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SUMMARY AND CONCLUSIONS 

Problem 

Increasingly, the research community—particularly that inhabited by 
management scientists and operations researchers—have become sensitive 
to the need for new or more realistic approaches to the solution of 
large, complex decision problems. This new interest shifted the focus 
of attention from operational, tightly-constrained, single-objective 
decisions at lower levels of organizations to planning and policy 
decisions at the upper level. The shift has not yet been rewarded with 
the same kind of dramatic success that was associated with highly- 
structured operational problems (e.g., the development of linear pro- 
gramming) . Substantively, the impetus for this research was a problem in 
planning promotions for naval enlisted personnel. Upon investigation, 
it became clear that the Navy's enlisted advancement system sought to 
achieve multiple, conflicting objectives associated with authorized 
strength levels, meeting manpower requirements, minimizing cost, and maxi- 
mizing promotion opportunity, among others.  In attempting to develop an 
optimization technique to handle such problems, it was determined that an 
effective nonlinear programming algorithm would be required. As a result, 
it was necessary to address this problem before progress was possible in 
the case of the enlisted promotion planning problem.  Specifically, 
this report documents the development of a general algorithm (and the 
theory that underlies it) for solving the class of nonlinear programming 
problems that have linear constraints. The linear constraints can be 
either equations or inequalities and the variables can be free or non- 
negative.  The objective function is assumed to be continuously differ- 
entiable. This class of problems, i.e., those having linear constraints 
and a nonlinear objective, seems to be particularly appropriate for 
manpower management. 

Background 

Under the direction of the Chief of Naval Personnel, this Laboratory is 
conducting a research program in the area of enlisted personnel planning. 
The thrust of this program is toward the development of computer-assisted 
decision systems for more effective personnel planning.  In the course 
of this research it became apparent that the ability to achieve personnel 
management objectives is heavily dependent on actions taken in the area 
of enlisted promotions. This awareness generated an investigation of 
the processes underlying the enlisted promotion system, resulting in the 
development of new techniques for planning promotions.  Still unsolved, 
however, was the problem of achieving multiple personnel management 
objectives which involved drastic tradeoffs in planning the number of 
promotions in each pay grade of each rating over time.  Existing tech- 
niques available for the solution of such problems, particularly those 
of a non-linear character, indicated some technical and logical diffi- 
culties in application. 

iii 



Approach 

During the last 10 to 15 years many algorithms have been developed for 
solving nonlinear programming problems. These algorithms range from 
those that apply to special classes of problems to some quite general 
algorithms applicable to broad classes of problems. The result of this 
development is a variety of methods, each with its particular strengths 
and weaknesses. It is expected that this trend in algorithm development 
will continue. However, while it is probable that no universal method 
will emerge that is clearly superior to all other methods for all prob- 
lems, it seems quite reasonable to assume that new ideas and techniques 
will increase the variety of methods and algorithms available. Certain 
general techniques have been used in solving nonlinear programming 
problems and have been successful in practice. These techniques 
involve the following approaches:  (1) solve a local linear programming 
problem for a feasible direction; (2) projection, i.e., project an 
infeasible direction onto the feasible set; and (3) solve a local 
conjugate gradient problem for curvature information.  It is interesting 
to note that algorithms are usually developed in terms of only one of 
these techniques rather than a combination. However, there is a method 
that combines techniques (2) and (3). The approach of the method 
developed herein, called the primal-dual method, is to combine the 
desirable features of each of these techniques into a single algorithm. 
Thus, a large number of existing algorithms become special cases of the 
primal-dual algorithm.  In addition to providing a partial unification 
of nonlinear programming algorithms, a very efficient algorithm results. 

Findings, Conclusions, and Recommendations 

The primal-dual algorithm is an "effective" second-order method in that 
slow convergence is eliminated without requiring second partial deriva- 
tives.  It has additional advantages in that (1) zig-zagging due to 
highly eccentric ellipsoids is eliminated, (2) if the stationary point 
occurs at an interior point, no linear programming problems are solved 
and the solution is identified immediately, and (3) accurate bounded 
variable constraints are generated from the conjugate gradient solution. 
Computational results on a wide variety of small (in size) test problems 
indicate the validity of these findings. It is concluded that the 
algorithms of Rosen, Goldfarb, and a special case of Graves algorithm* 
can be viewed as special cases of the primal-dual method. A future 
report will describe the application of this method to the enlisted 
promotion problem. 

*See References [3] through [6] and [12] 
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A FIRST-ORDER, PRIMAL-DUAL METHOD FOR MINIMIZING A 

REAL-VALUED FUNCTION SUBJECT TO LINEAR CONSTRAINTS 

I.  INTRODUCTION 

The purpose of this paper is to develop a general algorithm for 

solving the problem 

subject to: 

I Mi YJ = rL 

^ " ° 

L » 1 TT\1 

L = "m^i., TO 

minimize: 

*(yi,---y*0 

(i) 

where nm^ is the number of equations and rj^ is the number of free vari- 

ables.  The function "Kv) is assumed to be of class C , i.e., contin- 

uously differentiable.* The algorithm is a first order method in that 

only the first partial derivatives of the objective function are used. 

The conjugate gradient method is used to obtain an unconstrained 

stationary point when one exists. The particular conjugate gradient 

method used is quite efficient in that no linear searches are required. 

In the vicinity of an unconstrained minimum the second-order terms 

in the Taylor series expansion of TW) dominate. However in the vicinity 

*vectors are denoted by underlined lower case letters. 



of a constrained minimum the first-order terms dominate.  Thus the method 

should have quadratic convergence (without requiring the second partial 

derivatives) combined with the ability to obtain feasible directions. 

The algorithm presented here has the benefits of a second-order method 

in eliminating slow convergence without requiring the second partial 

derivatives.  It also has additional advantages:  (1) zig-zagging due 

to highly eccentric ellipsoids is eliminated; (2) if the stationary 

point occurs at an interior point, no linear programming (LP) problems 

are solved and the solution is identified immediately; and (3) accurate 

bounded variable constraints are generated from the conjugate gradient 

solution. 

In order to present a complete theoretical development of the 

algorithm we begin by discussing unconstrained minimization and the 

conjugate gradient method.  This is followed by the development of a 

first order accelerated conjugate gradient method. Next it is shown 

that a feasible direction for the constrained problem can be obtained 

by solving an LP problem and the method for determining the distance 

moved is given.  Further, it is shown that the Kuhn-Tucker conditions are 

satisfied at the constrained minimum.  A proof of convergence concludes the 

theoretical section. In the numerical section a number of test problems 

are presented. The algorithm is compared with existing algorithms by 

solving the test problems using total computation time as the basis of 

comparison. 



II.  UNCONSTRAINED MINIMIZATION 

It is not difficult [8] to show the following. 

Theorem 1:  For -feC let X be a point for which V-Pt* )= O • then "Fix) 

assumes a relative minimum at X if the quadratic form (X~x ) Mix ) (X-X*) 

is positive definite}or equivalently, if every eigenvalue of J-Kx )  is 

positive. 

Here M = II ^ "fy^/-ÖX • H is the "nxn Hessian matrix.  It is also true that the 

quadric (X~X ) \-U X^)IX-X)-1 is an ellipsoid if all the eigenvalues of 

l-Kx ) are positive.  Consider the problem 

e E' 

If "Pe C and X is an estimate of X the relative minimum then by Taylors 

Theorem, 

■ft*} = f(x*> + l ^/ncx,*)^ + rix*^), 

-A- r where Y3X - X  . When the error term is zero, minimizing + (.x} is 

equivalent to minimizing the quadratic form V HCx/)V which is an ellipsoid 

since all the eigenvalues of *-Kx ) are positive.  If X -X^ i-s an estimate 

of X then 



Thus we want to find a sequence of points ^X^\ such that the sequence 

$.k;_\-*"0.  Geometrically this is equivalent to finding the center of the 

ellipsoid v Mcx^v. 

We can extend these ideas as follows: let X^ be an estimate of x 

with-ft C .  Then by Taylors Theorem 

-Fcx} = -f 1*0 + v-Pcx^ + i ^'Hcx^ v_   + r(x1)V;) t 

where  \/ = X - X*.   .     Let 

We now show that Fix) is an approximating ellipsoid at X^.  If 

Itxo   = flX^ - V-FCX^Xi 4 i X^NlX^X^ , 

then 

Fix1) = ItxO +■ [V-PLX^ -X[ l-UxOl x    +  ix'NixOx   . 

Now for  any  25- 

Fcx) = ?<**0 - t «Mis^s« +[y-Ftx^ -XiH^sO + tf'HistYl x 

z 

Since a necessary condition for HlXt) to be positive definite is that 

det H(g/>»-0 » it follows that l-Kx^"  exists [11].  Suppose we choose S5 

such that 



Then 

-1 
e* = *i - Utxif  Vf(xJt 

and 

2- 2. 

is an approximating ellipsoid at X±.     Since H^Si^is positive definite 

t X-^/M lX^ C X-^> >: O , 

with equality holding whenX=- *2* .  Thus the minimum of Fex1) occurs at 

X = o< and is 

M.'M FlXN = fix*.} - 1 «=$' U C X ^ o* . 
2. 

The following has been established. 

Theorem 2:  If /-Kx^is positive definite then the approximating ellipsoid 

Rx^?lxj + j"v-f lx^ -x[m*0l X   4- i /Htx^x 

has  the minimum value 

at  the center 

^*t> "4 *UiWl*0*i«.t   , 

xL+i = x,- ^<*0 LS7*t*0 



Theorem 2 is an alternate derivation of Newtons method which finds the 

center of the approximating ellipsoid in one step.  At this point we 

present a version of the conjugate gradient (eg) method which finds the 

center of the approximating ellipsoid inn steps.  However the eg method 

does not require the Hessian or its inverse.  The algorithm given here 

was developed by Hestenes [10].* Its numerical behavior on the standard 

test functions has also been investigated [8]. 

A description of the conjugate gradient method follows. 

Starting routine:  Select an initial point * and compute 

Main routine;  Given XK QK and p choose 

and compute 

The basic idea of accelerating the conjugate gradient method** stems 

from tfte fact that the ray connecting the centers of two successive 

*The conjugate gradient method was developed by Hestenes in 1952 [9] 

**This idea was suggested to me by Professor M. Hestenes, UCLA. 



approximating ellipsoids generally is a good direction toward the minimum. 

To develop this method let X be a relative minimum and let Xa x^ and 

Xt be successive estimates of x .  Consider the Taylors expansion of Xz 

about X^ , where V = x?.-X£ 

i 4. 
We also require the Taylors expansion of X about X^ 

■fix*) «f txO * V-Piy^a  +kzMlxtU    + rUt.iK 

where Z3X -X«--  If *a.is obtained from X^by the eg method then by 

Theorem 2 

j = - Hcxtf y-F^Xj/   . 

We can now prove the following , 

Theorem 3:  Let X be the minimum of a convex function "HC. .  If x0j X1} 

and Xt are successive estimates of X* where ^ is obtained from Xt by the 

eg method then 



is  a lower bound of "P C X )} and if    ^ * i > O , 

is  the minimum of -fl*} along the line     X * X t +• k V 

Proof:     If -f    is convex then by standard properties of convex functions 

If Xa> X then 

flXi + X|) - -f (X^   <  O     , \r o   , 

and 

lii*    ■PtVCa. + Xfc} -"PlXO    ^o 
X-*o X 

X^o   , 

or 

^•Ptxo 2 > o 

Fi.)<> 



If y-"2;>Oand 0 is the angle between v and 2 then cos0>Oand + can be 

reduced along the line X=xiL+kv .  Let X^Xt + k v be such that 

,* A 

Then 

^ * <• X - * ) = O . 

k « V| > o , 

since Sf-1- 

This theorem is of no direct use computationally since 2 is unknown. 

However if the acceleration step is done by a linear search along V 

then we can restrict the search to positive values of k.  Limited 

computational experience has shown that when acceleration can be 

achieved it is usually quite effective.* 

*Acceleration works very well on Powells function of 4 variables 

> 
but was completely ineffective on Rosenbrocks parabolic valley [8]. 



III.  DETERMINATION OF A FEASIBLE DIRECTION 

In the constrained problem (1) let X be the unconstrained stationary 

point if one exists.  Let V (feasible) be an estimate of the constrained 

minimum, and Av a direction emanating from v°.  Thus we are interested 

in points of the form v= Y° + Av where Av. is a feasible direction. Now 

v.°is either on the boundary of the feasible set or is an interior point. 

To obtain A\ when y° is on the boundary consider the Taylor's expansion 

of the objective function , 

*iv_) = -Plv_°) + V-Pc^°) Av + rtv.°>ky.) . (2.) 

We also require the distance function 

ckv;> =ilx+-Y>la= <x*-Vlf + .. - + Cx* -y„f , 

and its Taylors expansion 

d^) -   ci(.Y°) + VoU*0) AY  +   r( Y° Av)    , 

where 

vaif) = -2ix*-^V 

This suggests we consider the convex combination 

Ci- <*B} V-f lv_°) Av - 2 o<8 (X*-Y°) AY. , (3) 
>   o/ 

where Oi"(Bsi .  This leads to a stepwise procedure where the direction 

Av is obtained by solving the linear programming problem 

lü 



subject to: 

(4) 

minimize 

(L-~6W{\^°)^ -2^(xA-^)^  . 

In order to assure convergence to a stationary point we require <*©—r O . 

The upper bound is found by choosing B^ so that 

-n 

is satisfied when ^- v (the first feasible solution) and v-x. . The 

lower bound 8, is found similarly. Note that for any solution v of the 

LP problem Avis a feasible direction since the feasible set is convex. 

The LP algorithm used here is the primal-dual algorithm of Graves [5].* 

The possible terminal states of the LP problems are: 

(1) Finite optimal solution v ,      ( Av = Y-Y°)      5 

(2) Inconsistent constraint (terminate because problem is inconsistent); or 

(3) Unbounded solution (does not occur due to bounded variable constraints). 

*It is particularly efficient in that no slack variables or artificial 

variables are required. 

11 



At the constrained minimum none of the bounded variable constraints can 

hold as equalities.  If this condition occurs we simply increase 8^ or 

BA and use the current feasible point as a new starting point. 

In practice «"Cgis decreased to zero quite rapidly.  When ^e" ° anc* 

^ is on the boundary zig-zagging can still arise when solving (4). 

This is due to the eccentricity of the approximating ellipsoids.  When 

tnis occurs we solve the local conjugate gradient problem to estimate 

the curvature of T(^) in the vicinity of v°. The direction obtained is 

then projected onto the subspace determined by the binding hyperplanes 

to yield a feasible direction.  The technique of projection is similar 

to that developed by Rosen [12].  However instead of projecting the 

gradient we project one of the local conjugate gradient directions p 

(see the conjugate gradient method). To develop these ideas let B be 

the set of binding hyperplanes at V , i.e., 

B ̂ i^i^jo,^^^ a^ci -e-^°r0-^ 

Let B be a matrix of rank h whose rows are a set of K linearly independent 

hyperplanes from B. Thus B is an l«xW) matrix of rank W . The subspace 

S generated by the columns of B is the same as that generated by the 

rows of B . 

Now 

E" = S+ CKS) , 

where CHS)is the subspace which is the orthogonal complement of § . So, 

any vector in £ can be written uniquely as the sum of a vector in S and 

12 



a vector in 0(.S) .  If d is the direction obtained from the local con- 

jugate gradient problem then 

d - A^P +  <±>   , 

where AyP6 °tSi and u> 6 S .  Now 

giving 

d=A£P+B_>>    - 

Since   AvP€ OiS)   } 

B'& = BBX   . 

Since (B ß)  is a nonsingular matrix , 

giving 

X^C&'B^Bd   t 

UJ ^ BCB'B)"1^ 

and 

where 

^-[I-Btß'öfV] d  =PcA 

P = i - BCg'B)"1^ 

13 



The matrix P is called a projection matrix since it projects cl into 

OtS).  In practice we calculate 

A 

k 
%i* {rK--V^^)P^K |rK^o]    f 

A A A, 
and take ci = PK where  P»< corresponds  to     r"K    .    Actually,   any  £K  such 

that Av_P=p£K* O and 

A 
yields a direction in which to move.  It is not apriori evident that PK 

is the best direction in which to move.  Now since p£ = -Vr( v°)  , 

if we take d. -  p^_ and if Pp^ ^ Q   then 

W^°jA^p = -^A^p = -A^p\A^p-t- uo) = -Ayp'Av;p ^ o . 

Tnus the set £ rK j rK <- O^ is not empty and v~K exists. 

Note that the calculation of the projection matrix C   requires a 

matrix inversion.  In practice this is done internally by the LP 

algorithm and is quite efficient. 

If v° is an interior point then A^ is locally unrestricted.  In 

this case no LP problem is required.  To motivate the expression for 

AY when  v° is an interior point note that when °<e=0 (3) becomes 

y-Fw°)Av_   . 

If Ay =--V-f tv°.)then 

14 



When "Cg- 1  ,  (3)   becomes 

-ZLX*-y°)'&y. 

If   Ay -(X -V°)     then 

-2Cx*-^VA^.   = -2UX*-V°U
1
^ O 

This suggests we take 

(5) 

(JL-^QHl-^xUiy-Pcv0)!!3" - 2 o<8o<r || x*-* 

where O ^ °<i ^ 1  .  Substituting (5) into (3) we obtain 

The first two terms of (6) are negative and the sign of the third term 

depends on the angle between V+(.v°) and iX   -V°)  .  Thus in order 

to assure a gain from an interior point when °<Q = 0  we require °<i-** O . 

With <=<! = 1  we can eliminate slow convergence due to highly eccentric 

ellipsoids.* When the unconstrained stationary point is not identified 

as optimal on the first step then the constrained minimum occurs on the 

boundary.  So from an interior point we want to move back onto the boundary. 

In practice we set <*j - 1 and return to the boundary if a decrease 

in T-CY) is achieved on the boundary. Otherwise we decrease «juntil 

°cr = O .  If  "Pc>0 can not be decreased on the boundary for °<x-0 then a 

*A good example of this is given in the test problems, 

15 



linear search is performed along -Vftv'J.  If a problem has multiple 

local minima and some are feasible and some are infeasible then an 

interesting possibility occurs.  Suppose x occurs at one of the infea- 

sible local minima.  If ^ is close enough to one of the feasible local 

minima then the algorithm switches from trying to find a point that 

reduces the distance to X and finds the feasible local minima. 

We now show that the Kuhn-Tucker conditions are satisfied at the 

constrained minimum V .  As an auxiliary result the classical Lagrange 

multipliers are given in the final LP tableau.  To show this observe 

that the Lagrangian function of (1) is 

L-i    L       j = i        i 

where the A^are called Lagrange multipliers. The necessary conditions 

for v to be a constrained minimum (Kuhn-Tucker conditions) are (see 

Hadley [7] }chapter 6) 

-m 

j »1 

and 

= O  .       do) 

When ^Q = O and y° -= \r      we have solved the LP problem 

16 



subject to: 
n 

j. a TOL+1 -rn 

minimize: 

Vfc^;^ 

The dual of this problem is 

subject to: 

LaLxL = Afc£) j-i,—*i 

HaijXi £ af(y*j 
ft Ay 

j.yi^i,...« 

J 
X- i o L= >n1+i> rn 

maximize: 

rx 

The necessary conditions (7) and (8) are satisfied by the dual con- 

straints and we see that the dual variables are the Lagrange 

multipliers.  Condition (9) says that when an inequality constraint does 

not hold exactly its corresponding Lagrange multiplier ^-»O  .  But 

this is equivalent to the fact that the dual variable X^ = 0  when its 

corresponding primal constraint does not hold exactly.  Condition (10) 

can be rewritten 
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Since A- = O when constraint i does not hold exactly we have 

or 

But from the dual theorem of linear programming 

and since V=Y°+Av=^. + ÄV we have 

It will be shown later that the condition for termination of the 

algorithm is 

I V-f ^°) A} I -e  . 

From these considerations it is clear why the algorithm is called a 

primal-dual method.  The feasible direction is determined from the primal 

problem, and the identification of the constrained minimum (by the Kuhn- 

Tucker conditions) follows from the dual problem.  In this framework 

Wolfe's algorithm for quadratic programming would be considered a dual 

method. 
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IV.  DETERMINATION OF THE DISTANCE MOVED 

We now determine the distance moved along the direction Ay .  Con- 

sider the Taylor series expansion of constraint i about the feasible 

point v° j 

or 

Let 

9=^ - aL^° + aL Av_ * rK 

kAu.   where  A a = ^^ <Xr\cL     k > O 

Then 

Since V  is feasible v"L -&;Y ^ O  .  Thus we have five cases to 

consider for determining the restrictions on k : 

L Vi-aL^.o, a^Aa = o k unrestricted 

Z *V-avv*_-0j a. u A u. ^ O k unrestricted 

3 rc- a^°>o, a;Aa ■= O k unrestricted 

4 v-- - g^%0j ac Au-^ O k unrestricted 

5 rL ~a;Y° >0j 9rt A u. ^O k4 rC-fti¥«/ft. Au- 
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These cases can be represented schematically as : 

constraint i 

Case 5 

Case 1 

Case 3 

Case 2 

In case 5 let* 
A 

A 

Thus the restriction ki k  ensures us that the point v * ^L°+ ^ ^^ 

remains feasible.  We actually determine k by a search along Au .  The 

search algorithm given here is also used for the acceleration step in the 

eg method. 

*The implicit constraints ""SIX""-* must De considered in calculating k 
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Search Algorithm — 
A 

Starting routine;  Set ft = k t *»* 1  and calculate 

If <$■ <• O set Y»«Z  and go to the general routine . 

If S'-O set £*H ^-^ll • 

If 0 - £ set ~n = i-  and continue . 

If ß<e stop  k = o . 

General routine: 

Caluclate z" = \f° + ( L - JL ^ Au, }and  £ = f C ?") - -f ( i^"1) 

If S^O  set Tx = T\+i.  and continue . 

For S  - O : 

If ^-lll'n-^0|l x 6    set  v\=t; ^'-H^-^H 

and continue. 

If  $-11 Zn-^°H ^G    and  -P C^"L) < -Pt^.0) 

then  V ~ i1""1 . 
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V.     CONVERGENCE OF THE ALGORITHM 

When   <=<Q-O and none of the bounded variable  constraints hold 

exactly the LP problem   (4) is  equivalent  to  the primal problem 

subject to: ^ 

Z   Q-Lj Ay;    =  rC-^° 1-1.—**t 
I'i 
n 

minimize: 

Vf i^) Ay. 

The dual of this problem is 

subject to: 

Z 0.£;X; =■ &f C^°) 

Z % XL - *  = ^f_U!) 

j = l--- *U 

J«*J + i,---^ 

maximize: 

From (2) and the dual theorem of linear programming, i.e., 
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we have 

■F(y) = -ft¥°)   + L^c- Q.LY°jxc    «■   £    y*,.    vrt^Av^       (lit) 
j = n£*i 

Now 

since 

-m in 

X^^O    J \. = TT\1+1( -m 

and 

iri,_..mr\t    . 

Global or local convexity of A.^} implies that ^C^0, Av^zo in (11). 

Thus the condition for a constrained stationary point and termination of 

the algorithm is 

Note  that  this   condition was  also required by  the Kuhn-Tucker  conditions. 

This  leads  to  the  following 

Theorem 4:     (Convergence Theorem)* If   »<Q-0 then a stationary point is 

located in a finite number of steps. 

*This  theorem is  a special  case of a more  general  convergence  theorem 

due to  Graves   [6], 
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Proof:     If  (12)  is not satisfiedtthen by the Approximation Theorem 

(Buck  [2]  page  243) 

f(^° + k Ay.) = hy°)   + V-fc^°) kAa  +   r[^ k Ay.)   , U3) 

where 

lit* r ( ^°,  k Au.)    s   o    j      UMi-Forr*lv   • 

kAu-^o k 

Thus  for any  v° there exists  a  % > O    such  that  for   kl|Au.ll = k^S, 

v(^kAa)   ^   k-fe £   fe-S 
2.llA^ll 2ilA^H 

From (12)   and  (13) 

■flv) --P(v0) + Jc.    VfCY°)Av    +   rt^kAa^ 

^ fi^°) -e_v£     + e_£        = £^°) - fc-S 

So if (12) is not satisfied then we can reduce H^) by at least € • ÄV g. 11A v 11 

at each step until (12) is satisfied. Thus a stationary point is 

located in a finite number of steps. 
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VI.  DISCUSSION 

It has been known for some time that if y;° (an estimate of the con- 

strained minimum) is not close to ^ then no local method can ever be 

devised which obtains a good direction from ^° to i ■  In light of this 

fact it seems advisable to give up the search for better local directions 

and adopt a radically different criterion, such as that embraced in the 

primal-dual method.  In the initial steps we focus on reducing the distance 

from the starting point to the constrained minimum. The direction from 

^° to the unconstrained minimum serves as the surrogate direction. Upon 

reaching the boundary we hope to be close enough to the constrained 

minimum so that by solving (4) with <=<B-»-O we obtain V* .  Clearly problems 

can be constructed where this approach does not give a point on the 

boundary close to V. .  But it is not apriori evident that we have moved 

further "out of the way" than we might by some other method. Although 

we may reach the boundary at a point quite close to ¥, , zig-zagging can 

still arise due to the eccentricity of the approximating ellipsoids of 

il^)  .  Here it is evident that second order information on the curvature 

of  "fly) is absolutely necessary in order to proceed efficiently to Y; . 

The method presented herein solves the local conjugate gradient problem 

for the complete set of conjugate directions and projects the "best" 

direction onto the subspace determined by the binding hyperplanes.  Since 

the calculation of the projection matrix requires considerable matrix 

operations we take as many projection steps as possible, i.e., until the 

8 matrix must be changed. 
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The burden of calculation in the primal-dual method falls principally 

upon the LP algorithm and the conjugate gradient algorithm.  The LP 

algorithm solves (4) for the feasible direction and inverts the 8 B matrix. 

The conjugate gradient algorithm solves the unconstrained problem and 

obtains the complete set of local conjugate directions for a projection 

step.  Neither the LP algorithm of Graves [5] nor the conjugate gradient 

algorithm of Hestenes [10] are well known or widely used.  However, 

it would appear that both these methods are the most efficient of their 

class. Thus it is hoped that the primal-dual method presented herein 

will prove to be the most effective general algorithm for non-linear 

programming problems with linear constraints.  It is "effectively" a 

second-order method without requiring second partial derivatives.  In 

addition it combines the desirable features of projection methods, con- 

jugate gradient methods and methods that solve LP problems to obtain 

feasible directions. 

In comparing the primal-dual method with other methods we will con- 

sider (1) a special case (that of linear constraints) of Graves general 

nonlinear algorithm, (2) Goldfarb's conjugate gradient method, and 

(3) Rosen's gradient projection method for linear constraints. The 

algorithm of Graves is a first order method when only the first partial 

derivatives are used.  The approach of Graves [6] is to attempt to solve 

all problems in this manner.  When slow convergence is observed in the 

first order algorithm the second order conditions are appended as explicit 

constraints provided, of course, the second partial derivatives can be 

obtained.  This approach expands the size of the problem and requires the 

second partial derivatives. 
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The conjugate gradient method of Goldfarb is effective on problems 

with eccentricity in the approximating ellipsoids of  T(Y) •  An additional 

advantage, as indicated by Goldfarb [3], is that a minimum of function 

evaluations are required.  This is important in some problems in optimal 

control.  However, many problems are difficult to solve just due to size alone 

(many constraints and/or many variables) even without additional compli- 

cations.  Since Goldfarb's method requires even more matrix operations 

than that of Rosen it may be quite slow due to the considerable amount 

of matrix operations on large matrices.  In addition there is a large 

class of problems where nv) simply decreases (unconstrained) to-<» »i.e., 

there is no finite unconstrained minimum.  When the conjugate gradient 

method is applied to a function of this class it can become unstable 

quite rapidly.  Since Goldfarb's method requires the conjugate directions 

it may also become unstable for these functions.  In the primal-dual 

method if instability is observed when solving for the unconstrained 

minimum we set <VQ=0 and o(.z = o   permanently. We then solve (4) to 

reach the constrained minimum Y .  If slow convergence is observed and 

KvUs convex a direction can be obtained by solving the local conjugate 

gradient problem.  Experience has shown that this procedure works quite 

well. 

The gradient projection method of Rosen [12] is not as efficient as 

Goldfarb's method (see the numerical results in [3]).  In addition it is 

probably not as efficient as Graves' algorithm due to the amount of matrix 

operations required. 
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VII.  NUMERICAL RESULTS 

The task of comparing nonlinear programming algorithms is at 

best a difficult job.  For a variety of test problems it would seem 

that total computation time provides a universal norm for comparison. 

However, the complexities of modern computer operating systems do not 

allow the same test problem to be run twice with the same running time. 

Thus computation time is a random variable and the probability density 

function is unknown.  Comparing computation times reported on different 

computers is even more difficult.  For example, the test problems 

solved by Goldfarb [3] in 1968 were run on a CDC 6600—the CDC 6600 

being approximately ten times faster (depending on the operating 

system and other factors) than the IBM System 360 Model 65 used here. 

The test problems solved by Graves [6] in 1966 were run on an IBM 7044/ 

7094 direct couple system. He reports that the time sharing feature of 

that system could increase total time by as much as a factor of four. 

His times include loading and system times as well as execution time. 

Comparing algorithms on the basis of total iterations (steps) is 

equally unsatisfactory.  For example the Goldfarb algorithm generally 

solves a problem in a small number of steps although each step requires 

considerable calculation.  On the other hand the Graves algorithm can 

take far more steps in the same amount of time since each step requires 

fewer calculations.  In the primal-dual algorithm the situation is much 

more complicated since a number of different kinds of steps are possible. 

In solving for the unconstrained minimum the conjugate gradient steps 
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give an approximate second order Newton step, i.e., 

In solving for the constrained minimum we have } 

(1) LP steps: 

(2) interior steps: 

Av = -(i-«xWf 1^°)' ■*■ ^U*-^0) , and 

(3) projection steps: 

Obviously interior steps require the least amount of calculation and pro- 

jection steps the most. The art of constructing an efficient algorithm 

is in providing the proper balance among the different kinds of steps. 

The algorithms of Graves, Goldfarb, and Rosen can be classified in terms 

of the type of step used.  For example, the Graves' algorithm takes LP 

steps with <*0=.o and interior steps with <*r= o  . Rosen's algorithm 

takes projection steps and interior steps with «>c_ = o •  In the projection 

step Rosen projects the gradient, which is always the first conjugate 

direction calculated.  Recall that in the primal-dual method the complete 

set of conjugate directions are calculated and the "best" one projected. 

Goldfarb's algorithm takes projection steps and eg steps.  In the projection 

step Goldfarb apparently projects the first conjugate direction which gives 

a gain, i.e., Vf(.v°) P pK   <  O    .  So it is clear that each of these 

algorithms can be obtained as a special case of the primal-dual algorithm. 

If we choose not to solve for the unconstrained minimum the primal-dual 

algorithm becomes a local method and we have an alternate version (primal- 

dual II). At a boundary point we set o<B -o and take either LP steps or 

projection steps. From an interior point we take conjugate gradient steps. 
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For a wide variety of problems (both large and small) the two prinal-dual 

methods are probably the same in overall effectiveness. Of course for any 

particular problem one method is more efficient than the other. These 

classifications can be conveniently summarized in the following table: 

Method or 
Algorithm 

Type of Step* 

Boundary Point Interior Point 

Graves 1)       °<B*° 2)      o<xro 

Rosen 3)     d =-Vf<.y0/=.pt 2-^       ^X^O 

Goldfarb ■3)    4: Ä -Rtc   ^^ere 4) 

Primal- 
Dual 

1) 

2.) 

Primal- 
Dual  II 

1)      °<8 -O 
oi~   3)    d. = pK (. see pa<je t*) 

4) 

*1) LP step, 2) interior step, 3) projection step, and 4) eg step, 
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The test problems given in the next section have been devised to 

include most of the undesirable phenomena that arise in constrained mini- 

mization with linear constraints.  In solving these problems we will 

report total computation time and total iterations (steps). The eight test 

problems are: 

(1) constrained ellipse with e-*-l, 

(2) Rosenbrock's parabolic valley with a linear constraint, 

(3) Powell's function of 4 variables with linear constraints, 

(4) Fletcher & Powell's helical valley with a range restricted variable, 

(5) Colville problem #1, 

(6) Colville problem #2, 

(7) Chemical equilibrium, and 

(8) constrained hyperbola with a saddle point. 

The solution of test problems (5) and (6) by the Graves algorithm as a 

first order method are reported in [6]. The solution of test problems 

(5), (6), and (7) by the Goldfarb algorithm are reported in [3]. 
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VIII.  TEST PROBLEMS 

(1) . Constrained ellipse with e-*-l. 

subject to: 

Yi ± 8 

V 6-3 

V &lo 

Yi •*». » o 

minimize: 

iooo 

start at (1,1). 

The eccentricity, e, of an ellipse is always between 0 and 1. As 

e —*■ 0 the ellipse approaches a circle and as e -*1 the ellipse approaches 

a straight line.  In this case the value of e is 0.9995. This problem 

is designed to create zig-zagging in ordinary first-order gradient methods. 

(2).  Rosenbrock's parabolic valley with a linear constraint, 

subject to: 

minimize: 

xxi .y) = AooCyi-y*) + Ci-yt> 

start at (-1,2,1) 

32 



The gradient and the Hessian are 

Vfiy) *(-4oo(^-yJ>>ft -^l-y^, Z-Oo ty*-y£)) , 

EC3^-yi +-OOS)    "2yi 
Mtv^ - LOO 

■**■ 

Now Ht^) is singular when column 1 is a linear combination of 

column 2, i.e., 

<3 ^i -y* + -oo5) = 4y* , 

or 

yz=y1 +.005 

Along the curve    ^z'Xj.  - ■ °OS 

by (Ml^-XI ^- O   or 

4y*-X 

the eigenvalues of Wc^i are given 

i-X 
r O 

giving 

C*^-X)Ci-X)-4yJt«0  , 
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and   Xi - O  \z-1 + y*. >0   .    Since    A£ = 0     the approximating ellipsoids 

z. 
along the curve    Yi - Va. - ~.OOS       degenerate to parallel straight lines. 

This problem is designed to  foul a second order method which uses  the 

inverse Hessian and to create zig-zagging in a first order gradient 

method. 

(3).  Powell's function of 4 variables with linear constraints 

subject to: 

yL i 2o i - t,-- 4 

minimize: 

start  at   (3,-1,0,1) . 

The gradient  and the Hessian are 

V^Cy.) -- ( 2.(yi+ Loy,. } + 40Cyt-y^)3,    20(.y1+Lo v* ) + 4 ly^-Sy^3, 

^i =■ 2oo + 12. Cya-2y3) , ^i.3=^3L = o  , 

^33  =iO+48(yl-2y,)X
1 h^s  h^« -iZO(Yl-y4f , 

^z.4-   " ^+1  m °    i 

^34r x ^43  "   _i°   • 
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The unconstrained minimum of Powell's function is obviously zero at 

(0,0,0,0) and at this point 

MCQ) = 

2 20 0 0 

20 200 0 0 

0 0 10 -10 

0 0 -10 10 

Thus M(Q) has rank two and is singular. The unconstrained problem is 

designed to create slow convergence and this effect carries over to 

the constrained problem. 

(4). Fletcher and Powell's helical valley with a range restricted variable, 

subject to: 

O.2. * Yi * °-8 

minimize: 

fl^« iOO[(Y3-iOöf *■ (.r-1^1   ■»-   y*    , 

where Vj.srcoS2.TTG      a«<*l     Vi = <" SIN ZITQ   , 

start at  (-1,0,0) . 

Since   Vi * r cos 2TT Ö     and    v^* r sitJ ifY 9    we have on squaring and adding 
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Also , 

2ir ' iL 

Since 

we have 

äf -. if de ^_a   +<kF^r 

4£     ^    lOOOCXa -1Q8)^       +    ZOO (r-L)\fL 

**    «JX^Hrf 
Similarly , 

&£   = - looo lya-joe)       +   zoo c«--i) v^ 

and 

^£    =  200 CN(3-iOö)   +■  2.y; 

^y3 

Since L^ Y^/Vi , appropriate restrictions on Ö are required so that 

Yi * O . If r*o then Y1.-0 when 0 =-4.  i. 3    so that we require 
4 ' 4- '4 

i^.Q^3_      or    H -^ 2 TT 9 <• -3TT 
4     4 2-        "a * 

and 

-i. ^ 0 < 1     or   -tT <. ZTXQ <- VL 
4     4' a        a 
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(5).  Colville problem #1. 

subject to: 

i--i. .. io 

j.i.-S 

minimize: 

5 5  5 5 

*^) - 1«,-^ * I X   Cy y- y  + Y «I,- y* 

start at (0,0,0,0,1) 

The coefficients are given as 

1 2 3 4 5 

e^' 
-15 -27 -36 -18 -12 

CH 1 30 -20 -10 32 -10 

2 -20 39 - 6 -31 32 

3 -10 - 6 10 - 6 -10 

4 32 -31 - 6 39 -20 

5 -10 32 -10 -20 30 

*i 4 8 10 6 2 
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a* 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

1 2 3 4 5 bi 

-16. 2. 0.0 1. 0.0 -40. 

0.0 -2. 0.0 0.4 2. - 2. 

- 3.5 0.0 2. 0.0 0.0 - 0.25 

0.0 -2. 0.0 -4. -1. - 4. 

0.0 -9. -2. 1. -2.8 - 4. 

2. 0.0 -4. 0.0 0.0 - 1. 

-1. -1. -1. -1. -1. -40. 

-1. -2. -3. -2. -1. -60. 

1. 2. 3. 4. 5. 5. 

1. 1. 1. 1. 1. 1. 

This problem is designed to create considerable zig-zagging on 

the boundary of the constraint set in ordinary first order gradient 

methods. 

(6).  Colville problem #2. 

subject to: 

iO i y; 4 ±0 i- = i,-- 4 

minimize: 

+ io.i.[(ya-iy
l + (y4-i>

z] + 13.6(^-1)1^-1) 

start at (-3,-1,-3,-1) 
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This problem is an example of the case where the unconstrained 

minimum is an interior point and hence is the optimal solution. When 

started from the given starting point the solution path leads through 

(the four-space equivalent of) a narrow, steep-sided, curving valley. 

In addition, a true stationary point lies in the path. The combination 

of these effects is to create zig-zagging near the stationary point 

which leads to instability. 

(7). Chemical equilibrium, 

subject to: 

y* +a y5  
+ y«.  + * -L 

y3  
+ yi   + y8 

+ 2-y* M^ -1 

\j^ t  O i.» i,.-. 10 

minimize: 

lo to 

i* 

start at   (0.1,  0.35,  0.5,  0.1,  0.35,  0.1,  0.1,  0.1,  0.1,  0.1) 
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The coefficients C are : 

Ci 

1 - 6.089 6 -14.986 

2 -17.164 7 -24.100 

3 -34.054 8 -10.708 

4 - 5.914 9 -26.662 

5 -24.721 10 -22.179 

The gradient is easily calculated to be 

^£  - C- + loo/ JU_  \ i=i,-_ iO 

j 

A detailed discussion of the physical aspects of the chemical equilib- 

rium problem is given in [1] pp. 46-49.  Since log 0 is undefined a 

numerical problem arises in the primal-dual algorithm.  The constraints 

V'> o  L*i,---iO are in reality V^>o  L=1-_1O  but LP algorithms 

cannot handle the strict inequality. To circumvent this problem we add 

the auxiliary constraints 

yi * -c i* i. . . iO 

This problem is an example of the case where there is no finite uncon- 

strained minimum yet ^*W) is convex. 
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(8). Constrained hyperbola with a saddle point, 

subject to: 

°-5 Yi + V* - 4 

minimize: 

-Fi^p = -Vi-V* 

start at (1,1) 

This problem was designed to trap the primal-dual method on the saddle 

point at (0,0). It is not difficult to show that the constrained minimum 

occurs at ( 3/a , 9/+ ) and + ( 3/z ,9/* ) ~ ~     /&     • Now the contours of 

"rlv) are hyperbolas and the conjugate gradient methods finds the 

center of hyperboloids as well as ellipsoids. The obvious solution is 

to add the constraint 

yt-y V, i-6 
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IX.  SOLUTION OF THE TEST PROBLEMS 

(1) .  Constrained ellipse with e—•»!. 

Steps Type Running Time (sec) 

2 eg steps 0.2 

5 LP steps 

1 interior steps 0.5 

0 projection steps —__ 

Total 8 0.7 

unconstrained minimum (U.M.)  (10, 5) 

constrained minimum (CM.)  (8, 5) 

Value 

0.0 

.004 

Lagrange multipliers 
2 

1 -0.4 x 10 

2 0 

3 0 

Comments:  The conjugate gradient method solved the unconstrained problem 

in 1 step.  The 2nd step was for verification.  Three of the five LP 

steps were required to drive «*e -*- o •  Generally, the number of steps 

required to drive «Ke-*0 is given by min(m,n) .  Each test problem is 

considered to be solved when V-Fcv0,) Av X - i * A.O . 
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(2).     Rosenbrock's parabolic valley with a linear constraint. 

Steps 

20 

5 

1 

_0 

Total  26 

Izpe. 

eg steps 

LP steps 

interior  steps 

projection steps 

Running Time   (sec) 

1.7 

0.5 

2.2 

U.M.      (1,   1) 

CM.     (.96632704,   .93367296) 

Value 

0.0 

.1135190 x 10 
-2 

Lagrange multipliers 

1    -0.2299606 x lO-1 

Comments:    The  conjugate gradient method has a tendency at  times  to 

take  too  large  a step  and become unstable.     To  counteract  this we have 

introduced an under-relaxation technique   [8].     Of the 20 steps  required 

to  solve  the unconstrained problem,  4 included under-relaxation. 
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(3).  Powell's function of 4 variables with linear constraints, 

Steps Type 

6 eg steps 

3 acceleration steps 

6 LP steps 

0 interior steps 

31 projection steps 

Total 46 

Running Time (sec) 

1.1 

10.3 

11.4 

U.M.  (0, 0, 0, 0) 

CM.  (.50332384, -.045560064, .23582560, .30641062) 

Value 

0.0 

0.11378385 

Lagrange multipliers 

1 - .4010324 

2 0. 

3 0. 

4 0. 

5 0. 

Comments:  Since the projection steps were consecutive only one projection 

matrix was calculated, thereby making these steps quite efficient. 
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(4)*  Fletcher & Powell's helical valley with a range restricted variable. 

Steps Type 

16 eg steps 

3 acceleration steps 

5 LP steps 

1 Interior steps 

_0 projection steps 

Total 25 

Running Time (sec) 

2.4 

0.3 

2.7 

U.M.  (1, 0, 0) 

CM.  (0.8, 0, 0) 

Value 

0.0 

4.0 

Lagrange multipliers 

1 -40. 

2 0. 

45 



(5) Colville problem #1. 

Steps 

6 

8 

0 

_2 

Total 16 

Tjrpe. 

eg steps 

LP steps 

interior steps 

projection steps 

Running Time (sec) 

1.2 

2.6 

3.8 

U.M.  (.5242668, .8826745, 1.258478, .7411507, .3355687) 

CM.  (0.3, 0.3334676, 0.4, .42831015, .22396490) 

Value 

-61.44833 

-32.348679 

Lagrange multipliers 

1 0. 6 -11.839545 

2 0. 7 0. 

3 -5.1740399 8 0. 

4 0. 9 - .10389623 

5 -3.0611088 10 0. 

Comments:  This problem was solved by both Graves and Goldfarb.  Graves' 

algorithm, as a first order method, did not do well because of zig-zagging. 

It would appear that the primal-dual method solved this problem roughly 

twice as  fast  as  Goldfarb's algorithm. 
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r '  ■'- ; 

(6).  Colville problem #2. 

Steps Type Running Time (sec) 

Total 41 eg steps 6.6 

Value 

U.M. (CM.)  (1, 1, 1, 1) 0.0 

Comments: This problem was also solved by both Graves and Goldfarb. 

Graves' algorithm, as a first order method, was trapped at the non- 

optimal stationary point.  Goldfarb's algorithm reached the global 

minimum in 105 steps. Although it was considerably slow in the vicinity 

of the stationary point it remained stable. The primal-dual algorithm 

became unstable at the 14th step, in the vicinity of the stationary 

point,  However, this step resulted in movement to a point from which 

the global minimum was reached in 27 steps. 

The results of this test problem should not be taken too seriously. 

The conjugate gradient method has the desirable property of moving away 

from true stationary points, but if forced to calculate in the immediate 

vicinity, it tends to become unstable. 
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(7)•  Chemical equilibrium. 

Steps Type Running Time (sec) 

*1 eg step 0.3 

11 LP steps 

0 interior steps 57.4 

54 projection steps 

Total 65 57.7 

No finite unconstrained minimum 

CM. 
Best Known 

Solution [13] 

1 .040587 

2 .146323 

3 .785045 

4 .001409 

5 .485317 

6 .000692 

7 .027265 

8 .017867 

9 .036919 

10 .095984 

1 .040668 

2 .147730 

3 .783153 

4 .001414 

5 .485247 

6 .000693 

7 .027399 

8 .017947 

9 .037314 

10 .096872 

Value -47.761079 -47.761106 
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Lagrange multipliers 

1 - 9.789526 

2 -12.97198 

3 -15.22707 

Comments: This is the only test problem of the eight that provided any 

particular difficulty for the primal-dual method.  The difficulty 

probably arises from the fact that although +lv) is convex, it decreases 

(unconstrained) to - eo  .  The best known solution could have been 

achieved if a smaller zero level had been chosen.  It is interesting that 

Goldfarb's algorithm solved this problem with relative ease (about 8 times 

faster than the primal-dual algorithm).  It is likely that the Goldfarb 

algorithm generates different conjugate directions than that given here.* 

*However, theoretical work for a quadratic function, indicates that, 

Hestenes and Fletcher-Powell both generate the same set of 

conjugate directions. 
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(8).  Constrained Hyperbola with a Saddle Point. 

Steps Type Running Time (sec) 

1 eg step 0.1 

4 LP steps 

0 interior steps 0.1 

0 projection steps 
,i 

Total  5 0.2 

-11 _11 
saddle point (-.470924 x 10  , -.470924 x 10  ) 

constrained saddle point (0, 0) 

Value 

0. 

0. 
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In terms of some of the standards described by Ignizio,* some additional 

information on the numerical part of this study is warranted; namely: 

Date of computation—July 1972 to October 1972 

Computer utilized—IBM System 360/Model 65 

Programming language—FORTRAN IV 

Total number of problems attempted—In addition to the test problems 

reported, a number of other small problems were solved.  Since they 

exhibited no interesting mathematical properties and were solved quite 

rapidly they were not reported.  Each test problem is considered to be 

solved when V-f(.Y°) Av S - 1 * i-O" . 

Computation time—The running times were calculated by the FORTRAN 

external function ITIME.  The timer was set up to be the first and last 

executable statements in the program.  The times reported are CPU times 

only. 

*Ignizio, J., "On the Establishment of Standards for Comparing Algorithm 

Performance," TIMS Interfaces, 2(1), Nov. 1971, pp. 8-11. 
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