i S S Sl e

AN e e i T ST S

AD-758 645
MODELS OF LCF

Robin Milner

Stanford University

Prepared for:

Advanced Research Projects Agency

January 1973

DiSTRIBUTED BY:

National Technical information Service
U. S. DEPARTMENT OF COMMERCE
5285 Port Royal Road, Springfield Va. 22151



2 T A g

- (PR

I

ER e L -~
L e T B

.:::-_isr-u»—,-'ir-'ﬁ—shm;n‘-_."* - - R ‘ Ll S - - _ -

TP, S A T I TP

5o A NS TR S il
.

€

9, ; gz F v
; ] 4 b A L amaalY ey
i LA

STANFORD ARTIFICIAL INTELLIGENCE LABORATORY
MEMO AIM-186

STAN-CS-73-332

MODELS OF LCF
BY

ROBIN MILNER s

. ‘fFjr |
i

& H |5 g}%.

{ ;.-»-l‘l'I l"":l I t [L’}
R % - L Lod

(9%

AD 758645

o= g

.

SUPPORTED BY

ADVANCED RESEARCH PROJECTS AGENCY

ARPA ORDER NO. 457
JANUARY 1973

Reproduced by
NATIONAL TECHNICAL
INFORMATION SERVICE

U S Department of Commerce
Springfield VA 2215)

COMPUTER SCIENCE DEPARTMENT
School of Humanities and Sciences
STANFORD UNIVERSITY

? D’P-D ][_:I.'.,.l,:,.cj i DISTThEmTDN QIAT.E.NEL'N'T
I_f'fgf b 1 ﬁz;i':"- A
i ., X Pproved for publie reloasae;
El Distribution Unlimitad
=




=

e

[ )]

STANFORD ARTIFICIAL INTELLIGENCE LABORATORY JANUARY 1973
MEMO AIM- 186

COMPUTER SCIENCE DEPARTMENT
REPORT CS- 330

MODELS OF LCF

by

Robin Milner

ABSTRACT: LCF is a deductive system for computable functions proposed
by D. Scott in 1969 in an unpublished memorandum. The
purpose of the present paper is to demonstrate the soundness
of the system with respect to certain models, which are
partially ordered domains of continuous functions. This
demonstration was supplied by Scott in his memorandum; the
present paper is merely intended to make this work more
accessible.

This research was supported in part by the Advanced Research Projects
Agency of the Office of the Secretary of Defense under Contract No. SD-153.

The views and conclusions contained in this document are those of the
author and should not be interpreted as necessarily representing the
official policies, either expressed or implied, of the.Advanced Research
Projects Agency or the U.S. Government.

Reproduced in the USA. Available from the National Technical Information
Service, Springfield, Virginia 22151.




i |
b
e

1

Unclasgified ¢

1 Secunty Classification \- n

DOCUMENT CONTROL DATA .- R & D

(Security classilication of titlo,

body ol abstraci and indexing annotation must be entered when the overall report Is classilled)
1 ORIGINA Y|N3 AIlev'TV (Corporate author) 28, REPORT SECURITY CLASSIFICATION
Stanford University A 2]
_ ; Unclassified
Computer Science Department T
Stanford, California 94305

I REPORTY TITLE

Models ot LCF

4 DESCRIPTIVE NOTES (Type of report and inclusive dates)
technical, January 1973
5 AUTHORIS) (First name, middle initial, last name)

Robin Milner

9 6 REPORT DATE 78, TOTAL NO. OF PAGES I>5. No. oF reFS
3 January 1973 17 6 \
: 84. CONTRACT OR GRANT NO. 98. ORIGINATOR'S REPOR" NUMBER(S)
SD-183

b. PRCJECT NO. STAN-CS-73-332
3 ARPA Order No. 457 . AIM-186
l\ @Eo 1.8 'oh;r‘Hr(-:G:O::‘()-:Pon*r NO(S) (Any other numbers that may be assigned

d.

10 DISTRIBUTION STATEMENT

Q Distribution lnlimited.

11. SUPPLEMENTARY NOTES 12, SPONSORING MILITARY ACTIVITY

Advanced Research Projects Agency

13 ABSTRACT

LCF is a deductive system for computable functions proposed by D. Scott in 1969 in
an unpublished memorandum. The purpose of the bresent paper is to demonstrate the
1 soundness of the system with respect to certain models, which are partially ordered

| domains of continuous functions. This demonstration was supplied by Scott in his
k- memorandum; the present paper is merely intended to make this work nore accessible, -
FORM ) W=
(PAGE 1 ;
DD 1 NOV 651 4 73 _Z/' Unclassified :
1 S/N 0101.€07.6801 i

Security Classification




MODETLS 0 F LCF

1. Introduction

The logic of computable [unctions proposed by Dana Scott in laco,
in an unpublished note, has since been the subject of an interactive
proof-checking program designed as a first step in formally based machine-
assisted reasoning about computer programs. This implementation is
fully documented in [1], and its subsequent applications are reported in
later papers [2,5,4, and 5]. However the model theory of the logic,
which scott originally supplied, is not discussed in those papers, and
the purpose of this Memorandum is to present that theory. Nothing is
added here to Scott's work. The concept of a continuous function, which
is central to the theory, has since been developed by him to provide
models for the \-calculus and to yield his mathematical theory of
continuous lattices; the interested reader can follow these topics in
Scott [H]. ﬁowever, since LCF is only a version of the typed )\-calculus,
these developments are not necessary for the present purpose, and the

present paper contains all that is needed to understand LCF.




2., Continuous Function Domains

In this section we define a particular sort of partially ordered
domain, called a complete partial order (cpo), and the concept of
continuous function. We prove some propositions for later use; in
particular, that if D and E are cpo's, then the set of continuous

functions from D to E 1is itself a cpo.

Definition 2.1 A partial order (po) is a pair (D,z=) where D is any

set (domain) and ©= 1is a transitive, reflexive , antisymmetric relation

over D.

Definition 2.2 For a po (D,g), a set X< D 1is a chain if X =

{xili > 0; and xd;xfa%gg....

Definition 2.7 A po (D,5) is a complete partial order (cpo) if

It has a minimum element, which we denote by
lD , or just | if there is no confusion.
Every chain X < D has a least upper bound (lub)

in D, which we denote by UX.

Definition 2.4 If D and E are cpo's, then a function f

is continuous if every chain X © D satisfies

UL £(x) : xex} = £(UX).

Thus a continuous function is one which preserves the lubs of
chains. Note that the set on the lefthand side of the above equation
is a chain, since if X = cen e

s {xo,xl, ] and xo\:_‘-_ xl_r:'_

then we also have f(xo) Ef(xl) C .... . To see this, we only need to




observe that any continuous function is menotonic - that is,
xgy = f£(x)gf(y), and this is true because jif Y is the chain {xey])
then UY = y, so we have E(x)eu{f(x),f(y)} = £lLy) = £(y).

We should also note that there is an alternative (more restrictive)

definition of a cpo which uses the concept of directed set (X is directed

iff x,yex = 3 zeX.x,yez) iustead of chain. This, in turn, leads to an

aiternative (more restrictive) definition of continuous function. We have

chosen the less restrictive alternative, but we remark that the theory can

be done equally well (as far as we are here concerned) with either definition.
Notice that we use the same symbol £ for the relation in every po

under discussion. This should give no difficulty. We also use names

like D and E both for po's and for their dcmains.

Definition .5 We denote the set of continuous functions from D to

E, where these are cpo's. by (B =3 Bl 5

Pronosition 2.1 If D and E are cpo's then F = [D->E] is a cpo

under the relation

feeg iff ¥x . f(x)cg(x)

Proof First, F is is a po under this relation (check
reflexivity, transitivity and antisymmetry). Second, the minimum element
J_F of F is easily seen to be )_x.LE. Finally, we neced that any chain

Z =F bhas a lub LZ€F. Define |2z = Ax-U{f(x) : fez}. This is a well-
de’lined function since for each x in D, (£(x) : fez} 1is easily seen.
to be a chain in E. Next, it bounds above every f€Z, since for each
xeD, f(x)el{f(x) : fez} = (Uz)(x). Further, it is a lub, since if h is
any other upper bound for Z, then for each xeD and fezZ, we have
f(x)2h(x); it follows that (Uz) (x)eh(x), and hence LzZch.

But we must also show that UzeF, i.e., |Z is continuous.

5
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Let

X €D be a chain. We require

Wz) (LK) =u {(Uz)(x) : xex},

i But (Uz) (LX) U{£(UX) : f€z} by the definition of LZ.
Lo

U{ £(x) : fez,xex)

i uf (Lz) (x) : xexj.

i This completes the proof. =X

Proposition 2.2 For any cpo D, every f€[D —» D] has a minimum

‘L fixed-point Yfe€D - i.e. we have f(Yf) = Yf and for all xeD,

f(x) = x implies YfLCx.

Remark This proposition ensures the existence of the least

fixed-point operator Y : [D -+ D] — D. The next proposition shows that

Y 1is continuous, i.e. YE[[D - D] - D].

L Proof The set § = {fl(J_D) : 0 <ij is a chain by the
monotonicity of f. Define Yf = WS. By the continuity of f, we have
£(YE) = l_-tfi+1(.I_D) : 0<i} =Yf, so Yf is a fixed-point of f. Let x
be any other fixed-point. Now by the monotonicity of f we have
f(-LD) T f(x) = x, and by induction on i we can show fi(.LD)gx for

| a1l 120, so ¥E=U[f'(L):0<i)e x, and thus Yf is the

minimum fixed-point of f. X

Proposition 2.5 Y 1is continuous, so YE[[D — D] - D]

Proof Let Z be any chain < [D - D]. We must show that

Y(LZ) = U{Yf : feZ}. 1In one direction (o) proof is easy since for each

- fez, Uz £, so Y(UZ) 3 YEf by the monotonicity of Y which in turn
follows directly irom the definition of Yf. 1In the other direction we

only need to show that U{Yf : feZ} is a fixed-point of UZ, since then
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it dominates the least such, which is Y(Z). Now

L2 Uz (U{Yf : fez}) = Ufg(U{Yf : fez}) : gez)
, = U{g(Yf) : gez,fez} by continuity of g.
' = U{£(Yf) : fez}, since
i‘ g(Yf) = h(Yh) where h = max(g,f).

U{Yf : fez)

which is the required fixed-point property. This completes this proof.
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5. Pure LCF : Terms

In this section we give the term syntax of Pure LCF, and then
after defining a standard interpretation as a func'ion from identifiers
into the union of a family of cpo's, we show how such an interpretation
is extended uniquely to a function from all terms into the same range.

The terms of Pure LCF are just those of a typed )-calculus.

Types (1) ind and tr are (basic) types.

(2) 1I1f Bl, B2 are types then (Bl - 82) is a type.

(3) These are all the types.
We use 8, 8l, p2,... to denote types, and frequently omit parentheses,
assuming that '-' associates to the right, so that Bl — g2 — B3

abbreviates (Bl — (p2 — B3)).

Terms Each term has a well defined type. We use s,t,u

to denote terms, and write s : B to mean that s has type B.

(1) Any identifier is an (atomic) term. We do not need to describe them,
except to say that there are infinitely many at each type, that the type
of each is determined in some way (perhaps by explicit subscripting), and
that they include TT : tr, FF : tr and the families (indexed by type)

and Y( . These identifiers are special

oo Ztrpop-p BB) B

only in that cach standard interpretation will assign a particular element
to each of them. We use x,y to denote arbitrary identifiers.

(2) If s : Bl B2 and t : Bl are terms then s(t) : B2 is a term.

If x : Bl 1is an jdentifier and s : B2 is a term, then [)x-s] : Bl — g2

is a term.

(3) These are all the terms.

el o Bl s Lot e




Remark In the machine implementation of LCF, and often for
intelligibility, we have written terms of the form S(s)(t)(u) and
Y([Ax:s]) respectively as (s — t,u) and [ox.s], and have dispensed
with D and Y. It is clear that every term of implemented LCF is then
a transcription of a term of Pure LCF, and it therefore suffices to

discuss the semantics of the latter.

Semantics A standard model (of LCF) is a family {DS} of cpo's,

one for each type B, where Dind is an arbitrary cpo, Dtr is the

cpo {tt,ff,_]_tr } under the partial order given by the diagram

tt

\

'L.I'

and DBl L < [DBl—> DBE]. Note that Di_ng completely determines a

standard model.

Let 4 be the set of identifiers of Pure LCF. A standard

interpretation (of LCF) is a standard model {DB} together with a

standard assignment, which is a function

a:g- U{DB}
which satisfies the further conditions

(1)* a[x:BﬂGDB

(2) The value of ¢ for the special identifiers is given by

the following:

*
We write the (syntactic) arguments of ¢ in decorated brackets as an
aid to the eye.




tt, @[ FF ] = £f,

al1T]

II:-La

al vu 8

g
I

T3 o ppopl -

AEED__+ATieD

= B.)\XEDB-(Q - T,x), and

dLY g gl =~ Ypop) -8

where (§ — T,x) - the conditional - takes the values L, T, x according

as € =1 _, tt, ff, and where we have subscripted the fixed-point operator
i tr

Y on the right to indicate that it belongs to [[D_ —-D_] - D.]. Note

B B B
i that the Y on the left is an identifier, and the Y on the right a
function. It is easy to check that & [[:)]] is a continuous function,

and Proposition 2.3 has assured us that Z [ Y] is also continuous.

- If @ satisfies condition (1) above, but not necessarily condition

(2), we call it just an assignment, yielding an interpretation (not
necessarily standard). We also confuse the terms assignment and
interpretation, since we have no occasion to discuss here different
standard models.

We write & to indicate the assignment differing from ¢ only

£/x

in that its value at x 1is £; clearly we have that

oy o
Oy HEx =Y

@y y |
(aﬂ/y)g/x otherwise.

We now show how to extend the domain of an assignment & to all

terms, preserving the conditioa that

d[[s:B]]EDB

. which states not only that ¢ respects types, but also that (for composite types) §
4 8




it yields a continuous function over the appropriate domains.

We define ¢ by induction on the structure of terms, as follows:
als(e)l =alsl@hc])
AL [xs]] = -de ) LsD .

That 7 respects types is obvious. That ¢ [s] ep, for all g and

P
s : B 1is a corollary of the following
Proposition 3.1 For each assignment ¢ and for each x : Bl,
s : B2, >‘§€D51° ag/x ﬂj s] e[DBI—) DBQ].
Proof First, suppose s is an atomic term, i.e. an

identifier. Either s = x, in which case Bl = p2 and AE - dg/x[[ s ]
is the identity function over DBl, or s + X in which case it is a
constant function from DBl to DBQ. In either case it is a continuous
function, hence e[DBl - DBQ] A

Next suppose s is t(u), t : B3 - g2 and u : B3. Assume the

proposition for t and u. We have to show that for any chain X ¢ D

Ll{dg/x[ t(u) I : gex} = dUX/Xl[ t(u) J; that is, that

U{dg/xﬂ: t ](ag/xl[ ull) : gex} = aUX/x[[ t ](aux/xﬂ: ul).

Now if we denote )E. ag/x[[ tl] and jg. dg/xﬂ: ul] by f and g, the
inductive assumption tells us that fE[DBl - [DB5_) DBQ]] and ge[DBl—>
and the required equation merely states that for such f and g,
M-£(€)(8(E)) is continuous. The proof of this we leave to the reader;
it is hardly more than proving that for a chain X, {£(€)(g(€)) : Eex}
and {£(§)(g(mn)) : €,M€X} are corinal chains.

Finally, suppose s is [)Ay.t], y : B3,t : B4 and B2 = B3 - glh.

We need to show that

R1’

Da3

1,




- [D,.-» D

Bl B3 eu]]

Me€Dg1s> g/ L [hy-t]T €lD

that is, that for any chain X < D

- Bl’
Z L 1Y U {)\neDB5°(a§/x)T]/y[ t] : §€X} =
1 ATEDg, - (q 1y /o)y L €T

1 Nov in the case x =y, wehave (G Jn/y = @y = Gy

-
5

and the equation reduces to a tautology. If x , then (g =
q gy ty @ 1/
(a,n/y)g/x, and the inductive hypothesis (that the proposition is true for

t) tells us that a t is continu - hence notonic -
) A\E (T]/y)g/x[[ | ontinuous nce monoto

50 a t is a chain in D for each . Moreover, the

, L@ )y L 2] g L :

i inductive hypothesis also tells us that for each It

w3 is in [DB5 - DBH] » and by the previous remark the set of these functions -

B3

of U for function spaces (Proposition 2.1) we can replace the lefthand

} as £ ranges over X - is a chain in [D,_— Dﬁu] . Thus by the definition

side of the desired equation by

XT1€DB5 < U {(dﬁ/y)g/x[[ t] : §€X]

{ =
% NP3, « @y L D
= )\y(.:])s5 . (aUX/x)T]/yU:t] since x fy

e
ey
B i
|

and we are done. We have therefore proved the proposition by induction

! on the structure of terms. 3

Corollary 3.2

- For every assignment ¢, type B, and term s : B, /L s] € DB.

st

| Proof For atomic terms the corollary is assured by the definition of
an assignment. For )~-terms, the proposition gives the corollary directly.

For an application term s(t) : B, the proposition tells us that

e

10




:ﬁt‘r s

xgenal.ag/x[[ s(t) € [DB]- - DB], so by application to @ [ xJ we get

1
dES(t)]] = adﬂ:xm/xIS(t)] € DB

i
|
]
i

i

(B

L
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4. Pure LCF : Formulae,Sentences, Rules and Validity

In this section we define the remainder of the syntax of Pure LCF,
extending the domain of assignments 7 still further, and after defining
the concept of validity of a sentence we give the rules of inference and

show that they preserve validity.

Atomic well-formed formulae (awffs)

If s,t : B are terms, then s C t is an awff. Let us add the
truth values T,F (not to be confuced with TT, FF) to the range of
an assignment, and extend any ¢ to awff: by

aCsct] ={T if gCsJcalcld

kf otherwise

Well-formed formulae (wffs) 1

A wff is a set of awffs. We use P,Q,P1,Ql,...... to denote
arbitrary wffs. Extend & to wffs bv
alLP] =47 if AcP=>g[A] =T
F otherwise.

We use s =t to abbreviate {sct, tcs }.

Sentences
If P,Q are wffs, then Pk Q is a sentence (if P = §, we just
write = Q). Extend ¢ to sentences by
a[PrQll = {Fifg[POl =T, Q] =F
T otherwise.

We say that PFQ 1is false in ¢ , true in /7 respectively. We say that

a sentence is valid iff it is true in all standard interpretations.

We now introduce the rules of inference of Pure LCF, accomnanying

each by a proof - often very trivial - that it is valid (a rule is valid
12




b Ty 1

if whenever its hypothecses are valid its conclusion is valid). The

}.,a Proofs will rely on two facts about assignmenﬁs which are fairly easy
F to prove (we omit their proofs). First, if A is any syntactic entity
4 in tﬁe domain of an assignment @, and x 1is not fre. in A, then
| ’l @ LAT is independent of ¢ Lx3; more precisely, ag/x[A]] =7 [CAT].

Second, in specifying the inference rules we use A{t/x} to mean:

(J Substitute t for x in A with suitable changes of bound variables

1 so that no identifier free in ¢t becomes bound after the substitution,

and we need the fact that 7 [ A {t/x} 7] =aﬂ[ t]]/x[[A]'

——
.

Rules of Inference

We write the hypotheses of each rule above a solid line., If there

28

e are none, we omit the solid line. We use the same names for rules as in
f [1].
. INCL PLQ (Q g p)
1;_3 Clearly P true in ¢ implies Q true in @.
L CONg P Q1 PF-Qo
PFQL Yy @
}'—' Clearly valid
i cur Pl P2 P2P3
Li Pl + P3
Clearly valid.

APPL tCu F s(t)c s(u)

1 Figd a[t:ﬂgﬂ[u],thenﬂ[s(t.)]]=a[[s:ﬂ(ﬂ[t])
e alsT(@@l) =@ [s(u)T, using
the monotonicity of alls]. i
; g
L 1 !




L1
b g
' v
REFL - sCs
i Clearly valid, by reflexivity of =
. TRANS SCt,tCu - scCu
i
&y Clearly valid by transitivity of =
i MINI1 F Ul cCs
|
Clearly valid, by the minimality of J_B
€1
. L5 MIN2 F UU(s) cUU
§ M Clearly valid, by the definition _l_Bl S T A\E€pl. _I_82
Hoh
Note that in the last two rules we have omitted the type subscripts from
{
b UU, intending that they be supplied in such a way as to yield a proper
awff - i.e. that the terms on either side should have the same type. We
; g . . : T . . . . .
‘ could have written UUBl oo (s : B1) LUEe Similarly we will omit
subscripts from o and Y.
! -
CONDT F D (IT)(s)(t) = s
! CONDU F 2 (uu)(s)(t) = vy
g { | CONDF o (FF)(s)(t) = ¢t
These rules are justified by the standard interpretation of o.
P | ABSTR P - sct

X not free in P,
P F [xx.s] < [)x.t]

Let 7 be such that @[LPJ] = T. Since x is not free in P,
we have also dg/xﬂ: P] =T for any €. So the hypotheses of the rule
. . c
assures us that for each € in DB, where x : B, dg/xl[ s} e ‘ﬂg/x[ tJ. Hence
N7/ s c Q. t which is to say that
af[ax.s] € [ax.t]D =T, as required.

s{t/x}

CONV  [ax.s](t)

il

* 14




“
o ]

53

el

T T A QU EOMIR 00 VPSSR AVt S A D . AN TR M rears A o sy AN e LS W I I LB M ALY 58

We have that @ [[ [ax.s ](t)] = ()\g.dg/x[s])(dﬂ:t]l)
= dC? [t]/x[S:D , which is equal to @ [[s{t/x}J by

b

]
»

the second of the facts about assignments which we have assumed.

Ay

%

- ETACONV [ax.y(x)] = y, y distinct from x

! @l wxyx)]T = >‘§.a§/xﬂ:y(><)11 =287 ,,0 y]](dg/xlf xJ)

‘” = X.Z[LyD(g) (since x is distinct from y, so does not

- occur free in y), =@ [[y].

|

- CASES P, s =TT Q P, s = Ul Q P, s = FF|~ Q

f P FQ

‘ Let @ be such that gL PJ]l =T. Since s : tr, @ [ s} must

i take one of the values {tt, lt:r’ £ff}, so that one of dlCs =171,
adls=vuvwl, @[[s=Fr] t:a_kes the value T. The validity of the

= appropriate hypothesis ensures @ [[ Q] = T.

}

() FIXP. Fy(x) = x(¥(x))

, Clearly valid by the standard interpretation of Y.

i INDUCT . P Q{vu/x} P U QF Q{s(x)/x}

b P Q{Y(s)/x}

X not free in P or s
For simplicity, we consider just the case that Q 1is an awff.
Moreover we can assume that it is of the form t(x) € u(x) where x is
not free in t or u, since for any term t’, @[ t']J = afll [ay.t'{y/x}1{x)7,
y distinct from x, and then x is not free in [Ay.t'{y/x}]. Let @
be a standard assignment, ¢ [ PJ) = T, and assume that allLs]) = f,

ACtD =g, @aMful =h. We first show by induction on i that for

15




each i > 0, g(fi(LB)) = h(fi(_LB)), where x : B. For i = 0,

the first hypothesis gives that ¢ CQD =rT,that is ¢ Cc] /1 )eall ul (L)
J‘E/x B B

(since x 1is not free in t,u), so g(J_P) =4 h(.LB). Now assume the
inequality for i. That is, we assume afi( )/xﬂ:Q:ﬂ = T. Since x is

not free in P, we also have dfi( )/x": PJ =T, and we deduce from the

second hypothesis that afi(J.B)/xlIQ {s(x)/x}0 =T. Now dfi(J.B)/xﬂ: s(x) ) =

f(fl(J.B)), since x is not free in s, = f1+1(1.B), so from the

second fact which we assumed for assignments we deduce that dfi'*'l( )/x[Q]] =T,
that is g(fi+l(.LB))E h(fi+l(la)). So the induction is complete.

Now @ LQ{y(s)/x}]} = dY(f)/x[Q‘-‘u’ which we require to take the
value T. That is, we require g(Y(£))Eh(Y(f)). But g(Y(£)) =
U[g(fi(la)) : 1 >0} (by the continuity of g), cU [h(fi(_l_a)) : i >0}
(by what we have proved), C h(Y(f)) by the monotonicity of h, and the

justification is complete.

This completes also our justification of the validity of the

Rules of LCF.
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