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ABSTRACT 

An effective  tool  for programming includes  a high-level  language, 
preferably extensible.     A language  alone  is,  however,  not  sufficient. 
One wants  a complete programming system with an interpreter,  a fully 
compatible  compiler,  a source  level optimizer,   and facilities   for 
proving properties of programs.     The purpose of this paper is  to 
discuss how these various evaluators of the  language  can be  fitted 
together and made  to   complement  each other.     The   result,   an extensible 
programming system with multiple evaluators,  provides  a powerful 
programming tool. 
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INTRODUCTION 

As advanced computer applications become more complex, the need for good 

programming tools becomes more acute.   The most difficult programming pro- 

jects require the best tools.   It is our contention that an effective tool for program- 

ming should have the following characteristics: 

(1) Be a complete programming system — a language, plus a comfortable 

environment for the programmer (including an editor, documentation 

aids,  and the like). 

(2) Be extensible,   in its data,   operations,   control,   and interfaces with 

the programmer. 

(3) Include an interpreter for debugging and several compilers for various 

levels of compilation — all fully compatible and freely mixable during 

execution. 

(4) Include a program verifier that validates stated input/output relations 

or finds counter-examples. 

(5) Include facilities for program optimization and tuning — aids for pro- 

gram measurement and a subsystem for automatic high-level optimi- 

zation by means of source program transformation. 

We will assume,   not defend,  the validity of these contentions here.   Defenses 

12  3  4   5 of these positions by us and others have appeared in the literature.   »   »   »   »     The 

purpose of this paper is to discuss how these characteristics are to be simul- 

taneously realized and, in particular, how the evaluators, verifier, and opti- 
4 

mizer are to fit together.   Compiling an extensible language where compiled code 

is to be freely mixed with interpreted code presents several novel problems and 

therefore a few unique opportunities for optimization.   Similarly,   extensibility 

and multiple evaluators make program automation by means of source level 

transformation more complex,  yet provide additional handles on the automation 

process. 



This paper is divided into five sections.   Section 2 deals with communication 

between compiled and interpreted code,   i.e.,  the runtime information structures 

and interfaces.   Section 3 discusses one critical optimization issue in extensible 

languages — the compilation of unit operations.   Section 4 examines the relation 

between debugging problems,  proving the correctness of programs,  and use of 

program properties in compilation.   Finally,   section 5 discusses the use of 

transformation sets as an adjunct to extension sets for application-oriented 

optimization. 

Before treating the substantive issues,  a remark on the implementation of 

the proposed solutions may be in order.   Our acquaintance with these problems 

has arisen from our experience in the design,  implementation,  and use of the 

ECL programming system.   ECL is an extensible programming system utilizing 

multiple evaluators;  it has been operational on an experimental basis,   running 

on a DEC PDP10,   since August 1971.   Some of the techniques discussed in this 

paper are functional,  others are being implemented,   still others are being 

designed.   As the status of various points is continually changing,  explicit dis- 

cussion of their implementation state in ECL will be  omitted. 

For concreteness,  however,  we will use the ECL system and ECL's base 

language,  ELI,  as the foundation for discussion.    An appendix treats  those 

aspects of ELI syntax needed for reading the examples in this paper. 

MIXING INTERPRETED AND  COMPILED  CODE 

The immediate problem in a multiple evaluator system is mixing code.   A 

program is a set of procedures which call each other;  some are interpreted, 

others compiled by various compilers which optimize to various levels.   Calls 

and non-local gotos are allowed where either side may be either compiled or in- 

terpreted.   Additionally, it is useful to allow control flow by means of RETFROM - 

that is the forced return from a specified procedure call (designated by name), with a 



specified value as if that procedure call had returned normally with the given 

value (cf. [6]). 

Within each procedure,  normal techniques apply.   Interpreted code carries 

the data type of each entity — for autonomous temporary results as well as 

parameters and locals.   Since the set of data types is open-ended and augmentable 

during execution,  data types are implemented as pointers to (or indices in)  the 

data type table.   Compiled code can usually dispense with data types 

so that temporary results need not,  in general, carry type information.   In 

either interpreted or compiled procedures,  where data types are carried,  the 

type is associated not with the object but rather with a descriptor   consisting of 

a type code and a pointer to the object. This results in significant econo- 

mies whenever objects are generated in the free storage region. 

Significant issues arise in communication between procedures.     The 

interfaces must: 

(1) Allow identification of free variables in one procedure with those of a 

lower access environment and   supply data type information where 

required. 

(2) Handle a special,  but important,   subcase of #1 — non-local gotos out 

of one procedure into a lower access environment. 

(3) Check that the arguments passed to compiled procedure are compatible 

with the formal parameter types. 

(4) Check that the result passed back to a compiled procedure (from a 

normal return of a called function or via a RETFROM) is compatible 

with the expected data type. 

These communication issues are somewhat complicated by the need to keep the 

overhead of procedure interface as low as possible for common cases of two 

compiled procedures linking in desirable (i.e.,  well-programmed) ways. 

The basic technique is to include in the binding (i.e.,  parameter block) for 



any new variable its name and its mode (i.e.,   its data type) in addition to its value. 

Names are implemented as pointers to (or indices in) the symbol table.   (With 

reasonable restrictions on the number of names and modes,  both name and mode 

can be packed into a 32-bit word.)   Within a compiled procedure,  all variables 

are referenced as a pair (block level number,  variable number within that block). 

Translation from name to such a reference pair is carried out for each bound 

appearance of a variable during compilation;  at run time,  access is made using 

a display (cf. [7]).   However,  a free appearance of a variable is represented 

and identified by symbolic name.   Connection between the free variable and 

some bound variable in an enclosing access environment is made during 

execution,   implemented     using either shallow or deep bindings  (cf. [8]   for an 

explanation of the issues and a discussion of the trade-offs for LISP).     Once 

identification is made,  the mode associated with the bound variable is checked 

against the expected mode of the free variable,   if the expected mode is known. 

To illustrate the last point,  we suppose that in some procedure,   P,   it is 

useful to use the free variable BETA with the knowledge that in all correctly 

functioning programs the relevant bound BETA will always be a character string. 

To permit partial type checking during compilation,  a declaration may be made 

at the head of the first BEGIN-END block of P. 

DECL   BETA: STRING  SHARED  BETA; 

This creates a local variable BETA of mode STRING which shares storage (i.e., 

binding by reference in FORTRAN   or   PL/I9   ) with the free variable BETA. 

All subsequent appearances of BETA in P are bound,   i.e.,   identified with the 

local variable named BETA.   Since the data type of the local BETA is known, 

normal compilation can be done for all internal appearances of BETA.   The real 

identity of BETA is fixed during execution by identification with the free BETA of 

the access environment at the point P is entered.   When the identification of bound 

and free BETA is made,   mode checking (e.g.,   half-word comparison of two type 



codes) ensures that mode assumptions have not been violated. 

In the worst case,  parameter bindings entail the same sort of type checking. 

The arguments passed to a procedure come with associated modes.   When a 

procedure is entered,  the actual argument modes can be checked against the 

expected parameter modes and,  where appropriate,   conversion performed.   Then 

the names of the formal parameters are added to the argument block,  forming a 

complete variable binding.   Notice that this works in all four cases of caller/callee 

pairs:   compiled/compiled,   compiled/interpreted,   interpreted/compiled  and 

interpreted/interpreted.   Since type checking is implemented by a simple (usually 

half-word)   comparison,  the overhead is small. 

However,  for the most common cases of compiled/compiled pairs,   mode 

checking is handled by a less flexible but more efficient technique.   The mode of 

the called procedure may be declared in the caller.   For example: 

DECL   G: PROC(INT, STRING; COMPLEX) ; 

specifies that G is a procedure-valued variable which takes two arguments,  an 

integer and a character string,   and returns a complex number.   For each call on G 

in the range of this declaration, mode checking and insertion of conversion code can 

be done during compilation, with the knowledge that G is constrained to take on 

only certain procedure values.    To guarantee this constraint,   all assignments to 

(or bindings of) G are type checked.   Type checking is made relatively inexpensive 

by giving G the mode PROC(INT, STRING; COMPLEX) - i.e.,  there is an entry in 

the data type table for it — and comparing this with the mode of the procedure 

value being assigned.   The single comparison simultaneously verifies the 

validity of the result mode and both argument modes. 

Result types are treated   similarly. For each procedure call, 

a uniform call block is constructed    which includes the name of the procedure 

being called and the expected mode of the result (e.g.,  for the above example, 

s= 7 
This can be included in the LINK information . 



the name field is G and the expected-re suit-mode field is  COMPLEX).   This is 

ignored when compile-time checking of result type is possible and normal return 

occurs.   However,   if interpreted code returns to compiled code,  or if RETFROM 

causes a return to a procedure by a non-direct callee,  then the expected-result- 

mode field is checked against the mode of the value returned. 

Transfer of control to non-local  labels falls out naturally if labels are 

treated as named entities having constant value.   On entry to a BEGIN-END block 

(in either interpreted or compiled code),  a binding is made for each label in that 

block.   The label value is a triple ( indicator of whether the block is interpreted 

or compiled,  program address,   stack position) .   A non-local goto   label L is 

executed by identifying the label value referenced by the free use of L,   restoring 

the stack position from the third component of the triple,  and either jumping to the 

program address in compiled code or to the statement executor of the interpreter. 

UNIT  COMPILATION 

In most programs the bulk of the execution time is spent performing the unit 

operations of the problem domain.   In some cases (e.g.,   scalar calculations on 

reals), the hardware realizes the unit operations directly.   Suppose,   however,  that 

this is not the case.   Optimizing such programs requires recognizing instances 

of the unit operations and special treatment — unit compilation — to optimize these 

units properly. 

An extensible language makes recognition a tractable problem,  since the 

most natural style of programming is to define distinct data types for the unit 

entities,  and procedures for the unit operations in each problem area. 

(Operator extension and syntax extension allow the invocation of these procedures 

by prefix and infix expressions and special statement types.)   Hence,  the unit 

operations are reasonably well-modularized.   Detecting which procedures in the 

program are the critical unit operations entails static analysis of the call and loop 

structure,   coupled with counts of call frequency during execution of the program 

over benchmark data sets. 



The critical unit operations generally have one or more of the following 

characteristics: 

(1) They have relatively short execution time;  their importance is due to 

the frequency of call,  not the time spent on each call. 

(2) Their size is relatively small. 

(3) They are terminal nodes of the call structure,   or nearly terminal nodes. 

(4) They entail a repetition,  performing the same action over the lower-level 

elements which collectively comprise the unit object of the problem level. 

Unit compilation is a set of special heuristics for exploiting these characteristics. 

Since execution time is relatively small,  call/return overhead is a signifi- 

cant fraction.   Where the unit operations are terminal,  the overhead can be sub- 

stantially reduced.   The arguments are passed from compiled code to a terminal 

unit operation with no associated modes.   (Caller and callee know what is being 

transmitted.)   The arguments can usually be passed directly in the registers.   No 

bindings are made for the formal parameters.   (A terminal node of the call 

structure calls no other;   hence,   there can be no free uses of these variables.) 

The result can usually be returned in a register,  again,  with no associated mode 

information. 

Since the unit operations are important far out of proportion to their size, 

they are subject to optimizing techniques too expensive for normal application. 

Optimal ordering of a computation sequence (e.g.,   to minimize memory refer- 

ences or the number of temporary locations) can,   in general,'   be assured only 

by a search   over a large number  of possible  orderings.    Further, the use 

of identities (e.g.,  a*b+a*c   -»•   a*(b+c) ) to minimize the computational cost 

causes significant increase in the space of possibilities to be considered.   The 

use of arbitrary identities,  of course,  makes the problem of program equivalence 

The only significant exception is for arithmetic expressions with no common 
10 subexpressions, 



(and,  hence,  of cost minimization) undecidable.   However,  an effective procedure 

for obtaining equivalent computations can be had either by restricting the sort of 

transformations admitted       or   by   putting a bound on the degree of program 

expansion acceptable.   Either approach results in an effective procedure deliver- 

ing a very large set of equivalent computations.   While computationally intractable 

if employed over the whole program,  a semi-exhaustive search of this set for the 

one with minimal cost is entirely reasonable to carry out on a small unit operator. 

Similarly,  to take full advantage of multiple hardware function units,   it is some- 

times necessary to unwind a loop and rewind it with a modified structure — e.g., 

to perform,  on the i     iteration of the new loop,   certain computation which was 
st     th st formerly performed on the (i-1)    ,   i    ,   and (i+1)      iteration.   Again,  a search is 

required to find the optimal rewinding. 

In general,  code generation which tries various combinations of code 

sequences and chooses among them (by analysis or simulation) can be used in a 

reasonable time scale if consideration is restricted to the few unit operations 

where the pay-off is significant.   Consider,  for example,  a procedure which 

searches through an array of packed k-bit elements counting the number of times 

a certain (parameter-specified) k-bit configuration occurs.    The table can either 

be searched in array order — all elements in the first word,  then all elements in 

the next,  etc.  — or in position order — all elements in the first position of a word, 

all elements in the next position,  etc.   Which search strategy is optimal depends 

on k,  the hardware for accessing k-bit bytes from memory,  the   speed  of 

shifting vs. memory access,  and the sort of mask and comparison instructions 

for k-bit bytes.   In many situations,   the easiest way of choosing the better 

strategy is to generate code for each and compute the relative execution times 

as a function of array length. 

A separate issue arises from non-obvious unit operations.   Suppose analysis 

shows that procedures F and G are each key operations (i.e.,  are executed very 

frequently).   It may well be that the appropriate candidates for unit compilation 

8 



are F,  G,  and some particular combination of them,  e.g.,        F; G     or 

"G(. . . F(. . .). . .)".   That is,   if a substantial number of calls on G are preceded 

by calls of F (in sequence or in an argument position),the new function defined by 

that composition should be unit compiled.   For example,  in dealing with complex 

arithmetic,  +, —,  *,  /,  and CONJ  are surely unit operations.   However,  it may 

be that for some program,   "u/v + v*CONJ(v)" is critical.   Subjecting this combi- 

nation to unit compilation saves four of the ten multiplications as well as a 

number of memory references. 

ASSUMPTIONS  AND ASSERTIONS 

If an optimizing compiler is to generate really good code,  it must be 

supplied the same sort of additional information that would be given to or 

deduced by a careful human coder.   Pragmatic remarks (e.g.,   suggestions that 

certain global optimizations are possible) as well as explicit consent (e.g.,  the 

REORDER attribute of PL/I) are required.   Similarly,   if programs are to be 

validated by a program verifier,  assistance from the programmer in forming 

inductive assertions is needed.   Communication between the programmer and 

the optimizer/verifier is by means of ASSUME and ASSERT forms. 

An assumption is stated by the programmer and is (by and large) believed 

true by the evaluator.   A local assumption 

ASSUME(X > 0); 

is taken as true at the point it appears.   A global assumption may be extended 

over some range by means of the infix operator IN,  e.g., 

ASSUME(X > 0)     IN     BEGIN     . . .     END; 

where the assumption is to hold over the BEGIN-END block and over all ranges 

called by that block.   The function of an assumption is to convey information 

which the programmer knows is true but which cannot be deduced from the pro- 

gram.   Specifications of the well-formedness of input data are assumptions as 

are statements about the behavior of external procedures analyzed separately. 



Assertions,  on the other hand,  are verifiable.   From the program text and 

the validity of the program's assumptions,  it is possible — at least in principle — 

to validate each assertion.   For example, 

ASSERT(FOR I FROM 1 TO N DO TRUEP( A[I] > B[I] ))   IN   BEGIN   . . .   END 

should be provably true over the entire BEGIN-END block,  given that all Dro- 

gram assumptions are correct. 

The interpreter,  optimizer,  and verifier each treat assumptions and 

assertions in different ways.   Since the interpreter is used primarily for debug- 

ging,  it takes the position that the programmer is not to be trusted.   Hence,  it 

checks everything,  treating assumptions and assertions identically — as extended 

Boolean expressions to be evaluated and checked for true     ( false  caus- 

ing an ERROR and,  in general,  suspension of the program).   Local assertions 

and assumptions are evaluated in analogy with the conditional expression 

NOT ( expression)   =>    ERROR(. . .) 

(This is similar to the use of ASSERT in ALGOL W.12)     Assumptions and 

assertions over some range are checked over the entire range.   This can be done 

by checking the validity at the start of the domain and setting up a condition 

monitor (e.g.,  cf. [13] ) which  will cause a software interrupt if the condition is 

ever violated during the range. 

Hence,  in interpreted execution,  assumptions and assertions act as 

comments whose correctness is checked by the evaluator,   providing a rather nice 

debugging tool.   Not only are errors explicitly detected by a false assertion,  but 

when errors of other sorts occur (e.g.,  overflow,  data type mismatch,  etc.),the 

programmer scanning through the program is guaranteed that certain assertions 

were valid for that execution.   Since debugging is often a matter of searching the 

execution path for the least source of an error,  certainty that portions of the pro- 

gram are correct is as valuable as knowledge of the contrary. 

The compiler simply believes assertions and assumptions and uses their 

validity in code optimization.   Consider,  for example,  the assignment 

10 



X   -   B[I-J] - 60 

Normally,  the code for this would include subscript bounds checking.   However, in 

X   -   (ASSERT(1 < I-J A  I-J ^ LENGTH(B))  IN  B[I-J] )   -   60 

the assertion guarantees that the subscript is in range and no run-time check is 

necessary. 

While assertions and assumptions are handled by the compiler in rather the 

same way,  there are a few differences.   Assumptions are the more powerful in 

that they can be used to express knowledge of program behavior which could not 

be deduced by the compiler,  either because necessary information is not available 

(e.g.,  facts about a procedure which will be input during program execution) or 

because the effort of deduction is prohibitive (e.g.,  the use of deep results of 

number theory in a program acting on integers).   Separate compilation makes the 

statement of such assumptions essential,  e.g., 

ASSUME(SAFE(P))   IN   BEGIN    . . .   END 

insures that the procedure P is free of side effects and hence can be subject to 

common subexpression elimination. 

Unlike assumptions,  assertions can be generated by the compiler as logical 

consequences of assumptions,  other assertions,  and the program text.   Consider, 

for example,  the following conditional block (cf. Appendix  for syntax), where 

L is a pointer to a list structure. 

BEGIN    L=NIL =»...;... CDR(L) . . .   END 

Normally,  the CDR operation would require a check for the empty list as an 

argument.   However,  provided that there are no intervening assignments to L, 

the compiler may rewrite this as 

BEGIN     L=NIL =£> . . . ; ASSERT(L#NIL) IN    BEGIN . . . CDR(L) . . . END     END 

in which case no checks are necessary.   Assertions added by the compiler and 

included in an augmented source listing provide a means for the compiler to 

record its deductions and explicitly transmit these to the programmer. 

The program verifier treats assumptions and assertions entirely differently. 

11 



* 14   15 Assumptions are believed.      Assertions are to be proved or disproved     ' 

on the basis of the stated assumptions, the program text, the semantics of the 

programming language, and specialized knowledge about the subject data types. 

In the case of integers, there has been demonstrable success — the assertion 

verifier of King has been applied successfully to some definitely non-trivial 

algorithms.    Specialized theorem provers for other domains may be constructed. 

Fortunately, the number of domains is small.   In ALGOL 60, for example, 

knowledge of the reals, the integers, and Boolean expressions together with an 

understanding of arrays and array subscripting will handle most program assertions. 

One might,  conceivably,  check the internal consistency of a set of assumptions, 

i.e. , test for possible contradictions. 

In an extensible language, the situation is more complex, but not drastically so. 

The base language data types are typically those of ALGOL 60 plus a few others, 

e.g., characters; the set of formation rules for data aggregates consists of arrays, 

plus structures and pointers.   Only the treatment of pointers presents any new 

issues — these because pointers allow data sharing and hence access to a single 

entity under a multiplicity of names (i.e., access paths).  This is analogous to the 

problem of subscript identification, but is compounded since the access paths may 
1 f» 

be of arbitrary length. However, recent work      shows promise of providing proof 

techniques for pointers and structures built of linked nodes.  Since all extension 

sets ultimately derive their semantics from the base language, it suffices to give 

a formal treatment to the primitive modes and the builtin set of formation rules — 

assertions on all other modes can be mapped into and verified on the base. 

This gives only a formal technique for verification, i.e. , specifies what must be 

axiomatized and gives a valid reduction technique.   It may well turn out that such 

reduction is not a practical solution if the resulting computation costs are 

excessive.  In such cases, one can use the underlying axiomatization as a basis 

for deriving rules of inference on an extension set.  These may be introduced in a 

fashion similar to the specialized transformation sets discussed in the next section. 

12 



One variation on the program verifier is the notifier.   Whereas the verifier 

uses formal proof techniques to certify correctness,  the notifier uses relatively 

unsophisticated means to provide counterexamples.   One can safely assume that 

most programs will not be initially correct; hence,   substantial debugging 

assistance can be provided by simply pointing out errors.   This can be done 

somewhat by trial and error — generating values which satisfy the assumptions 

and running the program to check the assertions.   Since programming errors 

typically occur at the extremes in the space of data values,  a few simple heur- 

istics may serve to produce critical counterexamples.   If,  as appears likely,  the 

computation time for program verification is considerable,  the use of a simple, 

quicker means to find the majority of bugs will be of assistance on online pro- 

gram production.   While the notifier can never validate programs,  it may be help- 

ful in creating them. 

OPTIMIZATION,  EXTENSION SETS, AND  TRANSFORMATION SETS 

One of the advantages of an extensible language over a special purpose 

language developed to handle a new application arises from the economics of 

optimization.   In an extensible language system,  each extended language L. is 

defined by an extension set E. in terms of the base language.   Since there is only 

a single base,   one can afford to spend considerable effort in developing optimi- 

zation techniques for it.   Algorithms for register allocation,  common sub- 

expression detection,  elimination of variables,  removal of computation from 

loops,   loop fusion,  and the like need be developed and programmed only once. 

All extensions will take advantage of these.   In contrast,   the compiler for each 

special purpose language must have these optimizations explicitly included.   This 

is already a reasonably large programming project,   so large that many special 

purpose languages go essentially unoptimized.   As the set of known optimization 

techniques grows,  the economic advantage of extensible language optimization 

will increase. 

13 



There is one flaw in the above argument,  which we now repair.   There is 

the tacit assumption that all optimization properties of an extended language L. 

can be obtained from the semantics and pragmatics of the base.   While the logi- 

cal dependency is strictly valid,   taking this as a complete technique is rather 

impractical.   While certain optimization properties — those concerned solely with 

control and data flow — can be well optimized in terms of the base language,  othei 

properties depending on long chains of reasoning would tax any optimizer that 

sought to derive them every time they were required. 

The point,  and our solution,  may best be exhibited with an example.  Conside: 

FOO(SUBSTRING(I, J, X CONCAT Y)) 

which calls procedure FOO with the substring consisting of the I     to (I+J-l) 

character of the string obtained by concatenating the contents of string variable 

X with string variable Y.   In an extensible language,  SUBSTRING and CONCAT 

are defined procedures which operate on STRINGS (defined to be ARRAYS of 

CHARacters). 

SUBSTRING - 

EXPR(I,J:INT,   SrSTRING;   STRING) 

BEGIN 

DECL   SS:STRING   SIZE   J; 

FOR   K   TO   J   DO   SS[K]   -   S[I+K-1]; 

SS 

END 

CONCAT *- 

EXPR(A,B:STRING; STRING) 

BEGIN 

DECL   R:STRING   SIZE   LENGTH(A)+LENGTH(B); 

FOR   M   TO   LENGTH(A)   DO   R[M]   -   A[M]j 

FOR   M   TO   LENGTH(B)   DO   R[M+LENGTH(A)]   -   B[M]; 

R 

END 

14 



One could compile code for the above call on FOO by compiling three suc- 

cessive calls - on CONCAT,  SUBSTRING,  and FOO.   However,  by taking 

advantage of the properties of CONCAT and SUBSTRING,   one can do far better. 

Substituting the definition of CONCAT in SUBSTRING produces 

SUBSTRINGS J, A CONCAT B) = 

BEGIN 

DECL   SSrSTRING   SIZE   J; 

DECL   S:STRING   BYVAL 

BEGIN 
DECL   R:STRING   SIZE   LENGTH(A)+LENGTH(B); 
FOR   M   TO   LENGTH(A)   DO   R[M]   -   A[M]; 
FOR   M   TO   LENGTH(B)   DO   R[M+LENGTH(A)]  -   B[M]; 
R 

END; 

FOR   K   TO   J   DO   SS[K]  -   S[I+K-1]; 

SS 

END 

The block which computes R may be opened up so that its declarations and 

computation occur in the surrounding block.   Then,   since S is identical to R, 

S may be systematically replaced by R and the declaration for S deleted. 

BEGIN 

DECL   SS:STRING   SIZE   J; 

DECL   RtSTRING   SIZE   LENGTH(A)+LENGTH(B); 
FOR   M   TO   LENGTH(A)   DO   R[M]   -   A[M]; 
FOR   M   TO   LENGTH(B)   DO   R[M+LENGTH(A)]   +-   B[M]; 

FOR   K   TO   J   DO   SS[K]   -   R[I+K-1]; 

SS 

END 

This implies that R[M] is defined by the conditional block 

BEGIN 
M  <   LENGTH(A)   =^>   A[M]; 
B[M-LENGTH(A)] 

END 

Replacing M by I+K-l and substituting,  the assignment loop becomes 
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FOR   K   TO   J   DO   SS[K]  -   BEGIN 
K   s?   LENGTH(A)-I+1   =*> A[I+K-1]; 
B[I+K-LENGTH(A)-1] 

END 

Distributing the assignment to inside the block,  this has the form 

FOR   x   TO   vn   DO   BEGIN 
U x   <   v.   =*>   fAx); 

f2(x)     1 

END 

where v. are loop-independent values and f. are functions in x.   A basic optimi- 

zation on the base language transforms this into the equivalent form which avoids 

the test 

FOR   x   TO   M]N(v0,v1)   DO   fj(x); 

FOR   x   FROM   MrN(v0,Vl) + l   TO   vQ   DO   f2(x); 

Hence,SUBSTRINGS J, A CONCAT B) may be computed by a call on the 

procedure 

EXPR(I,J:INT, A,B:STRING;  STRING) 

BEGIN 

DECL  SS:STRING  SIZE  J; 

FOR  K  TO MIN(J, LENGTH(A)-H-l)  DO S[K] -  A[I+K-1]; 

FOR K FROM MIN(J, LENGTH(A)-I+1)+1  TO J  DO S[K] - B[I+K-LENGTH(A)-1]; 

SS 

END 

Normal common subexpression elimination will recognize that LENGTH(A), 

1-1, and MIN(J,LENGTH(A)-I+1) need be calculated only once. 

This could, in principle, be deduced by a compiler from the definitions of 

SUBSTRING and CONCAT.    However,  there is no way for the compiler to know 

a priori that the substitution has substantial payoff.     If the  expression 

SUBSTRINGS,J,A CONCAT B) were a critical unit operation, the heuristic "try 

all possible compilation techniques on key expressions" would discover it.  How- 

ever, the compiler cannot afford to try all function pairs appearing in the program 

in the hope that some will simplify — the computational cost is too great. Instead, 

the programmer specifies to the compiler the set of transformations (cf. [17] for 
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related techniques) he knows will have payoff. 

TRANSFORM(I,J:INT,   X,Y:STRING;   SUBSTITUTE) 

SUBSTRING(I, J, X CONCAT Y) 

TO 

SUBSTITUTE(Z:X CONCAT Y,   SUBSTRING(I,J,Z))   (I,J,X,Y) 

In general,  a transformation rule has the format 

TRANSFORM^ pattern variables ) ; < action variables ) ) 

( pattern) 

TO 

( replacement) 

All lexemes in the pattern and replacement are taken literally except for the 

(pattern variables)  and (action variables).   The former are dummy arguments, 

statement-matching variables,   etc.;  the latter denote values used to derive the 

actual transformation from the input transformation schemata.   In the above case, 

the procedure SUBSTITUTE is called to expand CONCAT within SUBSTRING as 

the third argument.   The simplified result,   0>,   is applied to the dummy argu- 

ments.   Hence,   calls such as SUBSTRING^,2*N+C, AA CONCAT B7) are trans- 

formed into calls on ^>(3,2*N+C, AA, B7) 

When defining an extension set,  the programmer defines the unit data types, 

unit operations,  and additionally the significant transformations on the problem 

domain.   These domain-dependent transformations are adjoined to the set of 

base transformations to produce the total transformation set.   The program,  as 

written,   specifies the function to be computed;  the transformation set provides 

an orthogonal statement of how the computation is to be optimized. 

For example,  in adding a string manipulation extension,  one would first 

define the data type STRING (fixed length array of characters).   Next,one defines 

the unit operations:   LENGTH,  CONCATenate,  SUBSTRING,  SEARCH (for a 

string x as part of a string y starting at position i and return the initial index or 

zero if not present).   Finally,   one defines the transformations on program units 

involving these operations. 
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TRANSFORM(X,Y:STRING)  LENGTH(X CONCAT Y) 

TO  LENGTH(X)+LENGTH(Y) 

TRANSFORM(A,X,Y,Z:STRING; SUBSTITUTE) X CONCAT Y CONCAT Z 

TO  SUBSTITUTE^: Y CONCAT Z; X CONCAT A) (X.Y.Z) 

So long as the transformations are entirely local, they act only as macro 

replacements.    The significant transformations in an extension set are those 

which make global, far reaching changes to program or data.    Clearly, these 

changes will require knowledge, assumed or asserted, about that portion of 

the program affected by these changes. 

Consider,   for example,  the issue of string variables in the proposed extensior 

set.   If a string variable is to have a fixed capacity,  the type STRING is satisfactoi 

If variable capacity is desired but an upper bound can be established for each strin 

variable,  the type VARSTRING could be defined like string VARYING in PL/I.   If 

completely variable capacity is required,  a string variable would be implemented 

as a pointer to a simple STRING (i.e.,  PTR(STRING) ) with the understanding that 

assignment of a string value to such a string variable causes a copy of the string 

to be made and the pointer set to address the copy.      With these three possible 

representations available,   one would define the data type string variable to be 

ONEOF(STRING,   VARSTRING,   PTR(STRING)) 

Each string variable is one of these three data types.   To provide for the worst 

case,  the programmer could specify each formal parameter string variable to be 

This does not exhaust the list of possible representations for strings.   To avoid 

copying in concatenation, insertion, and deletion,  one could represent strings by 

linked lists of characters nodes:   each node consisting of a character and a pointer 

to the next node.    A string variable could then be a pointer to such node lists.    To 

minimize storage,  one could employ hashing to insure that each distinct sequence 

of characters is represented by a unique string-table-entry;  a string variable 

could then be a pointer to such string-table-entries.    Hashing and implementing 

strings by linked lists could be combined to yield still another representation of 

strings.    In the interest of brevity, we consider only three rather simple repre- 

sentations; however, the point we make is all the stronger when additional repre- 

sentations are considered. 
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ONEOF(STRING,  VARSTRING,  PTR(STRING)) and specify each local string 

variable to be a PTR(STRING).   A program so written would be correct,  but its 

performance would,  in general,  suffer from unused generality.   Each string 

variable whose length is fixed can be redeclared 

TRANSFORMS 1,D2:DECLIST,   S:STATLIST,    F:FORM,   X;   WHEN) 

WHEN   (CONSTANT(LENGTH(X)))   IN 
BEGIN Dl; DECL X:PTR(STRING) BYVAL F; D2; S END 

TO 

BEGIN   Dl;   DECL   X:STRING   BYVAL   F;   D2;   S   END 

The predicate WHEN appearing in a pattern is handled in somewhat the same 

fashion as are ASSERTions during program verification.   It is proved as part of 

the pattern matching; the transformation is applicable only if the predicate is 

provably TRUE and the literal part of the pattern matches.   Here,  it must be 

proved that LENGTH(X) is a constant over the block B and all ranges called  by B. 

If so,   the variable can be of type STRING.   Similarly,   if there is a computable 

maximum length less than a reasonable upper limit LIM,  then the data type 

VARSTRING can be used. 

TRANSFORM(Dl,D2:DECLIST,   B:BLOCK,   F:FORM,   K:INT,   X;   WHEN) 

BEGIN   Dl;   DECL   X:PTR(STRING)    BYVAL   F;   D2; 
WHEN(LENGTH(X) ^ K  A K ^ LIM)   IN   B 

END 

TO 

BEGIN   Dl;   DECL   X:VARSTRING  SIZE  K BYVAL  F;  D2;   B   END 

To prove an assertion for a variable X over some range,  it suffices to 

prove the assertion true of all expressions that are assignable to X in that range. 

An assertion about LENGTH(X) is reasonable to validate since it entails only 

theorem proving over the integers        —   once    the string manipulation routines 

are reinterpreted as operations on string lengths.   Fortunately,  most of the 

interesting predicates are of this order of difficulty.   Typical WHEN conditions 

are:   (1) a variable (or certain fields of a data structure) is not changed;  (2) an 

object in the heap is referenced only from a given pointer;  (3) whenever control 
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reaches a given program point, a variable always has (or never has) a given 

value (or set of values);  (4) certain operations are never performed on certain 

elements of a data structure.    Such conditions are usually easier to check than 

those concerned with correct program behavior, since only part of the action 

carried out by the algorithm is relevant. 

That is, the technique suggested above for simplifying proofs about string 

manipulation operators by considering only string lengths generalizes to many 

related cases.    To verify a predicate concerned with certain properties, one 

takes a valuation of the program on a model chosen to abstract those 

19 
properties.  ' The program is run by a special interpreter which performs 

the computation on the simpler data space tailored to the property.    To correct 

for the loss of information (e. g. , the values of most program tests are not 

available), the computation is conservative (e.g. , the valuation of a conditional 

takes the union of the valuations of the possible arms).    If the valuation in the 

model demonstrates the proposition,  it is valid for the actual data space.    While 

this is a sufficient condition, not a necessary one, an appropriate model should 

seldom fail to prove a true proposition. 

CONCLUSION 

An interpreter, a compiler, a source-level optimizer employing domain- 

specific transformations, and a program verifier each compute a valuation 

over some model.    Fitting these valuators together so as to exploit the comple- 

mentarity of their models is a central task in constructing a powerful program- 

ming tool. 
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APPENDIX:        A  BRIEF  DESCRIPTION  OF   ELI  SYNTAX 

To a first approximation, the syntax of ELI is like that of ALGOL 60 or 

PL/I.    Variables,  subscripted variables, labels, arithmetic and Boolean 

expressions, assignments,  gotos and procedure calls can all be written as in 

ALGOL 60 or PL/I.    Further, ELI is - like ALGOL 60 or PL/I - a block 

structured language.    Executable statements in ELI can be grouped together and 

delimited by BEGIN END brackets to form blocks.    New variables can be created 

within a block by declaration; the scope of such variable names is the block in 

which they are declared. 

The syntax of ELI differs from that of ALGOL 60 or PL/I most notably in the 

form of conditionals, declarations, and data type specifiers.    For the purposes of 

this paper,  it will suffice to explain only these points of difference.    (A more 

complete description can be found in [20]. ) 

A.l   Conditionals 

Conditionals in ELI are a special case of BEGIN END blocks.    In general, 

each ELI block has a value —the value of the last statement executed.    Normally, 

this is the last statement in the block.    Instead, a block can be conditionally 

exited with some other value Y by a statement of the form 

@ ==> Y; 
If £8 is TRUE then the block is exited with the value of Y ; otherwise, the next 

statement of the block is executed.    For example, the ALGOL 60 conditional 

if &1 then  rx else if @2 then Y2 else Y^ 

is written in ELI as 

BEGIN &l =£> Yx ; ®2 ==> Y2 ;   Y'g   END 

(Unconditional statements of an ELI block are simply executed sequentially — 

unless a goto transfers control to a different labeled statement. ) 

A. 2   Declarations 

The initial statements of a block may be declarations having the format 

DECL £: Jf S ; 

where £ is a list of identifiers, Jt is the data type,  and  S specifies the initiali- 

zation.   For example, 

DECL X,Y: REAL BYVAL A[I] ; 

This creates two REAL variables named X and Y and initializes them to separate 

copies of the current value of A[I].   The specification S may assume one of three 

forms: 
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(1) empty — in which case a default initialization determined by the data type 

is used. 

(2) BYVAL "V — in which case the variables are initialized to copies of the 

value of f. 

(3) SHARED "V — in which case the variables are declared to be synonymous 

with the value of 'V. 

A.3   Data   types 

Builtin data types of the language include:   BOOL,  CHAR,  INT,  and REAL. 

These may be used as data type specifiers to create scalar variables. 

Array variables may be declared by using the builtin procedure ARRAY. 

For example, 
DECL C:  ARRAY(CHAR)  BYVAL Y ; 

creates a variable named C which is an ARRAY of CHARacters.    The LENGTH 

(i.e. , number of components) and initial value of C is determined by the value of 'V. 

Procedure-valued variables may be defined by the builtin procedure PROC. 

For example, 

DECL   G:PROC(BOOL,ARRAY(INT);   REAL); 

declares G to be variable which can be assigned only those procedures which take 

a BOOL argument and an ARRAY(INT) argument and deliver a REAL result. 

A.4   Procedures 

A procedure may be defined by assigning a procedure value to a procedure- 

valued variable.    For example, 

IPOWER *- 
EXPR(X:REAL,N:INT; REAL) 
BEGIN DECL RrREAL BYVAL 1; FOR 1 TO N DO  R - R*X; R END 

assigns to IPOWER a procedure which takes two arguments, a REAL and an INT 

(assumed positive), and computes the exponential. 
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