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ABSTRACT;     LCF  is a  deductiA/e  system   for  computable   functions  proposed 
by  D.   Scott  in 1969  in an unpublished memorandum.     The 
purpose  of  the  present paper   is   to demonstrate   the  soundness 
of   the  system with  respect   to  certain models,  which are 
partially  ordered domains  of continuous   functions.     This 
demonstration was  supplied  by Scott  in his memorandum;   the 
present paper is merely  intended   to make  this work more 
accessible. 
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1.     Introduction 

The   logic of computable   functions  proposed   by Dana  Scott   in  1 )69, 

in an unpublished  note,   has   since  been   the   subject   of an   interactive 

proof-checking program designed as a   first  step  in  formally based  machine- 

assisted   reasoning about   computer programs.     This   implementation  is 

fully documented   in  [1],  and   its   subsequent  applications  are  reported   in 

later papers   [2>5,l+,  and  5].     However   the  model   theory of  the   logic, 

which  scott   originally  supplied,   is   not  discussed   in   those  papers,   and 

the  purpose  of   this  Memorandum is   to present   that   theory.     Nothing  is 

added  here   to Scott's work.     The  concept  of a  continuous   function,  whxch 

is  central   to   the   theory,   has  since  been developed   by him  to provide 

models   for   the     X-calculus and   to yield  his  mathematical   theory of 

continuous   lattices;   the  interested  reader can  follow  these  topics  in 

Scott  [6].     However,   since   LCF  is  only a  version of  the   typed     \-calculus, 

these  developments are  not   necessary  for   the  present  purpose,  and   the 

present  paper  contains all   that   is   needed   to understand LCF. 

1 . <L 
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2.     Continuous Function Domains 

In  this  section we define a particular  sort  of partially ordered 

domain,  called a  complete  partial  order   (cpo),  and   the  concept  of 

continuous   function.    We  prove  some  propositions   for  later use;   in 

particular,   that  if    D    and    E    are cpo's,   then  the   set  of continuous 

functions   from    D     to    E     is  itself a cpo. 

Definition 2.1 A partial order (po) is a pair (D,c) where D is any 

set (domain) and c is a transitive, reflexive , antisymmetric relation 

over D. 

Definition 2.2         For a    po     (D,c) ,  a  set    X c D     is a  chain if    X = 

fx. I i > 0}     and  X^XJEJUC  

Definition 2.1 A    po     (D,E)     is a  complete partial  order  (cpo)  if 

(1) It has a minimum element,  which we denote by 

J_       ,    or just    J_    if  there   is  no confusion. 

(2) Every chain    X Q D    has a  least upper bound   (lub) 

in    D,    which we denote  by    UX. 

Definition 2 .h If    D    and    E    are cpo's,   then a   function    f     :    D -* E 

is  continuous  if every chain    X C D    satisfies 

U[f(x)   :  xeX}  =  f(UX). 

Thus a continuous   function is  one which preserves   the  lubs  of 

chains.     Note  that  the  set  on  the    lefthand   side  of   the above equation 

is a chain,  since   if    X = UQ^   )     and    x   C   x   C       

then we also have     f(xn) £f (x.) S. To see   this, we only need  to 

■ ■....■„-^....■■.lW..-...iv,-...      t... :.^..-.,.,^.-..--.^-.^.^,^  ^. ..-,..,..._...J.^^-.^^..^1-.. ...... .-I--.- 
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observe   that any continuous  function  is memotonic   -   that  is, 

xcy=, f(x)Ef(y)>  and   this   is  true because  if    7     is   the ^^    ^^^ 

then    UY = y,   so we  have     f (x) Su[f (x) ,f (y))   =   f(|jy)   =  f(y). 

We  should also  note   that   there   is  an alternative   (more restrictive) 

definition  of a   cpo which  uses   the  concept  of  directed  set   (X is  directed 

iff    x,vex => 3 Z6X.x,yEZ)     instead of chain.     This,   in  turn,   leads   to an 

alternative   (more  restrictive)  definition of continuous   function.     We  have 

chosen   the   less   restrictive  alternative,   but we   remark  that   the   theory can 

be  done  equally well   (as   far as we are  here  concerned)  with either definition 

Xoticc   that  we   use   the  same  symbol c for the  relation in every    po 

under discussion.     This   should gxve  no difficulty.     We  also use  names 

like     D    and    E     both   for  po's  and   for   their domains. 

Deanition.^ We   denote   the  set  of  continuous   functions   from     D     to 

E,     where   these  are   cpo's,   by     [D-»E]. 

^20sUion^l if    D    and    E    are  cpo's   then     F =  [D -. E]     is a   cpo 

under   the  relation 

fcg     iff    \'x   •   f(x)cg(x) 

Proof First,     F     i£ is a   po under   this   relation   (check 

reflexivity,   transitivity and antisymmetry).     Second,   the minimum element 

iF  of F     is   easily  seen   to be     Xx.i^     Finally,   we   need   that any chain 

Z    CF    has a lub    UZ6F.     Define    L'Z = Xx.u{f(x)   :   fez).    This is a well- 

defined  function since  for each    x    in    D,     U(x)   :   f€ZJ     is easily  seen 

to be  a   chain   in     E.     Next,   it   bounds  above  every     feZ,     since   for  each 

x€D,   f(x)SU{f(x)   :   fez]   =   (u2)(x).     Further,   it  is  a   lub,  since  if    h     is 

any other  upper  bound   for    Z,   then  for each    xeD    and     f eZ,    we have 

f(x)ch(x);     it   follows   that     (UZ) (x)c h(x),    and  hence    UZch. 

But we must  also   show   that    UZeF,     i.e.,     UZ     is   continuous. 
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Let    X s D    be a  chain.    We  require 

(UZ)(LIX)  » U {(UZ)(x)   :  xex], 

But  (UZ)   (UX)       = UCf(UX)   :   fez]     by  the definition  of    UZ. 

= U{r"(x)   :   feZ.xEX] 

= U{(UZ)(x)   :  x£X}. 

This completes   the proof. 31 

Proposition 2.2 For any cpo    D,  every     fe[D -» D]     has a  minimum 

fixed-point    YfeD  -  i.e.  we have    f(U)  = Yf    and  for all    xeD, 

f(x)  = x    implies    YfCx. 

Remark This  proposition ensures  the existence  of  the  least 

fixed-point operator    Y   :   [D-:. D]  -> D.     The  next  proposition shows   that 

Y    is continuous,   i.e.     Ye[[D-»D]   H> D] . 

Proof The  set    S = {^(Ip)   :  0 < ij     is  a  chain by  the 

monotonicity  of    f.     Define    Yf = US.     By  the continuity of    f,    we have 

f(Yf)  = uif1+  (ip)   :  0 < i}   = Yf,     so    Yf is a  fixed-point  of    f.    Let    x 

be any other  fixed-point.     Now by the monotonicity of     f    we have 

f(J-JJ) E  f(x)  = x,    and  by induction on     i    we can show     f1^! )Cx     for 

all    i > 0,     BO    Yf = LJ[f  (Ip)   :  0 < i) C  x,    and  thus     Yf    is  the 

minimum  fixed-point  of     f. na 

Proposition 2o Y    is  continuous,   so    Y€[[D-»D]  -^ D] 

Proof Let    Z     be any chain    C [D -» D] .    We must  show  that 

Y(LJZ) = Ll{Yf   :   fez).     In one direction   (3)     proof is easy  since  for each 

fez, UZ3f,     so    Y(LIZ) 5 Yf    by the monotonicity of    Y    which  in  turn 

follows directly  from   the definition of    Yf.     In  the  other direction we 

only need  to  show  that    U{Yf   :   fez}     is a   fixed-point of    UZ,    since  then 

k 
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it dominates  the   least such,  which is    Y(LJZ).       NOW 

UZ(U{Yf   :   fez))  = U[g(UfYf  :   f6Z))   :  gez) 

= U[g(ff)   :   geZ,f€Z]     by continuity of    g. 

= Uff(Yf)   :   fez),     since 

g(Yf)Ch(Yh)    where    h=max(g,f). 

= ufYf  :   fez} 

which is  the  required   fixed-point  property.     This  completes  this  proof. 

rs 
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5.     Pure  LCF   :  Terms 

In  this  section we give   the  term syntax of Pure LCF,  and   then 

after  defining a  standard interpretation as a  func'ion  from  identifiers 

into  the union of a  family of cpo's,  we  show how such an  interpretation 

is extended uniquely to a   function  from all  terms  into  the  same  range. 

The  terms  of Pure LCF are just  those of a  typed    X-calculus. 

Types (1)     ind and  tr are   (basic)   types. 

(2) If ßl,   ß2  are  types  then   (ßl -> ß2)   is a   type. 

(3) These are  all   the  types. 

We  use     p,  ßl,  ß2,...     to denote  types,  and   frequently omit  parentheses, 

assuming  that   '-^  associates  to the  right,   so  that    gl -> 02 -> 03 

abbreviates   (01 -» (p2 -* 03)). 

Terms Each  term has  a well defined  type.    We use     s,t,u 

to denote   terms,  and write    s   :   0     to mean that    s    has  type     0. 

(1) Any  identifier  is an   (atomic)   term.    We do not  need  to describe  them, 

except  to say  that  there are  infinitely many at each  type,   that   the  type 

of each is determined  in some way   (perhaps by explicit subscripting),  and 

that   they include    TT   :   tr,     FF   :   tr    and  the  families   (indexed  by  type) 

UV    ^tr -> 0 -. 0 -♦ 0    and    Y(0 -^ 0) ^ 0'    These identifiers  are  special 

only  in  that each  standard  interpretation will assign a particular element 

to each of  them.    We use    x,y     to denote arbitrary identifiers. 

(2) If    s   :   01 -^ 02    and     t   :   01    are  terms  then    s(t)   :   02     is a  term. 

If    x   :   01     is an identifier and     s   :   02     is a  term,   then     [Xx-s]   :  01 -> 02 

is a   term. 

(5)     These are all  the  terms. 

k.  ■ -.- — 
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^-eniark In  the machine  implementation of LCF,  and  often  for 

intelligibility, we have written  terms  of the  form   3(s)(t)(u)     and 

Y([\x.s])     respectively as     (s -» t,u)     and    [ax.s],    and have  dispensed 

with    3    and    Y.     It  is clear  that every  term of implemented LCF  is   then 

a   transcription of a  term of Pure LCF,  and  it  therefore suffices   to 

discuss   the  semantics  of the  latter. 

Semantics A  standard model   (of LCF)  is a  family    [DJ     of  cpo's, 

one   for each  type    ß,    where    Dind     is  an arbitrary cpo,    D is   the 

cpo     {tt,ff,J_tr }     under  the  partial  order given by the. diagram 

tt ff 

\/ 
1 tr 

and    n 
'ßl -> ß2  ~  '■Dßl~4Dß2^'    Not:e   that    Dind    comPiet:ely determines  a 

standard model. 

Let    J   be  the  set  of identifiers  of Pure LCF.    A  standard 

interpretation     (of LCF)   is a  standard model    [D }     together with a 
ß 

standard assignment, which  is a   function 

which  satisfies  the  further conditions 

(1)*    tfH x  :  ß J   6 Dß 
P 

(2)     The value of    tf   for  the  special  identifiers  is given by 

the   following: 

We write   the   (syntactic) arguments  of    <7    in decorated  brackets as  an 
aid   to  the eye. 

k,    —■■—" .^....^ii-t-..^.-—..-^-:-^-.. ;^.^■..--^..,J,^..■■»JJaJ^La^a..J-^u^^J,^l..^,J,.>^ll^■»■1■.:.a.L■-.■.„.....■ ^-,.^_v.  
j  
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(7 1 TT U   =   tt,     i7 1 FF ]   =   ff, 

i7 r uug n = iß, 

X§eDtr.XTl€DB.XxeDg.(§ -»Tl,x),   and 

^D:Y(p_)3)_>pii = Y(ß_>ß) _p 

where   (| -» Tl,x)   "  the  conditional  -  takes  the values    JL,  11,  x    according 

as    §  = 1     >   tt,   ff,    and where we have  subscripted  the  fixed-point  operator 

Y on  the  right  to indicate  that  it belongs   to    [[D   -> DD]  -> D ] .     Note 
P P P 

that  the    Y    on  the  left  is an identifier,  and  the    Y    on  the right a 

function.     It is easy to check  that    (7 (E => H     is a continuous  function, 

and  Proposition 2.3 has assured us   that    i7 ([ Y ]I   i-3 also continuous. 

If    O    satisfies  condition  (1)  above,  but not necessarily condition 

(2),  we call  it  just an assignment,  yielding an interpretation  (not 

necessarily standard).    We also confuse   the  terms assignment and 

interpretation,   since we have no occasion to discuss here different 

standard models. 

We write    ÖL;       to  indicate  the assignment differing  from    tf    only 

in that   its  value at    x    is    |;  clearly we have  that 

(*§/xVy 

^/y if x = y 

((Zw   )•/    otherwise, 

We  now show how to extend  the domain of an assignment    O    to all 

terms,   preserving  the condition that 

^ IC s   :   ß 3  e Dß 

which  states  not only  that    Cl   respects   types,  but also  that  (for  composite  types) 

-  n       ■. i —,.-■.,■.■.—■^.■-■■—^ *...-, ^.lMJ^M„^_^MMM^„ [irriiiiftniiiii-3-""'^ " ^-i '-■■-"   —i 
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it yields  a  continuous  function over  the appropriate domains. 

We define    C7   by  induction on  the structure of  terms,  as   follows: 

01 s(t)Jl = <7g aTKcrg t]I) 

(7 1 [Xx.s] 2  = tärfg/JL si   . 

That   /7    respects   types  is obvious.     That    (7 C s J  eD       for all    ß    and 

s   :  ß    is a corollary of  the   following 

0 

j 

Proposition %1 For each assignment   (7   and for each    x  :  ßl, 

Proof First,   suppose    s     is an atomic   term,   i.e.  an 

identifier.    Either    s = x,    in which case    ßl = ß2    and X|   • <7 / I s J 
|/x 

is  the  identity  function over    D    , or    s  f x    in which  case  it  is a 

constant  function  from    D^  to D^. In either case  it  is a  continuous 

function,  hence    e[D ,  -> D    ] . 

Next  suppose    s    is     t(u),     t :   ß3 ^ ß2    and    u   :   ß3.    Assume  the 

proposition for     t    and    u.    We have  to  show  that  for any chain    X c D 
ßl' 

U{^/x|[ t(u)]I   : §ex}   =C7Ljx/x[[ t(u) J];   that  is,   that 

Ui^l t 1 i^/xl u J )   :  ?exj   = ^ux/xC t J (^x/xC u ] ) . 

Now  if we denote    Xg • <7?/xl[ t J     and    X§. (7g/x|[ u J     by     f    and    g,     the 

iftductive assumption  tells us  that    f6[D      -> [D.--* D00] ]     and    ge[DQ1^D    I, 
"* PJ     pd ßl     33 

and the required equation merely states  that  for such    f    and    g, 

X§-f(§)(g(§))     is continuous.    The proof of this we  leave  to the reader; 

it is hardly more  than proving  that  for a  chain    X,   ff(5)(g(g))   :  |ex} 

and    ff(§)(g(Tl))   :  §,Hex3     are corinal chains. 

Finally,   suppose    s     is     [Xy.t] ,  y   :   ß3,t   :   ßl^    and     ß2 = ß3 -> ß^. 

We need  to show  that 
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«6V WXy-ti:i1 ^V-'Ve"." 
that is, that for any chain X c D ,, 

01' 

^^V^/xVy^3  : §6X} = 

^6 V (*L!x/x Vy1 ' ^ 

Now in  the  case    x = y,    we have   (^^ =   (ö^)^ = ^/y 

and  the equation  reduces  to a   tautology.     If    x t y   ,     then     f<7  ,  )   ,  = 
■§/* n/y 

^fl/y^F/x'    and   the  induct:iLve hypothesis (that  the proposition is  true   for 

t)   tells  us  that    \?. (öL,   L, C tj     is  continuous   - hence monotonic   - 

SO    ^^l/x^vJy^- t^     ±S a  chain in    D
B^'     for each    T]«    Moreover,   the 

inductive hypothesis also  tells us   that  for each    g     XT\. ((7 ,   )   ,   \L tl 

is  in [DQV ^
D

Q1+]»    
and by  the previous remark the  set of  these   functions 

as    §  ranges  over    X  -  is a chain in [Dß,-* DßJ.     Thus by  the definition 

of    U    for  function spaces   (Proposition 2.1) we  can replace   the  lefthand 

side  of the desired equation by 

xneo 
ß3 u[^/yh/^tl :§exJ 

= n£% • ^/yW/x^l 
= XyeDß3   .   iaux/x\/y€tl since    xf y 

and we are done.    We have  therefore proved  the proposition by induction 

on  the  structure  of  terms. m 

Corollary ^.2 

For every assignment    ff,     type  ß,  and  term    s   :  ß, /?[[ s iD  e D  . 
ß 

Proof   For atomic terms the corollary is assured by the definition of 

an assignment.  For X-terms, the proposition gives the corollary directly, 

For an application term s(t) : ß, the proposition tells us that 

10 

. :^,^^„;.^.....,..-„.. ^-rrr-r- .^ 



wrw^v. ., wjQ^^immmiG&i^.JfWf vw'-mv*'-^'-*-''!?! B^» ■«'^^''"'"WBWPiBpii^WPWW'WWSPiPWBWBPBW^ ^^ 

.. 

fl 

0 
Ö 

0 

X?eDgl.(7^xn: s(t)'J]  e [Dp1 -»Dp],  so by application to £7 C xU we get 

gt*(t)T\ -(T^^J-'Un    .;, 

as required. m 
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k .     Pure LCF   ;  Formulae,Sentences,  Rules and Validity 

In  this  section we  define  the  remainder  of  the  syntax of Pure LCF, 

extending the domain of assignments    <7    still   further,  and after defining 

the  concept of validity of a  sentence we give  the  rules  of  inference and 

show  that they preserve  validity. 

Atomic well-formed   formulae   (awffs) 

If s,t : ß are terms> then s c t is an awff. Let us add the 

truth values T,F (not to be confused with TT, FF) to the range of 

an assignment, and extend any    C7    to awff:;  by 

^Csctj   =/T   if   ^mslc^Ct] 

\F    otherwise 

We 11-formed   formulae   (wffs) 

A wff is a  set  of awffs.    We use    P,Q,P1,Q1,    to df.note 

arbitrary wffs.    Extend    tf    to wffs by 

<7\LV1     =/Tif    ASP :* £7 [£ A J   = T 

F otherwise. 

We use     s =   t    to abbreviate    {set,   tCs}. 

Sentences 

If    P,Q    are wffs,   then    PH Q    is a  sentence   (if P = 0, we just 

write H Q).    Extend    ff    to sentences  by 

^[[PKQl]=    "TF  if i7 jCPH = T, ^ CQl   = F 

T otherwise. 

We  say  that     PKQ     is   false  in (7 ,   true in /7   respectively.    We  say that 

a  sentence  is valid  iff  it is  true  in all  standard interpretations. 

We now  introduce   the  rules of inference  of Pure LCF,  accompanying 

each  by a proof - often very  trivial  -  that  it  is  valid   (a rule  is valid 

12 
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If »henever its hypotheses are valid its conclusion is valid).    The 

proofs »ill rely on t»o facts about assignments which are   fairly easy 

to prove  („e omit their proofs).    Firn,  if   A    is any syntactic entity 

in the domain of an assignment    £7 .    and    x    is not   fre. in    A,     then 

<7IA3    is independent of   tft*!;    more precisely.    <7j , C A J - </M 

Second,  in specifying the  inference rules we use    Aft/*)     to mean: 

Substitute    t    for    x    in   A    with suitable changes of bound    variables 

so that no identifier free  in    t    becomes bound after the substitution, 

and we need the fact  that    <? CA (t/x)] - ^ „■ t-j^lt A3 ■ 

Rules of Inference 

We „rite  the hypotheses  of each rule above a  solid  line.     If  there 

are  none, we  omit  the  solid  line.    We use  the  same  names   for rules as  in 

[1]. 

INCL PKQ (Q Q p) 

Clearly    P    true  in    a   implies    Q     true  in    a. 

CONJ PhQl 

CUT 

P I- Ql    U    Q2 

Clearly valid 

Plh P2 

P1-Q2 

P2t-P5 

A PPL 

PI H PJ 

Clearly valid. 

tcu     H     s(t)cs(u) 

If    ^mtZDE^lTuJ,   then/7l[s(L)31  = ^7 t s J( ^ |[ t ]|) 

•=    ^[LsOI^IEu])  =d7j]:s(u)3J  using 

the monotonicity of   i7 [£ s 3) . 

13 
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REFL (- s c s 

Clearly valid, by reflexivity of c 

TRANS set, t c u l- s c u 

Clearly valid by transitivity of Cl 

MINI h UU c s 

Clearly valid, by the minimality of 1 
P 

MIN2 H UU(s) c UU 

Clearly valid,  by  the definition    1 QO  = \|€Bl.  1 
p 1 —> p2    "'     ß2 

Note that in the last two rules we have omitted the type subscripts from 

UU, intending that they be supplied in such a way as to yield a proper 

awff - i.e. that the terms on either side should have the same type. We 

could have written UUßl ^ ß2(s : 01) «= UU  . Similarly we will omit 

subscripts from 3 and Y. 

CONDT H 3 (TT)(s)(t) = s 

CONDU h 3 (Uu)(s)(t) = uu 

CONDF |_ ^ (FF)(s)(t) H t 

These rules are justified by the standard interpretation of 3. 

ABSTR P   H    s c t 
x not  free  in  P. 

P   I-   [Xx.s] c [xx .t] 

Let    S7   be  such  that    (^ jL P J   = T.     Since    x    is not   free  in    P, 

we have also    ^  ,[[ Pj   = T     for any    g.     So  the hypotheses  of the  rule 

assures  us   that  for each    g     in    D   ,  where    x  :  ß, #*/JL B 1 E fL /  IL 12 .    Hence 

W»'Ög/xl[sIII    c   X.§.ÖL /  C 13 ,    which  is  to  say  that 

(^ ([ [Xx.s] c [Xx.t] JD  = T,  as  required. 

CONV h   [Xx.s](t) =  s{t/x} 

D. 
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We have  that    tf[L[Xx.s   ]{t)2  =   (x?.Ä..  Cs3)(^ir:tll) 
5/ x 

" ^7 C tj/x^3-^   ' which  is  equal  to    ^7 |Ls{t/x}3   by 

the  second of  the.  facts about assignments which we have assumed. 

ETACONV |_[Xx.y(x)]   = y,  y distinct  from    x 

^lEUx.yMlID = \t.(7yJ,y(*)J = \S-<7%/xflyTl(az/J[xJ) 

= X§'^ [L yüKl)     (since    x    is  distinct  from    y,     so does  not 

occur free in    y),    =^[tyj. 

CASES P,   s s TT l-Q P,   s=-UU|-Q P.ssFFl-Q 

P HQ 

Let    d7   be  such  that    ^fllPj  - T.     Since    s   :   tr,    d7 [[ sj    must 

take  one of the values    {tt,   I     .   ff} ,     so  that one  of    Ct l[_s B TTJ , 

^Cs = UU]],    ff^s = FFjl     takes   the  value    T.    The validity of  the 

appropriate hypothesis ensures    £7|LQj  = T. 

FIXP. I-Y(x)    =    x(Y(x)) 

Clearly valid  by  the  standard  interpretation of Y. 

INDUCT. PHQ{uu/xJ P U QH- Qls(x)/xJ 

P»-Q{Y(B)/X3 

x not  free in P or s 

For  simplicity, we  consider  just  the  case   that    Q    is an awff. 

Moreover we  can assume   that  it  is of  the   form    t(x) C u(x)    where    x    is 

not  free  in    t    or    u,     since   for any  term    t',    d7 [L t'J  = ^ ^ [ Xy . t'ty/xj ] (x) ] , 

y distinct  from    x,  and  then    x    is  not   free  in    [\y.t'iy/x]] .     Let    C7 

be a  standard assignment,    d7 £ Pj  ■ T,    and assume that    (J7 £. s J  =  f, 

tf C tID  = g,    i7 0! uj   = h.    We   first  show by  induction on    i     that  for 
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each     i>0,     8(fi(iß))E   l^f1^)),     where    x:ß.     For     1  = 0, 

the   first hypothesis  gives   that    a        I qj\   = T, that   is  # I t ]}   (+.)&# t ^(1 ) 

(since     x    is  not  free  in    t.u),     so    g(lp) C h^) .     Now assume   the 

inequality  for    i.    That  is. we assume    ^fi(.   )//Ql  = T.     Since     x    is 

not   free  in    P,  we also have    ^fi(     )/xILP3  = T,  and we deduce   from  the 

second hypothesis  that    ^i(1 ^Q  {s^/x]]]  = T.     Now    ^^  )/xls{x)J  = 

f(f  (i^)),     since    x    is not   free  in     s,     =     fi+1(l),     so   from  th 
P 

second   fact which we assumed   for assignments we deduce  that    C^i+l,, iQj  = T. 
i+1 i-U ^'^^' x 

that  is    g(f       (^))C hCf1^^)).     So  the  induction is complete. 

Now    ö'IEQ[Y(s)/x}31     -    (7Y(f)/xCQ3.    which we  require   to  take   the 

value    T.     That   is, we  require    g(Y(f))Ch(Y(f)).     But    g(Y(f))  = 

Uig(r(l^))   :   i  > 0}     (by  the  continuity of g),    c L1 (l^f1^))   :   i > 0} 

(by what we have  proved),    c h(Y(f))     by  the monotonicity of    h,     and  the 

justification  is complete. 

This completes also our  justification of the validity of  the 

Rules  of LCF. 

1 
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