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1. INTRODUCTION

In an analysis of seismic data made for the purpose
of discriminating between earthquakes and explosions, a
common practice (Booker and Mitronovas (1964), Capon,
et. al. (1967), Ericsson (1970), and Shumway and Blandford
(1970)) is to use the mean of a seismic discriminant
measured at several stations as the basic observation.
For example, surface wave and body wave pairs plotted in
two dimensions may actually be mean values deduced from
differing numbers or configurations of stations. The
discriminant analysis which results ignores the fact that
the measurements may have different means due to differ-
ing station configurations and will surely have different
variances because of the different sample sizes over
which each mean has been determined., For these reasons,
one would prefer to work with the values observed at
each of the stations which record the event,

This report will describe and evaluate a method for
handling the discriminant analysis when observations are
made at more than one station. A linear criterion which
is an extension of the standard discriminant function
will be considered., Evaluation will be in terms
of standard operating characteristic curves (termed
"jidentification curves'" by Ericsson, (1970) which
measure the predicted explosion detection capability
as a function of the false alarm rate. Ericsson, (1970)
contains a clearly written explanation of the political
ramifications leading to the use of identification curves as
well as an excellent review of the seismic discrimination
literature.



2, LINEAR DISCRIMINANT ANALYSIS
WITH MULTIPLE OBSERVATIONS

In the standard situation a p x 1 vector of proposed
discriminants, X' = (Xl,...,Xp), is observed and we wish
to determine whether the vector came from a population
of earthquakes (hypothesis Hl) or a population of explo-
sions (hypothesis HZ)’ In general, multivariable
normality of the vector X is assumed with only the mean
value vectors for the two populations allowed to vary,.
The effect of variations likely to be observed in the
covariance matrices seems to be small for seismic data
(Shumway and Blandford, 1970). In the case where NS
stations record observations from the same event, we
would like to assign each station a different mean value.
Then, one has available a sample of NS vector discriminants
X., j =1, 2,...,NS) for classifying the events as
belonging to either the earthquake or explosion group,
Under Hl(earthquakes),(ﬁj, j =1, 2,...NS) are N_
independent normal vectors with mean (Klj’ j= l,...,NS)
and covariance matrix ] while under H, they are inde-
pendent normal vectors with means (!Zj’ j = l,...,NS)
and identical covariance matrix ). An application of the
Neyman-Pearson argument to this case yields the dis-
criminant function:

N
S

s
d(ﬁl’--°’5NS)= jzl g} X - jzl (CT) 5 (1)
where
Y = - v 3ol
ij (Klj KZj) z =



and

-1

Equations (1) through (3) demonstrate that the discrimi-
nant function for observations from more than one station
is just the sum of the ordinary discriminant functions
evaluated at the station means. It may be that general
linear procedures of the form

N
s
Yy a!X

a(i ,...,_)_(_ ) = a. A
IR (4)

j

might be useful discriminants. An example of a

linecar function which is not necessarily the linear
discriminant function would be MS. - 1.9 mbj where the
vector X! = (Msj’ mbj) is a surface wave body wave
pair and gj = (1, -1.9). We note parenthetically th.t
for NS = 1, or for equal station means, equations (1)
through (3) reduce to the usual equations for the
linear discriminant function, so that the procedure

is equivalent to discrimination using network averages,

In order to apply equations (1) through (3) we
must either know ylj, YZj’ ¥, j = l,...,N_, or obtain
consistent estimators for these terms,

In Section 4 we discuss the usual multivariate
theory as it applies to estimating the generalized

means and covariance matrix.



3. THE IDENTIFICATION CURVE AS A
MEASURE OF PERFORMANCE

For discriminant functions of the form (1) an
expected future performance can be calculated using the
result that d(Xl,..., AN, ) is a normal random variable

with mean ) D2 under H1 (earthquake), and - XD under Hz

i
(explosion), and a variance ZZ D? under both hypotheses,
with J
2 1
DY = 1/2(V,. - -V,. 5
j / (-1,] 2 )! X J —-2_]) (5)

In general we wish to control the probatility of a false
alarm. A false alarm occurs when an earthquake is
incorrectly called an explosion, That is when H1 is true
and the value of the discriminant function d(Xl,...,_N )
is low enough to cause the observation to be clao51f1ed
with the explosion population. If o is the false alarm
probability and C(a) is a constant depending only on a
we accept H2 (explosicon) if

d(_)_(_ls seey X-N ) < C(a).
S

For a given false alarm probability



a = PrH]_ (d(_)_(_l:OOO:Z(_NS) _<_ C(a))
(6)
C(a) - ZDjZ
=0 ( e
DY
J
with ¢ denoting the cumulative normal distribution
function, equation (6) may be solved for C(a) yielding
- 2 -1
Cla) = (] DY) (1 + 2 ¢ “(a)) (7)
J
where ¢-1 denotes the inverse of the cumulative normal
distribution function. The probability of correctly
identifying the explosion,
Py(a) = PrHZ (d(x_l....,gNs) < C(w)
C(a) + ZD?
= ¢ ( ) (8)
z‘ngT

can be calculated as a function of the false alarm rate a.



We note that for a general linear function of the form
2 2

(4) with means His Hy < Hyp, and variances O1s Ty,

equations (7) and (8) become

C(a) = uy + 07 @71 (a) (9

and

C(U.) = ]Jz
Py(a) = ¢ (2 (10)

2

If My >y the equations become

C'(a) = uy *+ oy 71 (1) (11)
and
C(CX,) = UZ

A plot of Pd(a), Pé(a) against o gives a measure of
explosion detection capability and has been termed an
identification curve by Ericsson (1970).

A hypothetical identification curve is shown in
Figure 1. In general, Ericsson postulates that an accept-
able operating region is determined by keeping the false

-G-
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Figure 1. A hypothetical identification curve showing the region
which combines an acceptable detection probability Pd>,10 with
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3 . . ..
or less while maintaining

alarm probability at 1 x 10~
the desired detection probability at .10 or greater.

Figure 1 gives a geometric interpretation to the politically
acceptable region along with a hypothetical identification
curve showing that a maximum of 35% of the explosions

could be detected within the acceptable false alarm

probability of 1 x 1075,

Figure 1 suggests that two proposed procedures
leading to normally distributed discriminants can be
compared by examining their respective identification
curves. A procedure is superior to another if its detec-
tion curve is located to the right of the other procedure
over the region of interest,



4e ESTIMATION OF THE STATION MEANS AND COVARIANCE
MATRIX FOR LARTHQUAKES AND EXPLOSIONS

In order to ecstimate the unknown parameters !lj’
!Zj’ y,i = l,e.4,N, we suppose that multiple station
observations are available for Nl carthquakes and NZ
explosions on possible discrimirnants. Denote the k'th
P x 1 vector of discriminants ineasured at station j for
an cvent of type i by Xijk so that under ”1 (earthquake)

Y1jk has a normal distribution with mean vector V,. and

covariance matrix )} while under ll2 (explosion) Zz;; has

a mean vector !Zj and covariance matrix }, j = 1, 2,e04,J;
K =1, 2,000, Nij' ‘ Nlj is the number of observations *
measured by the j'th sta:ion for an earthquake and sz

is the number of observations made by the j'th station

for an explosion,

In this case it 1is well known that the maximum
likelihood estimators for the mean vectors are

o Ny

and that an unbiased estimate for the covariance matrix
which is proportional to the maximum likelihood estimator

"1 A A

} = (X(N - 1)) igk(xijk - !lj)(xl_]k - Xij)' (14)



In practice the computations are rather involved for
the above expression and one may wish to try different
models and test various hypotheses about the vectors !ij'
Therefore, it is convenient to formulate all models in
terms of the multivariate linear hypothesis structure

described below,

Let Y+ k= 1,0se,N be p x 1 independently dis-
tributed normal vectors with means B'x; and covariance
matrix }). Here R is a q x p matrix of unknown parameters,
and x,, k = 1,...,N are fixed known q x 1 vectors,

Then the Nxp matrix Y = (X1’°°°'X )!' has nean value
XB, where X = (§1,...,5N)'. For this ca e the maximum
likelihood estimace for B is

B = xx)"1 xvy (15)
while an unbiased estimate proportional to the maximum
likelihood estimator for ] is

] = (N-@)"1 (Y-xB) ' (v-xB) (16)
For this setup, the program from Dixon (1970) yields B and
}, aswell as the results of testing hypotheses of the form

ABC' =D (17)
where A(r x q), B(q x s), and D(r x s) are matricc: specified

to gencrate a designated hypothesis. The matrix C must be
(s x s). We illustrate the procedure in the next section.



5. EXAMPLE

The precedure implied by the theoretical approach
in Sections 2, 3, and 4 will be illustrated using 20
carthquakes and 9 explosions observed at various sub-
combinations of six recording stations. The observations
shown in Table I are on body wave (mb) and surface wave
(MS) magnitudes, We notec that most events are not
recorded at all stations. Hence, it would »e useful to
estimate an expected explosion detection probability for
cach sub-combination of statiouns which can be expected
to appear as an observation.

We assume as in the previous section that the k'th
- ' . .
2 x 1 vector Zijk (Msijk."bijk) pair at station
j=1,2,...,6 for event i =1, 2 (carthquake or explo-
sion) has the 2 x 1 mean vector:

Vs (18)

where ccmponents denote respectively the theoretical
mean of the M and my measurements at station j for an
event of type i. In general, the estimates fcor !ij and )
are most important as they are nceded for the multiple
station discriminant function given in Section 2,

-10- o



”s'mb Pairs for 29 Events
Recerded at 6 LRSM Stations

Stations
Earthquakes (1) NP Wil PG R¥ HN KN
m, Ms my "s Py NS my Ms my MS MB Hs
EQI 6.25 1.30 5.07 4,20 5.99 4,94
EQ2 $.77 4,23 4.80 3,81 4.86 3.75
EQ3 6,26 6,33 6.33 6.39 6,35 6.19
EQ4 6,24 4.15 5.24 4,70 4,61 1.62
EQS 6,46 6.17 6.40 6,29 6.04 6,57 5.62 6.46 5.29 6,46
EQ6 6,21 4.59 4,86 4,52 5.01 4,36 4,98 4,20
EQ7 5.45 5.01 5.07 5,38 4.98 4,91
LQ8 5.56 4,41 4,52 4,74 4.61 4,28 4.47 4,56 4,61 4,51
EQ9 5.89 5.36 5.22 5.67 5,30 5.42 5.43 5.48 5.36  5.62 4,96 5.39
EQI10 5.44 4,93 4,66 4.30 4.94 4,21
EQ11 5.22 4,40 5.30 4,22 5,23 1.62 5.31 4,40
Q12 5.85 4,69 5.18 1.73  5.40 1.50 5,31 1.73 5.24 4.77 4.62 4,80
EQES 5.37 3.58 4,62 3.67 5.13 3.58 1.78 3.81
EQI4 5.81 3.86 4,92 3,90 4,70 4,08 5.18 4,10 4,95 4,01
EQ1LS 6.05 4,51 4,98 4,93  4.85 4,84 4.89 4,75 4,80 4,52 4,78 4,75
EQlé6 5.90 4,86 5.06 5.05 4,94 4,90 4,83 4,81 4,90 4,84 4,85 4,95
EQ17 5.81 4,94 1,95 1.75 5.15 4,958 1,72 4,57
EQIS 1,51 4,36 4,54 3.95 4,63 3.92
LQI9 5.98 5.00 1.83 5.17 4,72 4,91 4.67 5.02 5.21 4,89 4,60 4,65
FQ20 5.51 5.40 5,48 5.35 5.23 5.15 5.78 8,33 5,17 S.11
Presumed ()
Lxploslons
EX1 6.19 4,10 5.81 4,58 6.12 4,31
EX2 6,13 4,33 6.08 1.45 5.99 4,40 5.75 4.25 5.93 4,99
EX3 6.25 4,32 6.08 4,45 5.99 4,40 5.73 4,26
EX4 5,02 3.84 6,25 3,76 5.84 4,02 5.75 4,38 5.37 4,33 5,72 4,11
EXS 5.91 3.82 5.82 4,00
EX6 6.33 4,31 6,09 4,75 6,90 4,79 6.71 4,65 6.17 4,40
EX7?7 5.68 4,19 6.69 4,46 6.01 4,24
EX8 6,14 4,28 5.68 4,12 6,99 4,46 6.33 3,93 5,76 2.98
EX9 6,28 4,14 6.85 4,62 6,39 4,19

10 &~



Of more than incidental interest are the hypotheses
listed below.

In general are earthquake and explosion mean
vectors equal?

) ‘E
I V,. = vV,.
j=1 1 j=1 2

Are carthquake and explosion means equal on a
station-by-station basis?

ll: _\_/.lj =.v-zj, J - 1'0..'6

This also gives simultaneous confidence intervals for

ccntrasts comparing earthquakes and explosions on a
station-by-station basis,

How significant is the linear contrast M, = 1.9y
on a station-bye-station basis?

”: 'logvljl + vljz = -109v2j1 + vszD j = 1’ 2’000'6

For the input to program BMD-X-63,Dixon (1970), we note
that the 12 x 2 parameter matrix B is given by

s1Is«

(19)

(20)

(21)



111 Vi12 Vi
B= V161 V162 - Vi (22)
[ ]
Vonua Va12 Va1
v v V!
261 262 26
L, i L ¢

The 123 x 12 matrix X has in each row a vector which
generates an observation in Table I. For

example, the component which generates the observation
at PG for the 16th quake, say (4.94, 4.90), should

have mean !iS so that the row vector for X should be

(0, 0, 1, 0, 0, 0, O, O, O, O, O, 0) and similarly for
the other observations in the table. In order to generate
hypotheses (19) through (21), it is sufficient to note
that they are of the form ABC' = D where (19), for
example, has

-]12-



AE (lv 1! 1! 1; 1! 1! 'lv 'lv '1’ 'lv 'lv 'lv)v

C = » and b= (0, 0),

The generalized linear hypotheses program yielded

the estimate for B given in Table II. The table is

in the format of equation (22). The table tends to
indicate that there are some significant differences
between the means. The standard errors are computed by
noting that the program produces an estimate for the
covariance matrix

« 16 «15

Farg i
L]

!15 1-33

and that the variance covariance matrix of the rows of
A -

B is given by JR(X'X) 1 where 8 denotes the Kronecker
product, and

(x'x)"! = Diag (.06, .10, .07, .06, .06, .09,
.17, 1.00, .14, .11, .12, .17).

-13-
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Earthquakes

Presumed
Explosions

%

TABLE I1I

Estimated Mean Ms. m, Vectors

For Earthquakes and Explosions

Station

NP
WH
PG
RK
HN
KN

NP
WH
PG
RK
HN
KN

138~

My,

5.90(.02)*
5.00(.04)
5.05(.03)
5.05(.02)
5.19(.02)
5.05(.04)

6.19(.07)
6.25(.40)
5.86(.06)
6.28(.04)
6.03(.05)
5.91(.07)

One standard deviation of the mean,

Ms
4.76(.04)
4.83(.06)
4.74(.04)
4.66(.04)
4.81(.04)
5.10(.05)

4.20(.10)
3.76(.60)
4.25(.08)
4.38(.07)
4.27(.07)
4.35(.10)



The table indicates that the estimates for my have a
smaller variance and that WH has a large variance associated
with its estimated mean,

The test of the hypothesis that the overall earth-
quake and explosion vectors are equal yields a value for
the Wilks generalized variance ratio U2,1,112 = ,335
which can be compared with the 1% significance point
U2,1,110('01) = .911, so that the hypothesis is rejected
in accordance with expectations

The comparison of earthquakes and explosions on a
station by station basis generates U2,6,112 = ,256 as
compared with U2,6,100 (.01) = .772, The values of the
contrasts (i.e. the difference between the earthquake
and explosion means on a station by station basis) are
the most useful and we give simultaneous 95% confidence
intervals for these contrasts in Table III. The 95%
confidence interval for any contrast of the form a'Bc
where a is q x 1 and ¢ is p x 1, is given by (Morrison,
1970)

i'ﬁg * Q-(%:q I~‘0‘:q’1\,_q)1/2 (25)
where
2_ v" 11‘1
Q" = (c' ] o) (a'(X'x)""a) (26)

-14- &



NP
WH
PG
RK
HN
KN

*

TABLE III

Estimated Contrasts Between Earthquakes

and Presumed Explosions

Difference

m

o

-.30
-.125
-.81
1,22
-.83
-.86

P+ I+ {1+ 1+ |+ |+

95% Confidence Interval of the mean.

by Station
.08% .56
.19 1.07
.07 .49
.07 .28
.08 .54
.09 .75

14 B-

=
v

I+ 1+ 1+ 1+ 1+ §+

+ 29
.13
11
.12
.13

Ms-logm

1,12
3.46
2,03
3.61
2,12
2,38

I+ 1+ 1+ 1+ |+ |+

.13
.30
.13
.11
.13
.14



The values for the two terms in (22) can be reud from
the BML-X-63 printout,

From Table III we sce that all contrasts are sig-
nificantly different from zero. An alternate proposed
discriminant is the linear function represented
symbolically as Ms - 1.9 m . The values of this contrast
are shown in Table III along with 95% confidence
intervals. Again we see that all contrasts are sig-
nificantly different from zero.

The fact that the mnean (MS, mb) point for the
earthquakes is different from that of the explosions
is not, of course, solely indicative of discrimination
capability since the means of either group can be
shifted anywhere along its Ms’ m, trend by suitable
selection of large or small events. However, examina-
tion of the Ms’ my plots for the data shows that in
fact the separation in the means is truly due almost
exclusively to the separation of the trend lines. The
fact that the earthquake trend line tends to have a
slope between 1,6 and 1.9 leads to the discriminant
proposed above,

Finally, we note that the main use of the estimates
for the generalized mean wvectors (22) and covariance
matrix (23) will be in estimating the discriminant
vectors ij in (22) to bec applied to each station
(MS, mb) pair. The estimated discriminant vector,

-15-
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can be applied to a data sample of N, observed station
vectors to obtain the value (1)

N
N S/\
d(x, ,...,&NS) = ngg X; - JZ(CT)J. (29)

to be compared with a threshold C(a) which produces a
desired false alarm probability o, Of course, the rate
o 1s only obtained in theory when the¢ mean vectors and
covariance matrices are known exactly. The explosion
detection probability will be estimated by (8) with

52 - vl L0
Dy = 1/2(9;; - ¥,.)'] Yy - ¥ (30)

in place of D} ,(5) Since the explosion detectlon prob-
ability is an increasing function of ZDJ it is clear

J
that D2 measures the contribution to detection prob-
ability of station j. The overall detection probability
can be increased either by an event which records at
many stations or by an event which records at a
relatively few stations with high D? values.

The above results can be illustrated using the
data in Table I. A discriminant analysis program (DISNP)
which accepts the generalized mean vectors and covariance

-16-



matrix along with each event and the identities of the
stations recording each event was used. Table IV shows
the resulting estimated discriminant vectors, correc-
tion terms and D2 values for each station.

We note that station WH adds the most to the detec-
tion probability with NP adding the least. (W may be
good, however, mostly because of its small data sample,
see Table I, an effect pointed out by Shumway and
Blandford (1970)). In order to determine performance
measured by plotting detection probability as a function
of false alarm rate (Figure 1) we use equations (9) and
(10) for p? - 1.7, 5.0, 10.0, and 15.0 in the program
IDCURVE. All that is necessary to evaluate the perfor-
mance of a particular sub-group of stations is to add
up the D2 values for the sub-group and refer to the
identification curve in Figure 2. We see that the only
politically unacceptable performance occurs when NP is
the only station recording. Any two stations (exclusive
of NP) which record give a D2 of at least 10 yielding a
detection probability of .90 for a false alarm prob-
ability .001. The worst combination of stations
recording (PG, HN) in Table I still yield a D2 of
greater than 10 or a detection probability of greater
than .90 in the allowable false alarm region., It is
important to emphasize that the data set used consists
of very large events and does not include any "'anomalous"
earthquakes such as those discussed by Der (1972).

The values of the discriminant vector applied to
the 20 earthquakes and 9 explosions are shown in Table V.

If we arbitrarily assign earthquakes equal prior odds,
the threshold is 0 and no misclassification result,
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TABLE 1v
Discriminant Analysis Results

DISCRIMINANT CORRECTION 2

STATION ~ VECTOR — TERM D
NP (-5.02, 3.43) -14,93 1.70
WH (-16.37, 9.25) -52.30 15,24

PG (-9.81, 5.13) -30.48 5.24

RK (-13.03, 5.84) -47.41 8.79
HN (-10.18, 5.40) ~37.55 5.68
KN (-11.25, 6.38) -31.41 7,2
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TABLE V

Values of Discriminant Function (5.10)
For Data in Table I

Events NP WH PG RK HN KN Discriminant
e = - I B " - Function
EQ1 X X X 2,50
EQ2 X X X 10,98
EQ3 X X X 7.42
EQ4 X X X 15,06
EQS X X X X 34,15
EQ6 X X X X 17.68
EQ7 X X X 19,87
EQ8 X X X X X 55.68
£Q9 X X X X X X 56.76
EQ10 X X X 21.40
EQ11 X X X X 13,70
EQ12 X X X X X X 34,45
EQ13 X X X X 10,23
EQ14 X X X X X 19,86
EQ15 X X X X X X 51,69
EQ16 X X X X X X 55.20
EQ17 X X X X X 27,45
EQ18 X X X 34,97
EQ19 X X X X X 63.68
EQ20 X X X X X 35.70
EX1 X X X -21,03
EX2 X X X X X -18,67
EX3 X X X X -11,62
EX4 X X X X X X -30.83
EXS X X -12,35
EX6 X X X X X -41,57
EX7 X X X -23.17
EX8 X X X X X -36.29
EX9 X X X X -34,.47
174



It is interesting to compare

the multiple station

discriminant with one derived only from event means
(the usual approach). Table VI shows the event means,

In this case NS = 1 and we obtain

the discriminant

vector (-15.20, 7,31) with correction term -52.45. The

value of [)2 was 7,246, which puts
detection rate at .75 for a false
Figure 2 shows the identification
sample means and variances of the
rather than the theoretical means
on Dz. Table VII shows the values
function,
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TABLE VI

Data on Mcasured Body Wave Magnitudes (mb) (Xl)

and Surface Wave Magnitudes (Ms) (X2) for 9 Presumed
Ixplosions (pop. 2) and 20 Earthquakes (Pop. 1)

Explosions (E) Earthquakes (Q)
OBSERVATIONS OBSERVATIONS
POP2 my MS POP1 my MS
6.04 4,33 5.60 4,25
5.97 4,39 5.18 3.93
5.85 4,35 6.31 6.30
5.79 4.14 5.36 4.49
5.87 3.90 5.96 6.39
6.51 4,49 5.26 4.42
5.74 4,22 5.17 5.10
5.98 4,08 4,75 4,50
6.07 4,30 5.35 5.49
5.01 4,48
5.27 4.41
5.27 4.69
4,98 3.66
5.11 3.99
5.06 4,58
5.09 4.90
5.15 4.82
4,56 4,08
5.00 4,94
5.43 5.48
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Values of Discriminant Function for Data in Table VI

EQl
EQ2
EQ3
EQ4
EQS
EQ6
EQ7
EQS8
EQO
EQ10
EQl1
EQ12
EQ13
EQ14
EQ1S
EQ16
EQ17
EQ18
EQ19
EQ20

4.61
2.44
2.58
3.79
8,56
4.80
11.14
13.14
11,25
9.04
4,58
6.62
3.50
3.94
9,01
10.89
9.40
12,96
12,55
9.96

TABLE VIT

19 &/

EX1
EX2
EX3
EX4
EXS
EX6
EX7
EX8
EX9

-7.71
-6.21
-4,68
-5.30
-8,.27
13.69
-3.96
-8.36
-8.39



6. OTHER POSSIBLE APPROACHES, SUMMARY

Two other approaches were tried for the multiple
station case. The first was to use the (Ms, mb) pairs
from the six stations as a 12-element vector with missing
observations filled in as sample means., This tended to
produce a 12 x 12 covariance matrix which was nearly
singular, Since some columns became nearly linear combi-
nations of the others this tended to produce a 12 x 12
covariance matrix which was nearly singular, Thus the
performance of the discriminant on future data as in
Shumway and Blandford (1970) could not be evaluated, and
doubt was cast on the entire technique. A second approach
used a non-linear function composed of the ratio of
generalized variances under the assumption that the suite
of station observations originated from either a bomb or
an earthquake. While this procedure was appealing as the
generalized likelihood solution, the test statistic was
not normally distributed, Detection curves based on a
normal approximation were inferior to those for the
multiple station linear discriminant.

The preceding calculations indicate that using a
multiple station discriminant function when the appro-
priate data is available will lead to an average overall
improvement in the identification curves, Crasideration
of the results in Shumway and Blandford, coupled with
the realization that our new technique is still basically
two-dimensional instead of 12-dimensional, suggests that
the improvement is real and not due to higher dimensionality
of the new technique working on a small data base., However
this possibility is not definitely excluded in this study
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which is aimed more at outlining the technique and giving
an illustrative example.

This improvement may be largelv due to the proper
accounting made of '"station e¢ffects'" which would be the
same for earthquakes and explosions and which could also
be accounted for by the traditional method of "station
corrections'" applied before calculation of the average
Ms, m, values. The present method, while preserving the
capability of discrimination when reports from some
stations are missing, can in addition take advantage
of different Ms or m, patterns between earthquakes and
explosions, i.e., the possibility of different radiation
patterns,

Several possible additional sources of improvement
need to be investigated, These improvements could be
possible using more detailed assumptions about the
covariance matrices., For example, it is generally
thought that the scatter for the earthquake distribution
exceeds that of the explosion distribution although the
performance of the classical discriminant is not degraded
significantly by this violation (Shumway ond Blandford,
1970). In any case, a class of linear functions of the
form

djl = (Vlj - vzj)l(zl - ezz)-l

with J,, I, the explosion and earthquake covariance
matrices and 6 a parameter chosen to optimize the
detection probability might make a significant improve-
ment, A second possibility is to take advantage of

-20-



inhomogeneities in the covariance matrices for different
stations by replacing | in equation (2) by Zj'

A problem of practical interest arises when a few,
but not all, discriminant measures are missing from a
station, In this case, one still knows the marginal
distribution of the variables present to be normal and
the analysis proceeds as before. Let J be partitioned
into

T

£11 Eli

I21 EIE

where all values corresponding to the second set of P,
variables are missing., Then the marginal density of the
first set of P, present variables is normal with
ccvariance matrix le. Hence, in the discriminant
function (2) just replace | by le and (V1j - sz) by
(ij - ng) where the starred mean difference is a P;
by 1 vector composed of the first P; components of

(V1j - sz). In these cases, one still gets the use of
a station value as a possible discriminator even though
it is a vector of lower dimension than one might prefer
under ideal conditions. This requires that one retain a
different covariance matrix for each station but
pPreserves the optimality properties that would be
destroyed by guessing values for the missing variables,
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