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OPTIMUM ALLOCATION OF EFFORT FOR DETERRENCE 

\ 
ABSTRACT 

Mathematical models of optimum procurement allocation 

^?nodfferSÎ ïyPe?.0f ^et al i at or y "weapons systems aïe 
examined. A distinction is drawn between so-called "numeri¬ 
cally vulnerable" (NV) systems (which find safety in numbers 
and are approximated by fixed missile bases) and "percentage 
vulnerable" (PV) systems (which require the enemy ?o engïgf 

e. g,, because they are m a search effort to counter them, D„ __ 

is.shown îhat is generally preferabíe'to^buy 
HfiPV systfras and ?nly a single optimal NV system. 

nr.evl1¡10delS+íre +îSO aPPlicable to measure-countermeasure 
problems other than deterrence.% The prime value of this 
paper is believed to be its demonstration fhat even in the 
simplest cases cost/effectiveness comparisons may not lead 
to optimum solutions about allocations of resources among 
countermeasure susceptible weapons systems 

— 1 
(REVERSE BLANK) 



nirm~l 

I. INTRODUCTION 

Of »ardd^^itatiV€ly about the desirability 
weapon syftSms, £ ^lerence^6 ^ “ "mlx" of -'IffereJ, ÿ 
as is virtually the case at present^tL.0” \single System, 
encountered argument is ï? most ireQuent ly 
it is a good buTïn teLs oî f!îh0Ugh the mix cost more- 

enemy technological breakthíoíghSriSCco™?«n?t u;?r<,dictable 
system. The more diversified countering the single 
qualitatively different svítLí^« * prf®ented by a mix of 
fields of countermeasuresyreseLíhrCe? the enemy lnto broader 
his effort against tov sin^f^?.^ P5ocure®ent, dilutes 
the countermeasures vJlnerabilitrof’a^ tïereJy decreases 
demonstrated shortness of enemy LaL?im¿. °f the 
them more rapid reallom-Mnne ï.* times, which may permit 
and which coSîS conÎeïïaWy maïe we can achieve 
on our part obsolete before it^wa^LfÍngírsystem "optimization' 
asked) 0« we afford ÂngÍsIsmern-a^Õ^ ' ^ ÍU tS 

îotivÏM™s!1,:oî1™.^eSîs?“1“aï1ï',th“a »e strong 
in the sense of procuring only theCs3nfííereSt' to "optimize" 
in terms of oost/effeíti?enêss í?gle S5,ste” that ls best 
by a budgetary celling, how (it is askJn6 ssvere,y co»fined 
system other than theses? fi^tta “Sa^“ TC aflord “y 

budgetary ceiUng'impîîés^nfv1'?hf1 %th? 1>osit,on that a 
be purchased is untenable if we set^1? +est systein should 
spending of our deterrent doling hf8î ^ to 0Ptimi2!e the 
second" retaliatory power as rauch "»trike 
funding limitation^ it Síy^u?n oít1ei7í!hl?*,a given total 
buy a mix or that we should buS « that we should 
the deciding factors even in fh® system. And one .f 
tions, is the nature’©? the^vstL^af00® °í other considera- 
respect to their co^erLLSs^mlraMmr'"1 

fixed Inveetmen^byThe^nemv j?7i!„syfton ls one for which a 

he can deetroy is independenî'of hoH^y ^ 
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choose to buy. When a saturation law applies, this may be 
true only for small countermeasures investments and a NV 
system is then characterized by t’ ^ fact that as long as the 
enemy's investment in countermeasures is proportional to our 
procurement, he can counter a fixed fraction of the systems. 

Examples of NV systems are the ground-alert SAC fanned 
bomber force or fixed MINUTEMAN when the countermeasure to 
these systems is a preemptive ICBM attack. More generally, 
any unconcealed immobile force that presents the enemy with 
a numerical destruction problem when he decides to attack 
the system at its source is a NV system (Note that it is 
not the retaliatory system which is NV or PV; it is the 
combination of the retaliatory system and countermeasures 
system which can so be characterized ) . 

A percentage vulnerable (PV) system is one for which a 
fixed investment by the enemy in countermeasures provides 
him with a fixed percentage threat against the system. That 
is, for a given investment the enemy can counter a given 
percentage of the retaliatory units of our PV system, and 
that percentage is independent of how many units we may choose 
to buy. 

Examples of PV systems are POLARIS submarines or mobile 
MINUTEMAN when an attempt is made to counter them by blunting. 
More generally, any system that forces the enemy to a search 
effort as the major portion of his countermeasures investment 
can be characterized as being PV. 

To understand why search generates a percentage threat, we 
have only to recall that a given amount of searching produces a 
given probability of detecting a particular unit searched for. 
This probability of detection applies to any unit present that 
can be expected to be found (and destroyed). This fraction 
(percentage) is independent of the number of units present; but, 
of course, the number of PV units destroyable does depend on 
the number present. For NV systems, on the other hand, the 
number of units destroyable does not depend on the nuraber 
present; but, of course, the percentage of NV units destroyed 
does depend on the number present. 

It is hoped that the reader has these distinctions clearly 
in mind for they are crucial to an understanding of the results 
to be discussed. Systems, are conceivable which would partake 
of some of the characteristics of each. One example might be 
the POLARIS system if the enemy develops a moderately effective 

4 
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AICBM. Another might be the SAC ground-alert force for certain 
combinations of blunting effort and at-target defensese When 
faced by a single countermeasure only, most systems seem to 
fit quite satisfactorily into either the NV or the pv category 

II. ASSUMPTIONS 

The basic mathematical models that treat the problems of 
optimum choice are presented in the appendicies. in particular, 
appendix A sets up the equations for the basic models which 
aiiow the probiem to be formulated as a mathematical game. 
For the time being we shall only consider the basic models 
treated in appendicies A to D. These basic models depend 
upon two fundemental and argueable assumptions. 

A. For both the retaliatory and countermeasure systems, 
there are no prices-of-admission and no learning curve applies 
to large purchases, i. e., the number of retaliatory units 
purchased is proportional to the amount spent on a single 
system and similarly for the number of countermeasure units 
purchased by the enemy. 

B. For each retaliatory system there exists a single 
and unique countermeasure that the enemy can apply against 
the system and, moreover, the countermeasure is different 
for each system. 

We shall postpone the discussion of these assumptions 
and proceed to a discussion of the basic models. 

Two opponents, A and B, are considered. A wishes to 
maintain a "strike second" (retaliatory) capability, while 
B wishes to counter that capability. (B has similar require¬ 
ments for a "strike second" capability against A but we 
ignore that part of the problem). We consider the opponents 
to have fixed, arbitrary annual spending rates, CÄ and C . 
The assumed conditions are: A B 

rctssion: Deterrence through assured retaliatory 
capability. 

A*s objectives: Subject to spending-rate ceiling , 

maximize the total number of weapons deliverable on- 
target after B’s counterforce measures have been 
applied (strategic and tactical initiative and surprise 
being conceded to B). 
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B's riiaaion“ Maintain a capability to nullify A's 
retaliation„ B?s objective: Subject to spending 
rate ceiling C^. minimize the number mentioned above 

that A seeks to maximize. 

Each of the possible weapon systems available to A for 
accomplishing his mission is described by just two parameters, 
one that measures cost (per weapon or per unit of destruction) 
in the absence of enemy countermeasures, the other an "invulner¬ 
ability index" that measures the outlay required B to reduce 
! by best available countermeasures) the retaliatory effectiveness 
of the system by a given amount. 

III. RESULTS 

A. PV Systems: The discussion that follows is based upon 
appendix ß which examines the allocation problem for a number 
of PV systems, each of which is subject to a saturation law, 
i. e„3 the marginal effectiveness of added countermeasure 
allocation by the enemy against a given system decreases as 
the allocation increases. PV systems not subject to a 
saturation law are not treated although it is pointed out the 
latter systems can be viewed as special cases of the former 
and hence that similar results should apply. 

If A’s choice of retaliatory systems is limited strictly 
to PV systems, then in general it will pay him to buy a 
diversified "mix" of several such systems. The determination 
of the optimum number of systems, n, to be procured depends on 
the system parameter values (cost and invulnerability) and on 
Cg, but is independent of C^. This means that the amount of 

diversification advisable for A does not depend on whether A 
is rich or poor, but only on whether his opponent is rich or 
poor. The richer B is, the larger n, should be, and the greater 
the penalty A must pay for failure to diversify. Thus, in the 
case of PV systems, diversification is not a privilege of the 
rich, but malees good sense for even the most penurious. The 
hard—to—take implication is that the effect of a strict budget 
ceiling on A's total expenditures should be to force curtailment 
not of system diversification but of numerical procurement of 
any given system. The effect of a very tight budget is properly 
to prevent procurement of "enough" of any one PV system, but ’ 
not to prevent procurement of "enough" different PV systems. 
By the "bundle-of-sticks" philosophy, any single system is 
(numerically) weak, but all together lend mutual support and 
offer the nearest attainable approach to adequacy. 

6 
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*_^Diversification also represents a conservative sfratetrv 
for A. He can of course, always gambleThat "B"rs" total 8y 

SfSo^bïT elt0ltS WilL be le"S than^HlcSîfresources make possible. Such an assumption will reduce the diversi- 
basis1«? °L 0Ptlraal roix- But it is solely on the 

Linï?nti0^ ^SBlng- that A can logically 
justify the rejection of a diversified mix of PV systems. 

systeS^to^îv^^S^h^ï ^f^nfion of how many different 
systems to buy, and which systems to buy, (He should, in fact 
mvltl™ hÍ!TSt Sy!tem8 mailable), ßit once the ch¿lce of 

boen made, the relative amounts that should be 
spent on the various chosen systems are, oddly enough not 
influenced by cost considerations at all, but solely bv 

fSystem procurement Spendi- 
ïïdexK ld Ín f * be proportional to system invulnerability 

noun?«* contrast between optimum procurement 
Í an,d M systems could hardly be sharper. In 

toPNVdsv«tem« uA'S choice is limited strictly 
’«îïen he shoul<1 buy 013!y a single optimum system. 

The reae*^1?! "raix^g" of NV systems is undesirable, 
that to see’ inasmuch as NV systems are those 
-sSetv in ™b«?!..eneïy to a numbers race. and therefore find 

“““h018 • Any procurement of NV systems other 
than the optimum one is done at the expense of the numbers 
is^eSte/th«8^6^5 of,th® °Ptimum system. And this expense 

Of ^‘««““i^^sTneî-fosI“6“48’ B° the 

the spending ratio tyc*. If this ratio is 1¾. Î stould7 

de-emphasiae cost criteria and seek maximum invulnerability, 

^°ss Mixes of NV and PV Svs*#»»«« • (»»«(t. „ m4ir 
îL^eSner^V*“1“' subj¿ctT?l ^satuíauôí, 
aîI’exhihïS ?d aPP®ndix D. The results of the aSnasis 
are exhibited in Figure D-3. Some of these results areî**^ 

- i1* If th0 resources of both A and B are small A 
Sï? ofC™?^°?<ly PV system» Moreover, iHhe cost per 
unit of retaliation is higher for the NV system and if B’s 
resources are small, then A should choose only the PV system 
whatever his own resources may be. system 

7 
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(2) If A's resources are fixed and B's resources are 
large enough s a mix of systems in which the NV system produces 
no pay-off but acts as a sink down which B pours his counter¬ 
measure funds will he optimal. 

(3) if B’s resources are fixed and if the PV system 
is more expensive (i. e., higher cost per unit of retaliation), 
A should choose the NV system alone only if his resources are 
large. 

(4) if the NV system is more expensive, A should never 
choose the NV system alone. 

It should also be noted that a particularly interesting case 
of a of one NV and one PV system has been examined in great 
detail by J„ M„ J^bbie.* 

D. Multi-purpose Countermeasure : in the models thus far 
discussed the simplifying assumption has been made that there 
is a one-one correspondence of measures and countermeasures. 
If, instead, a given countermeasure can be effective against 
more than one measure (e. g., as a counter-force ICBM system 
is effective against both ground-alert bombers and fixed ICBM 
sites), some modification has been examined and the techniques 
are exactly analogous to those required for an analysis of the 
unique countermeasure cases. Since nothing very surprising 
results, however, the analysis has not been included in this 
paper. 

IV. DISCUSSION 

A. Qualifications : The costing procedure used for the 
basic models is not completely realistic. It has been assumed 
that the first dollar that A spends on a system will buy a 
dollars worth of retaliation and the last dollar invested in 
the system will buy no more nor no less retaliation than the 
first. 

The "learning effect" cost reductions attendant on massive 
procurement are believed to have little influence on the main 
conclusions generated by the basic models. In any case, the 
learning effect should be of decreasing importance as the age 
of mass procurement of huge numbers of identical systems seems 

* Operations Research, Vol. 7 No. 3, May-June 1959, Pgs. 335-346. 

8 
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to have yielded generally to an era of limited procurement 
in the face of accelerated technological obsolescencec 

The effects of "prices-of-admission" are less easily 
dismissed„ It can be argued that R&D costs usually come 
out of a different pocket and: moreovers ti%t the systems 

probably be developed as a matter of insuranceo Thus, 
the question is really one of procuring existing systems and 
the "price-of-admission" is of no import„ This point of view 
cannot be entirely dismissed but neither is it entirely 
convincing. 

Appendix D considers NV systems and shows that a "price- 
of—addmission" can either increase or decrease the attractive¬ 
ness of diversification, even for NV systems which should not 
be diversified according to the basic model’ it is not 
surprising that prices-of-admission may make diversification 
less attractive. One need only consider an allocation problem 
between two PV systems when the sum of the prices-of-admission 
is greater than the total budget to be allocated, That prices— 
of-admission may properly increase the tendency to diversification 
is not so obvious. The reason is not difficult to discern, 
however, and depends upon the fact that the enemy may also be 
subject to a price of admission. Thus, for two NV systems, 
it may be worthto buy as much of the non-optimal, system 
as possible up to the point where it becomes profitable to the 
enemy to begin to countermeasure the second system, 

B* Suggestions for Future Work" A number of objections 
can be raised to the basic models and various approaches 
toward more realistic models suggest themselves. Some are 
listed below and they range from serious shortcomings to 
merely possibly valid but not too important points. Since 
the purpose of this paper is to gain an insight into the 
problems of allocation in the face of countermeasures and to 
show that a pure cost/effectiveness comparison is insufficient 
to solve the allocation problem, no attempt has been made to 
answer the listed objections. Prior to the actual allocation, 
they must of course be taken into account. For the time being 
they remain as possible subject for future study, it might 
be noted, however, that the tendency of these additional 
considerations is to enhance the value of diversification 

(1) Systems are often of a nature that partake both 
of numerical and percentage vulnerability, e. g., SAC ground- 
alert forces faced by both a pre-emptory strike and at-target 
defenses. 

9 
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(2) Systems which are not PV may in the future become 
NV» e* go J POLARIS if an enemy AICBM breakthrough is achieved» 

(j3) Technological uncertainty, long lead times, and 
uncertainty of the enemy's technological capabilities make 
diversifications more attractive than the models imply. 

(4) Since Cß is generally not known, a risk analysis 

should be made» For that matter, even is not well known in 

aüvanee. All in all, then, the value of diversification is 
underrated. 

(5) Systems and countermeasures are actually phased 
in and out over time. Thus the two steps process of the models 
is inappropriate (steady state versus transient state). 

(6) The assumptions that the enemy has perfect knowledge 
of our decisions and that his leadtimes are too short for us to 
take advantage of are unnecessarily pessimistic. 

10 
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APPENDIX A 

Derivatior of the Basic Models 

Opponents A and B are considered. We suppose that A has 
at his disposal an amount of money which he desires to 

allocate in the most effective manner between n systems. 
Denoting systems by numerical subscripts, A's problem• 1« to 
choose an optimal set of numbers x * ixis x2 . .^subject 
to the restrictions # 

xt > 0 i - 1, 2»...n (A-l) 

and 
n 

i™l 

(A-2) 

A's opponentf B, has an analogous problem. Subject to a budget 
constraint C2 he must allocate between n countermeasures, each 

of which affects exactly one of the retaliatory systems. Thus, 
B must adhere to the constraints 

y n 0 i ** 1, 2 . .. . . n ( A-3 ) 

and 

in choosing an optimal set y “ ^2,','°^n}’ ‘ ^ur^^er 

assume that A chooses first, knowing that B will make his 
choice with full knowledge of A’s choice. 

Each of the systems has a purchase cost and a counter¬ 
measures cost associated with it. Specifically, we assume that 
the "cost per unit of retaliation" is l/ßi for the iH system. 

Thus, spending an amount on the i^system by A results 

(in the absence of countermeasures) in the purchase of 

A-l 
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'units of retaliation", e, g., an expectation of cities 

destroyed by the ith system. If, on the other hand B invests 
n amount yi in the ith system, the number of "countermeasure 

units" purchased for use against the ith retaliatory system 

“ a y. fA 1 (A-6) 

where is the cost of a "unit countermeasure" against the 

system. 

K«taiWe*dlStin?Ulsh four basic Possibilities for the number of 
in by a system given A’s investment 
thn JÎ * S investment in countermeasures against 
the .. y ¡J, tenu The four possibilities depend upon whether the 

^numerically vulnerable (NV) or percentage vulnerable 
<PV) and whether or not a saturation law applies. 

By a PV system, we mean that a specified investment in 
aiways result in a fixed percentage of the 

?th rramÍat°íy UnitS survivi“e* i. e., To say fliat the 
e^iiv^r t tS PV Wlth reSpeCt to the countermeasure is 

M. 
- f (¢.) 

i 17 (A-7) 

where ^ is the number of retaliatory units that survive given 

Mi purchased and 4»i countermeasure unite purchased and where f. 

is a function independent of Mi and hence of xia 1 

condiho+’ °n îhe °îher hand is characterized by the 
^he ”umber of "countermeasure units" purchased 

countered ^ "retaliatory units" that are 
countered. Actually, this need only be true for small counter- 

Trtolanhat^fn.fe & ïetter cbaracterization of NV sys^ms 
is to say that if B’s countermeasure investment is proportional 

* The word "system" in such statements is to be understood 
as inferring to the combination of the retaliatory and the 
countermeasures mechanism. 
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to A's investment in the system, the fractional return to 
A will be constant, i, e., 

Si being a function that involves only the ratio 

Whether or not a saturation effect occurs will determine 
the functions f^ and , We shall assume the usual éxponcntial 

saturation law which can be applied to systems for which (a) 
there are diminishing returns from countermeasures procurement 
and (b) for small counter measures procurement the percentage 
attrition achieved is linear in the procurement. 

Thus, for a PV system subject to a saturation law we have 
from Equation (A-7) 

Ni “ Mi e_<,>i (A-9) 

and from Equations (A-5) and (A-G), 

Ni " ßixie~aiyi (A-10) 

For a NV system, a similar expression will apply based on 
Equation (A-8), specifically 

Ni = flixie xi (A-ll) 

(It should be noted that since "countermeasure units" are not 
numerically defined, the constants of proportionality have 
been taken as unity,) 

When no saturation law applies, simple proportionality will 
be assumed and the constant of proportionality will again be 
assumed equal to one. Thus, for a PV system not subject to a 
saturation law 

Ni " " 0^(1-°^) (A-12) 

A-3 
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and for a NV system 

Ni == ßixi(1“ ‘ Bi(xi “ (a-is) 

Finally, we note that the object of the "game”,Is for 
A to maximize and B to minimize the pay-off function 

, n 

N(Xf " Z_ Ni(xiyi) (A-14) 
i=l 

A-4 
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APPENDIX E 

Î11.—-j^_s*-c Model for a Number of Percentage Vulnerable Systems 

Appendix A, the basic model for PV systems was derived. 
In this appendix we use the basic model to derive an expression 
for the optimal choices of the two opponents. The only case 
that will be treated iô a set of PV systems subject to a 
saturation law» The case of PV systems not subject to a 
saturation law can be handled by techniques similar to those 
that follow and they will also be found to imply the choice 
or a mix of systems (in general) rather than the choice of a 
single system. It should also be note*! that the lack of a 
saturation effect makes the problem less difficult to handle 
as might be expected since the no saturation pay-off function 
can be derived from the saturation pay-off functions by a 
series expansion of the exponential and neglect of the higher 
order terms. 

The "game" we are interested in here begins when A chooses 
a set X - X2,..,xï subject to the conditions x^>0 and 
,__n ^ — 
z_ 

i=l 
X. 
1 CA, The next move is B's who} with full knowledge 

of A s choice, selects a set y = Í subject to 

yi>0 and yi = Cg. It is A's object to maximize and B's 

i»=l 
to minimize the pay-off function. 

NÚ, y) =21 B.x.e“aiyi 
i=l 1 1 

(B-l) 

In view of the interpretation of the game (see appendix A), 
the and will be taken as positive quantities and even 

as non-zero quantities. While a^. = 0 is conceivable, i, e,9 a 

non-countermeasureable system, it should be obvious how to 
treat such a case should it ever arise.* It may also be noted 
that x^j = 0 implies yA = 0, i. e., there is no point in 

cowntcimeasuring a non-existant system. 

Just in case it is not obvious, divide the systems into two 
classes, countermeasurable and non-countermeasurable. Choose 
the cheapest non-countermeasurable system and the best mix of 
countermeasurable systems. T, c -1 as a two element system by 
the methods of this paper. 

B-l 
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In order to ease some typographical problems, some notational 
conventions and abréviations are indicated. First, we shall 

,-_n _rn 
and lor/ and// as long as no confusion 

i=l 
results. Also we define 

i=l 

1/^ a. 
i 

n - i 

1/K 
i=l 

(B-2a) 

(B-2b) 

To begin, we assume A’s choice has been made, say 
X = X*,, x^.o.x^ and find B's optimal choice. To do this, 

we use the method of Lagrangian multipliers and minimize 

>-CB + N(x°, y) “ 21 (ßiX^e“^7! + Xy ) (B-3) 
° i 11 1 

where X is a constant to be determined. Partial differentiation 
and equation to zero results in 

“ai3ixie~aiyi + x “ 0 i = 1, 2,...n (B-4) 

or solving for yi 

ß.x? 

yi “ yiln ¢----) - y, InX i = 1, 2,...n (3-5) 
7i 

To determine X, sum equation (B-5) over the index i, 

CB ^ ^'i7iln(-77^) - (ln X)^i7i (B-6) 

Solving equation (B-6) for X and substituting the result 
into equation (B-5), 

B-2 
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where the superscript on the y° indicates that these represent 

B’s optimal choices given x°„ Note that the y° may be negative 

at this stage and that y^ = -»«when x® =■ 0» For the moment, 

we accept these anomolies. 

While the procedure followed need only result in some 
sort of inflection point, the form of equation (B-l) certainly 
indicates that y° is a minimal point. To assure ourselves 
that this is so, we calculate 

52N(x, y) 

ày± °/, 1 ¿ J <B-8a> 

and 

d2N(x, y) 
ßixie iyi i - 1, 2,.. .n (B-8b) 

Thus*, to show that y° is a minimal point we need only show 
that 

cry(x, y) 

ö2y< 
> o m « 1, 2,...n (B-9) 

at y°. That this is so follows immediately from equation 
(B~8b) as long as all the x^O. 

To determine A's optimal choice, we first use equation 
(B-7) to calculate , 

.0 \ -1 „„ . o \ \ 

N(x° f<sixK¥ rKCB7Tißixi K7 
''¿l 7 + 

3 

1 e“KCB/r 
I ''j 

B .Xo. \ k/. 
J J ' rA 

y3 

(B-10) 

* See, for example, page III of Advanced Calculus, 
D, V. Widder, Prentice-Hall, Inc., New York, 1947. 

B-3 
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Instead of maximizing N(x°, y°), we maximize 

Nix0, y°)-X-CAe 
-KC, 

B 
(B-ll) 

with X again an undetermined constant. Differentiating the 
function specified by equation (B-ll) with respect to the x° 
and equating to zero, 1 

^ ÍF K7j -X xi - 0 (B-12) 

Summing equation (B-12) over the index i, 

-X CA - 0 (B-13) 

Combining equations (B-12) and (B-13), we find 

xi° = 7i K CA (B-14) 

The double superscript on the x£° indicates that x00 is now a 

specific choice of x°, that one we assert is optimal. To find 
the corresponding choice for B, we use equations (B-7) and (B-14) 
with the result 

K° - 7il"CVCA> + ^KCg - 

= 7iln8i + 7.1n(K CA) + r.KCB - y.K^yjlnßj + ¿ln(K CA)J 

“ 7ilnßi + 7iK j^B " i - 1» 2,...n (B-15) 

- fnO. + K (CB - 

4.8.x.e 

IfXle -K iCB * Z^J 
-K fa - 

-kCbTTjBj 

We next note that 

f'A® 

CAe 

(B-16a) 

(B-16b) 

B-4 
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and particularly note that N( x, y00) 
Thus we have the following 

is independent of x. 

, . leMMA 1. For the game under consideration A's optimal 
choice is given by equation (B-14), B's optimal choice is 
given by equation (B-15), and the value of the game is given 
by equation (B-16) provided that both positive and negative' 
values of the are allowed. 

PROOF. We have already shown that if x - x00 (and thus 
the x^>OJ, that y is B's optimal choice and the value of 

the game is N(x°0, y00). Suppose A makes some other choice, 
say x . Let B's corresponding choice be y000. Since B's 
choice is optimal, 

N(x000 , y°00) < N(x000 , y000) = N(x00, y0°) 

and hence either x000 results in the same pay-off as x00 or 
it is not optimal for A. Thus, x00 is an optimal choice for 
A and the lemma is proved. 

We must still account for the condition y.>0. It is more 

or less obvious that a choice of x"° which results in y°c<0 

should probably be altered to x°° = 0 and yj° = 0. This leads 

us to first note that the condition y?°>0 can be written as 

7ilnßi - CB (B-17) 

and hence to postulate the following: 

THEOREM. Assume that 

81 ^ ®2 ^ * * * ®n (B-18) 

and let s be the largest integer (1 < s < n) such that 

Zs rlln8l - lnfls - CB 

Then for the game under consideration A's o 
is given by 

(B-19) 

ce 

kB-20a) 

B-5 
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and 

t 
K. 

I 
i > S (B-20b) 

B’s optimal choice is given by 

yi 
7.Inß. + 
'i i 

yi 

I 
>1 

7 Infl 

j=l 

i < s 
(B-21a) 

and 

* 

Yi i > s (B-21b) 

Finally, the value of the game is 
r 

N(x*,y*) = C. e L 
^ - y 

3=1 J (B-22) 

This is the theorem at which this appendix is aimed* 

We first note that if A’s choice is made according to the 
theorem, then LEMMA 1 applies and equations (B-21) and (B-22) 
do specify B’s optimal choice and the value of the pay-off 
function and, moreover, > 0 is automatically satisfied* 

(Compare equations (B-17) and (B-18)). Also, if the theorem is 
to make sense, Z as given by equation (B-19) must be a non- 

s 
decreasing function. To show that this is so, we need only 
examine 

ZT+1'ZT - Z fC'. 
Inß T 

(B-23) 

'T —-'T+l'l Y. 
= (lnß^.-lnß , )/ 7i > 0, 

i=l 

the inequality depending upon equation (B-18) 

B-6 
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To prove the theorem, then, we need only show that equation 
(B-20) describes A's optimal choice and we start with . 

LEMMA 2. If X is A's optimal choice and x.-=0. then ki 
* i 

implies X . = 0. 
3 

PROOF. Assume the converse; specifically assume without 
loss of generality that x* = ¿0, f, x*,...x*j with ^ ± 0 is 

A's optimal choice. Let x** = f f i> ^2’ with 

/l - 7jJ. F . III L J 

2 ^1+^2 
and hence f,, l2 " ■ Let V* be 

■^1' 
B's optimal choice corresponding to x* and let y** 

y^’* *,yn*} k® B's optimal choice in response to x**.^ We shall 

show that x** is a better choice for A and the lemma will be 
proved. 

~ao “ai (^1 +%) First, suppose that ß2e ^ 'a ^ ^ ß^e x x ^ Then 

82!e-^(^^). 32(s 8iJi6-“l^^2) 

+ S2í2e'a2<ni4íl2)< + B2t2e'a^2 

(B-24) 

and hence since 

-ct0 (ti. +t\„) 
N(x*, y*) < N(x*, y**) - ß2 J e 2 1 2 +y ß^* 

1-3 

-^y** 

and since 

-a. vT * i^ i .xTe ■ i N(x**, y**) “ ^ i® 2^2+y^ Bi 

^i-3 

we have by equation (B-24) 

N(x*, y*) < N(x**, y**) 

and x* cannot be an optimal choice for A. Suppose, on the other 

,-“2c>h+V> , :“i<ni+V hand, that ß2e “ * — ß1e * " or, equivalently 

B-7 
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lnß2 - a2(n1+n2) > ]np1 - (B-25) 

Since y** is an optimal choice for B¡, the values of and 

il2 must represent an optimal division of the quantity 

If we apply LEMMA 1 to the problem we find 

nl = + -7^ - Y.2 ■ Iny. 
1 ' 1 

y^+72 72^n®l“^n®2^ + ^1^2^ 

(B-26a) 

and 

= — f 
¿ 

71(1nB2-lnS1) + C^+n^J (B-26b) 

^'0rri^;^e ^emma applicable here, we must check that 
noth H^>0 and For this is immediate since 

For n2 we use equations (B-25) and (B-26b) with the result 

^ ^1^2^ + J = T¡+7^~^1+^ Cyla2) 

7i(Hi+n2) « = _—±—£_ > 0 

^1^2 

Thus lemma 1 is applicable To show that N(x**. y(*)>N(x* v*) 
we must show that ~ ’ y J 

N(x**, y**)= 5e <B 
rV+r2 1 °1 Ti+72 82 7^7. 

J 

n -a.y** 

ßixie 1 

—ß2 5 

or equivalently 

-^1+¾ 

^2 

n ♦ * 
-“,y! 

+ Zi=3Bixïe 1 1 .N(x,[_o>ni+1,2,y* 

> N(xf y*) '!]) 

B-8 
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+1-0 TJy 1 '2 
Infi-, + 

^2 
Inä"'>lnß0 - 

^1+1^2 

or 

ala2(^l+^2) a 

a1+a2 a1+a2 
2 a! 

Infi. + 
1 + V°2~ lnß2>a2(^l+?2)i 

or 
Oglnßj 

al+a2 

But since 
oulnfi 

a-. 

al+a2 j^n^2~a2 (^1^2^1 >lnß2"a2(Til't^2) “ 

a2ln®l al T ^ a r 

“ ä1+a2 + a1+a2 [lnß^a2 ^1+^2 ^ > 0¡+a2 [lnß2~a2 

0.-¾ 

' ã^+ãj- ^2^2^1^2^ = lnß2_a2(Tll+^2) 

(B-27) 

the lemma is proved. 

FoLLS¡^ ri°the?’ if A's choice is optimal, it must be of 
~j'il,<)2,***Jm, • We shall postulate a 
t, y**, and show^hat these ■ 

the form x**= 

^Dai-off’l^^o811^.^ the'Se two cholces result 
theorun^wlll ^‘^oveS“ deSCrlbed by tbe the0r6“' The 

We first define r as the largest integer (<m) for which 

_T 

C— (B-28) (¿ insT+ f^-y 7iinBi] > ° 
1=1 ^ i=i J 

and let y** be given by 

(B-29) r m - ¿Hr fa-£ ^s.j 
f1 J ^ J=1 ^ 

if this value is non-negative and y**=0 otherwise. If the 

conditions of lemma 1 are met with all the y**>| and the theorem 

is immediate. Supposera the other hand the T<m. Then the pay-off is 

B-9 
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N(x**, y**) = ( j) < e 

j=l 
7< 

m _ 

' j^T+l 

according to lemma 1. If we denote the expression in the 
curley brackets by P , then we can rewrite equation (B-30) as 

T 

T —.m * « r—m « n 
N(x»* y**) - (Z. Ji) /VE ,6/j'CA/î+EJ„./j(0j-/i) 

j=l j“T+l ' j=T+l 
(B-31) 

We now show that for j>t+1 the expression (Bj- /^) is negative. 

It will suffice to show this for j“T+l since B^ is by hypothesis 

a non-increasing function of j. For suppose ßT+iv>/*^ or 

equivalently e+lnßT+i > /^- This leads to an immediate 

contradiction for it means 

< r /j)insT+i+cR- /jinsj ¿ ° 
t=i j j=i 

(B-32) 

or adding and substracting 7T+^lnßT+^ 

■T+l T+l 

< V r./jlnaj ¿0 

(B-33) 

which is inconsistant with the definition of t that it be the 
largest integer for which an expression of the form of equation 
(B-33) holds. Thus, we see from equation (B-31) that if x** is 

to be optimal, we must have m<r. 

Assume now that m<T. Since x** implies y**”0, we modify 

the definition of yf* so that m appears in equation (B-29) 

instead of t. Then the payoffs are CA for the choices 

(x**, y**) and C, P for the choices defined by the theorem. 

To complete the proof, we need only show that ix > v'. 

or equivalently that In Px ^In /^. It will suffice to show 

that for m<r. In ^ From (B-23) we have 

B-10 
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or 

or 

or 

m+1 r m+1 X 

m m 

( ^j.i73)ln*^i+ [y- > ° • 

m 

^ + 7»+l - 0 

< 1-Vx + ( in»,) 

m+l m 

+ 08 " ^j-iV 

m 

- ViXjW^ 

m 

( > 0 

or 

-<0’ 

m 

or 

ln > ln 

andW?B 19?°ri!f»i TîïSi We mUSt have m"T- Comparison of (B-28) 
reveals that T-s and the proof of the theorem is 

complete. 

B-ll 
¡(REVERSE BLANK) 
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APPENDIX C 

The Basic Model for a Number of Numerically Vulnerable Systems 

The model for numerically vulnerable systems is exactly 
analogous to that for percentage vulnerable systems. From 
equation (A-8) we have 

N. (C-l) 

where g^ is a function that contains neither nor y^ except 

in the form specified by equation (C-l). The assumed forms 
for the pay-off functions are 

aiyi 

Ni - Vi* (C-2) 

when a saturation law applies and 

N. Vi 1 - Vi 

xi 
(C-3) 

for no saturation. (From equations (A-ll) and (A-13)). 

We shall show that the choice of one and only one system 
is optimal for A when selecting a mix of NV systems. Tí see 
this, let T be an integer for which 

0 g 
TbT 
Vb 

Vi 
“iS 
w i-1, 2,...n (C-4) 

The pay-off if the -rth system is chosen is 
/a ÜT v 

N° “ STCAgT (1¾ (C-5) 

Suppose A makes some other choice, say x*- x^î-.^x*! 

Let B’s choice be ^ n n « v ) 
y*‘ * CB * CB 

1 2 
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Then the pay-off is 

<Z 

N(xt y* 

n 

1=1 

The inequality in equation (C-6) results from equation (C-4) . 
Sinee X* is an arbitrary choice we have shown that choosing 
only the rth system is A’s optimal choice, even for a mix 
of NV systems some of which are and others which are not 
subject to a saturation law. 

It might be noted that according to equation (C-3), the 
can sometimes be negative. In these cases, the must be 

redefined to be equal to zero, but this does not affect the 
proof. Its only effect is to sometimes replace inequality 
signs by equality signs. 

C-2 
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APPENDIX D 

A Mix of One Percent&Re V ,1-era ole 

and One Numerically Vulnerable System 

A mix of PV and NV systems will now be examined« For 
simplicity we limit ourselves to the case of one system of 
each type and for variety we assume that neither is subject 
to a saturation law. It should be recalled, however, that 
Appendix C made it clear that, an optimal mix of PV and NV 
systems will never contain more than a single NV system. 

The model is similar to that of Appendix B, but by 
equations (A-12) and (A-13) the pay-off function is now 

NOc.y) - BjxU-Ojy) + a2 Qc^-x) . ^ (cB-yfj (D-l) 

where the subscript 1 refers to the PV system and the 
subscript 2 refers to the NV system. The amount allocated 
to the PV system by A is x and the amount invested in 
countermeasures to the PV system by B is y 

The pay-off "function as it appears in equation (D-l) is 
not quite correct. For the problem to be meaningful, we must 
recognize that B s countermeasures cannot result in a negative 
Pay"°íí í0r either system. However, before adjusting the 
pay-off function it will prove convenient to transform the 
problem into an equivalent but algebraically simpler form 

First, instead of N(x,y) we consider the funct 

M(x’y) = 7ri- N<*-y> 
2 1 

ion 

(D-2) 

Second, we transform the variables x and y to 

11*2* x and 
a V = a*.y 

Third,~w« define 

A = 2Ll c. 
a2 A B = ftlCB ’ ß = 

(D-3) 

ÈÍ 
ßi 

-(P-4) 

U-± 

K = A-B , and 
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The pay-off function is now 

M(u,v) = u(l-v) + ß [k + (v-u)J 

subject to 

O^u^A, O^viB, and 0 i a 

(D-5) 

(D-6 ) 

Next, we adjust the pay-off function to eliminate the 
possibility of either term becoming negative. The correct 
pay-off is 

M(u,v) = u(l-v) + ß j~K + (V_U2J v - 1 and v * u-K (D-7a) 

- u(l-v) V ¿ 1 and v ^ U-K (D-7b) 

= ß |K + (v-uQ v - 1 and v * u-K (D-7c) 

= 0 v - 1 and v - u-K (D-7d) 

For a given value of u, v is chosen so as to minimize 
M(u,v), i.e., A has the first choice. Using equations (D-7), 
we see that for u-K * 1, M(u,v) has the form shown in the 
diagram below. Since 0 < 1 and since B ¿ u-K = B(A-u), the 
choice of v can be made anywhere in the interval [ï, u-K| with 
M(u,v) = 0 as the result. 

Consider now th case u-K - 1 as shown below. If u ^ 8, 
then v should be chosen as v = u-K provided this is an 
allowable choice, i.e., provided 0 ¿ u-K. Otherwise, the 
optimal choice is v = 0. Similarly, if u ^ 8, the optimal 
choice is v = 1 if B - 1 and v = B otherwise. 

A's problem is to maximize the function 

F(u) = min M(u,v) 
v 

D-2 
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Since B ^ 1 ¿ 1 + K, the preceding results allow 
us to express F(u) in the following manner: 

u i K and u * ß 

K i u 1 + K and u 

b¿u¿1 + K¿A 

ß^u-A-1+K 

1 + K t u 

Q v0 

0 

u-K 

V5 ■ 1 

V. “ B 

1 t v5 ¿ u-K 

F1(u) » u(l-ß) + ÖK (D-9a) 

F2(u) - u(l+K-u) (D-9b) 

F3(u) - -UÖ+ Äl+K) (D-9c) 

F4(u) “ u (1-B-ß ) + 3 A (D-9d) 

F5 (u ) 0 (D-9e) 

Since K ¿ A and (0 ^ ß), the necessary and sufficient 
conditions for the appearance of these sub-functions are 

Fj^ : K*0<_>A±B (D-lOa) 

F2: K i ß ^^ A - B + ß and 1 + K - 0 a - B-l (D-lOb) 

F3: Bí=l+K^>A¿B + ß-1 and 1 + K - A <—4 B-l (D-lOc) 

F4: ß - A and A - 1 + K f—» B ^ i (D-lOd) 

Fc: 1 + K - A*—* B ¿ 1 (D-10e) 
D 

It should be noted that F, to F„ appear from lefx to 
right, respectively, x.c, with increasing u. With the 
exception of F2, all are linear in u. F2 on the other hand, 
can easily be shown to have a maximum at the point u = P 
where 

f - ! D + 3 - 2 G + a:B 
Thus, the slope of F2 will be negative in the interval of 
existence of F2 if P ¿ 0 or K and will be positive if 

1 + K or P 3 ß orP- A. Otherwise it will have a maximum. 
If we write S(F) for the slope of F ;ye see from equations 
(D-9) that 

ß ¿ 1 S (Fj ) i 0 and ß fc 1 — S (F1 ) ¿ 0 

[p fc 0 or pfc K A ¿ B-l or A ¿ 1 + ßj^SiFg) fc 0 

{f1± 1 + K or P fc ß or P- A<—^ A fcB-lorA^2ß +B-1 

or A fc 1 - B] S(F2) ¿ 0 

(D-lla) 

(D-llb) 

(D-llc) 

(D-lld) S(F3) fc 0 

D-3 
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B ¿ 1-ß — S(F4) í O and B ¿ l-ß-^S(F4) -• O 

s(f5) = O 

(D-11c) 

(D-llf) 

We will also find it necessary to know 
Fj^O) relative to F2(p), F2 (ß ), and F2 (A). 

(D-9) we have: 

the value of 
From equations 

Fx (U) - ßK 

f2(P) “ 3(1 + K>2 
F.. (ß ) - ß (1 + K) - ß2 ¿t 

F2(A) ” F4(A) ” A(1"B) 

(D-I2a) 

(D-12b) 

(D-I2c) 

(D-12d) 

First consider 
.2 

F, (0) - F„ (ß ) ßK ^ (1 + K) - ß«->ß - 1 
1 ¿ 

(D-13) 

Next 

F, (A) - F, (A) * F. (0) A(l-B) ¿ ß(A-B) A ¿ (D-14) 

Also note that 

B ¿ 
-ß B 
l-EHJ 

,1-B-ß -- ß 1 ^ B (D-15) 

Combining equations (D-14) and (D-15), we arrive at the 
following result which will suffice- for our purposes: 

1 ¿ B and A ^ B F2(A) - F4(A) ^ F1(0) 

Finally, assume B - 1 and consider the function 

4 Lf2(D - ^(0]| = l+ K(2-4ß)2K2 

It is easily shown that the function has a minimum at 
K - 2ß -1 and that the function is equal to zero at 

K - (2ß -1) t 2 /ß2lß 

(D-16) 

(D-17) 

(D-18) 

Since we are only interested 
within the region of existence F2, we -re ^,.1, ^n^®*es . . nc 
in K - 2 ß-1 (i.e. P- ß) and hence the lesser of the solution 
given by equation D-18). Combining the above results we have 

for 1 F2 (P ) ¿ F^O) ,A i B + 2ß -1 - 2^¿-B (D-19) 
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It should also be noted that 

ÜÎ-1 - 2 /ß2-B « 1 (D-20a) 

20-1 - 2|ß2_§-= 0 (D-20b) 

Now consider Figure D-l, drawn for ß ¿ 1. The figure 
illustrates the regions in which the five sub-functions exist 
and the regions in which their slopes are negative and positive. 
For F2, the region in which neither is true (A ¿ B+2ß-l and 

A 1-B and A il-l) is the region in which F„ exhibits a 
maximum at u =/. The boundary lines follow ¿ immediately 
from equations (D-10) and (D-ll) and examination of their 
intercepts will quickly show that as long asß^ 1 they do not 
change their relative positions. 

Consider first the region A 2 b+2 -1 and B ¿ 1-B. Here 
F^, F2, and F^ exist, all with slopes - 0. Similarly, in the 

region A ¿ 2B+2 -1 and A ¿ 1-B only Fj^ and F2 exist, both with 

non-negative slopes. Thus, in either of these regions u° - A 
where u° is the optimal choice of u. From (D-9b) and (D-9d) 
Vo “ B. 5 

B =* 1 —» 

B » «o —~- 

Next consider the region B 2 1-ß and A 2 B+2S-1 in which 
all five sub-functions exist. Those to the left of ß (Ft and Fo) 
have slopes 2 0 and those to the right ofß have slopes ‘i- O. ¿ 

Hence u° = B. This value of u makes M(u°,v) independent of v 
as long as ß-K ¿ v - 1 and it follows that 8-K - v° £ 1. 

For the region A ¿ B+2ß-l and A 2 B-l and A 2 i_b, the 
sub-function to the right of F2 (F3, F4, and F5) can exist 

only with slopes - 0 and to the left F. can exist only with 
a slope * 0. Moreover, F2 exists throughout the region and 

has a maximum at P . Hence uo = ^ [Í+K] and v° = ^ ¡JL-KJ 

Finally, for A B-l, only F,. exists, u° is arbitrary 
and 1 ^ Vo * uO-K. 0 

Now considérâtjgure D-2 drawn forß 2 1. The line 
A - B+2B-1 - 2 has been drawn in two positions since 
by equation (D-20) it is hounded by A - B and A - B+l. 

In the region A £ 1-B, F„ always exists with S(F„) ¿ 0. 
F may exist with S(F ) c 0. ¿ F F and F_ do not"*exist. 
Tnus there is a maximum at u ** A and perhaps a second maximum 

D-5 
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Figure (D-l) 

Boundaries for 8*1 
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Figure (D*2) 

Boundaries for ß - 1 

D-7 
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at u - 0. Since B - 1 and since F exists only for A - B, we 
have F(A) - F(0) by equation (D-167. Hence u° = A and v° “ B. 

In the region A ^ 1-B and A - B+2ß-l - 2 >1 ß^-B , F^, F^, 

and F,, exist only with slopes 0. F always exists with 
S(F1)5i* 0 so that there is a maximum at u = A. F^ may exist 
but not with S(F9)>0. Hence if there is a second maximum, 
it must be at u = p. But by equation (D-19), F(0) ^ F(p) 
and thus uo = v° = 0. 

For the region A - 1-Ô, A ^ B+23-1 - 2 Tß2_ß t and 
A - B-l, F9 exists with a maximum at u = P. Also F3 and Fg 

exist only with slopes * 0. F1 may contribute a second 
maximum at u ** 0 but by equation (D-19), F(p) ^ F(0) so that 
uo i Q.+k¡ and v° = 1 . 

Finally, for A ^ B-l only F_ exists, u° is arbitrary and 
1 ï Vo ^ u° - K. 

Figure D-3 summarizes the solutions. It is of particular 
interest that for the region in which u° =p = 1 Q.+K] and 

vo = uo _ K = i [1-KJ > A puts resources into the NV system 
only to have B completely countermeasure them. The pay-off is 
from the PV system and the NV system serves no other purpose 
than to siphon off some of B's countermeasure resources. 
(See equations D-7). 

The other mixed solution, u° =B is of a more complex 
nature. Here, A's choice produces a stationary pay-off for 
B, at least as long as B-K ¿ v° ^ 1 (Equations D-7). Thus, 
if B 1, Vo can be chosen so that there is no pay-off from 
the PV system. If 0 ^ ß-K, then v° can be chosen so that no 
pay-off from the NV system results. 
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Figure D-3 

Solution Diagram for a PV/NV Mix 

D-9 
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