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tJ. ABSTRACT 

This report is concerned with the problem of environmental noise 
in transonic wind tunnels with ventilated walls.  Specifically, it 
describes an analytical study aimed at understanding the generation of 
discrete sounds by the perforated walls of a transonic tunnel.  A brief 
critical review of past experimental investigations of the such sounds 
is first given.  It is indicated that no systematic studies, either 
experimental or analytical, have yet bean directed towards understanding 
the main features of this sound and the physical factors underlying its 
generation.  On the basis of the existing I^owledge, it is asserted that] 
the instability of the separated shear layer over the cavities in a 
perforated wall should be the main agency for the generation, of this 
sound.  With this in mind, it is first shown that stability analysis on 
the basis of a parallel shear flow does not describe the phenomenon 
adequately.  Thus, a stability analysis of a nonparallel shear flow, 
which is more representative of the flows in question, is undertaken. 
It is then shown that the results of such an analysis for an almost- 
parallel flow leads to a satisfactory explanation of the generation of 
the tones and their main features.  Furthermore, relations for quanti- 
ties, such as the Strouhal numbers and minimum breadths, are given in 
terms of wind-tunnel aerodynamic parameters such as local Reynolds 
number. Mach number, shear layer thickness, and mean velocity profile. 
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PREFACE 

The problem of high-intensity noise generation by high- 

speed flow past the ventilated walls of a  transonic wind tunnel 

has assumed considerable  importance recently.     There are a number 

of engineers and research workers dealing with transonic velo- 

cities who desire an understanding of  the mechanism of such noise 

generation.     The main factors underlying the generation and char- 

acteristics of such noise are not usually fully appreciated.    This 

being the case and bearing in mind that interested engineers and 

researches may not be sufficiently familiar with  some aspects of 

this report;   such as the stability of  free  shear  layers which plays 

a central role in the present problem,  this report is written in 

various contexts  in a style that is more explanatory than may seem 

warranted when viewed by a sophisticated reader.     We ask for the 

indulgence of such a reader,  particularly with respect to the 

section 3.1. 

James P.  Woolley 
Krishnamurty Karamcheti 

u 
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A STUDY OF NARROW BAND NOISE GENERATION 

BY FLOW OVER VENTILATED WALLS IN 

TRANSONIC WIND TUNNELS 

By James P. Woolley and Krishnamurty Karamcheti* 
Nielsen Engineering & Research, Inc. 

1.  INTRODUCTION 

It is well recognized that satisfactory wind-tunnel simulation 

of actual transonic flows associated with flight vehicles is beset 

with problems in evaluating the effects of the tunnel itself on 

the test results.  Questions regarding Reynolds number effects, 

tunnel-wall effects, and the effects of environmental noise and 

turbulence (that are independent of the presence of a test model) 

in the tunnel have been raised.  The environmental noise in a 

transonic tunnel is usually, as presently noied, of a high level 

(of the order of 160 dB or more) and consists of both broad band 

and narrow band components.  Such noise levels, as should be 

expected, will seriously affect both steady-state and dynamic 

investigations in a transonic wind tunnel and thereby impair its 

utility.  In order to improve this situation and achieve satis- 

factory utilization of a transonic tunnel, research studies 

concerning environmental noise in such a tunnel are needed, speci- 

fically basic studies are needed to understand the generation of 

the noise, to predict its characteristics in terms of the geo- 

metrical and flow parameters associated with a given wind-tunnel 

configuration, and to bring about its abatement. With such a 

broad intent, a program of basic study on the environmental noise 

in the transonic wind tunnels was initiated at NEAR, Inc. during 

July 1971 under the sponsorship of AFOSR through the Contract 

No. F44620-72-C-0010 and is continuing. 

•Professor, Department of Aeronautics and Astronautics, Stanford 
University, Stanford, California. Consultant to NEAR. 
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The principal  sources of environmental  noise  in a transonic 
wind tunnel  are  the   flow-creating mechanisms   (such as compressors, 
guide vanes,   screens,   and honeycombs),   the wall boundary layers, 
and the ventilated  test-section walls.     These are depicted  in 
figure 1-1.     Our concern here  is only with the noise generated 
by the boundary layers and the ventilated walls.    Noise radiated 
by wall boundary  layers is expected to be significant in transonic 
wind tunnels  as  in other high speed wind tunnels.     However,   in 
transonic tunnels,   unlike in other  tunnels,   the ventilated test- 
section walls  are known to have a significant  influence on environ- 
mental noise  contributing large noise  levels  at discrete  frequencies. 
Figure  1-2,   taken from Dods and Hanly   (1972),   compares pressure 
fluctuations on a model surface in flight in the atmosphere,   in a 
ventilated wall transonic wind tunnel,   and in a smooth wall super- 
sonic tunnel  and illustrates the  statement. 

Hardly any efforts have yet been made to understand the  features 
of noise generated by the ventilated walls,   such as the mechanism 
of its generation and  its characteristics.     Although in principle 
an attempt could be made to analyze the noise generated by the wall 
boundary layers,   no  such attempt appears to have been directed 
towards the problem of transonic wind-tunnel noise.    Studies of 
this  type are  the objectives of the present program. 

During  the past year,  effort was directed principally toward 
the problem of noise generation by a ventilated wall,  particularly 
towards the problem of relating the noise generation and its main 
characteristics to the stability characteristics of the shear 
layers over the holes or cavities  in the wall;  and thus to the 
parameters,   such as  Reynolds number.  Mach number,  and boundary- 
layer thickness,  characterizing the main flow.    Attention was also 
given to the problem of the noise generated by the wall boundary 
layers and to that of the noise through the main stream,  taking 
into account  reflections at the walls of the tunnel.    These latter 
items will be  covered in a subsequent report. 
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This report is concerned only with the problem of sound 

radiation from a vented wall of a transonic tunnel.  It begins with 

a review of the investigations concerning sound generation by high 

speed flow past cavities and ventilated walls and of the nature of 

the problem characterizing such sound generation.  It is indicated 

that the free shear layer over a cavity is the crucial agency for 

initiating and controlling the main features of the sound radiated 

by a cavity.  Therefore, the rest of the report is devoted to an 

analysis of the stability of nonparallel shear flows and of the 

generation of sound by cavities (and thus ventilated walls) and 

to a discussion of its features on the basis of the stability 

characteristics of the free shear layers in question. 
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2.  NATURE OF PROBLEM AND BACKGROUND 

In this chapter we shall review briefly the general nature 

of the problem of sound generation by flow past the ventilated 

walls of a transonic tunnel, and the investigations concerning 

the generation and features of such sound.  The generation of 

such sound is similar to the generation of sound by flow past 

any hole or cavity in a solid surface.  Following the work of 

Krishnamurty Karamcheti (1955, 1956) there have been a number of 

other investigations relating tc sound generation from two- 

dimensional cavities exposed to subsonic, transonic and supersonic 

flow.  See for instance Rossiter (1966), Spee (1966) , East (1966), 

and McGregor and White (1970). 

Freestone and Cox (1971) investigated some aspects of sound 

generated by high speed flow past isolated (normal and inclined) 

holes, and a row of holes typical of those in a perforated wall 

of a transonic wind tunnel. They observed that the mechanism for 

production of the sound waves is similar to that observed from 

two-dimensional cavities. 

Sound generation by flow past perforated or slotted walls of 

a transonic tunnel, although involving more complex geometrical 

and flow conditions, should be similar in its essentials to that 

by flow past isolated (normal or inclined) holes or a row of holes 

and, thus, by flow past two-dimensional cavities.  With this in 

mind, and noting that no systematic investigations have yet been 

made of the problem of sound generation from ventilated transonic 

wind-tunnel walls, it is worthwhile to recall the main features 

of sound generation by two-dimensional cavities so as to realize 

the various parameters that are likely to play a part in this 

problem.  Thus, we shall begin our brief review with a presentation 

of the features of sound generation by cavities in high speed flow. 

We draw attention to only those studies pertinent to the present 

discussion. Reference to other studies will be found in those 

cited. 
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2.1 Noise Generated by Cavities in High "peed Flow 

Krishnamurty Karamcheti (1955, 1956) was the first to study 

extensively the problem of generation of sound by high speed flow 

past two-dimensional cavities. His studies were conducted on 

cavities of breadth  (b)  to depth  (C)  ratios of 1 to 5, over a 

Mach number range of 0.4 to 1.5, with laminar and turbulent boun- 

dary layers ahead of the cavity.  See sketch below. 

U 
M 

//////////// TTTT-m 

The general features of the sound radiation are the following: 

At a fixed velocity, the frequency of the sound decreases 

linearly as the breadth increases. 

At a fixed breadth, the frequency increases with velocity. 

The observed frequencies are in the range of about -100 KHz. 

The radiation exhibits characteristic direction properties. 

The intensity of the radiation is high, about 160 decibels 

or more as measured by a Mach Zehnder interferometer. 

For very shallow cavities the frequency and minimum breadths 

are affected by changes in the cavity depth but for b/d 0(1) or 

greater there is little effect. 

The downstream edge of the cavity is an important factor in 

generating the noise. 

Sound emission occurs from cavities of different shapes and 

size, and from a row of cavities. The frequency of emission is 

generally controlled by the breadth of the cavity and the Mach 

number. The variables influencing the phenomenon are the geometry 
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of the gap given by its shape and typical dimensions (such as the 

breadth and depth), the free-stream speed, the local speed of sound, 

the density, the viscosity, and the boundary-layer thickness just 

ahead of tUe cavity.  Frequency, intensity, and directionality 

characterize the sound field itself.  The physical dependence of 

the frequency f on these variables may be expressed by a relation 

of the form 

S = if = S(M,ReA, T ' X ' shape of cavity, laminar or 
u        ooo     turbulent nature of the 

boundary layer 

Herein S is a nondimensional frequency or Strouhal number, M 

the local free-stream Mach number. Re.  the local Reynolds number 
o 

based on the boundary-layer thickness 6 ahead of the cavity, and 

b and d are respectively the breadth and depth of the cavity. 

Similar functional relations exist for the intensity field. 

Karamcheti discussed the possible mechanisms for generating 

noise having these characteristics. He considered as possible 

mechanisms: 

(a) Random excitation of acoustic modes of the cavity. 

(b) Helmholtz resonance of the cavity due to influx and 

efflux of the flowing fluid. 

(c) Formation of an unstable vortex system within the 

cavity. 

(d) The inherent instability of the separated shear layer 

over the cavity. 

Each of the first three mechanisms were rejected on the grounds 

that they would place some untenable physical requirements on the 

fluid flow situation or otherwise predict features of the radiated 

sound which varied in a manner contrary to that observed. He 

concludes that the instability of the free shear layer plays the 

dominant role in the generation of the sound and in the control of 

some of its main features. The instability of the shear layer 
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makes available a certain range of frequencies of disturbances to 

which the layer is susceptible.  In the case of sound emission 

w th  a laminar boundary layer ahead of the cavity, the Strouhal 
number at the onset of emission is estimated assuming that the 

minimum breadth corresponds to the smallest wavelength of a 

disturbance to which the shear layer is unstable. 

Rossiter (1966) studied certain aspects of subsonic and 

transonic flow over rectangular cavities set in the roof of a 

wind tunnel.  The ratio b/d was varied over the range 1-10, 

the Mach number over the range 0.4-1.2.  The boundary layer was 

turbulent and the ratio  6*/d was less than 0.13.  He measured 

the pressure fluctuations in the cavity and on the tunnel wall 

downstream of the cavity, and observed by shadowgraph methods 

radiation from the cavities. The main conclusions are the following: 

"The unsteady pressures acting in and around a rectangular 

cavity in a subsonic or transonic airflow may contain both random 

and periodic components.  In general the random component predomi- 

nates in shallow cavities  (b/d > 4)  and the periodic component 

predominates in deep cavities  (b/d < 4)," 

"The pressure fluctuations may contain a number of periodic 

components whose frequencies lie (at any given Mach number) in a 

sequence (m - 6) where m = 1, 2, 3 .... and ß (a constant) 

< 1." 

"The frequency of any component is inversely proportional 

to b and increases with tunnel Mach number or speed." 

"The shadowgraphs show that the pressure fluctuations are 

accompanied by the periodic shedding of vortices from the front 

lip of cavity and by acoustic radiation from the cavity, the 

principal source being close to the rear lip of the cavity." 

"It is found that the frequencies measured could be repre- 

sented by the empirical equation 

e« _ fb -  in ~ ß (2  1) s " ü" " (1/K 4 M) (2•■L, 
00 
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where  K  is a constant."  Note that in general  B  and K depend 

on  b/d.  For cavities with  b/d > 4, the relation (2.1) represents 

closely the experimental results. 

As a possible physical model of the flow that leads to such a 

formula, Rossiter envisages a feedback phenomenon, similar in 

principle to that producing so-called edgetones, see for instance. 

Curie (1953) and Powell (1961).  He assumes a periodic shedding 

of vortices from the front lip of the cavity and acoustic radiations 

from the rear lip.  Furthermore, it is assumed that the acoustic 

radiation within the cavity (not discerned in the observations) 

initiates the vortex shedding and that the passage of the vortices 

over the rear lip of the cavity is responsible for th« sound 

radiation.  Assuming that an identified phase of the acoustic 

radiation leaves the rear lip when a vortex is at a downstream 

distance of 3 (u /f) , where u  is the average speed with which 
c c 

the vortices are transported over the cavity and f  is the frequency 

of the vortex shedding (which is also the frequency of the sound 

radiation) and that a vortex is shed from the front lip just when 

that particular phase of acoustic radiation reaches it.  Rossiter 

readily obtains, by putting 

"c " KU» 

the relation 

e _ fb _    m - ß  ij  j\ 5 - ir - v^rTTT-mr (2-2) 

where m  is the sum of the number of the participating complete 

wavelengths of the vortex motion and those of the acoustic radia- 

tion, and c is the mean speed with which sound waves travel up- 

stream in the cavity.  If c is set equal to the speed of sound, 

a . in the free stream, relation (2.2) becomes identical with (2.1) 

McGregor and White (1970) in experimental studies of the drag 

of rectangular cavities in transonic and supersonic flow found that 

the measured frequencies of the pressure oscillations within the 
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cavity which are the same as those of the associated acoustic 

radiation,could be represented reasonably by the relation (2.2) 

if  $ = 0.25, c = a^, and K = u^/U^ where u^  is the speed 

along the free shear layer streamline.  It was not stated what 

va]u3 of K was usedl  The ratio b/d was in the range 0.5 to 

3, and the Mach number, M^, in the range 0.3 to 3.0.  The boundary 

layer was turbulent. 

Plumblee, Gibson and Lassiter (1962) attributed narrow band 

acoustic radiation from rectangular cavities in a cylindrical 

body entirely to resonant modes of the cavity excited by boundary- 

layer turbulence.  They derived relations for the impedance of a 

rectangular cavity with five rigid walls and uniform flow over the 

sixth.  It was determined that shallow cavities resonate primarily 

in longitudinal modes while deep cavities  (b/d <_  1)  respond pri- 

marily to depth modes.  Width modes, while predicted, seemed to be 

of little consequence.  Extensive charts and tables are given for 

calculations of resonant frequencies and cavity amplification 

factors for the various modes.  However, the basic hypothesis that 

the excitation of these modes is merely from the boundary-layer 

turbulence appears to be too restrictive since Kararacheti obtained 

tones with a laminar boundary layer. 

Freestone and Cox (1971), as mentioned before, investigated 

sound radiation from perforated tunnel walls, normal and inclined 

single holes, and a row of normal holes.  The holes in the per- 

forated walls have a value of b/d equal to about unity.  For 

the single holes, b/d was in the range 0.3 to 1.5.  For the holes 

in the row, b/d is about unity and they are placed at 3.8 cm. 

pitch.  The tests with the perforated walls were made over Mach 

number range of 0.6 to 1.3, those with the single holes and the 

row of holes were made at a single Mach number of 1.2.  The boun- 

dary layer was turbulent.  The ratio of the displacement thickness 

to the hole diameter was less than 0.1 for most tests.  Some of 

the conclusions are as follows: 
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In the tests with the walls the frequency varied 

from 50 to 65 KHz over the Mach number range of 0.6 to 

1.3.  In these tests, as in the tests on a row of holes, 

a coupling between the disturbances from the different 

holes was indicated.  It is inferred that the coupling 

is provided by a disturbance propagating along (or near) 

the wall surface (that is the streamside surface of the 

holes). 

Strong sound waves can be radiated from both normal 

and inclined holes. 

Strouhal numbers for single holes, apart from 

occasional mode changes, do not vary significantly 

with hole depth or if the bottom of the holes is 

fully or partly closed.  This indicates that the 

frequency depends on disturbances having their origin 

in the shear layer passing over the cavity. 

Strouhal numbers obtained in the tests can be 

represented by an empirical relation of the form given 

by Rossiter. 

A general summary of the investigations of Strouhal numbers 

from single cavities is shown in figure 2-1.  Shown for comparison 

are Strouhal numbers calculated from Rossiter's empirical formula, 

equation (2.2), with 0 = 0.25, X = 0.67 and c set equal to the 

speed of sound in the free stream, i.e. c = a«,.  Also shown for 

comparison are Strouhal numbers calculated from an empirical 

formula proposed by McCanless for correlation of tones produced by 

transonic wind-tunnel walls.  This formula will be described in 

Section 2.4. 

2.2 Edgetones 

Sound generation by high speed flow past cavities is similar 

to the phenomenon of edgetones, where a pure tone of sound is 

produced by allowing a thin jet of fluid (such as air or water) 
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iinq from a slit to impinge on a wedge-shaped edge placed a short 

distance from the slit.  See for instance Brown (1937), Curie (1953), 

Nyborg et al (1952), Powell (1961), and Karamcheti et al (1969). 

We will now briefly review the edgetone phenomenon, which has 

been studied in great detail, to provide additional insight into 

the nature of cavity tones. 

Experimental observations show that the main features of 

edgetone operation, as illustrated in Sketches 1 and 2 below, 

are the following: 

(a) When the mean speed Ü of the jet at the slit is main- 

tained constant, there is a minimum edge distance b
m^n   (i«®«/ fro1" 

ed^e to slit) at which sound production commences.  This distance 

is known as the minimum breadth. 

(b) At a fixed mean speed, the frequency of the edgetone 

decreases gradually as the edge distance is increased over the 

minimum breadth. This frequency decreases until a certain edge 

distance is reached where the edgetone will suddenly jump to a 

new higher frequency or mode of operation.  The new .node of 

operation is known as Stage 2; the first mode, as Stage 1.  As 

the edge distance is further increased, the frequency of Stage 2 

again decreases with distance until another jump in frequency 

takes place, whence the edgetone is said to operate in Stage 3. 

The appearance of the higher stages depends on the experi- 

mental conditions. At large edge distances, the edgetone is lost 

in the appearance of irregular or turbulent flow. 

When the edgetone is operating in the second or higher stage, 

and the edge distance is decreased, the frequency will increase 

until a certain edge distance is reached where the tone will jump 

down to the next lower stage.  The distance at which this occurs 

does not coincide with the distance where the jump in frequency 

from one stage of operation to a higher one takes place as the 

edge distance is increased.  Thus, the edgetone exhibits hysteresis 

regions of operation. 
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(c)  In a given stage, the frequency is almost inversely 

proportional to the edge distance. 

Stage 3 

Stage 

Stage 1 

Minimum 
Breadth 

SKETCH 1 

(d) At a fixed edge distance, there is a minimum mean speed 

below which no edgetone appears. 

(e) If, at a fixed edge distance, the mean speed is increased 

gradually, the frequency of the tone increases until a certain value 

of the mean speed is reached where a jump to a higher frequency and 

stage of operation will take place.  As the speed is further in- 

creased, still higher frequencies and stages of operation will appear 

until the phenomenon is again limited by irregular or turbulent flow. 

When the mean speed is decreased, the frequency decrease;, and 

jumps to lower stages occur.  Hysteresis regions are also associated 

with the frequency jumps between stages as the mean speed is changed. 

(f) In any given stage, the tone frequency is approximately 

proportional to the mean speed. 
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SKETCH   2 

b    fixed 

Hysteresis Regions 

u 

Also, detailed measurements by Nyborc; et al (1952) and by 

Powell and Unfried (1964) reveal that the sound field associated 

with the edgetone exhibits directional properties characteristic 

of a dipole field. 

Various theories have been proposed to explain the generation 

of edgetones, to derive a formula for the frequency of the tone, 

and to explain the reasons for the jumps in the frequency.  For the 

recent theories of edgetones reference may be made to Curie (1953), 

Nyborg (1954) , and Powell (1961) , where a review of the earlier 

ideas may be found. These theories of edgetones consider the 

mechanism of their generation as a feedback mechanism.  Curie and 

Powell emphasize the role of the stability characteristics of the 

jet and of the interaction of the jet with the edge.  Powell's 

work is most comprehensive, detailing the role of the various 

physical factors that underlie the mechanism of edgetones. Nyborg's 

work does not involve detailed fluid mechanical considerations and 

takes no account of the stability characteristics of the jet. 

Central to the theories of Curie and Powell is the assumption 

of the so-called phase criterion: 

*"-♦* 
n    being  an Integer 
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which is the basis of their formula for the edgetone frequency 

,  n + 1/4 

where b  is the jet slot to edge distance, u  is an average 

convection velocity of a disturbance through the jet, X  is the 

disturbance wavelength in the jet, and n denotes the stage of 

the edgetone operation.  Rossiter (1966), as mentioned before, 

utilizes ideas similar to those of Curie and Powell in his analysis 

of the cavity tone. 

2.3  Parameters in the Problem of Sound Generation by Ventilated 
Walls 

With the background of the sound generated by two-dimensional 

cavities and by holes such as investigated by Freestone and Cox 

(1971), and noting that the mechanism of sound ganeration by the 

ventilated walls of a transonic tunnel is similar to that by cavities 

and holes, we can now enumerate the various parameters that play a 

part in the problem.  For the present discussions, we shall concern 

ourselves with a perforated wall.  The typical geometry of such a 

wall is shown in figure 2-2.  The holes (perforations) are open on 

one side to the test section and on the other to a plenum chamber, 

where the pressure is generally lower than in the test section. 

There is flow through the holes, directed from the plenum, although 

there may be a few holes where, locally the flow is into the test 

section, e.g. where an expansion wave from a model intersects the 

wall.  Regardless of such details, we may generally say that over 

each of the perforations, there is a shear layer (separated boundary 

layer) which impinges on the downstream edge or side of the perforation. 

The parameters influencing the generation of sound by a per- 

forated wall of a transonic tunnel may be listed as follows: 

(1)  The free-stream unit Reynolds number. Re ■ P^U^/u,,,, or 

the free-stream Reynolds number Re ■ P^U^fi/y^ based on a charac- 

teristic length, 6. 
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(2) The free-stream Mach number M. 

(3) Nature of the boundary layer, laminar or turbulent. 

Generally it is turbulent. 

(4) Mean velocity profile in the boundary layer ahead of the 

perforations or more specifically the profiles of the free shear 

layers over the perforations. 

(5) A characteristic length, 6, of the shear layer such as 

the displacement or momentum thickness ahead of the perforations. 

(6) The maximum streamwise dimension, b, of the hole. 

(7) The depth of the hole. 

(8) Geometry of the upstream and downstream edges of the hole. 

(9) Inclination, \|», of a hole. 

(10) Spacing, s, between the holes. 

(11) Manner of disposition of the holes in the array forming 

the perforations. 

(12) Porosity, T, of the ventilated wall. 

(13) Parameters characterizing the flow through the holes 

into or out of the plenum chamber. 

(14) Plenum chamber geometry and its acoustical characteristics. 

(15) Tunnel geometry and its acoustical characteristics. 

The sound field may be described by the frequency, f, and the 

directional distribution of its intensity.  Experimental and theo- 

retical investigations should aim at determining these quantities 

as functions of the parameters described above.  For instance, 

introducing the nondimensional frequency, the so-called Strouhal 

number, S = fL/U, where L is a characteristic length, such as 

b, and U a characteristic speed such as the free-stream speed, 

we wish to determine S as a function of the nondimensional para- 

meters such as  R, M, b/6, T, I|», and other parameters characterizing 

the velocity profiles and the geometries of the holes, the plenum 
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chamber and the tunnel.  In the same manner one wishes to determine 

in a nondimensional form the dependence of the sound intensity 

distribution on '  tose parameters. 

2.4 Some Investigations of Sound from Ventilated Walls of 
Transonic Tunnels 

A number of experimental investigations have been made of 

the overall noise environment in existing transonic wind tunnels 

throughout the world.  These have been summarized by Mabey (1970) , 

and more comprehensively by Boone and McCanless (1968) and McCanless 

(1971) .  For a report of recent studies of noise in the AEDC tran- 

sonic wind tunnels (designated AEDC-PWT Tunnels 16T and 4T) , reference 

may be made to Credle (1971) where additional references to earlier 

work in these tunnels may also be found.  Similar studies conducted 

by NASA/Ames Research Center were discussed by Dods and Hanly (1972). 

We shall not enter here into a detailed report of these various 

studies.  Only a few salient features will be given. 

Measurements indicate that the narrow band noise, attributable 

to generation by the perforations or slots in the test section 

walls in the various tunnels, may consist of discrete frequencies 

in the range of 350 Hz to 27 KHz.  The tones could be very intense. 

In terms of the rms pressure coefficient defined by 

AC 
2 

oo'oo 1/2 p U 

where    p'2     denotes  the mean of the  square of the fluctuating 
pressure    p* .     The overall  level of  the narrow band noise at  the 
centerline of the test section can breach a value as high as  about 
AC    = 3 to 4  percent.     It thus controls the maximum noise levels 

P 
in the test  section as  is evidenced by the appearance of pronounced 
spikes in the power spectra obtained by Dods and Hanly   (1972), 

see figure  1-2. 

At a given Mach number the measured discrete frequencies,   as 
in the case of the tones generated by rectangular cavities   (see 
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for instance Rossiter, 1966), lie in different groups or stages 

designated by n, where n = 1, 2, 3 .... Figure 2-3 shows in a 

nondimensional form the various discrete frequencies of tones 

generated by the ventilated walls of different wind tunnels. 

A nondimensional frequency, S, is introduced such that 

S-^ (2.3) 
00 

where 

f    is the measured frequency 

b    is the maximum streamwise dimension of the hole 

U    is the free-stream speed 
00 

Figure 2-3 is a plot of measured values of S versus M, the 

free-stream Mach number. It is seen that at any given M the 

measured values of S lie roughly in different stages, and that in 

any given stage, S varies with M. 

It is thus found that the measured frequencies for a given 

wind tunnel could be represented by an empirical relation of the 

form 

S » S(M,n) (2.4) 

Freestone and Cox   (1971)   suggest that Rossiter's equation 
(2.2 above)  may be used to express the  functional relation   (2.4). 

McCanless   (1971),  based on his analysis of the measured values 
of    S    at different    M,   suggests the following empirical relation: 

S-0.15^ (2.5) 

The variation of S with M for the different stages n, as 

given by equations (2.2) and (2.5) is also presented in figure 2-3. 

It is seen that, as to be expected, there is some general agreement. 

Credle (1971) in order to account for the observed effects of 

variations in Mach number, test-section wall angle and wall porosity. 
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on the frequency spectra measured In the AEDC tunnels, concluded 

that McCanless* relation is inadequate and used instead the following; 

(2.6) fb m 0 .16 n». 5 5 

"wall 0 .7  + Mwall 

where 

and 

U ., « the spatial average of the longitudinal wall velocity 

measured by boundary-layer pitot pressure probes 

that were closest to each of the four walls 

Mwall ' üwall/a« 

This relation, however, proved unsatisfactory in accounting 

for the effects of porosity, T, and a universal definition of ü
waii 

will be difficult to arrive at for different probes and wind-tunnel 

wall boundary layers. 

Anderson, Anderson and Credle (1970) also made studies of the 

effect of the geometrical and acoustical conditions of the plenum 

chamber on the discrete frequency noise field.  They found that 

changes of the ratio of the plenum-to-test-section volumes between 

8.3 and 0.8 had no significant effect on tunnel acoustics, although 

some changes in the steady flow field were observed for Mach numbers 

above 0.95.  Thus, resonances with the plenum volume do not appear 

to be significant sources of noise in the tunnel. 

Credle (1971) performed an experimental study in which the 

plenum of the AEDC PWT-4T wind tunnel was lined with acoustically 

absorbent: material.  This insulation reduced the level of random 

noise in the wind tunnel as might be expected, but had little effect 

on the narrow band noise. 

This concludes the brief presentation of some of the main 

features of the experimental investigations of the noise produced 

by the perforated walls of transonic wind tunnels. 
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2.5  Discussion 

It is clear that the studies of noise generated by flow past 

ventilated walls are limited in many respects.  They are mainly 

experimental investigations of noise levels in existing transonic 

tunnels or attempts to eliminate specific problems associated with 

such noise.  Systematic and comprehensive studies have yet to be 

undertaken to assess the role of even some of the important para- 

meters mentioned in section 2.3 (such as the Reynolds number. Mach 

number, the hole dimensions relative to the boundary-layer thickness, 

the parameters characterizing the interaction between the holes) and 

to obtain a satisfactory understanding of the factors underlying the 

sound generation. 

Analysis of existing experimental results so as to seek the 

effects of the various parameters and the mechanics of the sound 

generation is rather difficult because, in test involving existing 

transonic wind tunnels, variation of one parameter independently of 

the others is not always possible. 

The main result of the investigations so far, is the presenta- 

tion of the variation of the measured frequencies in the various 

tunnels with the Mach number and the representation of this variation 

by empirical relations such as proposed by Rossiter or McCanless. 

However satisfactory these relations appear to be, they throw no 

light on the factors influencing the occurrence of the sound gene- 

ration nor is their any hope of developing expressions for the sound 

intensity from this approach. Furthermore, although the relations 

may be made to correlate the frequency data from a given wind tunnel 

quite well, it is clear that they cannot account for the differences 

observed between wind tunnels. The reason for this inability is 

obviously the fact that of all the parameters of the problem, only 

the Mach number and the cavity breadth are accounted for in these 

relations. 

It appears, that although the generation of sound by ventilated 

walls is recognized to be similar to that by cavities and by jet-edge 
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systems, no serious account is taken of these studies, [such as those 

of Curie (1953), Krishnamurty Karamcheti (1956), Powell (1961), 

Karamcheti and Bauer (1963) , Stegen and Karamcheti (1967), Shields 

and Karamcheti (1967)] directed towards understanding the details of 

the mechanics of sound generation by cavities and jet-edge systems. 

Consider for instance the problem of the minimum or critical 

distance, b . , for initiation of sound in any particular stage of 

operation.  From observations relating to the tones from cavities 

and to the (jet) edgetones, one would expect b in/ö (where 6  is 

a characteristic dimension of the shear layer in question) to be a 

function of such important parameters as the Reynolds number, the 

Mach number, and of the mean velocity profile of the shear layer. 

That is, 

b . 
-^jpi. = fn. (R, M, velocity profile) 

Sound emission begins when 

b . min 
7 > —T" 

and thus, the initiation of sound depends on Reynolds number. Mach 

number, and the mean velocity profile.  Similarly, there is a value 

of b at which sound radiation of a particular stage ceases.  If 

we denote this b by b    (which also will be a function of max 
Reynolds number, etc.) we may state that each stage of sound 

radiation occurs such that 

b .   .   b 
mm , b . max 

or 

6    5    6 

max      min 

where the values of    b  .„    and   b _„    are different for the different mm max 
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stages as well as being dependent on the designated  flow parameters. 
Such criteria need to be  investigated systematically  for the case 
of  sound radiation from cavities and ventilated walls. 

McCanless   (1971)   recognized that such a criterion exists  for 
the sound radiation from a ventilated wall of a transonic tunnel. 
He gives,   in analogy to the  jet edgetones,  values of the parameter 
6*/b    that correspond to the four stages of operation noted.     It 
is,  however,  not clear how these values were arrived at. 

Mabey   (1969,  1971), based on his measurements,   states that 
tones could be avoided if 

6* 
-F< 0-5 

or 

^> 
2 

where 6* is the displacement thickness.  But Freestone and Cox 

point out with emphasis that their tests show that strong sound 

waves can be radiated from both normal and inclined holes as used 

in perforated lines for transonic tunnels for 

6* V< 0-5 

or 

b   >  5 

It  is possible that,   among other influencing  factors,  Mabey's 
observations may refer to     6*/bmav    for one  stage while those of 
Freestone and Cox may refer  to values of    6*/b    for  another stage. 
However,  it is readily appreciated that such confusing inferences 
relating to even important criteria for sound generation from 
ventilated walls exist at present and that they arise from lack 
of knowledge of the mechanism of sound generation. 
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Existence of criteria such as mentioned above, and the various 

studies directed at understanding the details }f the factors under- 

lying sound generation by jet-edge systems and cavities suggest 

strongly that the stability of the free shear layer in these systems 

plays an important part in the initiation of the sound radiation and in 

the control of some of its main features.  Several investigations 

were carried out at Stanford by Karamcheti et al (see the references 

cited before) to seek the role of the stability of the jet in the 

generation of jet edgetones.  These indicate that indeed the stability 

characteristics of the jet play an important role in the generation 

of the edgetones and that many of the features of generation can be 

predicted on the basis of theoretical results concerning the stability 

of nonparallel shear flows (see Woolley 1973).  In view of this, it 

is to be expected that the main features of the sound radiation from 

cavities and ventilated walls of transonic tunnels are principally 

governed by similar results concerning the stability of the free 

shear layers involved.  It is possible that other factors such as 

the acoustic resonant characteristics of the cavities may also come 

into the picture, but, as observations seem to indicate, the main 

agency for initiation of the sound radiation is the free shear 

layer. 

In light of these considerations, the main objective of the 

present study, as pointed out before, has been to investigate the 

role of the stability of the shear layer in the generation of noise 

by flow past a ventilated wall. 

The next chapter presents the analysis and results of such a 

study. 
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3.  FLOW STABILITY CONSIDERATIONS 

The generation of tones by flow past ventilated transonic 

wind-tunnel walls is, as described before, in many respects similar 

to the generation of the so-called jet and cavity edgetones. The 

principal agency in initiating such tones and, perhaps controlling 

their main features should be, as pointed out, the stability (or 

instability) of the free shear layer past a cavity, such as the 

one past a transonic wind-tunnel wall, or of the jet, in a jet- 

edgetone system. The tone itself results from the interaction of 

the oscillating shear layer with the rigid reattachment surface, 

the edge.  In order to examine the role of the stability characte- 

ristics of such shear layers in the generation of tones, it is first 

appropriate to investigate the extent the stability characteristics 

of free shear layers (i.e. without the rigid surface) with different 

mean (or basic) velocity fields would explain qualitatively and 

quantitatively the initiation of the tones and their features.  It 

is known from observations that the mean velocity field is not like 

that of a parallel shear flow but is, generally, a nonparallel shear 

flow.  Departure from parallel flow appears to be greatest in the 

vicinity of the reattachment surface. The mean velocity fields 

finally applied to the cavity tone problem, therefore, should 

reflect the effect of the rigid surface. 

With this in mind we shall investigate the problem of deter- 

mining the stability characteristics of a nonparallel shear flow, 

and then show how such characteristics for an "almost-parallel 

flow" can be determined from analyses of corresponding parallel 

flows.  Then we shall describe how the stability characteristics of 

an almost-parallel flow will already explain some of the roost 

important features of the cavity tones, such as cccur in a transonic 

wind tunnel. We shall begin with the discussion of the stability of 

a parallel shear flow and the inadequacy of its role in understanding 

the cavity tones. 
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3.1  Stability of Incompressible Two-Dimensional, Parallel shear 
Flows 

We consider an incompressible, two-dimensional, steady shear 

flow subjected to small, time-dependent disturbances.  Choose a 

Cartesian coordinate system x,y with the x-axis in the direction 

of the basic steady flow (see fig. 3-1).  The velocity of this 

flow is denoted by 

6 - U(y)i 

and the disturbance velocity field by 

u(x,y,t)i + v(x,y,t) j 

The velocity components of the combined flow are given by 

U = ü(y) + u(x,y,t) (3.1) 

V - v(x,y,t) (3.2) 

The basic flow satisfies the steady Navier-Stokes equations 

while the combined flow satisfies the unsteady equations, which we 

express as the equations of continuity and vorticity. 

|s + |i - o 

where n  is the vorticity given by 

" ' 3x " W (3-5) 

with 

3x2   3y2 
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and  v  is the kinematic viscosity.  Substituting in (3.3) and (3.4) 

for  0, V,  and Ü    from equations (3.1), (3.2), and (3.5), noting 

that the velocity component U(y)  of the basic flow also satisfies 

equations of the form (3.3) and (3.4), and neglecting all nonlxnear 

terms in the disturbance quantities, we obtain the following linear 

equations: 

3u   3v . 0 (3.6) 
3x  3y 

*ll  = uy2r (3.7) C^"4>-VH-^ dy^ 

where 5 is the disturbance vorticity given by 

, _ 3v _ iJu (3.8) 

Equation (3.6) is automatically satisfied by introducing a 

stream function 

* - iMx,y,t) 

for the disturbance field by means of the relations 

3^ 
u " 3y 

v-U 
(3.9) 

The disturbance vorticity is then given by 

c . - V
2* <3-10) 

Equation (3.7) now takes the form 

This is the equation governing the disturbance field. 
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We now discuss solutions of equation (3.11) that represent 

traveling harmonic waves propagating i.i the streamwise direction. 

Thus, we assume a solution of the form 

*(x,y,t) - ♦(y)ei(ax-wt> (3.12) 

where  4»  and the constants a and,  w , in general, may be 

complex.  We shall assume that u is real, thus representing a 

frequency.  We write 

a = ar + io^ 

Then equation (3.12) may also be expressed as 

- a.x  i(a x-ut)       - OjX iar(x-ct) 
«Mx^t) = (My)e  1 e  r     = ♦(y)e     e        (3.13) 

where 

c = -£- (3.14) 
a 
r 

Thus,   equation   (3.12)   or   (3.13)   represents a harraonic wave that 
travels  in the x-direction with a constant speed,  c,  given by equa- 
tion   (3.14),   and one that receives an exponential amplification in 
space,   the amplification  factor being    o^.     If    o^    is  zero,   the 
disturbance  travels unattenuated,  if    o^    is positive the distur- 
bance  is damped,  and  if  it is negative,  the disturbance  is amplified. 

Substituting equation   (3.12)   into equation   (3.11),  we obtain 

[(U " £) (Dy " a2)   "  Dyü ^ IT  (Dy " a2>2]* ' 0 (3-15) 

where 

d 
D y  = 37 
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This equation may be expressed in nondimensional form by 

introducing U , the maximum velocity, and 6, a representative 
m 

length of the shear layer, respectively as characteristic 

velocity and length (see fig. 3-1).  Adopting now the following 

notation 

V = y/6 

Ü - U/Um 

? - W6Vm 

a = a6 

(i) - *6/Vm 

D n = d/dri 

we express equation (3.15) in the nondimensional form 

["(U - ü/ä) (D2 - ä2)- D2Ü + —^— (D2 - ä2) 21 ♦ « 0     (3.16) 
iRe .a 

This equation is to be solved with the appropriate boundary 

conditions on ^. There results an eigenvalue problem in the 

quantities  u, ä, and Re., the solution of which depends on the 

mean velocity profile IKn).  One may specify, for a given mean 

velocity profile U(n)» any two of the other parameters and determine 

the third from the solution of the specific eigenvalue problem.  For 

instance, one may determine either experimentally or analytically, 

as is usually convenient, a (that is är and ö^) for given  w. 

Re . and U (n) ,  thus obtaining 
o 

a = ä    +  ic^ - ö[ü, Refi, Ü(n)] (3.17) 

With  a  known, we also obtain the nondimensional phase velocity 

c  (which is equal to the actual phase velocity divided by üm) 

as a function of uS, Re. for given U{j])    from the relation 
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c[ü, Refi; Ü(n)] - — (3.18) 
a r 

Typical solutions of this nature are illustrated in figures 3-2a 

and b for the different types of shear layers which are also shown 

in the figures.  In these figures f denotes the dimensional fre- 

quency, in cycles per second. 

Of primary interest is the nature of oü, the disturbance 

amplification rate.  It is noted that only a limited range of 

frequencies are amplified by the flow field, that is, has assoriated 

eigenvalues of a. which are less than zero. The flow field is 

said to be unstable to these disturbances. Disturbance frequencies 

with a.  greater than zero are damped and the flow field is said 

to be stable to disturbances of this type. A neutral disturbance 

is one whose frequency is associated with an ^ equal to zero. 

The range of frequencies which receive amplification is also 

seen to be a function of Reynolds number for the flow.  Below a 

certain Reynolds number, called Recrit^ 
no frequency is amplified. 

As Reynolds number becomes very large, two distinct patterns, which 

are dependent on certain details of the velocity profile, may 

develop.  These different patterns are depicted in the a and b 

parts of figure 3-2. If the velocity profile contains an inflection 

point (i.e., d2U/dy2 = 0 at any point of the flow field), as in 

figure 3-6b, some frequencies will receive amplification at infinite 

Reynolds number.  If no inflection point exists, as in figure 3-6a, 

the region of amplified disturbances will vanish at high Reynolds 

number.  The latter is illustrated by boundary layers on solid 

surfaces with zero or negative (favorable) pressure gradients, while 

the former is illustrated by such boundary layers with positive 

pressure gradients and by the entire class of free shear flows; such 

as jets, wakes, and separated shear layers. 

From the solutions such as those illustrated in the figure, 

one may obtain, for given !T(n)  and Re6, the variation of äi    and 

c with w. For instance, the variation of ai    with w is as 
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shown in figure 3-3. Different frequencies have different amplifi- 
cation rates with one nondimensional frequency ^max receiving the 
maximum   (nondimensional)   amplification rate,  a. , 

X   luaX 

While the above represents the attenuation of a sinusoidal 

disturbance of small amplitude and single frequency by the mean 

flow, it gives only part of the picture for a general disturbance 

which may contain many Fourier components.  It has been noted that 

this attenuation is frequency dependent; therefore, the various 

components will receive different rates of amplification and will 

propagate at different speeds, since c is a function of frequency 

also. The initial disturbance wave form, thus, may be considerably 

distorted when observed at a distance from its injection into the 

flow field even though the attenuation is accomplished in a "linear" 

manner. 

3.2 Application of Parallel Flow Stability to the Cavity Tone Problem 

Krishneunurty Karamcheti (1956) examined the role of stability 

of a free shear layer in the generation of sound by high speed flow 

past a rectangular cavity in an aerodynamic surface. He utilized 

the then available results of the stability analysis for a laminar 

free shear layer between two parallel streams, one of which is at 

rest.  By assuming that at large Reynolds numbers, the shortest 

wavelength disturbance which receives neutral amplification is the 

one which will be maintained in a sustained oscillation when sound 

generation begins (for given free-stream parameters) , and further, 

assuming that the minimum breadth is equal to this shortest wave- 

length, he was able to estimate the minimum breadth and the 

corresponding nondimensional frequency and show that they were of 

the same order of magnitude as observed experimentally. 

The role of parallel-flow stability characteristics of a 

thin jet in the related phenomenon of jet edgetones was considered 

by Brown (1937), Curie (1955), Powell (1961), Karamcheti et al (1969), 

Karamcheti and Bauer (1963), Stegen and Karamcheti (1967), Shields 
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and Karamcheti (1967), and Woo Hey and Karaircheti (1973).  Brown 

noted that experimentally observed frequencies of jet edgetones 

were all within the range of frequencies which receive eunplification 

in the jet flow field.  Curie and Powell suggested that the edge- 

tone oscillations occur at frequencies of disturbances that receive 

maximum amplification through the jet.  Based on this notion and on 

the consideration that the edgetone operation is a feedback circuit 

in which the amplification of a disturbance through the jet is 

governed by parallel-flow stability characteristics, Powell, 

obtained the phase and frequency formulas (also previously given 

by Brown and Curie) 

where 

b = the distance from the slot »from which the jet 
issues,to the edge 

X = the wavelength of the disturbance through the jet 

n = integer denoting the stage of operation of the 
edgetone 

f = frequency of the disturbance in cycles per second 

and 
c = speed of propagation of the disturbance 

and further showed how the minimum breadth, the minimum jet speed, 

the different stages of operation,and the hysteresis loops might be 

accounted for. 

Investigations by Karamcheti et ajL at Stanford were undertaken 

to examine the details of these stability considerations.  Velocity 

fluctuations along a jet in an edgetone system were measured with 

hot wire anemometers. Measurements of frequency, amplitude and 

phase were recorded under different operating conditions. Measure- 

ments were obtained for stage I, (n ^ 1), stage II and simultaneous 
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stage  I  and   II  operation.     It was  found  that  the amplification of 
the disturbance  was  not a pure exponential  function of distance, 
as  suggested by parallel  flow stability.     Neither was the phase 
velocity    c    constant  along the  jet,   as would be expected  from this 
theory.     And,   finally,   as regards  the phase criterion used by both 
Curie and Powell,   the  phase change between the  jet exit and the 
edge was not    n  + 1/4     cycles,  as  supposed  in the theories.     It was 
found to be more  like    n/2    cycles.     Furthermore,  the phase,   as 
would be expected according to the theoretical  notions,  does  not 
change  linearly with distance along the   jet.     Thus,  there exists no 
fixed phase relation to determine the oscillation frequency as a 
function of  free  jet  length, b. 

Without a  separate criterion,  parallel flow stability cannot 
relate the  frequency of a cavity or  jet edgetone to the length of 
the free shear  layer or the jet.     The only frequency selection 
criterion available on the basis of  flow stability is that of 
dominance of the most amplified  frequency.    For a parallel flow 
there  is only one  frequency which receives the greatest amplifi- 
cation and this  frequency is independent of the  length of the  free 
shear  layer or  jet. 

In order to explain the observed features of edgetones on the 
basis of flow stability,  a theory for which the most amplified 
frequency is dependent on distance must  be developed.     Since  the 
free shear  layers present in edgetone systems are almost,  but not 
totally,  parallel  flow fields,   it would appear that investigation 
of the stability of  flow fields which are nonparallel might be 
rewarding.     In the following sections such an investigation is 
outlined and some of its implications are indicated. 
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3.3    Formulation of  Stability Analysis of   incompressible, 
Two-Dimensional,   Nonparallel  Shear  Flows 

We now consider  an  incompressible,   two-dimensional,   steady 
nonparallel  shear  flow subjected to small,   time-dependent distur- 
bances.     Introduce,  as before,  a Cartesian coordinate system 
xfy    in the plane of motion such that the basic  steady velocity 
field  is described by 

V{x,y)   = U(x,y)i + V(x,y)j (3.19) 

and the disturbance velocity field,  as before,  by 

u(x,y,t)i + v(x,y,t)j (3.20) 

The velocity components of the combined flow field are then 

given by 

U - U(x,y) + u(x,y,t) (3.21) 

V = V(x,y) + v(x,y,t) (3.22) 

The linearized equations for the disturbance field,  namely for 
u    and    v  ,  can be obtained,  as  in the parallel  flow case,  by sub- 
stituting equations   (3.21)   and   (3.22)   into the unsteady Navier-Stokes 
equations   (continuity and  /orticity equations),   by noting that the 
steady flow components   (U and V)   themselves  satisfy the steady 
Navier-Stokes equations,  and by neglecting all nonlinear terms in 

A 

the disturbance quantities. Thus if the vorticity fl of the 

combined flow is given by 

fl = n(x,y) + C(x,y,t) (3.23) 

where 

n(x,y) - ^ - ^y <3-24> 
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is the vorticity of the basic flow, and 

C(x,y,t) =|J- ^ (3.25) 

is the vorticity of the disturbance flow, we obtain the following 

linearized equations for u and v: 

I JH + |X = 0 (3.26) 
3x  3y 

where    c,    is given by equation   (3.25).     Compare  these with the 
corresponding equations    (3.6)   and    (3.7)    for the parallel  flow 

case. 

The continuity equation   (3.26)   is automatically satisfied by 

introducing a stream function 

i il» = <Mx»y»t) 

for the disturbance field by means of the relations 

u.|l  ,  v- || (3.28) 

The disturbance vorticity is then given by 

| c - - 72i|; (3.29) 

Equation (3.27) now takes the form 

,      This is the basic equation governing the stability characteristics 
I      of a nonparallel, incompressible shear flow. Equation (3.30) 

reduces to the corresponding equation (3.11) for the parallel 
shear flow; for the latter V - 0, U - U(y), and fl - - dü/dy. 
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We now discuss solutions of equation (3-30) that represent 

traveling harmonic waves propagating in the x-direction but with 

varying spatial attenuation rate and phase speed.  Thus, we assume 

a solution of the form 

*(x,y,t) = 0{x/y)eiIe(x)-ta,tJ (3.31) 

where u denotes frequency and is independent of x and y. 

Both 4) and 6 may in general be complex.  Thus, let us set 

erx) - er{x) + iei(x) (3.32) 

Furthermore, expressing 

x x 
e(x)   =   f   ctmde =   f [arU)   + iai(5)]dC (3.33) 

We have 

>r(x) -J  ar 

X 

CCIdC C3.34) 
i. 

o 

»i(x) = r ^ 
X 

jam 13.35} 
ö 

Thus equation (3.31) may be rewritten as 

- e.(x)  ite (x)-(ütl 
iKx,y,t) • 4»(x,y)e  ^   e  r (3.36) 

where 9  and 8.  are given by equations (3.34) and (3.35). 

We note that 9.  accounts for attenuation while 6  accounts 

for propagation. With this in mind we may refer to a. (x) , in 

light of equation (3.35) , as the local spatial amplification rate. 
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The phase of  ^  Is given by 9 (x) - wt.  Thus, a surface 

of constant phase (a wave front) is described by 

F(x,t) - 9 (x) - wt ■ a const. (3.37) 

If the wave front travels with a  (wave or phase)   speed 

] c « c(x) 

we know that,  since there is no change in the function    F(x,t)     as 
I we  follow the motion of a phase surface,  we have 

j 7t + c ^' 0 

i 

or, equivalently 

c " " 11^ " d6r/dx 
(3-38) 

In light of equation (3.34) we obtain 

c<*>-57k <3•39, 

as the relation for the local phase speed.  We may refer to ctr 

as the local wave number.  If X « A(x)  is the local wavelength 

we further have 

0r(x) " wty 

Substitution of equation (3.36) into equation (3.30) with the use 
of equations (3.34) and (3.35) yields 

f~  ia,[Dj + (ia + Dx)*] + ü[io + DJ [ DJ + (ia + DJ2
] 

+ V[DJ + (ia  ♦ Dxy]Dy  + (Dx(DyU) - ^v)Dy 

(Continued on next page) 
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- (DjU-DyDxv)[ia+Dx]-v[D'+(ia+Dyrr H " 0   C3.40} 

where the operator notation 

OT) 

Dx 
8 

77 

D 
y 

J 

"77 

Dy 
-  32 

3y2 

and 

[ia + Dj» - !.♦ + II 

is employed. 

dx: 

3.4 Stability of "Almost-Parallel Flows" 

In order to examine the stability of an "almost-parallel flow" 

it is first necessary to define what is meant by the term.  It 

refers first to the nature of the mean flow and is intended to 

imply a slight relaxation of parallel flow restrictions as would 

be encountered in a free or wall shear layer.  An important feature 

of these types of flows is that gradients of field variables are 

much greater in the direction transverse to than in the direction 

of the main flow.  In a parallel flow the streamwise gradients are 

identically zero, not just small. Thus, if a measure of the shear 

layer thickness is denoted by e, it may be implied that streamwise 

changes over a unit distance are the same order of magnitude as 

transverse changes over a distance of the order e or, alternatively. 
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the scale of x is unity and the scale of y  is e.  If e is 

small compared to unity, the flow is "amost parallel" in the present 

sense. 

It is well known that such conditions as are imposed here 

imply certain relations between the flow field components.  In 

particular, from the continuity equation it is found that the 

transverse velocity, V, must be of order e compared to the stream- 

wise velocity, U. This is obtained formally by considering  c to 

be a non-dimensional parameter and by instituting the following 

transformation. 

x* ■ ex 
(3.41) 

Such that the scales of x* and y* are of the same order. Then, 

D ■ eD *,D ■ D * 
x   x ' y   y 

The continuity equation for the mean flow now becomes 

eD*U + D*V-0 
x*     y 

The consistent order of this equation under the present conditions 

requires that 

§-0(c) 

Therefore, let 

I 
I Ü - u* 

(3.42) 

| V - cV* 

I 
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If the transformations (3.41) and (3.42) are applied to equa- 

tion (3.40)f one obtains
1 

[- i" [Dy* + (i« + Dx*)
2] + ü[ia + £Dx*] [DJ* + (ia + eDx02] 

+ cV*[D^ + (ia + eDx,)
2]Dy, + (eDx,Dy.U - eJD^v*) Dy. 

- (D^U - e2Dy#Dx#V*)[ia + cD^]   -  V[D^ + (ia + eDx*)
2]2l* " 0 

(3.43) 

This equation may be rearranged and grouped into like orders 

of c  yielding 

((« - j) K - »2] - (Dy") + ^ " «r) 4> " 0    (3.44) 

to order e0, where the  ( )* notation has been suppressed. 

Higher order corrections to the stability characteristics may 

be obtained by expansion of ♦ and a such that ♦ ■ ^ + E^2 + ... 

and a = ax  +  ea2 + ...., etc., and substitution of these relations 

into equation (3.43).  The differential equation for tyl     and a1 

will be equation (3.44).  Quantities (|>2 and a2  and higher 

corrections may be found from the solution of equations obtained by 

the usual methods applied in small parameter expansions.  Such 

refinements do not appear to be warranted at the present time since 

the first-order solutions have not yet been quantitatively assessed. 

x .     x 
»Note that    J  a(Ud5 m\ f    o*(C*)dC* 

o o 
X X* 

thus Dx / amd? - Dx# f    a*(5*)de* - o(x) - a*(x*) 
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Equation (3.44) is of the same form as equation (3.15), but 

now U  and a    are functions of  x.  This shows that for an 

"nlmost-parallel flow" the local stability characteristics, at an" 

uven x  location, are the same as those of a parallel flow havimj 

d mean velocity profile with the same y dependence as the locsl 

nonparallel flow.  This immediately enables us, as shall be discusso i 

n determine the overall stability characteristics of the nonparallcl 

jiicar flow on the basis of the stability analysis of appropriate 

parallel flows. 

We shall now express equation (3.44) in nondimensional form. 

The scaling quantities for nondimensionalization will be chosen to 

be the local maximum velocity, U (x) , and a local characteristic 

shear layer dimension, ^(x)  (e.g., the boundary-layer thickness), 

r, was done for the parallel flow.  The following nondimensional 

iiiantities may now be defined as they were for the parallel flow. 

U(x,n) - U(x,n)/UIB(x) m 

U (x)6(x) 
Re.(x) ■  ■  , local Reynolds number 

a « a6 

(3.45) 

a(x) ■ a(x)6(x) 

(Mxfn) - */vm6 

n - y/6 

a) « a)6/U_ 
ID 
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Upon substitution of equations (3.45), equation (3.44) 

becomes 

[(ü - ü/ä)(D* - ä2) - D*ü + -^ (DJ - ä2)2l ? - 0    (3.46) 

ö 

Eigenvalues for a and w which are valid for any ü
m(
x) 

and  6(x)  having the same !T are found from equation (3.46) and 

the appropriate boundary conditions, e.g., 

i"=D^sB0    at    r] =  ± <*> 
n 

for free shear layers, jets, wakes, etc. 

It is seen that at each streamwise position, x, the solution 

to equation (3.46) is the solution of the Orr-Soinmerfeld equation 

(eq. (3.16) of section 3.2) for a mean streamwise velocity field 

identical to the local mean streamwise velocity.  The local eigen- 

function "^ , and eigenvalues a,  w and Refi for the developing 

flow are just those for a "parallel flow" having a mean streamwise 

velocity field whose dependence on n is identical to that of 

ü(x,n).  Note, however, that Ü does not have to correspond to 

any real parallel flow.  It is only necessary that U satisfy the 

steady Navier-Stokes equation.  In this manner the map of stability 

characteristics, similar to those shown in figures 3-2 for parallel 

flows, may be computed for an almost-parallel flow field.  Following 

is a description of the method of calculation. 

Given U(x,y)  one may determine Um(x)  and  6(x)  and thereby 

compute Re6(x)  and ü(x,n) .  One then proceeds to solve equa- 

tion (3.46) with the paired functions, U(x,y)  and Re6(x), 

at a sufficient number of stations  (Re6(x)
,s)  to represent the 

flow field.  These solutions will yield o(ü,Re6(x)), as in the 

parallel case 
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ä(x) « är(x) + i ä^x) » äfüT, Re6(x)] 

with Ü(x,n)  implied by Re6(x).  The stability characteristic 

map for the given flow field may then be constructed and will be 

similar in appearance to one of those shown in figure 3-2. 

The determination of the eigenfunction, (j), and eigenvalues, 

a  and u , in general requires tedious numerical computations 

even for the simplest parallel flow fields.  The flow fields of 

present interest are two dimensional and hence a sufficient number 

of separate solutions must be obtained to represent the changes in 

characteristics as the flow field develops.  The development of 

the flow field, and hence, the changing of its stability characte- 

ristics (the eigenvalues) may be separated intj changes in scale 

and distortions of the fundamental velocity profile.  It will be 

found that a large number of flow fields differ only in scale, 

e.g., flows of the Falkner-Skan classification.  For these flow 

fields (called self-similar flow fields) each set of appropriate 

boundary conditions will yield a unique, nondimensional velocity 

profile ü(n)  which is a function of only the nondimensional 

variable n and normalizing parameters, 6 and U .  The scale of 
m 

the flow is determined from specific values of these parameters for 

an individual case.  If the solution of the stability problem for 

these flows is carried out in nondimensional terms, as for equa- 

tion (3.46), a single set of nondimensional eigenvalues; a, u,  and 

Re, will enable the determination of the actual eigenvalues at any 

point in the self-similar field by supplying the local values of 

the parameters, U , 6 and Re^, at each x.  It will then be neces- 

sary to solve the eigenvalue problem anew only when distortions 

occur in the velocity profile. 

The fate of a disturbance in an almost-parallel flow field may 

now be determined by integration of the local stability characte- 

ristics of the flow field along the path corresponding to that 

disturbance.  Such Integrations will necessarily be numerical since 
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closed form solutions to equation (3.46) exist only for extremely 

simple U. 

Before embarking on the task of constructing the computer 

programs necessary for computation of the stability characteristics 

for almost-parallel flow fields and the additional computations 

necessary to apply the results to the problem at hand, the cavity 

tone, it will be well to discuss the general behavior of distur- 

bances under the new theory and to assess the implications of this 

behavior with regard to the cavity tone. 

3.5 General Features of a Disturbance in an Almost-Parallel Flow 

Let us first recall the features of propagation of a distur- 

bance in a given parallel flow.  In a parallel flow with given ü(y), 

the quantities  U , 6,  and Re.  are all constants with the down- 

stream distance x. The nondimensional frequency characterizing a 

disturbance of a fixed frequency f, which is given by öä = 2vf6/Vm 

is also a constant with x.  This being the case, in a parallel 

flow, a disturbance of given frequency propagates in the x-direction 

with a constant speed c and a constant amplification rate a^, 

each of which is completely specified by a point in the ÜT - Re^ 

plot.  Thus, we may say that in a parallel flow the features of 

propagation in the direction of x of a disturbance of fixed f 

are completely given by a point in the w - Re. plot. 

In a nonparallel flow the situation is different. Now, since 

U = U(x,y), the quantities V^,   6,  and Re^ all vary with x. 

Thus, as a disturbance of a given frequency f propagates in the 

direction of x, the nondimensional frequency ü ■ 2TTf6/Um also 

varies with x. At any given station x, the amplification rate 

(or, similarly the phase speed) is given by a point in the ü, Re^ 

plot, with those values of cö and Re^ corresr»onding to the 

x-station in question. As the disturbance travels in the direction 

of x,  its local spatial amplification rate (or its phase speed) 

varies with x and this variation (that is of o^ with x) is 

given by a curve in the w - Re» plane. We note that there is a 

one-to-one correspondence between R«g and x. 
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In order to determine the features (namely, a.(x)  and c{x)) 

of propagation ot a disturbance of given frequency f, in a non- 

parallel flow, we need to determine its path in the w - Re^  plane, 

that is the curve along which  f  is a constant. We may then deter- 

mine the local propagation features from the ä. (ür,Re.)  and 

c^Re.)  evaluaed along this path in w - Re. plane.  This is 

readily done as follows.  Since, 

- _ 2irfö(x)   ü)6(X) 
u = ujx)    ' iFJZT m       m 

and 

U (x)6(x) 
Re6- J1^  

we have 

—   2Trfv _      ü)V  _ a) «   Re, ■   Re. 

m m 

It follows that a curve describing f = a constant is given by 

the relation 

—     Refi 

"""■ÜM^" <3•47, Kl 

where 

ßj = 2irvf = ü)V a constant for given f. 

since U (x)  is known and values of x can be expressed in terms m _ 
of those of    Refi,   the disturbance path in the    w - Refi    plane may 
be computed  from equation   (3.47).     Different values of    f,  that is 
of    6,     lead to curves showing  the paths of disturbances with 
different  frequencies. 
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We shall concern ourselves with flow over a cavity and thus 

with a free shear layer only.  In such a case, üm ■ U^, a constant. 
This being the case, the path of a disturbance in the w - Re£ 

plane is given by 

when 

u = ß Refi 

(J = —^ f = constant for given f 

m 

The path is a straight line as depicted by the lines A to 

F in figure 3-4.  As  f increases, ß  increases, and the slope 

of the lines increases. Thus, the lines from A to F denote 

paths of disturbances with progressively decreasing frequencies. 

We shall now discuss the features of propagation of distur- 

bances in a nonparallel (especially an almost-parallel) free shear 

layer. 

In order to examine the growth of disturbances, let us now 

consider the ratio of the stream function at two different points 

in space and time. 

♦ (x,y) exp il /aU)de - wt 1 

^^        :    i[/°a(OdC-.t0] 0 0 0   <Kx0,y0) exp 

* 

[x x 
/ a (C)dC - ü)(t - t0)  exp - /ai(adC 
xo J      ^o 

The ratio (Mx,y)/(Mx0,y0)  evaluated at y ■ yo merely 

represents the distortion of the disturbance by changes in the 

mean flow between x0 and x.  It is recalled that for a parallel 



-45- 

flow, $    is independent of x and there is no distortion, i.e., 

<Mx,y )/<Mx »y ) " 1  for a parallel flow.  For an almost-parallel 

flow we may assume that the distortion is small, i.e., <Mx,y )/ 

<Mx ,y ) =1  for almost-parallel flows. 

The first exponential term in the above expressions represents 

the phase differences between the two points.  It is of interest 

only for instantaneous comparisons.  By choosing t such that 

the bracketed function is equal to 2mi, with n an integer, this 

term becomes unity. 

The remaining term represents the spatial amplification of a 

disturbance by the almost-parallel mean flow field.  It is this 

term which primarily determines the fate of a disturbance in a 

given flow field. We shall designate it as 

x 
A*((^x) «* A(a),x,x ) - exp - f a.mdC 
A*(u),x0) 

0 J  i 
0 xo 

It is implied that the a.  in this equation is computed from 

local solutions to the stability equation for the given a).  This 

dependence may be made more explicit by writing c^ as a^ü^x). 

This slight change in notation should not cause any appreciable 

confusion.  Thus, the amplification of a particular disturbance 

between the points x0 and x may be expressed as 

x 

A(a),x,x0) - exp - f ai(u),C)d5 (3.48) 

xo 

Since it is planned to solve equation (3.46) for the non- 

dimensional stability characteristics of the flow field, let us 

now express the above in those terms.  Recall that we have pre- 

viously defined the nondimensional terms such that 
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otjCuU) fRe6(x)) 

and (S-^) 

!6(x) ' ß Re6 w(x) »  h)V  ReA (x) - ß ReÄ(x) 
U'(x) 
in 

and 

6(x) = v/Um(x)Re.(x) (3.50) m    o 

By using these relations in equation (3.48), we may obtain 

the following 

f   ä1(ß(C)Re6(C).Re3(C))ü|n(C) 
A(u)fxfx^) = exp - /   — — a^ 0 J vRe,(E) vReÄ(5) xo 6 

If U (x)  is a constant, as it is for the cavity flow, simplifi- 
cation of this expression is possible.  Under such conditions  P 
is independent of x and depends only on the disturbance fre- 
quency, ß(u)) - (uv/U2. We may now change the dependent variable 

of integration from x to Reß 

dRe6 . !k d6 
dx   v 3x 

which may be expressed as a function of    Re^ (x)     through equation 

(3.50),  we obtain 

Re6 (x) 
ai(e(u))Re6,Re6) C 0        oi(ke(ü))Re6,Re6) 

A(a.,x,xo)   - exp - J Re6 {M/&0 d ^ (3'51) 

Re6(xo) 

We shall use this expression to examine the behavior of distur- 
bances of different frequency in an almost-parallel flow field. 
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The characteristics map and disturbance pat,hs (ß = const) depicted 

in figure 3-4 may be used for this purpose. 

Let us assume that disturbances with frequencies corresponding 

to 3A through  ßF (i.e., u^    through Wp) are introduced into 

the flow field at x = x . For simplicity, let us assume further 

that xo = 0  so that equation (3.51) becomes 

A(u),xfo) = exp - J       ^ iAA/^-  d Re,       (3.52) 

0 

'6XA/ aiß((i))Re6/Re(S 

Reö(dÄ/dx)  
d Re6 

Amplitude histories for disturbances introduced at x > 0 
o 

may be obtained by evaluating equation (3.51) using the appropriate 
Re6 ^xo^  beginning at the intersection of the appropriate 8 = 

constant path with the line Re. = Re. (x ) . 0     0  o 

If we may further assume that dö/dx  is positive throughout, 

we see from figure 3-4 and equation (3.52) that all disturbances 

are initially damped.  Frequencies greater than w  (e.g., u)_) 

are never amplified (regardless of x or x ) because their paths 

lie completely in the stable region of the w - Re. plot. For 

üj < ü)B, the path will cross the neutral curve, a. = 0, at some 

Re6(x)  and begin to be amplified. 

The first frequency to begin receiving amplification if 

xo < x is a)c.  The path of ü)C intersects the neutral curve at 

a lower Re^ than any other frequency.  This Reynolds number, 

Re(5(x1)  corresponds to the Recrit for a parallel flow and may 

be thought of as representing Recrit. for the local, almost-parallel 

flow. 

If x > x  all frequencies whose paths are in the amplified 

region, öü < 0, will receive initial amplification; e.g., if 

2Note that if x0 > Xj  some frequency (e.g., at least w.) will 
be initially ampTified. c 



-48- 

Re. (x )  corresponds to point 3 in figure 3-4, Re.(x ) = Re-Cx,), 

all a) <_ u  will be amplified at the outset. 

At some Refi (x), e.g., Re»(x3)  for w ■ w , the disturbance 

path will leave the unstable region and A(b) ,x,x )  will again 

begin to decrease. 

The amplitude histories, A(u>,x,0) , described above are depicted 

in figure 3-5.  It is noted that for  ß ^. ßD the disturbance ampli- 

tude, A(h),x,0), is maximum at its point of introduction.  For 

3 1 ßD» however, there is some region of the flow field, e.g., 

between Re^Cx^)  and Re^CXj)  for  ß = ß„,  where the amplitude 

exceeds the initial amplitude. This represents the condition for 

which there has been a net transfer of energy from the mean flow 

to the disturbance.  Point 3 represents the beginning of such 

regions since it is at this point where A(a>,x,0) first regains 

its input magnitude, A*(U),0).  The Reynolds number at point 3, 

Re^Cxj), is the nonparallel flow equivalent of the critical Reynolds 

number for a parallel flow since this is the least Re.(x)  at which 

A(a),x,x ) >^ 1  for any w.  It shall be designated Re„_(x_).  We 

note that Re  (x ) must be greater than or equal to the critical 

Reynolds number for the local parallel flow ^„4*.  (i«©«» Re.Cx,) 

in this case, regardless of x , but that is is a function of x 

as well as the flow field. 

Given the information contained in figure 3-5 for all fre- 

quencies, a map can be constructed in the  w - Re. plane showing 

amplitude ratio. A, as a parameter similar to a.  in the ü - Re, 

plane.  The features of such a map are depicted in figure 3-6 for 

the present case.  It is observed that this figure is strikingly 

similar in features to that of a parallel flow with uninflected 

mean velocity profile even though the local amplification rates 

are those of an inflected velocity profile (i.e., d2ü/dy2 - 0 

somewhere in the shear layer). 
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It is observed that the greatest amplitude disturbance at each 

x  station is associated with values of  ß# and therefore u, which 

decrease as x increases.  Thus, a,ä one moves downstream from the 

point of introduction of a general disturbance, the dominant 

frequency observed should decrease.  This is a general relation, 

independent of the choice of xo (i.e.,  Re6(0) ^0). A general 

expression may be derived from which this frequency may be computed, 

given the functional form of (^(il^Re^).  This relation is obtained 

from the familiar condition for the extremum of a function. 

[ 
3A(ü),x,xo) 

»w 
ta)«M 

3A(u) ,x#x ) 
 m   o 

5w 
m 

if w = the extremum frequency at station x. 
m 
The extremum expression may be stated more explicitly as 

3ü)_ 
-.! 

Re5(x) 

Re6(x0) 

o. (w YRer,ReÄ) 
l    m      o      o    J p_ 

/ 

Re6(x) 

^6^ 

3äi(u)inYRe6,Reö)        d Re^ 

"StJ m 
Re6(di/<U) 

/ 

Re6(x) 

Re6 <xo) 

35i(ü>m'Re«)        d ^6 
3ü)_ 

m 
mxtma (3.53) 

where    ü)„(X)   - u yRe. (x) m mo 

v/U, m 
A second derivative could be computed to ascertain whether 

the extremum is a maximum or a minimum, but this information is 

probably more easily obtained by inspection.  If it is known that 
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- cT.     passes through a maximum within the  interval,  the extremtun 
is a maximum.     If    - a.     passes through a minimum,  then the 
extremum is a minimum.    This conclusion arises from the obser- 
vation that  in order  for the Integral in equation   (3.53)   to vanish 
non-trivially,   30./3w    must be positive for part of the interval 
of  integration and negative  for a balancing portion of the Interval. 
Therefore,   30"./3w = 0    at some point in the interval   (x  ,x).     If 
this point represents a maximum of    - ä.,  the above mentioned second 
derivative of the integral with respect to    w      has the proper sign 
for    A(b>,x,x  )   to be a maximum at    w  ,  i.e., 

/ 

Refi(x) 
r 32oi(w,ReÄ)      d Reß 

Y =;—arcrüTar > 0 

Re6(xo) 3w 

We have in equation (3.53) an integral expression for obtaining 
a)  at any position x for a given point of introduction of distur- 
bances.  It can be shown that the conditions leading to this expres- 
sion are the general conditions for determining the envelope of a 
set of curves, A(u),x,x ) , having the parameter u.  Thus the function 
A(ü) (x),x,x )  is the envelope of the curves for x = 0 shown in mo r o 
figure 3-5 and represents the expected amplitude.  It is easily 
observed from figure 3-5 that when the amplitude histories become 
tangent to the envelope, the disturbance is still being amplified, 
i.e., a. < 0 at that point. Of course, this Is only true if the 
amplification of successive w ' s is increasing locally with x 
(i.e., dA/dx > 0) .  If dA((D (x),x,x )/dx < 0, i.e., the amplitude m     o 
is decreasing with x, however, the disturbance will be in the 
stable region of the characteristics map when it is the most ampli- 
fied disturbance and ai will be greater than zero at that point. 

The above general description of the behaviour of distur- 
bances in an almost-parallel flow field, while incomplete, illustrates 
that some strikingly new features appear in nonparallel flow stability 
in contrast to those in parallel-flow stability. A more complete 
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discussion of the nonparallel flow stability theory will be pre- 

sented in a forthcoming report by the present authors.  We now 

proceed to discuss the application of this theory to the edgetone 

and the problem of narrow band-noise generation in wind tunnels. 

3.6  Main Features of Cavity Tones Implied by the Stability 
of Almost-Parallel Shear Plow 

We shall now seek to express the main features of cavity tones 

in light of the stability of an almost-parallel free shear layer. 

Let us consider the generation of edgetones by means of flow past 

a cavity as shown by the sketch below. 

U(x,y) 

The breadth of the cavity, which is the dimension in the direction 

of the main stream, is denoted, as before by b. 

For the present discussions we shall assume that the free shear 

layer over the cavity begins at its upstream edge, that is 6(0) » 0. 

The mean velocity profile U(x,y) of the free shear layer is that 

which actually exists with the downstream edge in place. 

With respect to the generation of a tone in such a situation 

we assert the following: 

(a) If a tone is generated the frequency of the tone is the 

frequency of the disturbance which receives the maximum total ampli- 

fication over the distance b, for the given U(x,y); w - w (b) . 
m 

(b) A tone is generated only if the total amplification over 

the distance b for the disturbance with the frequency which 
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receives maximum amplification over that distance  is equal or 
greater  than unity: 

A((D   (b) ,b,0)   >   1 m — 

On the basis of these two criteria, which can be determined 
purely on the basis of the stability of the nonparallel free shear 

layer with the given ü(x,y)  we can conclude the following with 

regard to the main features of the cavity tones (reference may be 
made to fig. 3-5): 

(1) No tone will be generated for Refi(x)  less than a certain 
value which we shall denote as  (Re.) . .  For 

ö mm 

Re6 <   (Re6)min 

the amplitudes of all disturbances are less than their initial 
excitation, that is 

A < 1 

(2) Since 

U 6(x) 
Re. - -2  6     v    ' 

whezo  U  is a constant in ti>is case when a tone is first 

generated, we have the condition 

V(b) - v(Re6)min 

where the right-hand member is known as discussed in (1) above. 

(a)  If üm is given, the value of 6(b)  or equivalently 

b (since there is a one-to-one correspondence between 6(b) and b 

for a given profile U(x,y))  corresponding to  (Re*) in is 

obtained. We shall refer to this value of b as the minimum 
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breadth denoted by b . .  Thus, we have mm 

v(Re ) . 

^^.in) iT^ for 9iven "in and "• m 

For tone generation with a given profile, Ü, and U , we must have 
m 

6(b . ) >  LBUL mxn -     U m 

or equivalently, since  6(b)  increases with b, we must have 

b > b . — mm 

(b)  If b  is given, 6(b) is known, and the value of U 
m 

corresponding to  <Re5)n,in  
is obtained.  We may refer to this value 

as the minimum speed, and denote it by  (U ) . .  We have m mm 

v(Re-) . 
(Vmin =   & (b)     for ^ven b and Ü. 

Thus, we see that in the generation of cavity tones, with a 

given mean profile, Ü(x,n)r of the free shear layer, there is a 

minimum breadth b..   for a fixed value of the characteristic mm 
speed    U  ,   and that there  is  a minimum speed     (U  ) for a  fixed m m mm 
value of  the breadth    b.     For    b  <  b   .       at  fixed    Ü   ,  or  for min m 
u« "^ ^Um)m<« at fixed b there is no sound radiation, m    m mm 

(3)  Consider now the case for which the downstream edge of 

the cavity is at a distance greater than b . .  Since 6  increase) mm 
with  increase  in    b,  we have 

Re6(b)   >   <Re6>min 

From figure 3-5, as we have discussed before, we see that (a) there 

are disturbances for which the maximum total amplification over the 

distance b is greater than unity and (b) the frequency of such 

disturbances decreases with increasing Re,(b). 
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Since this is the case, 

U6(b) 
Re6(b) - -V- 

where U  is a constant and 6(b)  increases with b, we may 
m 

state that with a given profile, the frequency of the cavity tone 

at a fixed speed U  decreases with increasing breadth b, and at ^ m 
a  fixed    b,   it increases with the  speed,  l^. 

(4) The actual  frequencies of the tones generated at     ^fi^in^ 
and     (Re.)   >   (Rer)   .       can be readily inferred from the  stability 

o      6 mm 
characteristics such as depicted in figure 3-5. 

(5) Further features such as the growth and propagation speed 

over the distance b of the disturbance during a cavity tone 

operation can also be deduced from the stability characteristics. 

The above conclusions (1) to (3) are well supported by experimental 

observations. We have thus seen that some of the main features of 

the phenomenon of cavity tones can be well understood on the basis 

of the stability characteristics of nonparallel free shear layers. 

Furthermore, quantitative analysis of such features and their 

dependence on the given parameters of the problem can also be under- 

taken on this basis. 

In applying these notions to the problem of sound generation 

by high speed flow past ventilated transonic wind-tunnel walls, 

it will be necessary first to extend the stability considerations 

to include compressibility and turbulent shear layers, and then 

to take into account the actual geometrical and flow configurations 

characterizing the ventilated walls. Preliminary attempts with 

regard to the first aspect are briefly described in the following 

sections. 
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3.7  Effects of Flow Compressibility and Turbulence 

To this point we have discussed the stability of incompres- 

sible, steady, laminar flow.  The flow fields on the walls of 

transonic wind tunnels will rarely if ever be laminar and compres- 

sibility effects are generally present in the mean flow, if not in 

the disturbance field.  In order to apply our analysis to the 

wind-tunnel environment, we consider extensions of the analysis 

to compressible and turbulent flows.  Through such extensions the 

nature and extent of the effects may be evaluated. Such effects 

as arise from these considerations are expected to represent 

modifications to the basic theory and not major revisions.  It is 

with this in mind that we have constructed the analysis. 

3.7.1 Flow Compressibility Effects 

Some analytical treatment of compressible flows has been 

undertaken previously; for example. Lees (1946) , Lees and Lin 

(1947) , Dunn and Lin (1955) , and Lees and Reshotko (1962). 

Experimental studies have also been carried out by Demetriadcs 

(1958 and 1960) and by Lauf er and Vrebalovich (1960) . 

These analytical studies indicate two major effects of com- 

pressibility considerations.  First, the dependence of stability 

on the mean velocity profile i« altered by gradients in the mean 

temperature and density through the shear flow.  Second, fluctu- 

ations in temperature and density, which may occur for compressible 

flows, introduce new sources of instability besides the velocity 

fluctuations experienced by incompressible flows. The additional 

terms introduced by compressibility into the equation governing 

the stability of the flow field could result in fundamental changes 

in the nature of its solution (e.g., inclusion of all these effects 

changes the governing differential equation from fourth order for 

incompressible flow to sixth order for compressible flow) . This 

is particularly true of the temperature and density fluctuations. 

These analyses also indicate the possibility of disturbances which 

travel at supersonic speeds with respect to parts of the flow field, 
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as well as the subsonic disturbances, which are correspondent to 

disturbances associated with incompressible flows. The reader 

is referred to the referenced studies for a detailed account of 

these effects. 

The experimental studies performed sugges' that the important 

features of compressible flow stability in the range of present 

interest have a character very similar to those of geometrically 

similar incompressible flow fields.  The study by Laufer and 

Vrebalovich in particular suggests that a simple correlation with 

incompressible stability characteristics may exist for compressible 

flows up to a Mach number of about 2.2 for flat plate boundary 

layers.  Such results indicate that it is primarily the alterations 

to the mean flow field which affect the flow stability in the 

compressible flows of present interest. 

In order to express these experimental findings in analytical 

form we have developed an analysis for the simplified case of 

"almost incompressible flow", in the same spirit as the other 

extensions to stability theory presented herein.  This analysis 

is presently restricted to "inviscid stability" considerations 

(i.e., large Reynolds numbers) and will treat the mean flow as 

parallel. 

It is noted at the outset that the existence of strong shock 

waves intersecting the shear layer may invalidate the "almost- 

parallel flow" assumption for compressible flows, but the treatment 

of such complications must await firmer understanding of the more 

simple situations. 

In the following derivation the mean flow field will be assumed 

to be sufficiently parallel that transverse components may be 

neglected to the order of concern here.  It is noted that under 

such conditions, the mean static pressure, P, may be a function 

of the streamwise variable, x, only.  In the present case it will 

be assumed constant, P0.  Although viscous effects are neglected 
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for the unsteady components of  flow,   they may be active  In the 
mean  flow.     Indeed,   the viscous effects and the boundary conditions 
will determine  the mean velocity profile.     It Is assumed,  however, 
that the  steady  flow problem may be  solved  separately from the 
unsteady problem and that the mean velocity profile,  U(y),   is an 
Input to the unsteady problem. 

The unsteady field variables will be assumed to be two dimen- 
sional and  sinusoidal 

q(x,y,t)   = q(y)   exp 1   (ax - wt) 

where 

q(x,y,t)     is  any unsteady field variable 

q(y) is  the amplitude  function of    q    and may be complex 

a is the complex wave number of the disturbance    q 

o) is the circular frequency of the disturbance 
(radian/sec)  and is assumed to be real 

The  linearized governing equations  for the unsteady amplitudes, 
q(y)     are: 

Mass 

ia(ü - w/cOr + p'/p v + v'   + lau - 0 (3.54) 

x-Momentum 

io(U - u)/a)u + U'v +  la ir/p - 0 (3.55) 

y-Momentum 

ia(U - u)/a)v + ir'/P  - 0 (3.56) 
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Entropy 

State 

and 

ia{U - a)/o)8 + S'v - 0 (3.57) 

P'/P + S'/Cp - 0 (3.58; 

p'/p + T'/T - 0 

(perfect gas at constant pressure) (3.59) 

where 

p ■ fluid density = p(y)ri + r(x,y,t)J 

P = fluid static pressure ■ P0 + iT(xryft) 

S » entropy = S(y) + 8(x,y,t) 

T ■ temperature ■ T(y) + T(x/y/t) 

V - velocity - [ü(y) + u(x,y,t)] ex + ^(x^y^)^ 

and 

( )• = d/dy( ) 

In view of the small magnitude of the unsteady variables 

the following relations may also be obtained from thermodynamic 

considerations. 

IT - pa2(r + B/C ) (3.60) 



-59- 

where 

a2 - (sound speed)2 « OP/3p)s ■ y  P/p (perfect gas)   (3.61) 

Y « ratio of specific heats, cp/cv 

Equation (3.60) may be rearranged and, with the aid oi equa- 

tion (3.57), put in the form 

TT      8     TT     S'        V 
r " pa2 " cp  pa2  cp ^^Ö-^JTJT 

By employing equation  (3.55),   ir    may be eliminated from the 
above. 

(U - cj/a)  „        U'    „   .  S' v 

With this equation    r    may be eliminated  from equation   (3.54), 
which,  after  some rearrangement and use of equation  (3.58) , 
becomes: 

iau h   -   (" -  ^2121 - fu'CU-^/a)"! v + v.  - o (3.62) 

Next,  equations   (3.55)   and   (3.56)   are combined to eliminate    ir 

ia [(y - ^) pu]'   +   (U'pv)"   -  - a2 (u - ^)pv (3.63) 

u    is now eliminated between equations   (3.62)   and   (3.63),  yielding 

a2(U-u,/a)pv- -  [(U-^/oOp^0-"/00^2   ' ^   ^U'pv]' 
L 1 -   (U - a)/o)2/a2 J 

(Continued on next page) 
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(U - w/ot) Va -4- 
[ü'v (U - ü)/o)Va2 + 1 - (U - w/o)2/a2) - U - ü)/a)v,] 

or 

a2(ü - a,/a)pv » -fp^'v 1" -u»/a)Vl 
L 1 - (U - a)/a)2/a2 

(3.64) 

Equation (3.64) is the form of the inviscid stability equations 

obtained by Lees and Lin (1946) with the substitution of density 

for temperature.  Equation (3.64) may be greatly simplified in form 

by changing velocities to Mach numbers defined as follows: 

A 

M - (U - a>/a)/a ■ relative Mach number of the local fluid with 
respect to the disturbance 

ro ■ v/a = Mach number of transverse velocity fluctuation 

Noting that 

,2 FU'V - (U^ a)/a)v'j , a2[Ä,m _ ^(1/||). . ^. + Äv(l/a) •] 

- a2(M,m - Mn') 

since 

L' - (U - u/a)• 

and that from equation (3.61) and P = P o 

Yprt 
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It is found that equation (3.64) simplifies to 

V I-HO {3•65, 

Expressing the inviscid stability of a parallel compressible 

flow entirely in terms of Mach numbers instead of velocities, as 

is the case for incompressible flow. 

The inviscid Orr-Sommerfeld equation for incompressible flow 

is 

(U - w/a) (v" - a2v) - (U - w/o)"v - 0      (3.66) 

Now let 

M - Mjl (3.67) 

and 

n m  MMin 

where 

M» - (U^, - w/a)^ 

U^ - the maximum or free-stream mean velocity 

a^ ■ speed of sound at the position of U * Ik 

Equation (3.65) with the substitution of equation (3.67), is 

now expanded to a form similar to equation (3.6b). 

M'H [m- - a2(l - M2M2)iir] + *£ 2 5A
R' ST' 

1 - M'M 
00 

r2M2M(f!')2    -, _ 
M«  ^  + ff" m - 0   (3.68) 
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Let it be assumed that the phase velocity of the disturbance 

having wave number a is everywhere subsonic with respect to the 

fluid.  Then 1 i M^ > |M|  and  |M| < 1. 

Solutions for m may be sought which are of the form 

A  _ 
2 m = mo + M^ + M>2 +  (3.69) 

Substitution of equation (3.69) into equation (3.68) yields 

the following equations for m  and m,, the first and second- 

order solutions for m. 

H^" - a2m0) - H"ino «0 (3.70) 

M(m1" - a
2^) - M^j •= - 2 M M' n^'        (3.71) 

Equation (3.70) is the identical form of equation (3.66), the 

inviscid Orr-Sommerfeld equation.  The velocities have been replaced 

by Mach numbers in the compressible flow case, but the first-order 

form of the equations are identical tc ehe incompressible case.  The 

mean velocity profile of the incompressible case has been replaced 

essentially by the mean Mach number profile. 

It is seen, however, that the appropriate scaling parameter 

for velocity is not the speed of the free stream, but its speed 

relative to the disturbance phase velocity, u/ot.  In order that the 

expansion converges it is sufficient that  |M|  and M^ both be 

less than one; that is, all velocities are subsonic xith respect to 

the phase velocity at local conditions. 

On the basis of the present analysis one can gain some insight 

into the results of Laufer and Vrebalovich (1961) showing the 

correspondence between compressible and incompressible stability 

characteristics.  If the major features of the Mach number profile 

and the velocity profile are similar,ehe solution of equation (3.70) 
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for  a, = 0, neutral stability, will be little different from that 

of equation (3.66).  The phase velocity, w/a, however, is dependent 

on M"  instead of  U".  Thus, a Mach number effect should be 

observed in the eigenvalues for the phase velocity due to the speed 

of sound gradients in the shear layer, as is noted by Läufer and 

Vrebalovich.  A complete understanding of these effects will require 

further detailed study to extend the analysis into the viscous 

domain. 

The analytical results indicate that a simple extension to 

the incompressible theory would account for the major compres- 

sibility effects if the disturbances are considered to propagate 

subsonicly with respect to the mean flow.  This extension merely 

requires that the mean and fluctuating flow velocities be replaced 

by Mach numbers in the inviscid Orr-Sommerfeld equation.  Such 

results appear to substantiate the observations of Laufer and 

Vrebalovich in their experiments with the flat-plate boundary 

layer.  On the basis of the analysis, however, their observation 

that the major compressibility effects on stability arise from 

alterations to the mean velocity profile appears to apply generally 

for subsonic disturbances.  Further work is necessary, however, to 

carry these results over to low Reynolds numbers where viscous 

effects may be important. 

Since the flow fields of interest in the present study are 

generally in the high Reynolds number regime, it is believed that 

the compressibility modifications indicated by the simplified 

inviscid analysis will give satisfactory results in the present 

application. 

3.7.2 Stability Considerations for a Turbulent Mean Velocity 
Profile 

The analysis for the stability characteristics of a flow 

field was originated as a means to predict the transition of a 

laminar flow into a turbulent flow.  In the foregoing sections we 

have used the characteristics derived from such an analysis to 
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describe the generation of edgetones, cavity tones in particular. 

Such tones, however, are known to exist in turbulent as well as 

laminar flows.  It is the present task to show how the analysis 

can be carried over to turbulent flows.  The previously described 

theory for generation of cavity tones will thereby be shown to 

apply to turbulent as well as laminar flow fields. 

This problem was approached by Malkus (1956) for turbulent 

channel flow.  Reynolds and Tiederman (1967) studied this particular 

problem further.  Along the lines employed by Malkus, the present 

analysis shows that the stability characteristics of a turbulent 

flow field may be computed in an appropriate sense in the same 

manner as for a laminar flow.  The velocity profile to be employed 

for the turbulent flow analysis may usually be the velocity profile 

normally defined for "steady" turbulent flows. 

For an incompressible fluid the motion Is governed by the 

equations of momentum and continuity 

g^ « - VP + vV2V (3.72) 

and 

V • V - 0 (3.73) 

If    V    is made up of a spatial   (or ensemble)   average flow and 
small amplitude random fluctuations 

; - - 
V(x,y,t)   « V(x,y,t)   +V,(x,y,t) (3.74) 

P(x,y,t) » P(x,y,t) + P'U^t) 

Equations (3.72 and (3.73) may be expanded to yield 

Jl + i^L_ + v • VV + 7 • VV + V • VV + V" . W - 7P - VP* 

+ vV2V + VV'V'     (3.75) 
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and 

V   .   ^ + 7   .   V'   -  0 (3.76) 

If there is no spatial correlation between the  time dependence 
of    V    and    V,   taking a spatial average of equations   (3.75)   and 
(3.76)   tranverse to the main direction of flow yields 

|^ + 7 •   V7 + V   •   VV   - - VP + vV2V (3.77) 

V   •  7 « 0 (3.78) 

Note that the assumption of no correlation between the mean 
^   -»■ 

and the random quantities eliminated such terms as V • VV*  from 

the time average equation.  Should a correlation exist these terms 

would survive this operation and proper treatment of the term 

MV * VV)  Introduced by Malkus to account for this will be 

required. 

Now, the mean flow Is expanded in the form 

V - U(y)ex + eVjfx^t) + e
2V2(x,yft) 

F = P(x,y) + ePjfx^t) + r.2 (P2 (xfy,t) 

(3.79) 

where e  is an arbitrary parameter denoting the order of magnitude 

of the time dependent components of the mean flow. 

Substitution of equation (3.79) into equation (3.77) results 

in 

3V 3V, 
e _J. + ... + eUfy) -jJ- ... + cV, |H ... + V • 7V' 

- VP - eVP. ... + v $-2- + evV2^ 
dy2 
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Where the noncorrelation between the mean and random flows 

has been employed. Collecting terms of like order In the para- 

meter e yields 

V« . VV' - - VF + V — (3.80) 
dy2 

for  e0, and 

TT + ü T^ + vi * ey § " " V»P» + vV^V>      (3-81) 

for  e', where 

V
2 ' «x Ä + «y ^ 

Equation (3.80) governs the motion of the time independent 

mean flow. Equation (3.81) may be used to investigate the stability 

of Lhe time mean flow with respect to organized disturbances. 

Taking the curl of equation (3.81) and setting Vl     into the func- 

tional form3 

^ . :x - ^*fyft) . d^I exp i (ax - a,t) 

and 

^i   *  ®y " "   ^{\xrt)   " " ia*(y)   exp i   (ax " ü,t) 

yields the familar equation 

V        a;W2 V      dy2 ^ W 3y2 ' 

sThe pressure is of similar form but is eliminated from the governing 
equation by the curl operation and need not be considered further. 



-67- 

This equation is of identical form to the Orr-Sommerfeld equation 

used for the examination of the stability of laminar flows.  Thus, 

with the appropriate interpretations, the sensitivity of the mean 

turbulent flow to organized disturbances may be examined by 

substitution of the mean velocity profile, U(x,y), into the Orr- 

Sommerfeld equation and obtaining the resultant characteristics 

in the same manner as if one were examining a laminar flow. 

Additional complications can arise of course, if there is significant 

correlation between the "random" and the organized disturbance 

fields.  These are expected to result in only minor modifications 

to the present theory and not alter the central ideas.  As such, 

their investigation can be delayed to a future effort. 

Thus, the central idea of the analysis of the cavity tone 

also remains essentially unchanged for the turbulent shear flow. 

The flow field stability characteristics will change, however, 

because the mean velocity profile for a turbulent shear layer is 

not the same as for a laminar one. 



-68- 

4.  CONCLUDING REMARKS 

This study has concentrated on the development of the theory 

of discrete tone generation by flow over cavities.  Such tones are 

shown to be generated by the flow over the perforated walls of 

transonic wind tunnels.  It is seen that the instability of the 

shear layer over these perforations is the main agency for the 

generation of such discrete tones of sound.  The results of the 

analysis of the stability of an almost-parallel flow not only 

offer a satisfactory explanation of the sound generation and 

its main features, but in their quantitative form lead also to 

relations expressing quantities such as the Strouhal number and 

the minimum breadth in terms of tunnel aerodynamic parameters such 

as the Reynolds number. Mach number, shear layer thickness and the 

mean velocity profile. 

In order to obtain quantitative results, it is necessary to 

carry out the stability analysis for typical shear layers that are 

representative of the the flow past the cavities in such perforated 

walls.  The calculations require the input of mean velocity profiles 

for the shear layers at several streamwise positions in order to 

ascertain the changes in the stability characteristics due to flow 

development.  These characteristics are then integrated along 

disturbance paths in the w - Re.  plane to determine the features 

of disturbance propagation in the nonparallel flow field.  From 

these features the frequency of the most amplified disturbance and 

the amplification it receives may be determined. The latter may be 

used to indicate the intensity of the generated noise, but actual 

calculation of the intensity requires further considerations. 
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