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DEPARTMENT OF THE ARMY
U.S. ARMY AIR MOBILITY RESEARCH & DEVELOPMENT LABORATORY
EUSTIS DIRECTORATE
FORT EUSTIS, VIRGINIA 23604

This report was prepared by the Hamilton Standard Division of United
Aircraft Corporation under Contract DAAJ02-72-C-0003. The basic

objective of the effort was to determine the feasibility of developing

a method to predict the maximum power available (MPA) from a helicopter
gas turbine engine at full-power conditions. The MPA prediction was to

be made with an accuracy goal of at least *1% using information obtained
from the engine while the engine was operated at a partial-power condition
of no more than 30% of normal .ated power.

The report consists of a discussion of the various algorithms that could
be considered in determining maximum power available, and the algorithm
that provides the most accurate method for predicting maximum power
available is selected.

The results of the investigation show that development of a method to
predict the MPA of an Army helicopter gas turbine engine prior to lift-off
is feasible; however, before an MPA prediction system with an accuracy

of *1% can be developed, more accurate sensors must be developed. The
accuracy of such a system can also be enhanced by acquiring the necessary
parametric information while operating the engine at partial-power
conditions higher than 30% of normal rated power.

The conclusion and recommendations are generally concurred in by this
Directorate; however, before an MPA prediction system is fabricated, it
is felt that an intermediate effort should be conducted to determine
the accuracy of and optimize a system that uses parametric information
obtained from an engine operated at a power condition higher than 30%
of normal rated power.

The technical monitor for this contract was Mr. G. William Hogg,
Military Operations Technology Division.
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SUMMARY

An investigation was conducted by Hamilton Standard Divieion of UAC, Windsor
Locks, Connecticut, to determine the feasibility of developing a method to
predict the maximum power available (MPA) from a helicopter gas turbine engine
at full-power conditions, The MPA prediction was to be made with an accuracy
goal of at least +1% using information obtained from the engine while the engine
was operated at a partial-power condition of no more than 30% normal rated
power, The MPA prediction was to take into account the effects of all ambient
conditions and all internal modes of engine deterioration,

The Lycoming T53-L13 engine, a gas turbine engine presently in use on the
Army UH-] helicopter, was selected for the investigation. A mathematical
model of the T53-L13 engine and an MPA prediction system was developed
based on Hamilton Standard's prior experience and knowledge of engine control
and diagnostic systems, This model was analyzed to determine the best
attainable MPA prediction accuracy assuming perfect sensors, inaccuracies,
and effects on predicted MPA due to all input parameters, the effect of power
condition on MPA prediction, and possible alternate MPA prediction methods
using various sets ¢i parametric sensors and making various assumptions re-
garding the relative vaiuzs of independent engine parameters, The model was
further evaluated by the use of actual engine operational test data taken by
Hamilton Standard as a part of the U. S, Army UH-1 AIDAPS feasibility study.
Hardware implementation of an MPA prediction system was also investigated.

Development of an MPA prediction system is feasible, An initial system
accuracy of +3,5% can be achieved using ar aircraft-mounted digital computer
and the most accurate, aircraft type parametric sensors available today.

Attainment of the +1% accuracy goal is not feasible under the ground rules

for this study, Further studies are required to determine if +1% accuracy

is attainable when the MPA prediction is made at power levels higher than 30%,
on multi-engine helicopters for example, and when the baseline engine data,
stored in the computer, is updated during flight to reduce errors due to ambient
variations and engine degradation,
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INTRODUCTION

The purpose of this investigation was to determine the feasibility of developing
a method to predict, with an accuracy of better than +1%, the maximum power
which can be produced by a helicopter gas turbine engine at full-power conditions.
The prediction was to be made using information obtained from the engine while
the engine was operated prior to lift-off at a partial-power condition of no more
than 30% of normal rated power, The prediction method was to be capable of
identifying the changes in maximum engine power available due to all possible
types cf engine deterioration and all ambient conditions. The study was based
on a Lycoming T53-L13 gas turbine engine currently being used in the Army
UH-1 helicopter. The feasibility study was first based on the use of information
available from existing sensors normally installed on the engine., It was deter-
mined, however, that the use of these sensors did not permit the desired 1%
accuracy to be obtained, and for this reason the feasibility study was expanded
to include the use of additional and/or more accurate sensors, In addition, it
was assumed that input information was uvailable which provided atmospheric
density data with an accuracy of +. 75%.

The foliowing tasks were undertaken:

PHASE I - ESTABLISHMENT AND DEFINITION OF METHOD

Is A mathematical model of a method to predict MPA was constructed.

2, An estimated attainable MPA prediction accuracy was derived,
Inaccuracies due to input information were identified,

3. Effects of power condition on MPA prediction accuracy were deter-
mined,

4, The hardware and components required to implement the method were
described.

PHASE II - EVALUATION OF METHOD

1.  An evaluation of the MPA prediction method was made using actual
engine operational test data, in the following manner.

a, Input parameters were taken from engine operational test data at
the recommended low-power coandition,



&

b. Using MPA prediction methods and the input parameters above,
the MPA was computed,

c¢. The actual maximum power, as taken from the engine test data
used in (a) above, was then compared to the computed value
determined in (b) above.

2. The above procedure was used to evaluate the ability of the prediction
method to determine the maximum power available when the engine
deteriorated in performance because of either internal deterioration
or changes in atmospheric conditions,

a. In considering engine performance deterioration due to internal
deterioration, the evaluation procedure used engine test data
taken from engines known to be internally deteriorated, or from
engines where Internal deterioration was simulated.

b. In considering engine performance deterioration due to changes
in atmospheric conditions, the evaluation procedure used data
from at least three different engine test runs which included at
least 29°F variation in ambient temperature, and from at least
three different engine test runs which included at least 8, 000
feet variation in altitude.

PHASE IIT - RECOMMENDATIONS

As a result of the feasibility investigation, recommendations were made in the
areas of further sensor development, hardware implementation, system growth,
and continued alternate MPA prediction system studies.

o



DISCUSSION

THE MATHE MATICAL SYSTEM MODEL

A mathematical system model was constructed that included the basic power
prediction concept plus additional features for computing the errors in power
prediction, A prerequisite for constructing this prediction model involved a
cetailed knowledge of the engine characteristics on which the maximum power
was to be predicted,

A mathematical model of a "typical" Lycoming T53-L13 engine was evolved on
an IRM 370 computer, based on engine modeling concepts developed by Hamilton
Standard, The so-called "typical T53-L13 engine was actually the average
characteristics of test—cell data from 75 engines, This test data provided the
steady-state values for Nj, T3, P3, Tg, SHP, and Wy at standard-day conditions
from idle to maximum power. The independent variables (such as component
efficiencies and geometries) of the generic engine model were selected to
duplicate the steady-state test data from the "typical" engine. The resulting
computer model of the T53-L13 engine was then used to provide all required
interrelationships, For example, ch:nges in engine speed, temperature, pressure,
or power resulting from changes in engine gecmetry, component efficiency,

or air pumping capacity were computed, The engine model was used to compute
the partial derivatives or influence of any engine p. rameter on any engine
variable, called influence coefficients in this report,

The basic maximumn power prediction concept is an extension of the engine
diagnostic techniques previously developed by Hamilton Standard. This
prediction concept is described as follows, The prediction computer contains
three types of predetermined stored engine characteristics.

1. Buase-line characteristics, consisting of steady-state locus of values
for measured engine variables over the range of engine operation at
which prediction can be performed.

2 A matrix of influence coefficients relating changes in the engine base-
line variables to changes in such engine parameters as component
efficiencies and geometries, called the "B-matrix" in this report,

3. A matrix of influence coefficients relating changes in engine parameters
to changes in the engine power limit, called the ""C-matrix" in this
report,
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Figure 1 shows a schematic diagram of a single-spcol free-power turbine engine
and identifies the various engine station numbers for future reference.

Measurements of engine variables and environmental conditions are obtained
at low power, After measurement filtering and determination that the engine
is in steady state, the measurement data is corrected to standard-day
conditions, The percentage of point variations between the measurement data
and stored base lines is determined. A gas-path analysis is then used to deter-
mine changes in engine characteristics (efficiencies, airflow, and geometries)
from the values that existed when the stored base lines were determined, The
percentage of point variations in engine characteristics, as determined at low
power, is also assumed to exist at high power., Maximumn power is determined
by computing the fractional change in environment resulting from each change
in engine characteristics and each change in environment from standard-day
conditions, The complete computation of maximum power is performed for
each control limit influencing maximum power, specifically a gas generator
speed limit, a turbine discharge temperature limit, and a metered fuel limit,
The lowest of the three computed values for maximum power is selected as the
maximum available horsepower.

The gas-path analysis, performed on measurements obtained at low power,
consists of a stored data matrix relating the increment between measurement
and base-line data to variations in engine characteristics. This data matrix

is determined in advance based on the engine thermodynamic relations,
Numserical values of this matrix are stored at several low-power conditions,
allowing a power prediction computation over a range of engine power.
Similarly, the computation of the fractional change in maximum power is deter-
mined by a stored data matrix reiating the variation of each engine characteristic
and environment to the fractional change in maximum horsepower. This stored
matrix is determined in advance based on engine thermodynamic relations at the
standard-day maximum-power condition,

The basic tool in developing the power prediction algorithm is a technique
developed by Hamilton Standard which quantitatively defines how the various
engine performance parameters change with respect to each other or with
changes in the environment or the engine fuel control. From a steady-state
operating condition, a set of "influence coefficients' interrelating all the various
engine performarce parameters is determined, From this set of influence
coefficients, the steady-state characteristics as well as the influence
coefficients at any other power condition can be determined. The influence
coefficients computed will ultimately be used in the power prediction scheme,
Since the accuracy to which power can be predicted is affected by the accuracy
of the influence coefficients, it is necessary that these coefficients be computed
as precisely as possible,
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Definition

Gas Generator Turbine Inlet Nozzle Effective Area
Power Turbine Inlet Nozzle Effective Area
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Engine Fuel Flow Rate
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Gas Generator Turbine Efficiency

Power Turbine Efficiency
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Compressor Discharge Bleed Airflow

Compressor Shaft Power Extraction

Figure 1. Schematic Diagram of a Single-Spool
Free-Power Turbine Engine,
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The accuracy of the influence coefficients is judged by determining if the computed
steudy-state characteristics corresponu to actual steady-state characteristics

of the engine obtained from tests, By varying compressor efficiency, gas
generator turbine efficiency, and power turbine efficiency, the comprted steacy-
state characteristics can be tuilored to match actual steady-state characteristics
for the particular engine.

Because of the large amount of test data available, the power prediction concept
was specifically deve'oped for the Lycoming T53-L13 engine, However, the
general concepts are applicable to any free-turbine engine, A modern fuel
control mode similar to the Hamilton Standard JFC 80 (used on the Lycoming
LTC-4V -l engine) was used for this progrum, In particular, it was assumed
that maximum power is limited by a gas generator speed limit, a gas generator
turbine discharge temperature limit, and a metered fuel flow limit, For
component efficiencies as defined in Figure 2 through 4, the base-line steady-
state characteristics as a function of corrected compressor discharge pressure
are shown in Figures 5 through 10, Note that all engine characteristics are
plotted as corrected quantities. Actual base-line data obtained by averaging
test data of 75 T53-L13 engines are also shown in Figures 5 through 10,

Depending on the number and kind of sensor measurements made at low power,
various specific cases of the basic power prediction concept were determined,
(Selection of the specific cases most likely to yield the best power prediction
was guided in part by the results of the engine diagnostic studies in the Army
UH-1 AIDAPS Feasibility Program.) In this study, four such specific cases
were evaluated. The four cases are defined by the following sets of low-power
sensor measurements:

Set I (T}, P}, N|, N, Py, T3, W, Py, SHP, Tp)

SetII (T, P|, N|, N,, Py, T3, Wy, SHP, Tg)
and assume GAN/AY = anl)l /n ot

Setm (T, Py, Nj, Ny, P3, Ty, W, Pg, Tg, Tq)

Set IV (T, Py, Nj, No, Py, Tq, Wy, SHP, T7)
and assume OAN/AN =005 /1

For the first set of sensors, the power prediction algorithm can be outlined
in detail as follows:
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I. Refer low-power sensor readings to standard-day conditions,

6, = T1/518.7

6, = P)/14.7

Nic = \i/AV8y

Noc = N2/\/6)

P3c = P3/b)

T3c = T3/6) 1)

Wee = We/616,F
SHPc = SHP/6,./0)

P7/61

o
-3
@]

i}

Tec = Tq/8)

II, Determine base-line values from stored hardware at the same P3¢ value
as in I,

Nics = f1(P3c)

NocB = f2(P3C)
Tsc = f3(P3c)

f4(P3c) (2)

WicB
SHPcp = f5(P3C)
PrcB = fg(P3c)

T7cB = f7(P3C)
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III, Compute optimal corrected SHP from corrected SHP,

Correction Factor (CF)

[(Nzc - Nch)/Nch] 2 (3)

SHPco = SHPc/(1 - CF) )

IV. Compute the relative deviation of the measurement data from the stored
base-line data,

DN1 = (Nic - N1cB)/NiCB

DT5 = (T3c - T3cB)/T3CB

DWF = (Wfc - WgcB)/WeCB

DSHP = (SHPgq - SHPCB)/SHPCB E
DT? = (T7c - T7cB)/T7CB

DP7 = (Ppc - P7cB)/P7CB

V. Compute the variations in airflow pumping capacity, efficiencies, and
geometries from the following matrix equation,

[(Wac - Wacﬁ/wacn] PC

pwA| | (c -Nce)/Nce [ DN1
DETAC DT3
DETAT (M - M)/ M DWF
DETAPT| = = B | DNPPT] (6)
DAS (Mpt - NptB) Nt DT?7
DAN J | DP?

(A5 - ASB)/ASB

(AN - ANB)/ANB

The B-matrix in Equation 6 is computed from the influence coefficients and
is a function of the set of engine parameters measured at low power, A
different set of low-po'ver sensors would require a different B-matrix,

13



VI,

Since the value of P3C at which the lowpower measurements are determined
is not known in advance, the'B“matrix has been determined and stored at
several values of P3C, and linear interpolation on P3(C is used to obtain

the actual B-matrix to be used in Equation 6. In the sensitivity studies to

be discussed later, an augmented'B-matrix was used to take into account

the effects of uncertainty in compressor discharge air bleed and shaft power
extraction at low power on predicted power.

Compute maximum power at each of the control limits from the following
equation,

On the T7 temperature limit

SHPOT = (SHPRgp) 6; (1 + DWA)C!! (1 + DETAC)C12 (1 + PETAT)CI3

(1 + DETAPT)C!4 (1 + DA5)C15 (1 + DAN)CL6 fp (Tap) (™)
On N) speed limit

SHPON = (SHPREF) 8;°%" (1 + DWA)C2! (1 + DETAC)C22 (1 + DETAT)C23

(1 + DETAPT)C24 (1 + DA5)C25 (1 + DAN)C20 £ (TApp)  (8)
On Wi limit

SHPOW = (SHPREF) 6;°%7 (1 + DWA)C3! (1 + DETAC)C32 (1 + DETAT)C33

(1 + DETAPT)C24 (1 + DA5)C25 (1 + DAN)C26 f, (Tam) (9)

In Equations 7 through 9 it has tacitly been assumed that the changes in
component efficiencies, airflow, and geometries computed at low power
also apply at high power, This assumption is a source of power prediction
error which is taken into account in the error analysis. In the sensitivity
studies to be discussed later, Equations 7 throug:' 9 were expanded to take
into account the effects of control and sensor inaccuracy at high power on
predicted power as were the effects of uncertainty in compressor discharge
air bleed and shaft power extraction and high power on predicted power,
These factors are important in evaluating the overall accuracy of the mouel;
however, they do not enter into the actual power prediction algorithm,

14



From the horsepowers computed at the three control limits, the minimum
is chosen as the maximum power available; that is,

MPA = MIN (SHPOT, SHPON, SHPOW) (10)

For any other set of low-power measurements, the procedure for determining
the maximum power available is analogous to the p’ ucedure described above
except that a different B-matrix is used, The 'C * coefficients in Equations 7
through 9 do not change unless the engine control mode is changed,

Of the many variables which enter into the power prediction scheme, the one
which has the widest range of variation is ambient temperature, 1he ambient
temperature range of -60°F to 120°F represents a 42, 3% to +11,8% variation
from the standard-day ambient temperature value of 518, 7°R (~59°F), In the
development of the powei prediction algorithm, the effect of ambient temper-
ature appeared as a factor in the equation for horsepower of the form

[ TAM/(TAM) g JCTAM, In using this factor, it was found that over the
wide ambient temperature range expected, the exponent CTAM varied
sufficiently such that using a constant value for CTAM resulted in prohibitively
large errors in predicted horsepower,

An alternate procedure was chosen which uses an ambient t¢mperature correction
factor to account for ambient temperature variations. At a given ambient
temperature, the ambient temperature correction factor is defined to be the

ratio of actual horsepower at the specified ambient temperature to the actual
horsepower at the standard-day reference temperature of 518, 7°F, A separate
ambient temperature correction factor is required for each of the three control
limits and is shown in Figures 11, 12 and 13 for the base-line engine,

As the engine degrades, the ambient temperature correction factor will shift,
The power prediction algorithm does not take into account this shift but uses
the ambient temperature correction factors defined in Figures 11, 12 and 13
for all engines., As a result, an error in the predicted power will be intro-
duced for degraded engines for nonstandard-day ambient temperatures,

Engine diagnostic studies in the UH-1 AIDAPS feasibility program have demon-
strated the need for determining that the engine is sufficiently ear steady state
to obtain meaningful steady-state data, This evaluation has not been duplicated
in this feasibility study, as the evaluation in the AIDAPS program is applicable
to power prediction, Therefore, the technique for determining steady-state
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conditions evolved in the UH-1 AIDAPS program will also be used in the power
prediction algorithm, Satisfying all threce of the following conditions indicates
that the engine is sufficiently near steady state to tuke measurements for
prediction,

1. N} pmAx - N1 MIN within a frame < 200 rpm
. |AN| ¢l between frames < 100 rpm

3. TT7C aAX - Tr7e MIN € 2.5°F for 60 seconds

One frame of data represents two seconds of measurement time, There are four
speed measurements and four temperature measurements in one frame.

The power prediction algorithm involves the use of predetermined ‘B-matnx,

I matrlx, and base lines, As noted, the B-matrix relates the variations in
engine efficiency, geometry, and airflow pumping capacity to measured vari-
ations in speed, temperature, pressure, power, and fuel at low power, whereas
the' CZmatrix relates the variations in maximum power on each contrel limit to
the computed variations in maximum power on each control limit to the computed
variations in engine efficiency, geometry, and airflow pumping capacity. Studies
have indicated that neglect of the changes in the'B“matrix and'C-matrix resulting
from engine degradation causes a relatively minor error in the power prediction
algorithm, Therefore, the' B matrix and'C matrix, as computed for the typical
engine, may be used in all units; i, e,, every prediction computer will contain
identical stored'B'and’ C"'matrices for the same engine model.

However, a review of the actual steady-state data from the 75 engines tested
shows relatively large engine -to-engine variations in the base lines. As a

result, it appears necessary to measure and store a unique set of base-line values
for each engine to avoid significant errors in prediction, This requires an initjal
steady-stute "'calibration’ for each engine to be loaded into the prediction
computer, The power prediction can then accurately predict the effect of any
subsequent engine degradation, It should be noted that this initial calibration
requirement of the engine base lines is based on observed engine -to -engine
variations of the T53-L13 model and may not apply to another engine model,
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CONFIRMATION OF MODEL ACCURACY

To analytically evaluate the validity of the algorithm for computing MPA, the
base-line engine was "degraded' by making a 17 increase in ¢, My, 7 pt,

Ag, and Ay. The influence coefficients were used to obtain a set of steady-
state engine data for the "degraded' engine. This data served as the source

of low-power measurements for the degraded engine. The MPA was calculated
using the steady-state characteristics for the degraded engine and using the
power prediction algorithm., All computations were made at sea-level standard-
day conditions and at optimal N9 speed.

In order to determine MPA when on N| speed limiting for the steady-state
characteristics of the degraded engine, it is first necessary to determine the
new N] limiting speed, It is assumed that the fuel control is a W¢/§) type droop
control with a droop slope given by:

wi/ NIAO 1
(a—f gIyi0 1/v01) = -6.5 (11)

Wf/6l' Nl/‘/e_l Droop Line
p

For sea-level standard-day conditions, Figure 14 shows a plot of Wg/ 8] vs,

N 1/\/3_1 for both the base-line and degraded engines. Also shown in Figure 14
is the control droop line which passes through the base-line point of Nj /\/?0— =
24,700 rpm and W§/ 8] = 793 pph and whose slope is given by Equation 11, The
intersection of the ''degraded' steady-state line with the droop line defines the
N) limiting speed for the degraded engine. From Figure 14, the limiting speed
for the degraded engine is approximately 24, 820 rpm, Figure 15 shows power
turbine horsepower as a function of gas producer speed for the base-line and
degraded engines, The horsepower at the N} limiting speed for the degraded
engine is designated by the symbol "SHPON'" and is found to be 1383 hp. Figure
16 shows power turbine horsepower as a function of T7 for the base-line and
degraded engines. At the T7 limit value of 1743°R, the horsepower for the
degraded engine designated by "SHPOT" is found to ' e 1545 hp. Figure 17
shows power turbine horsepower as a function of fuel flow for the base-line

and degraded engines. At the Wy limit value of 793 pph, the horsepower for
the degraded engine designated by SHPON is found to be 1440, The above
results were analytically determined from the steady-state characteristics of
the '"degraded' engine, From these results, the MPA is given by:

MPA = MIN (SHPON, SHPOT, SHPOW) = 1383 hp (12)
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At a relatively low power condition, input data for the power prediction program
was obtained from the steady-state characteristics of the degraded engine at a
constant P3/§) value, Table I shows the steady-state values usec as measure-
ments in the power prediction program at P3/§; = 60,3647 psia.

The results from the power prediction program are summarized as follows:

SHPON = 1390, 9448 hp (N; Limiting)
SHPOT = 1557, 09668 hp (T7 Limiting)
SHPOW = 1449,7737 hp (W Limiting)

These predicted values are also shown in Figures 15, 16, and 17, From the
power prediction program, the MPA is given by

MPA = MIN (SHPON, SHPOT, SHPOW) = 1377.877 hp

The results from the power prediction program are within 1% of the analytical
results based on the steady-state characteristics, The small errors are due in
part to errors in precisely determining the steady-state characteristics of the
degraded engine, errors in predicting power at each control limit, and computer
round-off errors. The results, however, do show that the power prediction
algorithm is conceptually correct.
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