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1. INTRODUCTION 

In an analysis of seismic data made for the purpose 

of discriminating between earthquakes and explosions, a 

common practice (Booker and Mitronovas (1964), Capon, 

et. al. (1967), Ericsson  (1970), and Shumway and Blandford 

(1970)) is to use the mean of a seismic discriminant 

measured at several stations as the basic observation. 

For example, surface wave and body wave pairs plotted in 

two dimensions may actually be mean values deduced from 

differing numbers or configurations of stations. The 

discriminant analysis which results ignores the fact that 

the measurements may have different means due to differ- 

ing station configurations and will surely have different 

variances because of the different sample sizes over 

which each mean has been determined. For these reasons, 

one would prefer to work with the values observed at 

each of the stations which record the event. 

This report will describe and evaluate a method for 

handling the discriminant analysis when observations are 

made at more than one station. A linear criterion which 

is an extension of the standard discriminant function 

will be considered. Evaluation will be in terms 

of standard operating characteristic curves (termed 

"identification curves" by Ericsson, (1970) which 

measure the predicted explosion detection capability 

as a function of the false alarm rate. Ericsson, (1970) 

contains a clearly written explanation of the political 

ramifications leading to the use of identification curves as 

well as an excellent review of the seismic discrimination 

literature. 

1- 



2. LINEAR DISCRIMINANT ANALYSIS 

WITH MULTIPLE OBSERVATIONS 

In the standard situation a p x 1 vector of proposed 

discriminants, X1 ■ (X,,...^ ), is observed and we wish 

to determine whether the vector came from a population 

of earthquakes (hypothesis H,) or a population of explo- 

sions (hypothesis H-). In general, multivariable 

normality of the vector X is assumed with only the mean 

value vectors for the two populations allowed to vary. 

The effect of variations likely to be observed in the 

covariance matrices seems to be small for seismic data 

(Shumway and Blandford, 1970). In the case where N 

stations record observations from the same event, we 

would like to assign each station a different mean value. 

Then, one has available a sample of N vector discriminants 

(X., j = 1, 2,...,N ) for classifying the events as 

belonging to either the earthquake or explosion group. 

Under ^(earthquakes),(X,, j = 1, 2,...Ns) are Ns 

independent normal vectors with mean (V,•, j = 1,,..,N ) 

and covariance matrix I  while under H2 they are inde- 

pendent normal vectors with means (V-., j = 1,...,N ) 

and identical covariance matrix I.  An application of the 

Neyman-Pearson argument to this case yields the dis- 

criminant function: 

Ns N. 

-Ns    j=l  J   J    j=l 
(CT), (1) 

where 

(2) 



and 

(CT)j = l/2CV1;j * V2j)' T
1 CV^ - V2j) 

Equations (1) through (3) demonstrate that the discrimi- 

nant function for observations from more than one station 

is just the sum of the ordinary discriminant functions 

evaluated at the station means. It may be that general 

linear procedures of the form 

N s 
a(^.T » • • • »^.M ) =   I       BiA    ILA 1 "s i-l J "^ 

might be useful discriminants. An example of a 

linear function which is not necessarily the linear 

discriminant function would be M . - 1.9 m,. where the 
sj       bj 

vector X! = (M •, HKj-i) is a surface wave body wave 

pair and a! = (1, -1.9). We note parenthetically th .t 

for Ns = 1, or for equal station means, equations (1) 

through (3) reduce to the usual equations for the 

linear discriminant function, so that the procedure 

is equivalent to discrimination using network averages. 

In order to apply equations (1) through (3) we 

must either know Y1., V2,, I,   j = 1,.,,,N , or obtain 

consistent estimators for these terms. 

In Section 4 we discuss the usual multivariate 

theory as it applies to estimating the generalized 

means and covariance matrix. 

(3) 

(4) 



3. THE IDENTIFICATION CURVE AS A 

MEASURE OF PERFORMANCE 

For discriminant functions of the form (1) an 

expected future performance can be calculated using the 

result that d(X^,.,,,Xj, ) is a normal random variable 

2 s 9 
with mean V Dj under H1 (earthquake),and - ^Dr under H2 

(explosion), and a variance 2^ D? under both hypotheses, 
with J 

In general we wish to control the probability of a false 

alarm. A false alarm occurs when an earthquake is 

incorrectly called an explosion. That is when H, is true 

and the value of the discriminant function d(X1,...,XN ) 

is low enough to cause the observation to be classified 

with the explosion population. If a is the false alarm 

probability and C(a) is a constant depending only on a 

we accept H- (explosion) if 

d(ll>   •••. XN ) 1 C(a). 
s 

For a given false alarm probability 



a - PrH  (d(X  ...,X^ ) < C(a)) 
1 s 

C(a) - IDJ 

PdCa) = PrH  (dr^,...^ ) < GCa)) 
'2 

C{a) + ID
2 

= $ (_^ !_) 

(6) 

= $ ^'  , 2  J ^ 
L j 

with $ denoting the cumulative normal distribution 
function, equation (6) may be solved for C(a) yielding 

C(a) = Cl D?) (1 + 2 $'1(a)) (7) 

where $"  denotes the inverse of the cumulative normal 
distribution function. The probability of correctly 
identifying the explosion, 

can be calculated as a function of the false alarm rate a. 



We note that for a general linear function of the form 
2   2 

(4) with means y,, y^ <  ^i» an^ variances a,, at, 
equations (7) and (8) become 

C(cO ■ Pj + Oj •"1(o) (9) 

and 

C(a) - y» 
(a) = $ (   i_) Pd(a) = $ ( M (10) 

If y- > y-i the equations become 

and 

C'O) = V^x + o1 «f"1 (1-a) (11) 

C(a) - y9 
P^Ca) = 1 - $ ( 5 1) (12) 

A plot of Pj(a), Pj(a) against a gives a measure of 

explosion detection capability and has been termed an 

identification curve by Ericsson (1970). 

A hypothetical identification curve is shown in 

Figure 1, In general, Ericsson postulates that an accept- 

able operating region Is determined by keeping the false 

-b- OJ 
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Figure   1.   A hypothetical   identification curve  showing  the   region 
which  combines  an  acceptable  detection probability  I'd>.10 with 
an acceptable   risk  a <   10"3. 
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alarm probability at 1 x 10"3 or less while maintaining 

the desired detection probability at .10 or greater. 

Figure 1 gives a geometric interpretation to the politically 

acceptable region along with a hypothetical identification 

curve showing that a maximum of 351 of the explosions 

could be detected within the acceptable false alarm 

probability of 1 x 10 

Figure 1 suggests that two proposed procedures 

leading to normally distributed discriminants can be 

compared by examining their respective identification 

curves. A procedure is superior to another if its detec- 

tion curve is located to the right of the other procedure 

over the region of interest. 



4. liSTIMATION OP THE STATION MliANS AND COVARIANC1; 

MATRIX FOR BARTHQUAKBS AND HXPLOSIONS 

In order to estimate the unknown parameters V,., 

y.2 • » Fi J = ^»•••»•N's 
we suppose that multiple station 

observations are available for N. earthquakes and N7 
explosions on possible discriminants. Denote the k'th 

P x I vector of discriminants .neasured at station j for 

an event of type i by JN •. so that under H, (earthquake) 

y,. ■ has a normal distribution with mean vector V,. and 

covariance matrix £ while under ll? (explosion) 21? k ^as 

a mean vector V7. and covariance matrix I,   j   =  I,   2 J; 
^ J 

k = 1, 2,,,., N . ..   N,. is the number of observations'" 

measured by the j'th sta .ion for an earthquake and N-^ 

is the number of observations made by the j'th station 

for an explosion. 

In this case it is well known that the maximum 

likelihood estimators for the mean vectors are 

N. . 
IJ 

Vij = NM J, ^ijk '  i = 1. 2, j = 1 J       (IS) 
k — x 

and that an unbiased estimate for the covariance matrix 

which is proportional to the maximum likelihood estimator 

is 

I  =   (y(N.  - 1))   l   (y... - V..)(y-i, - V..)' L ij  ij        ijk  1J   -ij^^ijk -ijJ (14) 



In practice the computations are rather involved for 

the above expression and one may wish to try different 

models and test various hypotheses about the vectors V... 

Therefore, it is convenient to formulate all models in 

terms of the multivariate linear hypothesis structure 

described below. 

Let ^k, k ■ 1,,,.,N  be p x 1 independently dis- 

tributed normal vectors with means B'xj^ and covariance 

matrix ^. Here B is a q x p matrix of unknown parameters, 

and x. , k = l9«««9M are fixed known q x 1 vectors. 

Then the Nxp matrix Y ■ (y,,...fy )' has nean value 

XB, where X = (x,,,..,^ )',  For this ca e the maximum 

likelihood estimate for B is 

(X'X)"1 X'Y (15) 

while an unbiased estimate proportional to the maximum 

likelihood estimator for J[ is 

(N-q)"1 (Y-XBVCY-XB) (16) 

For this setup, the program from Dixon (1970) yields B and 

J, as well as the results of testing hypotheses of the form 

ABC = 1) (17) 

where A(r x q), B(q x s), and D(r x s) are matrix    -ified 

to generate a designated hypothesis. The matrix C must be 

(s x s). We illustrate the procedure in the next section. 

-9- 
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The procedure implied by the theoretical approach 

in Sections 2, 3, and 4 will be illustrated using 20 

earthquakes and 9 explosions observed at various sub• 

combinations of six recording stations. The observations 

shown in Table I are on body wave (m.) and surface wave 

(Ms) magnitudes. We note that most events are not 

recorded at all stations. Hence, it would je useful to 

estimate an expected explosion detection probability for 

each sub-combination of stations which can be expected 

to appear as an observation. 

We assume as in the previous section that the k'th 

2 x 1 vector ^ - (Msijk#Mbijk)• pair at station 

j - 1, 2,..,,6 for event I ■ 1, 2 (earthquake or explo- 

sion) has the 2x1 mean vector: 

where cemponents denote respeccively the theoretical 

mean of the Ms an'* mb measurements at station j for an 

event of type i. In general, the estimates for V.  and 7 

are most important as they are needed for the multiple 

station discriminant function given in Section 2, 

(18) 

10- a-' 



IABU. I 

■^'"b ''"irs for 29 hvcnts 
Rccrrded at b  I.RSM Stations 

Statioi:» 

tarth.iuakfs   (1)              NP WM PC R, NN KN 

 !L M»            %            Ms           S           *m           ^            Ms            "b            M            MB N 

KQI 6.2S 1.50 

tQ2 S.77 4.23 

tQ3 6.26 6.33 

K44 6.24 4.IS 

S.07       4.20       S.99 4.94 

4,80       3.11       4.86 3.7S 

6.33 6.39       6.3S       6.19 
5.24       4.70       4.61 4.62 

6.04       6.57       5.62 6.46       5.29       6.46 EQS 6.46 6.17 6.40 6.29 
EQ6 6-21 4-S9 <.86 4.52       5.01       4.36       4.98       4.20 

■0» S-45 S-01 S.07 5.38                                                                       4.98       4.91 

*• S-S6 4-<» <.S2       <.74       4.61 4.28       4.47       4.56                                      4.61       4   SI 
EQ9 S-»9 S-36 S'"       S.67       S.30 5.42       5.43       5.48       5.36       5.62       4.,96       5.*39 
EQ10 S.44       4.93 4.66       4.30       4.94       4.21 

4.81       4.90       4.84       4.85       4.95 

fcQ1, S." *.*0 5.30 4.22 5.23 4.62 S   31       4   40 
tQl2                     S-"5 4-69 S-18 *'7* S.<0 <.S0 5.31 4.73 5.24 4.77       4.62       4^80 

S-J7 3'S8 <.*' 3.67 5.13 3.58 4.78 3 81 
5.81 3.86 4.92 3.90 4.70 4.08 5.18 4.10 4.95 4.01 

tQ15 6-0S       4-S1       4'9*       «•"       <.«S       <•«<       4.89       4.-5       4.80       4.52       4.78       4.75 
".(16 5.90       4.86       5.06       5.05       4.94       4.90       4.83 
,!•g,7 S•',       4-94 <.»5      4.75      5.15       4.95      4.72      4.57 
,;<?,8 4.51       4.36      4.54       3.95      4.63       3.92 

kQI9 5.98       5.00       4.83       5.17       4.72       4.91       4.67       5.02       5.21       4.89       4.60       4.65 

"K0 S-51       s-<0      5."       5.35       S.2S       5.45       5.78      5.33       5.17       5.11 
I'rcsuMvtl      ... 
I »ploHion»  "' 

EX1 

EX2 6.13 4.33 

EX3 6.25 4.32 

"* H.02 3.84       6.25       3.76 
EXS 

EM 6.33 4.31 

>X> 6.14       4.28 

tX' 6.28      4.14 

6.19 4.10 5.81 4.58 6.12 4.51 
6.08 4.45 5.99 4.40 5.75 4.25 5.95 4.99 
6.08 4.45 5.99 4.40 5.75 4.26 
5.84 4.02 5.75 5.57 4.55 5.72 4.11 

5.91 5.82 4.00 
6.09 4.75 6.90 6.71 4.65 6.17 4.46 
5.68 4.19 6.69 6.01 <.24 
5.68 4.12 6.59 6.35 5.93 5.76 .-.98 

6.85 6.59 4.19 

/O Jr* 



Of more than incidental interest are the hypotheses 

listed below. 

In general are earthquake and explosion mean 

vectors equal? 

":,!, y-ii ■ X ** I») 

Are earthquake and explosion means equal on a 

station-by-station basis? 

,,: llj   s  V2j, j - 1 6 (20) 

This also gives simultaneous confidence intervals for 

contrasts comparing earthquakes and explosions on a 

station-by-station basis. 

How significant is the linear contrast Um  - 1.9 
on a station-by-station basis? 

- - mb 

,,: -^Ijl *  Vlj2 " -^Zjl + V2j2' J ■ 1. 2.....6  (21) 

For the input to program BMI)-X-63,Üixon (1970), we note 

that the 12 x 2 parameter matrix B is given by 

11. 



Ill 112 -11 

B = V lül 

211 

162 

212 VI 

6 

:i 

(22) 

261 262 V 26 

The 123 x 12 matrix X has in each row a vector which 

generates an observation in Table I. For 

example, the component which generates the observation 

at PG for the 16th quake, say (4.94, 4,90), should 

have mean V'- so that the row vector for X should be 

(0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0) and similarly for 

the other observations in the table. In order to generate 

hypotheses  (19) through (21), it is sufficient to note 

that they are of the form ABC = D where (19), for 

example, has 

12- 



(1, 1, 1. 1, 1, 1, -1, -1, -1, -1, .1, .lf)> 

The generalized linear hypotheses program yielded 

the estimate for B given in Table II.  The table is 

in the format of equation (22). The table tends to 

indicate that there are some significant differences 

between the means. The standard errors are computed by 

noting that the program produces an estimate for the 

covariance matrix 

and that the variance covariance matrix of the rows of 

B is given by [«(x'x)'1 where M denotes the Kronecker 

product, and 

(X'X)"  - Diag (.06, .10, .07, .06, .06, .09, 

.17, 1.00, .14, .11, .12, .17) 

13- ^ 
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TABLE II 

Estimated Mean M  ,  mb Vectors 

For Earthquakes  and Exp] Losions 

Earthquakes 
Station »b Ms 

NP 5.90(.02)* 4.76(.04) 
WH 5.00(.04) 4.83(.06) 
PG 5.05(.03) 4.74(.04) 
RK 5.05(.02) 4.66(.04) 
HN 5.19(.02) 4.81(.04) 

Presumed 
Explosions 

KN 5.05(.04) 5.10(.05) 

NP 6.19C.07) 4.20(.10) 
WH 6.25(.40) 3.76(.60) 
PG 5.86C.06) 4.25(.08) 
RK 6.28(.04) 4.38C.07) 
HN 6.03(.05) 4.27(.07) 
KN 5.91(.n7) 4.35(.10) 

One standard deviation of the mean. 

- 



The table indicates  that the estimates for m,   have a 
D 

smaller variance and that WH has a large variance associated 
with its estimated mean. 

The test of the hypothesis that the overall earth- 

quake and explosion vectors are equal yields a value for 

the Wilks generalized variance ratio U.  , 112 = .335 

which can be compared with the 1%  significance point 
U2 1 110^•01^ ~ «911» so that the hypothesis is rejected 
in accordance with expectation? 

The comparison of earthquakes and explosions on a 

station by station basis generates U, - 112 = .256 as 

compared with U2 6 100 (.01) = .772. The values of the 

contrasts  (i.e. the difference between the earthquake 

and explosion means on a station by station basis) are 

the most useful and we give simultaneous 95% confidence 

intervals for these contrasts in Table III. The 95% 

confidence interval for any contrast of the form a'Bc 

where a is q x 1 and c is p x 1, is given by (Morrison, 
1970) 

a'Bc tQ.^ F,.^./'2 (25) 

where 

Q2 = Cc' I  c) (a'tX'X)"1^) C26) 

•14- *" 



TABLE III 

Estimated Contrasts Between Earthquakes 
and Presumed Explosions 

Difference by Station 

mb M s Ms-1.9mb 

NP -.30   + .08* .56  +   .13 1.12   +   .13 
WH -.125  + .19 1.07  +   .29 3.46   +   .30 
PG -.81  + .07 .49 +   .13 2.03   +   .13 
RK 1.22  + .07 .28  +   ,11 3.61   +   .11 
HN -.83  + .08 .54  +   .12 2.12  +   .13 
KN -.86  + .09 .75  +   .13 2.38  +   .14 

951 Confidence Interval of the mean. 

ft-*- 



The values for the two terms in (22) can be read from 

the BML-X-63 printout. 

From Table III we see that all contrasts are sig- 

nificantly different from zero. An alternate proposed 

discriminant is the linear function represented 

symbolically as M, - 1.9 m, . The values of this contrast 

are shown in Table III along with 951 confidence 

intervals. Again we see that all contrasts are sig- 

nificantly different from zero. 

The fact that the mean (M , m,) point for the 

earthquakes is different from that of the explosions 

is not, of course, solely indicative of discrimination 

capability since the means of either group can be 

shifted anywhere along its M , m, trend by suitable 

selection of large or small events. However, examina- 

tion of the M , m, plots for the data shows that in 

fact the separation in the means is truly due almost 

exclusively to the separation of the trend lines. The 

fact that the earthquake trend line tends to have a 

slope between 1.6 and 1.9 leads to the discriminant 

proposed above. 

Finally, we note that the main use of the estimates 

for the generalized mean vectors (22) and covariance 

matrix (23) will be in estimating the discriminant 

vectors d. in (22) to be applied to each station 

(M , Hiji pair. The estimated discriminant vector, 

L • (V^ - V2.)' F
1 (28) -j   ^-lj  -2j 
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can be applied to a data sample of N observed station 

vectors to obtain the value (1) 

N 
s 

dCXj ....xN ) - y di x - J(CT). 
s      j=i J  J   j    j 
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to be compared with a threshold C(a) which produces a 

desired false alarm probability a. Of course, the rate 

a is only obtained in theory when the mean vectors and 

covariance matrices are known exactly. The explosion 

detection probability will be estimated by (8) with 

2 
in place of D.t(5). Since the explosion detection prob- 

ability is an increasing function of JD?, it is clear 
j J 

2 
that D. measures the contribution to detection prob- 

ability of station j. The overall detection probability 

can be increased either by an event which records at 

many stations or by an event which records at a 

relatively few stations with high D? values. 

The above results can be illustrated using the 

data in Table I. A discriminant analysis program (DISNP) 

which accepts the generalized mean vectors and covariance 



matrix along with each event and the identities of the 

stations recording each event was used. Table IV shows 

the resulting estimated discriminant vectors, correc- 
2 

tion terms and D values for each station. 

We note that station WH adds the most to the detec- 

tion probability with NP adding the least. (WH may be 

good, however, mostly because of its small data sample, 

see Table I, an effect pointed out by Shumway and 

Blandford (1970)). In order to determine performance 

measured by plotting detection probability as a function 

of false alarm rate (Figure 1) we use equations (9) and 

(10) for D = 1.7, 5.0, 10.0, and 15.0 in the program 

IDCURVE. All that is necessary to evaluate the perfor- 

mance of a particular sub-group of stations is to add 

up the D values for the sub-group and refer to the 

identification curve in Figure 2. We see that the only 

politically unacceptable performance occurs when NP is 

the only station recording. Any two stations (exclusive 

of NP) which record give a D2 of at least 10 yielding a 

detection probability of .90 for a false alarm prob- 

ability .001, The worst combination of stations 

recording (PG, HN) in Table I still yield a D2 of 

greater than 10 or a detection probability of greater 

than .90 in the allowable false alarm region. It is 

important to emphasize that the data set used consists 

of very large events and does not include any "anomalous" 

earthquakes such as those discussed by Der (1972). 

The values of the discriminant vector applied to 

the 20 earthquakes and 9 explosions are shown in Table V. 

If we arbitrarily assign earthquakes equal prior odds, 

the threshold is 0 and no misclassification result. 
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NP 

WH 

TABLIi IV 

Üiscriniinant Analysis Kesults 

DISCRIMINANT 
STATION      —VTzrm— 

(-5.02,   3.43) 

(-16.37,   9.25) 

PG (-9.81,   5.13) 

RK (-13.03,   5.84) 

HN (-10.18,   5.40) 

KN (-11.25,   6.38) 

ffj* 

COKRIiCTION 

2! '1TRM   " 

-14.93 1.70 

-52.30 15.24 

-30.48 5.24 

-47.41 8.79 

-37.55 5.68 

-31.41 7.22 
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Figure 2. Identification curves Tor selected values of t)  in 
multiple station discrimination. 
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TABLE  V 

Values of Discriminant Function  (5.10) 
For Data in Table  I 

Eve"ts           NP WM           PG           RK         HN KN      Discriminant 
Function 

£Ql *                                       XX 2.50 
EQ2                  X                                            XX 10.98 
EQ3                  *                                                           XX 7.42 
EQ4 x                                            XX 15.06 
EQ5 x                            XXX 34.15 
EQ6 X                            XXX 17.68 
EQ7 X                              X X 19.87 
EQ8 X X              X              X X                  55.68 
KQ9 X X             X             X           X X                 56.76 
EQ10 X                                            X           X 21.40 
E<m XXX X 13.70 
EQ12 X X             X             X           X X                 34.45 
EQ13 X                             XXX 10.23 
EQ" X X              X              X           X 19.86 
EQ1S X X             X             X           X X                 51.69 
EQ16 X X             X             X           X X                 55.20 
EQ17 X X             X             X           X 27.45 
EQ18 X             X             X 34.97 
EQ19 X X             X             X           X X                 63.68 
EQ20 X             X             XX X 35.70 

EX1                                                             XXX -21.03 
EX2 X                              X              X            X X -18.67 
EX3 X                            XX X -11.62 
EX4 X X              X              X            X X                -30.83 
EX5                                                               X           X -12.35 
EX6 X                            X             X           X X -41.57 
EX7                                                XXX -23.17 
EX8 X                            X             X           X X -36.29 
EX9 34.47 
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It is interesting to conpare the multiple station 

discriminant with one derived only from event means 

(the usual approach). Table VI shows the event means. 

In this case Ns ■ 1 and we obtain the discriminant 

vector (-15.20. 7.31) with correction term -52.45. The 

value of D was 7.246, which puts the theoretical 

detection rate at .75 for a false alarm rate .001. 

Figure 2 shows the identification curve using the 

sample means and variances of the discriminant values 

rather than the theoretical means and variances based 

on D . Table VII shows the values for the discriminant 

function. 
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TABLE VI 

Data on Measured Body Wave Magnitudes (m.) (X.) 

and Surface Wave Magnitudes (M ) (X2) for 9 Presumed 
9 

Explosions (pop. 2) and 20 Earthquakes (Pop. 1) 

Explos ions   (E) Earthquakes   (Q) 

OBSERVATIONS OBSERVATIONS 

POP2    mb Ms POP1     rab Ms 

6.04 4.33 5.60 4.25 
5.97 4.39 5.18 3.93 
5.85 4.35 6.31 6.30 
5.79 4.14 5.36 4.49 
5.87 3.90 5.96 6.39 
6.51 4.49 5.26 4.42 
5.74 4.22 5.17 5.10 
5.98 4.08 4.75 4.50 
6.07 4.30 5.35 5.49 

5.01 4.48 
5.27 4.41 
5.27 4.69 
4.98 3.66 
5.11 3.99 
5.06 4.58 
5.09 4.90 
5.15 4.82 
4.56 4.08 
5.00 4.94 
5.43 5.48 
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TABLE VII 

Values of Discriminant Function for Data in Table VI 

EQ1 4.61 EX1 -7.71 

EQ2 2.44 EX2 -6.21 

EQ3 2.58 EX3 -4.68 

EQ4 3.79 EX4 -5.30 

EQS 8.56 EX5 -8.27 

EQ6 4.80 EX6 -13.69 

EQ7 11.14 EX7 -3.96 

EQ8 13.14 EX8 -8.36 

EQ9 11.25 EX9 -8.39 

EQIO 9.04 

EQ11 4.58 

EQ12 6.62 

EQ13 3.50 

EQ14 3.94 

EQ15 9.01 

EQ16 10.89 

EQ17 9.40 

EQ18 12.96 

EQ19 12.55 

EQ20 9.96 
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6. OTHER POSSIBLE APPROACHES, SUMMARY 

Two other approaches were tried for the multiple 

station case. The first was to use the (M. m.) pairs 

from the six stations as a 12-element vector with missing 

observations filled in as sample means. This  tended to 

produce a 12 x 12 covariance matrix which was nearly 

singular. Since some columns became nearly linear combi- 

nations of the others this tended to produce a 12 x 12 

covariance matrix which was nearly singular. Thus the 

performance of the discriminant on future data as in 

Shumway and Blandford (1970) could not be evaluated, and 

doubt was cast on the entire technique. A second approach 

used a non-linear function composed of the ratio of 

generalized variances under the assumption that the suite 

of station observations originated from either a bomb or 

an earthquake. While this procedure was appealing as the 

generalized likelihood solution, the test statistic was 

not normally distributed. Detection curves based on a 

normal approximation were inferior to those for the 

multiple station linear discriminant. 

The preceding calculations indicate that using a 

multiple station discriminant function when the appro- 

priate data is available will lead to an average overall 

improvement in the identification curves. Crnsideration 

of the results in Shumway and Blandford. coupled with 

the realization that our new technique is still basically 

two-dimensional instead of 12-dimensional. suggests that 

the improvement is real and not due to higher dimensionality 

of the new technique working on a small data base. However 

thxs possibility is not definitely excluded in this study 
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which is aimed more at outlining the technique and giving 

an illustrative example. 

This improvement may be largely due to the proper 

accounting made of "station effects" which would be the 

same for earthquakes and explosions and which could also 

be accounted for by the traditional method of "station 

corrections" applied before calculation of the average 

M , m, values. The present method, while preserving the 

capability of discrimination when reports from some 

stations are missing, can in addition take advantage 

of different M or m. patterns between earthquakes and 

explosions, i.e. the possibility of different radiation 

patterns. 

Several possible additional sources of improvement 

need to be investigated. These improvements could be 

possible using more detailed assumptions about the 

covariance matrices. For example, it is generally 

thought that the scatter for the earthquake distribution 

exceeds that of the explosion distribution although the 

performance of the classical discriminant is not degraded 

significantly by this violation (Shumway ?nd Blandford, 

1970). In any case, a class of linear functions of the 

form 

with £,, J, t^e explosion and e^thquake covariance 

matrices and 8 a parameter chosen to optimize the 

detection probability might make a significant improve- 

ment. A second possibility is to take advantage of 

-20- 
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inhomogeneities in the covariance matrices for different 

stations by replacing I  in equation (2) by J.. 

A problem of practical interest arises when a few, 

but not all, discriminant measures are missing from a 

station. In this case, one still knows the marginal 

distribution of the variables present to be normal and 

the analysis proceeds as before. Let J be partitioned 
into 

where all values corresponding to the second set of p2 

variables are missing. Then the marginal density of the 

first set of pj present variables is normal with 

covariance matrix Jn, Hence, in the discriminant 

function (2) just replace I  by ln  and 0^. - V2.) by 
(Vlj " V2p  where the starred mean difference is^ ^ 
by 1 vector composed of the first p1  components of 

^Vlj " V2j1° In these cases, one still gets the use of 

a station value as a possible discriminator even though 

it is a vector of lower dimension than one might prefer 

under ideal conditions. This requires that one retain a 

different covariance matrix for each station but 

preserves the optimality properties that would be 

destroyed by guessing values for the missing variables. 
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