AD-758 571
PRELIMINARY REPORTS, MEMORANDA AND
TECHNICAL NOTES OF THE MATERIALS RE-

SEARCH COUNCIL SUMMER CONFERENCE, CENTER -
VILLE, MASSACHUSETTS

Edward E. Hucke

Michigan University

Prepared for:

Advanced Research Projects Agency

July 1972

DISTRIBUTED BY:

National Technical Information Service
U. S. DEPARTMENT OF COMMERCE
5285 Port Royal Road, “~ringfield Va. 22151




BEST
AVAILABLE COPY

3



o\1V g,

Q
R <v>‘£
; (]
= by
v )

&@\

STITA

005020

Preliminary Reports, Memoranda
and Technical Notes of the
Materials Research Council
Summer Conference

Centerville, Massachusetts

July 1972

Sponsored by
Advanced Research Projects Agency

ARPA Order No. 9236
A3y

Department of Materials and Metallurgical Engineering

Rsproduced by

NATIONAL TECHNICAL
INFORMATION SERVICE

U S Department of Commerce
Springfield VA 22151

o DISIRIBULLON CLLINLILD |y

ISaR



PRELIMINARY REPORTS, MEMORANDA AND TECHNICAL NOTES
of the 1
MATERIALS RESEARCH COUNCIL SUMMER CONFERENCE

Centerville, Massachusetts

July 1972

ARPA Order Number: 236 239

Program Code Number: 1D10

Contractor: The Regents of The University of Michigan

Effective Date of Contract: 1 May 72

Contract Expiration Date: 30 June 73

Amount of Contract: $237,690

Contract Number: DAHC1l5-71-C-0253

Principal Investigator: Professor Edward E. Hucke
Department of Materials & Metallurgical

Engineering

The University of Michigan
Ann Arbor, Michigan 48104
(313) 764-3302

IAPPROVED 107, TUNLIC PELTASE
DISTRIBUTION UILTHMLIED _

]



The views and conclusions contained in
this document are those of the authors and
should not be interpreted as necessarily repre-
senting the official policies, either expressed
or implied, of the Advanced Research Projects
sigency or the U.S. Government.

ii



TABLE OF CONTENTS

I. Foreword
II. Steering Committee
III. Participants
IV. Consultants
V. Preliminary Reports, Memoranda and Technical Notes

The following papers fall into two categories; (1) papers
in a state ready for publication; and (2) reports and
memoranda for limited distribution representing work in
progress. The former category is available for general
distribution and in some cases are in the process of
publication in th« appropriate technical journals. The
limited distributior reports and memoranda represent
initial ideas, problem suggestions, position papers, and
status reports and are aimed primarily to stimulate dis-
cussion with the Council. However, they are available
subject to the author's release by request to the Project
Director. Titles marked with an asterisk are reports
that are being published.

TITLE PAGE
The Line Tension of a Crack Line, and Its Appli-
cation to Kinks on Cracks .
Re M. ThOomMSON ¢ o & o ¢ o o o o o o o o o o o o o 1

Randomness and Wave Propagation in Inhomogeneous

Media
J. A. Krumhansl * * [ ] * * * * L] L] * * L] L] L] L] * o 23

Threefold Coordinated Model Structure of Amorphous
GeS, GeSe and GeTe
A, BienenstoCk. « ¢« s o ¢ o o ¢ ¢ o o o o o o o o 41

Plastic Relaxation Via Twist Disclination Motion
in Polymers
J. J. Gilman. * * L] * [ ] * * * * * * L] L] L] [ L] * L] 6~)

Statistical Mechanics of Polymer Networks
H. Reiss. L] L] L] L] L] L] L] L] L] L] L] L] L] L) L] L] L) L ] L) L] 83

Stress Averaging in the Dislocation Micromechanics

Analysis of Deformation
J. P. Hirth L] L ] L ] L] L] L] L] L] L] L] L] L] L] - L ] L) L ] L ] L) 119

iii



TITLE PAGE

*AC Losses in Superconducting Magnet Suspensions
for High-Speed Transportation
M. Tinkham. L] L] L] L] L[] L] L] L] L] L] L[] L] L] L] L] L) L) L] L) 141

Comments on the Prospects for Major Improvements
in Rechargeable Batteries to Operate at Ambient
Temperatures

R. A. Huggins . . . . . . . ... C e e e e s o« . 167

Hardness of Pure Alkali Halides
J. J. Gilman. L] L[] . . [ ] L] . L] L] L] L[] ] . L] L] L[] L[] . 197

Computer Experiments on Atomic Models of Cracks:
Thoughts About Problems and Opportunities
G. H. Vineyard. L] L] L] L ] L] L) L] L[] L) L) L ] L) - L L] L) L) 213

Simultaneous Determination of Long-Chain Branching
and Molecular Weight Distribution in Polvmers
J. D. Ferry L) L) L] . L] L] L] L] L] L] e » [ ] L] L) . L ] L) 227

Current Fiucutations from Small Regions of
Adsorbate Covered Field Emitters. A Method for
Determining Diffusion Coefficients on Single
Crystal Planes
Robert Gomer. . . . . ; ., . . . .. e+« « . . . 235

Crystallization Rate of Amorphous Alloys
P. E. Duwez L] L] L] L] L] L] L] L] L] L] L) L) . L] L] L) L) L) L 273

The Role of Cracks, Pores and Absorbiug Inclusions
on Laser Induced Damage Threshhold at Surfaces of
Transparent Dielectrics

N. Bloembergen. . . . . . . . . ¢ e « + « 4 . . . 285

Propagation of Low Frequency Elastic Disturbances
in a Composite Material
w. Kohn L] L] L] L] L] L] L] L] L[] . L] L] L] L] L) . L) L) L) L) L] 301

It's a Random World
J. A. Krumhansl . . . . . . ® s+ s s e s 4 e e « . 319

*Theory of Ionic Transport in Crystallographic

Tunnels
W. H. Flygare and R. A, Huggins . . . . . . . . . 335

*Theoretical Calculation of Thermodynamic Properties

of Iron-Carbon Austenites
S. K. Das and E. E. Hucke . . . e ¢ o & o s+ e & . 353

iv



TITLE PAGE

Research Needs and Technical Opportunities for a
Program on the Reliability of Brittle Materials
A. G, Evans and R. L. Coble . . . . « . 4+ «. . . . 375

A Workshop on Fracture Data held at Centerville,

Massachusetts
Charles Grosskreutz . . . . + v o o o o o o . . . 411

Some Perspectives and Recommendations on Stress-
Corrosion Cracking
M. Cohen and H. H. Johnson. « . « + « & &« « « . . 435

Workshop on Materials for Energy Conversion
A. L. Bement and R. Kaplow. . + « v &4 ¢« & o« . . . 461

*A Survey of Variational Methods for Elastic Wave
Propagation Analysis in Composites with Periodic
Structures

E. HoLee o ¢ v v v 0 i i ittt t h it ot s e e . 491

*Entanglement Networks Crosslinked in Strained

States
J. Dn Ferry L) L) L] L] . L] L] L) L] L] L] L] L] L] ] L] [ ] L] L] 493

*Enzyme Cascades and Their Control in Blood Plasma
E. W. Montroll. [ ] [ ] [ ] L] [ ] L] L] L) L] L] L) L] L] L) . L] L] 495

Theoretical Models and Experimental Properties
of Liquid Metals
Jo L. Margrave. « o« o v ¢ o o o o s o o o o o o . 499

Energetics of Strained Organic Molecules and of
Various "Carbon" Samples by Combustion Calorimetry
Jo L. Margrave.: « « o o « o o « o o o o o o o « . 501

Structural Studies and Chemical Syntheses in Low-
Temperature Matrices
J. L. Margrave. « « v & ¢ 4 4+ o + o o o o o « « . 503

Syntheses, Structures and Thermodynamic Properties
of Perfluorocarbons
J. LQ Margrave. L] [ ] L] L] [ ] L] L] L] L) L] L] L) L] L] L) [ ] L] 505

Solar Enérgy, A Natural Resource for Everyone
J. L. Margrave' [ ] [ ] L) L) L] L] L] L) L) L] L) L) L) L) L] L] L] 507

Hydrogen and Hydrides--Chemical Energy Carriers
J. L. Margrave' . L) L) L) L] L) L) [ ] L] L] L] L] L] L L] L) L) 509



TITLE

Polychromatic X-ray Diffraction. &2 Rapid and

Versatile Technique for the Study of Solids Under

High Pressures and High Temperatures
L. M. Albritton and J. L. Margrave. . . . .

Continuum Descriptions of Deformation
E. H. Lee L] L] L] [} L] [ ] L] L] - L] L] L] [ ] L] . .

Gradient Materials
R. L. coble L ] L ] L ] L] L ] L ] L ] [ ] L ] . L ] . L ] L] . L]

Biaxial Stress Relaxation in Glassy Polymers
S. S. sternstein. . . ., ., ., . . ... . .

Elastic Network Theory
S. S. sternstein. . . . ... . . .. . e

Comments on Protein Networks
J. D. Ferry L ] L] L ] L ] [ ] . L ] L] . - L] . L] L] . L]

Polymeric Entanglement Networks Cross-Linked in
States of Strain
J. D. Ferry and S. S. Sternsteir. . . s » 3

On the Analysis of Materials Recycling
M. Bl Bever L] L] L] L] L] L] L] L] L] L] L] L] L] . . .

On the Morphology of Polymeric Alloys
M. B. Bever and M. Shen . . . . . . . . . .

Inclusion Patterns and Stress Criteria for Quasi-

Static to Spall Fractures by Void Coalescence
Dl CI Drucker L] L] L) L] L] [ ] L] L] L] . L] L] L] L]

Spall Fracture by Hole Growth in Incompressible
Elastic Plastic Material
F. Al MCClintockl L] L] L] L] L] . . . L] L] . L] L]

Conformation of the Mode and Wave Front Approach
to the Analysis of Wave Propagation in Periodic
Composites

E. H. Lee . . . . . . . . * s e e e e e e .

Influence of Properties Gradients on Stress Wave
Propagation Applications
E. H. Lee, B. Budiansky and D. C. Drucker .

Determination of Stress Profiles for Waves in

Periodic Composites
L. Bevilacqua, J. A. Krumhansl and E. H. Lee

vi

PAGE

. 511

. 513

517

. 527

. 529

. 547

. 375

. 583

. 585

587

. 589



Foreword

This collection of papers does not
constitute a formal reporting of the activities
of the ARPA Materials Research Council Summer
Conference. Each report, memorandum or technical
note is'a draft of the author or authors and is
their work alone. The Steering Committee, in
conjunction with the authors, will decide how
this material can best be presented as a formal
report to ARPA.
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THE LINE TENSION OF A CRACK LINE, AND ITS APPLICATION
TO KINKS ON CRACKS

R. M. Thomson

Abstract

We investigate the definition of an effective lire
tension for a crack lin2 similar to that used for dislocations.
Although cracks have a distinct tendency to wipe out regions of
higher curvature relative to straighter configurations, the
effective line tension for a crack is not easy to separate from
the crack extension force, which is area dependent. We are
able to define a tension term, however, which must be used with
discretion, and which is dependent on the size of the curved

region.



THE LINE TENSION OF A CRACK LINE, AND ITS APPLICATION
TO KINKS ON CRACKS

R. M. Thomson

Introduction

Previous work'’? has introduced the concept that in a
brittle material where plasticity effects at a crack tip can
be neglected, and where the cohesive region at the crack tip
is small, a crack will experience trapping by the lattice.
The effect is analogous to the Peierls energy of the dislo-
cation. It has been shown? that in cases of this sort there
is a region about the Griffith crack depth where thermal creep
of the crack should be observable. In this creep region, the
thermally activated process will depend upon forming kinks on
the crack line, Fig. 1, whose energy will be the dominant
physical parameter. The shape of a single kink has been studied
in a computer calculation which simulates the iron lattice?,
but we would like to develop a qualitative model of kinks built
on the sort of quasi-continuum considerations which are familiar
for dislocations.

The model we adopt for the calculation is a quasi-
continuum in which the effect of the discrete lattice is taken
over into a continuum description in the form of an oscillating

term in the surface energy of period equal to the lattice



constant.'r? qhig oscillating form gives rise to a washboard
potential representing the atom rows. We shall further simplify
the picture by assuming as in Fig. 1, that the washboard is
sensitive to the atom rows lying in the y-direction, but not in
the x-direction.

Physically, the kink shape will be determined by a
balance struck between minimizing the additional surface energy
of the portion of the crack which lies on top of the substrate
washboard potential and the elastic energy of the kink. We shall
first examine the elastic energy of small fluctuations on an
otherwise straight line, and from this derive an expression for
the line tension of the crack. From this, the energy of the
kink will be estimated and the variable activation energy will
be directly demonstrated which has been suggested on heuristic

grounds. 2

Energy Release of a Curvilinear Crack

We must begin by writing down a prescription for calcu-
lating the total elastic energy change of a curvilinear crack
as it is deformed into a new shape. The result is a simple
generalization of Irwin's energy release formula for two di-
mentions as reviewed, say by Sih and Liebowitz.! We envision
a small element of crack line, and set up a local coordinate
system as shown in Fig. 2. Then the force of the line or energy

release rate is given by
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GIdx = éig 3 dx j%oz (§-B,0) u, (0,B,0) (1)

In the local coordinate system, we can write

X
uz(xl.le) = uz(xlrle) F {IS [_ZTI‘] (l-\))f(t’)
K
o, (x,¥y,2) = 0_(x,r,08) = g(e) (2)
z z (an)g
f(6=0) =1
g{b=m) =1

Substituting (2) into (1), we get the familiar form

—y) 2
G, = (lgv)' K, ? (3)

The assumption made in writing (1) is that no displace-
ment but u, is generated, which is strictly true for the plane
elliptical crack, and for infinitesimal displacement at the
origin of x. Although lacking a rigorous proof for other cracks,
we rely on St. Venants principle to generate a stress field
with the general functional form of a straight crack in the local
vicinity of the crack line (though with a different K). For the
work done in changing the shape of the original line, the

elastic energy change AEel must be integrated cver the entire

line

AEel = -deS (4)

where S is the area generated by the crack line as it moves



from its original configuration to its final configuration,

Fig. 3. 1In using (4), one must of course take account of the
functional form of G, as it depends upon the shape of the total
crack line, and upon its spatial variation within S. G is thus
not a simple point function, but also a functional of the line
shape because the stress intensity factecr depends upon the total
shape of the line, and other external geometric factors. It is

this functional quality of G and K which makes our task difficult.

Application to the Griffith Crack

We now apply (4) to the case of a straight crack line
lying in one of the atomic troughs of Fig. 1, as it is deformed
into a kinked line with the nose of the kinked lying in the
adjacent trough. To calculate the total energy change as the

kink is formed, we must add surface energy to (4).
AEtotal e -deS + 2 IYOdS + jan(l-c052ny/a)d2 (5)

The surface energy in (5) is assumed to be made up of two parts,
a normal Griffith term strictly proportional to the new surface
generated, and a second term which reflects the washboard
potential on which the crack sits. For a straight crack, one
can define! a surface energy as a function of the crack position

which takes the form
S(y) = 2yoy + P(y) (6)

where P(y) is a periodic function in the lattice. We interpret



(6) to mean that for a segment df of a crack lying at position
Yy on the washboard, then an amount P(y)d2 is added to the
energy. (We appreciate that the similtude of this quasi-continuum
model to the true discrete model is qualitative, but believe that
the quasi~-continuum model POssesses enough of the physical truth
to serve as a mental crutch in predicting the actual kink
behavior.)

A zeroth approximation to the kink which has been suggested
by Eshelby® is to use the value for G in (5) appropriate to the

straight crack line. Then Eq. (5) becomes
Etotal = (ZYO_G) !ds + lea(l-cos2ny/z)d2 ' (7)

The boundary conditions for finding the minimum of Etotal in (7)
are that all shapes of line are investigated where the tip of -
the kink is pegged at the bottom of the trough Yo, + a in Fig. 1.
Obviously, in this approximation, the minimum configuration is
that where the kink is an abrupt spike of zero area.

The result is unphysical, because the Eshelby approxi-
mation says that all planar crack shapes which have the same area
also have the same energy. We know that cracks tend to smooth
out small irregularities, and we now investigate a case where

rigorous solutions exist in order to establish the next higher

order approximation to {5) and (7).



Line Tension of Cracks

Exact solutions exist for the three dimensional stress
and displacements of the elliptical planar crack?, and we use
these solutions to estaklish the part of the line energy of a

crack which depends on the line length as well as the cracked

area.

We begin with a circular planar crack (so called penny
shaped crack), and elongate it so that it becomes an ellipse
with major and minor axes a and b respectively. The minor axis,
b will remain the same as the original radius of the circle as
shown in Fig. 4. We then compare the energy change calculated
by Eq. (4) with the energy to expand the original penny shaped
crack to a larger circle whose area is the same as the ellipse.
Since the cracked areas are the same, any difference in energy
must be associated with the length of the line, and can be
converted into an effective line tension of the elliptical
crack line.

In terms of the stress intensity factor for mode I, (4)

becomes

)
B A l_Yv_ szds (8)

Y is Young's modulus, v the Poissons ratio, and K is the mode I

stress intensity factor. K is given by
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Kellipse = TKY 3 (a“sin“6+b‘cos?8)
’ m/2
o (k) = j (1-k2sin?g)¥ag
0

(9)

¢ (k) is the complete elliptic integral, ¢ is the uniform tensile
stress at », We now assume that the ellipticity is small, and

expand K in terms of the small parameter, ¢,
e = 22 (10)

Then
K = 2o/E 1 + £(1-cos?6) (11)
ellipse [0 2
To second order in ¢,

402b3 (1-v2)
Y

- - = - E
AEel = IGdS = e(l + 2) (12)

The first order term in e is precisely the Eshelby approximation,
as one finds by substituting the expression G = 402 (1-v2)b/7Y
into the elastic part of (7) and noting that the increment in
area from the initial circle to the larger ellipse i mb2e to
first order in €.

The radius, r:, of an expanded circle whose area is

equal to the ellipse is given by

r; = 2 (13)
V1i-¢
and from (9), the stress intensity factor of the circle is
= L
Keircle = 20//; (14)



With substitution of (14) in (4), we get for the energy change

of the circle,

2123 (7_.,2
AE =—chs=— 4°bé1" ) e(l+%e) (15)

el
Comparing (15) with (12) we have

_ 3 0%b3e?(1-v?)
AEcircle -2 Y (16)

“Ec1lipse

The strain energy released by the ellipse is smaller than that
of the circle for the same area of crack, showing that some of
the stored energy is retained in the additional line length of
the ellipse.

Writing the excess line length in the ellipse as compared

with the circle of equal area,

3

Te mbe 2 (17)

AR = - & =

Qellipse

We note that botlL the excess energy and excess line length depend

upon the square of ¢, and we can thus define a line tension,

€ -

A

Eellipse-AEcircle _ 80%b?(1-v?) (18)
AL mY

This result must be interpreted before it can be applied
to the kink problem because one does not know in that case what
value to write for b. However, the results, (18), are under-
standable on the basis of another argument which, though more
qualitative, allows one to transfer (18) to the kink problem

directly.



If we have two crack configurations in which one con-
figuration differs only in a local region from the other, Fig. 5,
the far fields of the two configurations will be the same.
However, the measure of the difference in elastic energies of the
two can be estimated by comparing the integrated strain energies

over the regions where they differ. Thus (Fig. 5),

AE = fwldv - fwzdv
S | Ki  onr dr as
2u 2mr ! M 21r 2
R
* 5 K2, AR
= 2 52pp A (19)
T k“"k

In this expression, Rk is the length of the kink, which is aiso
the radius over which the volume integral is taken around the
crack line, Azk is the difference in line length between the
two crack configurations, and R is the “otal linear dimension
of the cracked region. Wwe have used the Kk appropriate to a

penny shaped crack line of radius R. The crack line tension

is then roughly

2 2
£ _AE _ 20 Rzk ) 40 RRk(l+v) —
AR U Y

Equations (20) and (18) are Seen to be essentially the same if
we make the pPhysically reasonable assumption in (18) that the

dimension of the kink is the diameter of the circle in Fig. 4,

-10-



Zk = 2b. Eq. (20) is now an equation which can be applied to

general kink configurations.

Kink Energy

We now wish to estimate the kink energy in the terms of
the last section. we write the elastjc energy to form the kink

from the straight line from Eq. (5) in the form
By iy = =[o as (21)

where the integral is over the surface generated when the kink
is formed from the straight crack. we have already noted that
(21) is a functional of the total shape of the kink line and
the external geometry. We have also remarked how the Eshelby
approximation leads to unphysical results, and that the crack
line shows some of the attributes of a line tension. We are
thus led to postulate an approximation to the complicated form

(21) by

kink
= - r
(AEel)kink Gofds +'e"rdﬁ:,straight crack (22)

Go is the strain energy release function for the straight crack,
and f'is an appropriate line tension.

We find, however, that this approximation is very tenuous.
It can lead to inaccuracies when both area and length change are
of the same order of magnitude in some geometrical parameter.
For example, for the case of the circle which is increased in

radius from r to r(l + €), the correct result does not involve

~11-



a length change contribution in the first order of ¢. However,
when configurations are being compared which have the same area,
line tension-like forces come into play in higher order which
straighten out the crack. 1In our use of (22) we shall be careful
to keep the effects of first order area changes and higher order
length changes separated.

The total crack energy change with a kink is from (5)

now written
AEkink 2 (2yO-GO)6A + €62 + fy1(l—c052ﬂy/a)d2 (23)

Because our estimate already contains a considerable degree of
approximation in the use of a line tension, we shall consider
only saw-toothed kinks because of the simplicity of the calcu-
lations, as shown in Fig. 6. We shall also assume that the

crack is near its Griffith equilibrium depth, yg, where

Go = 2yo + g (24)

and where g represents a small increase in K over the continuum
equilibrium value. In this case, we are once more dealing with
a situation where the line tension is the major term, and we

shall use the line tension value calculated in the last section,

Eq. (20). Equation (23) becomes

AE

-g8A + &82 + faY1(1-cos 2gy-)dz (25)

SA = a? cot?

sin?6/2

§% = 2a =inig

-12~



in terms of the parameters shown in Fig. 6. Also,

- 40’R(1+v) a _ Y,a
z - TY sinb® = sine (26)

where we have related the crack size to the surface energy Y,

by the Griffith relation. Then

- - 2 sin?e/2 2y;a?’
AE ga? cots + 4y a® =7t + FmE (27)

Finding the minimum kink configuration, g%(AE) = 0 gives

) » 2
Yi . sind _ ,sin?6/2 g
Y, cos6 4 sinf i 2yocose (28)

The expressions for AE and %l both contain the external
0
stress in the form g, and thus give the dependence of the
activation energy on the external ~tress, For small angles,
and in the limit g << Y1 We have
L, .
Yy o 87 + I (29)
Y, 4 2y,

2 2
AE ~ 4y a?(1 + %r) - 22

For large angles, of course, the limit becomes

AE v via® - ga? (30

In the limit of small external stresses, the expected
linear behavior on stress jis Oobtained with an effective acti-
vation volume as given by (29). For larger stresses near the

point where the activation energy for kink creation is cancelled

-13-



by the stress activation, the stress dependence is quite compli-
cated. This is of course also just the region where the line
tension approximation breaks down.

The expression for the kink energy then derived does

not vary significantly from the value
AE = y,a? (31)

as the equilibrium shape of the crack varies from smooth to
abrupt.

These results indicate that crack creep should be
observable in the cases where lattice trapping is important,
and qualitatively confirm the earlier Picture that during the
creep regime, the activation energy of the creeping crack de-
Creases as the crack moves through the trapping region giving

rise to an acceleration of the crack as a function of time.

Conclusions

We have shcwn that the concept of line tension as applied
to cracks in solids is not as useful as it has been in the theory
of dislocations. Although cracks do have a distinct tendency to
wipe out regions of high curvature relative to straighter regions,
the effective line tension is not easy to separate from the crack
extension force term which is an area dependent term. Neverthe-
less, we have found an approximate and intuitively handy line
tension expression to use in cases of nearvequilibrium where the

area terms are small. In this case, the crack iine tension force

-14-



is proportional to the extent of the kink region itself in an

intuitively reasonable way.
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Figure 1.

A kink in a crack line on an atomic substrate.
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/
Crock plane /

Figure 2. Ccordinate system used for describing the
expansion of a crack.
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Figure 3.

Initial and final cra
Eq. (4).
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Figure 4.

Expansion of a circular crack into an elliptical

crack whose minor axis equals the radius of the
original circle.
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Original
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Figure 5. Local excursion of a crack with integration
volumes indicated referring to Eqg. (19).
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Figure 6. Schematic sawtooth kink wit

h parameters as used
in text.
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RANDOMNESS AND WAVE PROPAGATION IN
INHOMOGENEOUS MEDIA

J. A. Krumhansl

Abstract

The study of elastic wave propagation in composite media
has led to the development and application of various methods
of analyéis appropriate to periodically inhomogeneous materials.
In general these methods cannot be extended exactly to randomly
inhomogeneous media. Nonetheless, some progress has been made
during recent years in the analysis of electromagnetic waves
in random media, and in solid state physics in the description
of disordered materials. It appears that these methods can be
used for disordered composites; this paper will survey the methods

and indicate a few applications.
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RANDOMNESS AND WAVE PROPAGATION IN
INHOMOGENEOUS MEDIA

J. A, Krumhans]

I. INTRODUCTION

The study of composite materials has provided an oppor-
tunity for participants from many disciplinary backgrounds. The
problem of wave propagation in the elastic limit is a case in

point. The solid state physicist has dealt extensively with

with such problems. This background has been of advantage in

the study of elastic wave propagation. However, one is soon

scalar Schrodinger waves, and finds that the continuum mechan-
ician faces formidable difficulties when attempting to develop
computationally or descriptively Practical methods to deal with

real situations.

Fortunately, in periodically inhomogeneous elastic media

state physics.



Thus encouraged, and with the concurrent activity by
Physicists on disordered (either substitutionally or struc-
turally) materials, it seems timely to consider whether methods
found useful for describing electron and vibrational waves in
disordered media can be applied to elastic wave pPropagation in
disordered composites.

This paper suggests how this approach might be so de-
veloped. It is only a beginning; we hope that it will lead to
future applications. 71t is likely that certain general features
of wave propagation in random alloys - at least for homogeneous
randomness - will also hold true in disordered composites.
References for background are to be found in mechanics,! mathe-
matical physics,? and solid state pPhysics. 3r*

There are two different Physical limits, depending on
whether the effective wave length of the "average wave" one
studies is much larger than the scale (i.e., correlation length)
of inhomogeneities, or vice versa. In the former case a well
defined average wave pPropagates, with damping; in the latter
case, a local ray approximation can be expected to lead to
diffusive scattering.

Two types of disorder may be encountered: The medium may
have periodic ccometric structure but the material parameters
(e.g., fibers) vary randomly from one unit cell to the next.
More generally, also much less tractable, the geometric structure
may not have long range order, and is only readily characteriz-

able by a heirarchy of correlation functions. To the writer's
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knowledge, at least in the literature of solid state physics,
only recently have any partially successful analyses®’® been
carried out on this latter case (frequently called "amorphous
disorder"” to distinguish from "substitutional disorder").
Finally, one must remember that the case of disordered
composites requires an extension of the discussion of weak
fluctuations from a uniform medium; that is, one is already
starting out with significant periodic variation of material
parameters in the ordered composite, and randomness is then
added to the problem. Thus, for substitutionally disordered
composites we substitute Fourier-Floquet methods for Fourier
Plane wave methods. No such simple extension is possible for
amorphous disorder which is the pPrincipal reason for the diffi-
culty already noted. In the present paper, formal considerations
will be confined to substitutionally disordered composites, based
largely on methods used in solid state for substitutionally dis-

ordered alloys.

II. OUTLINE OF GENERAL FORMALISM

The statement of the dynamics of atom motion in solids,
linear elastic waves, electromagnetic waves, and electron waves

can by suitable representation be cast in the form

Y

Lé¢ =T¢ + F

where L and T are linear Ooperators, spatial and temporal respec-

tively, and ¢ is a field; the field may be scalar or vecto:,
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£ and % will be appropriate dyads; and E 18 a generalized applied
force. The description of physical phenomena is obtained from a
knowledge of the fields ¢, and the "spectrum" of the operators.
The operator manipulations will be defined later, in the context
of applications at hand; let it be presumed at this point that
standard operator algebra is legitimate.

The operator % usually has a simple form (e.g., p(x)s%/
3%t?), so we take advantage of the linearity to construct so-

lutions

[+ 2]

d(x,t) = f% f dw eiwt Y(w,t) (1)

- Q0

whence, typically, one obtains the transformed equation
[L + p(x)w?]¥(w,x) = flw,x,t = 0) (2)

where f depends on applied forces and initial conditions.
Formally this problem is solved by the Green's function ,

(operator) [L + p(x)w?]-?! = G, which satisfies
[L + p(x)w?]G = 8 (x-x") (3)

where § is the Dirac function in a continuum, or Kronecker on a

lattice. The solution is obtained by
¥Y(w,x) = GF (4)

followed by application of equation (1),

The practical problem, of course, is to construct the
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Green's function. The eigenfunctions of L, enumerated by

index k, and the spectrum can be found of such a form that
Lu(k,x) = -Akp(x) uk,x) (5)

For a uniform medium u(k,x) = eikx (piane waves). For a
perfectly periodic medium ulk,x) = eikxva(k,x) where Va(k'x)
has the period of the medium, i.e., Floquet solutions, which
fall into bands (i.dex a) through which the eigenvalues vary
continuously with k covering a "Brillouin zone." The Ak,a are

real, and ua(k,x) rmay be orthonormalized:

fdxp(x) u&(k,x)ua.(k',x) = daa.d(k-k')

) f dkp (x) u;(k,x)ua(k,x') = §(x-x') (6)
® B.z.

where aaa' and §(k-k'), 6§(x-x') are Kronecker or Dirac delta-

functions. From this property transform relations are developed

f£(x) = ] fdk Fo (k) u_ (k,x)

F (k) = fdk p(x) us(k,x)f(x) (7)

which have been applied by Lee et al. in the discussion of
transients in periodic composites. The Floquet solutions also
provide a specific basis for representation of the Green's
.operator in x-space:

A

G(x,x';w?) = g [dk ua(k,x)(wZ-Aa'k)'lua(k,x') (8)

-28~



Although é is useful to obtain the displacement fields
from initial conditions and applied forces, it also contains useful
information in itself., That is, considered as a function of w,
& has poles at all of the resonances Az,k' This fact is of use
even in a randomly perturbed system since the average é, denoted
by <é>, by virtue of the linear operation of averaging, still
contains the spectirum. Many of the solid state applicatious of
this method to both periodic and randomly perturbed periodic

systems have been carried out in recent years, aided particularly

by modern computer capability.

III. APPLICATION TO RANDOMLY PERTURBED COMPOSITES

We wish to find & in a system whose parameters vary in a
random manner from the periodic cc.posite. For definiteness one
may envisage in the following development that we have a set of
fibers (or layers) whose elastic parameters or density vary ran-

cdomly about some average value; thus

[£+o(X)w2]

[£o+po(x)w2] + [A£+w2Ap(x)]

[£o+po(x)w2] - D (9)

The operator 6, describing the random deviation from periodicity,
would have the form D = JD; (x) with i indicating the ith fiber
in our illustrative exam;le. If the variations are statistically
independent from fiber to fiber then the distribution of Di(x)
would be given by some single site probability function pi(Di);

if for some processing reason the deviations c¢f fibers were
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correlated, a joint distribution piJ(Di,Dj) would characterize

J
the structure, and so on for higher order correlations. We will
restrict considerations to simple statistical distributions. A

single site average is then computed by

<D;> = ) pr(Di)Di (10)
D,
i

A formal operator algebraic solution for G may be found

in terms of G = [L_+p w?®]™'. From Egs. (3), (7), and G, defined,

it follows that

A AN

G = GO + GODG (11)

This equation has the formal solution

G= —r G (12)

o
(l—GOD) I

with the series expansion

A AN A AN AN

G=G_ + GDG + GDGDG + .... (13)
(o] o O O O O

Equations (12) and (13) arc formally exact solutions, depending
on convergence (which can be established only by going to a
definite representation, such as the Floquet basis).

There are two distinct ingredients remaining in carrying
on the problem from here: First, ways of solving (approximately
in almost all cases) the operator equations; second, the deter-
mination of statistically averaged forms of the Green's function.

Both of these are needed in actual application, and a series of
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increasingly more realistic approximations have been developed
for treating random alloys. The lower order approximations and
averages can be found as follows.

From (11) the lowest order statistical approximation to

<G> = G, + G_ <DG> (14)
is to neglect the statistical non+-independence of D and G
(motivated by noting that many interactions usually occur in G

before coming back to a previous site) and thus decoupling

AN ~ ~

<DG> = <D><G> (15a)

whence

~ "~

<G> = Go + Go <D><G> (15b)

A next higher approximation may be found by collecting some
more terms in the series Equation (13)

G+ G + GO[D+DGOD]G (16a)
with the statistical "decoupling"
<G> = G + Go[<D>+<DGoD>]<G> (16b)
It is intuitively apparent that while the averaging <D> demands
the single fiber probability distributinn, the next quantity
<DGOD> will generally require the two fiber probability distri-
bution (correlation function).

These are the lowest order of a heirarchy of possible
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"avuraging-decoupling" schemes, and correspond closely to the
average wave approximation studied by Karal and Keller.? pe-
pending on the particular problem, approximations exact to much
higher order3’" have been developed to discuss the lattice
vibrations of disordered alloys or electronic pProperties of liquid
metals; however, it is not apparent that these specialized tech-
niques are needed at this Present evolution of the analysis of
composites. Therefore, let us conclude by putting the above in
specific algebraic form. We can generally make one obvious re-
duction; for statistically homogeneous media <D> is independent
of site, say <D> = D,/ s0 one might just as well include D,
directly in the redefined quantities (L, + pow? - D ] = (G)~1,
D » (D-Do). Then <D-Do> = 0, so that Equation (16b) becomes

(with the redefined Go and D)
<G> = Go + Go[o + <(D-D0)GO(D-DO>] <G> (l6c)

Iv. ALGEBRAIC RLDUCTION OF OPERATOR EQUATIONS

We continue the example of a composite whose fibers are
regularly spaced but have randomly varying material parameters.
Algebraically the operators are generally non-diagonal in x,
that is, G = G(x,x'). (However, we have made the assumption
that material operators such as L, p, D are 1local). Similarly,

operator products are generally integral operations, e.q.,
GODG = jdx"Go(x,x“)D(x")G(x",x') (17)

whence the operator calculations generally involve integral
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equations, particularly in X-coordinate space, and the mani-
pulation of the various equations is not easy.
1f, however, we transform from X-space to a, k space by

the recipe that an operator A(x,x') transforms
ffdxdx'po(x) u;(k,x)A(x,x')ua,(k',x')po(x')

= Ay,atik, k! (18)

Then, as in Fourier methods, we can sometimes convert the
integral relations to simple algebraic equations. For example,
from the definition of G,» Equations (7) and (8) it follows by

orthonormality that

o

R (19)

— <! 2_
Goaa';kk' = daa.é(k k') (w*=>

This is the usual result - the Green's function in eigenfunction
representation is "diagonal".

Next consider <D> in g,k representation. This is wiitten
out as (D is diagonal in x)

<D> = Z Pr(Dl,Dz,...)[dxpo(x)u;(k,x)(gDi(x))ua,(k',x)po(x) (18)

{Di}

where the {Di} means the set of all values of the random variables
Dy, Dz, ... and Pr(D,,Dz,...) is the appropriate configuration
probability. 1In this model a particular Di(x) is non-zero only

in the ith cell; then because of the quasi-periodicity of the

of the Floquet solutions Equation (20) may be reduced to a sum

over cell centers xi,
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i(k-k')xi
P>oat,kk' = <g € "i,0a',kk'> (21a)
i(k-k')xi
L H > <ni,cm',kk'> (21b)
where ni,aa',kk' denotes one of the (random magnitude) integrals

appearing in Equation (20). But if the material is homogeneously
random all expectations are the same and the phase sum adds to

21 §(k~k"'), whence

— -l !
<D>aa',kk' = §(k-k )daa',k (22)
where
= / *
d(m.’k Z?gl}pr(D1)fdxpo(x)ua(k,x)D1(x)ua.(k,X)po(x) (23)
Experience in similar problems has shown that "interband" terms

a # o' are usually much smaller than for a = o', so that Eq. (22)

may be approximated
~ -l
<D>aa',kk' - éaa'a(k 5 )daa,k (24)

With this chang=z of Iepresentation Equation (15b), taken in
aa', kk' representation beccmes diagonal, therefore algebraic,
and each diagonal element @ =a', k = k' satisfies the relation

<G>aa,kk = Go,aa,kk + Go,aa,kkdaa,k <G>aa,kk which, finally,

may be manipulated to the form

<G (w2=-1° x-d

>aa,kk = o, (25)

-1
aa,k)

The physical interpretation is as follows: First,
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because of the statistical homogeneity the average wave still
has well defined k, as expressed by the term §(k-k') in <G>;
second, to lowest order average the eigenfrequency of the average
wave is shifted from (}\:;k);5 to (Agk + daa,k)%’ which is a re-
normalization of the dispersion and therefore of group velocity;
third, to this order of averaging daa,k is necessarily a real
quantity so that the average wave is not damped. In the specific
case of long elastic waves, because of the form of D, the effective
elastic modulus does not involve Apw? as w » 0, so depends only
on elastic moduli; similarly the w? dependence leads to an effective
mass depending only on 4p. Also, note that the averages are not
simple volume averages but are weighted by the Floquet amplitudes.
If the same procedure is applied to the next higher order
approximation, Equation (l6c), together with certain material
assumptions (homogeneous randomness, no correlation of randomness
between fibers, "interband" terms small) a next higher order
correction to Ag,k’ denoted by Aé?) is found. With these
assumptions
Aé?i 2{g1}Pr(D1)deDO(D1-<D>)zGo(x;x;wZ)pou;(k,x)ua(k,x) (26)

The rew renormalized dispersion relation is

(w2-A° _-q A(2))-1 (27)

<G>aa,kk = a,k “ao,k o,k

Now, however, a more complete examination of the analytic proper-
ties of the renormalization is necessary, because the presence

of Go(x,x;wz) in the definition of Aézi introduces a collection
’
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of poles. This analytic question is intrinsic to perturbhation
theory in a continuous spectrum, and has been discussed in the
physics litevature.’ Here we quote only the necessary result,

it being nct:2n that to insure time causality in the Fourier
integral inversion on w it will be necessary to introduce a small
imaginary part of w, i.e., w + w + ie; then it may be shown that
Go(xx;w + ie) can be treated as having analytic real and imaginary
parts, being effective weightings of the actual poles in Go' In
particular, the imaginary part is just proportional to the total {

number of states having frequency w. Thus, we now find that

(2) _ .(2) (2
A B -

vk TPk P LY (28)

A
-~
o

This means that although spatially there may still be an average
wave of well defined k, it is no longer a stationary state (with L

real w Rather, that particular mode will damp out in time

a,k)‘

due to y(z), whose physical origin is sim ly scattering into
a,k 9 p

other modes of the same frequency. The damping in this approxi-
mation is proportional to the mean square fluctuation of the
material parameters from the average, and is necessarily non-zero.
Thus in this and all higher approximations the Floquet wave will

be damped.

VI. SUMMARY AND INTERPRETATION

This has been an outline of how formalism used to
analyze random alloys might be applied to the analogous case of

random variations in the material properties of fiber reinforced
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or layered composites. As a methodology it is a perturbation
method, which can make use of Floguet solutions already developed
for an average medium. This procedure has been much more pro-
ductive in solid state physics than attempting to analyze differ-
ential equations with random coefficients, or to make statistical
appreximations to a free energy functional which is then to be
used in a variational statement.

We have not made numerical calculations on a model random
composite as yet, but from experience in the random mass alloy
expect several results:

(1) There will be well defined average Floquet waves characterized
by wave vector k, but in general they will be damped in time.

(2) The low frequency average wave will be damped least since
there are fewer states of the same frequency into which it can
scatter.

(3) The dispersion relations of the periodic composite are
shifted. On closer examination of the perturbation series it is
found that convergence is slowest near the unperturbed band edge,
so the most prominent changes in the dispersion occur at the
band edges - they lose their "sharpness."

(4) The main point to be stressed is that all in all, moderate
homogeneous randomness does not destroy Floquet properties in
the average waves. Indeed, in analogous problems in disordered
alloys a band structure is retained, albeit shifted and "fuzzy"
at former band edges.

(5) However, some possibly needed information is lost by the
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procedure outlined. First, the fluctuations from the average
field and the scattered field have not been discussed much; they
are important in conserving energy, of course. Second, the de-
tailed local variations of displacement, stress, and strain are
not examined explicitly when studying the average Green's
function; to the extent that these may determine peak stresses,
plastic flow, and failure, further information is needed. To
lowest order one might consider the average wave as an initial
condition and look in detail at the stresses within one perturbed
cell; interactions between material variations between cells are:
likely to be much smaller,

(6) Lastly, the formalism above reduces in the case of a ran-
domly perturbed hbmogeneous medium to simple Fourier representation
of the Green's functions and operators. As such, the low order
approximations discussed above are equivalent to those of Karal

and Keller.

ACKNOWLEDGEMENT

This work was Supported by the Advanced Research Projects
Agency, Materials Research Council, University of Michigan

Contract No. DAHC15-71~C~0253.

-38~



REFERENCES
M. J. Beran, Phys. Stat. Sol. (a) 6, 365 (1971); a review
with many previous references.
F. Karal and J. B. Keller, J. Math. Phys. 5, 537 (1964).
D. W. Taylor, Phys. Rev. 156, 1017 (1967).

L. Schwartz and H. Ehrenreich. Annals of Phys. (N.Y.) 64,
100 (1971).

S. Y. Wu and P. L. Taylor, Phys. Rev. B2, 1752 (1970).
K. S. Dy and S. Y. Wu, Phys. Rev. B4, 1173 (1971).
A. A. Maradudin, in Solid State Physics, Ed. Ehrenreich,

Seitz, Turnbull, Suppl. 3, (second edition, Academic Press,
1971), see p. 38B4ff,

-39~



THREEFOQLD COORDINATED MODEL STRUCTURE
OF AMORPHOUS GeS, GeSe and GeTe

A. Bienenstock

Abstract

The black P structure is presented as a model for the
structures of amorphous GeS, GeSe and GeTe. It is shown that
the short interatomic distances, low near neighbor coordinations
and high covalencies of the amorphous materials, relative to the
crystalline, can be rationalized with the model. When scaled to
the near neighbor interatomic distances in the amorphous materials,
the model yields satisfactory agreement with the observed position
and area of the second neighbor X-~ray radial distribution function
peaks. The model predicts: (a) A first neighbor peak area for
GeS which is significantly different from that predicted by the
random covalent model, (b) phase separation in certain composition
regions which, for the Ge-S§ system, should be observable by means
of transmission'electron microscopy and (c) differences between
the valence band densities of states associated with this and the

random covalent model which should be observable with photoemission

experiments.
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THREEFOLD COORDINATED MODEL STRUCTURE
OF AMORPHOUS GeS, GeSe and GeTe

A. Bienenstock

I. Introduction

Considerable attention'!'™" has been directed recently
towards understanding the atomic arrangement§ in the amorphous
compounds GeS, GeSe and GeTe. Both the interest and the diffi-
culty arise from the fact that the short range order in these
amorphous compounds is quite different from that in the corres-
ponding crystals.

Radial distribution studies show that the nearest
neighbor distances in the amorphous materials are 0.2 to 0.33
less, and the coordinaticn numbers are significantly lower than
those in the crystals. The crystals are all commonly described
as distortions of ‘he rock salt structure. As a result of the
distortions, each atom has three neighbors which are separated
by a distance which is slightly less than or equal to the sum
of the ionic radii. Three further nearest neighbors are separ-
ated by distances which are a few tenths of an Z longer. 1In
the amorphous materials, the nearest neighbor interatomic dis-
tances are well described by covalent radii.

The more covalent nature of the amorphous materials is

also shown by X-ray photoemission (ESCA) studies’ of the
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crystalline compounds and some amorphous alloys in the Ge-Te
system, including amorphous GeTe. These studies show that the

core levels of germanium are 1l to 2 ev deeper in the crystalline
compounds than in the amorphous materials. This result has been
interpreted as corroborating the larger ionicity of tne crystalline
materials.

The difference in bonding is also demonstrated in the
fundamental band gaps® of crystalline and amorphcus GeTe. In
the former, the gap is of the order of 0.2 eV while in the amor-
plious compound it is approximately 0.8 eV.

Because of the above mentioned dissimilarities between
the crystal and amorphous phases, structural studies based on
radial distribution techniques have remained ambiguous. Two types
of models have been proposed. In ne first, every germanium is
surrounded by three chalcogens and each chaléogen is surrounded
by three germanium atoms. This coordination is consistent with
the area of the first radial distribution function peak. Another
model which yields consistency with that area is the random co-
valent model!. 1In this model, each germanium is coordinated by
four atoms and each chalcogen with two, in accordance with the
8-N rule. The degree of chemical ordering beyond this structural
ordering is assumed to be zero. That is, the system is assumed
to be a random alloy.

tfhe random covalent model has enjoyed a great deal of

popularity since its inception. It has been shown to predict
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with great accuracy the peak areas of radial distribution functions
for alloys in all three of the germanium-chalcogen systems. It
also provides structural justification for the Mott model which
explains the small impurity effects in many semiccnductors. That
is, the conductivities of many amorphous . emiconductors are ex-
tremely insensitive, relative to those of crystalline semicon-
ductors, to the presence of many impurities. Mott proposed that
these impurities are coordinated such that their covalent bonding
requirements are satisfied. As a result, they do not contribute
donor and acceptor states and do not, therefore, appreciably in-
fluence the conductivity. The random covalent model is then merely
an extension of Mott's Picture to concentrated alloys.

Arother feature of the model which is attractive is that
it provides a structural picture for homogeneous amorphous alloys
over the entire germanium-chalcogen composition range. For reasons
discussed below, one would anticipate phase separation in certain
amorphous alloys if the threefold coordinated model is appropriate
for the compounds. Such phase separation in Ge-Te alloys has been
searched for by a few groups without success.

Attempts to interpret existing data in terms of the three-
fold coordinated model have met some problems. Betts’, for jn-
stance, noted that the As-1like crystalline GeTe structure could
be distorted further from the rock salt structure to obtain a
threefold coordination similar to that in the amorphous material.

Areas of second neighbor radial distribution function peaks cal-
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culated from this model were, however, very much lower than those
measured. In addition, if one views the crystalline materials as
already being threefold coordinated, it was difficult to under-
stand why the nearest neighbor distances in the amorphous materials
are so much shorter than those in the crystalline and the amorphous
materials appear so much more covalent than do the crystalline.
Nevertheless, it should be noted that the first neighbor peak ureas
associated with radial distribution functions of alloys containing
between 33 1/3 and 50 percent germanium are always consistant with
a model in which the alloy is phase separated into a dichalcogenide
with the Si0, atomic arrangement and a threefold coordinated mono-
chalcogenide.

The purpose of this paper is to present a threefold co-
ordinated model which is consistent with the data published thus
far. The paper begins with a detailed study of the crystalline
GeS and GeSe structures. An attempt is made to explain the unusual
atomic arrangements in these crystals. Then, a threefold co-
ordinated model of the amorphous materials, which uses the first
neighbor peak positions and then predicts seccnd neighbor peak
pcsitions and areas is presented. In addition, a rationale for
the shcrter interatomic distances in the amorphous materials is
presented. One consequence of this model is that one would an-
ticipate phase separation of alloys containing between 33 1/3
and 50 atomic percent germanium. A discussion of why this phase
separation cannot be observed in germanium-tellurium alloys, as

well as a suggestion of a better system to study, are presented.
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In addition, it is shown that careful radial distribution studies
of the amorphous germanium sulfide should also serve to distinguish
between the two models. Finally, it is suggested that one would
anticipate quite different valence electron energy structures for
the random covalent and threefold coordinated models. These are
analyzed in some detail. It is shown that studies of valence
electron photoemission should serve to distinguish between the

two models. "

II. The Crystal Structures of Black P, GeS and GeSe

Although the structures of GeS and GeSe are commonly
described as distortions of rocksalt, they are considered here,
with SnS and SnSe, to be distortions of the black P structure, as L
noted by Rawson®. All are built upon tetragonal lattices whose
unit cell dimensions are listed in Table 1. It should be noted
that the b and ¢ axes of all five materials hardly differ, while
the a axis increases steadily with incr:asing average atomic size.
The dimensions of *the isomorphic SnS and SnSe structures are also
shown.

Figure la shows the structure of black phosphorus in
projection along the a axis, as determined by Hultgren et al®.
The x coordinate of each atom is also shown in the figure. The
structure consists of double layers stacked along, and in pairs
of planes which are perpendicular to, the C axis. A single double
layer is represented by the atoms denoted 1-2-3-4-5-¢. In keeping

with the 8-N rule, each atom is thresefold coordinated, with an
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average separation of 2.183. Atom 4, for instance, is coordinated
by atom 3 and by two atoms, with x equal to 0 and 1, denoted by 5.
The single and double lines connecting atoms are used to represent
the single and double coordinations, respectively.

The adjacent double layer is represented by atoms 7-8-9-
10-11-12. The interlayer bonding is rather weak, as is evidenced
by the shortest interlayer interatomic separation of 3.683.

Despite the large interlayer separation, black P is a high
pressure structure. Hultgren et al. address the question of why
this high pressure form does not take on the As structure. They
state, "A good reason is that the black phosphorus structure is
clorer packed than the arsenic structure and so is favored by the
high pressure under which black phosphorus is formed. If phosphorus
assumed the arsenic structure, retaining the bond distances and
angles of black phosphorus and also the closest distance of approach
between atoms in different layers, it would have a density of only
2.44 instead of 2.69." This fact becomes important below when the
large areas of the amorphous chelcogenide second neighbor radial
distribution peaks are considered.

Figure 1b shows the same projection of the GeSe structure,
as determined by Oka:zaki!®., This structure is similar, but not
identical, to the black P structure. The double layers are dis-
torted so that the atoms no longer sit on pairs of planes perpen-
dicular to the C axis. While the threefold coordination of, say,
Ge atom 4 is still evident, the distortion tends to reduce the

intralayer bond angles so that the two Se atoms denoted by 1 are
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significantly closer to, and the two Ge atoms denoted by 2 are
significantly further from, Ge atom 4 than they would be if the
simpler black P structure were maintained. This distortion of
the layers also has the effect of moving Se atom 12 closer to Ge
atom 4 than it would be in the black P structure. As a result,
there are three short near-neighbor separations of approximately
2.573 and three long near-neighbor separations of approximately
3.333. The corresponding separations for the other crystals with
this structure are summarizeg in Table 1. The net effect is to
distort the black P structure into one which is closer to rocksalt.
Nevertheless, the basic threefold coordination associated with an
average of five electrons per atom is apparent from the ratio of
short to long near-neighhor separations. Evidence in support of
the position that the structure should be viewed as closer to that
of black P than NaCl is contained in the fact that the two "second
neighbor" Ge atoms represented by ¢ are closer to Ge atom 4 than
is "firsc neighbor" Se atom 12.

On the other hand, there is considerable evidence that
the bonding has an appreciable ionic component. The short near-~
neighbor distances are very close to the sum of the ionic radii,
as shown in Table 1, and are 0.2-0.33 longer than the sum of the
covalent radii. The ESCA study® mentioned above also indicates
a higher ionicity than that found in the amorphous materials.
One can see the origin of this ionicity by startin< GeSe in the

black P structure and allowing it to distort. We Present this
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exercise because of the potential insight it yields for under-
standing amorphous structures.

Tc construct GeSe with a black p structure, an average
of five elactrens per atom must be obtained. This means the
creation of Ge~ and set. as a result, the p’® bonding is appro-
priate and the black p structure can be obtained. Because,
however, of the stronger attractive potential of the Se, the
center of gravity of the bonding electron cloud is Closer to the
Se than the Ge, so that the Se is effectively negatively ionized,
as would be expected from simple chemical arguments and is demon-
strated by the Esca studies. This situation is, of course, quite
analogous to that of III-v compounds with the zinc blende structure.

With the effective ionization, howevér, the Madelung con-
tribution to the cohesive €nergy is increased if the number of
oppositely charged near neighbors increases, and the distance to
similarly charged near neighbors is increased. Hence, the dis-
tortion is obtained. With this distortion, however, we can expect
a further movement of the valence electrons towards the chalcogens
and away from the Ge atoms to obtain a further increase of the
Madelung contribution to the cohesive energy, and correspondingly
a decrease in the distance between atoms 1 and 4. The distance
between atoms 4 ang 5, on the other hand, increases to something
closer to the sum of the ionic radii.

In support of this picture, it should be noted that the
a lattice parameter of GeS and GeSe is almost exactly the appro-

priate ionic chalcogen diameter, which would be expected from the
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ionic picture of the structure, since this axial length is de-
termined by anion-anion contact. 1In the Sn salts, however, a

is larger.

III. Model Structure for the Amorphous Materials

As indicated above, the radial distribution functions
of the amorphous materials differ significantly from those an-
ticipated from a microcrystalline model. The features which
must be explained can be summarized as follows:

a) The nearest neighbor distances are 0.2-0.33 shorter than
those in the crystal and are well described by covalent radii.
b) If it is assumed that every Ge is surrounded by chalcogen
only, and every chalcogen by Ge atoms only, the coordination
number is 3.

c) The crystalline long near-neighbor separaticn is always
close to a minimum in the amorphous rdf. That is, a very few
atoms in the amorphous materials are separated by that distance.
Instead, the second maximum in the rdf occurs for separations
which are about lg larger.

d) The area of the second rdf peak is large, indicating high
"second neighbor" coordination.

To explain these features with a model which is based on
the crystalline structure and threefold coordination, we assume
that the basic double layer structure is maintained in the
aitorphous materials. Given this assumption, it is then necessary

to explain why the same basic coordination leads to ionic bond
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distances in the crystalline materials and covalent in the
amorphous.

We have noted, in Section II, that the coordination must
be fairly high to support ionic bonding. That is, if the co-
ordination number were only 3, we would anticipate a primarily
covalent p? bonding scheme. The further ionicity arises because
atoms like number 1 of Fig. 1b are long near neighbors of atoms
like number 4. 1In terms of the basic layer-like covalent bonding
scheme, however, atom number 1 is a third neighbor of atom number
4. Even if we did not have the radial distributions of these
amorphous compounds, experience with vitreous S$i0, and Ge would
tend to indicate that it would be extremely difficult to maintain
such a correlation of third neighbor distances in *the amorphous
materials. The absence of the long near neighbor pedk in the rdf's
of the germanium monochalcogenides indicates that this third
neighbor correlation is not maintained. As a result, the near
neighbor covalent bonding predominates the bond distances are
short with respect to the crystal. Hence, the basic double layer
structure is capable of dealing with points (a), (b) and (c) of
the first paragraph of this section.

This leaves the rdf second neighbor peak positions and
areas to be explained. 1In a system of this complexity, where
the crystal cannot give reliable guidance, there is considerable
arbitrariness about any detailed model. It seems appropriate

to this author, therefore, to take the simplest possible model
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and determine the extent to which it is consistent with obser-
vations. It is reasonable, therefore, to determine whether the
double layer arrangement of black P can account for most of the
atomic correlations in the second neighbor peak.

To determine if the basic double layer structure of black
P can account for the second neighbor rdf peaks of the compounds,
we have assumed that the bond angles in the latter are identical
to those in black P, so that all intralayer distances scale like
the nearest neighbor distance.

Table 2, therefore, presents a list of all interatomic
distances in black P of less than 72, in its first column. Each
of these distances has been multiplied by a constant for each
compound to obtain the corresponding distances in the model of
the compound. That constant is fixed to yield the correct average
nearest neighbor distance presented by the rdf's. The distances
so obtained are presented in the second through fourth columns.
The fifth column indicates through the signs, = and #, whether
the associated pairs of atoms in the compounds are of the same or
different atomic species, respectively. The sixth column presents
the number of atomic pairs, for a single fixed central atom, at
the associated distance. Finally, the seventh through ninth
columns present the contribution of that pair to an X-ray dif-
fraction rdf peak area.

The intralayer distances in black P fall into relatively

distinct groups which are, therefore, also characteristic of the

model compounds. Three neighbors form the first rdf peak at 2.19A.
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Then, there are sets of closely spaced distances from 3.31 to
4.383, consisting of 13 pairs. The remaining pairs are relatively
evenly spaced, starting at 5.16% and extending to 6.62%. All
other pairs have separations over 7%. The corresponding scaled
results for GeTe may be compared directly with the rdf of Betts

et al.', which shows a peak at 2.6A with an area of 5100:500
electrons?. The distance has, of course, been scaled to be equal,
and the calculated area of 4992 is in good agreement with experi-
ment. The rdf also shows a second peak which extends from approxi-
mately 3.3 to 5.53, has a maximum at 4.2% and an area of 27,500
1500 electrons?. The calculated areas from the pairs which ex-
tend from 3.93 to 5.20% is 23,232 electrons?. At first inspection,
this agreement appears too poor to allow further consideration of
the model. It should be noted, however, that this range is pre-
cisely that in which one would anticipate interlayer contributions
from the next double layer on the side of the central atom. The
area which would have to be accounted for from such interlayer
contributions is 4268+1500 electrons?, which could be contributed
by less than three such neighbors in the range. Since this is a
quite reasonable number, the area agreement is not bad. The dis-
tribution of distances is a bit more troubling. The rdf shows a
smooth maximum at 4.22, while the calculation predicts one peak,
with 8 pairs involved, centered at approximately 4.03% and another,
with five pairs involved, centered at approximately 4.96%. There

is no trace of a resolution of the two peaks in the rdf. This
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shows clearly the inadequacy of such a simple model. While it

I
I

is giving reasonable agreement for the total area, it does correctly{‘

predict the details of the interatomic distances. This is, of
course, to be expected, since the model has completely neglected
the distortions of the layer structure which are likely to take

pPlace because there is a partial ionicity necessarily present and

because the layers are part of a. amorphous structure. In addition,

the model gives no detailed information about the interlayer con-
tributions.

Nevertheless, the work presented thus far does place the
threefold coordinated model on at least an equal footing with the
random covalent model. Hence, one must search out methods of dis-

tinguishing the two models. Some suggestions are presented below.

Iv. Radial Distribution Studies

It has been shown by Betts et al.!! that it would be
virtually impossible to distinguish between the random covalent
and threefold coord.inated models for amorphous GeTe on the basis
of the near neighbor X-ray diffraction rdf peak area because of
the extremely high accuracy required. This statement is also
true for amorphous GeSe. These authors note, however, that a
neutron diffraction rdf on GeTe could succeed. Unfortunately,
it would be quite difficult to produce enough sample for the ex-
seriment. It should be noted, however, that the situation is
somewhat different for amorphous GeS. Here, the random covalent

and threefold coordinated models predict X-ray rdf areas of 1920
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and 1536 electrons?, respectively. These should be distinguishable.
Unfortunately, so such rdf has yet been published.

The closest thing to it is an X-ray rdf" on a sample of
composition Ge.428.58, for which the peak area is 1647 electrons?,
A phase separated model, in which the two phases are assumed to be
the threefold coordinated GeS and a GeS: phase with the vitreous
S$i0, structure, predicts an area of 1456 electrons?. Hence, that
work would tend to indicate that the random covalent model is more
appropriate. It shopLd»be noted, however, that the negation of
the threefold modei depends on an assumption about the nature of
the phase_separated species. It would be more desirable to have

an rdf of the pure compound.
b

V. Phase Separation

The random covalent and threefold coordinated models appear
quite digferent in their predictions with respect to phase separa-
tion. The random covalent model is able to accommodate all coi -
positions with ease. The threefold coordinated model, though,
depends on having an average of five valence electrons per atom.
Hence, one would anticipate small solubilities of either Ge or the
chalcogens in the amorphous compounds, and phase separation for
appreciable deviations from stoichiometry.

Verhelle and Bienenstock!? have searched unsuccessfully
for such phase separuated in amorphous films of the composition

Ge These studies involved transmission electron

.467C . 54"
microscopy studies of sputtered films in both the unannealed and
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annealed states. As 3 result of more recent studies'!’® of the
densities of such films, however, it can be shown that the
electron densities of amorphous GeTe and GeTe, differ by less
than 1.3%. as a result, little contrast would be expected in
transmission, even if such separation were present. A similar
situation is anticipated for the Ge-Se system. For the Ge-s
System, however, the situation is quite different. The densities
of amorphous GeS ang GeS, are'® 1,624 ang 1.26 gm/cc, respectively,
These mass densities imply electron densities which differ by 253
of their average. Hence, the Contrast associated with phase
Separation should be quite apparent. Unfortunately, no such
studies have been performed, to my knowledge.

It should also be pointed out, however, that replica
Studies of etched, annealed samples of Ge-Se glasses in the
40 at. % Ge range have been performed by Mortyn ang Bienenstock!",
as well as Feltz et al,!s In both cases, no separation was ob-
served. The failure to observe separation with replicas must,
however, be considered inconclusive,

In summary, then, it must be concluded that Phase separ-

the most sensitive. Further work should be performed on the Ge-s

System using transmission electron microscopy.

VI. Electronic Structure ang Photoemissjion

One technique which might distinguish between the two
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types of coordination is Phctecemission. Let us consider the
differences one would anticipate in the general form of the
valence band structure for the random covalent and threefold co-
ordinated models.

In the random covalent model, the Ge is fuurfold co-
ordinated, so that sp? bonding is appropriate for it. One con-
sequence of such bonding is that the atomic gap between the outer
S and p states essentially disappears. Kastner'®, in his analysis
of bonding states in chalcogenide glasses, indicates that Ge-Ge
and Te-Te londing states are at virtually the same energy with
respect to the vacuum level. One may anticipate that Ge-Te bonding
states also lie in this energy regime. Hence, it seems reasonable
to assume that all the bonding states will contribute one broad
macimum to the density of states, forming the lower energy end of
the valence band. The upper end of the valence band would be
formed by the lone pair Te states. Finally, the Te s states would
lie below the valence band, separated by an energy gap.

In amorphous threefold coordinated GeTe, however, the
situation is quite different. There are no lone pair Te states.
Similarly, there is no sp® hybridization of the Ge valence electrons.
Hence, one would anticipate a broad valence band representing the
chemical p?3 bonding. Then, isolated and below that would be a
Ge s band. Then, well below that, there would be an isolated Te

s band.

Such differences in the general forms of the densities of
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states could be observed by means of X-ray or, possibly ultra-

violet photoemission.

VII. Conclusions

The rationalization of the short nearest neighbor dis-
tances, low coordination and low ionicity in amorphous GeSe,
GeSe and GeTe, relative to the crystals, on the basis of a three-
fold coordinated model places that model on an equal footing with
the random covalent model. If the threefold coordinated model is
valid, then virtually no evidence thatlpighly concentrated, dis-
ordered, amorphous chalcogenide alloys éxist. Their absence is
not surprising, since they demand near neighbors which show appre-
ciable electronegativity differences. Hence, there would be an
appreciable number of similarly charged nearest neighbors.

Even this argument, though, must be accepted with caution.
The transmission electron microscopy work of Chauchari and Herd!’
indicates that there is no phase separation in amorphous Ge

1;7e

If this is the case, one would anticipate that there are appre-
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ciable numbers of Te-Te pPairs in wiich each Te is also bonded to
a Ge and is, therefore, slightly Legatively charged. Hence, one
cannot rule out homogeneity on the basis of this positive Coulomb
energy. On the other hand, at these low Ge concentrations it
would, presumably, be more than cancelled by the negative Coulomb
energy associated with the Ge-Te pairs.

At any rate, the lack of conclusive evidence for the

existence of homogeneous disordered alloys indicates that phase
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separation or segregation, with complex bonding schemes, rather
than the simple 8-N bonding, may be much more prevalent in the
polyatomic ckalcogenide amorphous materials than has been assumed

in most theoretical discussions of their physical properties.
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TABLE 1. Crystalline Lattice Parameters and
Interatomic Separations

a b c r; r,;' r,
P 3.31 4.38 10.50 2.18
GeS 3.64 4.29 10.42 2.58 2.57 2.97
GeSe 3.82 4.38 10.79 2.57 2.64 3.33
Sns 3.98 4.33 11.18 2.66 2.77 3.31
SnSe 4.19 4.46 11.57 2.80 2.84 3.39
GeTe* 2.84 2.84 3.16

*GeTe has a rhombohedral, rather than tetragonal, lattice.
r, is the average short near neighl.or separation.
r;' is the sum of the divalent radii.

r, is the average long neighbor separation.
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TABLE 2.
Ip TGas
2.18  2.34
2.20  2.36
3.31  3.55
3.41  3.66
3.43  3.68
3.97  4.26
4.15 4.45
4.38  4.70
5.16 5.54
5.30  5.69
5.49 5,89
5.56 5.97
5.78  6.20
5.80 6.22
5.81 6.23
6.01 6.45
6.46 6.93
6.62 7.10

Coordination Distances and Numbers in the

Model Threefold Coordinated Structure

LGese
2.40
2.41
3.63
3.74
3.76
4.35
4.55
4.80
5.65
5.81
6.02
6.09
6.33
6.36
6.37
6.59
7.08

7..9

rGeTe

2.59
2.61
3.93
4.05
4.07
4.71
4.93
5.20
6.13
6.29
6.52
6.60
6.86
6.88
6.90
7.14
7.67
7.86

I S 8

RS

U S N U O O T

A 8

Nol

2
1
2
2
4
2
1
2
2
2
4
1
2
2
2
2
2
2

GeS

1024

512
1280
1024
2560
1024

512
1280
1024
1024
2560

512
1024
1280
1280
1024
1024
1280

GeSe

2176
1088
2180
2176
4306
2176
1088
2180
2176
2176
4306
1088
2176
2180
2180
2176
2176
2180

GeTe

3328
1664
3728
3328
7456
3328
1664
3728
3328
3328
7456
1664
3328
3728
3728
3328
3328
3728

In Column 5, the symbols - and # ar- used to indicate that the

atoms are of similar or dissimilar species, respectively.

Column 6 lists the coordination numbers associated with each

distance.
area of an X-ray diffraction radial distribution associated

with each interatomic separation.
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Figure 1.

(a)

Projections along the c-axis of the (a) black P and
(b) GeSe structures. Solid lines denote nearest
neighbors. Dashed lines denote the further neighbors
of the GeSe structure. Double lines indicate two
near neighbors on layers c¢/2 above and c/2 below the
atoms to which they are attached. The numbers 0 and
1/2 denote the coordinates along the c-axis of each
atom.
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PLASTIC RELAXATION VIA TWIST
DISCLINATION MOTION IN POLYMERS

J. J. Gilman

Abstract

Measurements of the internal friction in polymers ex-
hibit a spectrum of peaks at low temperatures that are related
to the plastic behavior at higher temperatures. This manuscript
deals with a particular supramolecular defect that behaves in a
manner consistent with the observ-’jions. The defect is a twist
disclination consisting of two molecules that cross over one
another.

The energies of formation and motion for the twist disg-
clination are calculated in terms of the width of the twisted
region, the displacement that is produced by the twist, the
molecular radius, and the elastic stiffnesses of the molecules.
The total energy is minimized to find the optimum width and the
formation energy.

For motion to occur dilatations caused by contour modu-
lations of the molecules must be overcome. This effect yields
expressions for the motion activation encrgy, and the stress for

non-activated motiorn.

Preceding page biank



It is shown that molecular bending occurs more readily
by elastic deformation than by conformation-change deformation
unless the radius of curvature is less than a critical value

(of the order of atomic dimensions).
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PLASTIC RELAXATION vIA TWIST
DISCLINATION MOTION IN POLYMERS

J. J. Gilman

I. INTRODUCTION

internal friction peaks at low temperatures (below about 50°g) . !
The temperatures at which these pPeaks occur indicate that the
Processes causing them have low activation energies. The dig-
Crete forms of the Peaks indicate g5 relatively small range or
relaxation times for these processes., Therefore, specific geo-
metric entities must be associated itp the relaxations rather
than regions of general disarray.

A specific mechanic. 1 relaxation process is discussed in
this Manuscript whose Properties are consistent with the require-
ments. This is the twist disclination that was Previously de-
scribed in the elastic approximation by Gilman ang Li*. 1In this

Paper its properties will be considered from a molecular viewpoint.

As indicated by the end view, the molecules lie on g3 plane that

is inclined at 45° to the plane of the paper. The action of a

-67-



Figure 1.

Partial shearing of one molecular chain relative
to another. This has created two twist dis-
clinations of opposite signs.
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as sketched in the drawing. This has created a pair of kinks of

opposite signs in the molecule. Motion of these kinks along the

length of the molecular pair is accompanied by plastic shearing.

Oscillations of the kinks up and down the two molecules can canse
cyclic relaxation of an applied cyclic stress.

Figure 2A shows a single kink configuration. A displace-
ment downward of the right~hand half of the configuration yields
the more symmetric disposition of Figure 2B. This can be described
in terms of a twist disclination loop that lies in the vertical
mid-plane of the twist. Motion of the disclination loop parallel
to the molecular pair axis causes plastic shearing to occur.

A purpose of this paper is to give expressions for the
energy of formation and the activation energy for the motion of
the disclination loop. The starting point is to assume an analytic
shape for the kinks and then adjust its parameters to minimize the
energy. The ac:ivation energy for motion is obtained by considering
the energy fluctuations that will result from the "bumpiness" of
the contours of the molecules.

The analytic shape that is assumed is shown in Figure 3A

and written:

)

£1x

y(x) = % tan~?! (

where d is the displacement and w is the width of the transition

region where most of the displacement occurs. The slope as shown

in Figure 3B is:
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(A)

(B)

(C) dx?

Figure 3. Analytic descriptio:: of bend molecules in twist dis-

clinations: (A) displacement function and definition

of width; (B) slope which describes angle between
molecules; (C) curvature function.
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Sw, 1
y'(x) = jr(zfxwy)

and the curvature as in Figure 3C is:

Even when w = § this curvature is only 1/2mw and therefore rela-

' (x) = 28w X
) A= (x2+x2) 2

tively small.

The energy of a kink can be resolved into various terms

which are at least partially independent of each c¢ther and can

be approximately calculated. The terms that will be considered

here are:

al

II.

fl

elastic strain energy of bending (or the bending associated
with molecular conformation changes) .

strain energy induced by the length increase that occurs in
the transition region.

orientation energy associated with the effects of changing
the relative orientations of the two molecules

1. molecular interaction changes

2. dilatation changes

energy that depends on the position of the disclination
relative to the monomer units of the molecules

1. dilatations

2. chemical interactions

STRAIN ENERGIES

First, consider the elastic strain energy of flexture,

if the bending moment is M, the Young's moduius is E, and
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the section modulus is 1 = Tr*/4 for a round rod, then:

+ o0
_ M2
Uf = f ET dx
- OO

and since the radius of curvature, R is given by:

(2] [e0] [0 ]
- _ EI _ 46%wElI x%dx
o2 [ - | B e o (g
o) 0 o]

but the integral equals n/32w’, so after substituting for I the

energy is:

Next, consider the strain energy caused by the chauge of
length that is needed to kink an initially Straight molecule.
The longitudinal strain €, in an element of length is: g% - 1);

but d1? = dx? + ay? go:
e = 1 +l}g¥)i]% -1
The strain energy density is:
1/2 Ee?
SO the strain energy in an element of length dl is:

1/2 Ee? (mr2dl)
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and the total strain energy in kinked molecule is:

o+
v X X
U, = "Ezlz f {[:1 + (gl)g)j - 1}2[1 + (%)j dx

For W >> §, (dy/dx) is always small so the term in curly brackets

is approximately, 1/2 (dy/dx)? and the term in square brackets is

approximately, 1 + 1/2 (dy/dx) 2. Therefore:
+

2 2
U, = "E4r2 f (gﬁ) [1 + 1/2 (g%) ]dx

- Q0

neglecting the quartic term this is:

400
. E(réw)? f dx . 3E(rs)?

Us 27 (x2+w2)Z ~ 8w
-0
In order to evaluate the relative importances of these two strain
eénergy terms, their ratio is formed:
Ug

.[.J_..
S

1 (r?)
12 (w?)

Since w must exceed r both from the physical viewpoint and from
the approximations of the analysis, it is concluded that the

flexural eénergy can be neglected relative to the stretch energy.

III. ELASTIC VS. CONFORMATION&L BENDING

If relative rotations €an occur between segments of mole-
cules about axes that do not lie parallel to the axes of both
adjacent segments then a Ssequence of discrete rotations can result
in a bent overall shape of the molecule.

The point at which a rotation occurs will be called a

~74-~
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node, and N is taken to be the number of nodes per unit length.
Let the projection (onto the plane of bending) of the misorien-
tation angle between two adjacent segments be ¢. Then the radius

of curvature will be:
R = ¢/N

Now, if the excess energy per rotational node is u, then the

energy per unit length of conformational bending is:

= k¢
Ucb - R

On the other hand the energy per unit length for an

elastic bend is:

B _ wEr*

U EI
eb ~ RZ =~ ZR2

The two energies are equal for a particular radius of

curvature:

=

Rt = El

|

=
-

so for R > R* the elastic energy is smaller than the conformational
energy. An illustration of the magnitude of R* may be obtained

by choosing a reasonable set of parameters:
E = 10'! d/cm?

= 10"% cm

It
1

H = 2 kcal/mol = 0.13 x 107!2? ergs

» = /6
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yielding: R* = 1.2 x 107° em
Thus the elastic bending energy may be used to describe the

behavior down to very small radii o curvature.

Iv. ORIENTATION ENERGY

The low energy state of a pair of molecules obtains when
they are in contact with their axes parallel. The maximum mis-
orientation and hence the maximum interaction energy obtains at

the plane of the disclination loop in Figure 2B. Here the mis-

orientation angle is:

dy = 28
2(dx)x=0 wT

If Y i5 taken to be the maximum misorientation energy (per unit

length) associated with the maximum misorientation angle, then:
(.Efi__)

m 'x2+w?2

vix) =y

Misorientation energy may be considered to consist of two
principal terms. ©ne is the change in the chemical interaction
energy between the mnlecules that results from misorientating
them. The other is the strain energy associated with the local
dilatation that occurs as a result of one molecule crossing the

other. For the configuration of Figure 2B the maximum dilatational
strain at x = 0 is:

€,, = (VY2 - 1) = 0.41

vy ( )

The total misorientation energy may be obtained by inte-

~-76-

v




grating along the length of the configuration:

- 00

UO = I Y(x) dx
<+
2
= ou wedx _
2¥n f Ty = Wiy
(0]
V. ENERGY OF FORMATION

Assuming that the twist disclination interacts only weakly
with the surrounding medium, except for whatever dilatation it
causes, its energy of formation can be found by minimizing the sum
of the strain and the orientation energies.

The total energy may be written:

= = &
Uy = 2Ug + U =T + Bw

with: A = %?(ré)z; B = my . Differentiating and setting the
derivative equal to zero yields an expression for the width, W*
at which the energy of formation is a minimum:

W* = (A/B)% _ %g(%%_}%

m

To estimate the magnitude of this, wm can be taken as =~Er?/127
to that W* = 3§. This indicates that atomically sharp twist dis-
clinations can indeed be expected to exist.

The energy of formation, Uf is found by substituting w*

into the expression for the total energy:

U = 2(aB) % = 3r<5(1=:\um)’s

-77~



which is approximately, Er?//3 or about 0.05 e.v. ~ 1 kcal/mol.
Therefore these defects can be formed readily at moderate tempera-
tures.,

If the disclination interacts with the matrix strongly,
then the elastic energy of the disclination loop must be added

to Ug + UO to get the total energy. This will tend to increase

Uf as the temperature is decreased.

VI. MOBILITY

Polymer molecules are not ?mooth in shape but are "bumpy*".
Therefore the volume of a twist disclination will depend on the
position of its center. If a coordinate, z defines this position

then its volume change may be expressed:

_ . 2MZ
AV = £ sin SE

where a and ¢ are the period and amplitude of the volume change,
respectively.

The strain energy, Ug' associated with a volume change
depends on the size of the volume, V0 and the shear modulus of

the medium in which it occurs:

2
u, = SV _ g

2 .2 272
£ 21rVO 2nVo) £% sin® ( a )

The difference between the minimum and maximum values of this

energy gives the activation energy, U; for the motion of the

disclination:
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GEg?
* = Jo
Un 2V

In the absence of thermal or stress activation a twist
discliration can be moved by an applied shear stress that equals

Oor exceeds the quasi-static Stress that resists its motion. This

du 2
= & - 2Gg2 , 21z 272
fE T dz av [%1n (—3_) cos (—3_]

and its maximum valuye Occurs when the term in brackets equals
one-half:
m G§
f ~
g

T av
0

The airea associated with this force is approximately 6w, so the

maximum reactive stress is:

M . _GE?

£ = aw3Vo

Or since awd§ = Vo:
n g, 2

o > G (==

VII. DISCUSSION

In Section V it wag pointed out that the energy of
formation of a twist disclination loop is small ang comparable
with the thermal energy at 40°K so no strong barrier to their
formation exists and applied stresses will aid their formation.

Therefore, it is believed that the activation energy associated
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with the observed internal friction peaks should be associated
with the motion of a loop.

From Section VI, the volume change associated with
motion is:

2mU

_ m
£ = Ge

Using the experimentally observed value for the activation energy:
U, = 4 kcal/mol = 1.7 x 107!3 ergs together with G = 10*2 d/cm?
for a typical molecule; and letting the strain be 0.23 (the amount
associated with a sphere moving from a close-packed position to a
saddle point) - the volume change is about 3.6A° or one-fourth the
volume of a polyethylene meonomer unit. This is a qguite reasonable
value and therefore tends %o support the present theory.

The model described here is consistent with the character-
istics of this relaxation phenomenon as summarized by Hiltner and
Baer"'. They state that for three linear polymers (polyethylene,
polyethylene terephthalate, and polyoxymethylene) the relaxation
peak is small or absent in specimens quenched from the melt, but
is enhanced by prior deformation or annealing. Its activation
energy is less than 4 kcal/mole; the temperature of its maximum
point is independent of pretreatment; and its width is nearly
consistent with a single relaxation time.

Hiltner and Baer" have proposed a qualitative model based
on kinks along dislocation lines, but they have not given the

quantitative features such as the activation energy. Their model
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is related to the present one in as much as the dislocation lines
that they discuss could be constructed by combining twist dis-
clinations into sets, or by activating the appropriate glide
processes. However, because of interactions between the indiv: dual
disclinations such collections of twist disclinations would be un-
likely to yield relaxation peaks that would be as sharply defined

as the observed ones.
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STATISTICAL MECHANICS OF POLYMER NETWORKS

H. Reiss

Abstract

The conventional theory of rubber elasticity is reviewed
critically and discussed in terms of a simple gaussian network.
An approximate theory, based on a variation princinle, is then
introduced and compared with the conventional theory. It is
shown that this theory leads to the standard results of rubber
elasticity when the restrictive assumptions, inherent in the
conventional theory, are imposed on it. However, the new theory
can be more simply extended to nongaussian networks, and several
methods for achieving this extension are derived and discussed.
In future work, specific applications of the new method to non-

gaussian networks will be attempted.
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STATISTICAL MECHANICS OF POLYMER NETWORKS

H. Reiss

Introduction

The statistical thermodynamics of polymer networks has

been studied for many years, beginning with the theory of rubber

elasticity. This theory has been advanced in several variant,

although similar, forms by Kuhn,' James and Guth,?=° and Wall.®

Many authors have contributed in the interim. These theories

have been largely restricted to networks containing "chains"

whose end-to-end distances are gaussian distributed. Although

the James and Guth approach has the beginnings of greater

generality, all of the methods are usually subjected to certain

restrictive assumptions. These are:

(1)

(2)

(3)

The nonconsideration of intra- (except for short range
connectivity) and interchain potential energy effects.
The assumption of an equilibrium distribution of chain
end-to-end distances in the undeformed state of the
rubber. This implies that the network is formed by
putting together independent chaiis whose configurations
are initially equilibrium-distributed.

The assumption of affine deformation. This implies that
the vectors connecting the junction points of the network

deform in the same way as the vectors defining the local
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continuum strain field.

(4) The arbitrary imposition-of some macroscopic constraint
such as maintenance, by the rubber, of constant volume
during deformation.

As a result of these assumptions, rubber elasticity is
reduced in its essentials to the theory of the deformation of a
single polymer chain; the properties of the network appearing
only through a facter which accounts for the plurality of chains,
and because of the assumption of constant volume. For homogeneous

tensile strain, the stress proves to be related to strain by
) _ 1
T = ; (CX -uﬂz') . (l)
Here o is the relative tensile extension
a = L/L0 5 (2)

where L0 is the undeformed length of the rubber, and L the length
under deformation. Ve represents the number of (effective) chains
per cubic centimeter, Vo is the volume of the sample, while k is
Boltzmann's constant and T the temperature.

More recent technology has found use for polymer networks
which are definitely nonrubber-like. These extend all the way
from polymeric glasses, through composites, to biological media
such as fibrin clots. The individual network chains are non-
gaussian, involve the effects of potential energy in an important
way, and are usually affected by interchain effects. Obviously,

it would he desirable to be able to treat such networks on a
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molecular basis. On the other hand, the difficulties already
encountered with the simple case of the gaussian network indi-
cates that, for this purpose, a rigorous theory would be out of
the question.

S. F. Edwards and K. F. Freed, in a series of joint and
individual papers,’ have introduced a fresh viewpoint by adopting
a "self-consistent field" (SCF) approach coupled with abundant
use of field theoretic techniques. They seem to be able to
generate all the o0ld results and promise to generate new ones in
which many of the above-mentioned restrictive assumptions are
unnecessary. Nevertheless, application of their elegant method
to a real system is bound to be ponderous. For that reason, it
is worthwhile investigating cruder techniques (in which the
approximations are still more well defined than in the usual
theory of rubber elasticity) which allow an easy treatment of
important nongaussian networks. Such techniques are investigated
below.

Before proceeding to this development, it should be
mentioned that Sternstein® has developed a quasi-macroscopic
treatment of network structures in which the mechanical properties

of the individual network elements (chains - in the case of

molecular elements). Sternstein's treatment may meet the molecular

treatment at some intermediate point, and the union of both methods

may prove valuable. However, we make no attempt in this direction

in the present study.

-86—

|
I
i
|
!
I
I
|
i
{
{
{
{
l
!
l
|



II. Exact Analysis of a Gaussian Network

It is convenient to deal first with a "small" gaussian
network whose thermodynamic properties can be evaludted exactly.
Not only will the results clarify the difficulties associated
with a full theory of networks, but we shall compare them with
those obtained from an approximate theory which may be more
easily extended to more complex systems. Because we will want
to diagram some results in a plane, it is convenient, at first,
to limit consideration to a two~dimensional system. No increase
in difficulty occurs on passing to a three-dimensional network.

if ;i locates one end of a chain in our network while
;j locates the other, we shall assume that the probability of an
end-to-end distance ;j - ;i’ such ;i is fixed and ;j lies in dfj

is given by

ar. ~|Z.-%, | 2/na?
Poo(|r,-T. ar, = —31 ¢ I . (3)
1]j J i j ﬂnija

In this equation, it is assumed that the ij chain consists of

nij links, each of which has a gaussian end-to-end distribution
with a? the mean square end-to-end distance. It can be shown

that the Helmholtz free energy of such a chain, with its ends
Eiiﬂg at ;i and ;j’ respectively, may, except for an uninteresting
additive constant (which may, however, depend on temperature),

be represented by
> > {';_;112 3
Aij(lrj-ri]) = kT —Ei;ET—_ + Rn(wnija )} . (4)
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We shall treat the simple network shown in Figure 1,

3

2

Figure 1

in which there are seven chains connected by five numbered
junction points whose coordinates are ;1, ;2, ;3, ;u, ;5. The
seven chains have, as respective numbers of links, Nnia2, na;,
Nz4, D13, N3s, N34, and nys. The network lies in the xy-plane
so that the various r's have x and Yy components.

The probability of a configuration such that the junction

points lie in the volume element d?ld;zd;adfudfs is given by
KP12P13P23:.’21.P31.P35P45d;1d;2d;3d;ud;5 ’ (5)

where K is a normalization constant and the Pij are given by

Eq. (3). 1In fact, substitution of Eq. (3) into Eq. (5) produces,
as an exponent, a sum of two quadratic forms, one in the X's and
one in the y's. Since both quadratic forms are identical except
for the substitution of Y by x or vice versa, we concentrate on

the manipulation of the x-form. This is
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(xz'xl)2 + (Xa'“xx)z + (Xa"Xz)z + (X;."‘Xz)z

n;:2 ns; nsj; Naoy
(Xu=%3)2 | (x5-x3)2 (xs=%x4)2
+ + ; (6)
Niay Nas Nys

which may be expanded and written in the alternative form

1 1l 2 1 1 2
a S e = 2L
{(nxz nla)x1 + (nas * nus)xs}
1 1 1 2 1 1 1 1 2
+ + + + +
{[nlz nas nzu]xz + [nxa Naj + Nay naij3

1 1 1 2 2 2 2
+ + + Xp = — XyX3= — X2X, - —— X3X
[nzu N3y nusj “ nzy ~ 273 n,, TN N3y 2 %

2x, 2X, 2X 54 2Xs
+ - - —_ e =2 -2
{ N1z X2 [nla n35]x3 Nus Xy} (7)

We assume that junctions 1 and 5 are held at fixed
positions (boundary conditions). Thus, x; and x5 in Eq. (7)
are to be treated as constants. Then the terms in the first

curly bracket form a constant, 2. We define the matrix ¢ whose

elements are

[ 1 + 1 + 1 ]
n2 n2s Nay

Cz2 =

= [ 1 + 1 + 1 + 1 ]
nis3 nas I3y Il3s

Cyy = [ 1, 1,1 ]

nay N3y Nys
1
C23 =C32 = - =—
nas
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CZ"::C”:-H:—.,'

C3u=Cua=‘Hi—3 (8)
and the vector v with components

vy = (%%f + %?f)

Vy = - %%; : (9)

Further, if by the vector X we mean (x),x,,x;), Eg. (7) may be

expressed as

Q+ X g e x+3T L3 5 (10)

where x* and ¥° are symbols for the transpose vectors. Intro-

ducing a unitary transformation, rYepresented by the matrix Q, C

may be diagonalized to yield A,

~

leceg=a ., (1)

x=Q+¢ (12)

->
v

I
O
e+

(13)

CC k=T p ey kg, (14)
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« % =7 u.g, . (15)

Since Q is unitary, the Jacobian of the transformation
is unity. The exponential in Eq. (5) may now be expressed in

diagonalized form. With ;1 and ;5 held fixed,

@ 0o @

1 - -
= e = J dr, J dr, j ar, P12P13P23P24P34P3sPys

- 00 - 00 - 00

x|

i
=
-

1.7 1 1 1 1 1 1 1
a? Ni2 Ni13 N23 Nay N3y N3s Nus

]
—

(16)

.
%
o)
oy
!
l'_l
+
><
+
w

(similar exponential factor for the Y components).

Tne integration in Eq. (16) may be performed immediately with

the result

© - __[A gz g ] u?/4a?,
f e j dg, = a(—%—)% e J J ; (17)

-0

so that the product of integrals becomes
1 u, ?
4a2 Z

(a®m) */2(x Aj"’} e 1 3 (18)
3
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Now,

Ut
P
Yo ¥
[}
e
A9
>
1
ce
]
<
Q
>
1
0
1
<4
"
<y

CkQ
]{:2 TQ—T vkvz ’ (19)

where [C| is the determinant of C and Ckz is the cofactor of the

th

k2 element. Furthermore,

-% _ ~%
nj)\j = |c]| . (20)

Substituting Eqgs. (19) and (20) into (18) and the result
into (16) yields (after treating the factors belonging to the y

components in the same way),

1
nlznlanzanzhnaunasnus

K - '3z

1 1 1 4.2 _ 1 1 1 2
exp { a?z l:1112 * n13Jx1 a?Z [nas * nhSst} b

1 k2 .
x = C A +v
exp { 4a!|g| gz ( kxVx kyvzy'} !

where vkx and vky’ etc., are components of the v vectors con-
taining x's and Y's, respectively.

The probability that junction 3 is at r, when ?, and Ts
are held fixed, is prescribed by the product of K,s by the
integral appearing in Eq. (16) with the proviso that the inte-

. > . s .
gration over r; is not performed. The remaining integral can be

-92-

ey -



performed in exactly the same manner used to arrive at Eq. (21),

and the result (substituting for K,s from Eg. (16)) is

N Ic|
P(r3) = Té;T E%F exp {- 5% [C,, (x2+y?) + (v3x+v3y)x3]}

1 k2
exp {zz?T?T %2 c (vkxv2x+vkyv2y) (22)

o1 K2y
4aZ]C*] EQ g ‘kaVEx+ka+sz)} !

where C* is the two-by-two matrix whose elements are

C22

C (23)

4y

*
C22

*
Cle‘o

il

-e

C*, =C* =cC, =C

42 24 42

> > .
and v;, V; are the vectors with components

Vox T _(iXI * 2X3) 4
12 MEX
- - 2X3 2_Xs_
V“X - (nau * nus) !
(24)
v - —(zu + 2&3_) v
2y n2 naj
v = —(—L-z 3 + —L-z 3) .
vy Ny Nys

After considerable algebraic manipulation, the exponential,

dependent on ;3 in Eq. (22), may be rewritten as

o lTamas] 2wt - (25)

-93-



in which

2 2 2 1 1 1 1
1 - 3 —— +
3 a%/Cys . /(nla e nsy T nas) !

2, :
and o; is a constant Vector with components

,

Cz, 5 Cay

Cy2 5 Cuy

and

Cz2 sz Coy
2
v
o = =/Cj3 2Y Csy

2

<
KN

Cy2 _EX Cuy

c|

{
i
|
I
{
fax T TGz 5= c an |
|
f
|
f
l
!
(

Equation (25) shows several things. First, the junction

T

point (in this case junction 3) is distributed in a gaussian

T

manner about an average center of fluctuation specified by 33

which itself depends only on the coordinates of those junctions

TR T I e

which are held fixed. Furthermore, the "width" of the fluctuation

i
R
s

|

is measured by w; which depends only on the lengths of the chains

connected to the junction in question. If the n's measuring
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these lengths are large, then w; is large (the network is soft
in the neighborhood of junction 3).

These results are essentially the same as those of James
and Guth® but specialized to the system of Figure 1. James and
Guth show quite generally that the junction point distributions
of a gaussian network are gaussian about a center whose location
depends only on the fixed junctions and that the o vectors are
determined by the following set of linear equations, one for each

nonfixed junction,

s RS (29)
J 1)

(o, .~ .)
Z—XJ_Y-—n,, 1 = ; (30)
J 1]

where again the sums over j extend over those junctions connected
to the ith. In fact, Egs. (27) and (28) can be shown to be
solutions of Eq. (30) for the system of Figure 1.

In anticipation of the approximate method to be intro-
duced in the next section, we draw attention to the fact that
P(;i), as we have defined it, represents the distribution of the
ith junction averaged over all possible positions of the other
junctions. This joint distribution of junctions caunot be repre-

sented as

-> - >
where the product on the right goes over all nonfixed junctions.
However, the "superposition approximation" inherent in Eq. (31)

may still be a good one.
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III. Junction Distribution from a Variation Principle

In the present section, we begin the development of the
approximate (hopefully more tractabie) theory which forms the
goal of this'investigation. We base it on a variation principle
constructed during the 1971 ARPA Materials Conference and
described in the Proceedings® of that Conference. The variation
principle is as follows. Suppose A ({r}) represents the Helmholtsz
free energy of a network when its junctions (whose collective
free coordinates are symbolized by {;}). Then it may be shown
that the following functional of P*({;]), A*, represents an upper

bound to the true free energy of the system:
A* = [P*({THAU{Z}A(F} + kT fp* ({£}) 2nP* ({2))d(2}. (32)

In this equation, the integration extends over the fuli space of
the free junctions. A* is obviously a function of the fixed
junctions.

If we are concerned with a network in which there are

no interchain interactions, then we may write

AT =] A F,F)

where ;i and ;j are the coordinates of the ith and jth juncticas,

respectively, and Aij(}i';j) is the free energy of the chain

. R N o e d >
connecting these junctions when its ends are at r, and rj,
respectively. The sum in Eq. (33) goes over all chains ij. 1In

most cases of interest, and certainly, in the case of gaussian

chains, we may write
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Aij(ri,rj) = Aij(lrj-ril) . (34)

If, in the cases to which Eg. (33) or (34) applies, we
choose as a trial function
* -> = -+
P* ({r}) I ¢i(ri) (35)

with the normalization requirement
- -
= 36

the ¢i(ri) which minimize A* in Eq. (32) assume an especially
simple form. Before proceeding to the investigation of this
form, we note that P* in Eq. (35) is actually of the form ex-
hibited in Eq. (31), so that it cannot be exact.

Substituting Egs. (34) and (35) into (32) yields

(using Eq. (36)),

A* = gj S ¢i(ri)¢j(rj)Aij(lrj-ril)dridr;
(37)

+ kT ]S ¢i(§i)zn¢i(§i)d§i
1

where the ij sum goes over all chains. Taking the variation
with respect to ¢, and subject to Eq. (36) yields for the form

which extremalizes A%,

6; (£;) = K, exp {- ) ¢j(§j)Aij([§j-§i|)drj} (38)

i

in which K, is a normalization constant the the Z in the

J
exponent goes over all j junctions connected to the ith.
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Equation (38) represents a set of simultaneous nonlinear inte-
gral equations for the determination of the various ¢i. In
general, they possess no analytical solution. However, for the
special case that the network is gaussian, an analytical
solution does exist!

We may regard a gaussian chain as itself made of links,
each of whose lengths is gaussian distributed with a? repre-
senting the mean square end-to-end distance of a link.,!® Then
if we restrict consideration to two dimensions, the probab: litcy
that the ljth chain has end-to-end distance Irj-ril is given
by Eq. (3) and the free energy of the chain by Eq. (4). If we

consider the three~dimensional case, we have

-> -> 2 2
N _ 3 3/2 -3lrj—ril /2na
Plj(lrj ril) = (m e (39)
and
- -
Alj(]rj—ri]) = 3kt {—-L—,— - on ——-—J—f} . (40)
Equation (40) is substituted into Eq. (38). Now assune
that the itn solution of the resulting set of equations is

specified by
w3l 22 |2 2

6, 2 = g/t Rl (41)

iti 2nAi - !
where &i is a constant vector and Ai is a constant measuring the
width of the gaussian distribution which Eq. (41) represents.
If we substitute Eg. (41) into the set of Eq. (38) containing
Eq. (40), it is found that Eq. (41) is indeed a solution of the

set, provided that
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A2 = a?/] 1 (42)

-e

j i3
and that

(a_.=a_.)

__xg X1° _ ) ,
J ij

(a_.-a .)
Z __AE%_Jii_ =0 , (43)
J ij

(az'_azi)
e ETI
J ij

In these equations, the sums over j extend over the junctions

connected to the ith

junction. Note that ¢i(§i) in Eq. (41) is
normalized.

If we had considered a two-dimensional system, Eq. (4)
would have been substituted into Eq. (38) and the normalized

solution would be

|T.-3. ]2 w,?
>y o 1 LI
¢l (ri) = ,n.wi_i' e ’ (44)

L] -’ . 13
where again ®; 1s a constant vector and w; a constant measuring

the width of the distribution. These quantities are given by

of = a?/] G (4)
J 1]
and
(a..=-a .)
z Xn] X1 = 0 ,
J ij
(o .=a .)
2 2 S S
J ij

Equations (45) and (46) are identical, respectively,

with Egs. (26), (29) and (30). Thus, Eq. (44) is identical with
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Eq. (25) (which is written for i=3). Aas a result, we have
> -

and P* is p, of Eq. (31). Thus, the "superposition approxi-

joint
mation" to the joint distribution function specified by Eq. (31)
is the "best" trail function which can be chosen as a product
of one-junction functions, referred to the variation principle!
If we are interested in the distribution of the ith
junction averaged over all possible positions of the other

junctions. Thus, at least for gaussian networks, the variation

Principle yives an excellent result not very far from exact.

Iv. A Simple Example

For illustrative purposes, we work out the example of

the network exhibited in Figure 1, subject to the restrictions

that
*x1 T %y, =0 d
(49)
axs = 4a,cxyS =0 H
and
ny2 = 2 ’
i3 =3 ’
Nz = 1 '
Nay = 4 ’ (50)
Ny, =5 '
Nazs = 6 ’
Nys = 7 .
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Solving Egs. (30) and using Eqg. (45), the centers of
the distributions of the free junctions (Nos. 2, 3, and 4) are

found to be

Uy, = 0.272a, u2y =0 ’
az, = 1.067a, a3, = 0 ’ (51)
Opy = 1.729%9a, a4y = 0

and the widths of the distributions obtained from Eg. (45) are

0.756a ’

€
N
]

0.772a ’ (52)

€
w
]

wy = 1.299a .

These results are diagramed in Figure 2, where the circles
indicate the widths of the distributions; and their centers, the
centers of the distributions. Clearly, environment of junction 4
is much softer than that of junctions 2 and 3. Because of the

bourdary conditions, all junctions lie on the x-axis.

V. Application to Rubber Elasticity

The standard result of rubber elasticity, Eq. (1), is
derived from the James and Guth theory by making the assumptions
listed in Section I. However, the assumptions of affine de-
formation need only be made for the surface of the rubber specimen,
since it may be shown that Egs. (29) and (30) guarantee that all

centers of junction point distributions will deform affinely if
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only the centers on the surface deform in this manner.

The theory of rubber elasticity, based on the variation
principle discussed in Section III, will be shown below to yield
the standard theory when the assumptions (Section I) of the
standard theory are invoked. Thus, since Pi(;i) of the James
and Guth theory is identical with ¢i(fi) derived from the vari-
ation principle, and James and Guth have in effect used the
superposition approximation, it appears as if the James and Guth
theory is in fact the approximate one, derivable from the vari-
ation principle.

Before proceeding to the further development of the
latter theory, we should note once again that the methods of
Edwards and Freed’ may not be subject to some of these restrictive
assumptions unless they have been made implicitly.

For simplicity, we restrict attention to an incompressible
specimen of rubber subjected to uniform tensile deformation. If
L is the length and W the width of the specimen while L, and W,
are the corresponding quantities in the undeformed state, the

condition of incompressibility may be stated as

2 - 2 5
WL = WOLO & vo (53)

where Vo is the constant volume of the rubber. Then the re-
quirement that the centers of gaussian distributions deform

affinely takes the form

-103-



jo)
O
!
t
ol
I
o4
™
o>

o_ . L

AL =0 . a_ .-

YJ ¥y o 2] "z2i _ W o_ =2y % _ (L)% (55)
4 . =g0 a®. 4O W, ‘L a !

vyl yi zj Tzi

where o is the extension ratio (in the x-direction) as in Eq. (1) |
and should not be confused with the center of a gaussian distri-
bution.

We proceed by adopting A* of Eg. (37) as the Helmholtz
free energy of tne network (it is actually only an upper bound).

If we substitute ¢i from Eq. (41) into (37), we obtain

3 3
* =~ . 2
g 2 L Z. A 2mn, .a? PE
1] 1]

+ 3 kT ) -l—[A?+A?+(a o, )%+ (a.. ~a, )2+ (a. -q. )2]  (56) 3
2 i3 njj 173 jx Tix jy iy jz Tiz

+ 2 KT Y in w3 - 3 yr oy I
2 ¢ 2mA ¢ 2 c :

i

In this equation, the sums over ij go over all chains, while the
sum over i extends over all free junctions. N, is the number of

chains in the network. Now the tensile stress in the x-direction

is given by

1 HA*
W2 3L ’ (57)
0

~

S

_ 1
T—W—{
0

Substituting Egs. (54) and (55) into (56), and the latter

into FEq. (57), then yields
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| § 0 _ 0 ,2
b ;= L 3A%* _ 3kT {2(“xj Ogi ) 4
W2 3L 2alv . n..
) 0 1j ij
L (58)
9 _0 42 0 _ 0 ya2
) [(ayj “yi) +(otﬁj a,.) ] 1
7 .

It is now assumed that the network is constructed in
the undeformed state in such a manner that all chains of size
nij have their equilibrium gaussian end-to-end distributions.

Then for the sum over the Nn chains of size n, we have

z (ao‘_ao.)Z - Z (ao._ao‘)z
n..=n XJ X1 n. .=n Y] yi
1] 1]
= ] (a,-a%,)2 = % N_a? (59)
n.o=p 23 zi n
1)

Summing over all n, as required in Eq. (58), and substituting

in that equation, yields

kTN
T = ——aZVc {a - a]-f ’ (60)
0

which is identical with Eq. (1) if Nc is interpreted as Vgr
the effective number of chains. The effective number merely
accounts for the fact that some chains within the network have
free ends. This is a detail which we do not pursue in the

present development.

Thus, we have shown that the variation principle leads

to the conventional theory of rubber elasticity when the con-
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ventional assumptions are made. It even leads to the correct
singlet junction point distribution in the gaussian limit. It
therefore appears to be a viable approximation. We now turn to
the main purpose of this study, the development of an approxi-
mate theory for nongaussian networks, and investigate what the

variation principle offers in this respect,

VI. Extension to Nongaussian Networks

Equation (38) still holds in the case of nongaussian
networks provided that interchain interactions are excluded
from consideration. However, if Aij is no longer quadratic in
'—> ->

rj—ri], an exact solution of this set of equations is no longer

possible.
As a crude approximate solution, we might assume that

the ¢j distributions are still spherical with respect to some

center &j’ and in fact take ¢j to be the § function

> > - 1 >
¢j(]rj aj]) PRENCT 8 (]rj ajl) . (61)
J 3
Then Eq. (38) yields
1 > >
ol % Aij(laj_ri')
¢j(ri) = Kie ' (62)

which may be substituted into Egq. (37), and a theory of network
elasticity developed in much the same manner as in Section V.
A somewhat more sophisticated procedure would involve

expanding Aij in a power series in some parameter u. Denoting
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the leading quadratic term by Agj

) (1) 24 (2)
A.. =A,. + A + AT -
1] 1] ij S ij

Expanding ¢j in the same manner,
0 (1) 2, (2)
. = . + 3 + 3 + ... J
¢J ¢J u¢3 u ¢J
and substituting Egs. (63) and (64) into (38) yields

-kLTZf¢°A°dr
]

371373
¢§ + u¢(1) K;e
i 0,0 .
k, ~Fr ) [ ¢58559r;
_ __l e J {z f (0) (o)dr
KT L ) 0y TAgyTdry

(1), (o) 2
+ § / 43 25 drj} + u? { }o+o...

Equating coefficients of equal powers of u yields

o ot
ke [ o5a0yE,

¢{O) = Kie ’
¢(0)
o {1 = {Z i ¢(°) 1;)dr + Z f ¢(" (g)dr }

(63)

(64)

(65)

(66)

(67)

Equation (66), which is identical with Eq. (38), shows that ¢§°)

is given by Eq. (41). Then Eq. (67) represents a set of linear

integral equations for the determination of ¢§1), and are pre-

sumably more easily soluble than the set of nonlinear integral

equations represented by Eq. (38). Clearly, one can generate
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linear sets of equations for the higher order perturbations.

All of the methods for nongaussian networks thus far A
presented have in common that they yield the singlet junction
point distribution function in a form convenient for developing
a theory of network elasticity patterned after the standard
theory of rubber elasticity. As approximations, however, they
suffer from the fact that the zeroth order solutions are them-
selves approximate. We therefore consider a method in which the
zeroth order solutions are exact, but in which it may not be
possible to pattern the theory of network elasticity after the
mo.e conventional approaches.

The method once again involves expanding A = ) Aij in
terms of some bookkeeping parameter p (eventually to be set

equal to unity) such that the zeroth order term is quadratic.

Thus, we write, to the first order,
a=al 4 4ty Ai(‘.’) + ) Ai(f) , (68)
i I iy

where the sum extends over all chains. Corresponding to A(o),
in this expansion, there are a set of normal coordinates EX,

Ey’ and EZ specified by the transformation, Eg. (11), such that

}E = . ¢ —éx ’
-

_a . 69
Y 9 gy ’ ( )
-+
z = 9 M z .

(o)

These coordinates diagonalize A so that Eg. (68) may be
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expressed, in terms of them, as

B2 2.2y =7 a0 2 2 (1)
AUESE,,E .8 = ] A (Ei—gxi,zyi,ézi> +ual ({Eh . (70)

We now return to Eq. (32), substitute Eq. (70), and choose for
P* ({2}),

p* ({€)) = e E) (71)
We note that when 2 is given by A(o) alone (ihe network is
gaussian), the trial function, P*({g}), given by Eq. (71) is
capable of representing the exact solution, since the normal
coordinates are indeed independent of one another. “

Since the Jacobian of the transformation represented

by Q is unity, we may now express Eqg. (32) as

B T W 2 Tl TR

a* = [ px({EHAa(ENa{?) + xr [ p* ({E))a(f) (72) !

and perform the variation with respect to P* ({Z}).

Returning to {r} space for the moment, we recall that
certain of the junctions are to be held fixed. The coordinates
of these therefore contribute certain constant terms to A, which
we denote by TI'. We could, of course, utilize Eg. (68) with
higher order terms in u, but suppose we retain only the linear

term. Then we can write

AUEY) = (A" ({¥h) + 1} + a2y (72)

in which

at + T = al®) 2y ; (74)
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and note that it is the transform of A' which is diagonalized

to a0 (121,

a9z = alEyy - p (75)
or

A% (@) = g A£°)(§i) + T . (76)

We also assume that ei can be represented by a function linear

in u,

_ o (0) (1)
ei = ei + uei . (77)

Substitution of Eq. (73), together with

AUEN = a0V @) + e a2y (78)

D i
i
into Eg. (72) and performing the variation with respect to the

functions Gi, subject to the condition

[ e,a8, =1 (79)
or

foiat, =1, [elVat =0 (80)

leads, upon equating the coefficients of equal powers of u, to

[ neloy alediny dUEN) , yp g(o) in 00 = ko) (g1)
PR T S at, j j i3
j
and
(1) _ _ 1. ,(0) (1) (0) a({Z})
6y = kT{BjGj + [ A 2 8, i } , (82)
j
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in which both K5 and Bj are constants. 1In deriving Egs. (80)
and (81), use has been made of Eq. (79). The derivation is
straightforward but somewhat tedious; terms must be collected
rather carefully since many of them cancel.

Applying Eq. (79) again to (80) , and performing some of

the indicated integrations, yields

_a (0)
Aj /kT

6(o) _ e
j - (o)
J -A;" /T

[ e

‘ (83)

dg.

gJ

while application of Eq. (80) to Eq. (82) determines
B, = -f alMr 5{0)q(2

j
* (84)

B independent of j.

As indicated earlier, the result for 9;0)(Ej) is exact.

These solutions can be transformed back to {;}—space
with relative ease. It is advantageous to perform this trans-
formation since then A(l) = Z.Aég), and is represented as a sum
of individual chain function;? whereas this is not true in
{Z}-space.

For the development of a theory of network elasticity,

A* should be expressed in terms of the ei. For this purpose,

we substitute Eq. (71), together with Eq. (77), into Eq. (72),

wbtaining,

A* = g feiA£O)dEi + T + f(gei)A(l)dfg} + kT g feizneidgj + (85)
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where Eq. (80) has been used. Dropping terms beyond the linear

and using Eg. (77), we get

a =] foial®at, + v+ xr ] fofanefVat, + ui] fo{alolaz,
i i i

+ f(ve{O))A(l)d{E} + kT | feél)zne;°)d§i} , (86)
1 1

where, again, Eq. (80) has been used. Combining Eq. (85) with

(84) gives

o) = Lqe0)y Eef°))A(‘)d{E} - f(§8§°))A(1) g%zl} ! (87)
i

It is convenient to introduce certain definitions and

to list a number of relations. Thus, we write

10{0) = pr({E}) . (88)

Since the Jacobian of the transformation is unity, we find
pr({£)) = px({¥}) . (89)

We also recall (making use of Egs. (8l1) and (88)) that

g fe§°’zne§°)d2i = [Px({Z)) anp* ({E1)alZ};

foie@)at; = [eriEneEpady . (90)

Furthermore, we define the average of a function F over the

zeroth order distribution as
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<F> = [PrUENFUEHALE} = [pr({(EHF(EDHA(F) . (91)

Substituting Eq. (87) into (86), and using Egs. (88) through

(91), we obtain

av = a2y 4 M) (81> + kr<anpr((2))>

+ gt wEns s~ @Enat adns,
+ kT <znp3({Z}>>o<A“)({E})>o (92)
- xr <anex ((EHa‘t) (2h> )

Transforming to {r}-space, noting the second of Egs. (91) and

using Eq. (77), gives

(o)

A* = <A + uA(1)> + kT<4nP*>
o] o 0

(0)> <A(1)> —<A(O)A(1)> (93)
o} [0}

M
* grl<A o

- kT <gnP*><a s~ kr <(anp*)a (s )
(o] 0 (o] (o]

since now A° = § A!?), alt) - ) A(l), if we make the approxi-

ij 1] s st
mation

PEUEN = e d) (94)
Eq. (94) becomes

ar = Al a4 ppcpnpas
(o] O O

+ f%{z ) [<A;§)>O<A;;)>O - <A£§)Aé;)>oj (95)
ij s®
0 (v)y, _ (1) 0
+ kT g §Q[<2n¢i>o Aoy’ >y = <Ay Ting.> 1}
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This equation could also have been obtained through the manipul-

(o) by

ation of Egs. (66) and (67). In fact, if we represent ¢
Eq. (66), it may be demonstrated that the second term in curly
brackets in Eq. (95) is exactly twice the negative of the first

term. Thus, Eq. (95) may be simplified to

A* = <al0) 4 wa s 4 kmcanprs
(0] 0O 0
(96)

s
kT

(o) (1), _ (0) (1)
[ . <A s o <Aij ]

I-‘M

j s

The last term in this equation is a fluctuation expression
measuring the correlation between afo) and A(I). If P;({;})

is given by Eq. (94), it is clear thaE-th? sum will only contain
terms such that i,j,s,% are not all different; i.e., terms for
which the chains ij and s are the same chains, or, at least,

have a junction in common. 1In all other cases,

aldall)s ooalo), a0, , (97)
ij "sf o 1j o s% o
so that these terms will not survive in Eq. (96). If N, repre-

sents the total number of chains, the fluctuation term will thus
be of the order of N_- Since A(l) is also of this order, the
fluctuation cannot be neglected in the first order correction
to A*, When ¢; correspo~ds to a fairly narrow distribution,
however, it may not be large.

Equation (94) is of course identical with Eqg. (35),

except that the zero subscript and superscript are used to
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denote the zeroth order solution corresponding to a gaussian
network (as does the function in Eq. (35)). Nevertheless, as
indicated in Section III, Eq. (35) is an excellent approximation.

The first two terms in Eq. (93) may be expressed as
A* = [P*()A({F})d{F} + kT [P* ({f}anP* ({ZHalZT} . (98

This is the free energy which the system would have if it were
constrained to have the zeroth order distribution, but the
actual free energy corresponding to the configuration {r} re-
mained exact. This suggests an interesting method for achieving
an approximation capable of representing the system out to all
orders.* The function ¢z(;) in Eq. (95) is given by Eqg. (41),
in Which the»ki are fixed quantities! Suppose we assume the
general validity of Egq. (98), but allow the Ai's to be un-
determined parameters which can be adjusted so that P; is no
longer the zeroth order solution but is altered, in some way,
to account for the higher order perturbations not included when
Pg is restricted to the proper zeroth order function. Equation
(98) will still be an upper bound for the true free energy
since A(fT'}) is still exact; it is the same equation as Eq. (32)
except that P; appears where P* appeared in the latter. Thus,
the method of adjustment of the A's is apparent. Perform the
integrations in Eq. (94) and then find the minimum of A* with
respect to the various Ai. The value of A* corresponding to

*Suggested by K. F. Freed in private communication to the author.
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this minimum can then be used, together with the assumption

of affine deformation to achieve a theory of network elasticity.
In practice, one might simplify the process by re-

stricting all Ai to be the same and equal to A. Aij can always

be expanded in a power series in I;j—;i!' Since the ¢i are now

gaussians, the integrals of the form
> > > > > > N, > 5
fo, (x, a9 (Z, aj)]rj r, | drdr, (99)

can always be done so that A* will once again appearﬁés a
function of the various ]&j-&il, and the assumption of affine
deformation therefore conveniently used. We plan to explore

this method in subsequent investigations.
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STRESS AVERAGING IN THE DISLOCATION
MICROMECHANICS ANALYSIS OF DEFORMATION

J. P. Hirth

Abstract

The strain-rate of a deforming crystal is related
to a sum over dislocation segments of isolated thermally
activated and viscously damped motions. Appropriate
averaging methods are suggested to yield a relation between
strain rate and the macroscopic variables of stress and
temperature. Several specific examples are analyzed in

detail.
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STRESS AVERAGING IN THE DISLOCATION
MICROMECHANICS ANALYSIS OF DEFORMATION

J. P. Hirth

Introduction

Dorn and his coworkers have contributed significantly
to the development of constitutive relations relating strain
rate to experimental variables for a deforming specimen,
particularly for high temperature creep, e.g., ref. 1 and 2.
An important topic relating to the development of such
constitutive relations from theories for motion of individual
dislocations or dislocation segments is that of stress and
strain averaging over the geometry of a deforming crystal.

The concept of averaging the resolved shear stress
over slip systems and then relating this average value to a
critical value for yield or flow is a familiar one in macro-
scopic crystal plasticity.?®’"* This concept has been extended
to the interpretation of polycrystal deformation in terms of
dislocation models in what is essentially the athermal limit
where deformation is completely driven by the applied stress.®’®
In the latter case, the average value of the resolved shear
stress over the five most highly stressed systems, the Taylor
value® of crystal plasticity, is related to the critical re-

solved shear stress for dislocation motion. Other mechanistic
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interpretations of dislocation motion have been proposed, however,
and there is considerable experimental support for them in terms
of such parameters as the measured thermal activation energy.

The latter mechanisms include several forms of stress-assisted,
thermally~activated dislocation motion and of viscously damped
motion. In the present paper, we propose appropriate simplified
averaging methods to include stress resolution approximately in

these latter models.

Dislocation Micromechanics Analysis of Deformation

In many cases, the deformation of metal crystals is
analyzed in terms of theories of activated motion of dislocations,
reviewed in ref. 7, sometimes referred to as dislocation micro-
mechanics. Figure 1 is a prototype illustration of a dislocation
moving by thermally activated breakaway from pinning points. The
dislocation is stationary while pinned and moves at nominally
constant velocity Vp under some viscous damping control mechanism
while free. Let us consider the time required for it to move
from point 4 to point 5 sweeping out an area A, or distance A
per unit length of 1line.

A
Vb

t = + (1)

<=

where v is the frequency with which pins are broken. Then the
mean velocity of the dislocation is

t Av+vD
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2
o= A et
4 5
Figure 1

Unit length of dislocation moving from pinning
point to pinning voint (1,2,3) bv thermally
activated flow. Reference marks 4 and 5 are
also shown
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The terms A, v and vy in general vary for segments throughout
the system for several reasons. These terms depend on the local
resolved stress during the process, on the local defect distri-
bution which influences both the internal interaction stress
between the defects and the segment in question and the “.in
spacing, and on the screw-edge character of the dislocation
segment which varies from segment to segment as a function of
dislocation orientation.

In the limit of weak pins or high temperatures Av >> vy

and the motion becomes damping controlled
vV=yv (3)

In the low temperature limit Vp >> Av and the motion becomes

activation controlled
v = Ay (4)

Usually, Eq. (3) or (4) is used to test experimental data.
Indeed, for pnure metals, the damping constants are such® that
Eq. (4) should be a good approximation for many experimental
situations. However, cases exist, such as the drag of Cottrell,
Snoek or core atmospheres of solute atoms,® where the condition
Vp ® AV can obtain. Functional fitting to Eq. (2) should be
done for self-consistency in the latter cases, and, since such

fitting is of little more difficulty than the use of Egs. (3)

or (4,, is recommended in general.
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Except under shock-loadinc conditions, the form of vy

is a linear viscous form!'?

Vp = Bob (5)

where B is the damping coefficient, o is the local =2ffective
resolved shear stress on the glide plane and b is tiie dislocation
Burgers vector. The factor B varies with screw-edge character,
temperature and solute concentration. The effective stress o,
the sum of the resolved applied stress and the resolved internal
stress, varies from point to point both because of changes in
slip system orientation and because the internal stress varies
with the local defect concentration. There is no general agree-~
ment on the form for v. The various forms proposed for this

term include the following
v =V  exp (-Q/kT) exp (obA/KT) (6)

which is the form for highly irreversible, stress-assisted,
thermally activated flow.!r!! Here, Q is the activation eneray,
k is Boltzmann's constant, T is absolute temperature and v, is

a pre-exponential frequency factor.
vV = v, exp (-Q/kT) sinh (obA/kT) (7)

which is the form for nearly reversible, stress-assisted,

thermully activated flow.’r12,13

V= v, ol exp (-Q/KkT) (8)
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an alternate thermally activated form.'®

vV = Vv, exp (-C/0) (9)

which is both a tunneling form'!® and, when combined with a
term exp (-Q/kT), another alternate thermally activated form.’
Mixed forms are also used'®’!7: for example if v, in Eq. (6)
or (7) contained a factor on, the form would be a mixed form
of Eg. (6) or (7) together with (8).

With the various expressions for the terms in Egq. (2),
the velocity of individual dislocations is related to the over-

all strain rate ¢ by
£ = g miLibVi/v (10)

where m, is a strain resolution factor, Li is the segment

th segment, and V is the crystal volume.

length, all for the i
The usual assumption (see the discussion in refs. 7, 15 and 18)
is that vy is the same value v for all segments and that the

sum of m.L./V is simply the average Schmid factor m = m_,

i
multiplied by the mobile dislocation density ) Li/V = p. Then
Eg. (10) reduces to

£ = mp bv (11)

With Eq. (6), say, Eg. (11) is typically further reduced to

the form

= éo exp (-Q/kT) exp (obA/kT) (12)

Me
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In some cases,'’’!® models for the variation of p and v with
plastic strain as a result of dislocation multiplication are
incorporated in Eq. (ll) so that in forms such as Eq. (12) an
explicit dependence of éo and A on strain, stress and tempera-
ture results. More often, however, éo is assumed to be constant.
In almost all cases, though, the only account taken of averaging
is via the factor m which is implicitly assumed to be a direct
geometrical average of m, .

Evidently, since the effective resolved shear stress ¢
varies from segment to segment, and since parameters such as A,

B and v, vary from point to point as discussed previously, the
assumption that geometrical averaging only is necessary for m.

is a poor one. While it is recognized that the assumption is
poor, the assumption is generally made anyway because the general
averaging problem (over ~10'° entities) is inordinately compli-
cated. Mura?®’?! has presented the general tensor form of

Eg. (10) which can in principal be summed. However, even with
present day computers, the general problem is not tractable.

As an interim between the above roughest approximation
and the general solution, we propose simplified averaging
procedures to include the averaging of all parameters in Eq. (10)
which explicitly depend on o. While the forms are somewhat

complex, they can be handled readily with modern computer

techniques.
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Stress Resolution Modifications

For example, we treat the simple tension test, the most
common testing form in mechanistic studies. Then the strain and

stress resolution factor (Schmid factor) is
m, = cos 6 cos B (13)

where 0 is the angle between the glide plane normal and the
tensile axis and B is the angle between the glide direction and
the tensile axis. Eg. (10) can then be modified with the in-

clusion of any of the forms for v, by replacing ¢ by

= m, +
o) O'a i O'I

where 0, is the applied stress and Or is the internal stress.
In general, Oq will vary with e T, and m, and in such a case
must then be included in the subsequent integrals over m, . In
the following examples, since little data is available for Orv
we assume it to be negligible with respect to o M, an approxi-
mation thought to be valid at low temperatures.

The factor Li also may vary with m. because of preferred
orientation in single crystals or textured polycrystals. The
sum in Eq. (10) is then performed over all orientations. In
many cases, however, for a polycrystal, Li is random and the
sum in Eq. (10) can be replaced by an integral over all
orientations. This procedure should yield a reasonable approxi-
mation even for a single crystal when the crystal system in

question has a multiplicity of glide systems as for cubic
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crystals. The simplest case is that of damping control, Egs.

(3) and (5), which, together with Eq. (10) yield
. - 2 2
€ = b Bo, fmi (Li/V)dmi (14)

In carrying out the integral over m., it is convenient to
introduce both Eulerian and spherical coordinates, Fig. 2. 1If
the segments Li are uniformly distributed in the glide plane,

if the glide plane poles are distributed uniformly over solid
angle increment sin 6 4 ¢ ¢ in spherical coordinates and if for
each glide plane orientation, the glide directions are uniformly

distributed over the Eulerian coordinate increment dk, then
(Li/V)dmi =psin®dedgyadcx (15)

In these coordinates cosB = sin® sink, and Eq. (14) becomes

LU B 4

2
f f (cos6 sin6 sink) 2 sinodedkd¢ (16)
0

. pb? Bo, >
€= 8m2 f
)
The integral over a$ is trivial. The integrals over ¢ and «
much be performed with care, however, The dislocations move
to contribute positively to ¢ independent of the sign of m, .
Thus, the integrals over 8 and k must be performed ovsr absolute
values of the sin and cos functions. Thus,

/2 n/2

2pb2B0a
f cos?0sin®6sin2kdedr = pszoa/ls (17)
0

m

E =

(o]

In the analysis of data fitted to expressions of the above type,
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Figure 2

Spherical coordinates 6, ¢ and Eulerian coordinates
n, ¥, 8 in relation to glide plane coordinates 6 and
g. The tensile axis, TA, glide plane pole, P, and
glide direction, G, are depicted.
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there is some concern about separation of the dislocation
density p into a mobile and an immobile fraction. With the
present averaging scheme, in order to be consistent with the
initial premise, that motion is strictly damping controlled,
one should insert the total dislocation density into Eq. (17)
to extract data on the mobility B as a function of ¢ and 04
Related to the total dislocation density usage, the random
distribution average value m, of m, over all orientations is

A

m, = 0.212 in contrast to the Taylor value?®’* m, = 0.327 for

A
face-centered-cubic crystals. The Taylor value is obtained with

various possible assumptions,®’* but they are equivalent to the
assumptions that only the five most highly stressed systems in
cubic crystals contribute, that each of these satisfies a critical
resolved shear stress criterion, and that the crystals are ran-
domly distributed as in the present case. The reason for the
difference in these m values is obvious since the seven systems
not averaged in the latter case have m, values lower or equal to
ihose averaged. We emphasize that we do not propose that my
replace M, for a critical-resolved-shear-stress plasticity theory.
The Taylor value arises from the compatibility requirement that
five independent slip (deformation) systems are required for an
arbitrary strain. 1In the context of the present paper, the
compatibility conditions would appear as a dependence of the
internal stress o; on position in the vicinity of a grain
boundary. Such compatibility effects have been demonstrated on

the microscale for both isotropic??’?® and anisotropic elastic?®
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crystals, and some discussion of the implications of such effects
on macroscopic plastic behavior has been presented." Here, we
are focussing on the method of averaging, given a model, and the
above compatibility effects could be included if an explicit
model for the internal stress variation were developed.

The other forms of Vi when inserted into Eq. (10), lead
to analytically intractable forms. However, they can be solved
readily by numerical methods. As perhaps the most used thermal
activation expression, we consider as an example the case of
Egqs. (4) and (6), assuming that v, and A are not functions of

c 6, « and ¢. Again the distribution of segments is assumed

al
to be uniform so that Eg. (15) applies. Then

m
]

L m L, by, /V

Z(miLib/v Av_ exp (-Q/kT) exp (o_m, bA/KT)

m &T

Av _pb y
) -0 4
gnz_ ®*P T kT 7z
oo

2
J sin?6cosfsink exp
0

g bA sinfcosfsink
- [ ]dedecb (18)
7Av_pb n/2 n/2
= ——— exp - %l- 4 I J sin?6cosfsink exp
0

x (Dsinfcosfsink) d46dk

mAv _pb

= ——5— exp -

o
kT
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Here the abbreviation D = oabA/kT is involved and the factor
(2/m)? is carried along with the integral because of the form of
the latter as a Bessel function or a related function. The
first remaining integral in Eq. (18) has the solution

2
sink exp (E sink)dk (19)

m
£, (E)

/
J
o]

N

=+ I, (E) + L, (E)

=

where E = Dsinfcosé, I, is the modified Bessel function of the
first kind and L, is the modified Struve function. The quantity
f,(E) is tabulated in Table 1 and shown graphically in Fig. 3.
With £, (E) known the desired factor in Eq. (18) is given by

n/2

f,(D) = sin?6cosb f, (Dsinbcosb)de (20)

AN

This function, evaluated numerically, is tabulated in Table 2

and preseﬁted graphically in Fig. 4. Since € (D) is directly
proportional to f, (D), Fig. 4 provides the test for a correlation
of experimental data of ¢ as a function of gy with the model

of Eq. (6). With data as a function of temperature, it is
obvious that Fig. 4 could also be used to test reduced strain
rate data é,exp(Q/kT) as a function of the reduced variable

oa/T. Evidently the correlation of the average function of

Fig. 4 differs markedly from that of the segment function of
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Figure 3

Plot of £,(E) vs. E = oabA sin® cos8/kT.
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Egq. (6) with 0,+* Hence, when forms such as Eq. (6) are assumed
for segment velocities, averages such as the above one, or other
averages with appropriately modified values of LI(G:K,¢),

Vo (8sk,9), A(B,k,¢) and oI(B,K,¢), when dislocation distributions
are not random, should be used for self-consistency instead of
the source function for £ in testing data for correlation with
theory.

The other forms for V:+ including the mixed activation-
damping form of Eq. (2) can be handled analogously with a minimal
cost of compucer time. Five seconds of computer time were ex-
pended to develop Fig. 4. A useful integral solution which in-
cludes that of Eq. (14) but which also includes the requisite
integrals for a variety of other forms of v, is item 3.387,

number 5, in ref. 25,
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Figure 4
Plot of £ (D) vs. D = abA/kT, solid line, and of the

generating function of Eq. (6), exp D, vs. D, dashed
line.
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TABLE 1

The Quantity f, {E) as a Function of E

0.00
0.01
0.02
0.03
0.04
0.05
0.06
0.07
0.08
0.09
0.10
0.20
0.30
0.40
0.50
0.60
0.70
0.80
0.90
1.00
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f,(E)

0.63662
0.64164
0.64670
0.65181
0.65696
0.66216
0.66740
0.67268
0.67801
0.68338
0.68880
0.74563
0.80753
0.87496
0.94845
1.02857
1.11592
1.21120
1.31513
1.42854



TABLE 2

The Quantity f,(D) as a Function of D

0.00
0.01
0.02
0.03
0.04
0.05
0.06
0.07
0.08
0.09
0.10

0.20

0.30
0.40
0.50
0.60
0.70
0.80
0.90
1.00

e
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f2(D)

0.42441
0.42484
0.42527

0.42569

0.42612
0.42655
0.42699
0.42742
0.42786
0.42830
0.42874
0.43322
0.43787
0.44269
0.44770
0.45289
0.45828
0.46387
0.46967
0.47570



AC LOSSES IN SUPERCONDUCTING MAGNET SUSPENSIONS FOR
HIGH-SPEED TRANSPORTATION

M. Tinkham

Abstract

A rather general relation is derived between vertical
accelerations of the train and cryogenic power dissipation due
to AC currents induced in the superconducting suspension magnets.
Our theoretical results give a good account of the rather large
losses observed in the Fuji Electric test vehicle, which used
less than state-of-the-art conductors. Even with parameters
estimated to represent the best commercially available materials,
however, it appears that these losses will be comparable with
the total heat leak due to all other causes if the accelerations
are as large as permitted by subjective human ride quality con-
siderations. Empirical data on losses under appropriate con-
ditions of B, é, and I/Ic may be needed to ascertain whether
improved materials will be required to avoid serious design con-

straints by cryogenic heating.
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AC LOSSES IN SUPERCONDUCTING MAGNET SUSPENSIONS FOR
HIGH-SPEED TRANSPORTATION

M. Tinkham

I. Introduction

Although considerable analysis of the performance of
high-speed trains using superconducting magnets for levication
has appeared', relatively little attention seems to have been
given to the quantitative aspects of the problem of AC losses
in the superconductors. These arise because of current changes
induced in the magnets by the time-varying environment seen by
the magnets as the train moves over any irreqularities in the
quideway (or, more severely, over a structured track made up of
conducting loops). Even with an ideally smooth guideway, there
will inevitably be a certain amount of "heaving" motion at the
natural frequency of the suspension due to wind buffeting, etc.
Although material parameters are subject to uncertainty, the
analysis presented here shows that the power dissipation caused

by the resulting AC currents will probably be comparable with

the cryogenic heat load due to all other heat leaks unless either:

(1) the vertical accelerations can be held below the level re-
quired for passenger comfort, or (2) technological improvements
in performance of presently available twisted composite super-

conducting wires can be made. These estimates indicate that
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detailed consideration of this problem should be made in evalu-
ating any specific design for superconducting levitation to be
sure that the AC losses in operation will be at an acceptable

level.

II. Constant Flux Magncts

When a superconducting magnet is operated in persistent

current mode, the total flux threading it
¢; = IhI; + MI, (1)

remains constant, so long as it remains fully superconducting.

In this expression, L, is the inductance of the magnet, M the

mutual inductance to its environment (predominantly the guideway),

I, is the magnet current, and I, is the current in the guideway.
(In writing this, we have replaced the total environment rather
schematically by & siagle lumped constant circuit, but this is
adequate to bring out the essential features.) The current I,
will be zero when the train is at rest over a normal metal quide-
way, but at full speed it will be essentially the same as if the
guideway were superconducting. In the latter case, I, will be
such as to cancel the flux in the guideway due to the train

magnets, and we can write
¢, = LI, + MI; = 0 (2)

Eliminating I, between these two relations, we have

= S/l

I, Tk;,2 (3)

-143-



where
k12?2 = M*/L,L, (3a)

characterizes the strength of the coupling between the magnets

and the guideway. Thus, the persistent current is not a constant

current, but one which varies with the environment.

Variations of Magnet Current in Moving Train

From (3) it follows that when the train is brought to
high speed, the current I, in the Superconducting magnet will
increase by a factor of (1-k122)"! compared to its value when’
the train is at rest. This factor is of significant size, since
k12?2 must be reasonably large (%0.3) to give substantial lift.
Moreover, when the train goes over "bumps" in the track, k,;,?
will change, inducing AC currents.

These relationships can be made more quantitative by
noting that at high speeds the 1lift force on the magnet can be

written as

F = IiI;|dM/dh| = L1I,%k;,2M" " |dM/dh| (4a)
= {81 %/L1)k,,2M~ ! [dM/dh|
B (1-k,,?)? (4b)

[If the force law (4a) is not familiar, the result may be de-
rived by noting that the total magnetic energy is E = 1/2 L,I,?2
+ MIZI, + 1/2 L,I,2% = (912/2L,) (1-k,,2)-1, using (2) and (2).
Then F = |dE/ch| yields (4b).] 1In these expressions, dM/dh is

the rate of change of M with the height h of the magnet above
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the guideway. This will depend on the detailed geometry. But
since the flux density due to a long current-carrying wire falls
as 1/r, typically M(h) = M(ho)(ho/h)n, with n =~ 1; in which case,
M~! dM/dh = nh™' = h™!, Note that increasing the coupling k2
by decreasing h not only increases the lift per unit magnet
current, as indicated by (4a); it also causes that current to
increase because of the condition ¢, = constant, as reflected by
the factor (1l-k;::2)72% in (4b).

Actuall/, since a given magnet will be characterized by
a maximum permissible current, namely I; = I, (4a) is the appro-
priate formula for finding the maximum lift force. However, in
"charging" the magnets, it must be borne in mind that I; will
increase as given by (3) when the train is moving, and will in-
crease further on "bumps" in which k;,? is momentarily increased.
Thus, the initial value of I; must be set far enough below its
maximum permissible value to allow for any imaginable increase of

ki2. If that is done, there should be no "run-down" of the magnets

from use.

Effect of Structured Track

With a periodic structured track, consisting of either a
series of loops or a "ladder" configuration, the train magnets
effectively see a periodically modulated mutual inductance coupling
them to the track. For example, if the track loops were of the
sama length as the train loops (an extremely unfavorable case),

then the track loop current would vary between zero, when a track
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loop equally overlapped two successive oppositely polarized train
magnets, and a maximum value when the two sets of loops were in
register. 1In this case, M effectively varies between zero and
some maximum value Mo comparable to that for a solid continuous
track. As a result, the lift force would undergo 100% modulation
and the magnet current I, would also incur a large degree of
modulation (NMOZ/Lle), with associated intolerable levels of
dissipation in the superconducting magnets.

This situation is greatly improved by taking the track
loops to be shorter than the train loops by some fraction N'/N
= 1/nR, where N' and N are the number of train loops and track
loops in the length of the train. 1In that case, the modulation
of M and of the lift force are typically reduced by a factor
wnR-p; the exponent p = 2 will depend on such parameters as the
length/width ratio of the train magnet coils, their separation,
and their height, which determine the waveform of the flux
density at the track. For example, if the waveform of Bz(x) at
the track were a syrare wave, the fractional modulation would be
reduced by a factor l/nR (i.e., p=1), since in the extreme cases
np and (nR—l) coils would be effective in giving lift. However,
realistic field patterns are much smoother than a square wave
(the higher Fourier components of Bz(x) attenuate more rapidly),
so the track loops at either end of a train loop contribute less
than those in the middle. Hence the modulation depth will fall
faster than n,”' (i.e., p > 1). In fact by suitable choice of

R
winding configuration it should be possible to cancel the dominant
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Fourier component for a given value of n_, greatly reducing the

R
size of the modulation.

The numerical calculations of Yamada and Iwamoto? for a
specific track configuration display the qualitative features
described here. The fractional modulation is found to be reduced
by a factor of mnﬁz = 10~% for np = 10; and np = 6 is found to
give anomalously low modulation (3 x 107%), presumably due to a
near cancellation of the 6th Fourier component.’

This reduction in the modulation depth of the coupling
by large values of np not only reduces the ride roughness; it
also reduces the modulation amplitude of I; in the superconducting
magnet, in the same proportion. The associated AC losses are also
reduced, but with one less power of Npo because the hysteretic
power dissipation is proportional to I, = w6I; « nRGIl for fixed
train magnet length.

A further reduction in AC magnet currents can be achieved
by introducing a normal conducting sheet between the track and
the train magnets to screen out the time-varying fields at the
magnets. If thin compared to the skin depth, such a screen reduces
the AC currents ky a factor of (l+w212)-%, where T is the L/R
decay time of the currents in the screen. Since this shield plate
also increases the damping of the vertical motion of the train,
it will probably be advantageous to include it even for unstruc-
tured track systems. Maximum damping w11l occur when wt = 1; on

the other hand, good screeninyg requires that wt >> 1. For example,

a 1 cm sheet of aluminum will givs maximum damping at a frequency
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near the natural frequency of the suspension, wo/2w ~ 1 Hz, and
screening by a factor of 10”2 at 100 Hz, a typical frequency

associated with motion over a structured track.

III. AC Losses in Superconducting Magnets

As discussed above, when there is a change in the en-
vironment seen by a Superconducting magnet in persistent current
mode, the current in the magnet changes to hold the total flux
constant. For thin extended loop magnets of the sort considered
for levitation purposes, the local flux density B in the winding
itself is dominated by the local current and changes in proportion
to it, even though the total flux is constant.

To illustrate this point by a concrete example, consider
a 300,000 ampere-turn superconducting loop with cross-sectional
radius a = 1.5 cm at a height h = 30 cm above an ideal ground
plane. The local field at the surface of the superconductor is
40,000 gauss; the image field reflecting the presence of the
ground plane is 1,700 gauss. A height decrease of 1% will cause
the image field to increase by ~1%, and the magnet current to
increase by an amount smaller by a factor of order %n h/a = 3.
Evidently, the resulting ~0.3% increase in the 40,000 gauss “ield
will dominate. 1In general, the local field effect will be stronger
by a factor of the order of the ratio of the height to the con-
ductor radius; this ratio will always be quite large, as in this
example.

If the superconductor were in the form of infinitely fine
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insulated wire, there would be no significant dissipation of
energy due to changing currents. 1In practice, magnets are would
of wires of sufficient diameter that each can carry substantial
currents, and the conductors are stabilized against flux jumps
by making them a composite in which the superconductor is in
contact with a good normal conductor, such as copper. The best
performance has been obtained by using multifilarentary wire,
containing V100 superconducting filaments of diameter ~10 microns
imbedded in copper, and subsequently twisted to "decouple" the

separate filaments.

Origin and Order of Magnitude of Losses

There are two main sources of energy dissipation in the
conductor: hysteresis loss in the superconductor and eddy current
loss in the copper. If there were no superconducting filaments
present to modify current patterns, the eddy current loss per

unit volume would be of the order of
P = (1/12)B2d'2/p (emu) (5)

where d' is the wire diameter andip is its resistivity?®. (The
exact coefficient will depend on the shape of the cross section
of the wirc.) For p = 2 x 107° ohm-cm = 20 emu (copper at low
temperature), P = 4 x 107!°d'2B2? watts/cm®. Thus, for the
representative values d' = 0.025 cm, B = 1000 gauss/sec, and

V = 10° cm’® as the volume of material for the magnets .n one

vehicle, this amounts to only "0.02 watt; this is negligible
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compared to the static heat leak into the cryostat, which is
estimated to be V50 watts per car. We conclude that with good
design, this simple eddy current loss would pose no serious
heating problem.

We now consider the hysteresis loss in an isolated thin
superconducting filament of thickness d and critical current
density J_ (typically 1.5 x 105 amperes/cm?). So long as
2chd << AB, where AB is the total change in B in a cycle, the
filament can do little screening of the field, and one can take
B to have the same value in the filament as outside. The electric
field induced along the wire varies as E = éx, where x is measured
from the center of the filament. The energy dissipated per unit
volume is JcE’ where I is the critical current density, taken
constant as in the Bean" model. Averaged over the thickness d,

this gives the conventional result
P =J_|Bld/4 (emu) (6)

per unit volume of superconductor. Unlike the eddy current loss,
this hysteresis loss depends on the first power of B. For making

numerical estimates, it is more convenient to rewrite (6) as
P=1I_|Bla/4 (6a)

. . . _ 5
per unit length. With the typical values Ic = 4 x 10° amperes
(for the whole cable of wires, each containing many filaments),

d = 10”2 cm, and a length of 10° cm per car, we cbtain P = 10-?B
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watts. For B = 10°3 gauss/sec, this leads to an estimated dis-

it

sipation of P 10 watts. Since this is of the same order as
the anticipated total cryogenic heat loading, it is clear that
one will be required to hold this loss to a minimum.
Unfortunately, the estimate based on (6) forms a lower
bound to the dissipation for any given composite conductor since
it neglects the copper matrix. Currents will be induced which
flow through the copper between filaments, and the presence of
the superconducting paths greatly enhances the dissipation due
to these eddy currents because the induced emf is dropped over
a shorter distance in the copper. As discussed in detail by
Wilson, et al®, this extra loss can be reduced by twisting the

wire with a pitch p = 44 such that & is much less than a criticai

length Qc determined by

L2 = 23 _do/|B| (7)

For typical values, RC is of the order of a centimeter. Without
the twist, the dissipation turns out to be essentially the same
as given by (6), but with d increased to the diameter d' of the
whole bundle of filaments, and the advantagé of the fine fila-
ments is lost. It should be noted that (7) was derived by
considering a simple model of two supercondu. ““ng sheets of
thickness d separated by copper. For an actual omposite wire
containing many layers of superconduccing filaments, the twist
pitch at which the loss reaches this upper limit is given approxi

mately by
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8.'% = 3 d'e/2|B| = (a'/4a)e_* (7a)

This follows from (7) upon replacing d by d'/4, corresponding
to assuming a filling factor of 1/2 in a thickness (d'/2) on
either side of center. With the twist, the extra loss falls as

22 for given B, so that (6) is replaced by

P =J_|Bld,e/4 (8)
where

dgge = d' (2>2é) (9)
and

dege = d(1+422/2 2) = d+2zzé/acp (2<2t) (10)

Note that increasing B not only increases the loss (6) for an
isolated filament; it also decreases the critical length Lo
and therefore increases the extra loss. Thus, although (6)
varies as B, the extra loss varies as éz, so that typically the
observed loss varies more rapidly than linearly with B. From
(10) it is evident that it does little good to reduce d below
Rzé/Jcp; 2% must be reduced in proportion to d to keep <R,
for given values of B, Jc’ and p.

From this discussion it is clear that even with twisting,
it is hard to hold deff right down to d, especially for small
values of d. If performance specifications are critical, one

must rely on empirical test data to determine deff’ but the
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formula (10) should be adequate for semi-quantitative estimates.
For more detailed results, the report® of the Rutherford Labora-

tory group is particularly useful.

Dependence on Design Parameters

Having seen that these AC losses will be a serious design
concern, let us set up a reasonably general model for estimating
their size and dependence on design parameters. It is convenient
to relate the AC losses to z, the associated vertical acceleration
of the train. Taking the derivative o:i (4b) with respect to k;,?
(and neglecting the smaller associated change of M~!dM/dh), we

have

SF _ 1l4k;,2 8k,,2

s F - I Kiz? (s
Similarly, from (3) we have

gf‘ = 1E§:§; (11b)
if no screening plate is in use. Combining these relations,

CESTN ST (11c)

I, 1+k,,2 g

For a cylindrical conductor of radius a, carrying current
I,, the spatial average value of B in the conductor is B = 41,/3a.

Thus, if 6I, is varying at u,
B = 4wsI,/3a (12)

and from (6a) and (8) we have for the power dissipation per unit
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Since the total weight of the train mg must be sustained by the

force (4a),
2 2 .1
mg = LiI1k;, M~ |dM/dh]| (14)

Combining this relation with (13), and including a factor
(1+w?1%) ™% for the effect of a screening plate, the total power

dissipation in supporting the train weight can be written as

" I d
— wmg 2y ¢ eff M 1 1
i (1+w?t?) (9)(11)( 3a )ldM/dh| 1+k,2.2 L' (15)

In this, L;' = 2&n(w’/a) = 8 is the dimensionless inductance

(in emu) per unit length of the magnet conductor, w being the
separation of the conductors. Also, typically |dM/dh| = M/h
and k;,2 ~ 1/3. With these substitutions, (15) simplifies to
P= s> ﬁﬂgi ;% ——9993——§ é (16)
(1+w272) 9
This result should be quite general, and, apart from small
changes in the numerical coefficient, give a good approximation
in most practical confiqurations. If a screening plate is used,
the frequency dependence in (16) drops out for w>l/1. If we
further assume the sonable value I;/Ic = 1/2, then (1§)
simplifies to

d

_ 1 “eff hmz \
P =& — = (w1>>1) (17)
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which brings out the critical factors in a particularly concise
way. Finally, if we reinstate the frequency dependence of (16)
and insert the reasonable values h = 30 cm, m = 5 x 10"“kqg,

d = 107 cm, and a = 1.5 cm, we have

eff
p = Mz—/ﬂg (watts) (18)
(l+w?72)

Applying this result to the heaving motion at wo/2n ~ 1 Hz,
where W, T < 1, we have p =~ 25 (g/g) watts. Now, the maximum
acceleration at 1 Hz which gives satisfactory subjective ride
quality® is about 0.15g, for which P * 4 watts. Thus, if the
above estimate is accurate, one can conclude that if the ride is
smooth enough for passenger comfort, it will also be satisfactory
from the point of view of cryogenic heating.

In evaluating the estimate above, it is important to note
that it represents a sort of lower limit to the heating. The
true value might well be an order of magnitude greater, enough
to double the estimated static heat leak from all other sources.
For one thing, we have considered only the lift force. The
dissipation associated with guidance and propulsion forces might
be comparable in size. As discussed above, however, the major
source of underestimation of loss is our assumption of perfect
decoupling of 10u filaments, so that d e =4 = 107° em. For the
assumntions of our example computation, it turns out that B =
6 x 10° gauss/sec, so that 20%3 mm. Thus, a twist pitch of a

few millimeters would be required (according to (10)) to approach
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within a factor of two of the fully decoupled loss rate. More-
over, simple twisting is not enough; full transposition is
required for ideal performance. That is, all conductors must
share equally in extericr and interior positions in the wire,

and eventually in the cable of wires. To achieve decoupling

with reasonable twist pitches at these rapid sweep rates and
small values of d, it may be necessary to resort to a 3-material
composite. In such a composite, each superconducting filament

is surrounded not only by copper, but also by a thin layer of
relatively high-resistance alloy material to insulate it partial-
ly from its neighbor filaments. 1In this way, one can combine

the thermal stabilization of the pure copper with the low AC loss
of the alloy, at the expense of an increase in the complexity of
the composite. Such materials have already been tested by the
Rutherford Laboratory group®.

Despite our reservations about the exact numerical re-
sults presented here, this calculation should be made quite
accurate by our simple expedient of using a suitable deff > d
instead of 4 in (13), (15), and (16). This deff can be esti-
mated using (10), or better, determined empirically by using (8)
and the measured loss in a test sample operated at the same
values of B, é, and I/Ic as would be found in the actual appli-
cation.

Let us now consider the case of a structured track, with
track loop. of length V1 meter. At full speed, this will corres-

pond to a frequency of ~100 Hz, and (18) leads to P = 4000 (E/g)
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watts, if one ignores the effect of the screen. Subjective ride
quality® would again allow % = 0.15g at this rather high frequency,
in which case P =~ 600 watts, clearly unacceptably high. None-the-
less, there is no serious problem, because, as noted above, one
can hold z < 0.01g with a reasonable choice of a track loop length
small compared to the train loop length. In that case, P would

be only “40 watts, which is comparable with other expected heat
inputs. Moreover, this high-frequency field can be reduced by a
factor (l+w212)“;5 ©v1/100 by inserting a thick normal conducting
sheet between magnets and track. For example, for typical coil
sizes a 1 cm aluminum sheet at room temperature would give satis-
factory shielding (wt = 100), while increasing the weight of the
train by less than 5%, even if it covered the entire area of the
train. Given such a screen, the additional AC loss due to struc-

tured track should present no serious difficulty.

Iv. Comparison with Experiment

It is of considerable interest to compare the res' lts of
the above theoretical analysis with the experimental results of
Hirai, et al’ on the Fuji Electric test vehicle, the only relevant
data available to the author at this time. fhis vehicle, weighing
650 kg, was levitated at a height of about 25 cm over a structured
track moving at a speed of 100 km/hr. The magnet conductor
weighed 29.5 kg, carried 855 amperes giving 2 x 10° ampere-turns,
and produced a maximum field of 23,000 gauss; the energy stored

was 4.5 x 10*J. The cross section of the conductor was 1.8 x 3.,2mm,



and it contained 161 filaments of NbTi, each 80y in diameter,
embedded in 6x the weight of OFHC copper, and twisted with a
pitch of 10 cm. Eighteen layers of such conductors were used,
each containing 13 turns. As sketched in Fig. 1, the two magnet
coils were crescent shaped to conform to the Circular test track,
with dimensions of 110 cm aiong the circumference and ~25 cm
between the two sides of the loop. The structured track contained
6 loops, so that the ratio of loop sizes was np = 3, and it could
be rotated at up to 600 rpm. There was a 3.2 mm thick aluminum
Screening plate between magnets and track, cooled by conduction
from liquid N,.

We may compute k,,? from (4a) using the quoted weight and
stored energy 1/2 L,I,?%, and by assuming M~'|aM/dh| = 1/h. The
result is k;,%2 = 0.018. We can see from (3) that the current
should increase by a similar amount when the magnet is levitated
over the moving track. The observed increase is quoted as 1-2%,
certainly in excellent agreement. This coupling value is an
order of magnitude less than would be desirable for efficient
levitation of a real train. The low value is a consequence of
the small width of the coils compared to their height above the
track.

At full speed of 10 Ips, the 6 track loops modulate the
environment of the magnets at a frequency of 60 Hz. Search coils
installed below the magnets revealed an AC magnetic field of up
to 50 gauss at this frequency. This value can be accounted for

roughly by noting that the maximum field at the coil is B = 20,000
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Figure 1. Schematic diagram of magnet and track configuration

in the test of the Fuji Electric vehicle. (See ref.
7).
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gauss, modulated by a fraction NnR‘zklzz = (1/9)(0.€18) = 0.002,

so that 6B = 40 gauss is a reasonable estimate. This AC field is
attenuated by a factor (l+m2'r2)-!5 = 1/60, for w = 1207 and 1 =

L/R = 1/6 second. (The inductance of a single turn of the size:
and shape of the magnet coil is about 1luH, and the resistance of

a similar size strip of a sheet of 3mm aluminum at 77°K, where

p = 0.2y ohm-cm, is about 6u ohm. Since the ratio L/R is determined
by the narrow dimension of the loop, it would be about the same

for a loop of the size of the track loop as for the magnet loop.)
To emphasize that this screening effect is an impedance effect

and not a skin depth effect, we note that under these conditions
the skin depth § would be about 3mm, the thickness of the screening
plate. Yet the attenuation is by a factor of 60, not by e. ‘Thus,
the AC field applied to the magnet is only a1 gauss, so that

B = wéB ~ 300 gauss/sec.

For this value of B and the parameters of the conductor
listed above, the characteristic length Qc defined by (7) is about
5 cm. Thus, the 10 cm twist pitch is too long to be fully effec-
tive in reducing losses, and the effective filament diameter deff
will be at least 0.2 mm. With the volume of the superconductor

being only "1/6 of the total conductor, we estimate V = 700 cm?.

[}

With J_ = 200,000 amps/cm?, (8) then leads to a total dissipated

2 watts. An alternate estimate .can be made using (15),

[

power P
taking z/q = 1/ng? = 1/9, I./I1 = 2200/855 = 2.6, L' = 2 gn 10

= 4.6, and other numerical values appropriate to the system; this
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leads to P =~ 2 watts, within the a:lcuracy of the estimates used.
For comparison, the value determined by measuring the extra helium
boil-off was 18-27 watts, an order of magnitude larger than these
estimates. Since the loss duz to imperfect decoupling varies as
B2, this discrepancy could be accounted for if, because of its
finite extent, the screening plate reduced B by only a factor of
20 instead of 60, as we estimated. Or, the extra loss may stem
from an underestimate of deff due to the absence of complete trans-
position in the winding. 1In any case, we are reminded that our
estimate (10) is generally a lower bound, and that empirical tests
are needed to see exactly how large these losses are. It is
interesting to note that the computed eddy current loss in the

copper (5) if there were no superconducting filaments is only

v0.01 watts.

A more relevant comparison is with the other cryogenic
heat leaks. These were only "10 watts, of which Hirai, et al
attribute a major portion to conduction down two short current
leads (which could be eliminated in a practical design for a
train). They estimate tre other heat inputs as only 3 watts.
Scaled up in proportion to weight from the test vehicle of 650 kg
to a practical vehicle of 50,000 kg, this 3 watts becomes 230 watts,
but presumably improved ergineering design in the full scale versicn
could bring this down to our estimated 50 watts. On the other hand,
the AC loss of 20 watts, although it caused no problem in the

test vehicle, would scale up to 1500 watts, if no improvements

-161-



were made; this would be an excessive burden on the cryogenic
system of a high-speed train.

One can get an appreciation of the practical significance
of such dissipation levels by recalling that 1 watt-hour of energy
will boil off about 1.3 liters of liquid helium to form about 0.9
cubic meters of gas at STP. Thus, in an 8-hour shift, a 50 watt
heat leak will boil off some 500 liters of liquid to form 3.6 m?
of gas, after compression to 100 atmospheres. On the other hand,
a 1500 watt heat leak would boil off 15 cubic meters of liquid
helium to form 110 m?® of gas at 100 atm. On-board storage of the
larger amount of helium, either as liquid or as gas, would be
impractical. If instead one used a refrigeration system on the
train, the power requirement to remove 1 watt at 4°K 