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TABU: or SYMBOLC Atiu AuunnviATiONS 

G(N,A)    a connected 01iyinal network consisting of a 
But of nod«:;; N and a sut of arcs A 

(l,j)     an arc direct oil from node i to node j 

the upper bound on the flow capacity of arc 
(i,j) of the original network 

the lower bound on the flow capacity of arc 
(i#j) of the original network 

the actual amount (an integer value) of flow 
in arc (i.j) of the original network 

the cont of «ending Xia unit» of flow along 
arc (i#j) of the original network 

the incremental cost of sending a kth unit of 
flow along arc (l,j) of the original network, 
given that k-1 unit:; have alre.uiy been sent 

the amount of flow to he sent through the 
original network 

the total cent of sending y units of flow 
through the original network 

a flow vector having oil of the various X-. 
values as its components ^ 

a connected length sequence network consisting 
of a set of nodes N and a set of arcs A| 

the kth clement in the length sequence of arc 
(i(j) of the length sequence network 

the length of the directed arc from node i to 
node j in a shortest route algorithm 

tho label value of node i upon completion of 
the kth iteration of Dijkstra's algorithm 

tho permanent label value of node i 
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I.  IHTgOPUCTION 

A.  PAST WORK 

Considorablo literature oxlsta dealing with minimura-cost 

network problems in which the variouu area of a network have 

upper and lower bounds on Clow capacity and linear cost 

functionit.  In particular« there io the Primal-Dual Algorithm, 

developed by Ford and Pulkorson [2] in 1955, which solves auch 

network flow problems havimj all lower bounds equal to zoro. 

Ford and Pulkcrson (5) later duvuloped the Oul-of-Kiltcr 

Algorithm to solve problcma having non-zero lower bounds. 

The two above alqorithrm can alno be used to deal with 

ninimuin-coot network probltmu in which the cost functions 

are convex.  Dy making pieecwise lincvtr approxin-ationt; to 

the convex cost curves, every arc in such a network can bo 

replaced by a group of arcs having different linear cost 

functions, where each arc of the group corresponds to one 

segment of the linear approximation to the convex cost 

function. 

liu (6) has looked at a special casu of using picccwise 

linear approximations in convex-cost nettrorka. He defines 

"up" and "down" arc costs as the incremental costs incurred 

from increasing or decreasing, respectively, by one unit of 

flow, the already existing flow in an arc.  I!c presents a 

solution procedure which optimally increments, from zero to 

any desired amount, the total flow through the network. 

Although Hu does not connider upper bounds on arc flow 
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capacity, hix algorithm can cusily be inodlflcd lo luttiUlo 

thif« condition by mal;In«) tho "uji-coct" of a noturAied arc 

infinite. 

Ilowovor, in many practical ai*i>licationu tho convox coot 

Aiuuroption doou not hold. tiantfAq   [I]   points out that the 

prt'j.uncc of a sot-up or rod tai>o  charge yioldu a concavo 

coct function.  Likowiiic, it can ha  argued that officioncics 

of ocalo and the practice of (jivimj discounto or rchatos 

in transactiune involving larcjo cjuantitico of cjoodu or scr- 

vicoo also yield concavo cost functions.  In gonoral, it can 

bo stated that concave coHt functions atlno  throuijh tho 

existence of docrcauinrj nartjinal costs, a common phenomenon 

in real life situations.  Thus, there is cjood reason to 

study concave cost notwoiks. 

Zamjwill |D) presents a solution to the minimu:n-cost 

flow probltm in which tho various arcs of a network have 

concave cost function:., although he does not consider the 

existence of upper or non-zero lower bounds on the arc 

capacitios.  The solution to hi»» problem has all of tho 

flow being sent alontj tho minimum total cott chain of arcs 

from tho source to the sin);. 

B.  OBJECT!VC AND SCOPC 

Tho purpono of this paper is to present a method of 

solvimj minimum-cost flow prohlems in which the arcs of 

tho network have zero lower bounds, finite upper bounds, 

and concave cost functions. 

Mi mm 
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For any given amount of flow which must bo sent from 

tho source to the sink, the problem can be solved if the 

maximum flow capacity and the cost function are known for 

each arc in tho network.  A basic assumption to the solution 

procedure is that oach cost function can be broken into a 

series of non-increasing cost increments through the use of 

piecewiso linear approximations. 

As outputs to the problem, the solution procedure pro- 

vides tho optimal arc flows and the associated optimal 

total cost. 
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II.  MODEL DEVELOPMENT 

A.  NETWORK DESCRIPTION AND ASSUMPTIONS 

Consider a connected network G(N,A) consisting of a 

set of nodes N and a set of arcs A.  Let the integers 

1^1,2,...#n represent the nodes and the two-tuples (i,j) 

(1=1,2,...^; j=l,2,...,n; and i ^ j) represent the arcs. 

Let node 1 correspond to the source and node n correspond 

to the sink. The arcs are assumed to be directed so that 

the order (i,j) implies an arc directed from node i to 

node j. 

It is assumed that there is only one source node and 

only one sink node.  It is also assumed that no more than 

one arc connects any pair of nodes in the same ordered 

direction.  If multiple sources or sinks exist, artificial 

nodes and arcs may be added to the network so that there 

is a single overall source and a single overall sink. 

Similarly, if two or more directed arcs connect the same 

pair of nodes in the same ordered direction, artificial 

nodes and arcs may be added to the network as needed to 

alleviate this condition. 

Associated with each arc are an upper bound on capa- 

city and a cost function for flow over the arc.  Let X. . 

be the actual amount of flow and let M.. be the maximum 

flow capacity for an arc (i,j).  Then, for X.. to be a 

feasible arc flow. 

^^ti_^   — i—i 11 ninir ■"-" '"--" -  



0 < X^ < M.. (1) 

for each arc (i/j) in the networ.'... 

Conservation of flow is assumed to exist at all nodes. 

The total flow out of any node equals the total flow into 

that node; that is, there is no storage of flow at any of 

the nodes. 

B.  FORMULATION OF THE COST FUNCTION 

Let the concave cost function C^{XJ^) represent the 

cost of sending an amount, X^, of flow along arc (i,j). 

It is assumed that C^^(X-.) is continuous and non-negative 

over the entire range (from 0 to M-•) of X^-.  It is also 

assumed that C■•(0) = 0 for each arc in the network.  How- 

ever, if there is a cost function such that C-.(0) £  0, 
/ 

then a new cost function Ci . (Xj^ ■) = ^-(Xj.) - Cj^ ■ (0) , 

can be substituted for Cj^CX^j) without changing the 

nature of the optimization problem. 

It is assumed that piecewise linear approximations can 

be made to the cost function of every arc in the network. 

If the arc flows and arc flow capacities are required to 

be non-negative integers, the cost function of an arc (i,j) 

can be replaced with a non-increasing sequence of incremental 
(1)   (2)       (M..) 

costs: Cj^j  , C^j. ,..., Ci.  -', where 

CW = Cijfk) - C.. (k-1) (2) 

for k = 1,2,...,M. .. 

10 
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Thu inturptüLatlon hero iu tlutt an incroinvntal ct^nt, 

Cj\i # 1H tho additional coot o(  Bciiulimj onu unit of flow 

acrosu arc (i,j), given that k-1 unitu of flow have already 

boon sent across arc (i#j). Thun, if X,. rifpruoonto the 

actual amount of flow oont acrom» an arc (i,}) ,   it can 

easily bo seen that the associated cost, 
(0) (X..) 

Clj(Xi;.) - Ci;j  + ... + Ci^
:), (3) 

(0) 
whore C.■ is defined to bo equal to zero. 

C.  STATEMrNT OF THE COST MINIMIZATION PROftbEM 

All flov/ throuyh tho network in assumed to travel froi. 

the source node to the sink node. Then, for any specified 

amount of flow Q to be sent through the network, the cost 

minimization problem can be stated as the following pro- 

gramming problem: 

Find non-negative integer values for all X.. which 

minimize Z -    £3 
(i,j) £ A 

subject to  C X. . - C 
i  ^        h 

and 0 < Xi;. < Mi., V(i,j)€A.  (6) 

D.  LENGTH SEQUENCE NETWORKS 

Let X denote a flow vector which has as its components 

the X. . values of all the arcs in tho network. Any flow 

vector X which satisfies constraints (5) and (6) of the 

11 



cuul minimiig.tl ion ftoLlcm  ii. a   liMttitilc tiululiun lo the pro- 

blem.     Tin- net o(  nil  flow voctorti which tita  fu.iMililo 

HoluLionu ct'iij.r i»;e  the in'ohlum* u  foaoiblc  rcyion. 

Considur any  flow vector X which ii a  1< .inihlu solution 

to the  problem.     Asuocialed with thitt  uolutiuti«   a  uniijuo 

connected leiujth  uoejuenco  notwot);    C| (N,A|  )    can be con- 

structed.    Thitt new network hau  the K.imo node» ns  the 

original notworh,   but II.IH  a different  urrangemont of arco, 

as described belowt 

1.)     If arc   (i,j)   of   the original  network  io empty,   draw 

a  forward arc  Irom node  i   to nodt- j  in the-  lomjth tieijucnco 

network.     Label   thiu  forward arc with  the   length  sequence 

(1) (M.J 
^ii   "•" tn   3   '  w,,ero      i 

(k) (k) 

ij        Cij   * 

2.)  If arc (i,j) "1 the  original network is neither 

empty nor uaturatcd, diaw a forward arc fro«, node i to node 

j and a backward arc from node j lo node i in the length 

sequence network.  Label the forward arc with the lemjth 

(1) 
roquenco 'ij '••" 'ij 

<Mij-Xij> 
, where 

(k)   (X{.+k) 

'ii -Ci j 
Label the backward arc with the length 

(1) <xij> ,,-, ,...,,, (k) (Xij+l-k) 
soquonco     1^   ,..., f^  J   , where   jj^    « -Ci.   J 

3.)     If arc   (i,j)  of  the original network  is saturated, 

draw a backward arc  from node j   to node i  in the  length 

sequence network.     Label   this backward arc with  the 

12 



(1) (M^) 
IOIVJUI »»üi|uom'o   I       ,...,1       J   , whoro 

(k)    (M..+1-k) 

» 

Lot tho i>uir of "forward" and "backward" arc» corroB- 

pondiivj to thu samo original network arc bo Citllod u con- 

plomont. The number of contplcmcitt» in a length seqnenco 

network is equal to tho number of area in tho corrccijundimj 

original network which .«re neittu r empty nor saturated. 

Figure 1 illuctr.it r« how a Itmjth oequence network is 

constructed from and corrcspondi; to z  foaniblo solution of 

a simple network flow problem having 0 ■■' 3.  Note the two 

complements f(1,2),(2,1)]  and  {(1,3),(3,1)]  in the 

length sequence network corresponding to the two ares (1,2) 

and (1,3) in the original network which are neither empty 

nor saturated. 

For a forward arc (i,j) in the length sequence network, 

tho sequence of length numbers corresponds to the sequence 

of incremental costs incurred with sending additional units 

of flow, in excess of X^j, along the unr.uuratcd arc (i,j) 

of the original network.  Similarly, for a backward arc 

(j,i), the sequence of length numbers corresponds to tho 

sequence of incremental costs incurred with "unsending," or 

removing, existing units of flow from the non-empty arc 

(i,j) of the original network.  Due to the concave nature of 

the cost functions involved, tho sequence of length numbers 

associated with each arc in the lontjth sequence network is 

non-increasing. 
13 



Fltjuro  1.    Cohtttructiun of a l.oiujlh tfjuonco Network  fron 
a Füä«il)l<' Solution i)i  n Given Network  ProUle'tn. 

M 12 
(1)     (2)      (3) 

(Cj2 ,cl2 #cn 

(A)    Original  Network 

(b)     A PcaHiblo 
Solution to 
the Oiiyinal 
Network 

(0 -  3) 

(c)    Correnponcling 
Lcmjth Sequence 
Network 

14 



K.  DKFINITIOIJS OF CYCLi:» 

With runi'ccl lo a IcmjLh uoqutMtco ntlwcu)., a ßlmplo 

cycle will be dutinoU .»;! a uctivu  of adjacent and consist- 

ontly directed area which: 

(1) bey in» and end» at the vatao  no Jo, 

(2) pasuec throucjh ut Inaut two other nodes, 

(3) doeu not havo nny arc in the sorion which iit 

travcrncd more than once, and 

(4) doeu not include both mombcrs of any complement. 

If each arc of a simple cycle in a lemjth ncquenco net- 

work has at least two olementu in its lemjth sequence, then 

it is possible to expand the simple cycle into a double 

cycle by identically and complott ly repeating tlie simple 

cycle.  Similarly, if each arc of a simple cycle in a 

length sequence network has at leant three elements in its 

lemjth sequence, then it is possible to expand the simple 

cycle into a triple cycle by identically and completely 

repeating the simple cyrle twice.  A multiple cycle will 

bo defined as any double cycle, triple cycle, et cetera. 

A compound cycle will be defined to be a combination 

of two or more simple/nultiple cycles such that: 

(1) each simple/multiple cycle in the combination has 

at least one arc in common with another simple/multiple 

cycle in the combination, 

(2) each arc common to two or more simple/multiple 

cycles has a sufficient number of elements in its length 

lrj 
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soiiuuncu   to rtL'commoii.tltt ull  of   lliu  .tiinplo/inull i^lu cycloM 

to which  it  iu coitunon,  and 

(3)     not More than one oi'C ul  any coinplomont  in  in- 

cludud  in tho compound cycle. 

Thu  torm cycle will horoafttu- bo utwU to roprcnent  any 

of  tho  tfpocilic cyclcui doCinod abovu.     Fiijuro 2  illuntratoB 

examples of cycles. 

(1)      (2)        (3) 
«21   ''21   ' *21 

Figure 2.     Examples of Cycles. 

Simple Cycles: 

Doublo Cycle: 

Triple Cycle: 

Compound Cycles: 

1-3-4-2-1;  1-3-2-1;  2-3-4-2 

1-3-4-2-1-3-4-2-1 

None exint 

1-3-4-2-1-3-2-1;  2-1-3-4-3-4-2; 

1-3-4-2-1-3-4-2-1-3-2-1 

Note that 2-3-4-2-1-3-4-2-1-3-2  is not a legitimate 

cycle since it uses both members of the complement 

{(2,3),(3,2)}. 

16 



nx. froumo" t »<r.>s,iJr
),"M■ 

A. IMU.VIKI; 

The alqorithn t(» U' pruetmlcU la«jii».'j Uy del. nilninq any 

tvaHilAo  solution to Iho ylv<n n«'LworK j roliUr..  A IcMtqth 

■r.qucnco notworh am  then bv  conotructtJ .«u iluscribod cilxiVf. 

Tho identification o! cycluu in the lfn«jth utqucucf network 

which havo negative lotAl length rccultt; in a rocirculation 

of flow in tho oriijinnl network at a ruducod tolnl coot. 

This rocirculation ol (low roimlttt in a chary« of the oxiol- 

incj fcasiblu uolution.  A new U-ivith uccjuencc iu then created, 

Tho identification of cycles huvimj negative lomjth in thin 

new length soijuonco network triygcr» another iteration. The 

algoritlun tcrminatcu when no cyclcn having negative length 

can bo identified in thu length sequence network corres- 

ponding to the exi&ting feasible solution of the original 

network.  The existimj feasible solution at tho tiire of 

termination is an optimal solution to tho problem. 

The algorithm itself docn not identify cycles in tho 

length sequence network which have negative total lengths. 

Duo to tho largo number of noclet* and arcs which may exist 

in a length sequence network, identification of such cycles 

may be a difficult task.  In order to terminate the 

algorithm, all possible cycles in the length sequence net- 

work must be checked to ensure that the existing feasible 

solution to the problem is an optimal solution. 

17 
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B.  Till: ALCOUnil» 

1. PimJ nny ftnuiblu uolution lo tliu probUun iitid ucml 

flow acruu.'i tho network nccortlincjly.  Uttt- (4) to dcturwino 

the lotul cuut auuocidtcü with thlu iititlal CcMtiiblc 

solution. 

2. Iiawttl on tho existincj fonuibl«* flow, construct a 

loncjth Houuonce notu'ork usliuj tho utrpu doscrilx-d in Section 

III). 

3. Try to find a cycle in the lemjth sequence notwori; 

which hau a norjativc length.  In at temp tiny to identify 

such a cycle, two important condition» must bo met: 

a. If a particular arc in tho lemjth ntqiifncc' 

network is traversed k times, then the first k elements in 

that arc's lemjth sequence must bo ui;cd in computing tho 

cycle's total length. 

b. Not more than one arc of any complement way be 

traversed. 

4a.  If a cycle of negative length can be identified, 

reallocate flow in the original network as follows: 

(1) If forward arc (i,j) of tho length sequence 

network is traversed k times by the cycle of negative 

length, increase the flow through arc (i,j) of the 

original network by k units. 

(2) If backward arc (j,i) of the length sequence 

network is traversed k times by the cycle of negative 

length, decrease the flow through arc (i,j) of the 

original network by k units. 

18 
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Altto, dotctmin» the» total cout atiHoclalud with this 

nuw CoAuiblu flow.  Thi» will ho equal to the cout «tiwuci- 

atud with tho previous fuatsiblc flow plu.i tho length of the 

cycle which hau juat been IdontWiod. 

Return to stop 2. 

4b.  If a cycle of negative lenqlh cannot bo found, then 

terminate the aliforithm. The existing feasible flow, oo well 

as the associated total cost, is optiiml.  If there exists 

a cycle of length zero,  there is an alternate optimal solu- 

tion to tho problem obtainable by carrying out step 4a. 

19 

MMMAMAHMIrt rtMM 



IV.     KXAMPLH  PMOm■' M 

Contildcr iht» network ohov/n In Picjuro "«.    Th« numeriert I 

quantitiuo ttauoci^lod with each arc   (i#j)  «roi 

'ij 

(1)     (2) (M(.) 
(cii 'cij v3 )- 

4    (V.C.5,4) 

5   (7,STtrM)_, 

Figure 3. Examplo Network. 

The alcKjrithn preacntod above will be urt'tl to nolvc 

this problem for a specified  0-4. 

Step 1.)  Fitjure 4 shows an arbitrary initial feasible 

solution.  The total cost associated with this initial 

feasible solution is:  Z -  $55. 

0 

4 
5 

Figure 4. 

Initial 
Feasible 
Solution 
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Step 2.)     ritjutv* 'J  ^howtt lh« lomjth Buquvncti it««lwoi'k 

ci»Mu»|M'U«lin'j  to thlu  »im ill  ttuMii\j\t<  flow. 

7,   6,  5,  4 

Ficjuro  S.     Initial  Lotvjlh Soqucticc Motwotk. 

1 

Step 3.)  The oln;»!«? cyclo 2-,j-C-4-3"l-2 has a total 

(!)   (1)   (U   (I)   (I) #(n 
length ctiual to ' 2$  *    -SO * * 64 4 M3 * ^31 * ^^ " *G• 

'TVo comploto cycle« vi.i 2-S-6-'1-3-1-2 have .i length of 

♦6 ♦ 0 • ♦0.  Three com;»loto cycles via 2-5-6-4-3-1-2 have 

a length of +6 ♦ 0 -8 • -2. Therefore, a cycle» of negative 

length hats been found. 

Step 4A.)  Forward arcs (1,2),(2,5). and (5,6) of the 

length sequenco network are each traversed three times by 

the cycle of negative length which has juot boon identi- 

fisd. Therefore, the flow through arcs (1,2), (2,5), and 

(5,6) in the original network is increased by three units. 

backward arc« (6,4), (4,3), and (3,1) of the length sequence 

network arc each traversed three times by the cycle of 

negative length which has boon identified.  Therefore, the 
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flow throuyli nrco (4,0, (3,4), und   (1,31 in tho original 

network iu decroaoud by throe unite. Picjuro 6 ohowa tho 

ruuultiit'j real location ol  flew. 

3 

1 
5 

Figure  6.     First Keallocation of Flow. 

Tho total cost  aouociatod with this new feasible 

oolution  is: Z  »   55  -  2 =    $53. 

Stop 2.) Figure  7  shows the length uequenco network 

correspondiny to this new feasible flow. 

-5,   -6,   -7 

Figure 7.  Second Length Sequence Network 
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Step 3.) The simple cycle 2-5-4-3-2 in this second 

length sequence network has a total length equal to 

(1)   (1)    (1)  AD 
^25 + '54 + '43 +  *32 = "^'     Therefore, a cycle of nega- 

tive length has been found in this second length sequence 

network.  Unfortunately, this cycle cannot be repeated. 

Step 4a.) Since the forward arc (2,5) of the length 

sequence network is traversed one time by the recently dis- 

covered cycle of negative length, the flow through arc (2,5) 

in the original network is increased by one unit.  Similarly, 

since the backward arcs (5,4), (4,3), and (3,2) of the length 

sequence network are each traversed one time by the recently 

discovered cycle of negative length, the flow through arcs 

(4,5), (3,4), and (2,3) in the original network is decreased 

by one unit.  Figure 8 shows the resulting reallocation of 

flow. 

4 

0 
5 

Figure 8.     Second Reallocation of Flow. 

The total cost associated with this new feasible 

solution is:       Z    =    53    -    7    =      $4 6. 
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Step 2.)     Figure  9  shows the length  sequence  network 

corresponding to this nev/ feasible  flow. 

-4,-5,-6,-7 

7,5,3,2,1 

Figure  9.     Third Length Sequence Network. 

Step 3.)     There  are  no cycles of negative  length in 

this third  length sequence network. 

Step 4b.)     The  existing feasible flow,   as illustrated 

in Figure  8,   is  optimal.     The associated optimal  cost of 

sending this flow through the original  network is   $4 6. 
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V.  EXTENSIONS 

A.  SPECIAL CASH:  Q 1 MINIMUM .'J^ VALUE 

Consider a problem whore the upccificd amount of flow Q 

to bo sent through the network is less than or equal to the 

M. . value of every drc in the network. Essentially, the 

problem presented by Zamjwill [8] falls under this category, 

since he did not even consider the existence of upper bounds 

on arc flow capacities. 

Such a problem can be solved by using the algorithm 

presented in this paper.  However, an easier solution pro- 

cedure to this problem exists. A minimum-cost chain from 

the source to the sink can be identified by employing any 

shortest route algorithm, such as those discussed by 

Dreyfus [4], 

Let d. . represent the length of the directed arc from 

node i to node j in a shortest route alcjoritlun, such «J 

the one developed by Dijkstra [3]. According to Dreyfus, 

Dijkstra's shortest route algorithm is computationally the 

most efficient. 

For the above problem, let 

fCijCQ), if arc (i, 

|   oo , if arc (i,; 
V.      the networi 

j) exists in the network 
dii *" 1   'J ^ J       (   oo , if arc (i,j) does not exist in 

stwork 

To use Dijkstra's algorithm, all d^- values must be 

greater than or equal to zero.    Since the cost   functions 
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I 

arc astmmud to bo non-nccjatlvu over ilw ontiro  rautjo of 

thoir ruupoctivc  fcnu.ibU' arc flown,   thin cotuIJilon  in mcl. 
(k) Mno,  let V^      dunoto tho  label value of node i  after 

tho kth iteration of  Uijkntra's altjorithm  ha«  hvvu completed. 

Dijkstra'u alcjoritiun procooda au followHt 

Step 0.)     Sot v|0)   - 0,  VJ01  * oo   ,  i  » 2#3#...#n. 

Declare vi  ■ vi       "0 as tho permanent, labol value of 

node 1. 

Step 1.)     Compute V.^  - min}vi0), V^d^j    .     Then find 

V^^- min vj1*  and specify V.   - V*1*  au tho permanent label 
P j l "'     P       p 

value of node p. 

Stop 2.)     Compute V.J.    )    - min j v!1*, V  +d   .|     ,    Then 

find V12*  " min vi2)   and specify V„ » v/,2*   a»  the permanent 
q j r '     H H 

label value of node q. 

Step 3.)     Continue the  implied iturative process until 

node n has a permanent  label value. 

At most, n-1 iterations will be required to label node n. 

The minimum-cost chain will consist of the arcs (l,p), (p,q) • 

(q#r),...f   (m,n).     Send Q units of flow along  this chain. 

B.      NON-ZERO  LOWER DOUNDS 

Tho algorithm presented in this paper can be modified 

to handle problems in which non-zero lower bounds  ire 

associated with the arcs of  tho network.     Let L^ be the 

lower bound on flow capacity for an arc   (i#j).     Then  for 

Xj^  to be a feasible arc flow, 
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LAJ   4-   >-lJ   i   «ij <8) 

for oach tue   (i#j)   in thu nutv.oiH. 

Constraint   (6)   in  the cout-ninlnixation ytvlilvm  in 

ropldccd tiy  (8).    Onn: ätjain,   the alyoritluu bcjinu by 

findiiuj any flow which oatittfien the eenMraintu.     Thu 

only chamju in the alcjorithn iu that a length sctjuoneo 

network  ic conutruetcd no  followut 

1.)     If arc   (i,j)   of  the original network  iu nt  its 

lower bound,  draw a  forward arc  frem node  i  to mxlo  j   in 

the length ucquenco network.     Label  thiu  forward arc with 

ID (M 
j   '••"    'ij 

(1) JMii-!'ij> 
the length oeijuonce    x^   ,,..,    * i* » where 

(k)        (L4,+k) 

2.)  If arc (i,j) of the original network is neither 

at its lower bound nor saturated, draw a  forward arc Iron 

node i to nodo j and draw a backward arc from node j to 

node i in the length scciucnco network, babel the forward 

(1)     JMii-xiJ> 
arc with the length eccjuence  '«^ ••••# 'n      « w^c 

(k)   (X^+k) 
l^j ■ C. .    .  Label the backward arc with the length 

(I)      4(Xii-Lii)        iik) (Xj. + l-k) 
sequence  i^,..., 'ji      » w,>crtJ 'ji * "^ij 

3.)  If arc (i#j) of the original network in saturated, 

draw a backward arc from node j to node i in the length 

re 

sequence  i4l »•••« i^^j ^ * whore 

sequence network. Label this backward arc with the length 

(1)       (M -L.i 

ji "•" ^ji 
.(k)    (Mi.+l-k) 
^ji " -Cij j 
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VI .     AHI.Afi  I'UH  rUHTIII l< ETUt3Y 

A. IDENTiriCATlO» OK NKCATIVI! CYCLJ.« 

The only druwUnck with  litu nltjorithm pi'uticnt* J  in  tttifi 

paper iu that it inclucK«8 no procodurv lor Identifying 

cycles of nocjAtivc  lenjlh in  the  lomjilt cotjuencu netv.ork. 

Since the  identification of nuch cyclic cjoncratun the 

iterative ptoce.te of the alyoritliw,  the discovery of  an 

or;j'»nizc.] proccdun   which identifies MUC!» cycles would bo 

tnost  useful. 

Yon   |7J   has devised  an efficient   «hortowt  route al- 

tjoritlm which makeu  forward and backward ucanriin<j pnsses 

on a matrix coroi>ooed of d, .   values att defined above.     As a 

by-product of hij al«joiith»n#   sirople eye lea of ncqativn 

lenyth can easily bo  identified.     The attempt!« J^y  the 

author to  identify multiple and comj-nnim! cyclou by Dodifying 

Yen's matrix were not succe^uful. 

B. GENERAL COST FUNCTIONS 

The alijorithr. presented in this paper can aluo be u.-ud 

to solve problems in which the cotit functions arc linear 

or convex.  Due to the non-docreasimj nature of the related 

cost increments and length sequences, it would only bo 

necessary to find simple cycles of negative length. The 

restriction against using both members of a coMplemcnt 

could be waived. 
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It is the author's contention that the ulgorithm could 

be modified to solve proble ms in which the cost functions 

are neither convex nor concave. Further researcl1 in this 

area might prove to be very interesting. 
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VII. SUNMl\RY 

A procedure has been developed and pres~nted for 

optimally sending any specified amount of flow through a 

n e twork in which each a rc has an upper bound on capacity 

and a concave cost function. 

The solution technique invo l ves the construction of a 

length sequence network corresponding t o a feasible solution 

of the problem. The identification of negative cycles 

in the length sequence network results in a recirculation 

of flow in the origina l network a nd yields a re~uction in 

the overall cost. Recirculation of flow in the original 

network creates another len<; lh sequence network. The 

iterative process continues until no [;Jrther negative cycles 

can be i dentified . \\'hen this occur s , the existing feasible 

flow in the original ne twork i s optima l. 

Inputs needed to solve the problem a re the upper bound 

on capacity and the cost function associated with each arc 

in t-.he nel\vork. 

Modifications to the solution procedure are pre sented 

so that network problems h aving the additional cha racteristic 

of n0n-zero lower bounds may be solved. A very s imple 

substitute method is also presented to deal with a special 

case of the problem: Q ~ minimum M .. value in the network. 
1) 
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