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TABLE OF SYMBOLS AND ABBLBRLVIATIONS

G(N,A) a conncctoed original network coneisting of a
sot of nodes N and a fiol of arcs A

(i,3) an arc dircected from node i to node j

Mij the uppor bound on the flow capucity of arc

(i,3) of the original network

Lij the lower bound on the flow capacity of arc
(1,3) of thu original notwork

the actual amount (an intoger valuc) of flow
in arc (i,j) of the original nectwork

cij(xij) the cont of soending X;5 units of flow along
arc (i,j) of the origxaal network

C{*’ the ircremental cost of sending a kth univ of
J flow alonyg arc (i,j) of the original network,
given that k-1 units have alrceady been sent

Q the anount of flow to be sent through the
original nctwork

: 4 the total cost of scending Q units of flow
through the original nctwork

I

a flow vcctor having all of the various xij
valucs as its components

GI(N'AI) a conncctced length scquence network consisting
of a sct of nodcs N and a set of arcs Al

f‘?; the kth elcment in the length cequence of arc
(i,j) of the length scquence nctwork

dij the length of the directed arc from node i to
node j in a shortecst routc algorithm

v (k)

the label value of node i upon completion of
the kth itcration of Dijkstra's algoritlun

the permancnt label value of node i




I. INTRODUCTION
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A. PAST WORK

Considorable litcraturc oxists dcaling with minimun-cost
network problems in which the various arcs of a network have
upper and lower bounds on flow capacity and lincar cost
functions. In particular, thore is the Primal-bDual Algorithm,
developed by Ford and Fulkerson [2) in 1955, which solves such
network flow problcms having all lower bounds cqual to zero.
Ford and Fulkcrson (5) later developed the Out-of-Kilter
Algorithm to solvce problcems having non-zero lower bounds.

The two above algorithms can also be used to deal with
ninimum-cost nctwork problems in which the cost functions
are convex. By making piccewisc lincar approxirations to
the convex cost curves, cvery arc in such a network can be
replaced by a group of arce having diffcrent lincar cosat
functions, where cach arc of the group corresponds to one
gegnent of the lincar approximation to the convex cost
function.

lu [6) has lookecd at a special casce of using piccewisce
lincar approxinations in convex-cost nctworks. He dofines
*up* and "down"™ arc costs as the incrcmental costs incurred
from incrcasing or dccrcasing, rcspectively, by one unit of
flow, the alrcady existing flow in an arc. lle presonts a
solution procedurc which optimally increments, from zero to
any desired amount, thec total flow through the network.

Although Hu docs not consider upper bounds on arc flow




éopncity, hiv algorithm can caslly be modificd Lo handlo f
this condition by making the "up-cort® of a soturated arc
infinito.

Howovor, in many practical applications the convox cost
assumption docs not hold., Dantzig (1) pointy out that the
proesvnce of a sot-up or red tape chargo ylcldu a concave
coct function. Likowite, it can be argucd that cfficiencics
of scalc and the practice of giving discounts or rebatoes
in transactioneg involving large quantitics of goods or sor-

vices also yicld concava cogt functions. 1In gencral, it can

bo statced that concave cost functions arise through the
oxistence of decrcasing marginal costs, a common phenomenon
in recal lifc situationg., Thus, thero is good reacon to
study concave cost networks,

Zangwill [8) presents a solution to the minimun-cost
flow problca in which the various arcs of a nctwork have
concave cost functions, althougyh he does not consider the
existence of upper or non-zern lower bounds on the arc
capacities. The solution to his problem has all of the
flow being sent along the minimum total cost chain of arcs

from the gsource to the sink.

B. OBJECTIVL AND SCOIL
The purpose of this paper is to present a method of
solving minimum-cost flow problems in which the arcs of

the nctwork have zcro lower bounds, finite upper bounds,

and concave cost functions,




For any given amount of flow which must be sent from
the source to the sink, the problem can be solved if the
maximum flow capacity and the cost function are known for
each arc in the network. A basic assumption to the solution
proccdurc is that cach cost function can be broken into a
serices of non-increasing cost increments through the use of
plecewise linear approximations,

As outputs to the problem, the solution procedure pro-

vides the optimal arc flows and the associated optimal

total cost.




II, MODEL DEVELOPMENT

A. NETWORK DESCRIPTION AND ASSUMPTIONS

Cohsidcr a connected network G(N,A) consisting of a
set of nodes N and a set of arcs A. Let the integers
i=1,2,...,n represent the nodes and the two-tuples (i,3j)
(i=1,2,...,n; j=1,2,...,n; and i # j) represent the arcs.
Let node 1 correspond to the source and node n correspond
to the sink. The arcs are assumed to be directed so that
the order (i,j) implies an arc directed from node i to
node j.

It is assumed that there is only one sourcc node and
only one sink node. It is also assumed that no more than
one arc connects any pair of nodes in the same ordered
direction. 7¥f multiple sources or sinks exist, artificial
nodes and arcs may be added to the network so that there
is a single overall source and a single overall sink.
Similarly, if two or more directed arcs connect the same
pair of nodes in the same ordered direction, artificial
nodes and arcs may be added to the network as needed tc
alleviate this condition.

Associated with each arc are an upper bound on capa-
city and a cost function for flow over the arc. Let Xij
be the actual amount of flow and let Mij be the maximum

flow capacity for an arc (i,j). Then, for Xij to be a

feasible arc flow,
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for each arc (i,j) in the networ:.

Conscrvation of flow is assumed to exist at all nodes.
The total flow out of any node equals the total flow into
that node; that is; there is no storage of flow at any of

the nodes.

B. FORMULATION OF THE COST FUNCTION

Let the concave cost function Cij(xij) represent the
cost of sending an amount, xij, of flow along arc (i,j).
It is assumed that Cij(xij) is continuous and non-negative

over the entire range (from 0 to M;.) of X; It is also

J gl

assumed that Ci (0) = O for each arc in the network. How-

J
ever, if there is a cost function such that cij(o) # 0,

/
then a new cost function Cij(Xi-) = C"(xij) - Cij(O)'

J 1]
can be substituted for Cij(xij) without changing the
nature of the optimization problem.
It is assumed that piecewise linear approximations can
be made to the cost function of every arc in the network.
If the arc flows and arc flow capacities are required to

be non-negative integers, the cost function of an arc (i,j)

can be replaced with a non-increasing sequence of incremecntal

(1) (2) (M, .)

COStS: Cij ’ Cij ooy Cij lJ ' Where
(X) = ¢.. - =
cff) = ¢yt - ¢y, k-1) (2)

for k = 1,2,...,Mi..




The intorpratation here o that an incromental cont,
C{S), in the additional cost of sunding onc unit of flow
across arc (i,3j), given that k=1 unity of flow have alrcady
been sent acroes arc (i,j). Thus, if xij represonts the
actual amount of flow sont across an arc (i,j), it can
casily be scen that the associated cost,

(0} (x4
(0)
where Cij is defined to be cqual to zero.
C. STATEMUNT OF THE COST MINIMIZATION PROBLIM

All flow through the network is agssumed to travel frow
the source nodc to the sink node. Then, for any specificed
amount of flow Q to be sent through the network, the cost
minimization problem can be stated as the following pro-

gramming problein:

Find non-ncgative intcger valucs for all X3 which

Xs 4
) (k)
minimize 2 = & oc | (4)
(ioj) é A k=0
Q, i=1
subject to %% xij - %% X =4 0, i=2,3,...,n-1
-O' i=n {51
and 0 ¢ xij < Mij, Y (i,5)€ A. (6)

LENGTH SEQULNCE NETWORKS

Let X denote a flow vector which has as its components

the Xij values of all the arcs in the network. Any flow

vector X which satisfics constraints (5) and (6) of the

11




cost minimization problem 6 a foanlble solution to the pro-
blem,  The set of all {low vectory which are faasible

solutions comprise the problum's feanible vegion,

Considor any flow vector X which is a feasiblo solution
to the problem, Associated with this solution, a unique
connected length sequaence network (Jl(N,A’ ) can be con-
structed., This new network has the same nodes as the
original neotwork, but has a diffcrent arrangement of arcs,
as described belows

1.) If arc (i,]J) of the original nctwork is cmpty, draw
a forviard arc from node i to node j in the length scguence

network., Label this forward arc with the length scquence

S M 5) (k) ()
lij ooy .lj ., where ‘13 u(_ij . i

2.) If arc (i,)) of cthe origyinal netwurk is neither

empty nor saturated, diaw a forward arc frow. node i to node {
j and a backward arc from node j to node i in the length |

scguance network. Label the forward arc with the length

(1) (M )
gequence ’ij Ok Q iJ , where
(k) (X :+k)
'ij = Cij ) . Labcl the backward arc with the length
(1) ) (k) (X; .+1-k)
chuoncc xji g0o00y .ji ’ Hhcrc lji - -CijiJ .

3.) 1If arc (i,j) of the original nectwork is saturated,
draw a backward arc from node j to node i in the length

scquence network, Label this backward arc with the

12
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(1) My )
length sequonco ’jl e Ry whore
(k) (M, . +1-Kk)
i
Py =6y

Lot tho pair of "forward” and "backward® arcs corrca-
ponding to the same original nctwork arc bo called a com-
plement. The numbor of complemcents in a longth scquence
notwork is cqual to the number of arcs in the corrcgponding
original network which are neithar empty nor saturated.

Figure 1 illustrates how a length sequence network is
constcucted from and corresponds to = feanible solution of
a simple network flow problem having Q = 3. Note the two
complcments {(1,2),(2,1)} and {(1,3).(3,1)} in the
length sequence network corresponding to the two arcs (1,2)
and (1,3) in the original nctwork which are ncither cmpty
nor saturated.

For a forward arc (i,j) in the length sicquence network,
the scquence of length numbers corrcsponds to the scquence
of incrcemental costs incurred with sending additional units
of flow, in excess of xij, along the unraturated arc (i,3j)
of the original network. Similarly, for a backward arc
(j,1), the scquence of length numbers corrcesponds to the
sequence of incremental costs incurred with "unsending,” or
removing, cxisting units of flow from thc non-cmpty arc
(1,3) of the original network. Due to the concavé nature of
the cost functions involved, the scquence of length numbers
associated with cach arc in the lengLlh scquence network is

non-increasing.
13




Figure 1. Construction of a Length GSequenna Noetwork from
a Feasible Sulution of a Given Network Problem,

(1) (2) (3)

(a) Original Nctwork

(b) A Fecasible
Solution to
the Origyinal
Network

(Q = 3)

(1)

(c) Corresponding
Length Scquence
Network




F. DEFPINITIONS OF CYCLLL

With ruspceet to a length soquence networl, a simplo
cycle will be definod as a sericen of adjacent and consist-
ontly dirccted arcs which:

(1) boyins and condy at the tawe nodo,

(2) passce through at least two other nodes,

(3) docus not have any arc in the sories which iu
traverascd more than once, and

(4) doces not include both members of any complcement.

If cach arc of a sinple cycle in a length sequence net-
work has at lcast two colements in its length sequence, theon
it is pousible to expand the simple cycle into a double
cycle by identically and completcly repeating the simple
cycle., Similarly, if cach arc of a simple cycle in a
length sequence network has at lcant three clements in its
length scquence, then it is possiblce to expand the sinmple
cycle into a triple cycle by identically and complctely
repecating the simple cyrle twice. A multiple cycle will
be defincd as any double cycle, triple cycle, ot cetera.

A compound cycle will be defincd to be a combination
of two or morc simple/multiple cycles such that:

(1) each simple/multiple cycle in the combinaticn has
at lcast onc arc in comnon with another simple/multiple
cycle in thc combination,

(2) cach arc common to two or more simple/multiple

cycles has a sufficicnt number of clements in its length

o




Cseguuencu Lo accomnmodate all of the sfmple/multiple cyclon
to which it is comnon, and

(3) not rwroe than one are of any complemont s in-
cluded in tho compound cycle.

Tho torm cycle will horecaftor be used Lo ropresent any

of the specific cycles defined above. Fiyure 2 illustrates

oxamplaes of cyclos,

1y () ,(3)
P2 8y o 2y,

Figurc 2. Examplcs of Cycles.,

Simple Cycles: 1-3-4-2-1; 1-3-2-1; 2-3-4-2

Double Cycle: 1-3-4-2-1-3-4-2-1

Triple Cycle: None cxist

Compound Cyclces: 1-3-4-2-1-3-2-1; 2-1-3-4-3-4-2;
1-3-4-2-1-3-4-2-1-3-2-1

Noto that 2-3-4-2-1-3-4-2-1-3-2 {is not a lcgitimate

cycle since it uses both members of tho complemant

{t2,3, 3,2].

16
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111, BOLUTION b ROCLDUIY

A, PREVIEW

Tho algorithm to Lo progented beging by deternining any
feaniblo rolution to the given notworh probler, A length
geguence noetwork can then be constructed aps deseribed above,
The identification of cyclus in the length seguence network
which havoe negative total length regulte in a recelrculation
of flow in the original network at a roeduced total cost,

This recirculation ot flow rcesultes in o charnge of the exiost-
ing fcasible solution, A new length neguence s then createod.,

The identification of cycles having ncgative length in this

ncew length sequence network triggers another fteration. The

algorithm tcrminatcs when no cycles having negative length

can be identificd in the length sequence network corres-
ponding tou the cxisting fcasiblce solution of the original
nctwork. The existing feasible solution at the time of
termination is an optimal solution to the problem,

The algorithm itsclf docs not identify cycles in the

length sequence network which have negative total lengths.
Du¢ to the large number of nodes and arcs which may cxist
in a length scqucnce nctwork, identification of such cycles
may be a difficult task. In ordcr to tcrminate the
algorithm, all possible cycles in the length sequence net-
work must be checked to ensure that the cxisting feasible

solution tou the problem is an optimal solution.

17




B, TUE ALCORIFHN

1. Pingd any feanible solution to the problem and send
flow acrous Lhe network accordingly., Usice (4) to detornine
tho total couust associated with this initial feanibice
solution,

2. Basod on the coxisting feasible flow, construct a
longth scguence network uning the steps described in Section
11D,

J. Try to find a cycle in the length sequence notwork
vhich has a ncgative length, In atteapting to identify
such a cycle, two important conditions must beo met:

a. 1f a particular arc in the length sequence
network is traversed k times, then the firet k clements in
that arc's length scquence must be used in computing the
cycle's total length.

b. HNot morc than onc arc of any complcment may be
traverscd.

4a. 1f a cyclc of negative length can be idcntificd,
rcallocatce flow in the original nctwork as follows:

(1) If forward arc (i,j) of the length scquence
network is traversed k times by the cycle of negative
length, incrcasec the flow through arc (i,j) of the
original nectwork by k units.

(2) If backward arc (j,i) of thc length sequence
network is traversced k times by the cycle of negative

length, decrcasce the flow through arc (i,j) of the

.

original nctwork by k units.




Alvo, dotermine the total cost ansociatud with this
now foasible fiow., This will bo ecqual to the cont associ-
atod with tho provious fuasible flow plua the length of the
cyclo which has just beon identified.

Roturn to step 2,

4b. If a cycle of negative length cannot be found, then
terminate the algorithm., The existing feasiblce flow, as woll
as tho associatoed total cost, is optimal. If thero exists
a cycle of length zcro, there is an alternate optimal solu-

tion to thc problcem obtainable by carrying out step 4a,




Connider the notwork shown in Figure 3. ‘the numerical

quantiticvs assoclated with cach are (4,)) avo:

(1) (2) (Mlj’

Mij (C“ 'Clj .....(’lj ).

4 (1,6,5,4)

Figurc 3. Examplc lctwork,

The alogrithm prescented above will be urced to solve
this problem for a specificd Q = 4,

Step 1.) Figurc 4 shows an arbitrary initial feasible
solution. The total cost associatcd with thig initial

fcasible solution is: Z = §55,

O

Figurc 4.

Initial
Fcasible
Solution
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Stop 2.) Vigure % shown the Jungth scquenca network

corrusponding to thiv initial feasible flow,

Pigure S. Inftial Length Soquence Notwork.

Step 3.)  Tho sinple cycleo 2-5-6-4-3-1-2 has a total

(M W )
+ 4

lcn(jth c‘lu:‘l to ,2:', 4 ..56 + 6‘ 4 ‘43 + !Jl 12 - '.6.

™wo couplete cycles via 2-5-6-1-3-1-2 have a length of

46 + 0 = +6, Thrce comnlete cycles via 2-5-6-4-3-1-2 have
a length of +6 ¢+ 0 -8 = -2, Thercforc, a cycle of negative
length has been found,

Stcp 4a.) Forward arcs (1,2),(2,5), and (5,6) of the
loength scquenco nctwork are cach traversed three times by
the cycle of ncgative length which has just boon identi-
fi.d. Thorofore, the flow through arcs (1,2), (2,5), and
(5,6) in the original nctwork is incroascd by thrce units.
Backward arcs (6,4), (4,3), and (3,1) of tho lenqgth sequence
ncetwork arc cach traversod three times by the cycle of

ncgative length which has been identified. Therefore, the

21




ilow through aren (4,6), (3,4), and (1,3) in tho original 4

notwork is decroasued by three units, I'igurc 6 shows the

ittt e

rosulting rcallocation of flcw.

3
)

T

Figure 6. First keallocation of Flow.

The total cost associated with this new feasible

solution is: Z =55 - 2= §53,

Stop 2.) Figurce 7 shows the length scquence network

corresponding to this new feasible flow.

Figure 7. Sccond Length Sequence Network.

22
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Step 3.) The simple cycle 2-5-4-3-2 in this second

length sequence network has a total length equal to

prrlizat o

(1) (1) (1) (1)
2,5 + sy + f43 + 132 = -7. Therefore, a cycle of nega-

tive length has been found in this second length sequence

network. Unfortun&tely, this cycle cannot be repeated.
Step 4a.) Since the forward arc (2,5) of the length

sequence network is traversed one time by the recently dis-

covered cycle of negative length, the flow through arc (2,5) 5

in the original network is increased by one unit. Similarly,
since the backward arcs (5,4), (4,3), and (3,2) of the length
sequence network are cach traversed one time by the recently
discovered cycle of negative length, the flow through arcs

(4,5), (3,4), and (2,3) in the original network is decrcascd

by one unit. Figure 8 shows the resulting reallocation of

flow.

Figure 8. Second Reallocation of Flow.

The total cost associated with this new feasible

solution is: Z = 53 - 7 = $46.
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Step 2.) Figure 9 shows the length scequence network

corresponding to this new feasiblce flow.

-5,-6,-7
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] Figure 9. Third Length Sequence Network. }

Step 3.) There are no cycles of negative length in

this third lcngth sequence network.

?! Step 4b.) The existing feasible flow, as illustrated
in Figure 8, is optimal. The associated optimal cost of

i sending this flow through the original network is $46.
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] V. EXTENSIONS

N. SPECIAL CASL: Q S MINIMUM "‘ij VALUE
Consider a problem vhere the specificd amount of flow Q

to be sent through the network ic less than or equal to the

Mij value of every arc in the nelwork. Esscntially, the
: problem prescnted by Zangwill [8) falls undcr this catcegory,
since he did not even consider the existence of upper bounds
on arc flow capmacities.

Such a problem can be solved by using the algorithm
presented in this paper. However, an casicr solution pro- ]

cedure to this problem exists. A minimum-cost chain from

the source to the sink can be identified by cmploying any
shortest route algorithin, such as those discussed by
1 Dreyfus [4].

Let di' represcnt the length of the dircected arc from

)
nods i to node j in a shortest route algorithm, such =

the one developed by Dijkstra [3]. According to Dreyfus,

Dijkstra's shortest routc algorithm is computationally the

most efficient.

For the above problem, let

Cj;(Q), if arc (i,j) exists in the network
a,. = (7)
13 oo , if arc (i,j) does not exist in
the network

To use Dijkstra's algorithm, all dij values must be

greater than or equal to zero. Since the cost functions




aro assumcd to bo non-negative ovor tho entiro rango of

tholr respoctive feoaniblo arc flows, thin condition is met,

(k)
i

Also, lct V denoto thoe label value of nodo § aftoer

tho kth itoration of Dijkstra's algorithm has boun comploted,

Dijkstra's algorithim procouds as follows:

stop 0.) Sot vi® =0, v{® o0 , 1 w2,3,...,n.

Doclare V, = v:°) w 0 as the permancni label valuc of

| 1
node 1.

(1) 0)
Step 1.) Compute \l:”‘1 min {V; ' Vl*du} « Then find

(1)

(1) and spccify VP - Vp

j

Vél)- min V as the permenent labol

valuc of nodc p.

Step 2.) Compute V;Ei T = min {.V;I), vp’dpj} . Then

q
label value of node q. 1

find Véz) n min V;Z) and specify vV _ = Véz) as thc permanent 1

Step 3.) Continuc the implied itcrative process until
node n has a permancent label value.
At most, n-l1 itcrations will be required to label node n.

The minimum-cost chain will consist of the arcs (1,p), (p.q),

(q,r)see., (m,n). Send Q units of flow along this chain.

B. NON-ZERO LOWER BOUNDS

The algorithm presented in this paper can be modified
|| to handle problems in which non-zcro lower bounds are
associated with the arcs of the network. Let Lij be the
lower bound on flow capacity for an arc (i,j). Then for
X;4 to be a fcasiblc arc flow,

J
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Lij & %y & My (8)
for cach acrce (i,)) in tho netvork,

Constraint (6) in the cout=-nminimization problem io
replaced by (8). Once again, the algoritlen begins by
finding any flow which satisfica the contitraints. The
only change in the algorithm is that a length scequenco
network ic constructed as followss

l1.) If urc (1,3) of tho original nctwork is at its

lower bound, draw a forward arc from node: 4 to nikle j in

the length scquence network. label this forward arc with

(1) M, . ~L:.:)
the lenath sequence !ij desne ijij i » where

(k) (L, . +k)
‘ - c iJ
ij i) ¢
2.) If arc (i,j) of thec original nctwork ie nceither
at its lover bound nor saturatced, draw o forward arc trom

node { to node j and draw a backward arc from node j to

node i in the length scaucence network. Label the forward

arc with the length sequence ’ij TRV FY , where

(k) (x1j+k)
’1j = CU . Labcl the backward arc with the length

(1) (X.:-L..) (k) +1-k)
scquence ,ji e ‘jiij 137 where 'ji

3.) 1If arc (i,j) of the original nctwork is saturated,

(X
- 'cijij

draw a buckward arc from node j to node { in the lcngth

saquence ncetwork. Label this backward arc with the length
(1) (M -L )
sequence ‘ji T ’jiij i) , where

’ji g 'Clj ) ¢




VI, MUIAS ol PUIEN I STUNY

A, IDINTIFICATION OF NEGANTIVE CYCLLY

Tho only drawback with the algorithm proscented in this
papor is that it includes no procodure for identifying
cycles of negative loagth in the lenglh seguonce notvork,
€inco the iduntification of such cycleu gencrates the
fterative process of the algorithm, the discovery of an
oryanicced procedure which identifios such cycles would bLe
most ucscful,

Yen (7] has devised an officient shortest route al-
gorithu which maken forward and backward scanning passes

on a matrix composcd of d valucsg an defined above. As @

i)
by-product of hiz algorithm, simple cycloes of negative
length can canily be identified., The attempts by the

author to identify multij:le and compound cyclens by modifying

Yon's matrix werc not successful.

B. GENERAL COST FUNCTIONS

The algorithm presented in this paper can aluo be usced
to solve problems in which the cost functions arc lincar
or convex. Due to the non-decrcasing nature of the related
cost incrcments and Jength sequences, it would only be
necessary to find simple cycles of ncgative length. The

rostriction against using both mcmbers of a complement

could be waived,

S i
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It is the author's contention that the algorithm could
be modified to solve problems in which the cost functions
are neither convex nor concave. Further research in this

area might prove to be very interesting.
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VII. SUMMARY

A procedure has been developed and presented for
optimaily sending any specified amount of flow through a
network in which each arc has an upper bound on capacity
and a concave cost function.

The solution technique involves the construction of a
length segucnce network corresponding to a feasible solution
of the problem. The identification of negative cycles
in the length sequence network results in a recirculation
of flow in the original network and yields a reduction in
the overall cost. Recirculation of flow in the original
network creates another length scguence network. The
iterative process continues until no further negative cycles
can be identified. When this occurs, the existing fecasible
flow in the original network is optimal.

Inputs nceded to solve the problem are the upper bound

o

e

capacity and the cost function associated with each arc
in the network.

Modifications to the solution procedure are presented
so that network problems having the additional characteristic
of non-zero lower bounds may be solved. A very simple
substitute method is also presented to deal with a special

case of the problem: Q £ minimum Mij value in the network.
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