i r-—'-■—■- '— — - - i i i ■mi—lhiiiiil ^%I1M

■ IMIW.'V^ ■ "■I m.\ fmmmmmmmimm MJ1BW,im lU.»l.i lutu IMUUL^Hnvmnrnw^ntP^pwiMmpm «Iff»!

otherwise the inteipretation is infeasible. If the updating character

passes these "feasibility" tests the automaton then steps each active

instance through the schema in which that instance occurs. The following

cases are possible:

(1) The next statement is a HALT or a LOOP statement — record it.

The instance becomes inactive, but all instances that become inactive

by halting with this value are remembered in the finite memory.

(2) The next statement is a test statement - t.ae outcome is known,

hence continue the process (check for a loop).

(5) The next statement is y - a. - the instance becomes identical

with the instance that started from this statement with value a
•1

(check for a loop).

(h) The next statement is y - f. (y) —

(a) If y = f^y) then y is unchanged — continue the process,

checking for a loop.

(*>) yHfo), fi(y)=T() with |T()|<k -the instance

becomes identical with the instance that started from this

statement with value T() .

(c) y/^f.ty), fi(y)^T() for all T() suchthat |T()|<k --

the process stops.

O

^

-.

-

The automaton continues reading input characters until either both S

and S2 halt or loop, or until S2 loops (while S^^ is still active),

If, however, S2 halts and Sj^ is still active, all state vectors for

the principal instance of S^^ are remembered and if it ever loops or

repeats a state the input tape is rejected.

•

125

w^i.j.t.^.K.-...:.- :w- '--^^fiififliihMMiir • MliMBrflllMIHIMIiilMillil ^a-^iw^-. i iininMimiiiiriiiiiriBiiinmiiiiiiir i n f'——■*'—,.,,,.,.>,.,-..^:M.-.—.>-..■

''*Pl!W^^,W»wp™Bm*TOWB^ÄW*™*s»w»»^~ES^^

f

Ä

The reason that this specification state approach works with

limited equality tests is that the finite specification state carries

sufficient information to allow it to be updated such that all feasible

updates represent feasible interpretations. The converse, that for

every feasible interpretation there is a feasible update at each step,

is trivial. This is not true for general equality tests, e.g., in the

classes c^ and (3^ if a specification state were to carry all infor-

mation necessary to update it, the amount of information would grow

without bound as the computation proceeded.

To generalize to non-monadic Schemas in (3^ , we describe the

canonical interpretations ^ similar to those for monadic Schemas.

The elements of the domain are, as before, equivalence classes

over terms. There is, however, a special element denoted by [A] .

This corresponds to terms that cannot be built up. For any inteiTpretation

in ^ , the value of all functions having [A] as any argument is [A] ;

and the value of all predicates having [A] as any argument is (arbitrarily)

true. We now describe the other elements in Dom(l) . The "initial

elements" are the equivalence classes over all terms T() where IT() I < k

satisfying substitutivity, of course. As before, we rank terms first

^y |T() | ^ and then by (some) lexicographic order, and we use the

notations [TQ] and (TQ) as before.

Functions over initial elements are defined as follows. If all

M)l,..-.|Tr()l <k, then fÜT^)],...,^)]) = Cf(T1(),,..,Tr())} ,

where f is an r-ary function. If [TQ] is in Dom(l) , |T()| >k ,

then new equivalence classes may consist of terms from the set T of

terms T^TQ) where T • (y) is a non-constant term with ^'(y)! <k ,

as follows:

126

..„„i,.^,.^„,...^.,*^.*i..,.—~u*:l.^'-^-.-l-,.*U^.. ^1. -^^.^■^■■^.v.,..y-^.,... ...--.J^u.^k...,...^,.... .,..,.-..,,:,. .._.■>.■ >. ^.■■. - nHI rm—IIIIIMIM mittm

,*ii''mme~^vvi^>*immmimmmmww*U')>immwmv-w- JUIPII ..II.MIM.WIIU,»III»I.

(1) Let Tj^ c: T be the set of terras T'(T()) where l|T'(y)|l = 1 ,

and where T^y) is (non-constaiit and) of the form ffT,....,T)
1 r

where for each i , either ^ is simply y or else T. is a

constant term and [t±] is an initial element. Then equivalence

classes on ^ are arbitrary, and we define the value of

f([T1],...,[Tr]) tobe-/ {f^, ...,Tr)3 if such a class exists,

otherwise it is either [TQ] or some initial element.

(2) Let T2 c T be the set of terms T (f {)) where ||T ' (y) |1 = 2 ,

T'Cy) is of the form f^, ...,Tr) where for each i, [T.] is

an equivalence class (at least for some i , ||TJ = 1) and there

exist non-constant T , T for which T. / T. . Then for each

terra T'OrQ)^ there is a class [T'(T())] consisting of just

the singleton, and the value of f([T1],.. .,[Tr]) is defined to be

this element.

(5) Ty ..•.>Tk may generate additional new elements in a manner similar

to (2) above.

All function applications not specified above have value [A] , and

all predicates taking arguments from Dom(l)-[A] are arbitrary.

This defines the class of interpretations ^ , and for monadic

functions and predicates it is the same as the earlier class .9
K

introduced (except for the unreachable element [A]).

Now, given an arbitrary interpretation I« , we obtain the

corresponding le^ (r I i) as before, having the property that there

is a surjection 9: Dora(l).[A] - D that preserves the values of predicates

*7 ' — ■

With a little corrupted notation we have allowed [y] to stand for
LTH] where T() is the value of y , and we continue to use y and
T(; interchangeably.

0

o

o

127

MMiliiriiüliiiaii^a^l'ililirliifriHiiiMlnit—■ii ■j»' liiAiM» -— -- .■■—■>-,—-..-^——-J --- Ml II ■»

8PI|^™piPipil««PWWpiWPW'P"PWPBII"91WPi^^

and functions. Here, D is the set of k-reachable elements in

f 0001(1') which is defined to be the set of elements in Dom(l')

corresponding to the terms T() that can be built up by assignments:

y -T^); y - Tg(y) ; ...; y - Tn(y) , where for all i , [TJ < k .

^ The desired lemma can then be proved, that is, if every term T used
k

in Se3s has depth at most k , then if I' -• I then

Path(S,I') = Path(S,l) , and ValfS,!') = e(Val(S,l)) . The rest of

4; the proof is almost identical to the proof above, except that we cannot

impose that all instances can be simulated exactly in step, but some

instances may get up to a bounded number (k-l) of steps ahead of

others — but this is no problem, the automaton simply remembers these

relationships, and always updates those (active) instances lagging behind.

This completes the proof of inclusion. But before the reader starts

sharpening his pencil to write a program for proving the equivalence of

programs by this method, a note of caution seems to be in order. The size

of the automaton grows quite rapidly with the size of the input schemas.

Perhaps the verb "explode" would be more appropriate. To decide if

si > sp where both S-, > S are the trivial schema

START y - a; HALT(y)

the automaton is trivial. But if we add an assignment statement and

change the schema to

START y - a;

while p(y) do y - f (y);

HALT(y)

then the automaton (in a brute force construction) has some 50 billion

states and an alphabet of size 500 million. Of course, large improvements

128

iiiilittiniiriiiiMiiMHiriiiiliifiiriiirM-'liiMi'- liTliiiriiiimiii Wiy ■fl»i^H<lilll1ill^■iilftil»ilM*lrill■l^ »-iiiiri'nriimmii-fii'iiiii n i nm mi ''"*

i iij Ji.inii^q^ immm^rm n in. i n m^nmmmm" i n mi u. i i ■,! i i ■ •■• m~ - 1PWWPWI", luiii i

are possible to make the decision procedure feasibly in practice by

more careful definitions of canonical interpretations, specification

states, and the automaton construction (e.g. if the automaton merely

counts the number of steps of S^^ after B« halts, instead of keeping

track of all state vectors entered), but that is not our purpose in the

proof.

^•1^e) The proof of isomorphism is similar to the proof of inclusion,

except that the automaton not only keeps track of which instances are

equal in value at each step, but also which equal instances have an

isomorphic history. The automaton can then detect if for any input

tape the computations of the two Schemas are not isomorphic.

3.2.U.2 Proof of Theorem 3-2 (Solvability of ß,)

The proof of Theorem 3.2 is somewhat similar to that for Theorem 3.1,

but the canonical interpretations and the automaton to be constructed

have to be a little more general. Intuitive^, the reason for this is

the following. For Schemas in the class (* , if Wo instances "diverge"

in their values, then from that point onwards their predicate and

equality tests are independent of each other. Not so for Schemas in Ö, .

For a schema in C2 , two instances may diverge and then come together

again, for example, the following may happen. We denote two instances

by y1 and y2 ; then say, both are equal, and one, say y , tests

f^ftfty^))) = f(f(f(g(y1)))) , and it is true. Then y applies

yl *" f^ and y2 aI)PlieE ^2 *" g^y2^ ' namely, they diverge. But

they can converge again if the function f is applied three times to

each.

Ü

O

129

iiiiiniiMili Him [1 r 1 1 nif [i 1 rr::::r-—■-

T*»?-

•

We will demonstrate a quick proof for the inclusion problem. The

solvability of halting, divergence and equivalence follow from this, and

isomorphism can be shown to be solvable in much the same way.

Given (monadic or non-monadic) Schemas S,,S2d2, to decide if

B. > Sp we describe the canonical interpretations for S, , Sp . Let

k be the maximum depth of any term used in S, or in Sp .. We define

the effective assignment depth //T()// of constant terms T() as

follows:

//T() // = if |T()| < k then 0 else |T()|-k .

The canonical interpretations -9, are defined as follows. The domain
K

of an interpretation IcJ, is equivalence classes over all constant

terras, but all elements of an equivalence class must have the same effective

assignment depth, and equivalence classes must satisfy substitutivity.

The values of functions are defined in the obvious way, that is,

fd*-,], •• .,[T]) is [f(T ,...,T)] if such a class exists, otherwise

it is some initial element; and the predicates are arbitrary. It is to

be noted that all equivalence classes are finite, but unbounded, i.e.,

the input tape of the automaton to be constructed cannot specify the

entire description of the elements, but that will not be necessary.

The automaton simulates the computation of all instances in

parallel keeping a total specification state instead of specification

states for each instance. Let Y = fy-,...,y 1 denote the set of all '■I m}

instances. The total specification state contains the following:

I;ü

Illl^l-iw.i ii. .u,..4.-^,u ,_,.,. , . „J-m HJ. i .1... i . . .W.™...I,,IJ. 11. i. IIWMiP P^V^OT^BmOT^WIll . 11,111, IU»-....^.-.*« ,r. in

(1) a map D: Y - (0,1,.. .,k-l]m giving the relative effective

assignment depths of all instances (at least one of which is zero),

(2) the values of all: T^) = T^) , where T^y) , Tg(y) are

non-constant terms, and [^(y) |1 +D(yi) = l|T2(y)ll+ D(y) <k ,

i.e., the effective assignment depths of both T^y.) and T (y.)

are the same (because we will have that the values of y. , y. have

depth > k) ,

(5) the values of all: T^y.) = TgO , where ||T1(y) H +D(y.) < k ,

|T2()| < k , and

(!+) the values of all P(T ,...,T) where Tn,...,T are all
x r J. r terms

on some y , (or constant), and for non-constant T. ,
d

|T 1+D(y) <k , and for constant T. , IT . I < k .

The rest of the execution of the automaton, i.e., the initialization,

updating, simulation and halting, is on the lines of the earlier proof.
U

5-2.1+.J5 Proof of Theorem 3.$ (Unsolvability of &*)

3.3(a), (b) We define a class c. of Schemas having two variables

y1 and y2 , and whose statements consist of the following:

Start statement: START (y^yp) - (a,a)

Final statements: HALT(a) or

LOOP

Test statement: y •- f (y);

if p(y.) then goto L. else goto L, ;

It was shown by Luckham, Park and Paterson [1970] that the halting

problem for the class & is unsolvable, and that the divergence problem

is not partially solvable.

151

 — —~-~~~—~-~——~~~—— -^—^.-,——_ ,—^.__^....J„M— ^.—^^._MJ.^_

t

*

To show the halting problem for 3-, to be unsolvable we reduce

the haltinc problem for Q,- to that for ft- ; that is, we describe an

algorithm that takes any schema S in the class & as input and

yields a schema S' in the class fl~ such that Bi halts if Djid only

if S halts. Similarly, to show that the divergence problem for fl*

is not partially solvable ve describe an algorithm that takes S,- as

input and yields as output a schema s" in the class C- such that

S" diverges if and only if S diverges. We will unify the construction

for the two cases by conti ructing for both cases a schana B, in the

class (J, but augmented with a special final statement called the

reject statement:

REJECT statement: REJECT .

The reject statement signifies that the interpretation is unacceptable

and is rejected. The idea is the following. There exists a map from

interpretation? of G- that are not rejected onto the interpretations

of S,. such that tha computation for S, under an interpretation halts

if and only if the computation for S under the corresponding interpre-

tation halts.

Now it is clear that if we replace all reject statements in S, by

HALT statements to get S' , then s;. halts on every interpretation if

and only if S halts on every interpretation. Similarly, if we replace

all reject statements by loop statements to get £'4 , then S"

diverges on every interpretation if and only if S diverges on every

interpretation.

Given a schema S,. in ^ we construct the corresponding schema
5 5

S, in 0- (with the addition of REJECT statements) as follows. We UJC

152

- ■ ■

-.I-1 ■■'-ii.jiijpTOPwsgiKPmf»* ■ i^rH,^:«.- IIAfll -iPI--l|l .1,1-,.. - mmniOTii " •■■-•'«Fty-«^

the variable y of S, to represent the latest variable tested in S,-

The function f plays the same role in S^ as

We use a new function g called a "test function") and tests

i.e., y1 or y2 .

in Sc

of the form

if p(y) then ... else ..

in Sc , will take the form

if g(y) = g(6(y)) then ... else ...

in S, . In addition we use two "control" functions f. and fg . Their

roles are the following: if y stands for y2 (of S,-) then f^y)

will equal the value of f(y,) at that instant in the computation unles.-,,

of course, a reject statement is reached earlier. The role of f2 is

analogous, i.e., if y stands for y. then f^y) will equal the

value of f(y2) .

The schema S-, simulates a computation of S,. as follows. In

the diagram below the elements a , f(a) , f(f(a)) , f(f(f(a))) are

represented by contiguous squares from left to right. We superimpose

on this diagram the computations of both S, and S_ . Suppose, at some

instant in the computation of S , y1 is at point A , and y2 is

at C , and suppose y, is being "read". S, makes certain that the

f- pointers from the squares scanned, point to the right of y2 .

Suppose that when y. reaches point D the schema Sr starts "reading"

from yp . S, checks that the f, pointers from the squares scanned,

point to the right of D (i.e., to F).

155

I llll ■III II II HIIUBBI. ■ - - ——■

Uli. Jl. W,Ui!t'75BfP|Wi»W!|.l|i«U.'i- i/4Jj..ijii.^mi.iiMH... -Vn^PVHpqppn^Ni^*Vn^^llHL.'^^^4.W<^u^!iJi-^.uufv^m.' I.WII4,IH.^«,P!,IPI.M»^WIIHHIIIIH*-J tu^u .«•lfl»"i*»l«^T"'""^'",-'|i"Pii' ^w.i.wiv '-^—^-r-r-r^*

..,.,-,.... ■■■■■■^■■■■1 ■

fp .

T T T rs i
A B D F C E

i

..

push y1

U

(F, reads y)

l

1 i
A B D F C E

y T >

fl
yl ^2

push y2 -

(S, reads y
2>

We are now in a position to describe the construction of S, .

Without loss of generality we will assume that in S,. the first test

statement tests the variable y . S, will effectively contain two

copies of S , except, of course, for the start statement. We will

call these copies A and B . We will label statements of S by

Lj^Lp,L^,... . The corresponding statements in S* will be labelled

AJ. , BL.., AIv,, BL0, AL,,BL,,

(i) The start statement in B. ia

START <y1,y2> - <a,a>;

goto Li;

15k

- ■ --■ ■ "^"^"^■^""-^ ■■ ■ -— ■ '

|p ■ iW"JU UIU^W^U ' "ÜUJilJ.i.puiip«||Jt«,,lllJJ||<,lJllB«ll,^JIJIip«ptlll!|J,Illia in ,1.1 » i".»'lBll!l«f««ipilJl*IP"J"MJWW.JM«i||iHHU.i.i4',-i.-.i fffi/ ' "^

The corresponding statements in S, are:

START y »- a;

if f (y) / f2(y) then REJECT else goto AL.;

Note that the test f(y) / f (y) is not strictly an allowed

statement. We use this form for clarity: it can really be

"simulated" by the statements:

if f(y) / fj^f^y)) then REJECT;

M f2(y) ^ ^(^(y)) then REJECT else goto AL.;

(ii) For any tests statement L. in S- , if L. is of the form:

Vy^fCy^;

if p(y1) then goto L. else goto L,;

the corresponding statements AL. and BL. are:
11

ALi: if f2(y) ^ f2(f(y)) then REJECT;

y - f (y);

if g(y) = g(g(y)) then goto AL. else goto AL, ;

and

HI,.: if f(y) / J'.O'^.v) Uicu miWi

if S(y) = g(g(y)) then goto AL. else goto AL, ;
J K

(iii) For any tests statement L. in S- of the form:
i 5

if p(y2) then goto L. else goto L,;

ALi and BL. are similar to the above, except, one has to

interchange ^ with f2 and A with B .

:.

o

0

155

 - ■ ■ ■' ■ - —^^_ -u.^-^-^^w^-ii.^,^.^.—^ . .. , -.,... .-.

MhH^Z ^B!^W!Wi!?a"^-f^^^^^''^..
4^'^-^--4'';-iqTff^T

.,v. .

,-;

< j

(iv) Halt and loop statements remain unchanged.

This completes the construction.

The main reason that the schema S can simulate the computation

of S,. is that each f^ , f "pointer" is checked at most once from

each square. If pointers were to be checked twice and it turned out

that they were required to point to different values there might exist

no interpretation satisfying this condition — the result would be that

all interpretations of S^ would be rejected.

^•^(cl The non-partial solvability of the equivalence problem follows

directly from the non-partial solvability of the divergence problem

(part (b)), since a program schema in C* diverges if and only if it

is equivalent to the schema:

START y - a;

LOOP .

?-Md) The non-partial solvability of the inclusion problem follows

immediately from the non-partial solvability of the equivalence problem

since S1 s S2 if and only if S^ > S2 and S2 > S .

3•3(c) The non-partial solvability of the isomorphism problem also

follows directly from the non-partial solvability of the divergence

problem. Given a schema S in the class (3, , construct a new schema S"

also in fl* obtained by replacing esch halt statement in S by the

statements:

y - f (y);

HALT (a) .

Then S and S' are isomorphic if and only if S diverges.

156

■■- ■ ■ -■'■■ ■■•■-i — '-■••-■' ■'■

-. —.„ _ .>J.-
 . - ■ -

■ <•***. Wm'J' MRJ.P'i ..JLJ.. .1 ,,I«JHIHHI,IIIIILUI|IIH,M..I„..II

5.2.k.k Proof of Theorem 3 A (Unsolvability to Q.)

The proof r.nes along lines quite similar to the proof for Theorem 3.3,

We first define a subset Cg of the class of scheraas (V . Schemas

in Cg , like those in C- , have two variables y and y , one

function symbol f , and one predicate symbol p . However, (V has
6

the constraint that in any path through a schema of (V , after each

statement that tests the variable y there must be either one or two

statements that test y2 (followed by a halt or loop statement or another

test of y,) -- note the form of the test statement of &. defined in

the proof of Theorem 5.3(a), (b). Each "stateraent" in (V (other than

a start, halt, or loop) is a compound statement of any of the following

two forms (labels L,!^,!^, ... are arbitrary):

L: y1 - f (y^ ;

if p(y1) then

begin

y2 *" f ^' — p^y2^ then goto % else goto L2

end

else

begin

y2 *" f^y2^ ' — p^y2^ then Goto L3 else goto L.

end;

ami

157

 . „ - - - - • -■ -^- ■ -■ - -— -J- —

»mw.-'-i»' ■ - i?!w=»»T',™«rw"ww»t^piffriwiwwÄ',^,^™—'ws^™^™^^ •v^^nmr^T^^^^^^w^^'^r^^w^^y^'^^'^'^^^^^rF

$

«

if pCy^ then

be^ln

if P(y2) then

begin

yg " f (yg^; ü PCy2) *iiSa S2i£ ^ eise goto .Lr

end

else

begin

yg - f (y2) J Ü. P(y2) then goto L5 else goto L.

end

end

else

begin

■ • •

end;

copy of the above, except exits are L -L0
5 8

&

Lemma- The class fl^ is unsolvable.

Proof: The proof of unsol^ability of flg is sdjI1iiar to the proof of

the unsolvability of the class ^ . The class ^ is analogous to the

class of two-headed automata. On the other hand, the class ^ corresponds

to a restricted class of two-headed automata in that after each timü

head #1 reads a character from a binary alphabet, head #2 reads one or

two characters; then head #1 reads again. Thus it is clear that head #1

158

'— -■■-■-■^^ ■ - ..-.:. .-u^mm****^.******* .^■J,^> .^L,^L.^-,_

mqupm ^ ^^**^mmimmmmmi^^mmmL.am m PLIU I WH IUBJIBMIH»«!»»«»'1
* »M*«il"ipl^JlWWWJ/.1>fHllll(|i,l».«"l,WM^WJM)#-,lHJI

can get at most one character ahead of head #2. This restricted two-

headed automaton can simulate a Turing machine computation for an

appropriately coded input tape as follows. The input represents a

sequence of "instantaneous-descriptions" of the Turing machine computation,

but between any two consecutive instantaneous descriptions are a sequence

of incomplete descriptions, each one bit longer than the previous. Now,

on lines similar to Luckham, Park and Paterson [1970] the restricted

two-headed automaton accepts an input tape if and only if it represents

the Turing machine computation alluded to above. The unsolvability of

C* is now obvious.

Now, given a schema S^ in Cg we construct a schema S. in (\

(with reject statements) as follows. This time S. will have Just one

"copy" of Sg , but will have six function symbols: f, g, f , f , f , f.

(i) The start statement in S^ is

START (y^yg) - <a,a>;

goto L;

The corresponding r.tatemont in S, is:

STAKT y - a;

if y / f-iCy) then REJECT;

goto L;

(ii) The statement in S^ corresponding to a teat statement of the

first kind is:

L; if y / f^f^y))) then REJECT;

y - f(f1(y)); comment; short for y - f^y) and y - f (y);

if y = g(y) then

159

Ü

.

O

^

:;

a

:;

::

*— "■ v^^.^-.^ .-■■.■^- - - ■- waatUMMtMiWUUäMHlluai mmniiiii ■'iMihinmni ■■! mi nir ------ .-~-^-^-

«■ ^ \tim^^i^m«\nm i kai Uiiiiini u JI i ,|i WUpvpiR*""«" " "' ,,lll ■ ,■u, ' •""'™ ■JPWIIII.«I.WUIII!HU|WI|.<PP.IU«I I. IPIillUIIIU Ml III ■^FW«

3

;:

s

t

. c

begin

if y / ^(^fgCy))) then REJECT;

y - f(f2(y));

if y = g(y) then goto L, else goto L2

end

else

begin

if y / f1(f(f2(y))) then REJECT;

y - f(f2(y));

if y g g(y) then goto L, else goto L.

end;

(iii) The statement in S. corresponding to a test statement of the

second kind is:

L: if y / fgCf^y))) then REJECT;

y -ftf^y));

if y = g(y) then

begin

if y ^ f5(f(f2(y))) then REJECT;

y -f(f2(y));

if y = S(y) then

begin

if y = f^(f3(y)) then REJECT;

y -f5(y);

if y ^ t^tif^y))) then REJECT;

y - f(Vy));

if y = g(y) then goto L, else goto Lp

end

llfO

' .- ..-■'-

mmrrr**™ , JI.LJ ^ iff BlliHU,ull..l!lJ,lJ|.llpi»llllJ.IIIJ»J.II,UlUlJI,llJUll^|yuUlM'W^'"--WIIJ J-11 Jl ,m "■l""■ l.,-».W»,«l>.l»-<l(l*W«" i»WUi(".»p»'U",«- i 'I "J, n ■'. IJlipi J.IJ!l.l.l.P.W«»K"B«l»ll-.,^U,l,,lJli.l.»«J".J'.^«J!. UMPJJ.I. I«

else

begin

if y / ^(^(y)) tton REJECT;

y - f5(y);

if y ^ f^fiffo))) then REJECT;

y -f(f^(y));

If y = g(y) then goto L, else goto L^

end-

end

else

begin

... as above, but with exits L^-Lg

end;

This proves the unsolvability of 3.Ma), (b), and the parts (c), (d),

and (e) are immediate from these. Q

5.2.^.5 Proofs of Secondary Results

In the following results the number of functions does not include

the ever present zero-ary function.

(i) Schemas with one variable, two functions and general equality tests.

The class of flowchart schemas with one variable, two functions

(no predicates) and general equality tests is unsolvable.

If completely general equality tests are allowed it is easy to see

that two function constants suffice to render the class of schemas

unsolvable because more function letters can be "coded" in terms of two

Ü

Ih-i

--•' -- -■- -l--.-^.. .-■ 1 L. ,
.LV-^^^^.^.-.r^^J.^. —■,•... Ifitfl mi Mmini^ilBitf^^;;---'■'''■^•■^^"■-"■"■-"~JJ-1'-";'":,,'"ik--",-°-Lj",,tJ1

i»j.L..i.HUi.U!<W5«™W^!U',.,l..llJJ .,.J««mM»B.»,i II ,. .1 U MUlilllMJip^^ipiPI iWJUiiMii-wii,.i.Ji'Jiiii.iut.,iiii»iMMii ^|»,J^|^^uww»llp.^l^lluuM^^-^|^|||||'^ iiii!i»iiu.«|iui-,.ii|g<i .iiuma LmmiKmrniimmn^nii

f

functions. In the proof of Theorem 3.3 we change the construction of

S5 from S5 , somewhat, by making the following substitutions: for all

terms T , simultaneously substitute

f(f(T)) for f(T)

f(g(T)) for g(T)

g(f(T)) for ^(T)

g(g(T)) for f (T)

All the unsolvability results go through on making this substitution.

(ii) Schemas with two variables, two functions and restricted equality

tests.

The class of flowchart Schemas with two variables and two functions

(no predicates) with tests only of the form y. = f(y.) are unsolvable.

Consider the class Cy which is the same as £ but with the

difference that there are two functions f and g , and no predicate

constant.

Every schema S,- in ^ can be reduced to an equivalent schema

S.f in (^ by replacing every tent statement of the form

if p(yi) then goto L. else goto L

by a test statement of the form

yi - f(yi)5

ilVi = g(yi) then goto L. else goto L, .

It is easy to see that for any finite or infinite path through S , if

there exists an interpretation for which S5 executes statements along

this path, then there is an interpretation for which S executes

lk2

'■ — ■-■- -.i...,— -... ,..

^r jjjjBjjum-n, 11,11 t ±11 immimmiJmmmmim luwiiiMaiiui

statanents along the corresponding path. This establishes the

uncolvability of the class C^ •

C111) Schemas with one function, restricted equality tests.

Schemas with one function usins tests only of the form y. = y.

are unsolvable.

Consider the class of two-counter programs having statements of

the following kinds:

(1) START (c^Cg) - <0,0>

(2) ci - c.+l

(3) ci - c.-l

(h) if ci = 0 then goto L. else goto Lp

(5) HALT(c.) .

Such programs can simulate the computation of a Turing machine on a blank

tape and hence their halting and divergence is unsolvable. Now, given

a two-counter program, we construct a corresponding four-variable schema

with variables y1 , y2 , y^ , y^ such that the schema halts if the

program halts, and the schema diverges if the program does not halt

(note: we will use reject statements as before). The statements

corresponding to (l)-(5) above are

(1) START <y1,y2,y5,yu) - <a,a,a,a>

(2) y5 -fCy.);

if y^ = yj^ then REJECT;

y^ - &;

vhlle ^k ^ ^i — i^Vk " y5 then REJECT else y^

yi -vy

f(y),);

.

lh3

 ^aaMuiaUHaiUiUiaaaUaa^ ■ - ■ -

wm mm^mm^r*^^^*iim^^^i^^i**-mKmmmm*mmmm*

—l*»-«Utv*»-ff*>w«ifW^.yw,

(5) Y^ - a;

I

X

if y^ / y^^ then

be^in

Lsyj, - f(y3);

if yu £ y^^ thgn becin y^ - y^j goto L end;

yi*-y5;

end

CO y^ - a;

if y5 = yj, then goto L, else goto L0

(5) HALT(a) .

This demonstrates the unsolvability of the one-function Schemas.

^•5 Commut.ativity and Invertibility

5.5.1 Introduction

We now consider some classes of semi-interpreted Schemas in which

some of the base functions are related. In particular, we consider

one-variable monadic flowchart Schemas for which the class of possible

interpretations may be restricted by the following specifications:

(i) two functions may be specified to commute (unary functions f and g

are said to commute if f(g(x)) = g(f(x)) for all x),

(ii) some function is invertible (a function f is invertible if there

exists another function f"1 such that f(f"1(x)) --■- f"1(f(x)) = x

for all x).

ihh

 , , . . , i , *- - ■ - - ■

^^ t^— II" II 1.1 '"'•—

Thus, for a schema S , if f and g are specified to commute,

then all interpretations are not allowed for S ; only those interpreta-

tions are allowed that satisfy the formula Vxf(g(x)) = g(f(x)) . For a

consideration of the inclusion, equivalence, and isomorphism problems

for such semi-interpreted schonas we will only relate two schemus if

they are compatible, i.e., they have the same specifications about

commutative and invertible functions.

We show tuat with either commutativity or invertibility alone,

the decision problraes of one-variable schanas remain solvable, but with

both commutativity and invertibility they become unsolvable: we also

relate some of these results to the equivalence problem of multi-dimensional

automata.

All the Schemas to be described below have a single variable (y)

and one zero-ary function a . All other functions and predicates are

unary. Unless otherwise specified, statements are of the following types:

(1) START y - a

(2) HALT(T)

(3) LOOP

(5) if Pi(T) then goto 1^ else goto L-

where ^ is a unary function, p^^ is a unary predicate, T (y) is an

arbitrary terra that may or may not contain the variable y , and L

and L2 are arbitrary labels.

h

1^5

—■ — —— j'- ■■ t __ ^'--— '■'■-

IIJIILt-UipiiptiHilPJI,,.. .,.,.11 V^a.liAiiauiiiI i ■■■■p.viwjfiM mv. i 11 ^f7—

5.5.2 Schemas with Conunutative and Invertible Fimctions

Consider the class C*. of monadic flowchart Schemas defined us

follows. A schema S in £••. contains one variable y , a zero-ary

function a , and an arbitrary number of unary functions f ,f , ...

and unary predicates p^Pg, In addition, there is a set E of

pairs of functions [t.ffA 'lat are specified to commute. Thus, if
* J

ffi,f .}cE then for any interpretation for S and any elatient x in

the domain of the interpretation we must have f.(f.(x)) = f.(f.(x)) •
J- J J 1

We refer to (J. as the class of commutative schemas.

Theorem 5.^ (Solvability of (*)

The class of commutative schemas is solvable, that is, for the

class C*.

(a) the halting problem is solvable,

(b) the divergence problem is solvable,

(c) the e4uivalence problem is solvable,

(d) the inclusion problme is solvable,

(e) the isomorphism problem is solvable.

For proofs, see Section Jo«1*.

Next, consider the class flg of monadic flowchart schemas defined

as follows. A schema S in ^v, contains one variable y , a zero-ary

function a , and unary functions f' ,f,f ,f , ... and unary predicates

V^fVp*'" ' vhere f and f" are specified to be inverses, that is,

for any interpretation for S , and any element x in the domain of the

-1 -1
interpretation, we must have f(f (x)) = f (f(x)) = x .

Ik6

il|fc^h^düa^k^^..^..^„^..i.J—^ ■, ,..JJ.... . ,..L.^
 —•^-■- • ' . . .

■P LLJlHllitUgMP^M mrnHmnmummmmm uu,.-i-ir^mmMmmmmmirßmjmmmimmiim^mmmi'mmt^ - w ■ -IJ .I»IWPIJ.M-I«HUIUI.H IJ.I-M. My,,!.™

For the proof, see Section 5.5.^.

Finall/, consider the class of Schemas toat have both the coramuta-

tivity and invertibility constraints. We wish to show that -uhe decision

problems for this class is unsolvable. For this, we exhibit the class C,

of periscopic schemas defined as follows (we call these Schemas

"periscopic" schemas because of their obvious relation to periscopic

automata introduced in Section 5.5)• A schema S in n has one

variable y , one unary predicate p , the zero-ary function a , and

three unary functions f" , f, g that are related by:

Vx nt'^x)) = fml{t(,x)) = x

and

Vx f(g(x)) = g(f(x)) .

,-1 Note: this also implies that the functions f and g commute.

Tests in S have either the form p(y) or p(g(y)) , and we also

restrict halt ctatements to have the form HALT(a) ,

Theorem >.7 (Unsolvability of f-)

Periscopic schemas are unsolvable. In other words, for C-

(a) the halting problem is unsolvable,

(b) the divergence problem is not partially solvable,

(c) the equivalence problem is not partially solvable,

(d) the inclusion problem is not partially solvable,

(e) the isomorphism problem is not partially solvable.

1^7

:i

Theorem j.f) (Solvability of A,)

The class (3Q of schemas with an invertible function is solvable. <»

.. H^Htol ___ ■"'■■ -«.i—.-.-^

^^ -mm "mmmmmimwiß "■"'^ »•"—""""" ■■■

A question raised by this theorem is whether tests of the form

P(e(y)) are really necessary for making the class fl^ unsolvaole.

We might ask, for example, whether periscopic Schemas without tests

P(g(y)) might be solvable. The next theorem says that this is indeed

the case.

Consider the class (^ of schemas whici is like C* except that

the only tests allowed are of the form p(y) .

Theorem :'.8 (Solvability of C,)

The class ß. is solvable.

5^3«5 Application to Finite Automata Theory

From the above solvability and unsolvability results we wish similar

results for finite automata. In general, the input tape of the automata

we consider will be an infinite n-dimensional tape (with a root, or

origin). We consider classes of automata by restricting the kinds of

input tapes allowed and the possible ways the reading head of the

automaton can move. An automaton may accept or reject its jnput tape,

or it may run forever, in which case the tape is rejected.

Note that for automata we can consider the problems of acceptance,

rejection, equivalence, inclusion and isomorphism as analogous to the

problems of halting, divergence, equivalence, inclusion and isomorphism

for schonas. The acceptance (rejection) problem is to decide if an

automaton accepts (rejects) all input tapes, an automaton A includes

an automaton A2 if the set of tapes accepted by A1 contains all tapes

1^8

■iHiitriTniiiiiaMMMttri 1 n ■ n 1 -■ - ■-■ --■'- "—

... ■J;.-J^..-.....> ^...__.. ^

»W*f"^'!W»p9*"BW?^J»!FW»!»
,*^p!!pipp

accepted by Ap , two automata are equivalent if they accept exactly

the same set of input tapes, and two automata are isoraorphic if for every

input tape they "visit" and read exactly the same squares of the tape in

the same order. We say that a class of automata is solvable if all these

these problems are solvable for the class.

Schemas in C^ are closely related to finite automata on

n-dimensional infinite tapes. An n-dimensional automaton is a finite

state machine with one reading head that is initially at the "origin"

of its n-dimension infinite tape. The symbols of the tape are from

some finite alphabet E • The reading head of the automaton can, however,

move only in the positive direction along any dimension. The automaton

may halt and accept or reject the tape, or it may never halt (in which

case the tape is rejected). We will represent the transition graph of

the autcmaton by a program which has statements of the following kindc;

(1) L0: START, £Oto8(L0,a)

(2) L.: ACCEPT

(5) L.: REJECT

(10 I^S move(j), goto 5(1^,(0

where move(j) means "move one step in the j-direction", and 5 is a

function from labels and tape symbols to labels — a stands for the

symbol read from the tape (which is an element of E) , and no S(L.,a)

can ever be the label L0 for the start statement.

From Theorem 5«5 we obtain

Corollary A. The class of n-dimensional automata is solvable.

To show this we construct for every n-dimensional automaton A

a corresponding schema SeC^ (of Theorem 5.5). It will be obvious that

1^9

h_ i*imitäa*»tm*^—^tm* ■ - iiiinmiiiMirmMMHii ■—■

w*? wm^mmmmmmmmmmmm ■'—"" PP!PlpimPiW<ui> u,iiNiiiim||<|pp

the acceptance, rejection, equivalence, inclusion, and isomorphism

problems for n-dimensional automata are the same as the halting,

divergence, equivalence, inclusion, and isomorphism problems for the

corresponding Schemas.

Given an n-dimensional automaton A on E = fa , .. .,CT 1 , we
1 mJ

construct the corresponding schema Se^ as follows, S has n unary

functions f^ ...,fn, each pair of which commutes, and (m-1) unary-

predicates Pi*'«'*Pm.1 • Statements in the automaton A and the

schema S correspond as follows:

Automaton A

START

L.: ACCEPT

L.: REJECT

1^: move(j),

goto &(L.,a)

Schema S

START y - a

L.: HALT(a)

L.: LOOP

Li: y -^^^

if p^y) then goto 5(^,0

else if p2(y) then goto 5(L.,a2)

else if V^-^i) then goto ^L^cr)

else goto &(L.,a)

The head of the automaton corresponds to the variable y of the schema,

the input tape for A corresponds to the interpretation for S , moving

the head in direction j corresponds to applying the function f. , and

acceptance or rejection in A corresponds to halting or divergence in S .

Note that for an input tape for A there correspond several interpretations

for S , but it is obvious that the decision problems for the automata

150

iiiüiir—- - ■ -—• --- ^"-— - -- •~—-*~*-±—L—^M-—k-»..— _ ..,,

B*'w^™«WWMp^™5!»?w!S!iwm!^™!s!smwwB*ro i i ,,^1 am uL^iin^ipii »i «jviiupi^nnnpiu JJJUII, msm j™u,'*»ft»-j'Wt-."W^1.»''" ' ' . 1

are reduced to the decision those for Schemas (see also the canonical

interpretations for C^ in the proof of Theorem 5.5).

It is clear that two-way finite state automata (on linear two-way

infinite tapes) are related to Schemas in C, with unary functions

f, f "" in the same way as n-dimensional automata are related to

Schemas in Cs • It follows, then, that

Corollary B. The class of two-way automata on one-dimensional infinite

tapes is solvable.

Of course, this result is not new, but we mention it to show that

it is derivable in a straightforward way from Theorem 5.6.

As we have done for classes C^ and C^ , we describe a class of

automata related to C^ that we call poriscopic automata. A periscopic

automaton has one head which can move on a two-dimensional infinite tape.

We call the dimensions "horizontal" and "vertical". The head can move

freely in the horizontal direction (i.e., left or right), but vertically

it can move only upwards. However, attached to the head is a little

"periscope" so that the automaton can read the symbol just above the

head without moving the head vertical:-/ up. For our purposes it suffices

to take the input alphabet to be of size two (we may say Z = {T,F}).

U

G

"submarine"
with a
"periscope"

F
X

g

■'M

151

. ■ - - ■ ■ —' '■■ - J-"- ' """ "■'-" .-^...—,..-~ ^.—«-^^ ^-^.^.J^:-.—^■

fmm^mmmmmmmmm^sm^^^^^^mmrmmmtmmm m? mwxmmm wM^mmswmm\mMmm*mmmmmmm*mmmim*il'mv' M JIIIJ ■•|*!f/•",|

RH1

1
The relation between a schema SfCtv and the corresponding periscopic

automaton A is obvious. An interpretation for S corresponds; to an

input tape for A , application of the functions f , f and g in G

correspond to moving the head of A right, left, and up respectively.

It is the test p(g(y)) in S that gives the automaton A its

periscopic vision. It is then easy to see from Theorem 5-7 that

C orollary C. The class of periscopic automata is unsolvable.

It is clear from this (and the proof of the theorem) that if we

provide the automaton with any kind of periscope at ail, e.g., arbitrarily

high, inclined, or even pointing downwards, but not just horizontal, (for

that is equivalent to no periscope at all), then the problems for the

automata all remain unsolvable (and similarly for the corresponding

Schemas).

We say a periscopic automaton has periscopic vision if at least in

one state it tests the symbol at the periscope. An automaton without

periscopic vision is just an automaton that can move left, right and up,

but not down, and can only look at the symbol under its reading head.

Theorem 5.8 shows that the decision problems for such automata are

solvable.

Corollary D. The class of automata without periscopic vision is

solvable.

152

uMaaCaaamudaaiiUMaaaaK^Boi -— ■■"-- '——' - i^^^^^t»

^9^ iiüjinii itipiiiiiiij ^m^ mm^mm4*mi^*s*jM .11 IHNIILIIM iiiiiiiii immmmmKmmmm^fSP

t^i 4) is Fi+1 Yä

»i J f2(Fi F^) is F1 FJ+1

1 2

The predicate p is arbitrary.

155

Ü

5.5A Proofs

^•3.h.l Proof of Theorem 3.5

We first give a proof of the solvability of the inclusion problem

for a subclass q of ^ in which any schema contains just two functions

f1 , f2 that ccmraute, and one predicate p for which the only tests

allowed are of the foim p(y) , and halt statements have the fom

HALT(y) . We will then give the proof of the solvability of C-, ,

which will be on lines similar to the first proof.

Proof for q : We sketch the proof for the inclusion problem. Given

two schemas S1 and S2 of q , to decide if S1 < S2 . Now, without

loss of generality we can assume that both ST and S are free, for

if they are not, they can trivially be made free. We also assume that

from each assignment statement in S1 and Sg , a halt statement can be

reached, for otherwise we can replace such a statement by a loop

statement.

Consider the class s of interpretations of the following kind.

The domain of the interpretation is the set of strings

i>l F2 K J > 0} c t^Fgf . The functions a , f 1, f2 are defined as

follows:

a is F°F°=A

:/

-.

o

- ■— ■- ■ - —--■ - - -■ MkM^WMMMM

^^^'*',,^'','M^',M,''W,,°""'''"'"''>'''——«■»■■■>—iummM» in iiiiM—■»—=———- r-irniMiiMt^iim ■

VF*^***

IJ

Interpretations ^ play the same role for the class &• that

Herbrand interpretations play for Herbrand scheraas. If we associate with

any interpretation I' an interpretation lej such that p(Fi FJ)

is true in I if and only if p(fj f^a)) is true in I' , and

consider the homoraorphisra 9: I - I« mapping Y^ F^ into the element

fj^ f2(a) of l' — note, by the commutativity of f , f this map

is onto the reachable elements of I' (that is, elements that can be

expressed as constant terms) . Then, if we consider the computation of

a schema Seq under I and I« , they go through exactly the same

sequence of statements of S , and the values of the variable correspond

(under 9) at each step.

We can show that S1 < S2 if and onOy if ^ < S2 for the inter-

pretations in .9 . The "only if" part is trivial. For the "if" part,

suppose S1^S2 . Then, for some interpretation I' , S halts, and

S2 either loops or halts with a different value. Then, if we consider

the computations of ^ and S^ under the interpretation lej»

corresponding to I' , we see that S1 halts, and Sg either loops or

halts with a different value (by the existence of the homomorphißm

9: I -I»). Thus S1^S2 for the set of interpretations J .

Now, given two Schemas S-^S^C^ , to decide if S1 < S we decide

if S1 < S2 for the set of interpretations ,9 . We construct a finite

state automaton A that simulates the computations of both S and S

(in step) for an interpretation le^ represented by the input tape of A .

The tape consists of two tracks, one for each schema, and symbols on each

track are from the set [T,F] representing the value of the predicate p

applied to the current value of the variable y . it is the responsibility

15U

- . ■..;. H.:-. £.-.-. .-I'- .v .^ ■ L-L... >■„■,.^ ■■^■-"- ■-^■■ffiiiif||i«lJri^ I llltl ■ illi- —-^^"■■-^"•"^■■■^■^■^"^-"^'■-^■^■-■^''■^- ^ --^--^w- -.- ■--■ ■■-_....■, .^..^wu.:..^.. r...~, ^--'^- K*.^-^-*^ ...

■■Mn^^—HOTIWiiiinnPwnii ^■»F

!' i

of the automaton to detect whether or not the tape represents a

feasible interpretation. At any instant in the computations of S.

i, j'
and S2 , let the values of the variable y be F- F in S , and

Fl F2 in S2 (since the "chemas are in step i +j = i +j). Let

the count c denote j^-ig . if the count is zero, the predicate p

must have the same value on both tracks, else the values on the tracks

may be arbitrary. The automaton A accepts an input tape unless S

halts and S2 does not halt with the same output for the interpretation

represented by the tape. Thus, the inclusion problem is reduced to the

problem of deciding if a finite state automaton accepts all input tapes.

In its finite memory the automaton retains the following data:

(i) the current (assignment) statement executed by S , and by S ,

and

(ii) the value of the count c provided |c| < min(s ,sj where s , s

are the number of assignment statements in S , S .

The automaton operates as follows:

(1) Read the input tracks (if the end-of-flle is read, accept the tape).

If c --= o and the tracks read (T,F) or (F,T) then accept the

tape ("impossible" interpretation).

(2) Using the values of p(y) from the tracks, "find" the next

statements (other than test statements) for both scheraas.

(5) If the next statement for S^^ is a halt statement then reject the

tape unless c = 0 and S2 also halts. If S1 loops then accept

the tape.

0

0

u

O

155

■ i ■■-(Brit.w^Miiltfiliriil'riilln liiftirtrrtilliiiiiiaTlllil^ .,.,.. ., „■.,^.....,..-■-,. "■■"-- '"'•■'■■' ■'•"—iiii>iiliiirrih,i(-'J ' -'-'"--■-"-'-—'w^-^i.—^-n- -....,,.«,..^..ui JI.

Mp iigi!lwnu>j.uaiJ«ii|i,iii..yaui4ii«a^|9mippiin^nn! •Wl»M"».W,Wl.llI,._l>ujUl|JIU1lW™i.lW|W»(lilVP]illl||^j|WWfl^^^

o

c

vj

.

('r) If S2 halts or loops on the next statement, reject the tape

because as S1 is free (over interpretations in j) it can be

made to reach a halt siatemont — and it will apply at leant one

more function letter, thereby giving a different output from that

of S2 .

(5) (Both next statements are assignment statements.) If s executes

y - ^(y) and S2 executes y - f2(y) then increment c by 1 ;

if S^^ executes y - f2(y) and S2 executes y - f (y) then

decrement c by 1 ; otherwise leave c unchanged. If the new

value of |c| exceeds min^s^ then reject the tape, otherwise,

go to (1).

The reason that the input tape can be rejected if jc] exceeds

min(s1,s2) is that because S^^ and S2 are free and "independent"

for the next c steps, they can both reach halt statements without

executing any statement twice (for some interpretation) — and, of course,

the outputs can be equal only if both reach halts at the same time and

c = 0 , but that is impossible because c changes by at most one in

each step.

This completes the proof of the solvability of the inclusion problem

(and hence also of the halting, divergence and equivalence problems)

for CJ .

Proof for C^ . The solvability of the halting and divergence are

trivial because Schemas in C^ can be made free. This can be done by

making many copies of the schema, one for each partial specification

state (see the notation in 5.2.1|). A partiai. specification state

156

mm •- '-"— ~.-..--......^-..„..„.I.....J..l M --,..-....,...■.I ■,,^LL...-. .I,!.,.«.,^...-^:...»...^..^^

for Schemas in ^ is a mapping from the set of atonic terns P(T)

such that |T| <k , into {true, false, unknown] provided it is

consistent, i.e., it obeys conunutativity relations, and if the value

of y is T() , then |T()|>k (for the initial part where |T()|<k,

computation is done by expanding the schema out as a tree).

The solvability of equivalence follows from the solvability of

inclusion (below).

For the proof of inclusion ^ < S,,) we proceed as before by

constructing an automaton A that accepts its input tape unless S

halts and S2 does not halt with the same value.

First we describe the canonical interpretations for the Schemas.

Given Sl and S2 over unary functions f^...,^ and predicate.

?!,...,pm and a set E of pairs of function symbols that commute, we

define a class J of interpretations as follows. We define an

equivalence relation on strings on L = [^..„Pj by the transitive

closure of: x^.E* , ^ =_ ^ if ^ = ^ > or there ^.^ .^ n

suchthat [f^fjJcE and x., can be obtained from x1 by interchanging

an occurrence of F. with an adjacent occurrence of p . The domain

of an^interpretation leS is the set of equivalence classes of strings

of E (an equivalence class is denoted by {x} where x is a string

in the class). The value of the function constant a is {A} , and

functions f^ ...,fn are defined in the obvious way, that is

^([x]) = (F..x}

where the dot (.) means the operation of concatenation, and the

predicates P^...,Pm are arbitrary.

157

^■■■■- ■■• ■■-J"-"^ "'-■ - - -

«!M|»-U.1.«|,» il,l-l UJ,,,,»! P— p.pW:^WM,HWinii|Mmp|W||pppi| mmmmmn^mmm

9

(*)

We note the followdjig property of the domain of the interpretation

FiCE and x,yeE* , then x.Fi s y.F± if and only jf x = y .

The "if" part is trivial. For the "only if" part, assume x.F. = y.F.

and trace the position of the "rightmost" F. as x.F. as transformed

to y.F. by interchanging symbols (which correspond to pairs that are

elements of E):

x.F. =xi -.x2 - ... -.xr = y.F. .

Now, if we consider xj_,x^,.. .,x; where x- is the same as x. , but

with the rightmost F. removed. Now it is easy to see that

x = xi ^x2 -x; =y

that is, x s y . This completes the proof of the property (*).

Also, on lines very similar to the proof of Q* we see that

S1 < S2 if and onO^ if S1 < S2 for the interpretations of S .

We can now describe the automaton A. Let k denote max[|Tl]

of all terns T used in ^ and Sp . Now, a symbol on a track of the

input bape gives the values of all P..(T) for all T such that

|T| = k for S1 and Sg . At any point in the simultaneous computations

of S1 and S2 , let the variables y in Sj^ and S2 hare values {y }

3.
and [y^ , yi = F

in
F. ••^i .and y2 = F F .. .F. . Then we

Jl J2

define the "unsaturated strings" x1, x2 of Sj^ , S2 as follows: set

Xl *" yl ' X2 ^ y2 " Find the rightmost symbol F^^ in x that is

common to both x and x (if one exists), say x = x« F x"
d. " 1 1 i 1 '

X2 = x2 Fi x2 ' then if Fi comir'^es with each symbol in x" and in x"
12

then set y^ - x^ , x2 - x^ x^ , and repeat this process.

We describe the proof for the case where halts are of the form lIALT(y)

The general case HALT(T) is easy to incorporate into the proof.

158

-- ' -.^n^M^tt^aw.,^.,.^^—..^.^-.. ^■...,. ,.,. :..■.■,. --— - — ■L—*

■■*!BJpeP7,MI1 V^umwAm^A^-^vnm^mwmrfmHfmfiimBmmm ^'^'-■HJ ^ -M *wmri*m*mm ^^rv

Since the schemas are free, any statement from which a halt cannot

be reached is replaced by the loop statement.

In its finite control the automaton remembers

(i) the current (assignment) statement executed bv S and S
1 2 '

(ii) for both S:L and S2 , the values of all p.^) for all non-

constant terms T such that |T | < k-1 , and for all constant

terms T() such that |T() | <k , and

(iii) unsaturated strings x^x^E suchthat x1 , x2 have no symbol

in common and 1^1 = |x2| < min(8l,s2)+k where s1 , s2 are

the number of assignment statements in S , S

From the property (*) we see that the values of the variable y

in S1 and S2 are equal if and only if the unsaturated strings x , x

are both A . If there is some symbol common to both x. , x2 then we can

show that the values of y in S1 and S2 have diverged, never to come

together again. To show this, let F. be the rightmost such symbol in

x1 , and suppose it is "pushed" as much to the right in both x and x

as possible. If it cannot reach the right end of x1 (modified) then

the modified x. , x have the form

x is

x2 is

F.F.

F,

where F. , F do not commute ([f.,f.}^E) and F. does not occur to

the right of F. in x2 . Then, by extending x1 , x2 to the left we

cannot make them equivalent for the order of the rightmost F and F
1 J

must be reversed in the two. On the other hand, if p cannot reach

the right end in x2 wo have a similar argument. Hence if such a condition

occurs the automaton rejects the input tape.

159

 w,>.^.^-^n^>»«^im.-.,..- ■ ■ .„ ,-. ■.,,^-.^>-^.^.^J-.
- -■ ■ - - *

•••T-wqmn'^W'W"'*"1""'""'■ '■ l-mm^^i^^m^mm^^l I «mim^^m^^ ig lllll lllMM^wanww«»* !■. M mi[m\im j^*^m** '■' umpwim«! mx.^^fm

I

After observing this, we see that the lengths of the uncaturated

strings (jx-.) - |x |) can change by at most one in any step, and If

|x | = c > k then the two schemas are "independent" at least for the

next (c-k) steps, so that if c exceeds min(s ,s)+k the automaton

can reject the input tape (see the argument in the proof for flJ).

We use the specification state approach of Section 5.2.U. We note

that the automaton can check for the consistency of the values of P(T)

(given on the input tape) for the two tracks using the same argument of

unsaturated strings, and that halts of the form HALT(T()) can be

handled in a straightforward way; from which we conclude that the

inclusion problem has been shown to be solvable.

The proof of the solvability of the isomorphism problem for (\ is

similar to the above, except that it is much simpler since unsaturated

strings can never be anything other than A for otherwise the schemas

are not isomorphic.

;'.3• ^• 2 Proof of Theorem j.A

Schemas in class C-M have the flavor of two-way finite automata.
t .

Applying the function f corresponds to moving the head right, applying

corresponds to moving it left. There are some differences, however,

(i) the "input tape" is two-way infinite,

(ii) the schema outputs values,

(iii) the schema can test predicates on terms, and there are functions

other than just f and f

160

 ■ — ■ —^-—--—^—-•■ -■■- -—' —

mil Mm i iiiju«. mijwmmnipimiMp B|.WJflli!l|^PiIi-J»»!*iiWWW<^WSfWlliMilSW|«IWiPP!»WP ■pp<pn!im«nin«pnr,iuiui|i I|H1»^^|PWBKUJ»I««I • i Tl'-T-i"

Nevertheless, a proof somewhat (Hjnilar to that for a two-way automaton

works.

Given two Schemas S^^ and S2 of Cg having functions

f,f j^, ...,fn , define the class $ of canonical interpretations for

Sj^ and S2 as follows: the domain is the set of strings of

* f -1 *
E = IF,F ,F1,...,Fn] for which symbols F and F"1 do not appear

adjacent to each other. The predicates P^...^ are arbitrary. As

in the previous section, S1 < S2 (respectively S1 and S are

isomorphic, S1 halts, S^^ diverges) if and only if S < S for

interpretations of j (respectively S1 and S2 are isomorphic for j ,

S1 halts on s , S diverges on S) .

(a) Halting. Given a schema Seflg , to decide if S halts, we

construct a finite state automaton A that accepts all input tapes if

and only if s halts. The automaton A simulates the computation of S

on an interpretation (from J) represented by the input tape. At any

point in the computation there is a value v we call the "pivot"

element — it is an element of 2 whose first symbol is not F or

-1 *■
F . For any element x of S , the specification state (SS) of x for

an interpretation is defined to be the values of all P(T(X)) for all

terms T(X) for which |T(X)| < k where k is the depth of the largest

term used in S . The incomplete specification state (ISS) is the values

for all |T(X)| < k-1 . The state vector is a label L. (that is —- 1 \

executed) along with an ISS . A symbol on the input tape of the automaton

represents the specification states of a pair of elements. Consecutive

symbols give the specification states for the pairs

161

 . ' ,.,..^.,-„—^^klMMM« ■'"■'— -'—'■— ^.ww.^^-^-^-......,.^^^...^—.^w^^^^-^—^ „.-, :.^......„^-^^^.^--.a—Ul^-a^^.. -_*l

ij-,4,ij,iiii «mmmmmmcmi mnnipniimMninpn^W^MW^ ,i IIMIIIU.JI IU,,,I »SBWHWil^WWISPHWll»! ""P^

•■

-1 ,-1x2 IN 5 „ „5

.

(v,v) , (F J-.V,P.v) , ((F'^^v^^.v) , ((F'-V-v^.v) ...

where v is a pivot element) -- until the pivot element is changed (as

determined by A). The first element of a pair is called the left

element, the second the right element.

The first pivot element is A (corresponding to the function

constant a). The automaton works as follows. It retains a table of

"instances" and "outcomes". For both the left and the right value

there is an instance of the variable y for each assignment statement L.

of S , which corresponds to the computation if L. is exited with this

value for y . In addition, there is one primary instance which

corresponds to the real computation of the schema. Let ((F)r.v,Fr.v) ,

r > 0 , be the current elements, with v as the pivot. The outcome for

each instance can be one of five possibilities:

(1) halt,

(2) exit (with some state vector) -- it corresponds to an execution

of an assignment y - f.(y) (f. is not f or f"1),

(5) out-left (with some statement L.) — it corresponds to executing

-1 -1 r
Lj: y - f (y) where (the old) y had value (F") .v ,

(h) out-right (with some statement L.) -- it corresponds to

L.: y - f(y) where y had value Fr.v ,

(5) diverge -- the computation for this instance either enters a loop

statement, or diverges.

162

«attiliiditfiCMUUttiMMuaii
- - ■- - - -

iij.J.jjj«tlBI|Bl^g|B»lpiw»^iMlllllijl,ipiiupiBiUll4t.ui»iit Liui.iiiJ4i|iui^j|»iiLyii.^%tMm;)Jiii>ii^tlli,;WMi-l'iVl»l«'''|.VlW^W'iai^yy»

(F"1)1"^ Pr.v

out-left

Instances

primary instance

(real computation)

yi left

(statement L. exited

with value (F)r.v)

y^^ right

(statement L. exited

with value Fr.v)

out-right

Outcomes

halt

exit ISS

out-left L.
i

out-right L.

diverge

In its finite memory the automaton has

(i) the current table of instances and outcomes,

(ii) the incomplete specification states (ISS) of the next pair to

read in,

(iii) the value of r if r < k ; and the value T() of the pivot

element v if |T() | < k .

We call (i) and (ii) the complete state of the schema. The schema

also retains

(iv) all complete states entered for the current pivot element, and

(v) all state vectors for all pivot elements entered.

165

.

 ^ —- - - ■ -j ■ - ■- ■

F»»!'""^™iipil»lfl|!WIW^'''"WW*w,"Wfl^mWlBRW"WlS^^

The reason for (iv) is that if the complete state repeats, the

schema can be made to diverge with the primary instance making

assignments only like y - f(y) and y - f"1(y) . The reason for (v)

is that if the state vector for a pivot element repeats, the schema can

be made to diverge because pivot elements are independent, i.e., all

information regarding previous tests is "lost" (except the JSS) when

an assignment like y •- f.(y) is made.

The automaton operates as follows:

(1) Read the specification state for the pivot element. The I3S part must

match the required ISS (unless this is the first element -- A) —

if not, accept the tape, otherwise set up the required tables.

(2) If the primary instance halts — accept the tape.

If the primary instance diverges -- reject the tape.

If the primary instance exits then we have a new pivot element --

if its ISS repeats, reject the tape, else go to step (1).

If the table repeats -- reject the tape.

(5) Read the next pair of predicate states. If it is an "impossible"

interpretation, accept the tape, otherwise update the tables and

go to step (2).

(b) Divergence. This can be proved like the halting problem, only

the automaton is simpler. It does not need to remember the information

(iv), (v); instead, it simply simulates the computation and rejects the

input tape if the primary instance halts, and accepts it if the inter-

pretation is "impossible", or the end-of-file is reached.

I6h

- __^_J_-^__^„„ ^ .^„^-u-^»-.---m- . , „|,M
'•^tWiliiiijk^i^MiMitiji

mfmmrjmMMm^mmu mui ~w^^mm^m****m ^mmvviivmtiH w»fmfW,.mmmr!>mmiifl''^''^^mm--'^fimmaim^K'^i^

From the proof it follows that it is solvable whether or not a

schema would always diverge when any new pivot element is entered with

any specified state vector. This fact is used in the proof of inclusion

below.

-19 V "--m

(c) Equivalence. The solvability of equivalence follows from the

solvability of inclusion below.

(d) Inclusion. Given two schemas S^S eC- , to decide if S. < S ,

we construct an automaton A , similar to the automaton in part(a), such

that A accepts all input tapes if and only if S1 < S . Tbc automaton

simulates the computation of all instances of both schemas. The possible

outccmes for each instance are

(1) halt, with some value x ,

(2) exit, with some state vector and some value x -- it corresponds

to an execution of y - f^y) where f. is not f or f"1 , and

x is the (old) value of y ,

(5) out-left, with some statement L. ,

(h) out-right, with some statement L. .
i '

(5) diverge.

The automaton need not (and indeed cannot) remember the value x

for all halt or exit outcomes; it suffices to remember the equivalence

classes of outcomes that halt or exit with the same value, and the values

of only those instances that halt with output T() , 1T()| < k .

In its finite memory the automaton stores (as in the proof of halting)

(i) the table of instances and outcomes for both S and S ,

(ii) the incomplete specification state of the next pair,

. ■

165

.,.:i^-.,.^..1...„i^^^i-:.^v-Ajiiumihtiiiitmin\ftIrifitfr?!-'■:J-':^■■• -^-"^^i—^^^s-^..^-■•^-J..;-■ -..^^^.^..„^i.. ^nTfriii^iUnVrii |utf,ir^...*iK.^--^ii^|^

'•"will«1 1" luii^^w^piiiBimm IWI J 11
fl^JBPPy^'^MJHB.i kill I -IL J, 1i,A. .^^^»iW^W^wyi^ij^^tji^

y

Ä

'"

(iii) the value of r , if r < k i and the value T() of the pivot

element v if |t()| <k .

In addition, the automaton has the capability of storing

(iv) an arbitrary set of complete states of Sp (tables of instances

and outcomes for S0 , and ISS of next pair) . This is required

in steps 2(iv) and H(iv) below.

For simplicity we only show the proof for Schemas in which a halt must

have the form HALT(y) . The general case HALT^) is easy to incorporate.

The automaton operates as follows. On seeing an end-of-file it accepts

the tape. Otherwise it reads a pair of specification states from the tape,

checks if they match with the known incomplete specification states. If not,

the tape is accepted ("impossible" interpretation). If they natch> then

(1)

(2)

if the principal instance for schema S diverges, then the

tape is accepted,

if S halts then

if S„ halts with the same value -- accept,

if S halts with a different value -- reject.

(5)

(i)

(ü)

(iii) if S? exits -- reject.

(iv) if none of the above, then continue simulation of Sp and

construct the set of complete states until either (i), (ii)

or (iii) above applies, or a coraple"1 e state repeats -- in

which case reject the tape,

if S, exits in a state vector which must loop (decidable --

see the divergence problem) then accept the tape.

(M

(i)

if S, exits in a state vector from which it can halt, then

if S0 halts, then reject,

(ii) if Sp exits with a different value, then reject,

166

Ik. i , , .. --.. . - .. nUiilTtli-"- .—-.-■—^^i 1^ --. irw* inn i - ' ■ '

MFmm^VHPMPtmaii wniiiiiBi-mu!!!«"-^^WBW^^B^flWil» 1 imtni~mvim**mmmmvtm."*v«"Mmuii*jiiwmim » im ■•niHmf««»>iimiV" ' wimmmtmituimimm'wm' i. «n.fj) .IIIIIH

(iii) if S2 exits v;ith the same value, continue simulation of

both S1, 32 ,

(iv) if none of the above, then continue simulation of S ,

constructing the set of complete states until (i), (ii),

or (iii) above apply, or a complete state repeats, in which

case reject the tape,

(5) if none of the above, continue simulation of both S.. and Sp ,

This completes the proof.

(e) Isomorphism. An automaton is constructed as in case (d) above,

except it also keeps track (in the table of instances and outcomes) which

instances undergo isomorphic computations. Then, the automaton rejects

a tape if the computations of the principal' instances of both Schemas

are not isomorphic at any step.

5.5-1+.5 Proof of Theorem 3-1

To show the unsolvability of Schemas in (*„ , we reduce thr halting

problem for null-input Post machines to the halting and divergence

problems for &. . A Post machine over {a,b} is a machine operating

on strings, and having the following statements:

START(x)

HALT

LOOP

x «- x.a

x •- x.b

if x = A then goto L.

else if head(x) = a then begin x - tail(x); goto L0 end

elee begin x - tail(x); goto L, end

16?

.

^ü:,,^^4I^^^*..,^^.:.^^^,-..^~.~^.,*^^-.^.^^JJ.^. :. ,... ■ :....:.. „^ j^.^:.. .„ ,..;... .■ .-..-W^ . Mf .^-^■,M.<^..,..„.^„^.-.. v...... ,, . , -i, rl i ||||| || il || llli'iyiflilil

■I. MMiijpM.pflWWWP^wp^BPPillipipWWI W»|!WWWJi,WiL"i,J,w«liii',.««l,»UMilu»,iJ,JIi^lJ.mn,w,w»lJiii ii(i|igi||*.n9l|p|V .Jisipiwj, JJJJIlMfl,ll.l.l^lllljlll.u. I, 11 J TT-fF1!

The schema S can simulate the computation of M on this plane

as follows, it uses two horizontally adjacent nodes to "code" a letter

(either a , b or e — a special end marker: a corresponds to TT ,

b to TF , e to F-) . In this manner, the schema will "lay off" a

168

where L^ ,1^,1^ are arbitrary labels, and head(x) represents the

first symbol of x , and tail(x) represents the rest of the string x .

Given a Post machine M we will construct a schema S which looks

like a schema of (X except it has special statements called reject

statements. Replacing reject statements by halt statements gives us a

schema that halts if and only if the machine M halts on input A ,

and replacing them by loop statements gives a schema that diverges if

and only if M does not halt.

The idea is that any interpretation for S can be represented by a

grid of integer nodes in a half plane (doubly infinite along the x-axis).

The constant function a corresponds to the origin; applying the function

f corresponds to moving right, applying f~ corresponds to moving

left, and applying g corresponds to moving up. At each node we have

a T or F value, corresponding to the value of the predicate p (see

the canonical interpretation for the class Cj in Section jJ.jA.l).

f'^a)

G(a)

a

ef(a)

f(a) f2(a)

'■'-in trm ii ii in i -i ii niiiiiirn-iMii liriiiiiBiMi^^-rtlli ri r i "iMM»li.'i»nii ■ ■ii-ii i ■■irii m i nr ~ " ; "'■•»• -' ■ ^

m^^mimmm^i '"""■■" "! ' ■! ' - mmmmmm wut *«wm\wrmi^immmv\.m\\mm..m Ji i ii»fH..n«m ^r

current value of the string x (of M) in one row of nodes, enclosed

by end-markers. The next string (after M executes one step) will be

laid off on the next higher row. The schema S will simply check this

computation. If the interpretation doesn't agree, the interpretation

will be rejected.

In our schema S we will allow the use of predicate tests of the

form p(f(y)) , p(g(f(y))) , etc., since these can be implemented

using only the allowed statements (y - f(y); p(g(y)); y - f"1(y)

for the test p(g(f(y))) , etc.). The correspondence between statements

in M and those in S can be set up as follows.

We first define the macros

CHECK = y - ff (y) ;

while p(y) do

^ggi" M P(y) ® P(g(y)) then REJECT;

i£ P(f(y) <» p(gf(y)) then REJECT;

y - ff(y);

end; coinment ft represents exclusivo-or;

CHECKA = if-n p(ß(y)) then REJECT;

if-i P(gf(y)) then REJECT;

if -i P(g(y)) then REJECT;

if P(gf(y)) then REJECT;

if P(g(y)) then REJECT;

1^-1

CHECKS =

CHECKE

BACKUP v - f^f-^y) 5

while p(y) do y ^ f"1f"1(y);

O

.:•

u

0

D

169

a...,- a^,^.!,-....^.:.^-,-,:..- . ■■ -^ ^-u. :...,. ||ft m',! ll||l|B.|iHi|Mi
 -^ ^•■■- - ■ - ■ •||||>M|-|| I ' -"■ - - ■ -—-^

r "^-WH".^!! jj, u - .1.1,111111.i-i, v. "ijiiumj ,T <m. r^^,..|Mw Jiuv.pivHiippqi JM; _i.injJ^;«^p,sh^,^«-rif-^J-^' JP, «■wijLi.l|nl«|nwiri»fHli| |UI4 Slim < i-«! K^.-J,-IIP.ff^M'P'-JIUI'l^JÄ^HMH'.^W "T-TTI-^^f ^-y^-

'f.

"

€

The correspondence between statements in M and those in S

Statement in M Statements in S

START(x)

HALT

LOOP

x t- x.a

x »- x.b

if x = A then goto L,

else if head(x) = a then

hegin x - tail(x);

goto L2;

end

else begin x - tail(x);

;oto L,j

end

START y - a;

if p(y) then REJECT;

if P(ff(y)) then REJECT;

HALT(y)

LOOP

CHECKE; CHECK; CHECKA;

y - ff(y); CHECKE;

y - f"1f"1(y) ; BACKUP;

y *- g(y);

CHECKE; CHECK; CHECKB;

y - ff(y); CHECKE;

y - f"1f"1(y) ; BACKUP;

y - g(y) J

if n p(ff(y)) then goto L1;

if p(fff(y)) then

^egi" y - ff(y); CHECKE;

CHECK; CHECKE; BACKUP;

y - gff(y);

oto L2;

end

else

begin y - ff(y); CHECKE;

CHECK; CHECKE; BACKUP;

y - gff(y);

goto L,;

end

170

#mitwHrtifawitoi.irW;» -f —■----^'.•v^ ..l....,..,.-^.a-.— ^JI,,, y...... -.■■..... .,...r..-~.,m;....u-.^J.;...... .. -^-^^f^m^i^ .üa^J^

pun ' 'mmimm^HOKmrn WISiP^"^WIFWW1W!IIW^~»WW!P»W«P^f7»nK'r™™^^

This completes the proof of the unsolvability of the halting

problem and the non-partial solvability of the divergence problem which

in turn implies the non-partial solvability of equivalence, inclusion,

and isomorphism.

3.5.I+A Proof of Theorem ?.8

The main difference between a schema in Q. and a schema in C«

is that in fl. , after an assignment statement y »- g(y) the subsequent

path of computation is completely independent of the outcomes of earlier

predicate tests. For this reason, the proofs of the solvability of

halting, divergence and isomorphism of C also work for C* .

The solvability of equivalence follows from the solvability of

inclusion (below).

For the proof of inclusion we proceed along lines similar to the

corresponding proof in & . But, first we observe that any interpre-

tation for scheraas in (\ can be represented as a half plane (as in

the case of &,). We use the notion of "distance" between two values,

wh'Jch denotes the horizontal distance between them on the plane.

Secondly, from each statement 1,. : y - g(y) uf a schema G wo can

decide whether or not S must loop, and if not, we can find the

shortest number of steps n. in which S can bo made to halt after

executing L. .

Now, given two Schemas S ,S0ö3V , to decide if S < S , let c

denote maxfn.} for statements L.: y - g(y) in S from which S

can halt; and similarly c is for S? . We construct an automaton A

that simulates the computations of S.. and S0 as in the proof for <3

.

171

MMllllIlt -'B.iirfWMh'Tt!!!^ '^-^ niiiMr"- —- .■.■J,.i..^.uw^-^a.-tJ — .„i^^.^.- ^ .- .■- -^ -■...

m^^rtma^m^

t

T ■ ■'•i >> wmm^mm.mimmmmi i " '•« > ■>> ■ ">

However, its table of instances and outcomes is somewhat different.

It keeps track of the "distance" between those outcomes that exit

provided the distance is no more than c +c0 .

The rules for accepting/rejecting an input tape are as follows.

If an end-of-file or an "impossible" interpretation is seen, the tape

is accepted. Otherwise

(l) if the principal instance for schema S, diverges, then the

tape is accepted,

(2)

(i)

if S-, halts then

if Sp halts with the same value -- accept.

(ii) if S9 halts with a different value — reject.

(iii) if Sp exits — reject,

(iv) if none of the above, then continue simulation of Sp and

construct the set of complete states until either (i), (ii)

or (iii) above applies, or a co/iplete state repeats -- in

which case reject the tape,

(3) if G, exits in a state vector (since the incomplete specification

state is null, the state vecLor comästi'. simply of one label)

from which 5. must loop, then accept,

(h) if S1 exits in a state vector from which it can halt, then

(i) if Sp halts, then reject,

(ii) if Sp exits with a value more than c-i+co distant, then reject,

(iii) if Sp exits with a value distant d from S, , d < C..+C ,

then the next symbol read must be a "special symbol". If

x. , Xp are the values with which S.. , Sp exit, then we have

a sequence of values

172

BHifc'rMififWii'i-üiiirfiiiwiriiMV-'-1-' -■^-'-■'■-— ■ i.--..^. .-n-ii'r--|i- •itimaiinriii-irii^ ■-•■-• '-■— ~^«*~^-«**-fr^«*ifa..*w^w^..^^^ . . - ..„,.„,:_., l)i,'...J...^ ■... --■,Miw,^■,■^<a
i■--;-■l^-•-■^-• i'mmi^riMl■•*'i^"^i•^^'--,-:^ III imi'mii' Mft'iiiMiil

i i.rniii!Hwfi^fTy."*-.'' ■. ^^ mmmm ~~^ |lW^:«I|lW<lW'W^uglW|WI.JM^«IJW^IRnl■plm^liPIC•PPPFl>," n ll. •■-»iiv^-''»'«»-u-'»i!'UL pww ̂ J^

— z B(xJ

such that each z..^ = f(z.) or each z
i+l i i+l

this special symbol provides the values of

P(z1),p(z2),...,p(zd_1) .

i'
Then ..

Exit Exit

"1 "2

zo zl Z2 Zd

xl X2

The special symbol is ui;ed to set up the ii. .ance-outcome

table again, and continue simulation,

(iv) if none of the above, then continue simulation of S0

constructing the set of complete states until (i), (ii), or

(iii) above apply, or a complete state repeats, in which

case reject the input tape,

(v) if none of the above, then continue simulation of both S,

and S„ .

The jur.l.i ric;i.l,;iMii fur 'l(il) (ihovc; in l.lio.t .i » "., i-x i li mi ir-i ■

than c ic,, apart ;', can be inadc t" halt, and fi, will cither J.ocjp,

or can independently be sent to halt statement with a different value

(under some interpretation).

This completes the proof.

173

. ,. ^-.-..■.-.. v.....^ ■■^.^^.^^■^^;^^r-|1r|rtl^^ .. . „ ■ ,:.. .■.^^M.,.AJ;J-^..^.....M^.AW^^,.,..^„,... . .-^^u^.^^^i^^- ^ ^^^■JillrtllilHirililtlihMii

Fwr«^9WfWKWfl^rai?wwwfT-w-ip^^

♦

Chapter k Generalized Flowchart Schemas

h.1 Introduction

Janov [I960J considered the data-space of a program to IJ*.; roprocont

able by a single VBIUC, that could be changed (by applyjn/^ u I'unctjon)

or tested (by a predicate). These base functions and predicates were

assumed to be total, but otherwise completely uninterpreted. The idea

was that by this mechanism one could model the control structure of

computations and possibly even prove some useful properties about real

programs, e.g., halting and equivalence. Unfortunately, the problem

with this simple model was that two programs which computed the same

value for ."ill possible inputs but, went about their task in slightly

dJIToront way;: wore Lreated txa licing ri'in-equ.ivalcnt under this mndoj --

we hi'id lntil. Lud much JrirnrmuLion, r,i ri'.IJy, by making Llio baß« fiuicl.Jomi

and predücater, totally unintcrprctod, and secondly, by treating the

whole of the data space as being a single element in the domain.

The latter objection was partially answered by Luckham, Park and

Paterson [1970] when they treated the data space as consisting of a

finite number of parts which could be manipulated by the program.

While an improvement, this nod-jl too could not usefully represent

computations in which memory requirements increase with the duration

of the computation. Also, quite basic control features, e.g., markers

were missing. Cubcequently there have been several attempts to answer

that latter objection by considering the subdivision of the rnumory intu

greater and even greater detail — labels, labe], stacks, counters,

markers, boolean variables, one- and many-dimension arrays, lists, etc.,

Ifk

- - Mm*m .^.-^ . -. ——.-^.—.. ^-^ J-J,—■ .„-_-_■-._ . . .

■ i i I yw.,i|(i.»pjipi ,JI, [^''..'»'»■(»•'•Ji' ura"ii«wuii.J.iiJi,ui*U!BI!WPPP"iiPIP mrw^f^imKimmimmimm mmmmimm* immmmr'.'w"}-" '**>••+^w'i

limn; been conulderod. '.L'heiic may he ctOlod ntnjctumJ. featurcu, and one

can construct an endless number of bhcßc -- ctackc of arrays, arrays of

stacks, arrays with a dynamic number of arßuinents, general data structures

like those of ALGOL 68, and so on. While it is -orue that most of these

do not add any "inherent" power to the schemas, i.e., any schema in one

class can be translated into an equivalent schema of another class, one

cannot be completely satisfied with a "minimal" class since the aim of

the study of schemas is to model computations, not Just to obtain a

machine capable of computing the partial recursive functionals. This

is akin to the similar state of affairs for partial functions -- a three

counter machine (that can increment, decrement, and test a counter for

being zero) can compute all the partial recursive functions, and yet it

is hardly a good model for computer programs.

Are we then arguing for a profusion of classes of schemas, one

for each subset of possible data types, with little unifying theory?

No. On the contrary, it would be quite useful to construct a rather

general class of schemas from which many of the others can be obtained

as subclasses.

tfhile significant effort has been devoted by researchers to answer

the second objection to lanov's model, viz., the problem of a single

data space, relatively little effort has been devoted towards the first

objection, i.e., that one loses too much information in considering all

the base functions and predicates to be uninterpreted. One would like

to specify, for example, that two functions commute, or that a certain,

relation is transitive. In studies, most of these notions have not been

integral parts of schemas in the discussion of properties of classes of

175

 _.__. •'• i mywMi -hart-""°m'--"m-"- Mtr'TTfiiiilif,"','-'''^'--'"'inii«iiiiWr

tmv^mw^m ||l«»l«lllllll...«,lMJ,M.l|li«UI,IIMW.iM|F»UW^PWIW»|lllpilWI*!pii wmmmpimmm (im.liu.H,llM l)'- ■■■Jl.*!MJinlMli^^Hffr.'»ULi«HM-i»ifiiWPUii,üi, .i.ü,u>JliJWWLi|^W"WVWPW<,ii,i.J.lu.,JlAiijiii,l-w(;-Ji»«ra',i.yvT
,|w

; «

Schemas, but they crop up, in an ad hoc way, when a specific schema

is used to model a specific program.

It is our intention to handle these two basic problems in a

uniform way, viz., by defining the class of generalized flowchart

Schemas. Generalized schemas have the inherently sound philosophy of

lanov that the complete data space of a program can be represented as

a value (in some domain) but that operations on it may have the effect

of modifying specific parts of the memory while leaving others unchanged.

A generalized schema S = <F,(p,P> is a flowchart F (with a single

variable), an attached fomula cp of first order predicate calculus

with equality, and a set P of function and predicate symbols, which

corresponds to the set of base function and predicate symbols of the

schema. The relevant interpretations for S are those that satisfy cp ,

not all possible interpretations (as in the case of totally uninterpreted

base functions and predicates) . We show that generalized schemas have

the power of modelling the other classes of schemas, i.e., those that

concentrate on the subdivision of memory. The other dilemma between

the completely interpreted programs and the completely uninterpreted

program schemas is satisfied by cpecifVing as much or as little about

the interpretation (by the formula cp) as may be desired for any

specific application.

This chapter introduces the class of generalized flowchart schemas

and shows some of the possibilities of modelling structural subdivisions

of memory and other useful properties. We then show how most of the

classical theory of schemas can be represented by these schemas, and

finally we prove the fundamental theorem of maximal schemas that states/
/ /

that schemas with arrays and equality tests are, in some sence, a maximal

class.

176

*^"^:' ---■
■■- :■.-■'-^-^.'^- . ^-*.^^.i^^^-.-^^.^i^^.^a^.u.^—^.^-J;*^*^.^^^,^ i ,h-..litm t|- -—.-i....^^..-.

.^ii..^^^i^.^iwiiiLv^JiMiiik.Lifiii^iij^^j^L^^nii.iii.ii^i.i M fi'y#y:W-wiiLi",i:M
11, Jim *i*<**^*^mm$m!$'*F*'m'm^^ s .vi*w'!-^^w»w-(K?W-w!'l ■ "'^l

^•2 Definition of Generalized Schemas

^.2.1 Basic Definitions

In Lhe re^t of this chapter whenever we say "schema" we mean a

generalized schema. Sometimes we also use the phrase <p-schema to mean

a generalized schema. Schemas of the earlier chapters will be called

conventional schemas.

A schema S = <F,cp,P> consists of a flowchart F , a formula cp of

first order predicate calculus with equality and a finite set P of function

and predicate symbols. The flowchart F has a very special form. There is

only one variable (we call it y), and statements consist of the following:

Start statement

Halt statement

Loop statement

Assignment statement

Test statement

START y - T()

HALT (T(y))

LOOP

y - T(y)

if a(y) then goto L1 e3.se goto L2 ,

where T() represents a constant term, T(y) represent: any term, and

a(y) represents any atomic formula, i.e., a predicate or equality test.

For convenience we will use ALGOL-like notation inste on strict flowchart

notation. We hence allow the use of labels and pto statements, with the

tacit understanding that there exists no cycle consisting entirely of

goto-statements.

An interpretation I for a schema S = <F,(p,P) is one that specifies

at least the functions and predicates used in F , cp and P . But the

only interpretations of interest are those that sr :isfV (p ~ we write

I 1=-- (p if the interpretation I satisfies cp , and we say that

I is an interpretation for S .

J I

U

o

177

_... _. _ . .■■^-^,.^ .-.•-;... v^i.^U.j.u^^^^-^^.ii-»..-..^ ^^k^ij„;^i,-JaH^-.^ü^u^t'^i^.^.^J.:-u:.J.o ^...■.,,.:1.^..i. ^.... ■„.. ■^.^..■■^.■■^.^..^mi^wt^^ d

mmmm^n^H^^^mmmiGmm^itmmimmmz&vtGnmr™™

fm

Ä

If S is a schana and I is an inteipretation foi S , we use the

notation Doni(l) to mean the domain of the interpretation, and

Val^1) to meari the output of the computation of S on I . If s

diverges on I then Val(S,l) is undefined. Smilarly, Path(S,l) is

the path of the computation of S on I (for an exact definition of

a path, see Section 2.1.M . Also, if S . ^^p) , we use the notation

£(S[to denote the set of function and predicate symbols appearing in S ,

i.e., in F , cp , or in P .

Definition. Given an interpretation I on a domain Dom(l) over a

set of function and predicate symbols Q , we define the subinterpretation

I' of I with respect to a set P of function and predicate symbols in

the following way: the domain Dom(l') of !• is the smallest subset

of DomCO closed under the functions in P n Q , and the values of the

functions and predicates of P n Q are the same in I« as in I . Note

that if P does not contain any zero-ary function then the domain

Dom(p) is empty. We use the notation I/P to represent the subinter-

pretation of I with respect to P .

Definition. A schema S = <F,q),P> is said to be well-founded if for

every two interpretations ^, ^ tor S (i.e., ^ \= y mäL ^ ± y)

such that there is an isomorphism 9 from (I /p) to (I /p) , then

(i) Path(S,I1) = Path(S,l2) , and

(ii) if the computations halt, then Val(S,I) = 9(Val(S,I))

The significance of a set P that makes S = <F,q),P> well founded

is that for any interpretation for S , knowledge of merely the functions

178

...j^-,,-,.»--:,-!, ^.„»w..-— ■.■.J—^v,,...«. ^u.-..». ... ^.... .M.-.a^x,. iltfYiililiiia-iininiirti. -»

r—^ JJ.UIiJilJjJJIIUUJ.llJtlJilllll,™^,^ ^ ipi,^U.|P,»l^j,M

and predicates P is sufficient to characterize the computation.

Given F and cp , a minimal set P for which (F,cp,P) is well founded

represents the minimal set of functions and predjcates whose values are

sufficient to fully characterize a computation. If only the values of a

smaller set of functions and predicates are fixed, then there is come

indeterminacy as to what the schema will do, i.e., there are two

interpretations both of which satisfy cp , and also agree over the fixed

values, but the paths of the computations on I., and Ip are different,

or the outputs are different.

We will only be interested in Schemas that are well founded, and

in the rest of this chapter, all Schemas considered are well founded

unless otherwise specified.

It should be noted that if G ■ (I'VPJP) iü well founded and 1, , Ip

arc interpretations for S whose subinterpretations with respect to P

are isomorphic, then (a) if the computation of S on I1 halts

then its computation on Ip also halts after exactly the same number

of steps, and (b) the outputs of the two computations ValfS-^I..) and

Val(S„,I„) are elements of Dom(l1/p) and Dom(lQ/p) respectively.

It follows from the definition that

(a) given any F and cp , if we let Q denote the set of function

and predicate symbols in F , then (F,(p,Q,) is well founded.

(b) if (F,<p,P> is well founded, and Q is any set such that P c Q, ,

then (F,9,Q) is also well founded, and

(c) if cp is "false", then (F,(p,P) is well founded for all F and P ,

It is also easy to see that in general it is not partially solvable

whether a schema S is well founded. This follows directly from the

0

o

179

. . ■■ tf iiifi- iii'l in und Mi i\i,'m-mm JMKr i IM 4^Mir i'i 'i n' ' ■'' -- -■—•"" ^*--*^^--i>/.^-^-*«^-a^-^a-^ ^.•^L^MUJM.J^^.^.,.^:: , ■..,. .. „..■: ^:.—..,...... ^. ...J.-Jh.., n,. A^j^^MÜMimir'-'''*^-^^-**-' ■"-' ■ ^ -■--—---■■ ^ .-^-> -■-.■* ^"■^'•-^"-HaHlifl tt iTlÜl I fliY u'^i^fl

PwpMiPjjIHBHPiWwpipgjgppiqi^ ...P..H.U.M..WI,. !HPl-^«(JI(lJ8iRJWP|ill»W»ll«Ai'»l''^ , mil uip^lMJI

..

•t^ct (intuitively plausible to all schematologists, and proved in

Lection U.5) that the divergence problem for cp-scheraas is not partially

solvable. The unsolvability of well foundedness should not shock us

unduly. The corresponding problem for conventional schamas, too, is

not partially solvable. For, consider a conventional schema S with a

statement HALT(b) where b is a zero-ary function not used in the

rest of S . Now we ask if the computation of S can be specified if

we give an interpretation for S , but refuse to specify the value of

the zero-ary functlun b . If the HALT(b) statement happens to be

disconnected from the rest of S , the answer is yes, but in general

it is unsolvable.

The correspondence between conventional Schemas and generalized

Schemas can be represented by the following table.

Conventional schema

The total data space

Functions and predicates

Interpretation

The structure of the data

space, smd totally

interpreted features

(like counters)

(p-schema

The variable y

The set P

(I/P)

Predicates and functions other

than those in P , related by

the formula cp .

This also shows why we are interested only in the well founded Schemas;

for, in a conventional schema, if we specify only the values of a subset

of the base functions and predicates, it may not be adequate to characterize

the computation, and this represents an "incompleteness" in the schema.

A schema S = (F,cp,P) halts for an interpretation I if the

computation of the flowchart F under I reaches a halt statement.

180

I**-!'--- .^■^■..„■„--^ ■.^■,....-.^Miai^jt-. i^.-.-:, -.^ Ifi&jdiii "'—■'-■-°;--;-"--"
.^.^^-..„.^.-■■.„.■„.^.^.v.A,,,.^^^,,.^^..^^.,.^-^-^-....:.,^.......,^. 1 1 1 1 nur «a

ffHPW^WW^T'r'ffWr^f'

A schema <F,cp,P> is said to halt if it halts for every interpretation

I for S (i.e., l|=q)). Similarly, a schema is said to diverge

if for every I for S the schema does not halt. A schema S is

free if for every path K in S there is an interpretation I for S

such that K = Path(S,l) .

In the special case where cp is "false", the useless schema

(F,false,P> both halts and diverges as there is no I for which

I 1= false . In the other special case where cp is "true" the Schemas

so obtained are the conventional one-variable scheraas, i.e., (3.(1 var) --

these are very similar to the lanov Schemas except that in lanov Schemas

the assignments and tests are somewhat simpler.

This describes the class of generalized scheraas. We can take

interesting subclasses of these Schemas by restricting the kinds of

flowcharts and the formulas cp allowed. In fact, by speciiying cp

we can obtain Schemas that behave as if the Schemas had several variables

(conventional n-variable Schemas), or counters, or pushdown stacks, or

other structural features. In each case, however, the single variable y

corresponds to the entire data space of the schema. We will consider

this aspect in Section h.h.

h.2.2 Some Examples

We now give some simple examples of generalized Schemas.

Example 1

Consider the schema S - (F ,9 ,P > . There are two zero-ary

functions a0 , a^, and two binary function.-? f. , f. . The formula cp

is:

181

.jX't ,*&* ^^sLtLl^ii^tl^u^W^ !■■£-. -:■,....-..■■■..-.-■■ ^ ,.■,,»,,1 miiuiUitf'f\\&**":*''''-~lviii:iisrA,tatk,d* ^■^.■^--■^^■»—^■-■■■^•--^--■J.^.n. -.. ■-L:^.t-..^l1ll:
lfi-rHltt-l-rti|;[,,, : ,...-..

' "■ " I I ll»l I 11 I

ao^ai

A VxVyf+(x,y) = f+(y,x) A f.(x,y) = f.(y,x)

A VxVyVzf+(f+(x,y),z) . f+(x, f+(y,z)) A f. (f. (x,y), z)

A Vx f+(x,a0) = x A f.(xfa.) ■ x

A Vx3y f+(x,y) = a0

A Vx (x / a0) - ayf.(x,y) = a1

A VxVyVzf.(x,f+(y,z)) . f+(f. (x,y), f. (x,z))

A f.(f+(x,y),z) = f+(f.(x,z),f.(y,2)) .

f.(x,f.(y,z))

o

The flowchart F is:
a

START y - a ;

^hile y / a0 do y - ^(y^^ ;

HALT (a0) (

and the set P is fa-.f.!

r

An interpretation for the schema S is a commutative field.

The schema halts if and only if the characteristic of the field is

finite. Note that the zero-ary function a is not in P , but the

schema is well foundea.

Example 2

Consider the schema S, = (Fb>tPb>Pb> • S, has one zero-ary

function a , three unary functions f , car , cdr , one binary function

cons , and one unary predicate p .

182

^ - " - JL^'- —- •- ■ ■■'
-— i

T^mmiimm *"•• "'•*'•• w*m*mi*mmmm

(p is Vx Vy car(cons(x,y) = x A cdr(cons(x,y)) = y ,

F. is b
START y - cons(a,cons(r(a),a));

L^.y - cons(ff(car(cclr(y))),y) ;

if p(car(y)) then HALT(car',y)) ;

y - con6(f(car(cdr(y))),y);

if -1 p(car(y)) then HALT(car(y));

goto ^ ,

and

P is [a,f,pj .

The GChema halts. In fact, the output of S^ on any interpretation I

can be ciiven hy the following, formula:

Val(Gb,l) - If pCf^Cft)) then t^(a)

else if -i p(f(a)) then f(a)

else if p(f5(a)) then f5(a)

else if-1p(f2(a)) then f2(a)

else if p(f7(a)) then f7(a)

else f' (a)

The notion of the equivalence of the two schemas will be defined in the

next section but intuitively the schema S, is "equivalent", in some

sense, to the schema S = <F ,<p ,P) defined below (we use the ' c x c c c' v

abbreviation f^a) for ff(a) , etc.):

185

... ■■ ^. .^.^~L-m* J

r» — ■i" ^TV"

qp is true
o

F is START y - a: c

if p(f5(a)) then }lALT(f';(a)) :

if -i p(f(a)) then HALT(f(a)) ;

if p(f5(a)) then HALT(f5(a));

if -i p(f2(a)) then HALT(f2(a));

If p(r(»)) then HALT(f7(a));

HAI,T(r(a)) ,

and

'

P is [a,f,p] , i.e., the same as ?

U.3 Equivalence of Schemas

k.'}.! Introduction

What does it mean to say that two Schemas S, and S are

equivalent? Baying S, and Sp are equivalent means that the outputs

of B. ejid S9 should be the same if both Schemas are made to compute

on the same interpretation. Howovor, there jr. one point that this cimple

notion overlooks. Tt is that all relevant interpretations for the first

schema need not be the same as all the relevant interpretations for the

second schema, as in the case of Example 2 in the previous section where

the functions car , cdr and cons represented structural features in

S^ which were absent in S . The values in the domain of an interpre- b c

tation for a schema represent the data space of the schema, and correspond

to both the structural and the non-structural aspects. However, it is

only the non-structural aspects that are crucial for the definition of

iQh

■ ■

'•■y» '•wt^^m^mm^rmmimmmmir^mimmm^mm ...,..,,..,.... immmm***** T*

equivalence. It is precisely this dichotomy between the structural and

the interpretive aspects of a schema that dictates a little care in

the definition of equivalence. This problem does not arise in conventional

schemata theory because these two aspects of sohemas are well segregated,

and it is because we wish to give a unified treatment that we are forced

to confront the issue.

I>.3.2 Definitions

We remark again that all Schemas considered below are assumed to be

well founded.

Definition, We say that two Schemas Bj = (Fj,^,?^ and S2 = <F2,(p ,P0)

are compatible if P = P

Definition. Sg ■ <F2,(p2,P> is a generalization of B - (F ,(p ,P>

if

flj for S1 i.e. Tl I" *1

ai2 for S2 i.e., I2 |= (p2 and

S an isomorphism 9: (l,/P) •» (l„/P)

such that if B^ halts on 1^ t'.en S2 also halts on I and

Val(S2,I2) = 0(Val(S1,I1)) ; and if Val(S1,I1) is undefined then

Val(S2,I2) is also undefined.

If S2 is a generalization of S we write S < S
x gen

Noco that the definition of well i'oundedness implies that for any

intarpretfttlon I. for S , if there exist two interpretations I , I,
xx 2 >

for S2 whose subinterpretations over P are isomorphic to (I /p) , l.e,

185

.J^^_„^——«-«_. ■ ■ miiMi jua*jia*mym.m ■ -—'

* ■ f •••'••> ■■«■pi^Kw \iiitiw^mrmmmmmmmmmm^^*—m.i IIIUIIIIWIIWIIMH I **~M*«^mmirmmmm

O

»2: (i^P) « (yp)

and 93: (l^P) - (l^P) ,

then if Val(S2,I2) = Q^Val^,!^

then Val(S2,I2) = öjCVkKö^Ig) .
/
/

It is clear from the definition that generalization is reflexive
/

and transitive.

0 i Definition. S = (F^,^,?) includes (is at l^ast as defined as)

Bl = <Fi^i'P) if:

(i) VI, for S , H« for S and 3 an isomorphism

9: (I-^P) " (I2/P) such that if B. halts on I then Sg also

halts on Ig , and Val(S2,I2) =9^1(3^1)) , and

(ii) YI0 for S , 31 for S and 3 an isomorphism

9: (Ij/P) - (I2/P) such that if S halts on I then S also

halts on Ig , and Val(S2,I2) = »(VUCBoI.)] .

If B- includes S we write S, < S .

Definition. Wc say that two compatible Schemas S and S,, are

equivalent (8- ■ S^) if S^^ < S2 , and S0 < S .
 gen gen

Alternatively, B* ■ S if and only if S, < S2 , and S0 < S-, .

We should now ask what is the significance of our definitions of

generalization, inclusion, and equivalence, and whether the definition

of equivalence corresponds to the usual notion of equivalence. These

106

- - ■ " ^ — -'-— - - -■■--

■PP^^IPWW« WfW

questions will become clearer in Section k.h where we model several

conventional classes of Schemas by subsets of the cp-schemas.

We may note here, however, that the notion of "generalization" is

not immediate in conventional Schemas, but it goes something like this --

say two schemas (or computer prograns) have been written to compute

some mathematical function, but the first of these schemas does not

ccimpute it for f.ll possible caset- as the second one does. Then we

would say that the second schema is a generalization of the first. As

an example, suppose we want to compute the gamma function, rounded off

to, say, ten decimal places. One way of doing it is by computing the

factorial function, in which case the program would work correctly for

the positive integers. Another way is to use any of the converging

series lor the gamma function, .^e would then say that the second program

(or schema) is a generalization of the first.

H.3 »3 Kxamples

1. Consider the schemas Sb , B of geetioi) k,2,2. We have

S. - S . b c

2. Consider the schema SJ = (f..©-.P..) wher^
d N d d d

cpd is Vx fjx^) = a1 - (x = a0) ,

Fd is START y - a ;

while y ^ i0 do y - f^y^) ;

and

HALT(a0) ,

pd is M*i •

18?

-—

■»•"■"—■"""WHW^PWPtPiBIIWIIIlPI».-» ' "--■—-■-■ '"■ -vm*m*w^^*mmirmiim*mmmmmm'mim Mn^BPaw^epnipa

»^»»^-^■**—'»W.<«W3.^»,

vwn^fBun

Comparing B. with the schema ß (of Sect inn l|.2.2) we B«6 thai,

'
a - d gen

but not sd < Sa , because the characteristic of a commutative
gen

field must be a prime (if it is finite), i.e., if I is an interpre-

tation for Sd such that a0 - ^ , or ^ - ^(^(^(a^a^ ,a1),a1) £

^{a^a^ etc., then there is no interpretation I for S such

that ijii^t^] is isomorphic to ld/{a1,f+] . Hence Sd is a

strict generalization of S (we write S < 8.). Note that the
gen

notion of generalization is not synonymous with usefulness, for it may

be argued that Sa is more useful than Sd . The notion of generaliza-

tion is more akin to the notion of subset in the theory of languages,

where any language over an alphabet E is a subset of the regular

language I .

k.h Clashes of Schemas

J+.^.l Introduction

We now show how most conventional flowchart schema^ can be

represented as generalized Schemas (cp-schemas), and demonstrate that

many of the well known results regarding the power of classes of Schemas

apply to (p-schemas as well. In fact, it even turns out that formalizing

a schema as a (p-schema sometimes reveals some point overlooked when

talking about Schemas in an informal way. To illustrate, suppose we

wish to define conventional Schemas with lists, and we introduce the

primitives car , cdr , cons , A , and atom , and allow their free use

in Schemas (see also Morris [1972]), then we «ouxd find that we cannot

188

mqm^ " WV "'«iimmmt^^a

prove the well foimdedness of the correspondinf; generalized cchema. The

reason is that certain error conditions may be encountered where the

computation is not well defined, e.^. in attempting to take the car

of A of or an atom . This accounts for our careful definition of

list Schemas in Section 2.1.2. The notation C{n va.r) , (3() , (3(=) ,

(3(pds) , (^(liat) , C3-(A) , etc., for conventional Schemas (described in

Section 2.1) vill alr.o be used for the corresponding (p-schemas. In fact,

we will call a (p-schema corresponding to a conventional schema a

conventional (p-schemas.

We first define the notions of generalization, inclusion and

equivalence for partially interpreted conventional schemas (in what

follows we will consistently use the superscript * for conventional

schemas, for interpretations for them, and ior classes of conventional

schemas) . E(S) denotes the set of function and predicate symbols

in S . We say I is for P (where P is a set of function and

predicate symbols) if I specifies at least all the functions and

prcdicates in P . We use I for B >F to denote (1 for S)

and (] for V) .

(let P denote >.:(S.*) U £(8*)): VI' for ;J*,P
X

1 gen

* ♦,
ai« for S2,P 5^: (l^P) - (lI/P) i.t. either both Val(S1,I1)

and Val(S2,I2) are undefined, or else Val(S2,I2) ■ 9(Val(S1,I1))

S* > S* (let P denote 1(3*) U Z:(S*) :

(i) Vlj for S^P 3I2 for S2,P s.t. S9: (l^P) - (l2/F) ,

and if Val(S2,I2) is defined then Val(S2,I2) =

^(Val(S*,I*)) ,

1Ö9

-■ -- -

 .j'"^"7".-"- ""■■"■ ■■■• MI im« ' <<■ .i..«.^...-.!.. .P.... .1. I,........,,,.. . >..«...»«.,. i , ii VPTi

and (ii) Vl2 for S2,P ft, for S^P s.t. 30: (l^P) « (W') »

■Bd if Val(S;t, ij^) is defined then Val(S*,I*) = ö(Vr.l(S*,I*))

S1 ■ S2 if B, > S2 and S2 > S ; or alternatively, if
 gen .^en

■x- * * *
S. > R^ and Sn > Sn .

1 — c d — 1

We had not defined the notion of generalization for conventional

Schemas before, but it can be chocked that the above definitions for

inclusion and equivalence are the oame as the earlier definitions for the

Schemas considered in Chapters 1-5. The earlier definitions, however,

do not apply to "arbitrary" partially interpreted conventional schemas.

The translation of conventional schemas to cp-scheraas will be

performed as follows. In the cp-scheraas, symbols used for the base

functions and predicates (corresponding to those in the conventional

schemas) are distinguished from those used for the interpreted features.

Given a conventional schema G over the base functions and predicates

P , we construct a flowchart F and a formula cp such that the

corresponding (p-schema ll 8 ■ <F,cp,P> . Next, given a class C, of

conventional schemas, the corresponding class (5 of cp-schemas is

consti-ucted as follows: if S fC- , then the corresponding S = <F,cp,P)

is in £. , and so are schemas <F,cp, P') where P c P' , but P' may

co:.tain seme new function and predicate symbols. The reason for this

is that if we wish to compare (for inclusion or equivalence) two

conventional scnemas whose corresponding (p-schemas are <F,,(p,,P,) and

(F2,Cp2,P2) , it is possible that ^ / p2 5 hence we will compare,

instead, (F^f^^UP^ with (F^^ UP2>

After we describe the translation of conventional Schemas to qp-schemas,

we can then go about reproving most of the results regarding conventional

schernas in the cp-schema formalism. However, much of this work can be

190

 — —».

■NTSWBBPPÜ"!*"»^^—"" "■l'"MI"' ■" n ' J ^.T'1

avoided if the translation process obeys the conditions of the basic

translation lemma below. The lemma says that if certain conditions are

satisfied then many of tho interesting results for conventional scheraas

carry over to <p-schemas as well.

Let S be a conventional schana, and let its stateraents be

V8!'*"'Sk • A statement can be of "type' — start , halt , loop ,

assignment , or test . The flowchart F of the corresponding (p-schema

S = {T,<f,P) will have one statement corresponding to each statement

in S , and the types match, and P = Z(S) . For convenience, we will

call the statements in F by the same names as those in S , i.e.,

s^s^ ...,sk .

The conditions for the basic translation lemma are the following

(we use the notation 11 « L to denote "I and I are isomorphic"):

0. R is well founded.

1. (For individual schemas) Let P o P = E(S) .

(a) VI+ for P+ if 31 for S s.t. (l/p) « (i^/p) then

ai-L for S,P+ s.t. (I1/P+) - (I+/P+) .

(b) VI* for P+ if 31* for S* s.t. (I*,P) « (l*/p) then

31* for S*,P+ s.t. (I*/P+) « (I*/P+) .

2. (For the translation process)

(a) VI for S 31* for S* s.t. 39: (l*/P) ~ (l/p) and

Path(S,l) = Path(S*,I*) , and Val(S,l) = e(Val(S*,T*)) if

both are defined.

(b) VI* for S* 31 fcr S s.t. 30: (l*/P) « (l/p) and

Path(S,l) = Path(S*,I*) , and Val(S,l) = 9(Val(S*,I*))

if both are defined.

191

- ■

-_ —■'■ ..-.--.. "•"»■^»^1^1

3.

!

f

ht

ir

(For classes of conventional schemas) Interpolation lemma.
* *

•C*] JV^l 31'' v^-jj O-, jS , if S*eC^
* * *
2*^ ' ^1 ^ ^2 then

3S5cC2 s.t. Ij ■ S5 , 2(3^ = Z(S3)

It is easy to see that for uninterpreted conventional schemas,

2(a) follows from 2(b) owing to the well foundedness of S . To see

that this is indeed the case, let I be any interpretation for S .

Then, as S is uninterpreted, there is an I for S* such that

I /P is isomorphic to l/p , i.e., there is an isomorphism

9* (I /P) - (l/P) • Now, from part 2(b), there is an interpretation I

for S such that 9^ (i*/P) « (^/p) , and PathiS,^) = Path(S*,I*) ,

■K- -X-

and Val(S,l1) = ei(val(S ,1)) . But from the well foundedness of S ,

as 9^9' : (i/p) « (^/p) , ve have Path(S,l) = Path(S,I1) , and

Val(S,I1) = 9^9" (7al(S,l)) , from which the desired result follows,

i.e., path(S,l) = Path(S ,1) , and Val(S,l) = 9 » 9' » 9 (val(S*,I*)) =

9(Val(S*,I*)) .

If we can prove the above condition to hold in the translation

process, then the following consequences apply.

For individual schem&s

(1) S halts if and only if S halts, and in general, S halts on I

if md only if G halts on (l/p) .

(2) S diverges if and only if S diverges, and in general, S

diverges on I if and only if S diverges on (l/p) .

(5) If Z(S*) . Z:(S*) then S1 < S2 iff S* < S* .
gen gen

(U) If Z(S*) = Z(S*) then S1 < S2 iff S* < S^ .

(5) If I(S*) = 2(3*) then Sj ■ S2 iff S* > 3* .

192

 ■

—— Jll i in i i""'i i ■i-iiwiiiiiiwiiiM .J.inn wMinnM i. .mmmMmmm^mmm wmmmmm*"« " %w*"

(6) S is free iff S is free.

For classes of schemaK

(7) ^ < fl^ iff ^ < C^ •

(8) On ■ (^ iff C* ■ C*

(9) The halting problem (respectively divergence, equivalence, inclusion

problem) is solvable for © if and only if it is solvable for C* .

For a proof, see Section 1+.6.

In our translations from conventional Schemas to (p-schemas we show

that the basic translation lemma applies by proving part 2(b) above,

by induction on the number of steps in the computation. This is done as

follows. Given an interpretation I for S , we construct an inter-

pretation I for S such that (l*/P) is isomorphic to (l/p) , and

we define a function 6: M - Dom(l) where M is the Mt of possible

configurations of the data space (memory) of S* . Then we show that at

each step in the computations of S* and S , the configuration of the

data space in S and the value of t'.ie variable y of S are related

by the function 5 .

h.h.2 Flowchart Schemas

h.k.2 One-Variable Schemas

For lanov Schemas, and general one-variable flowchart schemas with

equality tests (but without boolean variables), the translation to cp-schemas
ML

is trivial. Given a one-variable schema S the corresponding q)-schema

is S = <F,true,F) , where F is identical to the flowchart of S* .

Proving that the basic translation lemna applies in this case is

alFo trivial. Since the set P of functions and predicates in S* is

the same as the set of functions and predicates of S , S is well

195

 ■" ■~.-.-~——^-"—"-^^.■"-- ■ ■ - -- ■ " - - ■^:^. —O.

W ' '"7 • ■ ' -— -m—

founded. Now, ^iven an interpretation I for S , cnoose I to be
.. *• ^
the same as I , then the set of memory values of S is Just

. x-
Dom(l) , and by choosing 5 to be the identity function we see that

the condition of the basic translation lemma is satisfied.

h.h.2.2 n-variatle Schemas

Given an n-variable flowchart schema S* with variables

y1>'y2> "'>yn > no boolean variables, and predicates ind functions P ,

to construct S = <F,cp,P) , we add (n+1) new functions:

comb>v1,v2, ..,,vn . The formula qp is:

Vx^Xg ... Vxn v1(comb(x1,x2, .. .,xn)) . x.^

A v2(comb(x1,x2,...,xn)) = x2

A ...

A vn(comb(x1,x2, ...,xn)) = xn .

To construct the flowchart F we first define the translation

T(T(y1, ...,yn)) of a term f{Tf^$.,*ty\ which uses the functions of P

and the variables y^ .. .,yn (any or all of them may be missing) . The

translated terra OSM only the functions fron P U fv ,v } and the

variable y . The translation may be defined as follows:

(a) T(T()) =T() ,

(b) T(y.) . v.(y) ,

(c) TCfd^...,!^) f(T(T1),...,T(Tk)) , where f is a k-ary function

letter,

We can now defin" the statements of the flowchart F by setting up

a correspondence from statements of the schema S* .

I9I1

I

MMM - "^

w "'■ ■ ■■ >> —' I I paanpnwwiiiiii. i n i (.fi^ii

Statement of S

START <y1,...,yn> - (r^),...^))

ILALT(T)

LOOP

T1=T2

p(T1, ...,Tk)

(y^ .y,,) - (f.|»...#0

Statement of F

START y - combCt^^O,

HAI.TCTCT))

LOOP

T(T1) . T(T2)

y *- combCT^^,...^^^)

>.tnO)

We can prove the well foundedness of S , and the basic translation

lemma simultaneously by induction on the number of steps of the

computation.

Given an interpretation I for S we can get an interpretation I

for S (such that I |= cp) as follows: the domain of I , Dom(l) is

defined to be the closure of the following:

(a) Dom(I) c Dom(l)

(b) if e^eg, ...,eneDom(l) then the vector <e ,.. .,e > e Dom(l)

(without loss of generality we may assume that vectors like this

are not already present in Dom(l)).

The functions and predicates of p are defined as follows: if q

is a k-ary function or predicate, qcP . then q(e ,...,e) in I is

defined to equal the value of q(e,...,ej in I* if •,.....« are
in In

all elements of Dom(l) , otherwise it is arbitrary. The function comb

is defined as follows:

comb(e1,e2, ...,en) = (e^ ...,en) .

195

MJ «JilKll > ^IW j ii nuiimmni^niw ■II II i nmmtimtnmmmmrmm ,I,""*PM"1

►

I

The functions v , ...,v are defined as follows: if eil)om(i:) I.hen

v.(e) is arbitrary, otherwise e is a vector of elements in Dom(l) ,

e = (•,••••*• > i and v.(e) = e. .

Now, the data space of S at any instant is a set of values

[y-^ = ei ' 1^2 = e2 ' " ' ' yn = en^ where e2.'"''en are elemen'ts of

Dom(I) . We define the function 5 mapping this data space into the

element (e ,...je > of Dom(l) . Also, it is clear that I /p and

l/P are isomorphic.

Now the induction hypothesis after i steps in the computations

of S and S (under I and I respectively) is that the paths up

to that point are the same, and that v = b(m) where m is the data

space of S after i steps, and v is the value of the variable y

of S . The initial step and the induction step of the proof are easy

to check.

We remark here that there are other possible translations of n-variable

cchemas to (p-schemas that yield relatively more natural interpretations I

corresponding to I .We give an example below. Here, we introduce the same

functions as before, i.e., coml^v.,...,v , but also a new prodjcate:

J:;<latu . Lot. 1' ,1',,, ... he the nineli«NM i»f P (ine.linl:i n/i •.-,<• fi-ury

functions), and let r be the largest rank of all theno; then q> is

Vx ...Vx (isdata(x) A ... A isdata(x)) m

isdataCf^x^Xg,...))

A isdata(f2(x1,x2, ...))

A

A Yx^-.-Vx (isdata(x) A ... A isdata(x)) -

v1(comb(x1,...,xn)) = ^

A vjcomb^, ...,xn)) ■ x^

A

m

- - - -- —

I^™BP"H«I^«"^W" I™. iim^m^mmimmimmmmimr^'^^t^.riiwmiim i nn mi .nnn i .1 . -u»...!.... m m«^)^»«! muumf^mf^i

and the flowchart F is the same as in the earlier construction. In

this construction, the domain of the interpretation I need not contain

vectors whose elements are also vectors. However, it should be noted

that if these two translations yield schemas S1 and Sp corresponding

to a conventional schema S , then S ~ S .

k.U.3 Flowchart Schemas with Markers and Boolean Variables

U.U.3.1 Markers

Give a flowchart schema S with n variables y, ,...,y , m

marker variables z1,...,z , and p marker constants M,,...,M , and .Lm Ip

predicates and functions P , to construct S = <F,cp,P) we add

(p+m+n+1) new functions: comb, v., .. .,v ^ , .. .,w ,M..,.. .,M . The L n i. ml p

formula qp is:

M, /^ M- A M. / M, A .. . A M . / M x d x 2 p-i p

A Vy1Vy2.. -Vy^Zj^.. .Vz^ v1(comb(y1, • > •. zj) = y^^

A ...

Avn(C0mb(yl"--Zm)) =yn

A Wj^CcombCy^ ...,zm)) = z^^

A ...

AWrn(comb(y1,...,zm)) = zm .

The flowchart F is obtained on lines very similar to that described in

Section U.U.2.2. The addition is that a test (z = M.) is translated
■ J

to a test (w (y) = M.) — note that M. in the test (z = M.) 1 J J i J

corresponds to a marker, whereas in the test (w (y) ■ M.) , the M,
X J J

is a zero-ary function.

197

.._

MnHmumpapMMHMvnnrvaiiiPvini ' ,m ■■■■■ci«i in —-mimmmimmmmmmmmmmmm^mmm m^mmmm^^fj*

¥

>

I

»

Well fcundedness of S and the basic translation lemma can be

proved as before by constructing the function ö and using the additional

induction hypothesis that at any point in the computation the vaZwe of

each z , 1 < j < m , is NL or M,. or ... or M .
J — - 1 c" p

Flowchart Schemas with boolean variables can be treated as marker-

schemas where the markers can have one of two values called "true" and

•false".

U.I4.5.2 Generic Variables

A generic variable in a conventional schema is an untyped variable

whose value can be either a data element or a marker --in other words,

the "type'' is assigned at run-time rather than at canpile time. Schemas

with generic variables differ from other Schemas In that there can be an

"unexpected" error condition of type mismatch. Under such QOBditloM

the schema is assumed to loop.

Given a flowchart schema S with n generic variables y,,...,y ,

p marker constants M,,...,M , and function symbols f,,...,f with
■L P 1 m

rank r^ ...,rm respectively (some of the r's may be zero), let r

denote ■M^V./lft.^r) • Now, the corresponding (p-schema S ■ <F,(p,P>

is given as follows. We introduce m+pf2 new functions:

M,, ...,M ,ism,comb,v-,...,v . The formula © is:
J- p in

198

•~~**^mmmmmim '^^m^mm^r^mimmmmmmmm^m' m. i faiii^i» in ii i ^•T-

Mj^ ^ M2 A Mj^ / M A .. . A M _ /
P-1 ■ MP

A ismCM,) A ism(M,,) A ... A ism(M)
-L ■ p

A Vx1Vx2--.Vxr(-1 ism(x1) A ... A-i ism'x)) -

ism(f (x,,...^))
1

A -i ismff (x?, .. .,x))
m

A njf*2...'f*t v1(comb(x1,...,xn)) = x1

A vn(comb(x;L, ...,xn)) = xn

The flowchart F can be defined by settinc up a correspondence between

statements of S and statements of F . Without loss of generality

we assume that no statement of S* applies a function or predicate to

a marker constant (for it can be replaced by the Joop statement). We

will use the function T defined in Section k.h.2.2, extended to include

markers by letting T^) = Mi . If f^...,^ are terns we use

YC^, ...,Tk) to denote the set of variables y. appearing in T,,...,T ,

and if Y {yk ,...,y.] is any set of vurjables, wo use ism(Y) us
b

an abbreviation for (ism(y) v ism(y,) v ... v ism(y)) .

199

iwpwan — —«

Statement of S

START (y1,...,yn) - (T;i(),...,Tn())

HALT(T)

IXDOP

Statement of F

START y - COACtjO,...,»())

if iüm(Y(T)) then LOOP else }LALT(T)

LOOP

"f"!

if p^, . ».»tjP then potü L

else goto L„

ÖTj,...,»„) - (^.....t)

»l-"i

if ismCYCtj^, ...^T^) then LOOP

else if p(T(T;L),...,T(Tk))

then goto L, else goto L_

if ism(Y(T. ,...,T.)) then LOOP
1 Tl

eLse Y ^ combCTCt.),.. ,T(T))
J- n

where T ,...,T are the terms in t ,...,T that contain at least
T. Tl in

one function symbol. It can be shown by induction that the (p-schema S

is well founded. However, the translation does not satisfy the basic

translation lemma to the letter because extra tests are introduced. This,

however, does not violate the spirit of the lemma inasmuch as all

properties except freedom are considered.

^•k.*l Counters, stacks, Arrayr, and Other Kratur',-:

In this section a conventional flowchart schema Is tcmwtj to huvo

a finite number of discrete elements: variables, counter:;, stacks,

arrays, queues, lists, etc. In the corresponding (p-schema, the

mechanism of the functions comb , v^...,vn is used to assemble and

to extract the various components as in the earlier sections, and the

200

iiw^^~m~^^*'^~~*m~**^™~mmmmmmmmm*m^mt^mm^mmm^m****^~i^m*^m~~**i—**^^*m^*rvm*mm*^.ii im j^w^p—w ,_„mmmm^^fm

corresponding axioms will not be repeated. Similarly, the assignment

to variables, and predicate oests, as well as halt and loop statements

are handled as before. In this section we will concentrate only on

the translation of these special features into <p-schemas.

^A.^.l Counters

The operations allowed on counters arc retting a counter to zero,

testing a counter •for zero, and incrementing and decrementing a counter

(decrementing a counter whose value is zero leaves it unchanged).

To translate a counter schema into a cp-schema we introduce three

new functions: a zero-ary function zero, and two unary functions

plusone and minusone. The axioms «»ve:

Vx(plusone(x) / x)

Yx minusone(plusone(x)) x

minusone(zero) = zero

Note that the axiom ■ Vx plupone(x) / zero " follows from these.

We ree that we can define sane new features within the fraiiiework

of rp-schemas very easily:

(i) counters that take positive and negative values

(ii) testing two counters for equality

(iii) comparison of two counters

(iv) addition and multiplication of counters

(v) "counters" that take on rational values

(vi) Schemas that can output counter values. On the other hand,

inputing an arbitrary counter value is restricted, owing to the

first order notions of (p-schemas.

201

■ - - - --

.J ^ "■ wmm* T^"

^.U.U.2 Arrays

One dimensional semi-infinite arrays without booleans can be

"described" by using functions con and asc (which stand for "concents",

and "assignment" respectively). Con(c,A) represents the contents of

array A at location c , and aEsfx,c,A) represents the array obtained

by assigning; the value of array A ? t location c to be x .

VxVcVc'Va con{c,asE(x,c,a)) = x

A C / c - con(c .ass(x,c,a)) ■ con(c,,a)

The value of A[c] is translated to con(c,A) , and an assignment

A[c] •-y is tranrlated to ass(y,c,A) .

The start statement is used to initialize all the locations of n

array to some constant term T() . j-'or this, we introduce a zero-ary

function "init" in the (p-schema which represents an array with all its

locations having value f , by the axion

Vc con(c,init) = T() .

In like manner we can define arrays whose locations take data, boolean

and marker values, multidimension arrays, arrays that are infinite in both

directions, and an intore-ting feature: arrays that are referenced by

terms.

k.k.U.5 Pushdown Stacks

One-track Stacks

A conventional schema with a one-track pushdown stack can push data

values on top of the stack, pop them, look at the top element of the stack,

and test the stack to see if it is empty. Statements allowed are:

202

—

"^^•^^^"^•^■w"*^1» '■• i'<pi™«*piBBiiw««m m "111111«i^mKmrm^mam^mimm'm^m^^^K^m^^'^^mm^mimyf^gmmmmimimi imnn^nB^Konvi^^p^mB^I^^VP

(1) s - push(s,y)

(2) if s = A then goto L

else be(;ln y - bap(l) ; | - pop(c) end .

We introduce the functions top , pop , push , and A . The axiums

are self-explanatory:

VsVx push(s,x) ^ A

A top(push(s,.'<)) = x

A pop(pusn(s,x)) ^ s .

Tne resulting <p-schena we get is well founded. However, if in the

original conventional schema we allowed arbitrary use of push , top ,

and pop , e.g., if statements allowed were

(1) s - push(s,y)

(2) if s = A then goto L, else goto L

(5) y - top(s)

(M s - pop(6)

then the resulting ^-schema nay no* be well founded. And with food

reason. The operation of the original schema may not be well defined for all

cases, e.g., what happens when an empty stack is popped? Al an added

axiom we can specify

pop(A) = A

but the (p-schema may still not be well founded. The value of top(A) is

undefined. To overcome this, we may specifV that there are an infinite

number of data elonents ■ a ■ (a zcro-ary function), at the bottom of

an 'empty" stack; we then have the axiom

top(A) = a

and the resulting schema is finally well founded.

203

1 «•"* ■>■ ' ■ ■" i ■ ■^m^ir -r^-r-

-

Two-track Stacks

A stuck with two trucks hus one truck for dutu VUJIK.':;, und ana t'"r

murkers (booleejis cun be represented us murkcrs) . We fould nilow rnurkers

and data values to be mixed ir a single track, but we again have the

ad-hoc condition that the schema loops in case of type-checking error.

This is the notion of a stack introduced in Section 2.1.2. The statements

allowed are:

(1) s - push(s,y,z)

(2) if s = A then goto L

else begin y - top., (s); z - top^(s); s •- pop(s) end

The axioms are:

VxVsVm push(s x,m) / A

A top (push(c,x,m)) - x

A top0(push(s,x,m)) ■ m

A pop(push(s,x,m)) = s

U.U.l+.U Queues

A schema with a one-track queue can insert a value at one end of the

queue, can test to see if the queue is empty, and if it is not the schema

can look at, or delete a value at the other end. The axioms:

VxVq add(q,x) / A

A first(add(A,x)) = x

A remove(add(A,x)) = A

A (q ^ A) - first(add(q,x)) =

A (<! / A) ■* remove(add(q,x)) =

rst(q)

add(remove(q,x))

20U

■^^^^WJF 1 ■l"1

mmm

"«!• ' -^ fip«!

A two-track queue is a queue that has two tracks, one for data

values and one for markers (see Section 2.1.2). The axioms are:

VxVqVm add(q,x,m) / A

A first ;add(A,x,m)) ■ x

A first (add(A,x,m)) - m

A ranove(add(A,x,m)) ■ A

A (q / A) m first^SLddi^KfTn)) m first (q)

A (q / A) - first2(adcl(q,x,r.i)) - first^q)

A (q / A) - reniove(add(q,x,m)) ■ addfremovefq^m))

U.U.U.5 Lists

Axioms for lists are very similar to the axioms for pushdown stacks.

The Schemas differ mainly in the type of statements allowed (cee Section

2.1.2), for if stack Schemas allowed the construction of a stack of stacks,

an(? a stack of stack of stacks, etc., we would have a list structure.

Let tmf»$t denote the function symbols of the schoma, lot x m

their ranks be rn,...,r , and let r - max(rn,...,r) . Wo have
l m 1 m

atom(A)

A Yx1...Vxr atom(f1(x1, ...,xr)) A (f^,.. .,xr) / A)

m
A atornCf^, ...,xr)) A (fjx^ ...,xr) jfe A)

ra

A Vx Vx -i atom(cons(x ,x))

A Vx^Xg car(cons(x1,x2)) = x1

A cclr(cons(x1,x2)) = x2

205

r
mi^immmmmm imnammm ■ T • K

r.

r.

••-

^•5 Properties of Generalized Schemar.

'*. 5 • J InleT'pretcd Qche^Bi llcrbi'and r.i-licmai:, and Oracle Bchcm;

When wo r.uy thai a eonwitiniuil :;chierna i;; un interpret cd, we mc;ui

that any interpretation over its base functions is relevant for the

schema. We say it is uninterpreted even though its structural features

are interpreted, e.g., the operation of pushing a value into a stack, or

of incrementing a counter, is well defined. We would like to make this

notion somewhat more formal, and apply it to our generalized schemas.

Definition. A well founded schema S = (F,«?,?) is said to be uninterpreted

if for every interpretation I for P there is an interpretation I1 for

S whose sub interpretation over P is isomorphic to I , i.e.,

fl for P , a« for S , i.e., I1 |= cp , such that

I an isomorphism 9: (l/P) « (I'/P)

Note: we use (l/P) above instead of I because there may be some

elements in Dom(l) that are not reachable, i.e., not expressible in

term:; of the. functions of P (and, of course, there may be come

functions and predicates defined in I that eye not in P).

As t,n example, let cp denote

Yx f(g(x)) = g(f(x)) = x

and let F denote
a

START y - f(a);

while p(y) do y - f (y) ;

HALT(g(y)) ,

then Sa - <Fa,cpa, la,f,p}> is uninterpreted, but S^ = (Fa,9ft*U»*#giP}>

206

— — ■■-'- - ••• - —

mim^ipmmiKmmmmm*'» mmnm^m!t*nm'*vt i'^nmrrmmm' " '"»'»«mvmit m"^y

is not. Note that both S and S' are well founded, but

^Fa,<Pa'^g,p^ is not•

For another example, let 9, be the same as m , anl F be
o ab

START y - a;

while p(y) do y «- f (y);

HALT(g(y)) ,

Now.- P = {a,f,g,p] is t:.. minimal set for which Su ■ flL,Ä ,P > u b N b b b'

is well founded, and S, is not uninterpreted.

We should note that all the conventional (p-schemas (i.e., cp-schemas

corresponding to c(raarker,pds,q,list,A)) are uninterpreted schemas.

If H is the Herbrand interpretation corresponding to an interpre-

tation I (see definition in Section 2.1.7), wc write I -H .

Definition. A well founded schema S = <F,<p,P> is called a semi-Herbrand

schema if

(a) VI for S , HH for S , such that (l/p) & (H/P) , and

(b) VH for S , VI1 such that (l^P) & (H/P) , 31 for S , such

that (I^P) . (i/p) .

Note that the definition of a semi-Herbrand schema depends only on 9

and P , and not really on F . Saying that a schema S is semi-Herbrand

simply means that for every interpretation for S the corresponding

Herbrand interpretation is allowed for S , and that for every Herbrand

interpretation for S all corresponding interpretations are also allowed

for S . Any uninterpreted schema is semi-Herbrand, as is any schema in

which (p is equality-free.

207

 - ,J-., . J-..M k.
 ' --■

^r 1 ^^m^^mm II i I ' . iinimp-^^IWPWWRaiplWWPWWP"^ ■Il11 ' " ' '■■•I""

Definition. A semi-Herbrand schema S = <F,(p,P> is said to be a

Herbrand schema if

VI,H for S . if (i/p) h (H/P) then Path(S,l) . Path(S,H) ,

and Val(S,l) corresponds to Val(S,H) .

Note that yal(S,l) and Val(S,H) correspond in the obvious

sense, i.e., Val(S,l) is the value in I of the term Val(S,H) of

functions of p .

By this definition it is clear that all the conventional cp-schemas

without equality tests (in the flowcharts) are Herbrand Schemas (see

also Theorem 2.3, Section 2.1.7). This is not true, however for the

cp-schemas in general, for consider the schema Sc . (F^cp^P) where

cpc is VxVy p(x,y) - (x - y)

and

Fc is START y - a1; if p(y,a2) then HALT(y) else LOOP

Pc is {a^ag^} .

Sc is not a Herbrand schema because for the interpretation I where

a1 - a2 and p(a1,a2) is true, there is no corresponding Herbrand

interpretation for Bc . Further, 2. = ^,^}) is also non-

Herbrand because the interpretation H corresponding to I has

a, - the tern "a^ , a2 = the term «^ , and p(a1,a2) - false , but

the paths for I and for H are not the same. So, we . oe that we can

obtain the effect of equality tests without actually using them in the

flowchart.

We should mention that the notions of interpreted Schemas and

Herbrand schemas are independent. Both Sc and S^ above are non-

Herbrand, but Sc is interpreted, whereas S' is uninterpreted. Also

consider cpd and F below:

208

■ ——^—M-«-—...■- i aai—i—«MM

'•"■• '■ ■" '"■—■"—■■ —-"—— - ..._--™ ,— ^-^ T,^-,

»a is Vx p(x) *-, p(f(x))

and

Fd is START y - a; if p(y) then IIALT(y) else LOOP .

Both Sd = <Fd,<Pd,{a,f,p}> , and B^ - <Fd,q)d, [a,p]> are Herbrand

schonas, but Sd is interpreted, whereas S^ is uninterpreted.

Given a class | of inter—etations, a schema S is said to

halt on J if s halts on every interpretation I for S , where

ZCJ ; and similarly for divergence and freedom. And we say that S < S
gen

011 S1^2 if ^1 for Si > h^l ' aI2 for S2 ' Vfe ' **

3 an isomoiphism 9: (l^p) « {J^f) such that either both schemas

diverge, or Val(S2,I2) = 9^*1(8^)) - compare with the definition

0f Sl - S2 ' And similarly for inclusion and equivalence,
gen

Given schemas S^^ = (F^^,?) and S2 = <F2,cp2,P> , let ^ be

the class of interpretations H for S1 such that (H/P) is a Herbrand

interpretation; and similarly for ^ , then:
2

Theorem k.l (Fundamental theorem of Herbrand schemas)

For Herbrand schemas S. , S_

(a) S1 halts if and only if it halts on $L ,

(b) S1 diverges if and only if it diverges on v, ,

(c) S1 = S2

(d) S1<S2

if and only if S1 = S2 on fL > 5^ ,

if and only if S1 < S2 on 5^ , V2 ,

(e) Bj < S2 if and orüy if S < S on *. ,«L , and
Gen gen ■ -L ^

(f) Bj is free if and only if si is free on V .

209

■ fcf ,Mniniiiii M^HI M^^a^aM^^ -

wwppf^.

For the proof, see Section U.i . This theorem is an extended and

relatively more formal version of Theorem 2.1.2 (in which the clas:; of

Herbrand Schemas was comparatively restricted) .

There is another property about conventional Schemas that we would

like to capture. It is that in a single step a conventional schema can

do only a "small" amount of work, i.e., it can execute an assignment

statement or maKe an atonic tert. We can generalize the notion of a

-
schema to what may be 'jailed a "logic-theory machine". A logic-theory

machine is like an ordinary schema except that it can also make quantified

tests, and in general, a test can be any well formed formula (an even more

'• "powerful" machine would be one that can also build up formulas as

strings, or tvees). A test that effectively looks at an infinite number

of values -nay be called an oracle test, and a "schema" that can make such

l*^ tests may be called an oracle schema.

Definition. We say thaf- a formula 9 is over a set P of function and

predicate symbols if it user no function or predicate symbols other than

those in P .

.

Definition. Given B wcLI-founded BChOH !'> (Fy^fP) , we say that i'>

is a non-oracle schema if

(a) for every path in F from the start :tatement to a test, there

exxsts a quantifier free formula \K; over F such that for all

interpretations (for G) that follow this path, the outcome (true

or false) of the test eauals the value of >f() for the interpre-

tation, and

210

TT •• '- ^~*m~** Iff

(b) for every path in F from the start statement to a halt statement,

there is a quantifier free formula *(*) over P such that all

interpretations (for S) that follow the path, for all elements x

in the interpretation, the output of the halt statement is x if

and only if \|f(x) is true.

Lemma k.2

Every well-founded schema is a non-oracle schema.
i

This property of Schemas (proved in Section U.6) Is an important

one, and is used in the proof of the theorem of maximal Schemas

(Theorem U.3).

*»5»8 The Fundamental Theorem of Maximal Schemas

Constable and Gries [1972] suggested that the class of (conventional)

Schemas with arrays, (J(A) , are a maximal class of (uninte-preted)

Schemas. Chandra and Manna [1972] showed that for a "reaponable"

definition of uninterpreted Schemas, arrays, by themselves, are not

adequate, and that equality tests too are required -- and that the class

C<A, =) is strictly more powerful than C<A) . We show here that the

class £(A,=) is indeed raaxijnal in our generalized schema formalism.

Theorem U.? (Theorem of maximal schemas)

The class 0 of uninterpreted schemas is equivalent to the class

^(A, =) of generalized schemas corresponding to the conventional schemas

with arrays and equality tests; and, in fact, a schema in C- can be

effectively translated into an equivalent schema in C-(A,=) .

211

^^T r^w.

^

■■\

yor the proof of this Uiecrom, see Section h.G.

Intuitively it does scnw Umt lor conventional MlMMUj the elUi

(3(A) is indeed "maximar' in come :onco. Chandra and Innna | lf)7? |

conjectured tfiat (3(A) may be maximal for ilerbrand cchemac. We chow

that this is indeed the case for our ceneralized schema formalism.

Theoran h.U (Theorem of maximal Herbrand schemas)

The class (J of uninterpreted Herbrand schemas is equivalent to

the class 3(A) of generalized schemas corresponding to the conventional

schemas with arrays; and, in fact, a schema in ß can be effectively

translated into an equivalent schema in 3(A) .

For the proof of this theorem, see 'Jection ^.6.

'* • ^.3 Decision i roblans

We consider the following decision problems for the class of

«p-schemas.

1. The halting problem -- given a rp-schema S , to decide if it halts

for every interpretation for S .

The divergence problem -- given a (p-schema S , to decide if it

diverser for every interpretation for S .

5. The equivalence problem -- ^iven two comp-.tible (p-cchemas G and

Sy , to decide if they are equivalent. We also consider the

generalization problem (to decide if Si < S2) and the inclusion

problem (to decide if S, < S0).

r.en

212

 ^ yp'

!

't-!;-''.! Tlic llHli.Jnt; rcoblcm

Theorem U.3

The halting problem for (p-schemas is not solvable, but it is

partially solvable.

The unsolvability of the halting problem for (p-schemas can be

shown in many ways (e.g., by using the unsolvability of the halting

problan for several classes of conventional schemas), but perhaps the

simplest is the following. Consider the class of schemas, of the form

<F,<P,P) where q) and P are arbitrary, and F is:

START y - a; LOOP

Then a schema in the class halts if and only if (p is unsatisfiaDiv. —

which is a well known unsolvable problem.

The proof of the partial solvability of the halting problan is also

quite easy, but we defer it to Section k.6.

213

'▼■^ l■"l, ■,, "ii ■ ' — ■.,-...., , ,,., i. ,!.. M , ., , ,, , ,,,

■

U.5.5.2 The Divergence Problem

The complwnent of the diverc.cnce problem Is called the non-divorr.onc''

probljn, i.e., iiiven a schenu, to decide if it halte for any (rolovart)

interpretation.

Theorem h.6

Both the divergence problem and the non-divergence problem for

Schemas are not partially solvable.

The divergence problem is not partially solvable because the

divergence problan for one-variable schemas with equality is not partially

solvable (see Chapter 5). The non-divergence problem is not partially

solvable because the s^nema (F,<p>{al> where F is

START y - a; HALTfy)

halts for some interpretation if and only if <p is satisfiable —

a problem that is not partially solvable.

It is interesting to note that while the non-divergence

problem is partially solvable for all conventional schemas (e.g., those

of Section b.k), it is not partially solvable for (p-schemas. One should

ask what it is about cp-schemas that causes this difference. The next

theorem attempts to answer this question.

Lemma U.7. The non-divergence problem for uninterpreted schemas is

partially tolvable.

This follows directly from the fundamental theorem of maximal

schemas and the fact that the divergence problem for the class of

conventional array schemas is partially solvable.

211*

m ' / "- "^fF"

«•5*3*3 The Equivalence Problem

The corcplement of the equivalence problem is called the non-

equivalence problem, i.e., given two compatible «p-schemas, to decide

if the Schemas are not equivalent. Similariv, we have the non-generaii.

zation problem and the non-inclusion problem.

Lemma ^.8. For Schemas

(a) the equivalence probJan is not partially solvable,

(b) the non-equivalence problem is not partially solvable,

(c) the generalization probiere U not partially solvable,

(d) the non-generalization problem is not partially solvable,

(e) the inclusion problem is not partially solvable,

(f) the non-inclusicn problem is not partially solvable.

The parts (c), (d), (e) and (f) follow directly from (a) and (b) .

Parts (a) and (b) follow from the fact that the equivalence and the

non-equivalence problems for one-variable monadic Schemas are not

partially solvable (see Chapter 5).

^•6 Proofs

M.l Proof of the Translation Lemma

We will only show the following parts of the lemma. The others

follow analogously.

(M hSh iff SI<S2 •
(7) C^O, Iff (SKC? .

215

'I "III" I' ^Tr

«-

*,

If S1 < S2 then S* < S*

Let P denote £(S*) , which is the ^ame as Z(S*) , and

Sl = <Fi ^P) « S2 . <F2,(P2,P) .

Given;

Hj for S1 , 3I2 for S2 s.t. 39: (I^P) - (yp) ,

if ValCS^I^ is defined then Val(S2,I2) = e(Val(S1,I1)) (a)

and

VI2 for S2 , 3^ for ^ s.t. 3©: (l^p) m (i^/p) ,

if Val(S1,I1) is defined then Val(S2,I2) = ©(ValO^I^). (b)

To prove:

VI* for S* , 31* for S* s.t. 39: (i*/p) ~ (ij/p) ,

if Val(S*,I*) is defined then Val(S*,I*) = e(Val(S*,I*)) (a-)

and

VI2 for S2 , 2i1 for S1 s.t. 39: ([/fl ~ (I*/P) ,

if Val(S*,I*) is defined then Val(S*,I2) - 9(Val(S*, T*)). (b»)

We will rhow (a«), and (b«) follows in a similar fashion.

Given any ^ for G* , by condition ?.{h) of the translation lemma,

llj for G1 and 39^ (I*/P) - (^/p) 6.t. if val(S*,I*) is defined

then ValCS^I^ =ei(val(S*,I*)) . Then, by (a) above, 3l2 for S2

and 392: (i^P) ~ (yp) E.t. if Val(S:L,I1) is defined then

Val(S2,I2) = Q^VhliS^lJ) . Finally, by condition 2(a) of the trans-

lation lemma, 31* for S2 and 39,; (jj/p) - (i2/p) s.t. if

Val(S2,I2) is defined then Val(32,I2) = 9^(^1(3*,I*)) . Thus we

have a 9 (9 = 9-1 .92 -9^ , «: (i*/p) ~ (i^/p) , and if

* «
VaMS^IJ is defined then Val(S*,I*) = 9(Val(S*,I*))

216

T -r-n-

1
If S* < S* then S1 < S- .

This proof is analogous to the proof above (by interchanging the

starred schemas and interpretations with the unstarred ones).

If < &. then öi5<% (\<%

* «
]i

Given: V8!0^ 3S2'^2 S't* Sl E S2 * To Prove that

»
1 " -2 '

* *
T^eC^ S-^g S'"t

Notation. If S is «my conventional schema, and S is the

corresponding generalized schema we say S Also, if S- , S2

are any two generalized cchenas such that S.. = (F,<p,P, > emd

S2 = <F,<|>»P2) and V^ P2 then, too, we say S1 =» Sg .

Proof. Given any S.eC^ . Let S. =» S. . Then S.eC-, by

construction of C. • By hypothesis, 3SpeC^ s.t. fi, = Sp . Let

S-L = (Pi«f|*r) where P = Z(S) and S2 = <F2,q)2,P> . Now, by the

construction of Cp , 3S,Q3n and ^S-GCW s.t. S2 =» S, =» S2 , i.e.,

S, = (F^,^^.) and C(S2) = P. c P . We wish to show that this is

the required Sp , i.e., S. = Sp .

Part (i) S* < S* .

 6en

To prove that VI for S, , 3l2 for S2,P ,

39: (I*/P) - (I^/P) , and Val^.*,!*) = e(Val(S*,I*)) or both are

undefined.

For any I. for S- , by 2(b) of the lemma 31 for S ,

30^ (I*/P) - (I^P) , Val(S1,I1) = ei(Val(S*,I*)) or both are

undefined. Now, as S, ■ Sp we have, by definition, 3l for Sp ,

392: (I^P) - (Ig/P) , and Val(S2,I2) = e2(Val(S1,I1)) , or both are

217

i~*rw<^*^<m^mm

undefined, and as Bj • ^ i Viil{Syl2) m e2(Val(S1,l1)) or bath ure

undefined. From 2(a), ftj for S* , 3©^: (l*/P1) - (I2/P) ,

Val(S2,I2) = e3(Val(S2,I*)) . Finally, by 1(b), Vl* for P ,

31* for S2,P i.t. 39u: (l^/p) m (i*/p) . we choose I* to be I*

So 31* for S2,P , 39u: (l^/p) « (i^/p) , and as 2(8*) c P we

have r:l(S2,I5) = eu(Val(S2,I2)) . This gives us the required

9: (I*/P) m (I*/?) s.t. VaKS*,!*) = 9(Val(S*,I*)) , and, in fact,

9 is 9^ i 9J1 • 92 • 91 .

Part (ii) S* < S* .
 gen

This proof is analogous.

If C^ < C^ then ^ < C^ •

* # * *
Given VS^.C^ ZS^C^

*
o2 To prove that

VSj^ 3S2€C2 s.t. S1 ■ S2 .

Given any S^C^ . By the construction of C% > 3S,eC^ ,

331€C1 s.t. S* =» S5 =» S1 . Let ^ = (Fjjf^Fj) and S5 - (F^^^) ,

PC P1 . By hypothesis, 3S*nC»* s.t. S* - s! . Then using the

interpolation lemma for conventional cchemas (condition 5 of the

translation lemma) 35*^ s.t. 2(3*) = £(8^ - P , and i3* = S* .

Let S2 =» Su , then 8^ = <F2,(p2,F> , S^c"^ , and by the construction

of C^ , <F2,<p2,P1)€C2 . Let S2 denote (F^q^P^ . Tnis is the

2 '
desired schena; we have to prove that 8=8

Part (1) si < s2 '
 gen

To prove that V^ for ^ , 3l2 for S2 s.t. 39: (l^p)

and Val(82,I2) = 9(Val(81,I1)) or both are undefined.

218

- cyp)

■ —

■^T" —— •^-r-

Given any I for S, . Then I is also for S and

ValCS^I^ = V&HSylJ . By 2(a) SI* for S* , 39^ (l*/P) - (l^P)

s.t. ValCSyl^ = ©1(Val(S*,I1)) . As S1 ^ S* , we find that

31* for S* , 3ö2: (l*/p) - (l*/p) s.t. Val(S*,I*) = ©2(Val(S*,I*)) .

By 2(b), 31^ for Su , 39^: (l*/P) « (Ij/P) s.t. Val(S,,,Iu) =

9,(Val(S2,l2)) or both are undefined. By 1(a), as I, is for P. and

(Iu/P) - (Xj/1) , 3I2 for S2,P1 , 39^: {l^P^ - Hj/*]) • Hence

K »9 <'92
1 0 9"1: (I^/P) - (Ig/P) and by the well-foundedness of S^ ,

Val(Su,I2) = 9^ • ^ o ö'1 . 951(Val(Slt,Iu)) - 9j;1(Val(S1,I1)) or all

diverge. But I? is an interpretation for Sp , and

Val(S2,I2) = Val(S1+,I2) = 9^1(Val(S1,I1)) or all diverge. This completes

the proof that Si 5 S2 *
gen

Part (ii) S2 < S1 .
 gen

This is proved likewise.

U.6.2 Proof of Theorem U.l

Given Herbrand Schemas S, = (F^CP^P) and S2 = (F2,92>P> > let

V, be the class of interpretations H for S1 such that (H/p) is a

Herbrand interpretation, and similarly for V2 , then

(a) S1 halts if and only if it halts on ^ ,

(b) S. diverges if and only if it diverges on If- ,

219

—

T ^^*m~v i i ^--irmmwmi^ ■ w*^mwm in !■ <iwn««iPim«piinptmmqpMi

r>

o

o

o

(c) S ■ S if and only if S1 ■ S2 on ^ > K2 >

(d) B- < S2 if and only if S1 < S2 on ^ , K2 >

(e) S < S2 if and only if Bj < S2 on »^, V2 >
gen gen

(f) S is free if and only if it is free on jy .

Proof; For cases (a), (b), (f) the "only if" part is trivial; and so

is the "if" part because if any path is taken by the compatation of S^

on any interpretation I , then the same path is taken by the computation

on some interpretation HrV-| •

We show ehe theorem for case (e), and the other cases can be

proved analogously.

The "only if" part is easy, becaube given s-i 5 S2 » if Hie^i
gen

is an interpretation for E1 , then there is an interpretation I2 for

S such that (IU/P) and {IJF) are isomorphic, and the outputs

correspond, but there is an interpretation Hpe?/» isomorphic to I ,

and hence we have that (H,/?) and (H^P) are isomorphic, and their

outputs correspond.

The "if" part can be proved as follows Given that S < S0
gen

on fLpfL > i • e.,

VH-L for B, , H^^ ,

aH2 for S2 , H2GV2 , and Val(S2,H2) = Val^,!^) , or both

are undefined (note: the isomorphism is identity).

to show that S, J S2 , i.e.,
gen

220

_ ■MHHK.

T^r m*^~~^^^-^mm i i ^^.

fl, for S1

ai2 for S2 , and

3 an isomorphism 9t(Z./?) « {ij^ > such that

Val(S2,I2) = »(VftlCt.»!.)) , or both diverge.

Now, given any I, for S, , by the definition of Herbrand schemas,

there exists an H. for S, such that (1,/P) - (H^P) , and

Val(S ,I1) corresponds to (the terra) Val(S1,H1) , or both diverge.

From the hypothesis, there is an H- for S , H2eV , such that

ValCS^H,) = Val(S2>H2) . And again, as S2 is a Herbrand schema, for

any I' for which 11 - (H2/P) , there is an I2 for S such that

(I'/P) ■ (I0/P) and Val(S ,1) corresponds to Val(S ,Hp) . We will '2**2
choose 11 simply to be (1-,/P) • We now have the desired 6 :

it is simply the identity function, and either both Val(S1,I1) and

Val(Sp,I9) are undefined, or they are equal because both correspond to

the same term.

1|.6.5 Proof of Lemma U.2

Every well-founded schema is a non-oracle schema.

Given a well-founded schema S = <F,cp,P) and a path in F from the

start statement to a test or a halt statement, we can represent the

conjunction of all tests (every test a(y) is changed to a'() by

substituting the value of y) executed along this path (or their

negations if the false exit is taken by the path) by a formula <p1 .

Then every interpretation that follows this path in the schema satisfies

f A f, , and every Interpretation that satisfies cp A q^ follows this path.

221

-■ - - ■ - ■ —-

^^^mm^mmnmm^mmmmm-wm^HKmimm'imm^mimm mnmmmmmmmmmmmm^^mm NHIJ I I, liuviiMmnwqwRVfpMiii

We use the result (see, for example, Shoenfield [1967], Section 5.5,

Lenuna k) that given sentences T| , ♦' , and a set P of functions and

predicates, if whenever 1^ |- 1\ , I2 |- T] , and (l^P) isoniorphic

to (Xg/P) we have ^ |- f« if and only if Ig ^ f , then there

exists a quantifier free sentence i over P such that T] - (il/1 « \|/)

is valid.

Suppose our given path in F leads to a test statement, then the

test can be represented tic a simple atomic test a only on constant

terms, and we have, by the well-foundedness of S , that whenever

I-L |- <P A (^ , I2 |- 9 A (p-L , (I^P) isomorphic to (l2/P) we have

I-L r 0i if anci only it Ip j- a . We hence have a sentence ty such

that <p A ^ - (a « \|f) , and by the deduction theorem cp A <p, |- (o: « i) ,

i.e., for all interpretations that follow this path, the outcome of the

test equals the value of the quantifier free formula f over P (which

is the requirement for a non-oracle schema).

If, on the other hand,, the given path in F leads to a halt statement,

then the output is some (constant) term T() . If we now introduce a

new zero-ary function a into interpretations for the schema, we have

that whenever 1^ ^ f A f^ , I2 |- cp A ^ , (l,/PUC»0)) isomorphic

to (Ir/Pu{a0}) , we have ^ |- a0 = T() if and only if I2 j- a0 = T()

by the well-foundedness of S , and hence there is a formula ^(a)

(we call it tCO instead of ^ for convenience) such that

q) A (p1 - (a0 = T() « ^(a)) . But a doesn't appear in (p A w1 ,

and hence f A f, - Vx(x = T() « *(x)) , and again by the deduction

theorem f A f, [• Vx(x = T() « t(x)) , which is the desired result.

This concludes the proof of Lemma k.2.

222
■ •\

■—■■■■MBIII i ni-i

n^ ' —-»'■- mmmmmmmmmv^m^mmvm -r^—

k.S.k Proof of Theorem U.3

The class (J, of uiiinterpreted schemas is equivalent to

the class C(A,=) of (p-schemas corresponding to the conventional

echemas with arrays and equality tests.

Given a schema S = <F,(l),P) in £ we will construct a conventional

schana S with arrays (and counters) and equality tests having the

symbols of P as its base functions and predicates, such that for any

interpretation I for S , Val(S,l) = Val(S*,l/P) . We can then

*
translate S into a generalized schema S in the standard way (see

Section k.h). It should be noted that since it is unsolvable if any

given schema S is an element of (J , our translation process will go

through even for schemas not in (3 . However, it will not necessarily

be correct. If the given schema S is interpreted, then S. will not

be equivalent to S , but will be a strict generalization. If S is

not well founded, then, of course, equivalence is not well defined.

We will make use of the fact that a conventional schema with counters

can simulate the behavior of any schema except when it comes to making

tests, or halting, in which case, it has to make use of its base

functions and iredicates.

S proceeds as follows. It simulates the computation of S ,

keeping track of the value of the single variable of S (as a constant

term). It also keeps track of any tests that S has made along the

path. This is kept as a formula a = a. A QL A ... A a where each a
-L c n i

is an atomic formula or a negated atomic formula. When S comes to a

test ß , S enumerates all valid formulas until it comes to one of the

form

225

— - ■

"""
——— ^rr

x

cp A a - U « ß)

where ^ is a quantifier free formula that uses only the base functions

and predicates from P (note: we are usinp, here the completeness theorem

for first order predicate calculus with equality, and the fact that S

is non-oracle). S then makes the appropriate tests to determine if *

is true or false, and updates a to a A ... A a Aß if ^ is true,

or to QL A ... A C* A-iß if <|(is false. When S comes to a halt 1 n

statement HALT(T(y)) , S enumerates all \alid formulas until it comes

to one of ths form

cp A a - Vx((x = T) « t(x))

where T represents T(y) in which the value of y (as a term) is

substituted for y , and \|(x) is quantifier free, and uses only the

symbols of P . When such a formula is found, S enumerates all

elements reachable by applying functions of P , and halts on the first

element x "jr which t(x) is true.

A final note seems to be in order. To be very formal, the class

(T(A,=) is to be interpreted not Just as the class (3 of L-chemas

corresponding to the conventional Schemas with arrays and equality,

but the class obtained by renaming the function and predicate symbols

of Schemas (in £,) in all possible ways (distinct symbols must, of

course, remain distinct). The reason is that in the translating

process we used certain function and predicate symbols which couldn't

appear in the set P of any schema (F,(p, P) in g .

22k

■

w ^.-T-r-

k.6.3 Proof of Theorem U.U

Every schema in the class of uninterpreted Herbrand Schemas can

be effectively translated into an equivalait «p-schana corresponding

to a conventional schema with arrays.

Given an uninterpreted Herbrand schema S ■ (F^,?) we construct

coi.ventional schema S* with arrays (and counters), as in the previous

section, such that the generalized schema corresponding to S is

equivalent to S .

S* simulates the computation of S , keeping track of the value of

the single variable of S (as a constant terra). It also keeps track

of the tests S has made along the path of the computation, as a

formula a . When S comes to a test ß , S* enumerates all valid

formulas until it comes to one of the form

<p A a - U ~ ß)

where i is quantifier-free and is over P . (Actually we can show

that there always exists an equality-free Mr of this kind, but that is

unnecessary.) S* now makes the appropriate tests to determine | for

Herbrand interpretations. For this reason it doesn't need to make any

tests of equality. The same exit would be taken for ail interpretations

for S by the Herbrand property, and hence S can update a and

continue simulation of S .

When S comes to a halt statement HALT(T(y)) , S enumerates

all valid formulas until it finds one of the form

«p A a - VX((X = T) - \|f(x))

where T represents T(y) with the value of y substituted for the

variable y ; and f(s) is quantifier-free, and over P . S enumerates

225

__

T"

all elements reachable by applying functions of P , and halte on the

first element x for which t(x) is true acpuming a Herbrand inter-

pretation. When S is converted to a generalized schema S , the

outputs of S and Bj are the same for all interpretations by the

Herbrand property of S .

k*6,6 Proof of Theorem U.b

To show that the halting problem for «p-schemas is partially

solvable.

The partial solvability of the halting problem can be shown by

reducing this problem to the validity problem of fomulas of first

order predicate calculus, with equality, which 1c partially solvable.

We use the approach used by Manna (I968, 1969]. Given a flowchart F ,

we associate with F formula ^(j) of predicate calculus such that F

halts for all interpretations if andonly if ^(F) is valid, ^(F) is

constructed as follows. Lot all statanentr of F be labeled I L
1 n

Associate, with each statemont L^ , a predicate q . Let ^« bo the

conjunction of the axioms obtained as shown below:

22r>

^T- ■ -— ■
1

^ ^1

Statement Axiom

START y - T (); f;oto L. ^(TO)

L^ HALT(T(y)) Vx qi(x) - q

|u| LOOP (no axiom)

Lj: y ^ r(y); goto L

Li: 1£ a(y) then Goto L.

elsf goto L

Vx q^x) -qJ(T(x))

Yx q1(x) A a(x) - q.(x)

h q^x) A -, Q!(x) -qk(x)

Then ^(F) is t' - <1 (q is introduced in the axiom for a halt

statement). We then find the schema <F,<p,P> halts if and only

if q> - i(F) is valid.

227

'MmT—mii

References

Ashcroft, Manna and Pnueli [1970]. |. Ashcroft, Z. Manna and A. Pnueii, I

"Decidable properties of monadic functional Schemas," in Theory of

Machines and Computations. (Kohavl and Paz, Eds.), Academic Press,

pp. 5-18.

Chandra [1972]. A. K. Chandra, "Efficient compilation of linear recursive

programs," Report no. 08-882« Computer Science Dept., Stanford

University, April 1972,

Chandra and Manna (1970). A. K. Chandra and Z. Manna, »PNfMM Schemas

with equality," in Proceedings of the Fourth Annual ACM Symposium

on the Theory of Computing, Denver, Colorido, May 1-3, 1972, pp. 52-r.l*.

Cadiou [1072]. j. M. Cadiou, "Recursive definitions and their computations,"

Pn.D. Thesis, Report no. CS-2^, Computer Science Dept.. Stanford

University, March 1972.

Constable and Gries (1972). R. L. Constable and D. Grier, "On classes of

program schemata," in ciAM journal of Computing Vol. 1, Ho. 1,

Marcii 1972, pp. f/.-llH.

Irland and Luckham [1971]. S. J. Garland and D. C. Luckham, "ftopw

schemes, recursion schemes, and formal languages," UCLA report

no. i-ZJG^^, June I971.

Hewlti, [1970]. C. Hewitt, "More comparative schematoiogy," Artificial

Inte.^igence Memo, no. 207, Project MAC, Mass. Institut-; of Technology,

Am^ust 1970.

Hopcroft and Ulljnan [I969]. J. E. Hopcroft and J. D. UlJjnan, Formal

Lanrua^es and Their rtelatl.-n to Automata. Addison-Wesley, 19^.

;■.'■■'

mmi IK^WMIMI ii ■■■in iiiiwiiiiiiiiuniMli ■.nil ■■■ ■ myt

lanov [1958). Iu lanov, "The logical Schemas of algorithms," Problems

and Cybernetics. Vol. 1, pp. 75-127, (Russian edition),

lanov (i960]. Iu lanov, "The logical schemes of algorithms," English

translation in Problems of Cybernetics. Vol. 1, Pergaraon Press,

New York, i960, pp. 82-lUo.

Karp and Miller [I969]. R. M. Karp and R. E. Miller, "Parallel program

schonata," Journal of Computer and System Sciences, Vol. 3, No. 2,

May 1969, pp. 1U7-I95.

Luckham, Park and Paterson [1970]. D. C. Luckham, D. M. R. Park and

M. S. Paterson, "On formalized computer Programs," Journal of

Computer and Systan Sciences, Vol. U, No. 3, (June 1970), pp. 220-2U9.

Manna (I968]. Z. Manna, "Termination of algorithms," Ph.D. Thesis,

Computer Science Dept., Carnegie-Mellon University, Pittsburgh, Pa.,

April I968.

Manna (I969]. Z. Manna, "Properties of programs and the first-order

predicate calculus," Journal of the ACM, Vol. 16, No. 2, April I969,

pp. 2UU-255.

McCarthy (I962]. J. McCarthy, "Towards a mathematical science of

computation," PROC. IFIP, 1962, pp. 21-5U.

McCarthy [I965]. J. McCarthy, "A basis for a raathanatical theory of

computation," from Computer Programning and Formal Systems,

North-Holland, Amsterdam, I965, pp. 55-70.

Miller [1972]. R. E. Miller, "A boundary between decidability and

undecidability for perallel program schemata," in Proceedings of

an ACM Conference on Proving Assertions about Programs, Las Cruces,

New Mexico, Jan. 6-7, 1972, pp. 116-120.

229

^ ■ ' 1 ■'"

Strong [1971a]. H. R. Strong, "Translating recujsion equations into

flowcharts/' Journal of Computer and Systen Sciences, Vol. 5

(June 1971), EP- 254-285.

Strong f 1971b]. H. R. Strong, "High level languages of raaximun power,"

Proc. IEEE Conference on Switching and Autanata Theory, 1971,

pp. 1-k.

0

251

