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Chapter 1.  Introduction 

Prograjn Schemas and Their Applications 

A program schema is a conputer program in which the basic functions 

and predicates are left unspecified. . Essentially, a program schema 

depicts the control structure of the program, and leaves most of the 

details to be specified in an interpretation for the functions and 

predicates of the schema. Thus, a schema is not encumbered with the 

details of the actual domain of the values it computes on. This basic 

approach can be used to develop a machine-independent theory of 

computation. Of course, it is not intended that such a theory will 

replace the other approaches that have proved useful, such as recursive 

function theory, complexity theory, automata theory, the fixpoint theory 

of computation and Scott's lattice-theory approach to computation. 

Instead, it is expected to supplement these by providing a model for 

computation in which certain useful facts can be expressed, clarified, 

and understood. 

Some of the applications of schemata theory are the following. 

1.  Comparing the power of programming features. By "power" we mean 

the ability to program in a "natural" way. Interpreted programs are 

not very useful for comparing power because interpreted programming 

languages are caught very easily in the mire of Turing machine computa- 

bility. For example, iterative programs with just three counters can 

compute any "computable" function. Yet, all programmers are aware that 

recursion is more "powerful" than iteration alone, and that a pushdown 

'""-—j-"- ■■ -"^-^   ■-■■ --"■- ■ -     . - . iiinriira^i-fr.itHM.taiiM^aMtnijaJlTtriiMMilfiiiiir1 ii.f..fcl[iiiiiii«iiiiiii i^M^rhiiiMaMM 
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stack can be used to eliminate recursion.    These notions become trans- 

parent at the level of Schemas.    It is not expected,  of course, that 

Schemas will give a complete characterization of the intuitive notion 

of power since even informally there does not seem to be complete 

agreement on this notion.    But it is hoped that Schemas will give an 

approximation one step better than interpreted programs,  and possibly 

lead the way for further studies. 

2.      Another application of schemata theory is in the study of program 

optimization.    This is to be expected because optijnization often involves 

changing the control structure of a program without altering the outcome 

of the computation.    Clceely related to the question of program optimiza- 

tion is the problem of recursion removal.    To give an example, consider 

the recursive program 

F(y) <= if P(y)  then a else F(f(y)) 

where   p   represents some predicate test,    f   represents some function, 

and   a   is some constant.    It is clear that the recursive call   F(f(y)) 

can be replaced by iteration:    change the value of the variable   y   to 

f(y)    and repeat the    "if p(y)  then ..."    statement.    In fact, this kind 

of an optimization has been introduced in many compilers.    Now, consider 
■ 

the following program 

p{y) <= ü p(y) then a eM£ g(y*F(f(y)))   • 

Can this recursion be replaced by iteration? The answer is yes, though 

in general the iterative program takes more time than the recursive 

program. Sometimes, however, we can make use of particular properties 

of the functions f and g to obtain more efficient code. For example, 

G 

~ . —  ■■■ — - - ■ ■ 
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if the function g is associative, this fact can be used to transform 

the recursive program into one that is essential]^ iterative (analogous 

to the earlier example): 

P(y) <= if p(y) then a else G(y,f(y)) 

G(x,y) <= if p(y) then g(x,a) else G(g(x,y), f(y)) 

This example points out a limitation of the assumption that all base 

functions and predicates be completely uninterpreted, because if such ar 

assumption is strictly adhered to, then the translation described above 

is not valid because it assumes the associativity of the function g . 

What has happened is that by an insistance on modeling only the control 

structure of our program (by saying that all base functions and predicates 

must be uninterpreted) we have obtained a model that fails to embody the 

same essentip.l relations on the domai'i of the program we were trying to 

model. It seems, therefore, that in order to have a useful theory of 

computation we must back off from a rigid stance of completely uninterpreted 

base functions and predicates, and should allow semi-interpreted Schemas 

in the theory. 

5-  A third application of schemata theory is proving properties about 

deterministic processes (by "deterministic" we mean deterministic as 

against intuitive, and not as against stochastic, or nondeterministic 

as in automata theory) . For our purposes computer programs are the most 

important of the deterministic processes (readers who have spent long 

hours trying to debug programs might object to the use of the word 

"deterministic" as applied to computer programs -- nevertheless, we 

.x^»  ■   m** m 
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We certainly cannot prove the equivalence of these two programs by- 

replacing the various functions (multiplication, addition, subtraction) 

by uninterpreted functions.. Instead, we need the property that 

multiplication is related to addition in a certain way, in fact, multi- 

plication is defined by the function F in (3) below. Using this 

additional piece of information we can prove the equivalence of (1) 

and (2) as follows. 

: 

o 

persist). Another example of a deterministic process is a finite auto- 

maton. A side effect of proving properties about Schemas, and one that 

has received scant attention to date, is that once certain properties 

are proved about scheraas they apply to all the processes that are modeled 

by the schema (^ee Chandra [1972]). In this way several results can be 

proven simultaneously simply by proving the corresponding result for an 

appropriate schema; and conceivably, Schemas could also be used to inter- 

relate various results in different fields of the theory of computation. 

To give an example, the equivalence of two programs can be proven, 

in many cases, by proving the equivalence of the corresponding Schemas. 

Frequently, however, we need some additional information about the inter- 

relations between the base functions. Consider the following two programs 

on natural numbers, where x and y are the inputs, and z is the output. 

(1) z - x*y 

(2) .x1 «- 0; y1 - y; 

while y1 / 0 do begin x    ♦- x+x  ; y   •- y -1 end; 

O 

■v 
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(5)  F(x,y) <= if y = 0 then 0 else x+F(x,y-l) 

(h)    F(x,y) <- if p(y) then a else g(x,F(x,f(y))) 

(5) F(x,y) <= G(x,y,a,y) 

Gfoy^y^ <= if viv^  then \ else Gix-Mgi*,*-]),*^)) 

(6) x1 - a; y1 - y; 

while -n pCyJ do begin x^^ - gCxjX^ ; v1  - f(y1) end 

z - X-. 

We replace (5) by its corresponding schema (U), translate it to an 

equivalent schema (5) and finally change the form to make it purely 

iterative (6). Now, in this schema, if we substitute the meanings 

of the base functions and predicates we have precisely the desired 

program (2) . One might well ask why we used schemas in this example. 

The reason is that this clearly separates the semantic part of the 

procedure from the syntactic part since the steps {h)  to (5), and (5) 

to (6) were purely a matter of symbol manipulation. But there is a very 

desirable side effect of this method. Having proved the equivalence of 

{h)  and (6) once,- --.c can also use it to prove the equivalence of the 
, y. 

programs (?) and (8) where the operation of exponentiation (x ) is 

defined by the function F in (9). 

(7) z - xy 

(8) x^^ - 1; y1 - y; 

while y-L / 0 do begin x1 - x*x1; y1 - y^l end; 

z •- x 

(9) F(x,y) <= if y = 0 then 1 else x*F(x,y-l) 

— —-- -      --  ^--^—J-          ■--  ■■  mmil ■   miinrmii—MI--   --     ,. ^^.^^^^u^w...-..,-,..,.■■......^■■■■■..■,^M«^»aMf»uai^a.JaM 
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We should state that the preceding is merely an intuitive 

elaboration rather than any attempt at a formal presentation of what 

Schemas can be useful for. 
■ 

Historical Remarks 

The study of program Schemas can be traced back to the work of 

lanov [I958, i960] where he treated the entire data space of a program 

as being representable by a single value which could be changed by 

applying functions, or tested by applying predicates to it. These base 

functions and predicates were assumed to be total, but otherwise 

uninterpreted. This model of computation is quite closely related to 

finite state machines, and, as may be expected, the problems of termina- 

tion and equivalence of lanov Schemas are decidable. In this regard, 

the work of Rutledge [I96U] is also to be noted. 

But this simple model of computation is not adequate for describing 

most computations. To obtain a better description we would require that 

the functions and predicates of the schema be related in some way. For 

example, the data space in real computations is usually divided inta 

individual components, and functions and predicates are applied to these 

components. A convenient way of handling the subdivision of memory 

(Paterson [I967, I968], Luckham, Park and Paterson [1970]) is to consider 

Schemas containing several variables (also called registers), one for 

each component of the data space. The base functions and predicates 

are left uninterpreted. We argue in Section h.l,  however, that these 

basic concepts, viz., the explicit subdivision of data space and the use 

of uninterpreted base functions and predicates, are not as general as could 

be desired, and we attempt to remedy this situation. 

6 
i4» 
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Subsequsnt work in schemata theory has been in studying the effects 

of additional features, for example, the use of recursion, counters, 

pushdown stacks, arrays, parallel computations, partial functions in the 

interpretations, etc. Without attempting a complete list of contributions, 

we note the important works of Karp and Miller [I969], Paterson and 

Hewitt [1971], Strong [1971], Garland and Luckham [I97I], and Constable 

and Gries [1972]. It is interesting to note that the earlier works 

tend to focus on the decision problems of Schemas, namely, the halting, 

divergence and equivalence problems for Schemas, and subsequent works 

mainly deal with the problems of translation from one class of Schemas 

to another class. 

Outline of the Thesis 

In this thesis we restrict our attention to scheraas with no explicit 

inputs: zero-ary functions (individual constants) serve the role of 

inputs. The interpretations for a schema describe total functions and 

predicates over arbitrary domains -- we do not allow partial functions 

or predicates in an interpretation. 

The chapters have been organized so as to separate the main results 

and the intuitive discussion from the detailed proofs and examples which 

relatively few readers would like to plow through anyway. Most of the 

material requires no prior knowledge of schemas, but many of the proofs 

assume a familiarity with the basic methods used by other researchers. 

Most of the notation and introductory material on schemas is contained 

in Section 2.1. Section 2.2 discusses a relation between schemas and formal 

languages via value languages of schemas. This leads up to a discussion 

    ■ mi -  -   
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on the power of various clasr.es of ucheraas in Section 2,3.    Chapter :) 

deals with the decision problems of Schemas.    Tie first part (Section 5.1) 

considers uninterpreted flowchart Schemas with equality tests.    The 

second part (Section 5.2)  considers semi-interpreted Schemas,  and,   in 

particular,  considers the effect of commutativity and invertlbility 

relations on the decision problems.    The final chapter. Chapter k, 

introduces a class of generalized schemas.    The formalism of a first 

order theory is used to unify the data structures used by schemas with 

the base values on which the schemas compute,  and it is .shown that much 

of conventional schemata theory can be represented within this framework. 
. 

. 
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Chapter 2.  Translation Problems 

2.1 Introduction 

In this section we introduce the basic definitions and terminology 

to be used in later sections. Only the simplest of proofs are given in 

the main exposition, the others are postponed to Section 2.1.9. 

In the development of many theories (e.g. number theory) it hac 

turned out that the most fundamental questions (e.g. what is a natural 

number) are answered quite late in the development. Part of the reason 

for this is that the answers to these questions are unnecessary for an 

intuitive understanding of much of the theory, and the formalism necessary 

to answer them can detract from the simplicity of the rest of the theory. 

In accordance with this view, we will be quite informal on many points, 

namely, on the following questions: 

(a) what is a schema, 

(b) what is an interpretation corresponding to a schema, 

(c) what is an uninterpreted schema, 

(d) what does the "value of a variable" mean. 

The answers to these questions are obvious for the Schemas we present in 

this chapter and in the next one, and we dispense with formalities until 

the last chapter which defines a formal notion of Schemas. 

2.1.1 Flowchart Schemas 

A flowchart schema S has a finite number of variables represented 

by the symbols y^y^ .. .,yn, z^z^ ...,z . It uses uninterpreted 

functions f^fg, ...,fr and predicates p^Pg, ...,p  called the base 

ÜMM 
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functions and base predicates. We should caution the reader at this point 

that we will not restrict ourselves to the use of just these symbols to 

denote variables, functions and predicates when convenience and clarity 

demand otherwise. Some of the base functions may be zero-ary functions, 

also called individual constants, and usually denoted by the symbols 

a1,a2;... . A term T can be built up using the variables y,,...,y 

of the schema and the zero-ary functions, and applying the other functions 

to them. We use the notation T(y. ,y ,...) to indicate that no 
1    ^ 

variables other than    y    ,y    ,...    appear in the term   T  ,   for example, 
1 *2 

T(y1>yj) indicates that no variable other than y  and y  appears 

in T , but it is not necessary that both have to appear. In accordance 

with this nomenclature, T()  denotes a constant term, r.hat is, a tarm 

that has no variables in it. A monadic schema is a schema in which only 

zero-ary and unary functions and predicates are used. 

An interpretation I over a domain D contains the functions and 

predicates f-^ • •-jf^p.^ .. .,p5  which correspond to the function and 

predicate üymbols f-^ ■ •., f^p^ .. .,p,. of a schema. If f.  is a k-ary 

function symbol, then f* : Dk - D ; likewise, if p.  is a k-ary 

predicate symbol, then.- pj : Dk - B where B is the boolean domain 

(true,false] . We will usually not distinguish between the symbols f. 

and fj , and we will write the latter simply as f. , with the 

interpretation I being understood. 

A schema is said to be uninterpreted if all interpretations which specify 

(at least) all the base functions and predicates of the schema, are allowed. 

A schema is said to be interpreted (partially interpreted) if not all 

10 
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interpretations are allowed. If I is an interpretation that is allowed 

for S , we say I is an interpretation for S , and S adjnits I . 

It is clear that a schema uses two kinds of values -- base values 

which are elements of the domain D of the interpretation, and 

boolean values, which are elements of the domain B . Now the mystery 

of two kinds of variables y. and z. can be clarified. The variables 

of the form y. take on base values, and variables z^    take boolean 

values. The y.'s are called data variables, or just variables for 

short: the z.'s are called boolean variables. 
'     i  

An atomic formula is a boolean value, a boolean variable, or 

p(T ,...,T.) where p is a k-ary predicate. We use the symbol a 

to denote an atomic formula or a negated atomic formula -- sometimes 

called a primitive formula. In accordance with the nomenclature for 

terms, a()  indicates a constant atomic formula (or negated atomic 

formula). 

The statements of a flowchart schema are of the following types 

(there is a singlo start statement in the schema): 

Start statement; 

START 

^•••'VZl''-"Zm> - 

(T1(),...,Tn(),a1(),...,am()) 

T 
Halt statement; 

HALT(T) 

11 
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Loop statement; 
U 

Assignment statement: 

Test  statement; 

1 

T 

True/ \   False 

The assignment statement simultaneously reassigns the  /alues of all 

variables.    Often,  only a few of these are to be changed,  and for 

convenience, we allow the abbreviations 

i. 
y.-t 

T 

1 
z. »- a 
i 

T 
which indicate that all variables not explicitly mentioned are unchanged. 

To represent flowchart schemas we will usually use the more compact 

ALGOL-like notation,  allowing the use of labels    (L-j,!^, ...)    and goto 

12 
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statements, in addition, we also allow the use of block structure, 

if-then-else statements, while statements, and nonrecursive procedures 

with the tacit understanding that these features can he eliminated, 

using goto statements instead to get a "legal" flowchart schema. 

lanov schemas are about the simplest kinds of flowchart schemas. 

A lanov schema has a single variable y , and its statements are of the 

following types: 

(1) STAJiT y - a , 

(2) HALT(y) , 

LOOP , (5) 

iS) 

{9. 

y - ^(y) >  and 

if p1(y) then goto L, else goto L« . 

A flowchart schema with equality is a flowchart schema with the 

addition that atomic formulas of the form 

T1 = T2 

are also allowed. 

Currently there seems to be a little misunderstanding as to the 

role of schemas with equality. In our treatment a flowchart schema with 

equality is not a partially interpreted schema because absolutely no 

restriction is placed on the interpretations allowed. This point is 

considered in greater detail in Section 2.1.9. 

The class of flowchart c-chemas will be denoted by C{)  ,  and 

flowchart schemas with equality by ^(=) . The class of flowchart schemas 

that use no more than n data variables is C(n var) , and similarly 

G^n var, =)  for equality schemas. Note: schemas in (3(n var) or in 

13 
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C.(n var, =)  may have an arbitrary number of boolean variables. 

2-1.2 Augmented Schemas 

We will also consider flowchart schemas augmented with (structural) 

features designed to make the schemas more powerful. 

A counter is a variable (usually denoted by the letter c ) whose 

values are non-negative integers. All counters used by a schema are 

initialized to zero by the starb statement. The operations allowed 

on a counter are 

(1) c - c+1 , 

(2) c - c-1 , and 

(5) ^    if c = o then goto L. else goto L0 , 

where L^    are arbitrary labels. The subtraction (diminish) operator 

in c - c-1 is on natural numbers, that is, 0-1=0. The class of 

schemas with counters is designated C-(c) , schemas with at most one 

counter ^Ic) , with a counter and equality C(lc,=) , a^d so on in the 

obvious way. 

A pushdown stack (usually denoted by the symbol s ) is a last-in 

first-out store which can hold values of both types (data, and boolean). 

A schema with a stack can "push" a data value and a boolean value into 

the stack, it can "pop" them from the "top", and it can test to see if 

the stack is empty. The statements allowed are: 

(1)     s -push(s,y,z) , and 

if s - A then goto L else begin <y,2) - top(s); s - Pop(s) end , 

Ih 

(2) 

: i 
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where    y    denotes an arbitrary data variable,      z    a boolean variable, 

A    the empty stack,  and    L    a label.    The start statement in a schema 

initializes all stacks to be empty.    The class of Schemas with pushdown 

stacks is   (^(pds)  , with at most one stack   (3(lpds)  ,  etc. 

A queue (usually denoted by    q )   is a first-in    first-out store. 

A schema with a queue can "add" values at one end,  and "remove" them 

from the other end    (first(q))   ,  and it can test to see if the queue 

is empty.    The statements for a queue are: 

(1) q - add(q,y,z)     ,  and 

(2) if q = A then goto L else begin  <y, z) - first(q); q - remove(q)   end 

'■     i- 

The start statement initializes all queues in a schema to be empty. 

A list (usually denoted by £ ) is a structure as in LISP. The 

functions car , cdr , cc.is , and the predicate atom play the same 

role as in LISP (atom(x) is true if x is a data value, or A (nil) , 

and false otherwise). The statements allowed are the following: 

We use " Ival " to represent A , a data variable, or a list 

variable. 

r. 

(i) 

(2) 

(5) 

i - Ival 

i - cons(lval ,lval ) 

if I s A then goto L, 

:: 
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(^a) if atom(l) then goto L 

else if n atom(car(l))  v car(l)  = A then goto L0 

else j^ - car(l) 

(hh) if atom(/) then goto Ln     j_ 

else if -i atom(cdr(l))  v oäx(t)  = A then goto Lp 

else y.  - cdr(£) 

(5a) 

(5b) 

if atom(f.) then goto L elae I. - car(i.) 
i           j x 

if atom(f.) then goto L else i.  - cdrff.) — i    a           o v i7 

where    '^^^i.    represent list variables,  and    L^Lp    represent labels. 

The start statement of a schema initializes all list variables to    A 

(nil)   .    The class of Schemas with lists is   C'(list)   . 

An array    (A)    is a one-dimensional,   serai-infinite sequence of 

"locations" that can take on data and boolean values, and can be accessed 

by subscripting the array with a counter.    The statements allowed are: 

(1) 

and 

(2) 

<y*z) - A[C]   , 

A[c]  - <y,z)    , 

where A is an array, c is a counter,  y is any data variable, 

and z is any boolean variable. In addition, the start statement is 

changed to initialize all arrays. It has the form 

START <y1,...,yn,z1,...,zm) - <T1(),...,Tn(),a1(),...,ü!ni()> 

(A^...,^) - <T^(),a|(),...,T^(),a^()) 

where A^, ...,A.  are all the arrays used in the schema. The start 

Ü 

• • 

:. 

o 

0 

o 

o 
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statement initializes all data locations of an array A. to T'.() , 
J <J 

and all boolean locations to   0;'. ()   .    The class of scheraas with arrays 
J 

is denoted (3(A) , and arrays with equality by (3(A, =) , etc. Kote: 

the use of an array implies the use of counters, i.e., schemes in 

(j(A) do have an arbitrary '^mber of counters. 

2.1.3 Recursive Scheraas 

A recursive schema is a set of mutually recursive function 

definitions (of defined functions FQ,?,, ... ). The functions are 

passed a vector of data and boolean arguments (the simple case -- 

"'call by value" — is assumed even though it does not always lead to 

the least fixed point: see Morris [I968], and also Cadiou [1972]), 

and they are allowed to return a vector of values. 

Given a vector (y,z) of data values y = y-,,y2> • •-.»y >  and. 

boolean values z = z.,,z?,.. .,z , we define the notation for picking 

off the i-th data or boolean values as follows: 

Y1(y,z) = yi  and Z±{y,z)  = zi 

provided i does not exceed the maximum index (in either case). If 

a vector has n data values and m boolean values, we say its type 

is (n,m) . A vector of type (1,0) is a data element, and a vector 

of type (0,1) is a boolean element. 

1? 
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We can now define a recursive schema.    It is a set of definitions 

of the form: 

F0<=T0(F); 

F-j^z) <= if 0^(7,2,]?) then f-jjyjZjF) else f£(y,z,f); 

F2(y,z) <= if a2(y,z,F) then T2(y,z,F)  else f^(y,z,F); 

L.. 

Fk(y,z) <= if ^(y,^?) thenTk(y,z,F) else T^(y,z>f) j 

where    F = (F^Fp, .. ..>Fk)    and   y,z"   represent arbitrary vector arguments 

in each case,    T      is of type data, and   a.    is of type boolean.    Terms 

can be constructed using the arguments   y,z    of the defined function, 

and applying the base functions,  defined functions,  and the notation 

Y.,Z.     for extracting an element from a vector.    It is implicitly assumed 

that there is no type mismatch. 

The computation rule for terms in the schema is leftmost innermost, 

with the exception that if exactly the same function call appears more 

than  once  in a function definition   it will not be computed more than 

once — rather, the values returned by the first call are substituted 

in the others (in fact we could have prevented multiple identical tmais 

from appearing by a more complicated notation).    This is one of the 

reasons for allowing functions to return vectors,  i.e.,  it results in 

relatively efficient computations.    For example, consider the schema   S 

below (unnecessary parentheses are omitted): 

S:      F0 <= h(Y1F1(a,a),Y2F1(a,a))   ; 

F;L(y1,y2) <= if p(y;L) then <y1,y2> 

else <fyiF1(fyi,gy2),Y2F1(fy1,gy2))    . 

18 
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i 

0 

Not calling   F^^   both times in    (fl^Cfy^gy^^y^Cfy^gyg)) 

results in an exponential saving in the length of the computation. 

The class of recursive schemas will be denoted   ^(R)   ■    The number 

of "variables" in a recursive schema is the maximum number of data 

elements either passed as arguments to,  or returned from,  a defined 

function.    The class of recursive schemas in which no defined function 

is passed more than   n    data variables,  and no function returns more than 

n    data values is denoted   C-^n var)   ;  similarly, the class of recursive 

schemas which allow equality tests is denoted   (3,(R, =)   ,   etc. 

In the rest of Section 2.1 whenever we refer to an arbitrary 

uninterpreted schema we mean a schema from   C'(pds,q, list,A,=)  u (3(R, =)   . 

We can get an interpreted schema by restricting the interpretations 

allowed.    One way of doing this is by specifying that every interpreta- 

tion for a schema satisfy some formula in predicate calculus; but mostly 

the schemas we consider will be uninterpreted. 

2.1.^   Halting, Divergence,  and Freedom 

Definition.      A schema is said to halt if it halts on every interpretation. 

Definition.      A schema is said to diverge if it diverges on every 

interpretation, that is,   it does not halt on any interpretation. 

19 
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Definition. Let s^s^s^... be the statements of a flowchart, or 

an augmented flowchart schema S . Then, a path in S is defined to 

be a finite or infinite sequence 

^O'^l'^ '"} 

where for each i , t  is s  for some J , if s. is a start, halt, 

loop, or an assignment statement, or t. is <s.,true) , or <E.,false) 

if s  is a test statement, and the sequence mus*, have the property that 

(i)   ^Q    is the start statement, and no other t. is the start 

statement, 

(ii)  only the last element in the sequence (if any) can be a halt or 

a loop statement, 

(iii) if ^ is the start statement, or assignment statement, then 

ti+l corresPon(is *o the statement following t. in the schema, 

(iv)  if ti is <s ,true) then ti+1 corresponds to the statement 

following the test s  if it takes the true exit; and similarly 

for <s.,false) . 

O 

O 

Definition.  We can similarly define the notion of a path in a recursive 

schema. Let S be a recursive schema, and P.,?,,?-/.-.. be its defined 

functions, and s^Sg,... be the corresponding tests is the if-then-else 

definitions. Then a path in S is a finite or infinite sequence 

(t^t^tg,...) 

where for each i , ^ is either (enter F.^ ,  (exit F.) ,  (s.,true) , 

or (s^,false) . The first element, t0 , is (enter F ) , and only the 

last element, if any, can be (exit F0) . The significance of the t.'s 

20 
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is obvious,  and we say that a path must have the property that the 

sequence of   t.'s    must obey the computation rule for recursive Schemas, 

(that if,  leftmost innermost, with substitutivity for identical terms in 

the same function definition). 

Definition.      Given a schema    S    and "an interpretation    I    for    S ,  the 

path of the computation of    S    on    I    is denoted by    Path(S,l)   . 

Definition.      A schema is said to be free if every path in the schema 

can be taken by its computation on some interpretation. 

As example, the schema    S      is not free because the path 

(SQ^ (s1,false), (s2,true))    cannot be taken for any interpretation. 

In fact,   even the schema    S      is not free because no interpretation can 

take the false-exit from statement    L,    (even though the true-exit and 

the false-exit both lead to the same statement).    The schema    S      is 
' c 

free, as is the recursive schema S, . However, the recursive schema 

Se is not free because the test F2(y) can only take the true exit. 

S :    START y - a;        comment: call this statement s : 
0 

^l-    if P(y) then goto L2; comment: call this s ; 

if p(a) then ^oto luj comment: call this s ; 

L2: HAlT(y) ; comment: call this s,; 

Sb:    START y - a;        conment: call this statement s ; 

if p(y) then goto L;  comment: call this s ; 

if p(a) then goto L;  comment: call this sp; 

L:  HALT(y) . comment: call this s,; 

21 
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Sc:     START y - a; 

while p(y) do y - f (y) ; 

HALT(y)  . 

Sd:     ^O-F^J 

F1(y) <= if F2(y) then f(y) else g(y); 

P2(y) <= if p(y) then F2(f(y)) else F2(g(y))  . 

Se:      F0<=F1(a); 

Fi(y) <= i£ F^W ^s f(y) ^£ B(y) j  

F2(y) <= if p(y) then true else P2(g(y)) . 

Freedom, as defined, is not a very useful concept for augmented 

scheraas because some of the functions and tests are totally interpreted. 

Thus, if a counter schema tests " c = 0 ", then all paths in the schema 

cannot be taken because the outcome of this test is fixed once we fix 

a path leading to this test. The same is true, for example, for a stack 

(a schema attempting to pop a stack must test if it is empty), a queue, 

or a list. 

2.1.5 Equivalence 

Given a schema S and an interpretation I for S we use the 

notation Val(S,l) to denote the output (of the computation) of S 

on I — if S does not halt, then Val(S,l) is undefined. 

Definition.  Given two (uninterpreted) Schemas S1 and S , we say 

that S2 includes S1    {S1 < S2) if for every interpretation I for 

u 
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S1 and S2 (that is, I specifies all base functions and predicates 

used in both S^^ and Sg ), if Val(S2,l) is defined, then so is 

ValCS^l) and ValCS^l) = Val(S2,l) . 

Definition.  Two scheraas S^^ and S2 are said to be equivalent 

(Sj 2 S2^ if Sl - S2 and S2 - Si ' that iE' for Bil1 interpretations 

I for S1 and S2 , if one schema halts, then so does the other with 

the same output. 

The notion of equivalence ( s) is sometiraes also called output 

equivalence, or strong equivalence. 

It is immediate that the relation H is reflexive and syraraetric. 

It is also transitive, but this proof requires a little care. The only 

problem is that given S1  = S^ and S2 = S3 , to show that B- s S, we 

have to show that if I is any interpretation for S  and S  then 

Val(S1,l) B Val(S,,l) . But I may not be an interpretation for S 

and S2 (or for B  and S, , for that matter) because S0 may contain 

some superfluous functions or predicates. To overcome this problem, we 

note that If I' is any interpretation for S.. , S. and S_ , then 
12 3 

Val(S1,I
1)  = Val(S2,I

1)  = Val(S5,II)   .    And from this,  the desired result 

follows,   for if   I    is any interpretation for    S^^    and   S3 , we can extend 

it to    I«    by adding the new functions and predicates of   S?    (arbitrarily) 

and then    Val^l)  = Val(S1,I')  = Val(S5,I')  . V&l{Syl)   . 

An alternative definition of equivalence (and a corresponding on 

applies to inclusion)  is that    S^^ ■ S2    if for every interpretation    I 

for    S1    there is an isomorphic  interpretation    Ig    for    S      (let    9    denote 

the isoraorphism   9: ^ •• Ig ,  I.e.,    9    is a one-one mapping from the 
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domain of l^ onto the domain of I  that preserves functions and 

predicates) such that if Val^,]^) or Val(S2,I2) is defined, then 

both are defined, and Val(82,Ig) = 0(701(8^1.)) . 

The two definitions are the same owing to a basic notion 

regarding schonas -- that the behavior of a schema over two isoraorphic 

interpretations is the same, i.e., the paths of computation are the 

same, and the values of all variables correspond under the isomorphism 

at each step. 

-  -A- fundamental notion of equivalence is-that if we'wänt to find a" 

schema equivalent to some given schema S , then the schema to be found 

need nox.  have any function or predicate symbol other than tnose in S . 

This result is implicitly used all the time in the theory of scheraas, 

apparently without ever having been clearly formalized. 

Theorem 2.1 (Redundant predicates and functions) 

Given uninterpreted Schemas S and S  such that 8 = 8., , we 

can find a schana S  equivalent to S such that 

(i)  S2 has no function or predicate symbol not in both S and S, , 

(ii) S2 has exactly the same features (that is, equality, recursion, 

number of variables, counters, stacks, queues, lists and arrays) 

as those of S, . 

This theorem may also be called the "interpolation lemma for program 

schemas". 

For a proof, see Section 2.1.9. In this connection it may be 

remarked that if we are given any schema S and a flowchart schema S, 
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;; 

(Sj^eC^^)) equivalent to S , then there exists a schema S  also 

equivalent to S having properties (i), (ii) above, and also preserving 

the freedom of S1 , i.e.,  (iii) S2 is free if and only if S1 is 

free. This, in itself, is not astonishing. But it should be noted that 

we said "there exists a schema S2 ", not that we can find it (as in the 

theorem). It may come as a surprise that if we wish to preserve freedom, 

then S2 cannot be effectively found in general I This is demonstrated 

along with the proof of this remark in Section 2.1.9. 

Definition.  We say a class of Schemas (*      is more powerful than another 

class C^ (Q^ < (Jjj) if for every schema in (L    there is an equivalent 

schema in (3p • 

Note that the meaning of the symbol " < " is quite different when 

applied to individual Schemas, and when applied to classes of Schemas. 

Definition.  A class C     is strictly more powerful than (^ (C. < C- ) 

if &]_ < &2 , but not Cg < OH • 

Definition.  Two classes C~    and '»  are equally powerful, or 

equipollent, (^ a ß^)  if ^ 5 ^2 , and C^ < (^ . 

2.1.6 Isomorphism 

Intuitively, saying that two Schemas are isomorphic means that they 

perform their computations in the sajne fashion. This differs from 

equivalence which says that two schemas always produce the same output 
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even though they might tjerform their computations by quite different 

algorithms; for example,  one schema might be more efficient than 

another as far rr. the number of operations is concerned. 

Several notions of isomorphism can be defined.    We consider  some of 

these possibilities  informally before presenting our definition.    The 

strongest notion,  of course,  is the identity relation between Schemas. 

A weaker definition  (call it   N,  )  is that two Schemas are isomorphic if both 

compute exactly the same statements (i.e.,  statements that look the same) 

in the same order,   for each interpretation.    Under this notion,  if the 

roles of two variables are interchanged the schemas are not N,-isomorphic, 

as in the case of the two schemas    S„ ,  S      below: 

Sf:    START (y^y^) - <a,a); 

y1 - f(y2) ; 

HALT(y1) 

START  (y^Yg) •- <a,a>; 

y2 " ^J ; 

HALT(yy)     . 

A weaker notion  (call it    N» )  is that two schemas are isomorphic  if the 

same terms are computed (in the same order).    Thus the schemas    S„ ,  S 

above are Np-isomorphic because both compute the term    f(a)    only.    But 

the schemas    S    ,  S.    below are not Np-isomorphic: 

S.:    START y - a; 

y - fg(y) 

HALT(y) 

S.:    START y - a; 

y - g(y); 

y - f (y); 

HALT(y) 

because    S,     computes    fg(a)    and   S.    computes first    g(a)  ,  and then 

fg(a)   .    A weaker notion    (N,)    breaks down the computation of terms into 
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its constituent parts making S , 3^^  N5-isomorphic, but not S, , Sk 

below: 

S.: START y - a; 

if y = b then y •- f (a); 

HALT(y) 

S,: START y - a; 

if y = b then y - f (b) 

HALT(y) 

The definition given below is a still weaker (and to us, a more 

reasonable) definition that operates on elements of the interpretation 

rather than on terms. It should be stated, however, that the decidability 

and undecidability results of the next chapter remain unchanged if any 

of the notions N, , Np , or N, is substituted instead. 

Definition.  Given a schema S and an interpretation I for S . 

Let Seq(S,l) denote the (possibly infinite) sequence of vectors of 

the form 

(^e..,.. .,e. )    — where    f    is a k-ary function symbol, 

<p,e..,. ..,e >    — where    p    is a k-ary predicate symbol, 

<HALT,e1>  ,  or 

(LOOP) 

where the e.'s are elements in the domain of I -- that are evaluated 
i 

during the computation of S on I . 

For example, if for the schema S . above, I is over the domain 

[1,0,2,...} , a = b = 0 , and f is the "add-one" function, then 

Seq(SJ,l) = «=,0,0),<f,0),(HALT,l)> = Seq(Sk,l) . 
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Definition.  Two Schemas S.. and S0 are isomorphic (denoted S, 

or S1  =  Sp ) if for every interpretation I , 

~ S, 

isom 

SeqCS^l) = Seq(S2,l) . 

It is obvious from the definition that if two Schemas are isomorphic 

then they are equivalent. The converse, of course, is not true. 

2.1.7 Herbrand Schemas 

Definition.  Given a set of function symbols (containing at least one 

zero-ary symbol) and predicate symbols, a Herbrand interpretation on the 

set is defined as follows: the domain is the set of (fully parenthesized) 

constant terms using the function symbols; the functions are defined in 

the usual way for terms, and predicates are arbitrary. 

An example may help clarify the definition. Given the set of 

symbols (a,f,g,p} where a is a zero-ary function symbol, f and g 

are unary function symbols, and p is a unary predicate symbol, a 

Herbrand interpretation for this set has the infinite domain 

["a,I,"f(a),',',g(a)1,,-f(f(a))",,'f(g(a))", ...] 

where, for example, by "f(a)" we mean the term f(a)  itself, consisting 

cf a string of four syrrbols — "f" , "(" , "a" , and ")" • In the 

interpretation, the value of the function f applied, for example, to 

the element "f(a)" is the element "f(f(a))" , and similarly for g . 

The value of p applied to any element in the domain can be arbitrarily 

true or false. 
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Definition.      Given an interpretation   I   over a set of function and 

predicate symbols, the Herbrand interpretation    JT    corresponding to   I 

is a Herbrand interpretation whose predicates are defined af. follows: 

if   p   is a k-ary predicate symbol, and   T-i>Tp>--^T
k   are (fully 

parenthesized) constant terms, then   P(T1,T2, .. .,0    is true in   I11 

if and only if it is true in   I  . 

As an example,  consider the set of symbols    {a,f,g,p} , and let    I 

be an interpretation with domain    [0,1]    such that    a = 0 ,    f(x) = x , 

g(x) = 1-x , and   p(x)    is true for   x = 0   and false for   x = 1 .    Then 

IT   is over the infinite domain mentioned above,  and   p("a")  , p("f(a)") , 

P("g(g(a))")    etc., are true, and   p("g(a)")  , p("f(g(a))")    etc., are 

false.    In general,    p(y)    is true if   y   has an even number of   g's  . 

Definition.      An uninte~preted schema   S   is said to be a Herbrand 

schema if for every interpretation   I    for   S ,    Path(S,l) = PathCS,!11)   . 

In Chapter k this definition is extended to interpreted schemas 

as well. 

Definition.      An inherently non-Herbrand schema is a non-Herbrand 

schema for which there is no equivalent Herbrand schema. 

Examples are given below (schemas   S. -S    ). 

The following simple but very useful theorem indicates why the 

notion of Herbrand schemas is useful.   We say that a schema   S    is free 
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on a set of interpretations    J    if for every path in   S    there is some 

interpretation in    S   on which the computation follows that path; a schema 

S    halts  (or diverges)  on    S    if it halts  (diverges)  for every interpreta- 

tion in    ,9 ; we say that    S,  < S      on    J    if for every    le^ ,   if    Val(S1,l) 

is defined then    Val(S ,l)  = Val(S ,l)   ;-and similar definitions apply 

for equivalence and isomorphism.    We use   M   to denote the  class of 

Herbrand interpretations . 

Theorem 2.2    (Fundamental theorem of Herbrand schemas) 

If   S1    and   S^j    are uninterpreted Herbrand schemas then 

(a) S1    halts if and only if   S1   halts on   V , 

(b) S1    diverges      if and only if   S,    diverges on   V , 

(c) S1 s S2 

(d) s1 < s2 

(e) S1~S2 

(f) S      is free 

if and only if S1 = S2   on   K , 

if and only if S, < S2    on   K , 

if and only if S1 ~ S2    on   V , 

if and only if S..    is free on   % . 

o 

Parts  (a),   (b),  and (f)   are immediate from the definition of 

Herbrand schemas; and part  (c)   follows from (d).    For proofs of (d) 

and (e)  see Section 2.1.9. 

We would now like to know what kinds of schemas are Herbrand 

schemas.    The next theorem Implies that it is the tests of equality 

that tend to make schemas non-Herbrand. 
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Theorem 2.?    (Schemas without equality are Herbrand) 

If   S    is an uninterpreted schema without any equality test then 

S    is a Herhrand schema. 

Thus, the schanas in   CO  j <3(n var)  , (3,(pds,q,list,A)  , G,(R)  , 

etc., are «11 Herbrand schemas.    In general, however,  it is not partially 

solvable if a given schema is a Herbrand schema.    This follows directly 

from the fact (see,  for example, Luckham, Park and Paterson [1970j) that 

the divergence problem for   (3(2 var)    is not partially solvable.    This 

is so because if we are given a schema   SeC{2 var)    and we replace all 

halt statements in    S    by 

if a = b then HALT(y)  else HAUr(y) 

(where   a,b    are zero-ary functions not present in   S )  to get a schema 

in   (3(2 var, =)  , call it    S'  , then   S'    is a Herbrand schema if and 

only if   S   diverges. 

Examples.      Consider the schema   ö     below: 

S.:    START y - a^ 

if a    = a2 then HALT(y)  else LOOP    . 

This is a non-Herbrand schema because for every Herbrand interpretation 

a. / a   , though   a.    can equal   a     for some non-Herbrand interpretations. 

In fact,    S      is an inherently non-Herbrand schema, because if there is 

a Herbrand schema,  say    S'   ,   equivalent to    S| , then    S'    loops for all 

Herbrand interpretations.    But consider an interpretation    I    for which 

S      halts,  then    SI    too must halt for    I ,  and hence must also halt for 

the Herbrand interpretation corresponding to    I    (since    SJ    is a Herbrand 

schema by hypothesis)  — a contradiction. 
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However,  the use of equality tests does not necessarily make 

a schema inherently non-Herbrand,  or even non-Herbrand.      S      is a 
m 

Herbrand schema that uses equality tests.    It is equivalent to a 

(Herbrand)   schema without any equality tests    (S )    and also to a 
n 

non-Herbrand schema (S ) with equality tests: 

S!n:   START (y^) - <a,a>; 

L;if p(y1) then 

if p(y2) then 

begin ^ - f (y^ ; 

^2 " f^' 

goto L; 

end 

else if y1 = a then HALT(y) else LOOP 

else if y1 = y2 bhen HALT(y) else LOOP . 

■ 

Sn:   START y <- a; 

L:if p(y) then 

begin y - f (y); 

goto L 

end 

else HALT(y)  . 

STAKT y - a; 

L;if p(y) then 

if y = f(y) then LOOP 

else begin y *- f (y); 

goto L; 

end 

else HALT(y)  . 
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2.1.8 Value Languages 

Given a (fully parenthesized) term T , let ^rj denote the 

string T with all. parentheses and all zero-ary function symbols removed. 

For example, [f(g(f(a)))] = fgf • 

Definition.  Given a schema S , ler V   denote the set of Herbrand 

interpretations for S , then the value lajiguase L(S) of the schema S 

is defined by 

L(S) = [[T] jaHe^, Val(S,H) = T} . 

For example, the value language of the recursive schema S^ 

is L(S ) = {xxR | xe{f,g}*} where xR means the reverse of the 

string x . 

V Fo<=Fi(a); 

FiCy) <= if p(y) then y else ^(y)> 

F2(y) <= if q(y) then fF^(y) else gF^Cy); 

Theorem 2.U (Value languages are r.e.) 

The value language of any schema S (that admits all the Herbrand 

interpretations K- )  is recursively enumerable. 

The proof is quite simple, and is given in Section 2.1.9. 

Value languages have been studied mostly for monadic scheraas. They 

can be used to prove theorems regarding the power of classes of Schemas. 

The following lemma is a slight generalization of one given by Ga.rl&nd 

and Luckham [1971]' 
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Theorem 2.^ (Basic theorem of value lanuages) 

For uninterpreted Schemas 8^^,82, if S^^ < S2 then L(S ) c L(S ) 

The proof is trivial, for if 1,(8.,) jt L(S2) then there is a string 

xeL(S1) such that x^L(S2) . Now, consider any Herbrand interpretation 

H for S1 for which [Val^H) ] = x , then [Val(S2,H) ] ^ x because 

x^L(S2) , and hence S1 ^ 32 . 

Note that this theorem holds whether or not the schemas S1 , S0 

are Herbrand Schemas. 

Corollary 2.6.  For Schemas S1 , Sg , if S1 s S2 then L(S ) = L(S ) . 

This is usually used to prove the negative result: given two 

classes Q*    and Cp    of uninterpreted scheraas such that for some 

Sle'3l there is no S2€!3'2 for which L(si) = L(S2) then we can  conclude 

that C^ £c2  ■ 

2.I.9 Discussion and Proofs 

2.I.9.I On the Treatment of Kquality 

In our treatment, equality is viewed as a basic construct in scheman, 

on par with others like assignments, goto statements (in flowchart 

notation, the arrows leading from one statement to another) or the use 

of more than one variable in Schemas. 

Alternatives have been suggested, but our approach seems to be the 

most natural. One alternative is to treat equality as Just another 

(diadic) base predicate, call it p_ . Then, a test like T = Tp is 

viewed as just a notation for the strict form P_(T,,Tp) . However, the 

■ 
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f 

X 

schema is no longer uninterpreted, but every Interpretation must satisfy 

the formula VxVy p_(x,y) = (x=y) . In other words, p_ is treated as 

pseudo-equality. The problem is that the equivalence of partially 

interpreted schemas has to be defined (it is not desirable to define 

lb for the special cases where zero or one of the predicates is pseudo- 

equality). The definition of Section 2.1.5 (i.e., S.. and Sp are 

equivalent if VI if S. admits I , and S„ admitt: I then 
X d 

Val(S1,I) = Val(S2,l) ) is inadequate because it is not transitive in 

general. Equivalence is defined in Chapter U for partially interpreted 

schemas (it is based on the alternative definition given in Section 2.1.5). 

If this definition is used, we would find that the trivial schemas S, 

and S2 below are not equivalent using the p_ formalism, while clearly 

we would like to say that they are indeed equivalent. In fact we would 

find that the uninterpreted schema Sp is a "generalization" (see 

Section U.5) of S. because more interpretations are allowed for Sp than 

for S1 . It may be noted that S, and Sp are equivalent in our formalism. 

S,: START y - a,; 

if a^^ = a2 then HALT(a1) else HALT(a0) . 

S2: START y - a^ 

HALT(a2)  . 

Another approach that has been suggested is to treat equality as 

just a (diadic) base predicate, say q^ . The schema is to be partially 

interpreted, with q_ being an equivalence relation also satisfying 

substitutivity; i.e., if f.,f2,...,f  and p1,P2,...,p  are the 

other bass functions and predicates in a schema with ranks in,...,i 1    r 

and J1, ...,JS respectively (let k be the maximum of these), then 
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every interpretation for the schema is to satisfy the formula   (p , 

where 

9    is    Vx^Vx.^      q = (x1,x1) 

A q=(x1,x2)   - q=(x2,x1) 

A q = (x1,x2)  A q = (x2,x3)   - qjx^xj 

A Vx1...Vxk     (q=(x1,y1) A  ...  A <lj\,yy.))   - 

q=(f (x , ...,x    ),f,(y1,...,y    )) 
i-L       J-    x 11 

A   ... 

A <J=(fr(x1'--->x
i )*f(y1*--.,y1 )) 
r r 

A p (x ,...,x    )   H p (y ,...,y    ) 

A   ... 

A p,.(x , ...,x    ) H p (y.,...^   )     . 

This approach "works" for the introduction of equality in,  say,  first 

order predicate calculus where the property of interest is the validity 

of formulas — a formula    |    with equality is valid (satisfiable)  if 

and only if   j» A <p    is valid (satisfiable) where      y'    is obtained from 

f    by substituting    q=    for equality.    Unfortunately,  this approach does 

not seem to be viable for schemas, where the equivalence of Schemas should 

be preserved on replacement of equality by    q_  .    Observe that the schemas 

S1    and    S2    are not equivalent if   a^^ = a2    is replaced by   q_(a ,a ) 

in    S1 , because it is possible for    a1    and    a2    to be distinct elements 

even if   qja^a^     is true,  i.e., the outputs of    S^^    and   S      are not 

the same.    Of course,  the outputs are equivalent under the relation    q 

for every interpretation, but as mentioned,  equivalence of schemas should 

be defined for some general class and not for a special case where there 

is one equivalence relation. 
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Why all this discussion on equality? It goes back to the basic 

question "what is a program schema".  The intuitive notion is that of 

a machine that computes on uninterpreted (or partially interpreted) 

domains, as against "real" computations on interpreted domains. One aim 

of the study is to present stable (or "maximal") classes of machines 

similar to the Turing machines for real computations. What properties 

should Schemas possess? As with real computations, the requirements 

of finiteness, nonrandomness, and discreteness seem reasonable -- see 

e.g. Rogers [I967]. In addition we may require the following: 

(1) first order functions and predicates; 

(2) total functions and predicates; 

(5) the computation of a schema should be fully characterized by an 

interpretation (and the inputs, if any); 

{h)    computations on isomorphic interpretations must be the "same" 

for any one schema; 

(5) in any one step a schema should be able to "look at" at most a 

finite number of elements of the domain of the interpretation. 

Of course, one may relax any of these conditions to study what classes 

of machines are obtained. In Chapter h  we introduce a class of Schemas 

having all the above properties. In addition, a slightly stronger version 

of (5) above is used: the computation of a schema is fully characterized 

by the values of the functions and predicates applied to the reachable 

elements in the domain — the set of reachable elements is the smallest 

set (containing the inputs, if any, and) closed under function 

applications. In this class of schemas we obtain a maximal subclass 
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for the uninterpreted schmas, and a maximal subclass for the 

uninterpreted Herbrand Schemas (i.e., Schemas whose computation is 

the stune for any interpretation and its corresponding free interpre- 

tation), and as may be expected, the use or the non-use of equality 

plays a crucial role in distinguishing the.subclasses. 

2'9-9-2    Proof of Theorem 2.1 (Redundant functions ajid 

predicates) 

Proof of the Theorem 

Given uninterpreted Schemas S , S1 such that 8 » a. , then 

there is a schana S2 equivalent to G , having no function or predicate 

symbol other than those in both S and S1 , and having exactly the 

same features as S, . 

Proot.      Firstly, if there is no zero-ary function symbol common to 

both S and S1 then both must diverge for all interpretations because 

if not, consider the interpretations for S and ^ - as the sets of 

terns generated by S and S1 are mutually disjoint, if s halts on 

any interpretation then it halts on one in which the reachable elements 

of S and of S1 are disjoint, and for this interpretation the output 

of 31 can never equal that for S . So in this case the construction 

of S2 is trivial. 
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. 

Now, if S and S1 have a common zero-ary function, say a , then 

we obtain S2 from S1    us follows: if f is any (k-ary) function in 

S^^ and not in S , then replace any term of the form 

fC-r^ ...,Tk) by a , 

and if p is any (k-ary) predicate of S1   not in S , then replace any 

atomic formula 

p(T1, •••>Tk) by true . 

Now, to prove that B « Bg , let I be any interpretation for S and S 

We change I to I' by first deleting all functions and predicates of 

2(3^ -2(S2) from I (if any), and then adding the -functions and 

predicates of Z(S1) -£(S2) as follows: the value of each new function 

f applied to any set of elements in the domain is " a ", and all new 

predicates are "true" for all arguments. Clearly, Val(S,I') . Val(S,l) 

and Val^,!') - Val(S2,l) because the functions and predicates of 

2(8^ -£(B2) do not appear in S or S2 . Also, on I» , the computa- 

tions of B1 and S2 are identical, and hence ValtS,!') ■ Val(S ,1') = 

Val(S2,I
l) . This gives the desired result, i.e., Val(S,l) = Val(S, ,l) 

* 
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Redundant functions and predicates with preservation of freedom 

Given a schema   S    and a flowchart schema   S1      (S1Q3(=)) 

equivalent to    S , then there exists another flowchart schema    S2 

also equivalent to    S    having the same features as    S1    and no base 

functions or predicates other than those In both   S    and    S^^ ,   such 

that    S?    is free if and only if    S1    is free.    But    S2    cannot be 

effectively found,  in general. 

Proof.      B ■ 8. > S.eflC")   •    We first construct a flowchart 

schema    S'    equivalent to    S    and having nu base functions and predicates 

other than those in    S ,  sucn that    S'     is free if   S1    is free 

(but it may also be free if   S1    is not). 

The idea behind the construction is Eimilar to that in the proof 

of the theorem.    The application of any new predicate   p    (p    is in   S1 , 

but not in    S )  yields "true",  and the value of any new function    f    is 

a special element we call "bad".    The schema   S|    simulates the computation 

of   S.   ,  keeping track of all "bad" variables.      S^   can be described us 

follows.    It has    2n5m    "copies" of    ß.    — where    n    is the number of 

data variables,  and   m    is the number of boolean variables.    Each data 

variable can be good,  or bad,  each boolean variable can be good,  bad-true, 

or bad-false.    If in   S,    there is an assignment 

y.  •- T        or        zi - a 

where   T    (or   a ) contains a bad value (for some copy in   S'  )  or a new 

predicate, 'hen this assignment is not made (in that copy), but the 

variable becomes bad,  i.e.,    S'    transfers to the appropriate next 

statement.    Further,  if   z.    becomes bad, the value it takes is governed 

O 
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by the rule that any predicate on the value "bad" is true, and 

"bad ■ bad" yields true, but "bad -  »jood" yields false (where "good" 

stands for some term that is not bad). The same applies to any bad 

test -- the test is not actually made, but the appropriate exit is 

I ft 
assumed. 

Now it is easy to see that S' = S, . The proof is very similar to 

the proof for the theorem (above). 

Further, S' is free if 3, is free. Suppose S£ is not free. 

Then there is somt- path from the start statement to a test such that the 

outccsne of the test is predetermined by the path. But as S' makes 

tests only on (constant) terms that can only be obtained by applications 

of functions of S , we see that in the corresponding path in S , any 

computation following this path must take the same exit. This is so 

because  (a) any interpretation of the form having the "bad" element 

appended, must take the same exit, and  (b) for any interpretation I , 

we can obtain the corresponding interpretation B with a "bad" element, 

such that if I follows the path, then its e/.it is the same as that of B . 

Now, if the given schema S, is free, then S| is the required 

schema S0 , otherwise to obtain S  we can simply append to the beginning 

of S' some trivial tests to force it to be non-free. 
1 n 

€ 

r. 

: Unsolvability of the translation 

Our translation was not effective because in the last step the 

decision es to whether S  is free or not was not effective. 

H 
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h2 

We will prove that the translation to Sg is not solvable in 

general in a very infomal way. We use Paterson's proof [1967] of the 

unsolvability of freedom a^d convert it to the uitsolvability of freedom 

for Schemas in £(1 var, . ) by using the method of simulating two 

variables with only one presented in the proof of Theorem 3.5. The 

resulting class (call it y  )  has schemas with no predicate, one 

zero-ary function a , and unary functions, one of which is called f . 

There is a single variable y which, at intervals, takes values 

a,f(a),ff(a),fff(a),...  . 

We will change this class &    somewhat to ^ by adding a unary 

predicate p , and whenever in a schema B'eCV the variable y has 

value f (a) in the above sequence, the new schema B- makes a test 

P(y) • If p(y) is false, the schema S1 halts, otherwise it continues 

like 8« . In addition, any halt or loop statement in S« is replaced 

by a cycle that tests 

P(fi(a)),p(fi+1(a)),;p(i
i 2fa)),... 

such that S1 halts if any of them is false. Now, ^ is free if and 

only if s- is free, and hence the freedom problem for this new class 

is unsolvable. But, each schema S1 in this clarc ^ is equivalent 

to the schema S : 

S = START y - a; 

tfhile P(y) do y - f(y); 

HALT(y)  . 

Hence, if our desired schema S^ exists, it must have one variable y , 

functions a and f , and predicate p . But the freedom problem for 

0 

o 

o 
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such a class of schemas can be shown to be solvable. We do not give a 

rigorous proof here, but only indicate it. 

Given a flowchart schema S with only a aero-ary function a , 

one- unary function f , and one unary predicate p , to show that the 

freedom problem for S is solvable we observe that without loss of 

generality we can assume that every circular path (cycle) in S must 

have at least one predicate or equality test. 

Now, if any reset (i.e., y -  f^a) ) appears in a cycle, then S 

must be nonfree for the same test would be made twice (with the same 

value for y ) by going around the loop. 

Secondly, if after the "true" exit from any equality test (i.e., 

f1a =  fJa ,  f1a = fJy , or f y - f^y ) there is a cycle then the 

schema must be nonfree because either the false exit can never be taken, 

or else there are only a finite number n of distinct elements in 

a,fa, f^a,f^a,... , and hence by going around the cycle n+1 times some 

test would be made twice. 

Now, if the schema S is not obviously nonfree by the above 

criteria then wc can determine whether or not it is free by constructing 

a finite state automaton that accepts all input tapes unless the schema 

is nonfree. We use the terminology in the proof of Theorem 5.1. 

The input tape of the automaton represents a path through the schema. 

The first symbol specifies all resets the path goes through, and true 

exits from equality tests. Subsequent symbols update each of these 

subpathc starting from the resets and true exits. The automaton simulates 

the computation of all possible interpretations simultaneously along all 

these cubpaths (except for any true exit from a f y = fJy test, which 

l.; 
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is simulated when computation reaches that statement).    Note that the 

number of equivalence classes of all interpretations remains bounded. 

The input tape is accepted unless  it represents a valid path which 

cannot be traced by an interpretation. 

Hence,   if we could find    S,    effectively, we would have converted an 

unsolvable problem into a solvable one - a contradiction. 

D 

8.1.9.5    Proof of Theorem P.?    (Fundamental theorem of Herbrand 

Schemas) 

For Herbrand schercas,  the notions of      (a)    baiting,      (b,    diTCrgence, 

(=)    aquivaxence,      (d)    lnclusion,       (e) lsmorphism; ana      (f)    ^^ 

for all Interpretations, are equivalent to the same notions for the 

Herbrand interpretations. 

Proof.       (informal)      (a),   (b),   (f)      These are .^.^ ^ ^ 

definition of Herbrand Schemas. 

(c) This follows directly from (d)  below. 

(d) The "only if" part is trivial.    por the "if" part, assume it is 

false.    Then    S1 < Sg   on   v , but there is some interpretation    I    such 

that   81   halts on    I   and   ^   does not halt with the sme value.    Now, 

kk 
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consider the Herbrand interpretation H corresponding to I . As S^^ 

is a Herbrand schema, S.. halts on H . 

(i)  If Val(3 ,1) is undefined then so is Val(S2;H) as S2 is a 

Herbrand schema, and hence S, ^ S2 on j^ --a contradiction. 

(ii) Sp halts on I , and hence it also halts on H , and 

Val(S ,H) = Val(S2,H) , but Val^l) / Val(S2,l) .. We show that 

this is impossible by considering the (natural) homomorphism 

9 : H -♦ I from H onto the reachable elements in I (i.e., 

elements that can be expressed in constant terms). Then, we see 

by induction on the number of steps in the computation that at 

each step the values of variables in the computations of S, on H 

and I correspond with respect to 9 ("variables" includes 

arrays; stacks, queues, counters, etc., and recursion is also 

handled — and 9 is extended to be the identity function over 

elements, like integers, that are not in the domain of H ), and 

similarly for S., . Then we have 9(Val(S1,H)) = Val(S1,l) , and 

9(Val(S2,H)) = Val(S2,l) , but Val(S1,H) = Val(S2,H) , and hence 

Val(S1,l) = Val(S2,l)  -- a contradiction. 

(e) The "only if" part is trivial, and the "if" part follows on lines 

very similar to the proof of inclusion: if it is false then there must 

be a counterexample, say for an interpretation I , and Seq(S1,1) and 

Seq(Sp,l) do not agree after some finite number of steps, but 

Seq(S ,H) = Seq(S ,H) and values of variables correspond at each step 

for computations on I and H -- which yields a contradiction. 

^5 

■ - - 

,_ ti^u^^ii^M^^m^mmimtiliimm ■■- -"■- ■■-"— ^ ■ m*m 
■•'•—•■^in^V'iimm'iiiit\Vi*;u iäuMtiih'äü^ 



i  i      iijiii qw.^^iLiuniiMi^PHpiuii .L      '■'"u>"iwwui.iii«l»mjiiuni,i,.iijjiiiiji      '  J»»«"».«««» «.».unn i" ■III«.IIWI»IIW^IIW"»"IWII«I,».««""JII i.u   IB  .■■I.JHLI,I^II^]P^«IB 

2.1.9.^   Proof of Theorem 2.3    (Schemas without equality are 

Herbrand) 

Schemas that have no equality tests are Herbrand scheraas. 

Proof,    (informal)      Assume the theorem is false.    Then there is a 

schema   S    and an interpretation    I    for    S    (let the corresponding 

Herbrand interpretation be   H )  such that the paths of the computations 

of   S    on   I    and on   H   are different.    Then they must first be different 

after a finite number of steps    k .    Then as in the proof of Theorem 2.2 (d), 

the values of variables in the two computations correspond for   k-1 

steps, and the k-th step must be a predicate test (since it must be a 

test, and tests on booleans yield the sarae value, and tests of equality 

are forbidden).    But the outcome of the predicate test must be the same 

in both computations (by the definition of   H   corresponding to    I )  — 

a contradiction. 
D 

2.I.9.5 Proof of Theorem 2.^    (value languages are r.e.) 

The value language of any schema S is recursive enumerable. 

It is easy to see that given any finite path in S (starting 

from the start statement) it is decidable whether or not the computation 

of S on some Herbrand interpretation follows this path. Also, given 

any path from the start statement to a halt statement, the output (for 

Herbrand interpretations) is fixed by the path, that is, if H1 , Hp are 

two Herbrand interpretations on which the computations of S traverse 

the same path, then Val(S,H1) = Val(S,H2) . 

We can now construct a partial recursive function from integers to 

strings whose range is precisely the value language of S : 

h6 
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"Let n be the input. Generate the n-th finite path in S (by 

any predefined ordering) and if it ends at a halt statement and 

can be traversed by some Herbrand interpretation, then output 

[Val(S,H)] where H is any such interpretation; otherwise 

diverge." 

This completes the proof.       • ' rn 

2.2 Value Languages of Schemas 

In this section, all Schemas are assumed to have only monadic 

functions (zero-ary and unary) and arbitrary n-ary predicates, unless 

otherwise stated. 

■ 

t 

2.2.1 Flowchart Schemas 

Theorem 2.7 

The value languages of flowchart Schemas (with monadic functions) that 

are free on the Herbrand interpretations are precisely the regular sets. 

As a corollary, the value languages of free flowchart schemas with 

monadic functions and no equality, are regular (see Theorems 2.5 and 2.2f). 

The proof is given in Section 2.2.5. It can be shown that the class 

of one-variable flowchart schemas (even with resets y - a. and boolean 

variables, but without equality) can be translated to equivalent free 

schemas without equality, but with several variables. Then, from the 

proof of the above theorem and the Corollary 2.6 we have 

Theorem 2.8.  The value languages of schemas of c(l  var) with monadic 

functions, are the regular sets. 

^7 
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The fact that all regular sets can in fact be generated is implicit 

in the proof given for the previous theorem in Section 2.2.5. 

From Theorem 2.7 it follows that the following schema    S      is 
£1 

aji inherently non-free schema, that is,   it cannot be translated into an 

equivalent free flowchart schema (without equality tests). 

Ba:    START (y^yg) - <a,a>; 

while p(y1)  do y - f (y^ ; 

^ile p(y2)  do begin y^^ - g(y1) ; y2 ♦- f (y2)  end; 

HALT(y1)     . 

The schema    S      is inherently non-free because    L(S )  = {gnfn I n > 0] 
Q» fit " ^~ 

which is not a regular lan,3uage. Note that the comment after Theorem 2.1 

is implicitly used here in the unstated assumption that any equivalent 

free schema must have only monadic functions. However, S  is indeed 
ct 

equivalent to a free recursive schema, and S,  is an example. 

V  F0 <= Fl^ 5 

F-^y) <= if p(y) then gF^f (y) else y . 

The Theorems 2.7 and 2.8 do not apply to nonmonadic functions. 

As an example,  consider the schema    S 

Sc:     START y - a; 

while p(y)  do y - f(y,y); 

HALT(y)     . 

It has one variable,  and it is free,  but the value language    L(S )     is 

[f 
2n-l n > 0} , which is not even context free. 

0 

. 
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Theorem 2.9 

The value languages of monadic Schemas of c{2  var) are the 

recursively enumerable sets. 

This is a slight generalization of a similar theorem due to Garland 

and Luckhajti [1971]* in which they show that the value languages of 

monadic Schemas or (3() are the r.e. sets. 

2.2.2 Recursive Schemas 

Theorem 2.10 

The value languages of recursive Schemas (with monadic functions) 

that are free on the Herbrand interpretations are precisely the context 

free languages. 

As a corollary, the value languages of free recursive cchemas with 

monadic functions and no equality, are context free. 

The proof can be found in Section 2.2.3. It follows from this 

that although the schena So in the previous section could be translated 

into an equivalent free recursive schema (Sj , the schema S^ cannot, 
D d 

for its value language is (f'Vf" | n > 0] which is not context free. 

Sd: START (y^) - <a,a>; 

while p(y1) do y1 - f (y^ ; 

while p(y2) do begin y^^ - g(y1) ; y2 - f^) end; 

y2 - a; 

while P^) 42 begin ?! - f(y^; y2 - f(y2) end; 

HALT^)     . 

Theorem 2.11 

The value languages of Schemas of   &(R,lvar) with monadic functions, 

no resets,  and no defined function inside atomic terms,  are the context 

free languages. 

mmmmmammm 
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Note:    an atcxnic terra   a   is a predicate or equality term used in a 

teat    (if a then  ...  else ...)    or as a boolean argument.    If in any 

function definition   ^ <= if a then (T,^,^, ... > else (T- ,a^a',... > , 

i / 0 , the tems    T    or   T
1
    contain a aoro-ary function   a    , we call 

this a reset. 

This theorem is a generalization of a. similar theorem by Garland 

and Luckhajn [1971], and the proof is presented in Section 2.2.5.    This 

theorem does not follow from Theorem 2.10  (as did Theorem 2.8 from 

Theorem 2.7) because there exist one-variable recursive schemas that 

cannot be made free.    The following example,  schema   S    , is due to 

Ashcroft, Manna,  and Enueli [1971]. 

Se:    F0<. F^a); 

F1(y)  <= if p(y) then F^fty)  else y; 

F2(y)  <= if q(y) thm f(y)  else y    . 

The theorem shows that the schema   Sd ,  for example, cannot be translated 

into a recursive schema with one variable (and satisfying the conditions 

of the Theoiem 2.11). 

From the general result of McCarthy [I962] that any schema in 

C^n var)    can be effectively translated into an equivalent schema of 

(3(R,n var)  , and using the Theorem 2.1+ we have the following. 

Corollary 2.12.      The value languages of monadic schemas of   (3(R, 2 var) 

are the recursively enumerable sets. 

2.2.5    Proofs of Theorems on Value Languages 

2.2.5.1    Proof of Theorem 2.7 

The theoiem states that the value languages of flowchart schemas 

(with monadic functions) that are free on the Herbrand interpretations, 

are precisely the regular sets. 

50 
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(1)    We first show the easy part,  that is, that all regular sets can 

be generated.    Given any regular set over   Z ■ [f^fp, ...,f } , we 

consider the deterministic finite state automaton   A    that accepts the 

regular set.    Let its states be    Q =  {q^,q^,.. .,q ]   whore    q_    is the 

start state, and   F c Q    is the set of final states,  and the next-state 

function is    6 :   Q x£ -* Q  .    We construct a flowchart schema    S    with 

one variable which uses unary functions symbols    f..,^, ...,f    , 

a zero-ary function symbol    a ,  and unary predicates    p1,Pp,--^p 

(note:    it would suffice to use    log0(r)    predicates, but this construction 

is slightly simpler).    We label statements    KyL,,...,L,     in correspondence 

with the states    q^,q , ...,q      of   A .    In addition there it one halt 

statement    L :   HALT(y)   .    The start statement in    S    is: 

START y - a; goto L«     . 

Let    d.   .    denote    6(q.,f.)   .    Then for   0 < i < k   the statements of 

the schema are:    if   q.eF    (i.e.,  a final state) then 

4* Li :   i£ P^y) ^ben begin y - f^y); goto Ld        end 
1,1 

else if p2(y) then begin y - fp(y}; goto L,        end 
i,2 

* else if p (y) then begin y •- f (y); goto L,   end 

else goto L 

and if q./F then 

L. 
i 

else if p (y) then begin y - f (y); goto L,   end 
i,r 

else LOOP . 

51 
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Now, the schema S is clearly free, and the computation can reach any 

statement L. with value x (in the Herbrand domain) if and only if 

the string [x] takes the automaton from the start state to state q. 

(recall that [x] denotes the string x with parentheses rnd unary 

function symbols removed). Thus the value language for S equals the 

givau regular set. 

(2) We now show that the value language of a free flowchart schma 

(with monadic functions) is regular. 

Let S be a free flowchart schema, with variables v .v    v 
12n ' 

and unary functions L  - [f^fg,. ..,^3 . without loss of generality 

we assume 3 has a single halt statement: HALT(y1) . We label the 

start statement, and all the assignment statements of S by L ,L ,...,L, 

Let X.^ denote the set of strings in Z*    corresponding to the 

possible values of the variable y  after statement L. is executed 
J i 

(on a Herbrand interpretation). In addition, let X denote the set 

of strings corresponding to the possible outputs - in other words, 

X is the value language. 

We will now demonstrate a set of recursive equations relating 

the X's and having the property that 

(a) the least fixed point exists, and is regular, and 

(b) the least fixed point corresponds to the values of the X's for 

the computations. 

i^  :   suppose [^ ^ , ...,L.   ) are the statements of S for 
ul "2 

which 

there is a path from Li  to L. without passing through any assignment 

^ 
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statement.    Now,  each of the    L^'s    is an assignment statement of the 

form    (y:L, ...,yn) - (T^ ...,Tn)  .    Let the term in    L.    for    y     be    T 

If   T    is a constant term, we use the equation 

X.   . <= [T]     . 

If,  on the other hand,    T    is      sequence of functions applied to one 

of the variables,  say    y    ,  then we use 

[i   i   <=  [T]Xi    m+lT]Xi     m+ "•+^Ki m 

where + stands for union, and [T ] is the notion introduced earlier, 

but extended to nonconstant terms as well ( [T] is the string T , 

omitting all parentheses, zero-ary functions, and variables). Note that 

the start statement is treated just like any other assignment statement. 

X : Suppose    [L.  ,..,!.   ]    are the statements of   S    for which 
1 "s 

there is a path to the single halt statement of   S      (HALTCy..))   .    Then, 

we use 

X <= X.    ,+X.    n + ... +X.     , i^l      i2,l ir,l 
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(a) We have a right-linear set of recursion equations (on strings), 

and such a system has a unique least fixed point,  namely, the regular 

sets  (one for each of the   X's )  obtained by these equations treated as 

productions. 

(b) For convenience,  we will rename   X^.  ^....X, tobe   Y,,Y  ,...,Y    : 7  1,1'       '   k,n 1*  2'      ' m  ' 
and we define the sets 

Y        = Y 1,0      I2,0 ■ Ym,0 = «P 

and 

Yi,c+1      ^i^'^c'^c'-'-'Vc) 

where    ?     is the function used in the recursive definition (for   Y    J • 
i v     i ' 

Then, the least fix-point Y. for Y. is given by 

■^ =  U Y. c = the least fix-point  . (*) 
C <oo ' 

We define    Z. to be the set of strings corresponding to the 

variable   Y.     (which is sane   X.   .    or   X    itself)  obtained in not more 

than    c    steps of the computations of the schema    S     (for all Herbrrjid 

interpretations)  where a "step" is defined to be the execution of the 

ctarx statement,  an assignment statement,  or a halt statement (i.e., 

not loops or predicate tests).    By definition, 

U     Zi c 
C<o     l*G 

is the set of strings corresponding to the variable    Y.    in all possible 

computations.    We have to show that 

h-'i    Zi,c      ' 
C <oo 

0 
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but for the induction to work we will prove the stronger result,  that 

YJ   =     U       Z. for all    i < m    . 
C <oo 

(i)      To show that   Y. c    U     Z,  n X . Xi c 
 C <co ' 

We will prove that   Y.      c Z ,  and then by equation (*)  the 
i, C    X,K+C 

result follows. 

The start step is trivial as Y. „= cp • For the induction step, 
x,u 

c > 0 , assume it is true for c , to show it for c+1 . 

Case 1.  Y. <= x (where x = [T ] is a constant) is the recursion 

equation for Y. . Now, as the schema is assumed to be free, and all 

statements are reachable, and there are only k start and assignment 

statements, the statement corresponding to Y. must be executed within 

k+1 steps, i.e., Zi k¥c+1  = [x] , and, of course, Yi  c+1 = [x] , and 

hence Y. „., c Z. ^„.i   • x,c+l   i,k+c+l 

Case 2.  Y. <= xY. + ... + xY. ,  (x = [T]) , where the statements 
1     T.      1s 

corresponding to Y. ,...,Y.  lead to the statement for Y. without 
ll 1s 1 

any intervening assignment (or halt)   -- note:    only   Y     corresponds to 

the halt statement.    Since the schema is free,  all paths can be taken, 

and by the definitions of   Y.      ,  and    Z.        we have x,c x,c 

Y.    ,,   = xY.       + ... + xY,     „ i,c+l i^c iß,c 

c xZ.    ..   + ... + xZ.    , .„ 
1 s 

= Z i,k+c+l 

(def) 

(ind hyp) 

(def) 

! 

! 
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(ii)      To show that       11    z       CY 
 c<g,    i^c        i 

We will prove that    Z.      c Y 
i^c ■ i,c 

The start step is trivial, for after zero steps of the computation, 

all Z.^'s are cp . For the induction step, c >0 , assume the result 

is true for c , to prove it for c+1 : 

CaMl.  If y. <= x , then Y.^^ = [x] ,  and Z.^c+1 can only be cp 

or [x] , 

Cas£_2-  if Y <= xY, + ... + xY.  then, as before. 

51 c+1 = xZ-i f.+ ••• + xZ. fdef) 

c xY.   + ... + xY 
i ,c s' 

11,C 
(ind hyp) 

= Y 
i,c+l (def) 

This completes the proof of Theorem 2.7. 

2'2.5.2 Proof of Theorem 2.9 

The value languages of monadic schemas of £(2 var) are the 

recursively enumerable sets. 

We use the fact that a recursively enumerable set is generated by 

the outputs of a Turing machine, and that all r.e. sets can be so 

generated. Luckhajn, Park, and Paterson [1970] have shown how a two- 

variable schema S using a unary function f and a unary predicate p 

can simulate a Turing machine computation such that S diverges unless 
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the Turing machine halts, and if the machine halts then its output can 

be "read off by the values p(y1),p(f(y1)),p(ff(y1)),p(fff(y^), ... 

in some coded form, where y^^ is one of the variables of the schema. 

We modify the schema S so that before halting it resets y  to a 

(y2 *" a) , and then proceeds to apply the appropriate functions to y 

as read off by the variable y^^ , and' then halts, outputing y0 . We 

thus obtain a subclass of 0(2 var) whose value languages are the r.e. 

sets, thus proving the theorem by recourse to the Theorem 2.k  that the 

value language of any schona in (3<? var) is r.e. 

D 

2.2.3.5    Proof of Theorem 2.10 

The value languages of the recursive Schemas  (with monadic functions) 

that are free on the Herbrajid interpretations are the context free languages, 

(1)    We will first prove the simpler part, that is,  that all context 

free languages can be generated. 

Let    G   be any context free grammar over the nonterminals 

PjjPg,...  ,  and the terminals    f^fg, ...  , where    F,     is the start 

symbol.    We assume    G    is in Greibach normal form, that is, all 

productions have the form 

F,   - F.  F.    . .. F.   f. 
1        h X2 lk J 

Suppose there are at most m productions for any  F. , then in our 

schema we will have m-1 unary predicates p.,p_, ...,p , . in the 
i    d m-l 

schema we will allow definitions like      (a)    F.(y) <= T , and also 

(b)    nested    if-then-else's , with the understanding that these features 
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are easily eliminated by      (a)    substituting, and     (b)    adding new 

defined functions, without destroying the property of freedom in our 

particular  construction.    The schema is: 

F0 <= F1(a)   , 

and for each   P     in   G ,   if there are   n -productions for   F    • 
i  ' 

^i -F        F ...  F        f. 
1        1*1    1,2 1,1^ J1 

Fi-Fn,lFn,2 •••Fn,k
fJ 
n ^n 

then the corresponding defined function in   S    is: 

F.fr) <=if P^y) ^enF^^g.-.p^ (f. (y))) 

else 

SiSS if P^y) thenF (...(f       (y))) 
' •'n-l 

elseF      (...(f    (y)))      . 
Jn 

It is easy to see that this schema is free, and its value language 

equals the language generated by the grammar   G . 

(2)    We now prove that the value language of any free recursive schema 

is context free. 

Given a free recursive schema   S   using only monadic base functions, 

we construct a context free grammar   G   such that the value language 

of   S    is the same as the language generated by   G ,      S    has the form 

J 

. 

■. 

O 
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S:    F0<=To05 

F-L^Z) <= if a.  then T,  else f • 

Fk(y,z)  <= if a   then f.   else f' 

We will assume that no short-cut notation is used; for example,   if   F 

returns Just one data value,  to obtain it we must write    Y  (F(...)) 

instead of Just    F(...)   .    Similarly,  if   ^   returns a vector that 

matches the argents for    F2 , we must write    ^(Y^C.. O)^^^ ...)), 

instead of   FQ(F1(,..))   . 

The teminals of the grammar   G   to be generated are the unary 

function symbols of   S  .    The nonteminals have the form 

(Wk) 
which has the following significance: if the defined function F. is 

entered with any string x for its k-th data argument, then (Y.,F.,y ) 

represents the possible strings x« that could have been added to the 

left of x such that the i-th data argument of F. can exit with this 
J 

value (i.e., x'.x ). The other type of nonteminal is 

(Y^F.) 

which represents the strings Y.(F.(...)) could exit with no matter 

what the arguments. 

To construct G , we first define the following notation: 

[T] 
yi 

where   T    is my term (which may use the defined functions)  to be a set 

of strings as follows: 
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(1) for any zero-ary function   a : [a]      = m 
yi 

(2) for any    y.   : [     .      = ^   */ 
""     «7 4 

and for    j / i 

(5)    for any unary    f : 

[yü]y. =<p 

[f(T)L =f.[T] 
"'i      ^i 

(U) and  lY^FCT^,,...))]  . U(y.,F,yk).ITk] 

for all k varying over the data arguments of F . 

And similarly,  [T ]0 is defined as follows: 

(1) for any zero-ary function a :    [a] = A 

(2) for any y. : [y^ = ^ 

(3) for any    f : [f(T)]o = f.[T]o 

ih)    and      [YJ(F(T1,V...))]0 = (YJ,P)+U(Yd,F,yk)4Tk]0 

Note:    we are using both the signs    U    and   +    (for strings) to mean 

union, 

As an example 

[Y^FCM^^Y^Gdyy^a^fy )),hy ))] 5/^y/Jy 
5 

(Y2,F,y2)(Y1,G,y1) 

+  (Y2,F,y5)h 

and 

!7 
Note that the notation is a little informal.    We should strictly 
write    [y^    = {A}  ,  etc. 

U 

U 

o 

L.) 

0 

o 
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[Y2(F(fg(a),yi(G(y5,y1,a,fy5)),hy5))]0 

=  (Y2,F) 

+ (Y^F^y^ fg 

+ (Y2,F,y2)(Y1,G) 

+ (Y2,F,y2)(Y1,G,y3) . 

f Given the free schema, we can separate the defined functions into two 

classes — those that can eventually return, and those that must diverge. 

This can be done by building up the set of functions that can halt; 

I ^ starting with the null set: 

F(...) <= if a then T else f' 

F can halt if 0! can halt (i.e., all defined functions in it can halt) 

and so can one of T or T' . 

The construction of the grajnraar G ignores all boolean variables, 

all tests, and all defined functions that must diverge. If the start 

I • 
function F- diverges, then the language is the empty set. Otherwise, 

we build G as follows: 

|# (1)     F0<=T() 

The start nonterminal in G is (Y,,Fn) : 

(2)     Fi(y1,y2, ..^z^Zg,...) <= if a then T else T' 

where F. is a function that can halt (which implies that a   can halt). 

Then, for all Y.,yk (that make sense for F. ), if T = <T..,T?, ...) , 
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and it can halt, then 

(VFi'V - ''A, 
and 

(Yj'Fi> - tVo 

and similarly for T' . 

We can show that G generates the value language of S on lines 

similar to the proof of Theorem 2.7. We consider a Herbrand interpre- 

tation over the given base functions and predicates and also over a 

special set of zero-ary functions b^b,,,...^ where n is the number 

of variables in S . Then, for any F. and integer c , we associate 

the sets (Y.jF.jy^ which stand for the possible strings x , such 

that if Fi(y1,y2, ...^z^Zg,..,) is entered with y, = b, , yp = bp, ... 

then YJ(Fi(...)) exits with value x.bk (for all possible values of 

the zi
,s ) without executing recursive calls of depth more than c . 

And similarly, (Y^F^ stands for the strings x such that 

yj(Fi(...)) exits with value x.ak (for any k , and the same arguments 

to F. as before). Note: by the depth of recursive calls we do not 

include recursive calls required to evaluate any test a    in 

We can then show by least fixed-point Fi <= if a then T else T• 

arguments that 

^JVV3^ - WW 
where the right hand side represents the strings generated by the 

nonterminal (Y^F.^) in the grammar G ; and similarly for (Y.,F.) 

Thus L^Y-^FQ) does represent the possible output strings in this 
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augmented Herbrand interpretation (with the additional zero-ary functions 

bj^bg,... ). But the computation for ]'  never computes any element 

x.bi , and hence the possible output strings are the same for unaugmented 

Herbrand interpretations (without the b ,b ,... ) a 

2.2.5.^ Proof of Theorem 2.11 

It is easy to see that all context free languages are generated by 

one-variable monadic recursive Schemas without resets. The construction 

in the previous section applies. 

To show that only context free languages are generated, let S be 

a given one-variable recursive schema such that no atomic term has a 

defined function, and S has no resets. We define the depth |T j of 

a term T (constant or variable) to be the depth of nesting of function 

symbols  ja. j = |y.| =0 , jf^,.. .,Tn) j = max( JT^, ..., |Tn|)+l . Let k 

be the largest depth of any term used in S . A specification state Q 

of S defines all predicates on all terms T() and T(y) such that 

P () |J jfCy) j < k . In addition, it may also specify y = T()  for some 

T() with |T()| < k — in which case the values of predicates respect this 

specification. Now, given the specification state Q for y , it is 

clear how it may be updated, i.e., we can determine all possible Q,' 

for f(y)  (for any unary function f ). Note that the updating is done 

only for the Herbrand interpretations. Also note that n-ary predicate 

symbols and equality tests are handled by this mechanism. 

Without loss of generality we can assume that in S , no defined 

function is passed any boolean arguments -- any schema S can be trans- 

lated into this form by creating many copies of each defined function, 

and testing all boolean arguments of the (old) function before the (new) 

function is called (this yields nested if-then-else«s which can then 

63 

'.■-.''.iWdii 

^,—^.^.-..^-    rrtMiriiiirtfliiliiliiiiliiliil ....;.. .^.^..w..^...^..^..,:..^^. ^-  ■..■.■^..u:^.*.*:*... -...-.!_ .....^.^w 



■ 

be eliminated). Then, as the schema cannot test any booleans returned 

by functions, we can simply remove them and get an equivalent schema 

that uses no booleans at all. 

Now, from the schema S we construct a context free grammar G 

as follows. The nonterminals are of the form 

(QSF„Q) r 

O 
where   ^Q«    are specification states,  and there ie a special start 

symbol:    (FQ)   .    Given a term   T    and specification states    Q«.,Q   we 

define a set of strings  (notation   ft'^L)  of terminals and nonterminals 

of    G    as follows: 

(1) Vla^L is A if the predicates over constants agree on 

Q and Q' , and in Q- , y = ai is specified; otherwise 

Q'ETJQ    is   cp . 

(2) Q'tyL      is   A     if   Q-  = Q ; otherwise it  is    (p  . 

(5)    Q'tf-^T)^    is    u ^^"[TL   where the union is taken over 

all   Q"    that can be updated to   Q'    by applying    f.   . 

(10    Q'tP^T)^    is    U (QSP^Q'O.^'ETL    for all   Q". 

We can now define the grammar    G . 

(!)    FQ ^ T    is converted into the following productions for the 

start symbol    {F )    of   G : 

(F0)  -Q'[T]Q 

for all   Q^Q  . 

(2) Fi(y)  <= ±fx1 = T2 then T else T •   . 

For all   Q,    in which the terms   T,    and   Tg    are equal (note: 

6h 

fcfc^- ^.— ... .,    .,.^.... , ^.^^^-^ ^^^^^^.^-^-^j^—,—,..-     —,J..J—^■,.— —.——^—-,.>.„,.,.■—_ 



  

• 

T,, T0 do not use any F. ) 

for all Q' , and for all other Q : 

(QSF^Q) -Q'IT'JQ • 

(3)     Fi(y) <= if p (T1,T2,...) then T else T' 

For all Q in which $.{■:,':,,..)    is true: 

(QSF^Q) -Q'MQ 

and for all other Q, : 

This lonma includes the following simple generalizations over a 

similar result of Garland and Luckham:  (1) boolean variables, 

(2) tests on constant terms and terms using the variable y , 

(3) equality tests, and {h)    n-ary predicates. 

2.3 The Power of Classes of Schemas 

2.3.1 On the Number of Variables in Schemas 

It is evident that any flowchart schema S which uses n boolean 

variables can be transiatea into an isomorphic (and hence equivalent) 

flowchart schema with no boolean variables. This can be accomplished 

by creating at most 2  "copies" of S , one copy for each possible 

set of values for the n boolean variables . 
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Similarly, any recursive schema can be translated into an 

equivalent recursive schema in which no argument of any defined function 

is a boolean variable. We now wish to show that the same is true for 

the values returned by the defined functions as well. In fact, we will 

show a stronger result: that any recursive schema S1   can be translated 

into an equivalent recursive schema S2 which uses only data values, 

and each defined function returns just one value. It is possible, however, 

that the number of operations executed by S2 may be an exponential of 

the operations of S^^ (for any interpretation). 

Theorem 2.13.  Eveiy schema S-^R)  (or in ^(R, =) ) can be effectively 

translated into an equivalent schema S? in the same class such that 

only data arguments are passed to each defined function in S , and each 

defined function returns exactly one data value (and no boolean values). 

For the proof see Section 2.3.h. 

Now that we have succeeded in restricting each defined function to 

returning just one value (while retaining the power of all recursive 

Schemas), the natural question that arises is whether we can also restrict 

the number of arguments to be one, or if not, to two, or to some integer n 

And a similar question may be asked for flowchart scheraas. Value language 

considerations show, for example, that one-variable flowchart Schemas 

cannot give us the power of all flowchart scheraas — the value languages 

are regular (for raonadic functions), whereas for two-variable Schemas 

the value languages are all the r.e. sets. The following theorem puts 

such speculation to rest. 

:> 

0 
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Theorem 2.lU 

(a) (3(0 var) H C(R,0  var) , 

(b) C-O ^ C(R,1 var) , and 

(c) C^n+l var) ^(3(R,n var) for n > 0 

Part (a) of this theorem is trivial. 

Part (b) was shown by Paterson and Hewitt [1970] by showing that 

no flowchart schema is equivalent to the following recursive schena Sa 

(we use nested if-then-else's with the comment that they can be 

removed to obtain a strictly "legal" one-variable recursive schema): 

Sa: F0 <= F(a); 

F(y) <= if p(f1(y)) then if p(f2(y)) then y 

else F(f2(y)) 

else if r(F(f1(y))) then F(f2(y)) 

else a 

This schema checks to see if there is an  infinite sequence 

f. ,f. ,f. .... ,  each i. = 1 or 2 , such that all the tests 
i^ i2 i5 J 

p(f. (a)),p(f. f. (a)),p(f. f. f. (a)),...  are false. The schema 
xl x2  11      15 2 ^-l 

halts only if no such sequence exists. 

Part (c) of this theorem can be shown by demonstrating that the 

following problem can be solved with an (n+1)-variable flowchart schema, 

but not with any n-variable recursive schema (without equality). The 

problem is: 

" if there exist integers i,j, 0<i<n, 0<J such that 

p(gJf (a)) is false then halt (with output a ), else diverge ". 

For details, see Section S.J.^- 
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Flowchart 
Schemas 
(n var) 

dB) 

Recursive 
Schemas 
(n var) 

Figure 2.1 

The consequence of this theorem is that we can draw the diagrajn 

relating flowchart and recursive Schemas. In Figure 2.1 an arrow 

A -• B indicates the relation " B is strictly more powerful than A ". 

2.5.2 Equality Tests 

A problem is said to be a Herbrand problem if it can be solved by 

some Herbrand schema. Otherwise, if it can only be solved by an 

inherently non-Herbrand schema it is called a non-Herbrand problem. 

All Schemas in C-(pds,q,list,A), (3(R) are Herbrand Schemas, and none 

of them can solve any non-Herbrand problem. However, there exist some 

very simple non-Herbrand problems which can be solved by schemas in 

(3( = ) , for example, given two zero-ary functions a1 , ap the problem 

P = " if a1 = a then halt (with output a..),  otherwise diverge " 

0 

. 
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can be solved by the schema 

START y - a.; 

if a1 - a2 then ilALT(y)  else LOOP    , 

danonstrating that   C-( =)   ^ C.(pds,q,list,A)  ,  and   d =)   £ c(R)   • 

To demonstrate the power of equality tests we present two other 

(more interesting)  non-Herbrand problems that can be solved by Schemas 

in    C-CA, =)   . 

Example 1 — Inverse of a Unary Function 

The problem is: 

Pb = " given a unary function symbol    f ,  a zero-ary function 

constant    a ,  and a finite number of other n-ary function 

symbols,    n > 0 , write a program schema that under any 

interpretation will yield a value of    "f"1(a)"    as output. 

That is,   it should find an element    y    that can be 

expressed in terms of the given function symbols such 

that    f (y)   = a  ; and if no such element exists, the 

schema should diverge ". 

This is a non-Herbrand problem because for no Herbrand interpretation 

does there exist an element    y    such that    f (y)  = a ,  and hence,  if any 

Herbrand schema    S    claims to solve it,    S    diverges on all Herbrand 

interpretations,  and hence on all interpretations  (by Theorem 2.2)  and 

this is certainly not the desired behavior.    A schema that solves the 

problem is presented in Section 2.3-h. 
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Example 2 - Herbrand-like Interpretations 

Given a set of function and predicate symbols of which there is at 

least one zero-ary function, we say that an interpretation I for this 

set is Herbrand-like if there exists some Herbrand interpretation H 

such that there is a 1-1 homomo^hism from H into I . m other words, 

an interpretation I is Herbrand-like if and only if for every pair of 

distinct terms ^ and T2 (made up of the given functions) the 

elements in I corresponding to ^ and tg are distinct. 

Now, consider the following problem: 

Pc = " given an interpretation for a set of function and predicate 

symbols, of which at least one is a zero-ary function a , 

determine if the interpretation is not Herbrand-like. if 

the interpretation is not Herbrand-like then halt with 

output a , else diverge ". 

This problem is inherently non-Herbrand in nature because a schema that 

solves this problem must diverge for every Herbrand interpretation. But 

for certain other interpretations the schema should halt. A schema with 

equality tests that solves the problem Pc is presented in Section 2.3.U. 

The problem Pc is an abstract model closely related to certain 

problems in real life programming. As an illustration, consider a 

directed graph (with an identified root node) in which each node has two 

identified pointers leading from it. Pointers may lead to a terminal 

node "NIL". The problem is to determine whether or not the given graph 

is a tree. This problem may be modeled by the above problem with two 

monadic functions representing the two pointers, and with the difference 

, 
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that the search for the equality of two "terms" is conducted not for the 

entire set of all terms, but for those terms not representing NIL. The 

correspondence is that the interpretation is "Herbrand-like" for this set 

of terms if and only if the corresponding graph is a tree. Another 

related problem is that of determining if a given LISP list is circular. 

Here, the two pointers from a node represent the car , and the cdr 

of the list represented by the node. 

While equality tests are necessary to solve some non-Herbrand 

problems, equality can be used to solve Herbrand problems as well. 

We give two examples of Herbrand problem which are solved by Schemas 

with equality. 

Example 3 — Expose the False One (or, the Witch Hunt) 

The problem is 

Pd = " if there exists an element x of the form g^f^a) , 

i,J >0 , such that p(x) is false, then halt (with 

output a ), otherwise diverge ". 

Our discussion on Theorem 2.lh  indicates that no flowchart-or recursive 

schema (without equality) can solve this problem. However, there is a 

non-herbrand schema in (3( =) that can solve it -- see Section 2.5A. 

And yet, it may be noted that Pd is a Herbrand problem for it can be 

solved by a schema in a(c) . 

Example h —  Translation of Flowchart Schemas with One Counter 

The recursive schema 

F0 <= F(a); 

F(y) <= if p(y) then f(y) else F(G(f(y))); 

G(y) <= if q(y) then g(y) else G(G(g(y))) , 
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is a canonical form for schemas in   ^(lc,=)    in that any schema in   0,(10,=) 

is equivalent to the above schema by giving appropriate meanings to 

a > f > S ^ P , q   .   (Note:    these functions and predicates need not be total, 

but, each can be implemented uoing only iteration.)    This recursive schema 

can be translated into an equivalent schema from   C'lc)   .    Plaisted [1972] 

showed that it could also be translated into a rather large schema from 

(3()   •    However,  the use of equality gives a simple schema equivalent to 

the recursive schema.    And,   in fact,  this can be used as a basis to show 

that any schema in   C.(lc)    or    £(lc,=)      can be converted quite easily 

into an equivalent schema in   (3( =)   .    For details,  see Section 2.5.1K 

Now,  the relations between classes of Schemas with and without 

equality can be summed up as follows: 

Ü 

Theorem 2.15.  ^(features) < ^(features, =) , where by "features" we 

mean such things as variables, counters, stacks, queues, lists, arrays, 

recursion, but excluding equality itself. 

2-5.3 Counters, Stacks, Recursion, Arrays, etc. 

In this section we wish to demonstrate the relationships between 

the various classes of schemas, and in particular we wish to show the 

partial ordering suggested by Figure 2.2. 

C(R, =) 

CCR) 

cU, =) 

c() 

Figure 2.2. The power of schonas 
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In the figure, all arrows A - B indicate that " B is strictly more 

powerful than A ". Classes that cannot be linked by the transitive 

closure are indeed unrelated, for cxurnple, C^A) £c{-)  ,  and OX ) t^)   ' 

The following suffice to prove the relations shown in Figure 2.2 

above. 

Theorem 2.16 

{1-k) (XU) >£{) , i3(R,=) >^(=) , C^A) >Cic) , ^(A,=) >C>(c,=) . 

(5-8) (l{c) >Ci) , fl,(c,«) >C{=) , ^(A) >C<R) , ^(A,=) >ö(R,=) • 

(9-12) C/=) >C() , a(R,=) ^^(F:) , G.(c,=) >C(c) , ^(A,=) > ^A) . 

(15-15) ^(A) £&=)  , C<R,=) £C-(c) , ö(c,=) ^^(R)  • 

Of these, (3)-(6) and (9) - (12) are immediate, (l) and (2) have been 

known for a long time -- see McCarthy [1962], and (7), (8) follow easily 

from a similar result due to Constable and Gries [1972] and using 

Theorem 2.15. Part (13) is immediate because schemas in (3(=) can 

solve non-Herbrand problems (e.g.  Po in Section 2.3.2) and these 
cl 

cannot be solved by schemas in ^(A) . For proofs of (11+), (15), see 

Section 2.3.^. 

Theorem 2.17 (Cne-counter Theorem) 

(a) Cl) = ^(lc) , and 

(b) £(=) H (3(lc,=)  . 

This was proved by Plaisted [1972]. Intuitively, the reasoning is 

that given a one-counter schema, one can get rid of the counter and 

replace it with a few variables which can then simulate the counter by 

"coimting" on the interpretation itself, that is, on the values taken on 

by the other variables of the schema along the path of the computation. 
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Theorem 2.18    (Two-covmter Theorem) 

(a) Q,{c) = a{2c)  , and 

(b) C(c,=) =ö(2c,=)     . 

To see that c(c) = C-(2c) , and C.(c,=) = C(2c,=) , observe that 

two coujiters are adequate for simulating the behavior of n counters 

for any   n    (Hopcroft and Ullman [1969],  pg. 100)  as follows:      let 

cl>c2' " ''cn   be the    n    count61"3^  snä-   c-i  > cp   be the two that are to 

c' c' c' c^    c1 

simulate them -- the value of c  is to be 2  3  5 ^ 7  ... T, n 
1 n 

where TT  is the n-th prime number: then, incrementing d  is like 

multiplying c, by n. ,  decrementing c! is like dividing c, by TT. , 

and testing c| for zero is like testing if rr. divides c1  -- all 

these operations can be performed by using c  to temporarily store an 

integer. 

Theorem 2.19 (Recursion vs. a Stack, and a List) 

(a) £(R) s C(l pds) s c.(l list) , and 

(b) o(R,=0 = (3(1 pds,-) = CJ<1 list,=)  . 

That a pushdown stack is at least as powerful as recursion is not 

unexpected -- the concept that recursion can be implemented by a stack 

has been around for a long time in the theory of compilers.    The converse, 

that recursion is as powerful as a pushdown stack is perhaps not so 

obvious; but it is certainly not mysterious considering that in recursion 

we allow the defined functions to return a vector of arguments  (see, 

however.  Theorem 2.13).    Relating stacks to lists.,,  it is clear that a list 

can do anything a stack can.    That one list is not  (strictly) more 

7^ 
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powerful than a stack is interesting, but is not of any overwhelming 

9 importance because this result seems to depend on the kind of basic 

statements list schemas are endowed with. 

Our last theorem deals with the equivalences of a large number of 

• classes of schemas,  sometimos also called the "maximal" classes. 

Theorem 2.20    (Maximal Classes of Schemas) 

g (a)    C.(pds,q,list,A) 3 cAl pds,lc)  s ^(2 pds) = £(1 list,lc) 

=- C{2 list)  s £(iq)  = ^(IA)  ,  and 

(b)    C(pds,q,list,A, =)  = ^(1 pds,lc, =)  = C-(2 pds, =)   = (3,(1 list,lc, =) 

s e(2 list, = )  s e(l(l, »)  s ^(IA, = )     , 

o 

5 

To prove this theorem it  suffices to prove 

ö(pds,q,list,A)  H C(l pds,lc)   = ^(Iq)     ,   and 

G.(pds,q,list,A, =)   s (3,(1 pds,lc, =)  = C(lq, =) 

because a list is at least as powerful as a stack, and a stack is at least 

as powerful as a counter; and further, the operation of a stack can be 

simulated with an array (with counters to subscript it, of course). The 

proof is indicated in Section 2.3.k.    Note that to use an array, at least 

one counter is required; and one counter is also sufficient in that the 

class of schemas in (3{1A) with just one counter is as powerful as (3,(1A) 

itself, and similarly for <!.(1A,=) . We may also remark here that for 

schemas restricted to monadic functions, flowchart schemas augmented with 

two variables have all the power of the maximal classes, that is, 

(3(2c,monadic fhs) s (3(pds,q,list,A,monadic fns) , and 

(3(2c, =,monadic fns) s C,(pds,q,li8t,A,=,monadic fns) . 
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It is interesting to label the vertices in Figure 2.2 in another way 

as shown in Figure 2.5. This figure can be treated as a unit cube where 

the axes are labelled as follows: 

x-axis: "add a counter", 

y-axis: "delete a counter, and add a stack", and 

z-axis: "add equality tests". 
ü 

aii pds, =) 

a{i pds) 

C(lc) = cO 

^(lc, =) sC(«) 

(3(1 pds,lc, = ) 

C(lc) 

C(2c, =) 

G.(2c) 

C(2c) = C(c) 

C(2c, =) se(c, =) 

a{l pds) s (3(R) s (3(1 list) 

(3(1 pds, = ) 3 ^(R, = ) = C(l list, =) 

C(l pds,lc) = C{A)  = C(l list,lc) H (3(2 pds) - C(2 list) = C(lq) 

s CJ(1A) s ^(pds^^ist^) 

(3(1 pds,lc, =) = c<A, =) 5 c(i list,lc, =) s C.(2 pds, =) s C(2 list, =) 

= C(lq, =) = C(1A, =) = C(pds,q,list,A, =) 

Figure 2.5 
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Note that the Figures 2.2 and 2.5 are "isomorphic". 

Intuitively, there seem to be three inherent factors that 

determine the power of Schemas. 

(1) The amount of data space.  Flowchart Schemas, even with counters 

and equality tests have a fixed finite amount of space, that is, the 

number of data variables. It is for this reason that they cannot compute 

very larGt- terms that require the saving of an arbitrarily large number 

of data values. For example, no schema in (3.(c, =) is equivalent to 

the recursive schema 

F0 <= F1(a); 

F^y) <= if p(y) then h(F(f(y)),F(g(y))) else y . 

Recursive Schemas act as if they have an unbounded amount of space, as 

do scheraas with stacks, queues, lists or arrays. The amount of space 

available to a schema is, however, not a limitation when only Schemas 

with monadic functions are considered since in that case any (constant) 

term can be computed with only one data variable by applying the proper 

base functions in the right order. 

(2) The control capability.  Boolean variables and counters are 

examples of control features. We have seen, however, that boolean 

variables add no inherent power (except to make a schema more compact). 

And two counters add as much control capability as one might want because 

we can simulate the computation of a Turing machine (with zero input) . 

The question then is whether or not one counter adds any power. The 

answer is that it depends on the schema. For example, the addition of 

one counter to flowchart scheraas adds no power, whereas the addition of 

a counter to C,{lc)  , or to (3,(1 pds) does indeed add power. Adding a 
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counter to f»(2 pds) or to ^(lq) , or to the corresponding ones with 

equality, adds no power because these classes seem to be omnipotent 

anyway as far as control capability is concerned. The features of 

recursion and a pushdown stack act as if they provide some control 

capability (to flowchart schemas), but not as much as two counters. 

Similarly, equality tests too provide some control capability as 

evidenced by the fact that a schema in (3.(=) can solve problem P, 

(Example 5 in Section 2.5.2) which cannot be solved by <l{R)   . 

(5) The test capability.  In our standard classes of Schemas we placed 

no restriction on the kind of tests (on data items) allowed except as 

to whether equality tests were permitted, or were banned. Another 

restriction that could be placed is the maximum depth (of nesting of 

function symbols) of terms allowed. For exomple, if we allow only tests 

of the form p(y) and p(f(y)) in or.e-variable monadic Schemas without 

resets, we would obtain a class strictly more powerful than the lanov 

Schemas (which allow only p(y) ). In general, we find that 

C^n  var, depth d+1) > (3(n var, depth d) , 

and 

C-(n+l var, depth d) > (3(n var, depth d) 

These can be shown by constructing a schema quite similar to the one 

used in the proof of Theorem 2.1^. 

Ü 

O 

2.^.h    Proofs on the Power of Schemas,  and Detailed Examples 

2.5.U.1    Proof of Theorem 2.15 

The theorem states that every schema    S,e(3(R)     (or in   c.(R, =)  )  can 

be effectively translated into an equivalent schema    3p    in the same class 
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-Tr      , 

such that onJ.y data arguments are passed to the defined functions in SQ , 

and each defined function returns just one data value and no boolean 

values. 

Proof: 

% 

I 

S 

y 

% 

% 

Step 1:  S^, -• S, .  It is trivial to see how S, can be converted into 

an equivalent schema S, such that in S7 no boolean values are passed 

to any defined function. This can be done as follows: if any defined 

function F in Z^    is passed m boolean variables, then in Sp we 

have 2  defined functions correspc: ling to F , one for each possible 

set of values the boolean variables may c^ke. Then, if in any function 

definition of S , if F is called with some arguments, then the proper 

function in S  is called without any boolean values. This may involve 

testing the boolean arguments before the call (as they may be predicate 

or equality tests) yielding nested if-then-else's , which, of course, 

can then be eliminated by using additional defined functions. 

Step 2:  S, -* S^ .  Now, given the schema S, , we wish to convert it 

into an equivalent schema S.  such that defined functions return no 

boolean values, only data values, and all arguments are data values too. 

To do this we will change the defined functions in S  so that they 

return data values instead of their boolean values. These data values 

will be treated as if they are really booleans by applying some fixed 

test on them. 

We now have the problem of discovering what data values are to 

correspond to "true" and "false", and what fixed test we are going to 

use. This is the concept of finding a "locator" (Constable and Gries [1972]) 
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In the class (j(R*=) this is trivial, for we can simply test to see 

if all zero-ary functions are equal. If they are, we app3y all base 

functions to them to see if we can generate a new element. If not, then 

all terms must yield the same value, and now the outcome of the computation 

is quite easily determined. Otherwise, we will find two constant terms 

T, , Tp (of depth at most one), whose values are distinct. Then we can 

simply use T, to stand for "true", T« to stand for "false", and the 

test on a value x to see if x is true or not is " x = T, ". 

In the class CCB)  , on the other hand, our problem is a little 

more difficult. We proceed on the lines of Consteble and Gries [1972] 

to build a flowchart with "exits", which executes the computation of the 

recursive schema until it tests some predicate more than once, and it turns 

out to have different outcones (true, and false) in two of the cases; in 

which case the flowchart exits (S. has one copy of S, for each exit). 

Suppose p,(x,,...,x, ) is true, and p.(x',...,x') is false then the 

recursive schema can begin normal operation, and each defined function 

returns the set of vectors x,, ...,x.  instead of returning a true value 

and returns x',...,xJ* instead of a false value. Of course, each defined 

function has to be passed the data values x.,.. .,xk.,x',.. .,x' as arguments 

(as well as the standard arguments). It is easy to see that a flowchart 

can simulate the computation of the recursive schema because if a function 

F. is called recursively within another call to F. then the arguments 

of the earlier call do not have to be remembered for the schema would exit 

before the second call "returns". Now, of course, we convert the flowchart 

locator into recursive definitions to get the required schema S. . 
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Step 5:  S. -• S .  Finally, we translate S,  into the desired 

schema S_ where each defined function returns just one data value 

(and all arguments are data values too) . This is done as follows. 

Suppose any defined function F in Sr returns a vector of n data 

values, then we replace it hy n functions (in S- ); call them 

F,,...,F . Then, any terra like Y.(F(...)) in S.  is replaced by 

F.(...)  in S„ ; and of course, each F. returns just one value — the 

i-th value that F would return. That F.(...) does indeed equal 

Y.(F(...)) for all arguments in the computation of the recursive Schemas 

can be proved by induction on the depth of recursion, simultaneously for 

all defined functions; but we dispense with such formalism which doesn't 

add to the intuitive concept of the proof. 

This completes the construction, and the proof. 

^ 

:• 

'■ 

2.3.h.2    Proof of Theorem 2.lk 

To prove that there exists a schema    S    in   ^(n+1 var)    such that 

no schema in   r!.(R,n var)     is equivalent to it. 

The desired schema    S    is: 

S: START (y^y^ • • .,yn) - <a,a, ...,a); 

y1 - f (y0); y2 - f (y^; • • • 5 yn - f (y^); 

while p(y0) A p(y1) A ... A p(yn) do 

(jQfV^ •">Yn) - <g(y0)^g(y1)^-->g(yn)>; 

HALT(a)  . 

Suppose there is a schema S, in (3(R,n var) that is equivalent 

to S . Without loss of generality, assume that in S, no defined 
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function is passed any boolean arguments (see step 1 in the proof of 

Theorem 2.13). Also, without loss of generality assume that S, has no 

function other than a,f,g , and no predicate other than p (Theorem 2.1). 

Now, consider the computation of S1   on a Herbrand interpretation in 

which all p(x) are true. Then the schema Sj^ must be in a "loop", that 

is, for some defined function F ,  F is called at successively larger 

recursion depths (possibly with different arguments) - this is because 

if F calls itself recursively then the schema must loop (because F is 

passed no booleans, and the only tests, other than those on booleans 

returned, are P(T) ). We define the "type" of the elements of the Herbrand 

domain as follows - any element of the form f ^a) ,  i < n , is said to 

be of type (0,i) , any element of the form gJ'fi(a) , j > 1 , i < n , 

is said to be of type (l,i) , and all other elements have type (0,n+l) . 

Now consider two calls to F in which the types of all variables repeat. 

Then after the same interval they will repeat again, and again, and so on, 

because exactly the same sequence of "statements- are being executed. We 

call this a cycle of the computation. Now, as F has at most n arguments, 

there must be some type number (l,m) , 0 < m < n , such that no argument 

in F has type (l,m) . Now, if we consider the finite interval in a 

cycle, only a finite number of values of type (l,m) can be tested (by 

the predicate p ) during this time, anr^ the same values are tested over 

and over again. Hence, as there are only a finite number of operations 

executed before the cycles start, the whole computation can check only a 

finite number of values of type (l,m) . Now, if we change the interpretation 

slightly by making the predicate p on one of the untested values of type 

(l,m) to be false, then the computation of S1 must be the same as before, 

. 
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that is,    S,    diverges,  whereas    S    halts on this  interpretation 

contradicting the assimption that    S      is equivalent to    S  . 
G 

$ 

♦ 

2.5.U.5    Example 1 -- Inverse of a Unary Function 

For simplicity we assume that the only functions are a single 

zero-ary function    a ,  the given unary function    f    and a binary 

function    g .    The possible terras are therefore: 

a, f(a) , g(a,a) , f(f(a)) , g(f(a),f(a)) , g(a,f(a)) , ...     . 

The schema for any other set of functions is similar to the one for this 

particular case. 

Symbols c ,c ,c,, stand for counters. Strictly, the only operations 

allowed on counters are adding and subtracting one, and testing for zero. 

For convenience, however, we will also allow other statements such as 

c - 0 , c •- c  , and tests like c. = c . , as it is clear that these 
i       i   j i   J 

operations can be performed using only the legal operations and 

addit i onal c ounter s. 

(1) —- START <y, z> <- <a,true>, A - <a,true>; 

A[0] - y; 

(2) — c1 -c2 -0; 

(3) — REPEAT: <y,z)-A[c1]; 

(k)     — if f(y) = a then HALT(y); 

c2 - c2+l; A[c2] - <f(y),z); 

c2 - c2+i; A[C2] - <g(y^y),z>; 

c5 *" Cl; 
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(5) 

'5 *" c5"1; 

while c, / 0 do 

begin 

c. 

C2 " C2+1' A[C2] 

C2 *" C2+1; A'C2] 

end; 

C-L - c1+l; 

<g(A[c5],y),z> 

<g(y*a[c5]),z) 

goto REPEAT. o 

After the initialization phase (lines (1) to (2)) (Ignoring all booleans) 

A[0] = a , c1 = c2 = 0 . 

After completing one pass through the outer loop of the program (lines 

(3) to (5)) 

A[l] = f(a) , A[2] = g(a,a) , ^ = 1 , c2 = 2 , 

and after a second pass 

A[5] - f(f(a)) , A[10 = g(f(a),f(a)) , 

A[5] = g(a,f(a)) , A[6] = g(f(a),a) , c^^ = 2 , c2 = 6 . 

The algorithm works as follows: two pointers c1 and c  reference the 

array.  A[c1] represents the "current" value. If the current value is 

not an inverse, as determined by line (k),  it is composed with values 

preceding it in the enumeration by function applications, and the new 

values obtained are added to the array. 

It can be shown by induction that the process of enumeration 

generates and tests each possible term exactly once. This means that 

an inverse will be found if it exists. The point at which the test of 

the inverse is made could be changed to effect time efficiency but 

without altering the main features of the program. 

Ü 

o 

o 
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2.3.h.k    Example 2 -- Herbrand-like Interpretations 

We assume that the only functions are a single zero-ary function    a , 

a unary function    f    and a binary function    g  .    Therefore the set of 

terms includes 

a ,  f(a)  ,  g(a,a)   ,   f(f(a))  ,  g(f(a),f(a))   ,  g(a,f(a))  ,   ...  , 

that is,  the same as in the previous example.    The required schema is: 

(1) 

(2) 

(5) 

W 

- START (y,y',z> - <a,a,true) , A - (a,true>; 

A[0] - <y,z>; 

- e^c^O; 

- REPEAT: <y,z) - A[c1]; 

r ch - cv 
while c. ^ 0 do 

begin 

- c.-l;   <ySz> - A[c,,];   | k1 

I 
if y'  = y then ILALT; | 

I 
end.; | 

c2 - c2+l; A[c2]  - (f(y),z>j 

c    - c +i; A[c0] - <g(y,y),z); 2 ^■n       ' "2 

C5 -c^ 

while c.z £ 0 do 

begin 

c3 ^ c5. ■i; 

C2 " c2+1'  A[C2] "  <s(AtC5]^)^z>; 

c2 *" c2+1; A[c2] - <s(y^Afc5])>z); 

end: 

(5) 

"-i   Cr±' 
goto REPEAT. 
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This program is quite similar to the previous one in the manner of 

enumeration of terms.    The fact that each term is generated exactly once 

is used in making the test  (h)  to check if a value is repeated. 

O 

S.3A.5    Example 3 — The Witch Hunt 

"To find an element   x    of the form   g^a) ,  i, j > o ,   such that 

p(x)    is false".    The desired schema of   £(=)    uses seven variables - 

ya * yb ' yl ' y2 ' y3 ' ^ ' ^5  • 

(1)     - 

(2) 

(5) 

W 

(5)     -- 

START <ya^yb>y1*y2,y5,y^,y5> - <a,a,a,a,a,a,a>; 

if -i p(a) then HALT(a); 

NEXT: yj^ - ya; 

while y^L / yb do 

tegln i£ y! = f(yb)  then goto RESET; 

yl *" g^yl) 

end; 

11 yb = 
f(yb) then goto RESET; 

yb-f(yb); 

if i p(y.b) then HALT(a); 

(yj/yg) - (ya,ya>; 

while y;^ / yb do 

begin y1 - g(y1) ; ^  - f (y2). 

y5 *" yl; yh  *" y2; 

while y3 ^ y^ do begin y^  - g(y5); y^ 

!£ -i P(y^) then HALT(a); 

end; 

goto NEXT; 

g(y4) end; 

0 

o 

o 

o 

o 

o 
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(6) 

t 

« 

(7) 

RESET: (y^yg) - <ya»ya); 

FAIL: y1 - g^); y2 - f(y2); 

y5 - y1; y^ - y2; 

while y5 / yb do 

begin y^ - y2; 

while y,- /^ y^ do 

begin if y5 = gCy^) then goto FAIL; 

y5 *- g(y5) 

end; 

if y^ = gCy^)  then goto FAIL; 

y5 - g(y5); 

2% " sCyij.) 5 

end; 

SUCCEED: y - y0; 

goto NEXT. 

The operation of the schema may briefly be described as follows. 

The schema effectively "counts" on the range of values from y  to y, , 
et D 

all of which are guaranteed to be distinct.    The part of the schema 

between lines  (2)  and (5)  checks to see if counting can be done on a 

larger domain:    from   y      to    f (yO   •    If so, then the "slice" of values 

shown in the figure below are tested to see if the predicate    p    is 

false for any of them. 
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f 

a ya y2 

• 

x^// 

yl • // 

y3A 

// 

yb y 
apply g 

=» apply f 

Z 

:'i 

If, however, the domain from y  to y  cannot be extended, then the 

segment of the schema from lines (6) to (7) resets y  and y. . .; 

2.5.^.6 Example h —  Translation of Flowchart Schemas with 

One Counter 

The recursive schema 

F0 <= F(a); 

F(y) <= if P(y) then f(y) eJLse F(G(f(y))); 

G(y) <= if q(y) then g(y) else G(G(g(y))); 

can be translated to a flowchar!-. schema with one program variable y 

and one counter c . 

O 

O 

o 
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STAET y ♦- a; 

while -i p(y) do 

begin 

y - f (y); 

while true do 

if q(y) 

then begin 

y - g(y); 

i1)  -— if c = 0 then goto DONE; 

(2) — c - c-1 

end 

else begin 

y - g(y); 

(5) — c - c+l 

end; 

DONE:    end; 

HALT(f(y)) . 

O 

i. 

The corresponding equivalent flowchart schema with equality uses 

three variables instead of a counter: 

ya  represents a zero counter, 

yc  simulates the counter, and 

yt  is a temporary variable. 

The idea is that yc simulates a counter by using the value gn(y ) to 

represent the Integer n . Therefore, the statement y - y  stands 

for c - 0 , yc ^ g(yc) stands for c - c+l , and the statements 

[yt - ya; while g(yt) / yc do yt - g(yt); yc - yt ] stand for c - c-1 . 
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We have to be careful,  however.    The term    gn(y )    stands  for the 

integer   n ,    n > 0 ,  only  if for no two distinct    i, j < n    are the 

terms    g (y )    and    gJ(yn)     equal.    Interpretations for which the 

counter is required to count up to an integer   n   where there exist 

i,d <n ,    i / j , such that    g1(yo)  = gJ(yJ    are called looping 

interpretations.    It is easy to see that for looping interpretations 

the given recursive schema never halts.    The required program schema is 

therefore easy to construct. 

START <y,ya,yc,yt> - <a,a,a,a); 

while -, p(y)  do 

begin 

y - f(y); 

ya - y; yc - ya; 

while true do 

if q(y) 

then begin 

y - g(y); 

if yc = ya then goto DONE; (i) 

(2) 

yt *" *&' 1 
while g(y.) ^ y,, do y. - g(y.); 

L 
yc "yt 

end 
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else begin 

y - g(y); 

r *t - \; i 
while yt / yc do 

if yt = g(yc) then LOOP 

check 
for a 
looping 
inter- 

else y - g(y.); i preta- 

L_ 
if yt = g(yc) then LOOP; 

tion 

J 
(5) yc - g(yc) 

end; 

DONE: end; 

HALT(f(y)) . 

Note that this flowchart schema is equivalent to the given recursive 

schema even when the functions and predicates are not total. 

Proof.  £(=) s C-(lc,=) 

Since (3(=) <(3(lc,=) , we only have to prove that (3(=) >(3{lc,=) . 

Given a schema in C{lc,=)  ,  we reduce it to a canonical form S' 

(for one counter scheraas) which is a recursive sch-ima whose base 

functions a , f , g , and predicates p , q need not be total, and we 

can give a meaning to a,f,g,p,q in terms of the base functions and 

predicates of S that makes the schema S' equivalent to S . Further, 

the "meaning" for all a , f , g , p, q is flowchartable. Thus, we would 

find that since we have a schema S" in ^(=) equivalent to S' , if 

we substitute the meanings of the functions and predicates we would obtain 

a schema in (3(=) equivalent to S . For convenience below, after every 

statement c - c+1 in S insert a (distinct) null statement, say 
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yl " yl ' The c^onlcal form S« below can be simplified somewhat, 

e.g. the term F(G(f(y))) can be changed to F(G(y)) -- we choose not 

to do so here. The schema S1 is 

S': F0  <=F(a); 

F(y) <= if p(y) then f(y) else F(G(f(y))); 

G(y) <= if q(y) thai g(y) else G(G(g(y)))  . 

We will represent the meanings of a , p , q , f , g by nonrecursive 

subroutines. Without loss of generality assume that there are no loop 

statements in 3 , that all halt statements are of the form HALT(y ) , 

and that all statements are labeled. Suppose y = (y ,...,y ) and 

z = (z^...,zm) are the variables in S . Consider any interpretation 

for S with domain D . Then the domain D1 for S» is Dn x {T,F}m+£ 

where I = T log2 s1  and s is the number of statements (or labels) 

in S . We will represent an element in D' as a vector <y,z,L) where 

L is a label whose value corresponds to a label in S (L  is to be 

implemented by booleans). 

(i)  If the start statement in S is 

STAP.T <y,z> - <T(),a()>; goto L. 

then a is <T(),äf),L.> . 

(ii) f(<ySi,,L'» is 

begin data y; boolean z;  label L; 

y - y';  z - z 

REP: goto Lj 

L^. STATEIvENT,; 

L2: STATEMENT   ; 

L   : STATEIffiNT  ; s s' 

end  . 

'; L 

,. 
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s 

Above,  a variable declared    label L      represents a vector of    I 

booleans,  and we allow statements like    goto L     where    L      is a 

label variable (it is clear how this statement is to be implemented) 

If in    S    we have 

(a) L±i  <y,z> - (f,a>; 

goto L. 

(b) L.:  if a then goto L. 

else goto L, 

then STATEMENT,   is 
i 

(y^z> - (Tjä); L - L ; 
J 

goto REP 

if a then L »- L. else L 

goto EEP 

RETURN(<y,z,L)) 

-v 

RETURN (<y,z,L.» 
0 

L - L.; goto REP 
J 

(c) L±t  HAIff(y:L) 

(d) L.: c •- c+1; goto L. 

(e) L.: c •- c-1; goto L. 

(f) L.: if c =0 then goto L. L *- L.; goto REP 

else goto L, 

(iii)     gC^SzSL'))    is like the function    f    except for parts  (e),   (f) 

RETURN ((y,z,L.» (e) L.:  c - c-1; goto L. 

(f) L.:  if c =0 then goto L.    L •- L;  goto REP 
1 J       K 

else goto L, 

(iv) p(<y,,i,,L'» is 

begin data y; boolean z; label L; 

<y,z,L) -f(<y',zSL'»; 

if isplus(L) then RETURN(false) 

else RETURN(true) 

end . 
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Above,  the function    iBpluE(L)     is defined to be true if   L    is 

the label    L      in a statement    c - c+1; goto L.  ,  and false 

otherwise. 

(v)    qUySzSL'»    is 

begin data yj boolean z; label L; 

<y,5,L> - sUy'^M')); 

if isplus(L) then RETUEN (false) 

else RETURN (true) 

end 

If the value computed by F(a) is <y,,• • .,y .z,,.. .,2 ,L) then 
-J-    n 1    m 

y, represents the output of S . 

S' implements the computation of the one-counter schema S by 

representing the value of the counter by the number of defined functions 

G that effectively exist in the recursion stack at any time. When the 

defined function F is being "executed" the counter is zero. 

This shows how to convert any schema in (3(lc,=) to an equivalent 

schema in cX=)   >  which completes the proof. 

2.3A.7 Proof of Theorem 2.16 

C-(R,=) £c(c) 

We will use the fact that Schemas in C(c)    can simulate Turing 

machines, and that the halting of Schemas in (3(R,=) over a given 

finite domain is decidable, to demonstrate a diagonalized argument. 
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The required schema SP(3(3C)  is defined as follows. 

The schema S uses three counters. The initialization phase of S 

is the following: 

STAET y - a; 

while P(y) clo begin y - f(y) ; c - c+1 end; 

After this phase the schema makes no use of the variable y , or the 

base functions or predicate (except in the halt statement). Let the 

value of i he counter c be n when it exits from the initialization 

phase.  Let In denote the following interpretation: the domain has 

n+1 elements, 

e0.,e1,...,en , 

the value of a is e0 , and f and p are defined by: 

i < n  f(e.) = ei+1    p(ei) = true 

f(en) = e0      P(en^ = false ' 

The schema S then simulates the computation of the n-th schema S  in 
n 

3(R, =) on the interpretation In . The schema S  will diverge if 

and only if some defined function calls itself recursively with exactly 

the same arguments (data and boolean values) . If Sn halts with output a , 

then S loops, otherwise S halts with output a . 

This completes the description of the required schema S ; and it 

is clear that it is not equivalent to any schema in C-fR, =) , because 

if it were equivalent to, say, the m-th schema, we find their outputs 

on the interpretation 1^ disagree -- a contradiction. 
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We can show the equivalent result that there is a schema in (3(R) 

not equivalent to any in (2-(c.,=) . It is 

S: F0<=F(a); 

F(y) <=  if p(y) then h(F(f(y)),F(g(y))) else y . 

This is the schema demonstrated by Paterson and Hewitt [1970]j and their 

proof, shown for ö,() , also applies to C(c,=)   . 

Let T0 be defined to be the term a , and T    to be the term 

h(f(Tn),g(Tn)) . Also define the Herbrand interpretation H  tobe: 

P(T) is false if the depth of nesting of function symbols in T is n , 

otherwise it is true. Then, Val(S,Hn) = T  . Now, suppose there is a 

schema S'e^c,^   equivalent to S . Without loss of generality, we 

can restrict all terms appearing in S' to have depth at most one 

(depth of terms a,yi is 0 , of terms f(a) , f(y.) is 1 , of 

f(f(a)) , h(f(a),y) is 2 , etc.). Then we see that if S' has m 

data variables then S' cannot compute any terms T  if n > m ffor 
n v 

Herbrand interpretations).    Thus the outputs of   S    and    S'    over   H 
m+1 

must disagree and S and S' cannot be equivalent. 
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2.5.U.8 Proof of Theorem 2.19 

To prove that 

(a) £(R) = C{1 pds) = 0{1  list), and 

(b) ^(R, = ) a ^(1 pds, = ) s (2.(1 list, = ) . 

C-(R) <fl.(l pds) , ^(R, =) <C.(1 pds, =) 

We do not describe the construction in detail because it is 

obvious. Given a recursive schema S  we construct a schema with a 

stack S' as follows:  S» can stack boolean variables to code any 

finite piece of information.  S1 has a set of variables that represent 

the arguments of a function call, another set to represent the values 

returned, and some for temporaries.  When a recursive call is to be 

made, the old arguments and some temporaries (values of earlier calls 

from the same defined function — required to build up terms) are stacked, 

as well as the local context, the new arguments are set up, and 

computation is begun on the new defined function. When a function returns, 

values (and the context) are unstacked.  S1 halts if the stack becomes 

empty. 

0(1 pds) < £(R) , 3(1 pds, = ) < C(R, - ) 

Given a schema S with one pushdown stack, we construct a recursive 

schema S' equivalent to S , such that S' uses equality tests only 

if S uses them. For the sake of convenience, we will allow certain 

features in recui'sive Schemas that are not strictly allowed, but can be 

easily eliminated to get a legal recursive schema. These include the 

following: 
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(1) Nested    if-then-else's   . 

(2) Passing labels as parameters (arguments and values returned) and 

nonlooping goto-statements in a recursive definition. Labels can be 

implemented by a vector of booleans, and transfers can be implemented 

by nested if-then-else* s . We also allow return-statements which 

explicitly return values from the defined functions. 

Without loss of generality, S has a single halt statement of the 

form HALT(y,) , and has no loop statements (l^: LOOP can be replaced 

by L.: (y,z) - <y,z); goto L. ). In the schona S we label all assign- 

ment statements, test statements, the halt statement, and also all 

statements operating on the stack as follows: 

s «- push(s,y,z) 

if s = A then goto L 

else begin 

<y,z) «-top(E); 

s «- pop(s) 

end 

L.: s <- push(s,y, z) 

L.: if s = A 

L .: then goto L 
j 

else begin 

<y,z) f-top(s); 

s f-pop(s); 

end 

0 

Notice the strange placement of the label L. after the test s = A • 
J 

In addition, we have a dummy label 1^ lt which is assumed to be 

entered after the halt statement. 

The recursive schema S' he3 four defined functions: 

0 

F, 

The starting function. This calls F . 

FA   may call When this is executed the stack is empty. 

itself iteratively (i.e.,  a compiler can treat it as iteration 
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rather than recursion). It returns only when the schema S 

halts. FA may also call the function F . 

F -- This is the work-horse. This is siinilar to the function used 

in converting a flowchart schema into a recursive schema. It 

calls Fs when something is pushed into the stack. 

Fs  --  The number of recursive calls on Fs represents the height 

of the pushdown stack. 

These functions are defined as follows. Recall that the notation 

Yi(...) is used to pick the i-th data element of a vector. We also 

use Y(...) to pick all data elements from a vector, and Z(...) to 

pick all boolean elements. Similarly, we will use the notation L(...) 

to pick the label from a vector (only one will be used). 

FQ :  If the start statement in S is 

START <y>2> <- <f,a>; goto L.; 

then 

A - 

F0 <- VV-f^L.)); 

FA(y,z,L) <= ^otc MFC^Z,!)); 

L,: rocurnfexp ); 

L2: return(exp ); 

♦ 
For any i : 

(1) If L. is the dummy statement L^ then the expression exp. is 

F(y,z,L) . 
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(2)    If   L.    is the "weird" label in 

if s = A 

L.:then goto L. 
i  *     j 

else begin <y,z> ♦- top(s); s »- pop(s) end 

then the expression   exp,    is .   .. 

FA(YP(y,z,L),ZP(y,z,,L),Li)    . 

The value returned by F will have the same type, i.e.,  <y,z,L> , 

and it represents the "current" values of the variables and the 

label of the next statement to be executed. Notice that the effect 

of exp  is to stick the values returned back into F (in the next 

call to F ) and continue the execution from where it was left off. 

(5) If L. is anything else — this can never happen, and exp. is 

arbitrary. 

F : F(y,z, L) <=   ^oto L; 

L,: returnCexp..); 

L„:  return(expj; 
• • 

if Li 
is 

(1) The dummy statement    1^ ,+ 

or the halt statement itself 

(2) 1^:  <y,5> - <f,5>; goto L.; 

(5)    L.;  if a then goto L. 

else goto L. 

then    exp.    is 

<^^Lhalt> 

F(f,ä,L ) 
J 

if a then F(y,z,L.) 

else F(y,z,Lj 
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I 

rather than recursion).    It returns only when the schema    S 

halts.    F     may also call the function    F . 

F -- This is the work-horse. This is similar to the function used 

in convert lag a flowchart schema into a recursive schema. It 

calls    F     when something is pushed into the stack. 

Fs      "      The number of recursive calls on    Fs    represents the height 

of the pushdown stack. 

These functions are defined as follows.    Recall that the notation 

yi(...j     is used to pick the i-th data element of a vector.    We also 

use   y(...)    to pick all data elements from a vector,  and   Z(...)    to 

pick all boolean elements.    Similarly, we will use the notation    L(...) 

to pick the label from a vector (only one will be used) . 

? Frt  :      If the start statement in   S    is 

START   <y,z> <- <f,a); goto L. ; 
i 

0 

then 

F0 <=Y1(FA(T,ä,Li))5 

FA  : FA(y,z,L)  <=£oto L(F(y,i,L)); 

L,:  return(exp1); 

L2: return(exp2); 

For any    i   : 

(1)    If    Li    is the dummy statement    1^ -,+    then the expression    exp.     is 

F(y,Z;L)   . 
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(2)    If   Lj    is the "weird" label in 

if s ^ A 

L.;then goto L. 
u 

else begin <y,z> ♦- top(s);  s - pop(s)  end 

then the expression    exp     is 
•   *! 

FA(YF(y,z,L),äP(y,z,L),L,) . 
J 

The value returned by p will have the same type, i.e.,  <y,5,L> , 

and it represents the "current" values of the variables and the 

label of the next statement to be executed. Notice that the effect 

of expi is to stick the values returned back into F (in the next 

call to FA ) and continue the execution from where it was left off. 

(5) If ^ is anything else — this can never happen, and exp. is 

arbitrary. 

F : F(y^z ,L) <=   goto L; 

1^:  return(exp ); 

L0:  return(expj; 

if L. 
i 

is 

(1) The dummy statement L, ,i 
nalt 

or the halt statement itself 

(2) L.: <y,z> *- <T,ä>; goto L.; 
x J 

(3) L.: if a then goto L. i —   s  j 

else goto L, 

then exp. is 

^^alt) 

F(f,ä,L.) 
J 

if a then F(y,z,L.) 
J 

else F(y,z,L,) 
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(k)    L^ B «-püsli(s,y,z)i goto L.      F.(y,z,L.,y,2) 

(5) 1^: if s = A 

L.: then goto .. 
J 

(y>z*L.) 

F : 
s 

The only case not shown cannot occur, and the expression for it is 

arbitrary. 

Fs(y,z,L,y,z) <= goto L(F(y,z,L)); 

L,: return(exp ); 

L2: return(exp ); 

(Note ~ there should be no ambiguity as to the roles of the two 

L's above). For any i , if h±    is a statement of the form 

if s = A 

L.: then goto L. 1  =  j 

else begin  <yk,zm) - top(s);  s - pop(s)  end 

then the corresponding    exp.    is 

where    y      is obtained by substituting    y    for    y,     in the vector 
K 

F(y,z,L)   ;    and    z'     is obtained by substituting    z    for    z      in 
m 

the same vector. If this has caused any confusion, it may be pointed 

out that yk really stands for the k-th data element, and similarly 

for z 
m 

The only other possible case is that L. is L   , and in 
i      nciJLx 

this case exp^^ is F(y, z,L) . 

a 
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(3(1 pds) <ö(l list)  ,    CJ(1 pds), =) <^(1 list, =) 

A pushdown stack can be simulated by a list as follows.    In the 

construction below,    L'    is an arbitrary label (transfers to    L1    can 

never be taken in actual computation),  and   y'     is a dummy variable. 

The list schema uses a zero-ary function   a   to represent "true", and 

A   to represent "false". 

Pushdown stack 

s ♦- push(s,y, z) 

if s = A then goto L 

else 

begin 

<y,z> - top(s); 

s ^pop(s) 

end 

List 

I - cons(y,je); 

if z then t - cons(a,l) 

else i *- cons(A,i) 

If I = A then goto L; 

if atom(i)   then goto L' 

else if -i atom(car(0)  V car(i)  = A 

then goto Lp 

else y'  •- car(l); 

z *- true; 

goto L,; 

L'.z- false; 

if atom(£)  then goto L' 

else I •- cdr(l); 

L,: if atom(f)  then goto L' 

else if -, atom(car(l))  v car(l) = A 

then goto L* 

else y - car(i); 

if atom(i)  then goto L* 

else I - cdr(l) 
□ 
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(3(1 list) <C<1 pds) , (3(1 list, =) < (3(1 pds, =) 

The list operations can be simulated by a stack as follows. The 

top three pairs in the stack roprc£!cnt either the car or the cdr ui' 

the list, the rei-.t of the stack represents the rest of the list. The 

only exception to this is when both the car and the cdr of the list 

are lists. When a schema has just one list i  , this can only happen 

by the execution of a statement 

i  *- cons(i, £) 

that is, the car and the cdr are the same. This is represented by 

a boolean value in the stack that represents a "doubled" list. The 

representation of a list by a stack can be done as follows (a is any 

zero-ary function): 

list ;tack representation 

U 

a T 

a T 

a F 

an atom 
a T 

a T 

y T 
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list stack representation 

A.I 

a T 

a T 

a F 

) 

y.i 

a T 

a T 

y T 

} 

I.A 

ly 

a T 

a F 

a F 

} 
a T 

a F 

y T 

) 

loh 
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\ 
list stack representation 

£ .i 

a 

} 

$ 

Note: the stack representation of a list is not unique, but depends 

on the way the list is built up. Now, it is clear how the list can 

be manipulated by its stack representation. We have been able to 

represent the list by a stack because a schema with a single list 

cannot generate lists of any great complexity. 

a 

2.5.I4.9 Proof of Theorem 2.20 (Maximal Classes of Schemas) 

^(1 pds,lc) >^(pds,q,list,A) , -3(1 pds,lc, = ) > (3(pdE,q,list,A, = ) 

We first demonstrate that a schema with a pushdown stack and two 

counters can simulate the computation of any schema S with any number 

of features -- pushdown stacks, queues, lists, arrays, counters. We 

will take recourse to the large body of knowledge on the programming 

of Turing machines (Church's thesis). 
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Now, two counters can simulate a Turing machine computation (on a 

blank tape).    We are using the term "Turing machine" somewhat loosely 

here because we will allow the machine to output ao it computes,  and 

also in seme special state to accept a yes-no input  (from the environment) 

before deciding what to do next.    Our two-counter Turing machine will 

keep track of the values in all the pushdown stacks,  queues,  lists, 

arrays,  and counters of the schema    S  .    Data values will be kept in 

symbolic form, that is,  as  (constant) terms.    Of course,  an infinite 

amount of memory is not required to keep track of arrays  -- the Turing 

machine need only remember those array locations that were assigned to 

since the beginning of the computation,  and know about the value the 

array was initialized to by the start statement.    If   S    execuv.es a test 

on data elements  (a predicate or equality tett), then the Turing machine 

"outputs" a list of instructions as to how all terms are to be constructed 

and the test to be made •■- the output is a postfix-polish form of the 

expression (it uses only constant terrat; -- no variables).    Postfix polish 

can be executed on the pushdown stack and the outcome of the test is 

transmitted to the Turing machine.    Our two-counter machine can output 

one character (say, the n-th character) as follows:    if   c    ,  c     are 

the counters,    c.    is set to    2  .k   where    k    is some odd integer,  and 

cp    is   0    (see the construction of a two-counter machine from a multi- 

counter machine in the discussion on Theorem 2.17) •    The output can then 

be detected by: 

if (^ mod 2)  = 1 then goto OUTRJTO; 

c1 - 0^2 j 

if (c. mod 2)  = 1 then goto 0UTRJT1; 
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cl - cl/2' 

if (c    mod 2)   - 1 then goto ÖUTPUT2; 

where it is obvious how the test    (c. mod 2)   = 1 ,   and the assignment 

c1   - C-/2    can be implemented. 

Now, the schema in   cXl pds,2c)    we obtain has the following 

interesting property.    Whenever it executes a statement like 

s ♦-- push(s,y, z) 

or like 

if s = A then goto L 

else begin  (y,z) - top(s);  s - pop(s)   end 

the value of the counter    c,.,    is zero.    Hence wo can implement    c      in 

the stack itself by stacking a false value to represent    c    - 0 ,  and 

subsequently a true value for each increment to the value of    c^  .    This 

will not interfere with the above stack operations since we simply throw 

away the false value,  execute the stack operation,  and then reinstate it. 

We note that if the functions of the schema are monadic, then   ^(20) 

can simulate    C(pds,q,list,A)     (and similarly for    (3(2c, =)   ).    In the 

above description of a schema with one stack and two counters, the stack 

was only used to construct   (constant)  terms.    When the functions are 

monadic,   any term can be computed with Just one variable,   and hence any 

n-ary predicate test can be performed with n-variablec.    This shows that 

(3(2c,monadic  fns)   s 3(pds,q, list,A,monadic  fns)   ,   and that 

(3(2c, =,monadic  fns)   s (3,(pds,q,list,A, =,monadic fns)   . 

a 
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C-(lq) >C-(1 pdsjlc) , £(lq, =) >(J.(1 pds,lc, =) 

Since a pds is at least as powerful as a counter, it suffices to 

show that C<lq) > (3(2 pds) , (3(lq, =) > (3(2 pds, =)  (the proof is a 

little simpler). Given a schana S with two stacks s  and s2 , we 

wish to construct a schema S1 with a queue that is equivalent to S . 

But this is easy because both stacks can be packed in a queue, with 

boolean variables to mark the ends, and the values can be circulated. 

The detailed construction is as follows. For convenience below, we use 

the notation tf(l) for "true", and tf(2) for "false", and we define 

macron rem(L,y,z,q) , and reset(i) as follows: 

rem(L,y,z,q) 

reset(i) 

if q = A then goto L else 

begin (y.z) - first(q); 

q ♦- remove (q) 

end 

L:rem(L,,y,,z,,q); 

q - add^y^z') ; 

begin rem(L,,y,,zl,q); 

q - add^ySz'); 

goto L 

end; 

rem(Ll,y,,z,,q); 

add(q,y,,z'); 

if z' ^ tf(i) then goto L 

where L' is an arbitrary label, " a " is a zero-ary function in S , 

and y' and z' are new variables in the schema S* (with the queue) 

that are not present in S . 

O 

O 

-. 

o 

;. 
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Schema S — two stacks (s ,s ) 
 v 1'  2' 

START (y^Yg, ...»Z^Zg, ...) 

s^^ - pushCs^y^) 

if s = A then goto L else 

begin <y,z> - top(E); 

s H. pop(s); 

end 

109 

Schema S' — one queue 

START <y', y^ y2,..., z' > ^ ■'-.„ ••■) 

- (a^^Tg,.. .^true^^ctg,...); 

q •- add(q,a, false) ; 

q - add(q,a,tf(l)); 

q •- add(q, a, false) ; 

q - add(q,q,tf(2)) 

reset(i); 

q - add(q,a,true); 

q - add(q,y,z) 

reset(i); 

remCLSySzSq); 

if -1 z'  then 

begin q - add^y^z1); 

remCLSySzSq); 

q ^ addCq^Sz'); 

goto L 

end; 

remCLSy^q) 
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Chapter 5      Decision Problems 

O 

u 

I ;'-- 

O 

5.1    Introduction 

We consider the following decision problems for classes of cchemas: 

(a) The halting problem -- to decide whether a given schema in the 

class halts on every interpretation. 

(b) The divergence problem --to decide whether a given schema in the 

class diverges on every interpretation. 

(c) The equivalence problem --to decide whether two Schemas are 

equivalent (decide if   S1 -  S2 ) . 

(d) The inclusion problem — given two schanas    D      and   S2    to decide 

whether it is true that for every interpretation either both Schemas 

halt with the same output or    Sp    diverges  (decide if   S-  > S- ) . 

(e) The isomorphism problem — to decide whether two Schemas are 

isomorphic to each other (decide if   S, ~ SQ ). 

It should be stated that for "conventional" Schemas,  i.e.,  all 

Schemas  introduced in the previous chapter, the problems (a)-(e)   are in 

general unr.olvable, but the following problems are partially solvable: 

(a)        The halting problem --to decide whether a given schema in the 

class halts on every interpretation, 

(b')      The ncndivergence problem — to decide whether a given schema 

ever halts. 

(e')      The non isomorph ism problem — to decide if two Schemas are not 

isomorphic to each other. 

The notable exceptions are the equivalence and inclusion problems. 

In general, the equivalence and inclusion problems as well as their 
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negations are all not partially solvable. 

A class of Schemas is said to be solvable if its decision problems 

(a)-(e)  are solvable; similarly,  a class is unsolvable if its decision 

problems  (a)-(3)  are unsolvable.    Of course,   some classes may be neither 

solvable, nor unsolvable. 

The class of lanov schemas, which consists of one-variable flowchart 

Schemas using only monadic functions and predicates and no resets is 

solvable.    However,  even very simple classes of two-variable schemas are 

unsolvable.    For example, the class of schemas with one constant    a ,  one 

other function symbol   f , one predicate    p ,  and statements of the forms: 

(1) START  (y^) - (a,a) 

(2) HALT(a) 

(5)     LOOP 

(l0   yi - fCy^ 

(5)     if p(y.)  then goto L,  else goto L? 

is unsolvable.    For this reason,  in this chapter we will almost exclusively 

consider schemas with only one variable to determine how large a class can 

be constructed before it becomes unsolvable. 

Also note that for solvability considerations the use of boolean 

variables is  irrelevant as they can be eliminated.    Hence we will only 

consider schemas without boolean variables. 

In Section 3.2 we consider uninterpreted one-variable flowchart 

schemas in which equality tests are allowed.    In view of the fact that 

all decision problems for uninterpreted one-variable schemas without 

equality tests are solvable,  it may be somewhat unexpected that the class 

of one-variable schemas with general equality tests is unsolvable.    But 

we shew that  if only some restricted equality tests are allowed the 

resulting classes are solvable. 

Ill 
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In Section  5.5 we consider some semi-interpreted t;chanaa,   in 

particular, those obtalnod when     (a)    Lvro unary  [\mct;loiiij are üpt«!:! r.ied 

to commute,  and      (b)    when some unary function is invertible,  I.e., 

composition of the function with its inverse is the identity function. 

We find that with commutativity or invertibility alone,  the decision 

problems are solvable,  but if both are allowed,  they become unsolvable. 

5.2    Equality Tests 

5.2.1   Notation 

We consider flowchart schemas with a single variable y , and wo 

use the symbols 

(1) a,a1,a2,... to represent individual constants (or zero-ary 

functions, if you will), 

(2) f, f.,f_, ... to represent n-ary functions (n > 1) , and 

(5) P^P^Pg;... to represent n-ary predicates (n > 0) . 

We use the notation T() to represent a constant term, i.e., a term 

not containing the variable y , and T , T(y) to represent an arbitrary 

term. 

The assignment depth ||T(y)|| of a term T(y) is defined as follows: 

Mll = o, 

IM = 0, 
11^^^ ...,Tr)ll=max|;i|T1||, ...,||Trll}+l   , where at least one of the 

T.'s    is nonconstant. 
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The depth |T I of a term T is the maximum depth of nesting in 

the term, and is defined by: 

Ki = o, 

|y| -o, 

I^CT^.-.^pl = raax{|T1|,...,lTr|}+i . 

We also say that    |T |     is the depth of nesting of   T   . 

Note that for nonconstant monadic terms   T ,    11TII = M  * ^^ in Seneral 

HTJI < |T|   .    For example,    llf(g(a),y)ll = 1 , but    |f(g(a),y)|  = 2 . 

u 

5.2.2 Solvable Classes 

Consider the rather general class (2^ of flowchart Schemas with 

one variable. Schemas in &. contain the following statement types 

(L, and Lp are arbitrary labels in the definitions below): 

Start statement: 

Final statements: 

Assignment statement: 

Predicate-test 
statement: 

Equality-test 
statement: 

START y - ai 

HALT(T) or 

LOOP 

y - T 

if P.CT,, •. .,T ) then goto 1^ 

else goto Lp 

if T- = T2 then goto 1^ 

else goto L2 

The equality tests allowed must, however, satisfy the condition that 

either T1 or T_ is a constant term, or else there exist terms 

T'(y) , T^(y) such that both l|T^(y)|| and llT^(y)|| are less than or 
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equal to 1 , and T  and T  are of the forms T'(T) , and T'(T) 

respectively for some term T . Note:  TJ(T) is a term obtained from 

TjCy) by substituting all occurrences of y simultaneously by T ; 

and similarly for T'(T) . Note also, that as a special case of this 

condition, tests of the form T. = T  with both HTJ^HTJI < 1 are 

allowed (simply by choosing T to be the term y itself) . Another 

example of a test that is allowed by this condition: f(T) = T , where f 

is some unary function and T is an arbitrary term — this is allowed 

because we can choose T' to be f(y) and T ' to be y . 

Theorem 3.1 (Solvability of &.  ) 

The class G^ is solvable, i.e., for fl^ : 

(a) the halting problem is solvable; 

(b) the divergence problem is solvable; 

(c) the equivalence problem is solvable; 

(d) the inclusion problem is solvable; 

(e) the isomorphism problem is solvable. 

This theorem includes as special cases the results of lanov [i960], 

Rutledge [l^], and also recent extensions by Pnueli [private communication], 

and Garland and Luckham [1971]. The proof is presented in Section J-^A. 

As a special case of this theorem, the class of all one-variable 

Schemas without equality tests, (3.(1 var) , is solvable. 

As another special case, the class of one-variable monadic Schemas 

allowing resets, and equality tests of the forms: 

T^) =^2 , y ^ f.(y) , and f.fr) = f^y) 

is solvable. 

uX 
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Consider, next, the class    &,    of schemas,  sijtiilar to the class   C*  > 

but with a change in the foiro of equality tests allowed, viz.,  the 

equality test statements allowed are of the form: 

if T,  = Tp then goto L,   else goto L2    , 

but this time the restriction is that either   T,    or   T2    is a constant 

term,  or else    HTJ| = ||Tg||   . 

O 

Theorem 3.2    (Solvability of   C^ ) 

The class   <3g    is solvable. 

As a special case,  the class of one-variable monadic schemas 

allowing resets and equality tests of the forms: 

^(y) = T2()    ,    or   ^ = T2     where    [TJ  - |T2| 

is solvable. 

5.2.5   Unsolvable Classes 

It should well be asked why we have the "strange" restrictions on 

the form of equality tests above.    The answer is that even slight 

generalizations of the restrictions above yield,  astonishingly,  classes 

whose problems are unsolvable.    We demonstrate this on two classes. 

Consider the cxass C, consisting of one variable y , one 

constant a , no predicates and only monadic function constants. 

Statements in schanas of   C*    are of the forms: 

Start statement: 

Final statements: 

START y *- a 

HALT(a)    or 

LOOP 

- 
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Assignment statement:        y •- f.(y) 

Equality-test if f.(y)  = f,(f, (y))  then goto L, 
statement: * J    K 1 

else goto Lp 

C* differs from C^ in that terms of assignment depth two are 

effectively used in equality tests; and it differs from (3 in that 

terms tested for equality do not have the same assignment depth. 

Theorem 3.3 (Unsolvability of fl* ) 

The class &, is unsolvable, i.e., for C, : 

(a) the halting problem is unsolvable; 

(b) the divergence problem is not partially solvable; 

(c) the equivalence problem is not partially solvable: 

(d) the inclusion problem is not partially solvable; 

(e) the isomorphism problem is not partially solvable. 

For the sake of completeness we should mention that the non- 

equivalence and the non-inclusion problems for this class too are not 

partially solvable. Of course, the halting, non-divergence and non- 

isomorphism problems are partially solvable, which follows from the 

general result mentioned in Section 5.1- For the proof, see Section 3.2.1+. 

We introduce, next, the class (V of one-variable monadic scheraas 

similar to (J^ but with the difference that equality tests allowed have 

the following form: 

if y = T then goto L.. else goto Lp 

where T may have any of the forms: 
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or 

W*kiy))) 

Theorem j.1* (Unsolvability of ß. ) 

The class (V is unsolvable. 

■ 

Classes C^ and Cg are solvable, whereas (V and ß.  are 

unsolvable. On comparing these classes it is clear that there is a 

very sharp demarcation between classes of one-variable schemas that are 

solvable, and those that are unsolvable, depending on the form of 

equality tests allowed. It should perhaps be asked how many function 

symbols suffice to render a class unsolvable. It can be shown, for 

example, that for the class (*    ,  merely four functions are sufficient. 

It is more interesting to note, however, that these function symbols can 

be "coded" using only two function symbols so "-hat Schemas with one 

variable, two functions and general equality tests, i.e., tests of the 

toSS Ti(y) ■ T2(y) > are unsolvable. Note: the number of functions 

does not include the ever-present constant (or zero-ary function) a . 

So far we have restricted our consideration to Schemas that have 

only one variable. The reason is obvious: one-variable Schemas provide 

the most interesting solvable classes. When more variables are allowed, 

even a very few features tend to make the schemas unsolvable. For 

example, schemas with two variables, two functions and tests only of 

the form y. ■ f(y.) are unsolvable. 
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It is even more interesting, though probably not surprising, that 

schwas with ^ single function too are unsolvable; for example, the class 

of one function Schemas having tests only of the fopn v. =y. is 
—i i_ 

unsolvable (four variables suffice in this case). 

The proofs of these secondary results are also presented in 

Section 5.2A. 

3«2.Jl Proofs for Schemas with Equality 

3.2,k,l   Proof of Theorem 3.1 (Solvability of (>    ) 

For convenience, in this proof we change our notation for terms 

very slightly:  T stands for an arbitrary term and T() stands for a 

constant term as before, but T(y) represents a non-constant term. 

3.1(a), {h),   (c)   The solvability of the halting, divergence and 

equivalence problems follows from the solvability of inclusion: 

(a) Given a schema S of (^ , S halts if and only if S« >H where 

H represents the schema  START; HALT(a) that always halts with 

output a , and S' is the schema S with all halt statements 

changed to HALT(a) . 

(b) Given a schema S of ^ , s diverges if and only if L > S , 

where L represents the schema START; LOOP that always loops. 

(c) Given two schanas S1 and    S2 of ^ ,  S1 a S2 if and on^r if 

S1 > E2 and S2 > Sj^ . 

^•1(d)   To show the solvability of the inclusion problem we will 

first present a proof for Schemas in ^ using only monadic functions 
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and predicates, and then indicate how it may be extended to include 

non-monadic functions and predicates as well. 

We first describe classes of canonical interpretations that play a 

role for the monadic scheraas in C^ similar to the role of Herbrand 

interpretations for Herbrand Schemas (see Theorem 2.1.2). 

For any integer k > 0 , we describe the class of interpretations 

A  (over a set of monadic functions and predicates) as follows. The 

elements of the domain of an interpretation IfA  are equivalence 
K 

classes of constant terms. However, each constant term need not be 

present in some equivalence class. First, consider the set of terms 

T() such that  |T()| < k . Equivalence classes may consist of arbitrary 

non-overlapping subsets of these terms as long as substitutivity relations 

are preserved, for example, if k > 3 , and f(g(a1)) ,  f(a_) are in 

the same equivalence class, then f(f(g(a1))) , f(f(ap)) must together 

be in some class, as must g(f(g(a )) , g(f(ap)) , but g(a1) , a? may 

be in different classes. AU constant terms T() , with |T() ] < k 

are in some equivalence class, and these are called the initial elements 

of Dom(l) . We will rank the terms in an equivalence class first by 

depth, and then by (some) lexicographic order, and choose the smallest 

as the representative of the class. We denote a class by [T()] where 

TQ is the representative. Also, if T()  is any element in a class, 

not necessarily its representative, we use [T()} to denote the class. 

Since the equivalence classes will be non-overlapping, these notations 

make sense. 

Functions are defined on the initial elements in the obvious way. 

If |T()| <k then f([T()]) = [f(T())j . If all initial elements are 
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of the form [T()] with |T()1 < k , then there are no other elements 

in Dora(l) . Otherwise, if [T()] is an element of Dom(l) ,  1T()| >k , 

then new equivalence classe-; may consist of terms from the set 

(f(T()) | f is a unary function symbol] , and for any function symbol f , 

if there is a class, of which f(T())  is an element, then 

*■([*()]) = [f(T())3 , otherwise f(tT()]) is either [T()] , or some 

initial element. 

All predicates on Dora(l) are arbitrary. 

This defines the class of interpretations A . 

Now, given an arbitrary interpretation I' , we define the 

corresponding interpretation I in A  (notation I1 - I ) in the 

obvious way. Two terms are in the same equivalence class (in I ) only 

if their corresponding values are equal (but the converse is not 

necessary). We have, in addition, the following rules: 

(1) for any T^) , TgQ , such that  |T1() | <k ,  |T2() | < k , the 

two terms are in the same equivalence class in I if and only if 

their values are equal in I' . 

(2) If [TQ] , [T'Q] are classes in I suchthat |T()| >k, 

JT'Oj <k , then if the values of f(T()) and T'Q are equal 

in I'  then f([T()]) - [T'()] in I . 

(3) If [TQ] is a class in I , and T() and f(T()) are equal 

in I« then f([T()]) = [T()] in I . 

(h)    If [T()] is a class in I such that in I' , the value of 

f(T())  equals the value of g(T()) , and f(T()) does not equal 

T'O , for any T'() with \T {) \  <k , then in I the terms 

f(T()) and g(T()) are in the same equivalence class. 
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(5) If [T()] is a class in I , then P([T()]) is true in I if 

and only if P(T()) is true in I' . 

By the construction of interpretations in J^ , this describes a unique I 

corresponding to I' , and a horaomorphisra 9 from I onto the reachable 

elements (i.e., elements that can be represented as constant terms) 

of I' . 

Lemma. Given any monadic schema SeCs , and an integer k such the L 

for every term T used in S , |T | < k , then for any interpretation 

I' for S , if I' -• I and 9 is the homomorphism 9 : I -. I • , then 

(1) Path(S,I') = Path(S,l) , and 

(2) Val(S,I') = 9(Val(S,l)) if both are defined. 

Proof:  The lemma follows by induction on the number of steps in the 

simultaneous computation of S on I' and on I with the induction 

hypothesis that after n steps, the paths are the same and the values 

of the variable y in the two computations are related by 9 . 

It follows from this lemma that to prove halting, divergence, 

equivalence, isomorphism or freedom, it suffices to prove these for 

the interpretations ^ (for appropriate k ) because if the outputs 

of two Schemas on an interpretation I« are distinct, they are also 

distinct on the corresponding interpretation I . 

This result (for inclusion and isomorphism) Is used throughout in 

the proof below, where whenever we say "an interpretation", we mean an 

interpretation from the class A . 
k 
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Given two monadic Schemas, change all assignment statements 

y ♦"^(y) so that the only kinds of assignment statements are of the 

form y •- f.(y) or y •- a. , and halts are of the form HALT(y) . Let 

the resulting Schemas be called S, , S  . To explain the algorithm 

for deciding whether or not S, > Sp , we first introduce the concept 

of a state vector. 

Given an interpretation for the schemas S, , S and a value for 

the variable y , we define the specification state of the variable y 

to mean the true/false values of all predicate and equality tests 

the schema(s) could possibly make without changing the value of the 

variable y . To make this notion concrete, let k be the maximum 

depth of any term used in the schemas S, and S0 . Given a value 

[TQ] for y , the specification state of y includes the following: 

(1) the description of all initial elements and all equivalence classes 

of the form [T'OTQ)] where [t'Cy)! <k ; 

(2) the values of all terms T ' (y) where jf ' (y) | <k ; and 

(5) the values of all atomic formulas pOr'Cy)) for all p , and 

lT'(y)| <k . 

We define the incomplete specification state like the specification 

state except that k is replaced by k-1 in the definition above. We 

define the state vector of the variable y to be the incomplete 

specification state as well as the current statement just executed. 

Now, given the two schemas S, and S  we construct a finite state 

automaton which effectively simulates the computations of S, and Sp 

in parallel. The input tape represents an interpretation (from A ) 

for the schanas S, , Sp , appropriately coded. The automaton accepts 
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the input tape unless either  (i) both Schemas halt with different 

outputs, or  (ii) S2 halts and S1 either loops or can be made to 

diverge. The finite automaton can detect the latter case (for the 

appropriate input tape) because the "principal instance" of the second 

schema will enter the same state vector twice after the first schema has 

halted. Now, the finite state automaton accepts all input tapes if and 

only if S1 > S . 

The description of the automaton and the input tape follows. The 

automaton effectively simulates the computations of the Schemas by 

running the computations for a (large) number of instances of the 

variable y in parallel. For each assignment statement in the Schemas 

and each constant term T() , where |T() | <k there is an instance 

of y which indicates the computation as would be executed starting 

just after that statement and with the variable y set to value of T() 

In addition, there is a principal instance for each schema. It corresponds 

to the start statement and the initial value of y , i.e., it corresponds 

to the "real" computation of the schema. As the automaton steps through 

the two Schemas (as determined by its input tape) the automaton keeps 

track of a finite amount of bookkeeping information, viz., the various ; 

instances that have equal values, the various instances that halt or 

loop forever, and, of course, the state vectors for instances that have 

not halted or looped up to that point (called active instances). 

In addition, the automaton remembers the initializing character 

(explained below), and if S2 has halted, then it also keeps track of 

the set of state vectors of the principal instance of S, subsequent 

to the halting of Sp . 

:. 

o 

. 

o 
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The first character of the input tape is a special charachter 

called the initializing character. It describes all elements of the 

form [T()] , where 1^0 | < 2k-l , und gives the values of all terms 

T() , and all atomic formulas like P(T()) , where jfOj < 2k-l . 

With this amount of information the automaton can simulate the execution 

of all instances of y so that for each instance either it halts or loops or 

reaches a value [T()] such that |T() | = k . 

All subsequent characters on the input tape are called updating 

characters. If m is the number of instances in S, and Sp , and 

we let X denote the finite set of specification states, then an 

updating character is an element of A . In other words, one updating 

character provides the following information for each instance in both 

Schemas: 

(1) the description of all "new" equivalence classes, i.e., for all 

classes [T(y)] , |T(y)l = k-1 , and all function symbols f , 

the description of equivalence classes amongst the terms of the 

form f^tiy))  ; 

(2) the values of all terms T(y) ,  |T(y) ) = k j and 

(3) the values of all atomic formulas p.(T(y)) ,  lT(y)|  k . 

When an updating character is read, the automaton already has an incomplete 

specification state for each instance. If for any active instance, the 

information given by the updating character fails to match the incomplete 

specification state for that instance (and the information of the 

initializing character), the automaton detects the tape as representing 

an infeasible interpretation. Whenever any infeasible interpretation is 

detected, the input tape is accepted. Further, the automaton checks that 

the "updates" are equal for instances known to have equal values -- 

12l+ 
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otherwise the inteipretation is infeasible. If the updating character 

passes these "feasibility" tests the automaton then steps each active 

instance through the schema in which that instance occurs. The following 

cases are possible: 

(1) The next statement is a HALT or a LOOP statement — record it. 

The instance becomes inactive, but all instances that become inactive 

by halting with this value are remembered in the finite memory. 

(2) The next statement is a test statement - t.ae outcome is known, 

hence continue the process (check for a loop). 

(5) The next statement is y - a. - the instance becomes identical 

with the instance that started from this statement with value a 
•1 

(check for a loop). 

(h)    The next statement is y - f. (y) — 

(a) If y = f^y) then y is unchanged — continue the process, 

checking for a loop. 

(*>) yHfo), fi(y)=T() with |T()|<k -the instance 

becomes identical with the instance that started from this 

statement with value T() . 

(c) y/^f.ty), fi(y)^T() for all T() suchthat |T()|<k -- 

the process stops. 

O 

^ 

-. 

- 

The automaton continues reading input characters until either both S 

and S2 halt or loop, or until S2 loops (while S^^ is still active), 

If, however, S2 halts and Sj^ is still active, all state vectors for 

the principal instance of S^^ are remembered and if it ever loops or 

repeats a state the input tape is rejected. 

• 
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The reason that this specification state approach works with 

limited equality tests is that the finite specification state carries 

sufficient information to allow it to be updated such that all feasible 

updates represent feasible interpretations. The converse, that for 

every feasible interpretation there is a feasible update at each step, 

is trivial. This is not true for general equality tests, e.g., in the 

classes c^ and (3^ if a specification state were to carry all infor- 

mation necessary to update it, the amount of information would grow 

without bound as the computation proceeded. 

To generalize to non-monadic Schemas in (3^ , we describe the 

canonical interpretations ^ similar to those for monadic Schemas. 

The elements of the domain are, as before, equivalence classes 

over terms. There is, however, a special element denoted by [A] . 

This corresponds to terms that cannot be built up. For any inteiTpretation 

in ^ ,  the value of all functions having [A] as any argument is [A] ; 

and the value of all predicates having [A] as any argument is (arbitrarily) 

true. We now describe the other elements in Dom(l) . The "initial 

elements" are the equivalence classes over all terms T() where IT() I < k 

satisfying substitutivity, of course. As before, we rank terms first 

^y |T() | ^ and then by (some) lexicographic order, and we use the 

notations [TQ]  and (TQ) as before. 

Functions over initial elements are defined as follows. If all 

M)l,..-.|Tr()l <k, then fÜT^)],...,^)]) = Cf(T1(),,..,Tr())} , 

where f is an r-ary function. If [TQ] is in Dom(l) ,  |T()| >k , 

then new equivalence classes may consist of terms from the set T of 

terms T^TQ) where T • (y) is a non-constant term with ^'(y)! <k , 

as follows: 
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(1) Let    Tj^ c: T   be the set of terras   T'(T())    where    l|T'(y)|l = 1 , 

and where   T^y)    is (non-constaiit and) of the form   ffT,....,T  ) 
1 r 

where for each   i ,  either   ^    is simply   y   or else   T.    is a 

constant term and    [t±]    is an initial element.    Then equivalence 

classes on   ^   are arbitrary, and we define the value of 

f([T1],...,[Tr])    tobe-/     {f^, ...,Tr)3    if such a class exists, 

otherwise it is either    [TQ]    or some initial element. 

(2) Let    T2 c T    be the set of terms    T (f {))    where    ||T ' (y) |1 = 2 , 

T'Cy)     is of the form    f^, ...,Tr)    where for each   i,    [T.]    is 

an equivalence class (at least for some    i ,    ||TJ = 1 ) and there 

exist non-constant   T   , T      for which   T. / T.   .    Then for each 

terra   T'OrQ)^   there is a class    [T'(T())]    consisting of just 

the singleton, and the value of   f([T1],.. .,[Tr])    is defined to be 

this  element. 

(5)    Ty ..•.>Tk   may generate additional new elements in a manner similar 

to (2)  above. 

All function applications not specified above have value    [A] ,  and 

all predicates taking arguments from   Dom(l)-[A]    are arbitrary. 

This defines the class of interpretations    ^ ,  and for monadic 

functions and predicates it is the same as the earlier class    .9 
K 

introduced (except for the unreachable element    [A]). 

Now,  given an arbitrary interpretation    I«  , we obtain the 

corresponding    le^      (r  I   i)    as before,   having the property that there 

is a surjection    9: Dora(l).[A] - D    that preserves the values of predicates 

*7 ' — ■   

With a little corrupted notation we have allowed [y] to stand for 
LTH] where T() is the value of y , and we continue to use y and 
T(; interchangeably. 

0 

o 

o 
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and functions.    Here,    D    is the set of k-reachable elements in 

f 0001(1')    which is defined to be the set of elements in   Dom(l') 

corresponding to the terms    T()    that can be built up by assignments: 

y -T^); y - Tg(y) ; ...;   y - Tn(y)  , where for all    i ,     [TJ < k . 

^ The desired lemma can then be proved,  that is,   if every term   T    used 
k 

in Se3s has depth at most k , then if I' -• I then 

Path(S,I') = Path(S,l) , and ValfS,!') = e(Val(S,l)) . The rest of 

4; the proof is almost identical to the proof above, except that we cannot 

impose that all instances can be simulated exactly in step, but some 

instances may get up to a bounded number (k-l) of steps ahead of 

others — but this is no problem, the automaton simply remembers these 

relationships, and always updates those (active) instances lagging behind. 

This completes the proof of inclusion. But before the reader starts 

sharpening his pencil to write a program for proving the equivalence of 

programs by this method, a note of caution seems to be in order. The size 

of the automaton grows quite rapidly with the size of the input schemas. 

Perhaps the verb "explode" would be more appropriate. To decide if 

si > sp where both S-, > S  are the trivial schema 

START y - a; HALT(y) 

the automaton is trivial. But if we add an assignment statement and 

change the schema to 

START y - a; 

while p(y) do y - f (y); 

HALT(y) 

then the automaton (in a brute force construction) has some 50 billion 

states and an alphabet of size 500 million. Of course, large improvements 
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are possible to make the decision procedure feasibly in practice by 

more careful definitions of canonical interpretations, specification 

states, and the automaton construction (e.g. if the automaton merely 

counts the number of steps of S^^ after B« halts, instead of keeping 

track of all state vectors entered), but that is not our purpose in the 

proof. 

^•1^e)   The proof of isomorphism is similar to the proof of inclusion, 

except that the automaton not only keeps track of which instances are 

equal in value at each step, but also which equal instances have an 

isomorphic history. The automaton can then detect if for any input 

tape the computations of the two Schemas are not isomorphic. 

3.2.U.2 Proof of Theorem 3-2 (Solvability of ß, ) 

The proof of Theorem 3.2 is somewhat similar to that for Theorem 3.1, 

but the canonical interpretations and the automaton to be constructed 

have to be a little more general. Intuitive^, the reason for this is 

the following. For Schemas in the class (*    ,   if Wo instances "diverge" 

in their values, then from that point onwards their predicate and 

equality tests are independent of each other. Not so for Schemas in Ö, . 

For a schema in C2 ,  two instances may diverge and then come together 

again, for example, the following may happen. We denote two instances 

by y1 and y2 ; then say, both are equal, and one, say y , tests 

f^ftfty^))) = f(f(f(g(y1)))) , and it is true. Then y  applies 

yl *" f^ and y2 aI)PlieE ^2 *" g^y2^ ' namely, they diverge. But 

they can converge again if the function f is applied three times to 

each. 

Ü 

O 
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We will demonstrate a quick proof for the inclusion problem.    The 

solvability of halting,  divergence and equivalence follow from this,  and 

isomorphism can be shown to be solvable in much the same way. 

Given (monadic or non-monadic)  Schemas    S,,S2d2,  to decide if 

B.  > Sp    we describe the canonical interpretations for    S,  , Sp  .    Let 

k   be the maximum depth of any term used in    S,     or in   Sp ..    We define 

the effective assignment depth    //T()//   of constant terms    T()    as 

follows: 

//T() //   =   if |T()| < k   then 0 else  |T()|-k    . 

The canonical interpretations    -9,     are defined as follows.    The domain 
K 

of an interpretation    IcJ,     is equivalence classes over all constant 

terras, but all elements of an equivalence class must have the same effective 

assignment depth,  and equivalence classes must satisfy substitutivity. 

The values of functions are defined in the obvious way, that is, 

fd*-, ], •• .,[T   ])     is    [f(T  ,...,T )]    if such a class exists,  otherwise 

it is some initial element; and the predicates are arbitrary.    It is to 

be noted that all equivalence classes are finite, but unbounded,  i.e., 

the input tape of the automaton to be constructed cannot specify the 

entire description of the elements, but that will not be necessary. 

The automaton simulates the computation of all instances in 

parallel keeping a total specification state instead of specification 

states for each instance.    Let   Y = fy-,...,y  1    denote the set of all '■I m} 

instances.    The total specification state contains the following: 

I;ü 
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(1) a map D: Y - (0,1,.. .,k-l]m giving the relative effective 

assignment depths of all instances (at least one of which is zero), 

(2) the values of all: T^) = T^) , where T^y) , Tg(y) are 

non-constant terms, and [^(y) |1 +D(yi) = l|T2(y)ll+ D(y ) <k , 

i.e., the effective assignment depths of both T^y.) and T (y.) 

are the same (because we will have that the values of y. , y. have 

depth > k ) , 

(5) the values of all: T^y.) = TgO , where ||T1(y) H +D(y.) < k , 

|T2()| < k , and 

(!+) the values of all P(T ,...,T ) where Tn,...,T  are all 
x r J. r terms 

on some    y    ,   (or constant),  and for non-constant   T.  , 
d 

|T   1+D(y )  <k ,  and for constant   T.  ,     IT . I  < k  . 

The rest of the execution of the automaton,   i.e., the initialization, 

updating,  simulation and halting,  is on the lines of the earlier proof. 
U 

5-2.1+.J5 Proof of Theorem 3.$ (Unsolvability of &* ) 

3.3(a), (b)   We define a class c.  of Schemas having two variables 

y1 and y2 , and whose statements consist of the following: 

Start statement:   START (y^yp) - (a,a) 

Final statements:  HALT(a)  or 

LOOP 

Test statement:    y •- f (y ); 

if p(y.) then goto L. else goto L, ; 

It was shown by Luckham, Park and Paterson [1970] that the halting 

problem for the class &     is unsolvable, and that the divergence problem 

is not partially solvable. 
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To show the halting problem for 3-, to be unsolvable we reduce 

the haltinc problem for Q,-    to that for ft- ; that is, we describe an 

algorithm that takes any schema S  in the class &     as input and 

yields a schema S' in the class fl~ such that Bi      halts if Djid only 

if S      halts. Similarly, to show that the divergence problem for fl* 

is not partially solvable ve describe an algorithm that takes S,- as 

input and yields as output a schema s"  in the class C- such that 

S"  diverges if and only if S  diverges. We will unify the construction 

for the two cases by conti ructing for both cases a schana B, in the 

class (J, but augmented with a special final statement called the 

reject statement: 

REJECT statement:  REJECT . 

The reject statement signifies that the interpretation is unacceptable 

and is rejected. The idea is the following. There exists a map from 

interpretation? of G- that are not rejected onto the interpretations 

of S,. such that tha computation for S, under an interpretation halts 

if and only if the computation for S  under the corresponding interpre- 

tation halts. 

Now it is clear that if we replace all reject statements in S, by 

HALT statements to get S'  , then s;.  halts on every interpretation if 

and only if S  halts on every interpretation. Similarly, if we replace 

all reject statements by loop statements to get £'4 , then S" 

diverges on every interpretation if and only if S  diverges on every 

interpretation. 

Given a schema S,. in ^ we construct the corresponding schema 
5     5 

S, in 0- (with the addition of REJECT statements) as follows. We UJC 
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the variable y of S, to represent the latest variable tested in S,- 

The function f plays the same role in S^ as 

We use a new function g called a "test function") and tests 

i.e., y1 or y2 . 

in Sc 

of the form 

if p(y) then ... else .. 

in Sc , will take the form 

if g(y) = g(6(y)) then ... else ... 

in S, . In addition we use two "control" functions f. and fg . Their 

roles are the following: if y stands for y2 (of S,- ) then f^y) 

will equal the value of f(y,) at that instant in the computation unles.-,, 

of course, a reject statement is reached earlier. The role of f2 is 

analogous, i.e., if y stands for y. then f^y) will equal the 

value of f(y2) . 

The schema S-, simulates a computation of S,. as follows. In 

the diagram below the elements a , f(a) , f(f(a)) , f(f(f(a))) are 

represented by contiguous squares from left to right. We superimpose 

on this diagram the computations of both S, and S_ . Suppose, at some 

instant in the computation of S , y1 is at point A , and y2 is 

at C , and suppose y, is being "read".  S, makes certain that the 

f- pointers from the squares scanned, point to the right of y2 . 

Suppose that when y. reaches point D the schema Sr starts "reading" 

from yp .  S, checks that the f, pointers from the squares scanned, 

point to the right of D (i.e., to F ). 
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fp . 

T T T rs                  i 
A B D F C E 

i 

.. 

push y1 

U 

(F, reads y ) 

l 

1             i 
A B D F C E 

y T                             > 

fl 
yl                                  ^2 

push y2 - 

(S, reads y 
2> 

We are now in a position to describe the construction of S, . 

Without loss of generality we will assume that in S,. the first test 

statement tests the variable y .  S, will effectively contain two 

copies of S , except, of course, for the start statement. We will 

call these copies A and B . We will label statements of S  by 

Lj^Lp,L^,... . The corresponding statements in S* will be labelled 

AJ. , BL.., AIv,, BL0, AL,,BL,, ... . 

(i) The start statement in B. ia 

START <y1,y2> - <a,a>; 

goto Li; 

15k 
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The corresponding statements in   S,    are: 

START y »- a; 

if f (y) / f2(y)  then REJECT else goto AL.; 

Note that the test    f(y)  / f (y)    is not strictly an allowed 

statement.    We use this  form for clarity:     it can really be 

"simulated" by the statements: 

if f(y) / fj^f^y))  then REJECT; 

M f2(y) ^ ^(^(y))  then REJECT else goto AL.; 

(ii)      For any tests statement    L.     in   S- ,  if   L.    is of the form: 

Vy^fCy^; 

if p(y1)  then goto L.  else goto L,; 

the corresponding statements    AL.    and   BL.    are: 
11 

ALi:  if f2(y) ^ f2(f(y))  then REJECT; 

y - f (y); 

if g(y)  = g(g(y))  then goto AL.  else goto AL, ; 

and 

HI,.:  if f(y)  / J'.O'^.v)   Uicu miWi 

if S(y) = g(g(y)) then goto AL. else goto AL, ; 
J K 

(iii)    For any tests statement    L.     in   S-    of the form: 
i     5 

if p(y2) then goto L. else goto L,; 

ALi and BL. are similar to the above, except, one has to 

interchange ^ with f2 and A with B . 

:. 

o 

0 
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.,v. . 

,-; 

< j 

(iv)  Halt and loop statements remain unchanged. 

This completes the construction. 

The main reason that the schema S  can simulate the computation 

of S,. is that each f^ , f  "pointer" is checked at most once from 

each square. If pointers were to be checked twice and it turned out 

that they were required to point to different values there might exist 

no interpretation satisfying this condition — the result would be that 

all interpretations of S^ would be rejected. 

^•^(cl   The non-partial solvability of the equivalence problem follows 

directly from the non-partial solvability of the divergence problem 

(part (b)), since a program schema in C*    diverges if and only if it 

is equivalent to the schema: 

START y - a; 

LOOP . 

?-Md)   The non-partial solvability of the inclusion problem follows 

immediately from the non-partial solvability of the equivalence problem 

since S1 s  S2 if and only if S^ > S2 and S2 > S . 

3•3(c)   The non-partial solvability of the isomorphism problem also 

follows directly from the non-partial solvability of the divergence 

problem. Given a schema S in the class (3, ,  construct a new schema S" 

also in fl* obtained by replacing esch halt statement in S by the 

statements: 

y - f (y); 

HALT (a) . 

Then S and S' are isomorphic if and only if S diverges. 
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5.2.k.k    Proof of Theorem 3 A (Unsolvability to Q.   ) 

The proof r.nes  along lines quite similar to the proof for Theorem 3.3, 

We first define a subset Cg of the class of scheraas (V . Schemas 

in Cg , like those in C- , have two variables y  and y , one 

function symbol f , and one predicate symbol p . However, (V has 
6 

the constraint that in any path through a schema of (V , after each 

statement that tests the variable y  there must be either one or two 

statements that test y2 (followed by a halt or loop statement or another 

test of y, ) -- note the form of the test statement of &. defined in 

the proof of Theorem 5.3(a), (b). Each "stateraent" in (V (other than 

a start, halt, or loop) is a compound statement of any of the following 

two forms (labels L,!^,!^, ... are arbitrary): 

L: y1 - f (y^ ; 

if p(y1) then 

begin 

y2 *" f ^' — p^y2^ then goto % else goto L2 

end 

else 

begin 

y2 *" f^y2^ ' — p^y2^ then Goto L3 else goto L. 

end; 

ami 
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$ 

« 

if pCy^ then 

be^ln 

if P(y2) then 

begin 

yg " f (yg^; ü PCy2) *iiSa S2i£ ^ eise goto .Lr 

end 

else 

begin 

yg - f (y2) J Ü. P(y2) then goto L5 else goto L. 

end 

end 

else 

begin 

■  •  • 

end; 

copy of the above,  except exits are L -L0 
5 8 

& 

Lemma-  The class fl^ is unsolvable. 

Proof:  The proof of unsol^ability of flg is sdjI1iiar to the proof of 

the unsolvability of the class ^ . The class ^ is analogous to the 

class of two-headed automata. On the other hand, the class ^ corresponds 

to a restricted class of two-headed automata in that after each timü 

head #1 reads a character from a binary alphabet, head #2 reads one or 

two characters; then head #1 reads again. Thus it is clear that head #1 
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can get at most one character ahead of head #2. This restricted two- 

headed automaton can simulate a Turing machine computation for an 

appropriately coded input tape as follows. The input represents a 

sequence of "instantaneous-descriptions" of the Turing machine computation, 

but between any two consecutive instantaneous descriptions are a sequence 

of incomplete descriptions, each one bit longer than the previous. Now, 

on lines similar to Luckham, Park and Paterson [1970] the restricted 

two-headed automaton accepts an input tape if and only if it represents 

the Turing machine computation alluded to above. The unsolvability of 

C* is now obvious. 

Now, given a schema S^ in Cg we construct a schema S. in (\ 

(with reject statements) as follows. This time S. will have Just one 

"copy" of Sg , but will have six function symbols: f, g, f , f , f , f. 

(i)   The start statement in S^ is 

START (y^yg) - <a,a>; 

goto L; 

The corresponding r.tatemont in S,  is: 

STAKT y - a; 

if y / f-iCy) then REJECT; 

goto L; 

(ii)  The statement in S^ corresponding to a teat statement of the 

first kind is: 

L; if y / f^f^y))) then REJECT; 

y - f(f1(y));     comment; short for y - f^y) and y - f (y); 

if y = g(y) then 
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;: 

s 

t 

. c 

begin 

if y / ^(^fgCy))) then REJECT; 

y - f(f2(y)); 

if y = g(y) then goto L, else goto L2 

end 

else 

begin 

if y / f1(f(f2(y))) then REJECT; 

y - f(f2(y)); 

if y g g(y) then goto L, else goto L. 

end; 

(iii) The statement in S.  corresponding to a test statement of the 

second kind is: 

L: if y / fgCf^y))) then REJECT; 

y -ftf^y)); 

if y = g(y) then 

begin 

if y ^ f5(f(f2(y))) then REJECT; 

y -f(f2(y)); 

if y = S(y) then 

begin 

if y = f^(f3(y))  then REJECT; 

y -f5(y); 

if y ^ t^tif^y))) then REJECT; 

y - f(Vy)); 

if y = g(y)  then goto L,   else goto Lp 

end 

llfO 
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else 

begin 

if y / ^(^(y)) tton REJECT; 

y - f5(y); 

if y ^ f^fiffo))) then REJECT; 

y -f(f^(y)); 

If y = g(y) then goto L, else goto L^ 

end- 

end 

else 

begin 

... as above, but with exits L^-Lg 

end; 

This proves the unsolvability of 3.Ma), (b), and the parts (c), (d), 

and (e) are immediate from these. Q 

5.2.^.5 Proofs of Secondary Results 

In the following results the number of functions does not include 

the ever present zero-ary function. 

(i)  Schemas with one variable, two functions and general equality tests. 

The class of flowchart schemas with one variable, two functions 

(no predicates) and general equality tests is unsolvable. 

If completely general equality tests are allowed it is easy to see 

that two function constants suffice to render the class of schemas 

unsolvable because more function letters can be "coded" in terms of two 

Ü 
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f 

functions.    In the proof of Theorem 3.3 we change the construction of 

S5    from   S5 ,  somewhat,  by making the following substitutions:    for all 

terms   T  ,  simultaneously substitute 

f(f(T))        for        f(T) 

f(g(T))        for       g(T) 

g(f(T))        for        ^(T) 

g(g(T))        for        f (T) 

All the unsolvability results go through on making this substitution. 

(ii)  Schemas with two variables, two functions and restricted equality 

tests. 

The class of flowchart Schemas with two variables and two functions 

(no predicates) with tests only of the form y. = f(y.) are unsolvable. 

Consider the class Cy   which is the same as £  but with the 

difference that there are two functions f and g , and no predicate 

constant. 

Every schema S,- in ^ can be reduced to an equivalent schema 

S.f    in (^    by replacing every tent statement of the form 

if p(yi) then goto L. else goto L 

by a test statement of the form 

yi - f(yi)5 

ilVi = g(yi)  then goto L. else goto L,      . 

It is easy to see that for any finite or infinite path through S , if 

there exists an interpretation for which S5 executes statements along 

this path,  then there is an interpretation for which    S      executes 

lk2 
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statanents along the corresponding path. This establishes the 

uncolvability of the class C^ • 

C111)  Schemas with one function, restricted equality tests. 

Schemas with one function usins tests only of the form y. = y. 

are unsolvable. 

Consider the class of two-counter programs having statements of 

the following kinds: 

(1) START (c^Cg) - <0,0> 

(2) ci - c.+l 

(3) ci - c.-l 

(h)    if ci = 0 then goto L. else goto Lp 

(5) HALT(c.)  . 

Such programs can simulate the computation of a Turing machine on a blank 

tape and hence their halting and divergence is unsolvable. Now, given 

a two-counter program, we construct a corresponding four-variable schema 

with variables y1 , y2 , y^ , y^ such that the schema halts if the 

program halts, and the schema diverges if the program does not halt 

(note: we will use reject statements as before). The statements 

corresponding to (l)-(5) above are 

(1) START <y1,y2,y5,yu) - <a,a,a,a> 

(2) y5 -fCy.); 

if y^ = yj^ then REJECT; 

y^ - &; 

vhlle ^k ^ ^i — i^Vk  " y5 then REJECT else y^ 

yi -vy 

f(y),); 

. 
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(5)    Y^ - a; 

I 

X 

if y^ / y^^ then 

be^in 

Lsyj, - f(y3); 

if yu £ y^^ thgn becin y^ - y^j goto L end; 

yi*-y5; 

end 

CO    y^ - a; 

if y5 = yj, then goto L, else goto L0 

(5) HALT(a) . 

This demonstrates the unsolvability of the one-function Schemas. 

^•5 Commut.ativity and Invertibility 

5.5.1 Introduction 

We now consider some classes of semi-interpreted Schemas in which 

some of the base functions are related.    In particular,  we consider 

one-variable monadic flowchart Schemas for which the class of possible 

interpretations may be restricted by the following specifications: 

(i)      two functions may be specified to commute (unary functions    f   and    g 

are said to commute if    f(g(x))  = g(f(x))    for all    x ), 

(ii) some function is invertible (a function f is invertible if there 

exists another function f"1 such that f(f"1(x)) --■- f"1(f(x)) = x 

for all    x ). 

ihh 
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Thus, for a schema S , if f and g are specified to commute, 

then all interpretations are not allowed for S ; only those interpreta- 

tions are allowed that satisfy the formula Vxf(g(x)) = g(f(x)) . For a 

consideration of the inclusion, equivalence, and isomorphism problems 

for such semi-interpreted schonas we will only relate two schemus if 

they are compatible, i.e., they have the same specifications about 

commutative and invertible functions. 

We show tuat with either commutativity or invertibility alone, 

the decision problraes of one-variable schanas remain solvable, but with 

both commutativity and invertibility they become unsolvable: we also 

relate some of these results to the equivalence problem of multi-dimensional 

automata. 

All the Schemas to be described below have a single variable (y) 

and one zero-ary function a . All other functions and predicates are 

unary. Unless otherwise specified, statements are of the following types: 

(1) START y - a 

(2) HALT(T) 

(3) LOOP 

(5) if Pi(T) then goto 1^ else goto L- 

where ^ is a unary function, p^^ is a unary predicate, T (y) is an 

arbitrary terra that may or may not contain the variable y , and L 

and L2 are arbitrary labels. 

h 
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5.5.2 Schemas with Conunutative and Invertible Fimctions 

Consider the class C*.    of monadic flowchart Schemas defined us 

follows. A schema S in £••. contains one variable y , a zero-ary 

function a , and an arbitrary number of unary functions f ,f , ... 

and unary predicates p^Pg, .... In addition, there is a set E of 

pairs of functions [t.ffA      'lat are specified to commute. Thus, if 
* J 

ffi,f .}cE    then for any interpretation for    S    and any elatient    x    in 

the domain of the interpretation we must have    f.(f.(x))   = f.(f.(x))   • 
J- J J 1 

We refer to (J. as the class of commutative schemas. 

Theorem 5.^ (Solvability of (* ) 

The class of commutative schemas is solvable, that is, for the 

class C*. 

(a) the halting problem is solvable, 

(b) the divergence problem is solvable, 

(c) the e4uivalence problem is solvable, 

(d) the inclusion problme is  solvable, 

(e) the isomorphism problem is solvable. 

For proofs, see Section Jo«1*. 

Next, consider the class flg of monadic flowchart schemas defined 

as follows. A schema S in ^v, contains one variable y , a zero-ary 

function a , and unary functions f' ,f,f ,f , ... and unary predicates 

V^fVp*'"  '  vhere f and f"  are specified to be inverses, that is, 

for any interpretation for S , and any element x in the domain of the 

-1      -1 
interpretation, we must have f(f (x)) = f (f(x)) = x . 

Ik6 
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For the proof, see Section 5.5.^. 

Finall/, consider the class of Schemas toat have both the coramuta- 

tivity and invertibility constraints. We wish to show that -uhe decision 

problems for this class is unsolvable. For this, we exhibit the class C, 

of periscopic schemas defined as follows (we call these Schemas 

"periscopic" schemas because of their obvious relation to periscopic 

automata introduced in Section 5.5)• A schema S in n     has one 

variable y , one unary predicate p , the zero-ary function a , and 

three unary functions f" , f, g that are related by: 

Vx nt'^x))  = fml{t(,x))   =  x 

and 

Vx f(g(x)) = g(f(x))  . 

,-1 Note: this also implies that the functions f and g commute. 

Tests in S have either the form p(y) or p(g(y)) , and we also 

restrict halt ctatements to have the form HALT(a) , 

Theorem >.7 (Unsolvability of f-  ) 

Periscopic schemas are unsolvable. In other words, for C- 

(a) the halting problem is unsolvable, 

(b) the divergence problem is not partially solvable, 

(c) the equivalence problem is not partially solvable, 

(d) the inclusion problem is not partially solvable, 

(e) the isomorphism problem is not partially solvable. 

1^7 

:i 

Theorem j.f)    (Solvability of   A, ) 

The class    (3Q    of schemas with an invertible function is solvable. <» 

..  H^Htol ___    ■"'■■ -«.i—.-.-^ 
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A question raised by this theorem is whether tests of the form 

P(e(y)) are really necessary for making the class fl^ unsolvaole. 

We might ask, for example, whether periscopic Schemas without tests 

P(g(y)) might be solvable. The next theorem says that this is indeed 

the case. 

Consider the class (^ of schemas whici is like C* except that 

the only tests allowed are of the form p(y) . 

Theorem :'.8 (Solvability of C,   ) 

The class ß.  is solvable. 

5^3«5 Application to Finite Automata Theory 

From the above solvability and unsolvability results we wish similar 

results for finite automata. In general, the input tape of the automata 

we consider will be an infinite n-dimensional tape (with a root, or 

origin). We consider classes of automata by restricting the kinds of 

input tapes allowed and the possible ways the reading head of the 

automaton can move. An automaton may accept or reject its jnput tape, 

or it may run forever, in which case the tape is rejected. 

Note that for automata we can consider the problems of acceptance, 

rejection, equivalence, inclusion and isomorphism as analogous to the 

problems of halting, divergence, equivalence, inclusion and isomorphism 

for schonas. The acceptance (rejection) problem is to decide if an 

automaton accepts (rejects) all input tapes, an automaton A  includes 

an automaton A2 if the set of tapes accepted by A1 contains all tapes 

1^8 
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accepted by Ap , two automata are equivalent if they accept exactly 

the same set of input tapes, and two automata are isoraorphic if for every 

input tape they "visit" and read exactly the same squares of the tape in 

the same order. We say that a class of automata is solvable if all these 

these problems are solvable for the class. 

Schemas in C^ are closely related to finite automata on 

n-dimensional infinite tapes. An n-dimensional automaton is a finite 

state machine with one reading head that is initially at the "origin" 

of its n-dimension infinite tape. The symbols of the tape are from 

some finite alphabet E • The reading head of the automaton can, however, 

move only in the positive direction along any dimension. The automaton 

may halt and accept or reject the tape, or it may never halt (in which 

case the tape is rejected). We will represent the transition graph of 

the autcmaton by a program which has statements of the following kindc; 

(1) L0: START,   £Oto8(L0,a) 

(2) L.: ACCEPT 

(5)     L.:  REJECT 

(10    I^S move(j),  goto 5(1^,(0 

where   move(j)    means "move one step in the j-direction", and   5    is a 

function from labels and tape symbols to labels —    a    stands for the 

symbol read from the tape (which is an element of   E ) ,  and no   S(L.,a) 

can   ever be the label   L0    for the start statement. 

From Theorem 5«5 we obtain 

Corollary A.      The class of n-dimensional automata is solvable. 

To show this we construct for every n-dimensional automaton   A 

a corresponding schema   SeC^    (of Theorem 5.5).    It will be obvious that 

1^9 

h_ i*imitäa*»tm*^—^tm*     ■      -      iiiinmiiiMirmMMHii      ■—■  



w*? wm^mmmmmmmmmmmm ■'—"" PP!PlpimPiW<ui> u,iiNiiiim||<|pp 

the acceptance, rejection, equivalence, inclusion, and isomorphism 

problems for n-dimensional automata are the same as the halting, 

divergence, equivalence, inclusion, and isomorphism problems for the 

corresponding Schemas. 

Given an n-dimensional automaton A on E = fa , .. .,CT 1 , we 
1    mJ 

construct the corresponding schema Se^ as follows,  S has n unary 

functions f^ ...,fn, each pair of which commutes, and (m-1) unary- 

predicates Pi*'«'*Pm.1 • Statements in the automaton A and the 

schema S correspond as follows: 

Automaton A 

START 

L.: ACCEPT 

L.: REJECT 

1^: move(j), 

goto &(L.,a) 

Schema S 

START y - a 

L.: HALT(a) 

L.: LOOP 

Li: y -^^^ 

if p^y) then goto 5(^,0 

else if p2(y) then goto 5(L.,a2) 

else if V^-^i)  then goto ^L^cr  ) 

else goto &(L.,a ) 

The head of the automaton corresponds to the variable y of the schema, 

the input tape for A corresponds to the interpretation for S , moving 

the head in direction j corresponds to applying the function f. , and 

acceptance or rejection in A corresponds to halting or divergence in S . 

Note that for an input tape for A there correspond several interpretations 

for S , but it is obvious that the decision problems for the automata 
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are reduced to the decision those for Schemas (see also the canonical 

interpretations for C^ in the proof of Theorem 5.5). 

It is clear that two-way finite state automata (on linear two-way 

infinite tapes) are related to Schemas in C,     with unary functions 

f, f "" in the same way as n-dimensional automata are related to 

Schemas in Cs • It follows, then, that 

Corollary B.  The class of two-way automata on one-dimensional infinite 

tapes is solvable. 

Of course, this result is not new, but we mention it to show that 

it is derivable in a straightforward way from Theorem 5.6. 

As we have done for classes C^   and C^ , we describe a class of 

automata related to C^    that we call poriscopic automata.  A periscopic 

automaton has one head which can move on a two-dimensional infinite tape. 

We call the dimensions "horizontal" and "vertical". The head can move 

freely in the horizontal direction (i.e., left or right), but vertically 

it can move only upwards. However, attached to the head is a little 

"periscope" so that the automaton can read the symbol just above the 

head without moving the head vertical:-/ up. For our purposes it suffices 

to take the input alphabet to be of size two (we may say Z =  {T,F} ). 

U 

G 

"submarine" 
with a 
"periscope" 

F 
X 

g 

■'M 
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The relation between a schema SfCtv and the corresponding periscopic 

automaton A is obvious. An interpretation for S corresponds; to an 

input tape for A , application of the functions f , f   and g in G 

correspond to moving the head of A right, left, and up respectively. 

It is the test p(g(y)) in S that gives the automaton A its 

periscopic vision. It is then easy to see from Theorem 5-7 that 

C orollary C.  The class of periscopic automata is unsolvable. 

It is clear from this (and the proof of the theorem) that if we 

provide the automaton with any kind of periscope at ail, e.g., arbitrarily 

high, inclined, or even pointing downwards, but not just horizontal, (for 

that is equivalent to no periscope at all), then the problems for the 

automata all remain unsolvable (and similarly for the corresponding 

Schemas). 

We say a periscopic automaton has periscopic vision if at least in 

one state it tests the symbol at the periscope. An automaton without 

periscopic vision is just an automaton that can move left, right and up, 

but not down, and can only look at the symbol under its reading head. 

Theorem 5.8 shows that the decision problems for such automata are 

solvable. 

Corollary D.  The class of automata without periscopic vision is 

solvable. 
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»i J f2(Fi F^) is F1 FJ+1 

1    2 

The predicate   p    is arbitrary. 
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5.5A   Proofs 

^•3.h.l   Proof of Theorem 3.5 

We first give a proof of the solvability of the inclusion problem 

for a subclass   q   of   ^    in which any schema contains just two functions 

f1 , f2   that ccmraute,  and one predicate   p    for which the only tests 

allowed are of the foim   p(y)  ,  and halt statements have the fom 

HALT(y)   .    We will then give the proof of the solvability of   C-,  , 

which will be on lines similar to the first proof. 

Proof for   q :      We sketch the proof for the inclusion problem.    Given 

two schemas    S1    and   S2    of   q , to decide if   S1 < S2  .    Now, without 

loss of generality we can assume that both    ST    and    S      are free,  for 

if they are not,  they can trivially be made free.    We also assume that 

from each assignment statement in    S1    and    Sg ,  a halt statement can be 

reached, for otherwise we can replace such a statement by a loop 

statement. 

Consider the class    s    of interpretations of the following kind. 

The domain of the interpretation is the set of strings 

i>l F2 K J > 0} c t^Fgf  .    The functions    a , f 1, f2    are defined as 

follows: 

a is F°F°=A 

:/ 

-. 

o 
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Interpretations    ^   play the same role for the class   &•    that 

Herbrand interpretations play for Herbrand scheraas.    If we associate with 

any interpretation   I'    an interpretation    lej    such that    p(Fi FJ) 

is true in    I    if and only if   p(fj f^a))    is true in    I'   ,  and 

consider the homoraorphisra    9: I - I«    mapping     Y^ F^    into the element 

fj^ f2(a)     of    l'    — note,  by the commutativity of    f    ,  f      this map 

is onto the reachable elements of    I'     (that is,  elements that can be 

expressed as constant terms) .    Then,   if we consider the computation of 

a schema    Seq   under   I    and    I«  ,  they go through exactly the same 

sequence of statements of   S ,  and the values of the variable correspond 

(under    9 )  at each step. 

We can show that    S1 < S2    if and onOy if   ^ < S2    for the inter- 

pretations in    .9 .    The "only if" part is trivial.    For the "if" part, 

suppose    S1^S2  .    Then,  for some interpretation    I' ,    S      halts,  and 

S2    either loops or halts with a different value.    Then,   if we consider 

the computations of   ^   and    S^    under the interpretation    lej» 

corresponding to    I'  , we see that    S1    halts,  and   Sg    either loops or 

halts with a different value (by the existence of the homomorphißm 

9: I -I»   ).    Thus    S1^S2    for the set of interpretations    J  . 

Now,   given two Schemas    S-^S^C^ ,  to decide if   S1 < S      we decide 

if   S1 < S2    for the set of interpretations    ,9 .    We construct a finite 

state automaton   A   that simulates the computations of both   S      and   S 

(in step)   for an interpretation    le^    represented by the input tape of   A . 

The tape consists of two tracks,  one for each schema,  and symbols on each 

track are from the set    [T,F]    representing the value of the predicate   p 

applied to the current value of the variable    y .    it is the responsibility 

15U 
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of the automaton to detect whether or not the tape represents a 

feasible interpretation.    At any instant  in the computations of   S. 

i,     j' 
and   S2 ,  let the values of the variable    y    be    F-    F        in    S    ,  and 

Fl   F2      in    S2    (since the "chemas are in step    i +j    = i +j    ).    Let 

the count    c    denote    j^-ig  .    if the count is zero,  the predicate   p 

must have the same value on both tracks,   else the values on the tracks 

may be arbitrary.    The automaton   A   accepts an input tape unless    S 

halts and    S2    does not halt with the same output for the interpretation 

represented by the tape.    Thus,  the inclusion problem is reduced to the 

problem of deciding if a finite state automaton accepts all input tapes. 

In its finite memory the automaton retains the following data: 

(i)      the current  (assignment)  statement executed by   S    ,  and by   S    , 

and 

(ii)    the value of the count    c    provided     |c| < min(s ,sj    where    s   , s 

are the number of assignment statements in    S    ,  S    . 

The automaton operates as follows: 

(1) Read the input tracks  (if the end-of-flle is read,  accept the tape). 

If    c --= o    and the tracks read    (T,F)     or    (F,T)    then accept the 

tape  ("impossible" interpretation). 

(2) Using the values of   p(y)    from the tracks,   "find" the next 

statements  (other than test statements)  for both scheraas. 

(5)    If the next statement for    S^^    is a halt statement then reject the 

tape unless    c = 0    and    S2    also halts.    If   S1    loops then accept 

the tape. 

0 

0 

u 

O 
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. 

('r) If S2 halts or loops on the next statement, reject the tape 

because as S1 is free (over interpretations in j ) it can be 

made to reach a halt siatemont — and it will apply at leant one 

more function letter, thereby giving a different output from that 

of S2 . 

(5)  (Both next statements are assignment statements.) If s  executes 

y - ^(y) and S2 executes y - f2(y) then increment c by 1 ; 

if S^^ executes y - f2(y) and S2 executes y - f (y) then 

decrement c by 1 ; otherwise leave c unchanged. If the new 

value of |c| exceeds min^s^ then reject the tape, otherwise, 

go to (1). 

The reason that the input tape can be rejected if jc] exceeds 

min(s1,s2)  is that because S^^ and S2 are free and "independent" 

for the next c steps, they can both reach halt statements without 

executing any statement twice (for some interpretation) — and, of course, 

the outputs can be equal only if both reach halts at the same time and 

c = 0 , but that is impossible because c changes by at most one in 

each step. 

This completes the proof of the solvability of the inclusion problem 

(and hence also of the halting, divergence and equivalence problems) 

for CJ . 

Proof for C^  .  The solvability of the halting and divergence are 

trivial because Schemas in C^   can be made free. This can be done by 

making many copies of the schema, one for each partial specification 

state (see the notation in 5.2.1|). A partiai. specification state 
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for Schemas in   ^    is a mapping from the set of atonic terns    P(T) 

such that     |T| <k ,   into    {true, false, unknown]    provided it is 

consistent,  i.e.,  it obeys conunutativity relations,  and if the value 

of   y    is   T()  ,  then    |T()|>k    (for the initial part where    |T()|<k, 

computation is done by expanding the schema out as a tree). 

The solvability of equivalence follows from the solvability of 

inclusion  (below). 

For the proof of inclusion ^ < S,,) we proceed as before by 

constructing an automaton A that accepts its input tape unless S 

halts and   S2    does not halt with the same value. 

First we describe the canonical interpretations for the Schemas. 

Given   Sl    and    S2    over unary functions    f^...,^    and predicate. 

?!,...,pm    and a set    E    of pairs of function symbols that commute, we 

define a class    J    of interpretations as follows.    We define an 

equivalence relation on strings on   L = [^..„Pj    by the transitive 

closure of:      x^.E* ,    ^ =_ ^    if   ^ = ^ >  or there ^.^    .^ n 

suchthat    [f^fjJcE   and   x.,    can be obtained from   x1   by interchanging 

an occurrence of    F.    with an adjacent occurrence of   p    .    The domain 

of an^interpretation    leS    is the set of equivalence classes of strings 

of   E      (an equivalence class is denoted by    {x}    where    x    is a string 

in the class).    The value of the function constant    a    is    {A} ,  and 

functions    f^ ...,fn    are defined in the obvious way,  that is 

^([x])  = (F..x} 

where the dot    (.)    means the operation of concatenation,  and the 

predicates    P^...,Pm    are arbitrary. 
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(*) 

We note the followdjig property of the domain of the interpretation 

FiCE      and     x,yeE*    ,    then    x.Fi s y.F±    if and only jf   x = y  . 

The "if" part is trivial.    For the "only if" part,  assume   x.F.  = y.F. 

and trace the position of the "rightmost"    F.    as    x.F.    as transformed 

to   y.F.    by interchanging symbols (which correspond to pairs that are 

elements of    E ): 

x.F.   =xi -.x2 -  ...   -.xr = y.F.      . 

Now, if we consider xj_,x^,.. .,x; where x-  is the same as x. , but 

with the rightmost F. removed. Now it is easy to see that 

x = xi ^x2 -x; =y 

that is,    x s y  .    This completes the proof of the property (*). 

Also,  on lines very similar to the proof of   Q*    we see that 

S1 < S2    if and onO^ if   S1 < S2    for the interpretations of   S . 

We can now describe the automaton    A.    Let    k   denote   max[|Tl] 

of all terns    T    used in    ^    and   Sp  .    Now,  a symbol on a track of the 

input bape gives the values of all   P..(T)     for all   T    such that 

|T|   = k    for    S1    and    Sg  .    At any point in the simultaneous computations 

of   S1    and    S2  ,  let the variables    y    in    Sj^    and    S2    hare values     {y   } 

3. 
and [y^   ,    yi = F

in
F.   ••^i    .and   y2 = F    F    .. .F.     .    Then we 

Jl J2 

define the "unsaturated strings" x1, x2 of Sj^ , S2 as follows: set 

Xl *" yl ' X2 ^ y2 " Find the rightmost symbol F^^ in x  that is 

common to both x  and x  (if one exists), say x = x« F x" 
d. "  1   1 i 1 ' 

X2 = x2 Fi x2 ' then if Fi comir'^es with each symbol in x" and in x" 
12 

then set    y^ - x^ ,    x2 - x^ x^   ,  and repeat this process. 

We describe the proof for the case where halts are of the form    lIALT(y) 

The general case    HALT(T)     is  easy to incorporate into the proof. 
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Since the schemas are free,  any statement  from which a halt cannot 

be reached is replaced by the loop statement. 

In its finite control the automaton remembers 

(i)        the current  (assignment)  statement executed bv    S      and   S 
1      2 ' 

(ii) for both S:L and S2 , the values of all p.^) for all non- 

constant terms T such that |T | < k-1 , and for all constant 

terms T()  such that |T() | <k , and 

(iii) unsaturated strings x^x^E suchthat x1 , x2 have no symbol 

in common and 1^1 = |x2| < min(8l,s2)+k where s1 , s2 are 

the number of assignment statements in S , S 

From the property (*) we see that the values of the variable y 

in S1    and S2 are equal if and only if the unsaturated strings x , x 

are both A . If there is some symbol common to both x. , x2 then we can 

show that the values of y in S1    and S2 have diverged, never to come 

together again. To show this, let F. be the rightmost such symbol in 

x1 , and suppose it is "pushed" as much to the right in both x  and x 

as possible. If it cannot reach the right end of x1 (modified) then 

the modified x. , x  have the form 

x   is 

x2  is 

F.F. 

F, 

where F. , F  do not commute ([f.,f.}^E) and F. does not occur to 

the right of F. in x2 . Then, by extending x1 , x2 to the left we 

cannot make them equivalent for the order of the rightmost F  and F 
1      J 

must be reversed in the two. On the other hand, if p  cannot reach 

the right end in x2 wo have a similar argument.  Hence if such a condition 

occurs the automaton rejects the input tape. 
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After observing this, we see that the lengths of the uncaturated 

strings (jx-.) - |x |) can change by  at most one in any step, and If 

|x | = c > k then the two schemas are "independent" at least for the 

next (c-k) steps, so that if c exceeds min(s ,s )+k the automaton 

can reject the input tape (see the argument in the proof for flJ ). 

We use the specification state approach of Section 5.2.U. We note 

that the automaton can check for the consistency of the values of P(T) 

(given on the input tape) for the two tracks using the same argument of 

unsaturated strings, and that halts of the form HALT(T()) can be 

handled in a straightforward way; from which we conclude that the 

inclusion problem has been shown to be solvable. 

The proof of the solvability of the isomorphism problem for (\     is 

similar to the above, except that it is much simpler since unsaturated 

strings can never be anything other than A for otherwise the schemas 

are not isomorphic. 

;'.3• ^• 2 Proof of Theorem j.A 

Schemas in class C-M have the flavor of two-way finite automata. 
t . 

Applying the function f corresponds to moving the head right, applying 

corresponds to moving it left. There are some differences, however, 

(i)   the "input tape" is two-way infinite, 

(ii)  the schema outputs values, 

(iii) the schema can test predicates on terms, and there are functions 

other than just f and f 
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Nevertheless, a proof somewhat (Hjnilar to that for a two-way automaton 

works. 

Given two Schemas S^^ and S2 of Cg having functions 

f,f j^, ...,fn , define the class $    of canonical interpretations for 

Sj^ and S2 as follows:  the domain is the set of strings of 

*  f  -1        * 
E = IF,F ,F1,...,Fn]      for which symbols F and F"1 do not appear 

adjacent to each other. The predicates P^...^ are arbitrary. As 

in the previous section, S1 < S2 (respectively S1 and S  are 

isomorphic, S1 halts,  S^^ diverges) if and only if S < S  for 

interpretations of j (respectively S1 and S2 are isomorphic for j , 

S1 halts on    s ,    S  diverges on S ) . 

(a) Halting.  Given a schema Seflg , to decide if S halts, we 

construct a finite state automaton A that accepts all input tapes if 

and only if s halts. The automaton A simulates the computation of S 

on an interpretation (from J ) represented by the input tape. At any 

point in the computation there is a value v we call the "pivot" 

element — it is an element of 2  whose first symbol is not F or 

-1 *■ 
F  . For any element x of S , the specification state (SS) of x for 

an interpretation is defined to be the values of all P(T(X)) for all 

terms T(X) for which |T(X)| < k where k is the depth of the largest 

term used in S . The incomplete specification state (ISS) is the values 

for all |T(X)| < k-1 . The state vector is a label L.  (that is —- 1 \ 

executed) along with an ISS . A symbol on the input tape of the automaton 

represents the specification states of a pair of elements. Consecutive 

symbols give the specification states for the pairs 

161 

 . ' ,.,..^.,-„—^^klMMM« ■'"■'— -'—'■— ^.ww.^^-^-^-......,.^^^...^—.^w^^^^-^—^ „.-, :. .....^......„^-^^^.^--.a—Ul^-a^^.. -_*l 



ij-,4,ij,iiii «mmmmmmcmi mnnipniimMninpn^W^MW^ ,i IIMIIIU.JI IU,,,I »SBWHWil^WWISPHWll»! ""P^ 

•■ 

-1 ,-1x2 IN 5 „ „5 

. 

(v,v) , (F J-.V,P.v) , ((F'^^v^^.v) , ((F'-V-v^.v) ... 

where v is a pivot element) -- until the pivot element is changed (as 

determined by A ). The first element of a pair is called the left 

element, the second the right element. 

The first pivot element is A (corresponding to the function 

constant a ). The automaton works as follows. It retains a table of 

"instances" and "outcomes". For both the left and the right value 

there is an instance of the variable y for each assignment statement L. 

of S , which corresponds to the computation if L.  is exited with this 

value for y . In addition, there is one primary instance which 

corresponds to the real computation of the schema.  Let ((F )r.v,Fr.v) , 

r > 0 , be the current elements, with v as the pivot. The outcome for 

each instance can be one of five possibilities: 

(1) halt, 

(2) exit (with some state vector)  -- it corresponds to an execution 

of an assignment    y - f.(y)      (f.    is not    f    or    f"1 ), 

(5)    out-left  (with some statement    L.  )  — it corresponds to executing 

-1 -1   r 
Lj: y - f    (y)    where (the old)    y   had value    (F" )   .v    , 

(h)    out-right  (with some statement    L.  )   -- it corresponds to 

L.: y - f(y)    where    y    had value    Fr.v    , 

(5)    diverge -- the computation for this instance either enters a loop 

statement,  or diverges. 
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(F"1)1"^ Pr.v 

out-left 

Instances 

primary instance 

(real computation) 

yi left 

(statement L. exited 

with value (F )r.v ) 

y^^  right 

(statement L. exited 

with value Fr.v ) 

out-right 

Outcomes 

halt 

exit ISS 

out-left L. 
i 

out-right L. 

diverge 

In its finite memory the automaton has 

(i)   the current table of instances and outcomes, 

(ii)  the incomplete specification states (ISS) of the next pair to 

read in, 

(iii) the value of r if r < k ; and the value T() of the pivot 

element v if |T() | < k . 

We call (i) and (ii) the complete state of the schema. The schema 

also retains 

(iv)  all complete states entered for the current pivot element, and 

(v)   all state vectors for all pivot elements entered. 
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The reason for (iv) is that if the complete state repeats, the 

schema can be made to diverge with the primary instance making 

assignments only like y - f(y) and y - f"1(y) . The reason for (v) 

is that if the state vector for a pivot element repeats, the schema can 

be made to diverge because pivot elements are independent, i.e., all 

information regarding previous tests is "lost" (except the JSS) when 

an assignment like y •- f.(y) is made. 

The automaton operates as follows: 

(1) Read the specification state for the pivot element. The I3S part must 

match the required ISS (unless this is the first element -- A ) — 

if not, accept the tape, otherwise set up the required tables. 

(2) If the primary instance halts — accept the tape. 

If the primary instance diverges -- reject the tape. 

If the primary instance exits then we have a new pivot element -- 

if its ISS repeats, reject the tape, else go to step (1). 

If the table repeats -- reject the tape. 

(5) Read the next pair of predicate states. If it is an "impossible" 

interpretation, accept the tape, otherwise update the tables and 

go to step (2). 

(b) Divergence.  This can be proved like the halting problem, only 

the automaton is simpler. It does not need to remember the information 

(iv), (v); instead, it simply simulates the computation and rejects the 

input tape if the primary instance halts, and accepts it if the inter- 

pretation is "impossible", or the end-of-file is reached. 

I6h 
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From the proof it follows that it is solvable whether or not a 

schema would always diverge when any new pivot element is entered with 

any specified state vector. This fact is used in the proof of inclusion 

below. 

-19 V "--m 

(c) Equivalence.  The solvability of equivalence follows from the 

solvability of inclusion below. 

(d) Inclusion.  Given two schemas S^S eC- , to decide if S. < S , 

we construct an automaton A , similar to the automaton in part(a), such 

that A accepts all input tapes if and only if S1 < S . Tbc automaton 

simulates the computation of all instances of both schemas. The possible 

outccmes for each instance are 

(1) halt, with some value x , 

(2) exit, with some state vector and some value x -- it corresponds 

to an execution of y - f^y) where f. is not f or f"1 , and 

x is the (old) value of y , 

(5) out-left, with some statement L. , 

(h)    out-right, with some statement L. . 
i ' 

(5) diverge. 

The automaton need not (and indeed cannot) remember the value x 

for all halt or exit outcomes; it suffices to remember the equivalence 

classes of outcomes that halt or exit with the same value, and the values 

of only those instances that halt with output T() ,  1T()| < k . 

In its finite memory the automaton stores (as in the proof of halting) 

(i)  the table of instances and outcomes for both S  and S , 

(ii) the incomplete specification state of the next pair, 

. ■ 
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(iii)     the value of   r ,   if    r < k i  and the value   T()    of the pivot 

element    v    if    |t()| <k  . 

In addition,  the automaton has the capability of storing 

(iv)       an arbitrary set of complete states of   Sp    (tables of instances 

and outcomes for    S0 ,   and ISS of next pair) .    This is required 

in steps 2(iv)  and H(iv)  below. 

For simplicity we only show the proof for Schemas in which a halt must 

have the  form   HALT(y)   .    The general case   HALT^)     is easy to incorporate. 

The automaton operates as follows.    On seeing an end-of-file it accepts 

the tape.    Otherwise it reads a pair of specification states from the tape, 

checks  if they match with the known incomplete specification states.    If not, 

the tape is accepted ("impossible" interpretation).    If they natch>  then 

(1) 

(2) 

if the principal instance for schema S     diverges, then the 

tape is accepted, 

if S      halts then 

if S„ halts with the same value -- accept, 

if S  halts with a different value -- reject. 

(5) 

(i) 

(ü) 

(iii)     if   S?    exits -- reject. 

(iv)       if none of the above,  then continue simulation of    Sp    and 

construct the set of complete states until either (i),   (ii) 

or (iii) above applies,  or a coraple"1 e state repeats  --  in 

which case reject the tape, 

if   S,    exits in a state vector which must loop (decidable -- 

see the divergence problem)   then accept the tape. 

(M 

(i) 

if S, exits in a state vector from which it can halt, then 

if S0 halts, then reject, 

(ii)  if Sp exits with a different value, then reject, 
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(iii) if S2 exits v;ith the same value, continue simulation of 

both S1, 32 , 

(iv)  if none of the above, then continue simulation of S , 

constructing the set of complete states until (i), (ii), 

or (iii) above apply, or a complete state repeats, in which 

case reject the tape, 

(5)     if none of the above, continue simulation of both S.. and Sp , 

This completes the proof. 

(e) Isomorphism.  An automaton is constructed as in case (d) above, 

except it also keeps track (in the table of instances and outcomes) which 

instances undergo isomorphic computations. Then, the automaton rejects 

a tape if the computations of the principal' instances of both Schemas 

are not isomorphic at any step. 

5.5-1+.5 Proof of Theorem 3-1 

To show the unsolvability of Schemas in (*„  , we reduce thr halting 

problem for null-input Post machines to the halting and divergence 

problems for &.   .    A Post machine over {a,b} is a machine operating 

on strings, and having the following statements: 

START(x) 

HALT 

LOOP 

x «- x.a 

x •- x.b 

if x = A then goto L. 

else if head(x) = a then begin x - tail(x); goto L0 end 

elee begin x - tail(x); goto L, end 
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The schema S can simulate the computation of M on this plane 

as follows, it uses two horizontally adjacent nodes to "code" a letter 

(either a , b or e — a special end marker:  a corresponds to TT , 

b to TF ,  e to F- ) . In this manner, the schema will "lay off" a 
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where L^ ,1^,1^ are arbitrary labels, and head(x) represents the 

first symbol of x , and tail(x) represents the rest of the string x . 

Given a Post machine M we will construct a schema S which looks 

like a schema of (X    except it has special statements called reject 

statements. Replacing reject statements by halt statements gives us a 

schema that halts if and only if the machine M halts on input A , 

and replacing them by loop statements gives a schema that diverges if 

and only if M does not halt. 

The idea is that any interpretation for S can be represented by a 

grid of integer nodes in a half plane (doubly infinite along the x-axis). 

The constant function a corresponds to the origin; applying the function 

f corresponds to moving right, applying f~  corresponds to moving 

left, and applying g corresponds to moving up. At each node we have 

a T or F value, corresponding to the value of the predicate p (see 

the canonical interpretation for the class Cj in Section jJ.jA.l). 

f'^a) 

G(a) 

a 

ef(a) 

f(a) f2(a) 
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current value of the string x (of M ) in one row of nodes, enclosed 

by end-markers. The next string (after M executes one step) will be 

laid off on the next higher row. The schema S will simply check this 

computation. If the interpretation doesn't agree, the interpretation 

will be rejected. 

In our schema S we will allow the use of predicate tests of the 

form p(f(y)) , p(g(f(y))) , etc., since these can be implemented 

using only the allowed statements ( y - f(y); p(g(y)); y - f"1(y) 

for the test p(g(f(y))) , etc.). The correspondence between statements 

in M and those in S can be set up as follows. 

We first define the macros 

CHECK  = y - ff (y) ; 

while p(y) do 

^ggi" M P(y) ® P(g(y)) then REJECT; 

i£ P(f(y) <» p(gf(y)) then REJECT; 

y - ff(y); 

end;  coinment ft represents exclusivo-or; 

CHECKA   =    if-n p(ß(y)) then REJECT; 

if-i P(gf(y))   then REJECT; 

if -i P(g(y))  then REJECT; 

if P(gf(y))  then REJECT; 

if P(g(y))  then REJECT; 

1^-1 

CHECKS    = 

CHECKE 

BACKUP v - f^f-^y) 5 

while p(y)   do y ^ f"1f"1(y); 

O 

.:• 

u 

0 

D 
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The correspondence between statements in M and those in S 

Statement in M Statements in S 

START(x) 

HALT 

LOOP 

x t- x.a 

x »- x.b 

if x = A then goto L, 

else if head(x) = a then 

hegin x - tail(x); 

goto L2; 

end 

else begin x - tail(x); 

;oto L,j 

end 

START y - a; 

if p(y) then REJECT; 

if P(ff(y)) then REJECT; 

HALT(y) 

LOOP 

CHECKE; CHECK; CHECKA; 

y - ff(y); CHECKE; 

y - f"1f"1(y) ;  BACKUP; 

y *- g(y); 

CHECKE; CHECK; CHECKB; 

y - ff(y); CHECKE; 

y - f"1f"1(y) ;  BACKUP; 

y - g(y) J 

if n p(ff(y)) then goto L1; 

if p(fff(y)) then 

^egi" y - ff(y); CHECKE; 

CHECK; CHECKE; BACKUP; 

y - gff(y); 

oto L2; 

end 

else 

begin y - ff(y); CHECKE; 

CHECK; CHECKE; BACKUP; 

y - gff(y); 

goto L,; 

end 
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This completes the proof of the unsolvability of the halting 

problem and the non-partial solvability of the divergence problem which 

in turn implies the non-partial solvability of equivalence, inclusion, 

and isomorphism. 

3.5.I+A Proof of Theorem ?.8 

The main difference between a schema in Q.     and a schema in C« 

is that in fl. , after an assignment statement y »- g(y) the subsequent 

path of computation is completely independent of the outcomes of earlier 

predicate tests. For this reason, the proofs of the solvability of 

halting, divergence and isomorphism of C     also work for C*    . 

The solvability of equivalence follows from the solvability of 

inclusion (below). 

For the proof of inclusion we proceed along lines similar to the 

corresponding proof in &    .    But, first we observe that any interpre- 

tation for scheraas in (\     can be represented as a half plane (as in 

the case of &, ). We use the notion of "distance" between two values, 

wh'Jch denotes the horizontal distance between them on the plane. 

Secondly, from each statement 1,. : y - g(y) uf a schema G wo can 

decide whether or not S must loop, and if not, we can find the 

shortest number of steps n.  in which S can bo made to halt after 

executing L. . 

Now, given two Schemas S ,S0ö3V ,  to decide if S < S , let c 

denote maxfn.} for statements L.: y - g(y)  in S  from which S 

can halt; and similarly c  is for S? . We construct an automaton A 

that simulates the computations of S..  and S0 as in the proof for <3 

. 
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However,  its table of instances and outcomes is somewhat different. 

It keeps track of the "distance" between those outcomes that exit 

provided the distance is no more than   c +c0  . 

The rules for accepting/rejecting an input tape are as follows. 

If an end-of-file or an "impossible" interpretation is seen,  the tape 

is accepted.    Otherwise 

(l) if the principal instance for schema    S,    diverges,  then the 

tape is accepted, 

(2) 

(i) 

if S-, halts then 

if Sp halts with the same value -- accept. 

(ii)  if S9 halts with a different value — reject. 

(iii) if Sp exits — reject, 

(iv)  if none of the above, then continue simulation of Sp and 

construct the set of complete states until either (i), (ii) 

or (iii) above applies, or a co/iplete state repeats -- in 

which case reject the tape, 

(3)     if G, exits in a state vector (since the incomplete specification 

state is null, the state vecLor comästi'. simply of one label) 

from which 5. must loop, then accept, 

(h) if S1 exits in a state vector from which it can halt, then 

(i)   if Sp halts, then reject, 

(ii)  if Sp exits with a value more than c-i+co    distant, then reject, 

(iii) if Sp exits with a value distant d from S, , d < C..+C , 

then the next symbol read must be a "special symbol". If 

x. , Xp are the values with which S.. , Sp exit, then we have 

a sequence of values 
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— z B(xJ 

such that each    z..^   = f(z.)     or each    z 
i+l     i i+l 

this special symbol provides the values of 

P(z1),p(z2),...,p(zd_1) . 

i' 
Then .. 

Exit Exit 

"1 "2 

zo zl Z2 Zd 

xl X2 

The special symbol is ui;ed to set up the ii. .ance-outcome 

table again, and continue simulation, 

(iv)  if none of the above, then continue simulation of S0 

constructing the set of complete states until (i), (ii), or 

(iii) above apply, or a complete state repeats, in which 

case reject the input tape, 

(v)   if none of the above, then continue simulation of both S, 

and S„ . 

The jur.l.i ric;i.l,;iMii fur 'l(il) (ihovc; in l.lio.t .i » "., i-x i li mi ir-i ■ 

than c ic,, apart ;',  can be inadc t" halt, and fi,  will cither J.ocjp, 

or can independently be sent to halt statement with a different value 

(under some interpretation). 

This completes the proof. 

173 

. ,. ^ .... .-.-..■.-.. v.....^  ■■^.^^.^^■^^;^^r-|1r|rtl^^ ..       . „ ■    ......     .,:.. .■.^^M.,.AJ;J-^..^.....M^.AW^^,.,..^„,... . .-^^u^.^^^i^^- ^ ^^^■JillrtllilHirililtlihMii 



Fwr«^9WfWKWfl^rai?wwwfT-w-ip^^ 

♦ 

Chapter k      Generalized Flowchart Schemas 

h.1 Introduction 

Janov [I960J considered the data-space of a program to IJ*.; roprocont 

able by a single VBIUC, that could be changed (by applyjn/^ u I'unctjon) 

or tested (by a predicate). These base functions and predicates were 

assumed to be total, but otherwise completely uninterpreted. The idea 

was that by this mechanism one could model the control structure of 

computations and possibly even prove some useful properties about real 

programs, e.g., halting and equivalence. Unfortunately, the problem 

with this simple model was that two programs which computed the same 

value for ."ill possible inputs but, went about their task in slightly 

dJIToront way;: wore Lreated txa  licing ri'in-equ.ivalcnt under this mndoj -- 

we hi'id lntil. Lud much JrirnrmuLion, r,i ri'.IJy, by making Llio baß« fiuicl.Jomi 

and predücater, totally unintcrprctod, and secondly, by treating the 

whole of the data space as being a single element in the domain. 

The latter objection was partially answered by Luckham, Park and 

Paterson [1970] when they treated the data space as consisting of a 

finite number of parts which could be manipulated by the program. 

While an improvement, this nod-jl too could not usefully represent 

computations in which memory requirements increase with the duration 

of the computation. Also, quite basic control features, e.g., markers 

were missing. Cubcequently there have been several attempts to answer 

that latter objection by considering the subdivision of the rnumory intu 

greater and even greater detail — labels, labe], stacks, counters, 

markers, boolean variables, one- and many-dimension arrays, lists, etc., 

Ifk 
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limn; been conulderod. '.L'heiic may he ctOlod ntnjctumJ. featurcu, and one 

can construct an endless number of bhcßc -- ctackc of arrays, arrays of 

stacks, arrays with a dynamic number of arßuinents, general data structures 

like those of ALGOL 68, and so on. While it is -orue that most of these 

do not add any "inherent" power to the schemas, i.e., any schema in one 

class can be translated into an equivalent schema of another class, one 

cannot be completely satisfied with a "minimal" class since the aim of 

the study of schemas is to model computations, not Just to obtain a 

machine capable of computing the partial recursive functionals. This 

is akin to the similar state of affairs for partial functions -- a three 

counter machine (that can increment, decrement, and test a counter for 

being zero) can compute all the partial recursive functions, and yet it 

is hardly a good model for computer programs. 

Are we then arguing for a profusion of classes of schemas, one 

for each subset of possible data types, with little unifying theory? 

No. On the contrary, it would be quite useful to construct a rather 

general class of schemas from which many of the others can be obtained 

as subclasses. 

tfhile significant effort has been devoted by researchers to answer 

the second objection to lanov's model, viz., the problem of a single 

data space, relatively little effort has been devoted towards the first 

objection, i.e., that one loses too much information in considering all 

the base functions and predicates to be uninterpreted. One would like 

to specify, for example, that two functions commute, or that a certain, 

relation is transitive. In studies, most of these notions have not been 

integral parts of schemas in the discussion of properties of classes of 
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Schemas, but they crop up, in an ad hoc way, when a specific schema 

is used to model a specific program. 

It is our intention to handle these two basic problems in a 

uniform way, viz., by defining the class of generalized flowchart 

Schemas. Generalized schemas have the inherently sound philosophy of 

lanov that the complete data space of a program can be represented as 

a value (in some domain) but that operations on it may have the effect 

of modifying specific parts of the memory while leaving others unchanged. 

A generalized schema S = <F,(p,P> is a flowchart F (with a single 

variable), an attached fomula cp of first order predicate calculus 

with equality, and a set P of function and predicate symbols, which 

corresponds to the set of base function and predicate symbols of the 

schema. The relevant interpretations for S are those that satisfy cp , 

not all possible interpretations (as in the case of totally uninterpreted 

base functions and predicates) . We show that generalized schemas have 

the power of modelling the other classes of schemas, i.e., those that 

concentrate on the subdivision of memory. The other dilemma between 

the completely interpreted programs and the completely uninterpreted 

program schemas is satisfied by cpecifVing as much or as little about 

the interpretation (by the formula cp ) as may be desired for any 

specific application. 

This chapter introduces the class of generalized flowchart schemas 

and shows some of the possibilities of modelling structural subdivisions 

of memory and other useful properties. We then show how most of the 

classical theory of schemas can be represented by these schemas, and 

finally we prove the fundamental theorem of maximal schemas that states/ 
/ / 

that schemas with arrays and equality tests are,  in some sence,  a maximal 

class. 

176 

*^"^:' ---■ 
■■- :■.-■'-^-^.'^-        .  ^-*.^^.i^^^-.-^^.^i^^.^a^.u.^ ...... .—^.^-J;*^*^.^^^,^ i     ,h-..litm t|- -—.-i....^^..-. 



.^ii..^^^i^.^iwiiiLv^JiMiiik.Lifiii^iij^^j^L^^nii.iii.ii^i.i M fi'y#y:W-wiiLi",i:M
11, Jim *i*<**^*^mm$m!$'*F*'m'm^^ s .vi*w'!-^^w»w-(K?W-w!'l ■ "'^l 

^•2  Definition of Generalized Schemas 

^.2.1 Basic Definitions 

In Lhe re^t of this chapter whenever we say "schema" we mean a 

generalized schema.  Sometimes we also use the phrase <p-schema to mean 

a generalized schema. Schemas of the earlier chapters will be called 

conventional schemas. 

A schema S = <F,cp,P> consists of a flowchart F , a formula cp of 

first order predicate calculus with equality and a finite set P of function 

and predicate symbols. The flowchart F has a very special form. There is 

only one variable (we call it y), and statements consist of the following: 

Start statement 

Halt statement 

Loop statement 

Assignment statement 

Test statement 

START y - T() 

HALT (T(y)) 

LOOP 

y - T(y) 

if a(y) then goto L1 e3.se goto L2 , 

where T() represents a constant term, T(y) represent: any term, and 

a(y) represents any atomic formula, i.e., a predicate or equality test. 

For convenience we will use ALGOL-like notation inste  on strict flowchart 

notation. We hence allow the use of labels and pto statements, with the 

tacit understanding that there exists no cycle consisting entirely of 

goto-statements. 

An interpretation I for a schema S = <F,(p,P) is one that specifies 

at least the functions and predicates used in F , cp and P . But the 

only interpretations of interest are those that sr :isfV (p ~ we write 

I 1=-- (p if the interpretation I satisfies cp , and we say that 

I is an interpretation for S . 

J I 
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If S is a schana and I is an inteipretation foi S , we use the 

notation Doni(l) to mean the domain of the interpretation, and 

Val^1) to meari the output of the computation of S on I . If s 

diverges on I then Val(S,l) is undefined. Smilarly, Path(S,l) is 

the path of the computation of S on I (for an exact definition of 

a path, see Section 2.1.M . Also, if S . ^^p) , we use the notation 

£(S[ to denote the set of function and predicate symbols appearing in S , 

i.e., in F , cp , or in P . 

Definition.  Given an interpretation I on a domain Dom(l) over a 

set of function and predicate symbols Q , we define the subinterpretation 

I' of I with respect to a set P of function and predicate symbols in 

the following way: the domain Dom(l') of !•  is the smallest subset 

of DomCO closed under the functions in P n Q , and the values of the 

functions and predicates of P n Q are the same in I« as in I . Note 

that if P does not contain any zero-ary function then the domain 

Dom(p) is empty. We use the notation I/P to represent the subinter- 

pretation of I with respect to P . 

Definition.  A schema S = <F,q),P> is said to be well-founded if for 

every two interpretations ^, ^    tor    S (i.e., ^  \=  y    mäL    ^  ± y ) 

such that there is an isomorphism 9 from (I /p) to (I /p) , then 

(i)  Path(S,I1) = Path(S,l2) , and 

(ii) if the computations halt, then Val(S,I ) = 9(Val(S,I )) 

The significance of a set P that makes S = <F,q),P> well founded 

is that for any interpretation for S , knowledge of merely the functions 
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and predicates P is sufficient to characterize the computation. 

Given F and cp , a minimal set P for which (F,cp,P) is well founded 

represents the minimal set of functions and predjcates whose values are 

sufficient to fully characterize a computation. If only the values of a 

smaller set of functions and predicates are fixed, then there is come 

indeterminacy as to what the schema will do, i.e., there are two 

interpretations both of which satisfy cp , and also agree over the fixed 

values, but the paths of the computations on I., and Ip are different, 

or the outputs are different. 

We will only be interested in Schemas that are well founded, and 

in the rest of this chapter, all Schemas considered are well founded 

unless otherwise specified. 

It should be noted that if G ■ (I'VPJP) iü well founded and 1, , Ip 

arc interpretations for S whose subinterpretations with respect to P 

are isomorphic, then  (a)  if the computation of S on I1 halts 

then its computation on Ip also halts after exactly the same number 

of steps, and  (b) the outputs of the two computations ValfS-^I..) and 

Val(S„,I„) are elements of Dom(l1/p) and Dom(lQ/p)  respectively. 

It follows from the definition that 

(a) given any F and cp , if we let Q denote the set of function 

and predicate symbols in F , then (F,(p,Q,) is well founded. 

(b) if (F,<p,P> is well founded, and Q is any set such that P c Q, , 

then (F,9,Q) is also well founded, and 

(c) if cp is "false", then (F,(p,P) is well founded for all F and P , 

It is also easy to see that in general it is not partially solvable 

whether a schema S is well founded. This follows directly from the 

0 
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•t^ct (intuitively plausible to all schematologists,  and proved in 

Lection U.5) that the divergence problem for cp-scheraas is not partially 

solvable.    The unsolvability of well foundedness should not shock us 

unduly.    The corresponding problem for conventional schamas,  too,  is 

not partially solvable.    For, consider a conventional schema   S    with a 

statement    HALT(b)    where    b    is a zero-ary function not used in the 

rest of   S  .    Now we ask if the computation of    S    can be specified if 

we give an interpretation for   S , but refuse to specify the value of 

the zero-ary functlun    b  .    If the   HALT(b)     statement happens to be 

disconnected from the rest of   S , the answer is yes, but in general 

it is unsolvable. 

The correspondence between conventional Schemas and generalized 

Schemas can be represented by the following table. 

Conventional schema 

The total data space 

Functions and predicates 

Interpretation 

The structure of the data 

space,  smd totally 

interpreted features 

(like counters) 

(p-schema 

The variable    y 

The set    P 

(I/P) 

Predicates and functions other 

than those in P , related by 

the formula cp . 

This also shows why we are interested only in the well founded Schemas; 

for, in a conventional schema, if we specify only the values of a subset 

of the base functions and predicates, it may not be adequate to characterize 

the computation, and this represents an "incompleteness" in the schema. 

A schema S = (F,cp,P) halts for an interpretation I if the 

computation of the flowchart F under I reaches a halt statement. 
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A schema <F,cp,P> is said to halt if it halts for every interpretation 

I for S (i.e., l|=q)). Similarly, a schema is said to diverge 

if for every I for S the schema does not halt. A schema S is 

free if for every path K in S there is an interpretation I for S 

such that K = Path(S,l) . 

In the special case where cp is "false", the useless schema 

(F,false,P> both halts and diverges as there is no I for which 

I 1= false . In the other special case where cp is "true" the Schemas 

so obtained are the conventional one-variable scheraas, i.e., (3.(1 var) -- 

these are very similar to the lanov Schemas except that in lanov Schemas 

the assignments and tests are somewhat simpler. 

This describes the class of generalized scheraas. We can take 

interesting subclasses of these Schemas by restricting the kinds of 

flowcharts and the formulas cp allowed. In fact, by speciiying cp 

we can obtain Schemas that behave as if the Schemas had several variables 

(conventional n-variable Schemas), or counters, or pushdown stacks, or 

other structural features. In each case, however, the single variable y 

corresponds to the entire data space of the schema. We will consider 

this aspect in Section h.h. 

h.2.2    Some Examples 

We now give some simple examples of generalized Schemas. 

Example 1 

Consider the schema S - (F ,9 ,P > . There are two zero-ary 

functions a0 , a^, and two binary function.-? f. , f. . The formula cp 

is: 
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ao^ai 

A VxVyf+(x,y)  = f+(y,x)   A f.(x,y)   = f.(y,x) 

A VxVyVzf+(f+(x,y),z)   . f+(x, f+(y,z)) A f. (f. (x,y), z) 

A Vx        f+(x,a0)   = x A  f.(xfa.)   ■ x 

A Vx3y    f+(x,y)   = a0 

A Vx        (x / a0)   - ayf.(x,y)   = a1 

A VxVyVzf.(x,f+(y,z))   . f+(f. (x,y), f. (x,z)) 

A f.(f+(x,y),z)   = f+(f.(x,z),f.(y,2))     . 

f.(x,f.(y,z)) 

o 

The flowchart    F      is: 
a 

START y - a  ; 

^hile y / a0 do y - ^(y^^ ; 

HALT  (a0)     ( 

and the set    P      is     fa-.f.! 

r 

An interpretation for the schema   S      is a commutative field. 

The schema halts if and only if the characteristic of the field is 

finite.    Note that the zero-ary function    a      is not in    P    ,  but the 

schema is well foundea. 

Example 2 

Consider the schema    S,   = (Fb>tPb>Pb>  •      S,     has one zero-ary 

function    a , three unary functions    f ,  car ,  cdr ,  one binary function 

cons ,  and one unary predicate    p . 
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(p      is    Vx Vy car(cons(x,y)   = x A cdr(cons(x,y))   = y    , 

F.     is b 
START y - cons(a,cons(r(a),a)); 

L^.y - cons(ff(car(cclr(y))),y) ; 

if p(car(y))  then HALT(car',y)) ; 

y - con6(f(car(cdr(y))),y); 

if -1 p(car(y))  then HALT(car(y)); 

goto ^ , 

and 

P      is    [a,f,pj    . 

The GChema halts.    In fact,   the output of    S^    on any interpretation    I 

can be ciiven hy  the following, formula: 

Val(Gb,l)   - If pCf^Cft))   then  t^(a) 

else if -i p(f(a)) then f(a) 

else if p(f5(a)) then f5(a) 

else if-1p(f2(a)) then f2(a) 

else if p(f7(a)) then f7(a) 

else f' (a) 

The notion of the equivalence of the two schemas will be defined in the 

next section but intuitively the schema S,  is "equivalent", in some 

sense, to the schema S = <F ,<p ,P ) defined below (we use the ' c  x c c c' v 

abbreviation f^a) for ff(a) , etc.): 
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qp  is true 
o 

F  is START y - a: c 

if p(f5(a)) then }lALT(f';(a)) : 

if -i p(f(a)) then HALT(f(a)) ; 

if p(f5(a)) then HALT(f5(a)); 

if -i p(f2(a)) then HALT(f2(a)); 

If p(r(»)) then HALT(f7(a)); 

HAI,T(r(a)) , 

and 

' 

P  is  [a,f,p] ,   i.e., the same as ? 

U.3    Equivalence of Schemas 

k.'}.!    Introduction 

What does it mean to say that two Schemas    S,     and    S      are 

equivalent?    Baying    S,     and    Sp    are equivalent means that the outputs 

of    B.    ejid    S9    should be the same if both Schemas are made to compute 

on the same interpretation.    Howovor,  there jr. one point  that this cimple 

notion overlooks.    Tt  is that all  relevant interpretations for the first 

schema need not be the same as all the relevant  interpretations for the 

second schema,  as in the case of Example 2 in the previous section where 

the functions    car ,  cdr    and    cons    represented structural features in 

S^    which were absent  in    S     .    The values in the domain of an interpre- b c 

tation for a schema represent the data space of the schema,   and correspond 

to both the structural and the non-structural aspects.    However,   it is 

only the non-structural aspects that are crucial for the definition of 

iQh 
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equivalence.    It is precisely this dichotomy between the structural and 

the interpretive aspects of a schema that  dictates a little care in 

the definition of equivalence.    This problem does not arise in conventional 

schemata theory because these two aspects of sohemas are well segregated, 

and it is because we wish to give a unified treatment that we are forced 

to confront the issue. 

I>.3.2    Definitions 

We remark again that all Schemas considered below are assumed to be 

well founded. 

Definition, We say that two Schemas    Bj =  (Fj,^,?^    and    S2 =  <F2,(p ,P0) 

are compatible if    P    = P 

Definition.      Sg ■  <F2,(p2,P>    is a generalization of    B    -  (F ,(p ,P> 

if 

flj    for    S1      i.e. Tl   I"   *1 

ai2    for    S2      i.e.,     I2   |=   (p2 and 

S an isomorphism 9:   (l,/P)  •» (l„/P) 

such that if   B^    halts on    1^    t'.en    S2    also halts on    I      and 

Val(S2,I2)  = 0(Val(S1,I1))   ; and if   Val(S1,I1)    is undefined then 

Val(S2,I2)    is also undefined. 

If    S2    is a generalization of    S      we write    S      <   S 
x gen 

Noco that the definition of well  i'oundedness implies that  for any 

intarpretfttlon    I.    for    S    ,   if there exist two interpretations    I   , I, 
xx 2       > 

for    S2    whose subinterpretations over    P   are isomorphic to    (I /p)  ,   l.e, 
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»2: (i^P) « (yp) 

and 93:   (l^P)  - (l^P)     , 

then if      Val(S2,I2)   = Q^Val^,!^ 

then Val(S2,I2)  = öjCVkKö^Ig)     . 
/ 
/ 

It is clear from the definition that generalization is reflexive 
/ 

and transitive. 

0 i Definition.  S = (F^,^,?) includes (is at l^ast as defined as) 

Bl = <Fi^i'P) if: 

(i)  VI,  for S , H« for S  and 3 an isomorphism 

9: (I-^P) " (I2/P) such that if B. halts on I  then Sg also 

halts on Ig , and Val(S2,I2) =9^1(3^1)) , and 

(ii) YI0 for S , 31  for S  and 3 an isomorphism 

9: (Ij/P) - (I2/P) such that if S  halts on I  then S  also 

halts on Ig , and Val(S2,I2) = »(VUCBoI.)] . 

If B- includes S  we write S, < S  . 

Definition.  Wc say that two compatible Schemas S  and S,, are 

equivalent (8- ■ S^)  if S^^ < S2 , and S0 < S  . 
        gen gen 

Alternatively, B* ■ S  if and only if S, < S2 , and S0 < S-, . 

We should now ask what is the significance of our definitions of 

generalization, inclusion, and equivalence, and whether the definition 

of equivalence corresponds to the usual notion of equivalence. These 
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questions will become clearer in Section k.h where we model several 

conventional classes of Schemas by subsets of the cp-schemas. 

We may note here, however, that the notion of "generalization" is 

not immediate in conventional Schemas, but it goes something like this -- 

say two schemas (or computer prograns) have been written to compute 

some mathematical function, but the first of these schemas does not 

ccimpute it for f.ll possible caset- as the second one does. Then we 

would say that the second schema is a generalization of the first. As 

an example, suppose we want to compute the gamma function, rounded off 

to, say, ten decimal places. One way of doing it is by computing the 

factorial function, in which case the program would work correctly for 

the positive integers. Another way is to use any of the converging 

series lor the gamma function, .^e would then say that the second program 

(or schema) is a generalization of the first. 

H.3 »3 Kxamples 

1.      Consider the schemas    Sb ,  B      of geetioi) k,2,2.    We have 

S.   - S     . b        c 

2. Consider the schema    SJ  =   (f..©-.P..)    wher^ 
d       N d    d    d 

cpd    is    Vx fjx^)  = a1 - (x = a0)    , 

Fd    is    START y - a  ; 

while y ^ i0 do y - f^y^) ; 

and 

HALT(a0)     , 

pd is M*i • 

18? 
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Comparing    B.    with the schema    ß       (of Sect inn l|.2.2)  we B«6 thai, 

' 
a   -     d gen 

but not      sd    <   Sa    ,  because the characteristic of a commutative 
gen 

field must be a prime (if it is finite),   i.e.,   if   I      is an interpre- 

tation for    Sd    such that    a0  - ^  ,   or    ^ - ^(^(^(a^a^ ,a1),a1)  £ 

^{a^a^       etc.,  then there is no interpretation    I      for    S       such 

that    ijii^t^]    is isomorphic to    ld/{a1,f+]  .      Hence    Sd    is a 

strict generalization of    S       (we write    S      <   8. ).    Note that the 
gen 

notion of generalization is not synonymous with usefulness, for it may 

be argued that Sa is more useful than Sd . The notion of generaliza- 

tion is more akin to the notion of subset in the theory of languages, 

where any language over an alphabet E is a subset of the regular 

language I . 

k.h    Clashes of Schemas 

J+.^.l Introduction 

We now show how most conventional flowchart schema^ can be 

represented as generalized Schemas (cp-schemas), and demonstrate that 

many of the well known results regarding the power of classes of Schemas 

apply to (p-schemas as well. In fact, it even turns out that formalizing 

a schema as a (p-schema sometimes reveals some point overlooked when 

talking about Schemas in an informal way. To illustrate, suppose we 

wish to define conventional Schemas with lists, and we introduce the 

primitives car , cdr , cons , A , and atom , and allow their free use 

in Schemas (see also Morris [1972]), then we «ouxd find that we cannot 
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prove the well foimdedness of the correspondinf; generalized cchema.    The 

reason is that certain error conditions may be encountered where the 

computation is not well defined,   e.^.     in attempting to take the    car 

of    A   of or an    atom .    This accounts  for our careful definition of 

list Schemas in Section 2.1.2.    The notation   C{n va.r)  , (3()   , (3(=)   , 

(3(pds)   , (^(liat)   , C3-(A)   ,   etc.,   for conventional Schemas   (described in 

Section 2.1)  vill alr.o be used for the corresponding (p-schemas.    In fact, 

we will call a (p-schema    corresponding to a conventional schema a 

conventional (p-schemas. 

We  first define the notions of generalization,   inclusion and 

equivalence for partially interpreted conventional schemas   (in what 

follows we will consistently use the superscript    *    for conventional 

schemas,   for interpretations for them,  and ior classes of conventional 

schemas) .       E(S )    denotes the set of function and predicate symbols 

in    S    .    We say    I    is for    P    (where    P    is a set of function and 

predicate symbols)   if    I    specifies at least all the functions and 

prcdicates  in    P  .    We use    I      for    B >F    to denote    (1       for    S ) 

and    (]      for    V)   . 

(let    P    denote    >.:(S.*)   U £(8*)   ):      VI'     for    ;J*,P 
X 

1 gen 

*    ♦, 
ai«    for    S2,P        5^:  (l^P) - (lI/P)       i.t.   either both    Val(S1,I1) 

and    Val(S2,I2)     are undefined,   or else    Val(S2,I2)   ■ 9(Val(S1,I1)) 

S* > S*      (let    P   denote    1(3*)  U Z:(S*)   : 

(i)       Vlj    for    S^P      3I2    for    S2,P      s.t.    S9:   (l^P) - (l2/F)   , 

and if    Val(S2,I2)    is defined then    Val(S2,I2)   = 

^(Val(S*,I*))   , 

1Ö9 

-■ -- - 



 .j'"^"7".-"- ""■■"■ ■■■• MI im«  '    <<■ .i..«.^...-.!.. .P....   .1.      I,........,,,.. .    >..«...»«.,. i , ii VPTi 

and (ii) Vl2 for S2,P  ft, for S^P  s.t. 30: (l^P) « (W') » 

■Bd if Val(S;t, ij^)  is defined then Val(S*,I*) = ö(Vr.l(S*,I*)) 

S1 ■ S2  if  B, > S2 and S2 > S  ; or alternatively, if 
         gen .^en 

■x-   *       *   * 
S. > R^ and Sn > Sn . 

1  —      c d   —     1 

We had not defined the notion of generalization for conventional 

Schemas before, but it can be chocked that the above definitions for 

inclusion and equivalence are the oame as the earlier definitions for the 

Schemas considered in Chapters 1-5. The earlier definitions, however, 

do not apply to "arbitrary" partially interpreted conventional schemas. 

The translation of conventional schemas to cp-scheraas will be 

performed as follows. In the cp-scheraas, symbols used for the base 

functions and predicates (corresponding to those in the conventional 

schemas) are distinguished from those used for the interpreted features. 

Given a conventional schema G  over the base functions and predicates 

P , we construct a flowchart F and a formula cp such that the 

corresponding (p-schema ll 8 ■ <F,cp,P> . Next, given a class C,     of 

conventional schemas, the corresponding class (5 of cp-schemas is 

consti-ucted as follows: if S fC- , then the corresponding S = <F,cp,P) 

is in £. , and so are schemas  <F,cp, P') where P c P' , but P' may 

co:.tain seme new function and predicate symbols. The reason for this 

is that if we wish to compare (for inclusion or equivalence) two 

conventional scnemas whose corresponding (p-schemas are <F,,(p,,P,) and 

(F2,Cp2,P2) , it is possible that ^ / p2 5 hence we will compare, 

instead,  (F^f^^UP^ with (F^^ UP2> 

After we describe the translation of conventional Schemas to qp-schemas, 

we can then go about reproving most of the results regarding conventional 

schernas in the cp-schema formalism. However, much of this work can be 

190 

 — —». 



■NTSWBBPPÜ"!*"»^^—""  "■l'"MI"' ■"  n     '    J ^.T'1 

avoided if the translation process obeys the conditions of the basic 

translation lemma below.    The lemma says that if certain conditions are 

satisfied then many of tho interesting results for conventional scheraas 

carry over to <p-schemas as well. 

Let    S      be a conventional schana,  and let its stateraents be 

V8!'*"'Sk •    A statement can be of "type'  —    start , halt ,  loop , 

assignment ,  or    test   .    The flowchart    F    of the corresponding (p-schema 

S = {T,<f,P)    will have one statement corresponding to each statement 

in    S    ,  and the types match,  and    P = Z(S )   .    For convenience, we will 

call the statements in    F   by the same names as those in    S    ,  i.e., 

s^s^ ...,sk . 

The conditions for the basic translation lemma are the following 

(we use the notation    11 « L    to denote    "I      and    I      are isomorphic"): 

0. R    is well founded. 

1. (For individual schemas)    Let    P   o P = E(S )   . 

(a) VI+    for    P+    if   31    for   S      s.t.    (l/p) « (i^/p)    then 

ai-L    for      S,P+      s.t.    (I1/P+) - (I+/P+)   . 

(b) VI*    for    P+    if   31*    for    S*      s.t.     (I*,P) « (l*/p)    then 

31*    for    S*,P+      s.t.    (I*/P+) « (I*/P+)   . 

2. (For the translation process) 

(a) VI for S  31* for S*  s.t.  39:  (l*/P) ~ (l/p) and 

Path(S,l)  = Path(S*,I*)  ,  and    Val(S,l)  = e(Val(S*,T*))    if 

both are defined. 

(b) VI*    for    S*      31    fcr    S      s.t.      30:   (l*/P) « (l/p)    and 

Path(S,l)  = Path(S*,I*)  ,  and   Val(S,l)  = 9(Val(S*,I*)) 

if both are defined. 
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3. 

! 

f 

ht 

ir 

(For classes of conventional schemas)     Interpolation lemma. 
*    * 

•C*]  JV^l 31'' v^-jj O-, jS ,   if    S*eC^ 
*    * * 
2*^  '     ^1 ^ ^2 then 

3S5cC2 s.t. Ij ■ S5 ,    2(3^   = Z(S3) 

It is easy to see that for uninterpreted conventional schemas, 

2(a)   follows  from 2(b)  owing to the well foundedness of    S   .    To see 

that this is indeed the case,  let    I    be any interpretation for    S  . 

Then,  as    S      is uninterpreted, there is an    I      for   S*    such that 

I /P   is isomorphic to    l/p ,  i.e., there is an isomorphism 

9*  (I /P) - (l/P)   •    Now,  from part 2(b),  there is an interpretation    I 

for    S    such that    9^   (i*/P) « (^/p)  ,  and    PathiS,^)  = Path(S*,I*)   , 

■K-      -X- 

and   Val(S,l1)   = ei(val(S ,1 ))   .    But from the well foundedness of   S , 

as    9^9'  :   (i/p)  « (^/p)   , ve have    Path(S,l)   = Path(S,I1)   ,  and 

Val(S,I1)   = 9^9"  (7al(S,l))   ,   from which the desired result follows, 

i.e.,    path(S,l)   = Path(S ,1 )  ,  and    Val(S,l)   = 9 » 9'   » 9 (val(S*,I*))   = 

9(Val(S*,I*))   . 

If we can prove the above condition to hold in the translation 

process,  then the following consequences apply. 

For individual schem&s 

(1) S    halts if and only if   S      halts,  and in general,    S    halts on    I 

if  md only if    G      halts on    (l/p)   . 

(2) S    diverges if and only if   S      diverges,  and in general,    S 

diverges on    I    if and only if   S      diverges on    (l/p)   . 

(5) If Z(S*) . Z:(S*) then S1 < S2 iff S* < S* . 
gen gen 

(U) If Z(S*) = Z(S*) then S1 < S2 iff S* < S^ . 

(5) If I(S*) = 2(3*) then Sj ■ S2 iff S* > 3* . 
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(6) S is free iff S  is free. 

For classes of schemaK 

(7) ^ < fl^ iff ^ < C^ • 

(8) On ■ (^ iff C* ■ C* 

(9) The halting problem (respectively divergence, equivalence, inclusion 

problem) is solvable for © if and only if it is solvable for C* . 

For a proof,  see Section 1+.6. 

In our translations from conventional Schemas to (p-schemas we show 

that the basic translation lemma applies by proving part 2(b)  above, 

by induction on the number of steps in the computation.    This is done as 

follows.    Given an interpretation    I      for    S    ,  we construct an inter- 

pretation    I    for    S    such that    (l*/P)    is isomorphic to    (l/p)  ,  and 

we define a function    6: M - Dom(l)    where   M    is the Mt of possible 

configurations of the data space (memory) of   S*  .    Then we show that at 

each step in the computations of   S*    and    S , the configuration of the 

data space in    S      and the value of t'.ie variable    y    of    S    are related 

by the function    5  . 

h.h.2    Flowchart Schemas 

h.k.2       One-Variable Schemas 

For lanov Schemas,  and general one-variable flowchart schemas with 

equality tests  (but without boolean variables), the translation to cp-schemas 
ML 

is trivial.    Given a one-variable schema    S     the corresponding q)-schema 

is    S = <F,true,F) , where    F    is identical to the flowchart of   S*  . 

Proving that the basic translation lemna applies in this case is 

alFo trivial.    Since the set    P   of functions and predicates in    S*    is 

the same as the set of functions and predicates of   S ,      S    is well 
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founded. Now, ^iven an interpretation I  for S , cnoose I to be 
.. *• ^ 
the same as I , then the set of memory values of S  is Just 

. x- 
Dom(l ) , and by choosing 5 to be the identity function we see that 

the condition of the basic translation lemma is satisfied. 

h.h.2.2    n-variatle Schemas 

Given an n-variable flowchart schema S* with variables 

y1>'y2> "'>yn >  no boolean variables, and predicates ind functions P , 

to construct S = <F,cp,P) , we add (n+1) new functions: 

comb>v1,v2, ..,,vn . The formula qp is: 

Vx^Xg ... Vxn  v1(comb(x1,x2, .. .,xn)) . x.^ 

A v2(comb(x1,x2,...,xn)) = x2 

A   ... 

A vn(comb(x1,x2, ...,xn)) = xn . 

To construct the flowchart    F    we first define the translation 

T(T(y1, ...,yn))     of a term    f{Tf^$.,*ty\    which uses the functions  of    P 

and the variables    y^ .. .,yn    (any or all of them may be missing) .    The 

translated terra OSM only the functions fron    P U fv   ,v }    and the 

variable    y  .    The translation may be defined as  follows: 

(a) T(T()) =T() , 

(b) T(y.) . v.(y) , 

(c) TCfd^...,!^) f(T(T1),...,T(Tk)) , where f is a k-ary function 

letter, 

We can now defin" the statements of the flowchart F by setting up 

a correspondence from statements of the schema S* . 

I9I1 

I 

MMM - "^ 
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Statement of S 

START  <y1,...,yn> - (r^),...^)) 

ILALT(T) 

LOOP 

T1=T2 

p(T1, ...,Tk) 

(y^ .y,,) - (f.|»...#0 

Statement of F 

START y - combCt^^O, 

HAI.TCTCT)) 

LOOP 

T(T1) . T(T2) 

y *- combCT^^,...^^^) 

>.tnO) 

We can prove the well foundedness of S , and the basic translation 

lemma simultaneously by induction on the number of steps of the 

computation. 

Given an interpretation I  for S  we can get an interpretation I 

for S (such that I |= cp ) as follows:  the domain of I , Dom(l) is 

defined to be the closure of the following: 

(a) Dom(I ) c Dom(l) 

(b) if e^eg, ...,eneDom(l) then the vector <e ,.. .,e > e Dom(l) 

(without loss of generality we may assume that vectors like this 

are not already present in Dom(l ) ). 

The functions and predicates of p are defined as follows: if q 

is a k-ary function or predicate, qcP . then q(e ,...,e )  in I is 

defined to equal the value of q(e,...,ej in I* if •,.....«  are 
in In 

all elements of    Dom(l )  ,  otherwise it is arbitrary.    The function    comb 

is defined as follows: 

comb(e1,e2, ...,en)   = (e^ ...,en)  . 
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► 

I 

The functions v , ...,v  are defined as follows: if eil)om(i: )  I.hen 

v.(e)  is arbitrary, otherwise e is a vector of elements in Dom(l) , 

e = (•,••••*• > i and v.(e) = e. . 

Now, the data space of S  at any instant is a set of values 

[y-^ = ei ' 1^2 = e2 ' " ' ' yn = en^ where e2.'"''en    are elemen'ts of 

Dom(I ) . We define the function 5 mapping this data space into the 

element (e ,...je > of Dom(l) . Also, it is clear that I /p and 

l/P are isomorphic. 

Now the induction hypothesis after i steps in the computations 

of S and S  (under I and I  respectively) is that the paths up 

to that point are the same, and that v = b(m) where m is the data 

space of S  after i steps, and v is the value of the variable y 

of S . The initial step and the induction step of the proof are easy 

to check. 

We remark here that there are other possible translations of n-variable 

cchemas to (p-schemas that yield relatively more natural interpretations I 

corresponding to I .We give an example below. Here, we introduce the same 

functions as before, i.e.,  coml^v.,...,v , but also a new prodjcate: 

J:;<latu .  Lot.  1' ,1',,, ...   he the nineli«NM i»f P (ine.linl:i n/i •.-,<• fi-ury 

functions), and let r be the largest rank of all theno; then q> is 

Vx  ...Vx    (isdata(x )  A  ...  A isdata(x ))  m 

isdataCf^x^Xg,...)) 

A isdata(f2(x1,x2, ...)) 

A 

A Yx^-.-Vx    (isdata(x )  A  ... A isdata(x ))  - 

v1(comb(x1,...,xn))   = ^ 

A vjcomb^, ...,xn))  ■ x^ 

A 

m 

- - - -- — 
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and the flowchart F is the same as in the earlier construction. In 

this construction, the domain of the interpretation I need not contain 

vectors whose elements are also vectors. However, it should be noted 

that if these two translations yield schemas S1 and Sp corresponding 

to a conventional schema S , then S ~ S . 

k.U.3 Flowchart Schemas with Markers and Boolean Variables 

U.U.3.1 Markers 

Give a flowchart schema S  with n variables y, ,...,y , m 

marker variables z1,...,z , and p marker constants M,,...,M , and .Lm Ip 

predicates and functions    P ,  to construct    S =  <F,cp,P)    we add 

(p+m+n+1)     new functions:    comb, v., .. .,v ^ , .. .,w ,M..,.. .,M    .    The L n    i. ml p 

formula    qp    is: 

M,   /^ M- A M.   / M,  A   .. .  A M     .   / M x        d        x        2 p-i        p 

A Vy1Vy2.. -Vy^Zj^.. .Vz^      v1(comb(y1, • > •. zj)   = y^^ 

A        ... 

Avn(C0mb(yl"--Zm)) =yn 

A Wj^CcombCy^ ...,zm)) = z^^ 

A        ... 

AWrn(comb(y1,...,zm)) = zm      . 

The flowchart    F    is obtained on lines very similar to that described in 

Section U.U.2.2.    The addition is that a test    (z    = M.)    is translated 
■      J 

to a test (w (y) = M.) — note that M. in the test (z = M.) 1     J J i   J 

corresponds to a marker, whereas in the test (w (y) ■ M.) , the M, 
X J J 

is a zero-ary function. 
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Well fcundedness of S and the basic translation lemma can be 

proved as before by constructing the function ö and using the additional 

induction hypothesis that at any point in the computation the vaZwe  of 

each z    ,    1 < j < m , is NL or M,. or ... or M . 
J     —  -        1      c" p 

Flowchart Schemas with boolean variables can be treated as marker- 

schemas where the markers can have one of two values called "true" and 

•false". 

U.I4.5.2    Generic Variables 

A generic variable in a conventional schema is an untyped variable 

whose value can be either a data element or a marker --in other words, 

the "type'' is assigned at run-time rather than at canpile time.    Schemas 

with generic variables differ from other Schemas In that there can be an 

"unexpected" error condition of type mismatch.    Under such QOBditloM 

the schema is assumed to loop. 

Given a  flowchart schema    S      with    n    generic variables    y,,...,y    , 

p   marker constants    M,,...,M    ,   and function symbols    f,,...,f      with 
■L P 1 m 

rank    r^ ...,rm    respectively (some of the    r's    may be zero),     let    r 

denote    ■M^V./lft.^r )   •    Now,  the corresponding (p-schema    S ■  <F,(p,P> 

is given as follows.    We introduce    m+pf2    new functions: 

M,, ...,M ,ism,comb,v-,...,v    .    The formula   ©    is: 
J- p in 
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Mj^ ^ M2 A Mj^ / M A .. . A M _ / 
P-1 ■ MP 

A ismCM,) A ism(M,,) A ... A ism(M ) 
-L       ■ p 

A Vx1Vx2--.Vxr(-1 ism(x1) A ... A-i ism'x )) - 

ism(f (x,,...^ )) 
1 

A -i ismff (x?, .. .,x )) 
m 

A njf*2...'f*t  v1(comb(x1,...,xn)) = x1 

A vn(comb(x;L, ...,xn)) = xn 

The flowchart F can be defined by settinc up a correspondence between 

statements of S  and statements of F . Without loss of generality 

we assume that no statement of S* applies a function or predicate to 

a marker constant (for it can be replaced by the Joop statement). We 

will use the function T defined in Section k.h.2.2,  extended to include 

markers by letting T^) = Mi . If f^...,^ are terns we use 

YC^, ...,Tk)  to denote the set of variables y. appearing in T,,...,T , 

and if Y  {yk ,...,y. ] is any set of vurjables, wo use ism(Y) us 
b 

an abbreviation for (ism(y ) v ism(y, ) v ... v ism(y )) . 
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Statement of S 

START   (y1,...,yn) - (T;i(),...,Tn()) 

HALT(T) 

IXDOP 

Statement of F 

START y - COACtjO,...,»()) 

if iüm(Y(T))   then  LOOP else }LALT(T) 

LOOP 

"f"! 

if p^, . ».»tjP then potü L 

else goto L„ 

ÖTj,...,»„) - (^.....t ) 

»l-"i 

if ismCYCtj^, ...^T^) then LOOP 

else if p(T(T;L),...,T(Tk)) 

then goto L, else goto L_ 

if ism(Y(T. ,...,T. )) then LOOP 
1     Tl 

eLse Y ^ combCTCt.),.. ,T(T )) 
J-       n 

where T ,...,T   are the terms in t  ,...,T      that contain at least 
T.    Tl in 

one function symbol. It can be shown by induction that the (p-schema S 

is well founded. However, the translation does not satisfy the basic 

translation lemma to the letter because extra tests are introduced. This, 

however, does not violate the spirit of the lemma inasmuch as all 

properties except freedom are considered. 

^•k.*l Counters, stacks, Arrayr, and Other Kratur',-: 

In this section a conventional flowchart schema Is tcmwtj to huvo 

a finite number of discrete elements: variables, counter:;, stacks, 

arrays, queues, lists, etc. In the corresponding (p-schema, the 

mechanism of the functions comb , v^...,vn is used to assemble and 

to extract the various components as in the earlier sections, and the 
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corresponding axioms will not be repeated.    Similarly,  the assignment 

to variables,  and predicate oests,  as well as halt and loop statements 

are handled as before.    In this section we will concentrate only on 

the translation of these special features into <p-schemas. 

^A.^.l    Counters 

The operations allowed on counters arc retting a counter to zero, 

testing a counter •for zero,  and incrementing and decrementing a counter 

(decrementing a counter whose value is zero leaves  it unchanged). 

To translate a counter schema into a cp-schema we introduce three 

new functions:    a zero-ary function zero,  and two unary functions 

plusone and minusone.    The axioms «»ve: 

Vx(plusone(x)  / x) 

Yx minusone(plusone(x))  x 

minusone(zero) = zero 

Note that the axiom ■ Vx plupone(x) / zero " follows from these. 

We ree that we can define sane new features within the fraiiiework 

of rp-schemas very easily: 

(i)   counters that take positive and negative values 

(ii)  testing two counters for equality 

(iii) comparison of two counters 

(iv)  addition and multiplication of counters 

(v)   "counters" that take on rational values 

(vi)  Schemas that can  output counter values. On the other hand, 

inputing an arbitrary counter value is restricted, owing to the 

first order notions of (p-schemas. 
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^.U.U.2    Arrays 

One dimensional semi-infinite arrays without booleans can be 

"described" by using functions    con    and    asc    (which stand for "concents", 

and "assignment" respectively).      Con(c,A)    represents the contents of 

array    A   at location    c , and    aEsfx,c,A)    represents the array obtained 

by assigning; the value of array   A    ? t location    c    to be    x  . 

VxVcVc'Va      con{c,asE(x,c,a))  = x 

A C / c - con(c  .ass(x,c,a))   ■ con(c,,a) 

The value of   A[c]    is translated to    con(c,A)  ,  and an assignment 

A[c] •-y    is tranrlated to    ass(y,c,A)   . 

The start  statement is used to initialize all the locations of n 

array to some constant term    T()   .    j-'or this,  we introduce a zero-ary 

function    "init"    in the (p-schema which represents an array with all its 

locations having value    f , by the axion 

Vc con(c,init)  = T()     . 

In like manner we can define arrays whose locations take data,  boolean 

and marker values,  multidimension arrays,  arrays that are infinite in both 

directions,  and an intore-ting feature:    arrays that are referenced by 

terms. 

k.k.U.5    Pushdown Stacks 

One-track Stacks 

A conventional schema with a one-track pushdown stack can push data 

values on top of the stack,  pop them,  look at the top element of the stack, 

and test the stack to see if it is empty.    Statements allowed are: 
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(1) s - push(s,y) 

(2) if s = A then goto L 

else be(;ln y - bap(l) ; | - pop(c) end . 

We introduce the functions top , pop , push , and A . The axiums 

are self-explanatory: 

VsVx  push(s,x) ^ A 

A top(push(s,.'<)) = x 

A pop(pusn(s,x)) ^ s . 

Tne resulting <p-schena we get is well founded. However, if in the 

original conventional schema we allowed arbitrary use of push , top , 

and pop , e.g., if statements allowed were 

(1) s - push(s,y) 

(2) if s = A then goto L, else goto L 

(5) y - top(s) 

(M  s - pop(6) 

then the resulting ^-schema nay no* be well founded. And with food 

reason. The operation of the original schema may not be well defined for all 

cases, e.g., what happens when an empty stack is popped? Al an added 

axiom we can specify 

pop(A) = A 

but the (p-schema may still not be well founded. The value of top(A) is 

undefined. To overcome this, we may specifV that there are an infinite 

number of data elonents ■ a ■ (a zcro-ary function), at the bottom of 

an 'empty" stack; we then have the axiom 

top(A) = a 

and the resulting schema is finally well founded. 
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Two-track Stacks 

A stuck with two trucks hus one truck for dutu VUJIK.':;,   und ana  t'"r 

murkers  (booleejis cun be represented us murkcrs) .    We fould nilow rnurkers 

and data values to be mixed ir a single track,  but we again have the 

ad-hoc condition that the schema loops  in case of type-checking error. 

This is the notion of a stack introduced in Section 2.1.2.    The statements 

allowed are: 

(1) s - push(s,y,z) 

(2) if s  = A then goto L 

else begin y - top., (s);  z - top^(s);  s •- pop(s)  end 

The axioms are: 

VxVsVm      push(s x,m)  / A 

A top (push(c,x,m)) - x 

A top0(push(s,x,m)) ■ m 

A pop(push(s,x,m))   = s 

U.U.l+.U Queues 

A schema with a one-track queue can insert a value at one end of the 

queue, can test to see if the queue is empty, and if it is not the schema 

can look at, or delete a value at the other end. The axioms: 

VxVq add(q,x) / A 

A first(add(A,x)) = x 

A remove(add(A,x)) = A 

A (q ^ A) - first(add(q,x)) = 

A (<! / A) ■* remove(add(q,x)) = 

rst(q) 

add(remove(q,x)) 
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A two-track queue is a queue that has two tracks,  one for data 

values and one for markers  (see Section 2.1.2).    The axioms are: 

VxVqVm      add(q,x,m)  / A 

A first  ;add(A,x,m))   ■ x 

A first  (add(A,x,m))  - m 

A ranove(add(A,x,m))   ■ A 

A (q / A)   m first^SLddi^KfTn))   m first  (q) 

A  (q / A)  - first2(adcl(q,x,r.i))   - first^q) 

A  (q / A)   - reniove(add(q,x,m))   ■ addfremovefq^m)) 

U.U.U.5    Lists 

Axioms for lists are very similar to the axioms for pushdown stacks. 

The Schemas differ mainly in the type of statements allowed (cee Section 

2.1.2),  for if stack Schemas allowed the construction of a stack of stacks, 

an(? a stack of stack of stacks,  etc., we would have a list structure. 

Let    tmf»$t     denote the function symbols of the schoma,   lot x m 

their ranks be    rn,...,r    ,  and let    r  - max(rn,...,r )   .    Wo have 
l m 1 m 

atom(A) 

A Yx1...Vxr      atom(f1(x1, ...,xr )) A (f^,.. .,xr ) / A) 

m 
A atornCf^, ...,xr ))  A (fjx^ ...,xr )  jfe A) 

ra 

A Vx Vx   -i atom(cons(x ,x )) 

A Vx^Xg     car(cons(x1,x2))  = x1 

A cclr(cons(x1,x2))  = x2 
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^•5    Properties of Generalized Schemar. 

'*. 5 • J     InleT'pretcd Qche^Bi  llcrbi'and r.i-licmai:,   and Oracle Bchcm; 

When wo r.uy thai a eonwitiniuil :;chierna   i;; un interpret cd,   we mc;ui 

that any interpretation over its base functions is relevant for the 

schema.    We say it  is uninterpreted even though its  structural features 

are interpreted,  e.g.,  the operation of pushing a value into a stack,   or 

of incrementing a counter,   is well defined.    We would like to make this 

notion somewhat more formal,  and apply it to our generalized schemas. 

Definition.      A well founded schema    S =  (F,«?,?)     is  said to be uninterpreted 

if for every interpretation    I    for    P    there is an interpretation    I1     for 

S    whose sub interpretation over    P    is  isomorphic to    I  ,   i.e., 

fl    for    P ,     a«     for    S ,   i.e.,    I1   |=   cp ,   such that 

I      an  isomorphism    9:   (l/P) « (I'/P) 

Note:    we use    (l/P)     above  instead of    I    because there may be some 

elements  in    Dom(l)     that are not reachable,   i.e.,   not  expressible in 

term:; of the.  functions of    P    (and,  of course,  there may be come 

functions and predicates defined in    I    that eye not  in    P ). 

As t,n example,   let    cp      denote 

Yx f(g(x))   = g(f(x))   = x 

and let F  denote 
a 

START y - f(a); 

while p(y) do y - f (y) ; 

HALT(g(y))  , 

then Sa - <Fa,cpa, la,f,p}> is uninterpreted, but S^ = (Fa,9ft*U»*#giP}> 
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is not. Note that both S  and S' are well founded, but 

^Fa,<Pa'^g,p^ is not• 

For another example, let 9,  be the same as m , anl F  be 
o ab 

START y - a; 

while p(y) do y «- f (y); 

HALT(g(y))  , 

Now.- P = {a,f,g,p] is t:.. minimal set for which Su ■ flL,Ä ,P > u b  N b b b' 

is well founded, and S,  is not uninterpreted. 

We should note that all the conventional (p-schemas (i.e., cp-schemas 

corresponding to c(raarker,pds,q,list,A) ) are uninterpreted schemas. 

If H is the Herbrand interpretation corresponding to an interpre- 

tation I (see definition in Section 2.1.7), wc write I -H . 

Definition.  A well founded schema S = <F,<p,P> is called a semi-Herbrand 

schema if 

(a) VI for S , HH for S , such that (l/p) & (H/P) , and 

(b) VH for S , VI1 such that (l^P) & (H/P) , 31 for S , such 

that (I^P) . (i/p) . 

Note that the definition of a semi-Herbrand schema depends only on 9 

and P , and not really on F . Saying that a schema S is semi-Herbrand 

simply means that for every interpretation for S the corresponding 

Herbrand interpretation is allowed for S , and that for every Herbrand 

interpretation for S  all corresponding interpretations are also allowed 

for S . Any uninterpreted schema is semi-Herbrand, as is any schema in 

which (p is equality-free. 
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Definition.       A semi-Herbrand schema    S =  <F,(p,P>    is said to be a 

Herbrand schema  if 

VI,H    for    S   .   if    (i/p)  h (H/P)    then    Path(S,l)   . Path(S,H)   , 

and    Val(S,l)    corresponds to    Val(S,H)   . 

Note that    yal(S,l)    and    Val(S,H)     correspond in the obvious 

sense,   i.e.,     Val(S,l)     is the value in    I    of the term    Val(S,H)     of 

functions of    p  . 

By this definition it  is clear that all the conventional cp-schemas 

without equality tests  (in the flowcharts)  are Herbrand Schemas  (see 

also Theorem 2.3,   Section 2.1.7).    This is not true,  however for the 

cp-schemas  in general,   for consider the schema    Sc .  (F^cp^P )    where 

cpc    is    VxVy p(x,y) - (x - y) 

and 

Fc     is    START y - a1;  if p(y,a2)   then HALT(y)   else LOOP 

Pc     is     {a^ag^}     . 

Sc    is not a Herbrand schema because for the interpretation    I    where 

a1 - a2    and    p(a1,a2)    is true, there is no corresponding Herbrand 

interpretation for    Bc .    Further,    2.   =  ^,^})    is also non- 

Herbrand because the interpretation   H    corresponding to    I    has 

a, - the tern "a^  ,    a2 = the term «^ ,  and    p(a1,a2)  - false ,  but 

the paths for    I    and for   H    are not the same.    So, we . oe that we can 

obtain the effect of equality tests without actually using them in the 

flowchart. 

We should mention that the notions of interpreted Schemas and 

Herbrand schemas are independent.    Both    Sc    and    S^    above are non- 

Herbrand,  but    Sc    is interpreted, whereas    S'     is uninterpreted.    Also 

consider   cpd    and    F      below: 
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»a    is    Vx p(x)  *-, p(f(x)) 

and 

Fd    is    START y - a;  if p(y)  then IIALT(y)  else LOOP . 

Both    Sd = <Fd,<Pd,{a,f,p}> ,  and   B^ - <Fd,q)d, [a,p]>    are Herbrand 

schonas, but    Sd    is interpreted, whereas    S^    is uninterpreted. 

Given a class    |    of inter—etations,  a schema   S    is said to 

halt on    J    if   s    halts on every interpretation    I    for    S , where 

ZCJ ; and similarly for divergence and freedom.    And we say that    S      < S 
gen 

011    S1^2    if    ^1    for    Si >       h^l '     aI2    for    S2  '     Vfe '     ** 

3   an isomoiphism   9:   (l^p) « {J^f)    such that either both schemas 

diverge, or   Val(S2,I2)  = 9^*1(8^))    - compare with the definition 

0f   Sl   -   S2  '    And similarly for inclusion and equivalence, 
gen 

Given schemas   S^^ = (F^^,?)    and   S2 = <F2,cp2,P> ,  let   ^   be 

the class of interpretations   H    for   S1    such that    (H/P)    is a Herbrand 

interpretation; and similarly for   ^   , then: 
2 

Theorem k.l      (Fundamental theorem of Herbrand schemas) 

For Herbrand schemas S. , S_ 

(a) S1 halts   if and only if it halts on $L  , 

(b) S1 diverges if and only if it diverges on v, , 

(c)    S1 = S2 

(d)    S1<S2 

if and only if   S1 = S2    on   fL > 5^ , 

if and only if   S1 < S2    on   5^ , V2 , 

(e) Bj   < S2 if and orüy if   S     <   S     on   *. ,«L , and 
Gen gen ■     -L  ^ 

(f) Bj is free  if and only if si    is free on V . 
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For the proof, see Section U.i .    This theorem is an extended and 

relatively more formal version of Theorem 2.1.2 (in which the clas:; of 

Herbrand Schemas was comparatively restricted) . 

There is another property about conventional Schemas that we would 

like to capture. It is that in a single step a conventional schema can 

do only a "small" amount of work, i.e., it can execute an assignment 

statement or maKe an atonic tert. We can generalize the notion of a 

- 
schema to what may be 'jailed a "logic-theory machine". A logic-theory 

machine is like an ordinary schema except that it can also make quantified 

tests, and in general, a test can be any well formed formula (an even more 

'• "powerful" machine would be one that can also build up formulas as 

strings, or tvees). A test that effectively looks at an infinite number 

of values -nay be called an oracle test, and a "schema" that can make such 

l*^ tests may be called an oracle schema. 

Definition.  We say thaf- a formula 9 is over a set P of function and 

predicate symbols if it user no function or predicate symbols other than 

those in P . 

. 

Definition.  Given B wcLI-founded BChOH !'>  (Fy^fP) , we say that i'> 

is a non-oracle schema if 

(a) for every path in F from the start :tatement to a test, there 

exxsts a quantifier free  formula \K; over F such that for all 

interpretations (for G ) that follow this path, the outcome (true 

or false) of the test eauals the value of >f()  for the interpre- 

tation, and 
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(b)     for every path in   F    from the start statement to a halt statement, 

there is a quantifier free formula    *(*)    over    P    such that all 

interpretations  (for    S )  that follow the path,   for all elements    x 

in the interpretation,   the output of the halt statement  is    x    if 

and only if   \|f(x)    is true. 

Lemma k.2 

Every well-founded schema is a non-oracle schema. 
i 

This property of Schemas  (proved in Section U.6)   Is an important 

one,  and is used in the proof of the theorem of maximal Schemas 

(Theorem U.3). 

*»5»8    The Fundamental Theorem of Maximal Schemas 

Constable and Gries [1972] suggested that the class of (conventional) 

Schemas with arrays,    (J(A)   ,  are a maximal class of (uninte-preted) 

Schemas.    Chandra and Manna [1972] showed that for a "reaponable" 

definition of uninterpreted Schemas, arrays, by themselves, are not 

adequate, and that equality tests too are required -- and that the class 

C<A, =)     is strictly more powerful than   C<A)   .    We show here that the 

class    £(A,=)    is indeed raaxijnal in our generalized schema formalism. 

Theorem U.?      (Theorem of maximal schemas) 

The class   0   of uninterpreted schemas is equivalent to the class 

^(A, =)    of generalized schemas corresponding to the conventional schemas 

with arrays and equality tests; and,   in fact,  a schema in    C-   can be 

effectively translated into an equivalent schema in   C-(A,=)   . 
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yor the proof of this Uiecrom,   see Section h.G. 

Intuitively  it does  scnw  Umt   lor conventional MlMMUj   the elUi 

(3(A)     is  indeed "maximar'   in come :onco.    Chandra and   Innna  | lf)7? | 

conjectured tfiat    (3(A)    may be maximal for ilerbrand cchemac.    We chow 

that this  is indeed the case  for our ceneralized schema formalism. 

Theoran h.U      (Theorem of maximal Herbrand schemas) 

The class    (J   of uninterpreted Herbrand schemas is equivalent to 

the class    3(A)    of generalized schemas corresponding to the conventional 

schemas with arrays; and,   in fact,  a schema in   ß   can be effectively 

translated  into an equivalent schema in   3(A)   . 

For the proof of this theorem,   see 'Jection ^.6. 

'* • ^.3    Decision i roblans 

We consider the following decision problems for the class of 

«p-schemas. 

1.      The halting problem -- given a rp-schema   S  ,  to decide if it halts 

for every interpretation for    S  . 

The divergence problem  -- given a (p-schema    S ,   to decide if it 

diverser for every interpretation for    S  . 

5.      The equivalence problem -- ^iven two comp-.tible (p-cchemas    G      and 

Sy ,  to decide if they are equivalent.    We also consider the 

generalization problem  (to decide if   Si    <   S2 )    and the inclusion 

problem (to decide if    S,  < S0 ). 

r.en 
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Theorem U.3 

The halting problem for (p-schemas is not solvable,  but it is 

partially solvable. 

The unsolvability of the halting problem for (p-schemas can be 

shown in many ways (e.g.,  by using the unsolvability of the halting 

problan for several classes of conventional schemas), but perhaps the 

simplest  is the following.    Consider the class of schemas,  of the form 

<F,<P,P)    where   q)    and    P   are arbitrary,  and   F    is: 

START y - a; LOOP 

Then a schema in the class halts if and only if   (p    is unsatisfiaDiv. — 

which is a well known unsolvable problem. 

The proof of the partial solvability of the halting problan is also 

quite easy, but we defer it to Section k.6. 
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U.5.5.2 The Divergence Problem 

The complwnent of the diverc.cnce problem Is called the non-divorr.onc'' 

probljn, i.e., iiiven a schenu, to decide if it halte for any (rolovart) 

interpretation. 

Theorem h.6 

Both the divergence problem and the non-divergence problem for 

Schemas are not partially solvable. 

The divergence problem is not partially solvable because the 

divergence problan for one-variable schemas with equality is not partially 

solvable (see Chapter 5). The non-divergence problem is not partially 

solvable because the s^nema (F,<p>{al> where F is 

START y - a; HALTfy) 

halts for some interpretation if and only if <p is satisfiable — 

a problem that is not partially solvable. 

It is interesting to note that while the non-divergence 

problem is partially solvable for all conventional schemas (e.g., those 

of Section b.k),   it is not partially solvable for (p-schemas. One should 

ask what it is about cp-schemas that causes this difference. The next 

theorem attempts to answer this question. 

Lemma U.7.  The non-divergence problem for uninterpreted schemas is 

partially tolvable. 

This follows directly from the fundamental theorem of maximal 

schemas and  the fact that the divergence problem for the class of 

conventional array schemas is partially solvable. 

211* 



m ' / "-  "^fF" 

«•5*3*3    The Equivalence Problem 

The corcplement of the equivalence problem is called the non- 

equivalence problem,  i.e.,  given two compatible «p-schemas,  to decide 

if the Schemas are not equivalent.    Similariv, we have the non-generaii. 

zation problem and the non-inclusion problem. 

Lemma ^.8.      For Schemas 

(a) the equivalence probJan is not partially solvable, 

(b) the non-equivalence problem is not partially solvable, 

(c) the generalization probiere U not partially solvable, 

(d) the non-generalization problem is not partially  solvable, 

(e) the inclusion problem is not partially solvable, 

(f) the non-inclusicn problem is not partially solvable. 

The parts  (c),   (d),   (e)  and (f)   follow directly from (a)  and (b) . 

Parts  (a)  and (b)  follow from the fact that the equivalence and the 

non-equivalence problems for one-variable monadic Schemas  are not 

partially solvable (see Chapter 5). 

^•6    Proofs 

M.l    Proof of the Translation Lemma 

We will only show the following parts of the lemma.    The others 

follow analogously. 

(M        hSh   iff   SI<S2 • 
(7) C^O,     Iff    (SKC? . 
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If S1 < S2 then S* < S* 

Let P denote £(S*) , which is the ^ame as Z(S*) , and 

Sl = <Fi ^P) « S2 . <F2,(P2,P) . 

Given; 

Hj    for   S1 ,    3I2    for    S2    s.t.    39:  (I^P) - (yp)   , 

if   ValCS^I^    is defined then    Val(S2,I2)  = e(Val(S1,I1)) (a) 

and 

VI2    for   S2 ,    3^ for    ^    s.t.    3©:  (l^p) m (i^/p)   , 

if   Val(S1,I1) is defined then    Val(S2,I2)  = ©(ValO^I^).    (b) 

To prove: 

VI*    for   S* ,    31* for    S*    s.t.    39:  (i*/p) ~ (ij/p)   , 

if   Val(S*,I*)    is defined then    Val(S*,I*)  = e(Val(S*,I*))      (a-) 

and 

VI2    for   S2 ,    2i1    for    S1    s.t.    39:  (  [/fl ~ (I*/P)   , 

if   Val(S*,I*)    is defined then    Val(S*,I2)   - 9(Val(S*, T*)).    (b») 

We will rhow (a«),  and (b«)  follows in a similar fashion. 

Given any    ^    for    G* ,  by condition ?.{h) of the translation lemma, 

llj    for    G1    and   39^  (I*/P) - (^/p)    6.t.    if    val(S*,I*)     is defined 

then    ValCS^I^  =ei(val(S*,I*))   .    Then, by (a)  above,    3l2    for    S2 

and    392:  (i^P) ~ (yp)    E.t.     if    Val(S:L,I1)    is defined then 

Val(S2,I2)  = Q^VhliS^lJ)   .    Finally, by condition 2(a)  of the trans- 

lation lemma,    31*    for    S2    and    39,;   (jj/p) - (i2/p)    s.t.    if 

Val(S2,I2)    is defined then    Val(32,I2)  = 9^(^1(3*,I*))   .    Thus we 

have a      9    (9 = 9-1 .92 -9^   ,      «:   (i*/p) ~ (i^/p)   ,  and if 

*    « 
VaMS^IJ    is defined then    Val(S*,I*)  = 9(Val(S*,I*)) 
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If   S* < S*    then    S1 < S- . 

This proof is analogous to the proof above (by interchanging the 

starred schemas and interpretations with the unstarred ones). 

If < &.    then öi5<% (\<% 

* « 
]i 

Given:      V8!0^     3S2'^2    S't*    Sl E S2  *    To Prove that 

#       » 
1 " -2     ' 

*    * 
T^eC^        S-^g     S'"t 

Notation.       If   S      is «my conventional schema,  and    S    is the 

corresponding generalized schema    we say    S Also,  if    S- , S2 

are any two generalized cchenas  such that    S..   = (F,<p,P, >    emd 

S2 = <F,<|>»P2)    and    V^ P2    then,  too,  we say    S1 =» Sg  . 

Proof.      Given any   S.eC^  .    Let    S. =» S.   .    Then    S.eC-,    by 

construction of   C.   •    By hypothesis,      3SpeC^    s.t.    fi,  = Sp  .    Let 

S-L = (Pi«f|*r)    where    P = Z(S )    and    S2 = <F2,q)2,P>  .    Now,  by the 

construction of    Cp ,    3S,Q3n    and   ^S-GCW    s.t.    S2 =» S, =» S2 ,  i.e., 

S,  =  (F^,^^.)    and   C(S2)  = P. c P .    We wish to show that this is 

the required    Sp ,   i.e.,      S.  = Sp  . 

Part  (i)       S*    <   S*  . 

 6en 

To prove that VI  for S, , 3l2 for S2,P , 

39: (I*/P) - (I^/P) , and Val^.*,!*) = e(Val(S*,I*)) or both are 

undefined. 

For any I. for S- , by 2(b) of the lemma 31  for S , 

30^ (I*/P) - (I^P) , Val(S1,I1) = ei(Val(S*,I*)) or both are 

undefined. Now, as S, ■ Sp we have, by definition, 3l  for Sp , 

392: (I^P) - (Ig/P) , and Val(S2,I2) = e2(Val(S1,I1)) , or both are 

217 



i~*rw<^*^<m^mm 

undefined,  and as    Bj • ^ i    Viil{Syl2)   m e2(Val(S1,l1))    or bath ure 

undefined.    From    2(a),      ftj    for    S* ,    3©^:  (l*/P1) - (I2/P )  , 

Val(S2,I2)   = e3(Val(S2,I*))   .    Finally,  by 1(b),    Vl*    for    P , 

31*    for    S2,P    i.t.      39u:   (l^/p) m (i*/p)   .    we choose    I*    to be    I* 

So    31*    for    S2,P    ,    39u:   (l^/p) «  (i^/p)   ,  and as    2(8*) c P   we 

have      r:l(S2,I5)  = eu(Val(S2,I2))   .    This gives us the required 

9:   (I*/P) m (I*/?)    s.t.    VaKS*,!*)  = 9(Val(S*,I*))  ,  and,  in fact, 

9    is    9^ i 9J1 • 92 • 91  . 

Part  (ii)      S*    <   S*  . 
 gen 

This proof is analogous. 

If   C^ < C^    then   ^ < C^  • 

* # * * 
Given  VS^.C^ ZS^C^ 

* 
o2 To prove that 

VSj^  3S2€C2 s.t. S1  ■ S2 . 

Given any S^C^ .    By the construction of C% >    3S,eC^ , 

331€C1 s.t. S* =» S5 =» S1 .  Let ^ = (Fjjf^Fj) and S5 - (F^^^) , 

PC P1 . By hypothesis,  3S*nC»* s.t. S* - s! . Then using the 

interpolation lemma for conventional cchemas (condition 5 of the 

translation lemma)  35*^ s.t. 2(3*) = £(8^ - P , and i3* = S* . 

Let S2 =» Su , then 8^ = <F2,(p2,F> , S^c"^ , and by the construction 

of C^  ,  <F2,<p2,P1)€C2 . Let S2 denote (F^q^P^ . Tnis is the 

2 ' 
desired schena; we have to prove that 8=8 

Part (1) si   <   s2  ' 
 gen 

To prove that V^ for ^ , 3l2 for S2 s.t. 39: (l^p) 

and Val(82,I2) = 9(Val(81,I1)) or both are undefined. 
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Given any    I      for    S,   .    Then    I      is also for    S      and 

ValCS^I^  = V&HSylJ   .    By 2(a)      SI*    for    S*  ,    39^  (l*/P) - (l^P) 

s.t.    ValCSyl^  = ©1(Val(S*,I1))   .    As    S1 ^ S* ,  we find that 

31*    for    S* ,    3ö2:   (l*/p) - (l*/p)    s.t.    Val(S*,I*)  = ©2(Val(S*,I*))   . 

By 2(b),      31^    for    Su ,    39^:  (l*/P) « (Ij/P)     s.t.    Val(S,,,Iu)  = 

9,(Val(S2,l2))  or both are undefined.    By 1(a),  as    I,    is for    P.    and 

(Iu/P) - (Xj/1)  ,      3I2    for   S2,P1 ,    39^:  {l^P^ - Hj/*])   •    Hence 

K   »9   <'92
1 0 9"1:   (I^/P) - (Ig/P)    and by the well-foundedness of   S^ , 

Val(Su,I2)  = 9^ • ^ o ö'1 . 951(Val(Slt,Iu))  - 9j;1(Val(S1,I1))    or all 

diverge. But I? is an interpretation for Sp , and 

Val(S2,I2) = Val(S1+,I2) = 9^1(Val(S1,I1)) or all diverge. This completes 

the proof that  Si 5 S2 * 
gen 

Part (ii)  S2 <   S1 . 
 gen 

This is proved likewise. 

U.6.2 Proof of Theorem U.l 

Given Herbrand Schemas S, = (F^CP^P) and S2 = (F2,92>P> >  let 

V, be the class of interpretations H for S1 such that (H/p) is a 

Herbrand interpretation, and similarly for V2 , then 

(a) S1 halts    if and only if it halts on ^ , 

(b) S. diverges if and only if it diverges on If- , 
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(c) S ■ S    if and only if S1 ■ S2 on ^ > K2 > 

(d) B- < S2   if and only if S1 < S2 on ^ , K2 > 

(e) S  < S2    if and only if Bj < S2 on »^, V2 > 
gen gen 

(f) S      is free    if and only if it is free on    jy    . 

Proof;      For cases  (a),   (b),   (f) the "only if" part is trivial; and so 

is the "if" part because if any path is taken by the compatation of   S^ 

on any interpretation    I ,  then the same path is taken by the computation 

on some interpretation   HrV-|   • 

We show ehe theorem for case (e),  and the other cases can be 

proved analogously. 

The "only if" part is easy,  becaube given    s-i    5   S2 »    if   Hie^i 
gen 

is an interpretation for    E1  ,  then there is an interpretation    I2    for 

S      such that     (IU/P)    and    {IJF)    are isomorphic,  and the outputs 

correspond,  but there is an interpretation    Hpe?/»    isomorphic to   I    , 

and hence we have that    (H,/?)    and    (H^P)     are isomorphic,  and their 

outputs correspond. 

The "if" part can be proved as follows      Given that    S      <   S0 
gen 

on   fLpfL >  i • e., 

VH-L    for    B, ,    H^^ , 

aH2    for    S2 ,    H2GV2 , and    Val(S2,H2)  = Val^,!^)  ,  or both 

are undefined (note:    the isomorphism is identity). 

to show that    S,    J   S2 ,  i.e., 
gen 
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fl, for   S1 

ai2 for S2 , and 

3 an isomorphism 9t(Z./?) « {ij^  >  such that 

Val(S2,I2) = »(VftlCt.»!.)) , or both diverge. 

Now, given any I, for S, , by the definition of Herbrand schemas, 

there exists an H. for S,  such that (1,/P) - (H^P) , and 

Val(S ,I1) corresponds to (the terra) Val(S1,H1) , or both diverge. 

From the hypothesis, there is an H- for S ,  H2eV , such that 

ValCS^H,) = Val(S2>H2) . And again, as S2 is a Herbrand schema, for 

any I' for which 11 - (H2/P) , there is an I2 for S  such that 

(I'/P) ■ (I0/P) and Val(S ,1 ) corresponds to Val(S ,Hp) . We will '2**2 
choose    11    simply to be    (1-,/P)   •    We now have the desired   6  : 

it is simply the identity function, and either both    Val(S1,I1)    and 

Val(Sp,I9)    are undefined,   or they are equal because both correspond to 

the same term. 

1|.6.5   Proof of Lemma U.2 

Every well-founded schema is a non-oracle schema. 

Given a well-founded schema    S = <F,cp,P)    and a path in    F    from the 

start statement to a test or a halt statement, we can represent the 

conjunction of all tests  (every test    a(y)    is changed to    a'()    by 

substituting the value of    y )  executed along this path (or their 

negations if the false exit is taken by the path) by a formula   <p1 . 

Then every interpretation that follows this path in the schema satisfies 

f A f,  , and every Interpretation that satisfies   cp A q^    follows this path. 
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We use the result  (see,   for example,  Shoenfield [1967],  Section 5.5, 

Lenuna k)  that given sentences    T| ,  ♦'  , and a set    P    of functions and 

predicates,  if whenever    1^ |- 1\  ,    I2  |- T]  ,  and    (l^P)    isoniorphic 

to    (Xg/P)      we have    ^  |- f«      if and only if    Ig ^ f    ,  then there 

exists a quantifier free sentence    i    over    P    such that    T] - (il/1  « \|/) 

is valid. 

Suppose our given path in    F    leads to a test statement,  then the 

test can be represented tic a simple atomic test    a   only on constant 

terms,  and we have,  by the well-foundedness of    S ,  that whenever 

I-L   |-   <P A (^ ,    I2   |-   9 A (p-L ,     (I^P)     isomorphic to    (l2/P)    we have 

I-L  r 0i    if anci only it   Ip  j- a   .    We hence have a sentence    ty    such 

that    <p A ^  -   (a « \|f)   ,  and by the deduction theorem   cp A <p,   |-  (o: « i) , 

i.e.,   for all interpretations that follow this path,  the outcome of the 

test equals the value of the quantifier free formula    f    over    P    (which 

is the requirement for a non-oracle schema). 

If,  on the other hand,,  the given path in    F    leads to a halt statement, 

then the output is some (constant)  term   T()   .    If we now introduce a 

new zero-ary function    a      into    interpretations for the schema,  we have 

that whenever    1^ ^ f A f^ ,    I2  |-   cp A ^ ,     (l,/PUC»0))     isomorphic 

to    (Ir/Pu{a0})   , we have    ^  |-   a0 = T()    if and only if    I2  j-   a0 = T() 

by the well-foundedness of    S ,  and hence there is a formula    ^(a ) 

(we call it    tCO     instead of    ^    for convenience)  such that 

q) A (p1   -   (a0 = T() « ^(a ))   .    But    a     doesn't appear in   (p A w1   , 

and hence   f A f,   - Vx(x = T() « *(x))  ,  and again by the deduction 

theorem     f A f,   [•   Vx(x = T() « t(x))  , which is the desired result. 

This concludes the proof of Lemma k.2. 
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k.S.k   Proof of Theorem U.3 

The class (J,  of uiiinterpreted schemas is equivalent to 

the class C(A,=)    of (p-schemas corresponding to the conventional 

echemas with arrays and equality tests. 

Given a schema S = <F,(l),P) in £ we will construct a conventional 

schana S  with arrays (and counters) and equality tests having the 

symbols of P as its base functions and predicates, such that for any 

interpretation I for S , Val(S,l) = Val(S*,l/P) . We can then 

* 
translate S  into a generalized schema S  in the standard way (see 

Section k.h).    It should be noted that since it is unsolvable if any 

given schema S is an element of (J , our translation process will go 

through even for schemas not in (3 . However, it will not necessarily 

be correct. If the given schema S is interpreted, then S. will not 

be equivalent to S , but will be a strict generalization. If S is 

not well founded, then, of course, equivalence is not well defined. 

We will make use of the fact that a conventional schema with counters 

can simulate the behavior of any schema except when it comes to making 

tests, or halting, in which case, it has to make use of its base 

functions and iredicates. 

S  proceeds as follows. It simulates the computation of S , 

keeping track of the value of the single variable of S (as a constant 

term). It also keeps track of any tests that S has made along the 

path. This is kept as a formula a = a. A QL A ... A a  where each a 
-L   c        n i 

is an atomic formula or a negated atomic formula. When S comes to a 

test ß ,  S  enumerates all valid formulas until it comes to one of the 

form 
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cp A a - U « ß) 

where ^ is a quantifier free formula that uses only the base functions 

and predicates from P (note: we are usinp, here the completeness theorem 

for first order predicate calculus with equality, and the fact that S 

is non-oracle).  S  then makes the appropriate tests to determine if * 

is true or false, and updates a to a A ... A a Aß if ^ is true, 

or to QL A ... A C* A-iß  if <|(  is false. When S comes to a halt 1        n 

statement HALT(T(y)) , S  enumerates all \alid formulas until it comes 

to one of ths form 

cp A a - Vx((x = T) « t(x)) 

where T represents T(y) in which the value of y (as a term) is 

substituted for y , and \|(x)  is quantifier free, and uses only the 

symbols of P . When such a formula is found, S  enumerates all 

elements reachable by applying functions of P , and halts on the first 

element x "jr which t(x)  is true. 

A final note seems to be in order. To be very formal, the class 

(T(A,=) is to be interpreted not Just as the class (3 of L-chemas 

corresponding to the conventional Schemas with arrays and equality, 

but the class obtained by renaming the function and predicate symbols 

of Schemas (in £, ) in all possible ways (distinct symbols must, of 

course, remain distinct). The reason is that in the translating 

process we used certain function and predicate symbols which couldn't 

appear in the set P of any schema (F,(p, P) in  g . 
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k.6.3    Proof of Theorem U.U 

Every schema in the class of uninterpreted Herbrand Schemas can 

be effectively translated into an equivalait «p-schana corresponding 

to a conventional schema with arrays. 

Given an uninterpreted Herbrand schema S ■ (F^,?) we construct 

coi.ventional schema S* with arrays (and counters), as in the previous 

section, such that the generalized schema corresponding to S  is 

equivalent to S . 

S* simulates the computation of S , keeping track of the value of 

the single variable of S (as a constant terra). It also keeps track 

of the tests S has made along the path of the computation, as a 

formula a . When S comes to a test ß ,  S* enumerates all valid 

formulas until it comes to one of the form 

<p A a - U ~ ß) 

where i is quantifier-free and is over P . (Actually we can show 

that there always exists an equality-free Mr of this kind, but that is 

unnecessary.)  S* now makes the appropriate tests to determine | for 

Herbrand interpretations. For this reason it doesn't need to make any 

tests of equality. The same exit would be taken for ail interpretations 

for S by the Herbrand property, and hence S  can update a and 

continue simulation of S . 

When S comes to a halt statement HALT(T(y)) ,  S  enumerates 

all valid formulas until it finds one of the form 

«p A a - VX((X = T) - \|f(x)) 

where T represents T(y) with the value of y substituted for the 

variable y ; and f(s) is quantifier-free, and over P .  S  enumerates 
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all elements reachable by applying functions of P , and halte on the 

first element x for which t(x) is true acpuming a Herbrand inter- 

pretation. When S  is converted to a generalized schema S , the 

outputs of S and Bj are the same for all interpretations by the 

Herbrand property of S . 

k*6,6    Proof of Theorem U.b 

To show that the halting problem for «p-schemas is partially 

solvable. 

The partial solvability of the halting problem can be shown by 

reducing this problem to the validity problem of fomulas of first 

order predicate calculus, with equality, which 1c partially solvable. 

We use the approach used by Manna (I968, 1969]. Given a flowchart F , 

we associate with F formula ^(j)    of predicate calculus such that F 

halts for all interpretations if andonly if ^(F) is valid,  ^(F) is 

constructed as follows. Lot all statanentr of F be labeled I L 
1    n 

Associate, with each statemont L^ , a predicate q . Let ^« bo the 

conjunction of the axioms obtained as shown below: 
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^    ^1 

Statement Axiom 

START y - T (); f;oto L. ^(TO) 

L^ HALT(T(y)) Vx qi(x)   - q 

|u|  LOOP (no axiom) 

Lj: y ^ r(y); goto L 

Li: 1£ a(y) then Goto L. 

elsf  goto L 

Vx q^x)   -qJ(T(x)) 

Yx q1(x)  A a(x)   - q.(x) 

h q^x)  A -, Q!(x)   -qk(x) 

Then    ^(F)     is    t'  - <1      (q    is introduced in the axiom for a halt 

statement).    We then find the schema    <F,<p,P>    halts if and only 

if   q> - i(F)    is valid. 
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