
ESD-TR-73-H2

LSD ACCLSSION LIST

^ DRI Call No.^gj^_2_

o

4
EVALU/

_cys.
MULTIPLE EVALUATORS IN
PROGRAMMING SYSTEM

Ben Wegbreit

March 1973

DEPUTY FOR COMMAND AND MANAGEMENT SYSTEMS
HQ ELECTRONIC SYSTEMS DIVISION (AFSC)
L. G. Hanscom Field, Bedford, Massachusetts 01730

Approved for pubfic release;
distribution unlimited.

^v^
%&&

<F &

(Prepared under Contract No. FI9628-71-C-0I73 by Harvard University,
Center for Research in Computing Technology, Cambridge, Mass. 02138.)

Amsnw

•

LEGAL NOTICE

When U.S. Government drawings, specifications or other data are used for any
purpose other than a definitely related government procurement operation, the
government thereby incurs no responsibility nor any obligation whatsoever; and
the fact that the government may have formulated, furnished, or in any way sup-
plied the said drawings, specifications, or other data is not to be regarded by
implication or otherwise as in any manner licensing the holder or any other person
or conveying any rights or permission to manufacture, use, or sell any patented
invention that may in any way be related thereto.

OTHER NOTICES

Do not return this copy. Retain or destroy.

ESD-TR-73-M2

MULTIPLE EVALUATORS IN AN EXTENSIBLE
PROGRAMMING SYSTEM

Ben Wegbreit

March 1973

DEPUTY FOR COMMAND AND MANAGEMENT SYSTEMS
HQ ELECTRONIC SYSTEMS DIVISION (AFSC)
L. G. Hanscom Field, Bedford, Massachusetts 01730

Approved for public release;
distribution unlimited.

(Prepared under Contract No. FI9628-7I-C-0I73 by Harvard University,
Center for Research in Computing Technology, Cambridge, Mass. 02138.)

FOREWORD

This report was prepared in support of Project 2301,
Task 02 by Harvard University, Cambridge, Massachusetts under
USAF contract F19628-71-C-0173, monitored by Capt T J
Rosenberger, Electronic Systems Division, MCIT, L G Hanscom
Field, Bedford, Massachusetts, and was submitted 11 December
1972.

This technical report has been reviewed and is approved.

MELVIN B. EMMONS, Colonel, USAF
Director, Information Systems Technology
Deputy for Command & Management Systems

ii

ABSTRACT

An effective tool for programming includes a high-level language,
preferably extensible. A language alone is, however, not sufficient.
One wants a complete programming system with an interpreter, a fully
compatible compiler, a source level optimizer, and facilities for
proving properties of programs. The purpose of this paper is to
discuss how these various evaluators of the language can be fitted
together and made to complement each other. The result, an extensible
programming system with multiple evaluators, provides a powerful
programming tool.

iii

TABLE OF CONTENTS

page

Int roduct ion 1

Mixing Interpreted and Compiled Code 2

Unit Compilation 6

Assumptions and Assertions 9

Optimization, Extension Sets and Transformation
Sets 13

Conclusion 20

References 21

Appendix: A Brief Description of ELI Svntax 24

INTRODUCTION

As advanced computer applications become more complex, the need for good

programming tools becomes more acute. The most difficult programming pro-

jects require the best tools. It is our contention that an effective tool for program-

ming should have the following characteristics:

(1) Be a complete programming system — a language, plus a comfortable

environment for the programmer (including an editor, documentation

aids, and the like).

(2) Be extensible, in its data, operations, control, and interfaces with

the programmer.

(3) Include an interpreter for debugging and several compilers for various

levels of compilation — all fully compatible and freely mixable during

execution.

(4) Include a program verifier that validates stated input/output relations

or finds counter-examples.

(5) Include facilities for program optimization and tuning — aids for pro-

gram measurement and a subsystem for automatic high-level optimi-

zation by means of source program transformation.

We will assume, not defend, the validity of these contentions here. Defenses

12 3 4 5 of these positions by us and others have appeared in the literature. » » » » The

purpose of this paper is to discuss how these characteristics are to be simul-

taneously realized and, in particular, how the evaluators, verifier, and opti-
4

mizer are to fit together. Compiling an extensible language where compiled code

is to be freely mixed with interpreted code presents several novel problems and

therefore a few unique opportunities for optimization. Similarly, extensibility

and multiple evaluators make program automation by means of source level

transformation more complex, yet provide additional handles on the automation

process.

This paper is divided into five sections. Section 2 deals with communication

between compiled and interpreted code, i.e., the runtime information structures

and interfaces. Section 3 discusses one critical optimization issue in extensible

languages — the compilation of unit operations. Section 4 examines the relation

between debugging problems, proving the correctness of programs, and use of

program properties in compilation. Finally, section 5 discusses the use of

transformation sets as an adjunct to extension sets for application-oriented

optimization.

Before treating the substantive issues, a remark on the implementation of

the proposed solutions may be in order. Our acquaintance with these problems

has arisen from our experience in the design, implementation, and use of the

ECL programming system. ECL is an extensible programming system utilizing

multiple evaluators; it has been operational on an experimental basis, running

on a DEC PDP10, since August 1971. Some of the techniques discussed in this

paper are functional, others are being implemented, still others are being

designed. As the status of various points is continually changing, explicit dis-

cussion of their implementation state in ECL will be omitted.

For concreteness, however, we will use the ECL system and ECL's base

language, ELI, as the foundation for discussion. An appendix treats those

aspects of ELI syntax needed for reading the examples in this paper.

MIXING INTERPRETED AND COMPILED CODE

The immediate problem in a multiple evaluator system is mixing code. A

program is a set of procedures which call each other; some are interpreted,

others compiled by various compilers which optimize to various levels. Calls

and non-local gotos are allowed where either side may be either compiled or in-

terpreted. Additionally, it is useful to allow control flow by means of RETFROM -

that is the forced return from a specified procedure call (designated by name), with a

specified value as if that procedure call had returned normally with the given

value (cf. [6]).

Within each procedure, normal techniques apply. Interpreted code carries

the data type of each entity — for autonomous temporary results as well as

parameters and locals. Since the set of data types is open-ended and augmentable

during execution, data types are implemented as pointers to (or indices in) the

data type table. Compiled code can usually dispense with data types

so that temporary results need not, in general, carry type information. In

either interpreted or compiled procedures, where data types are carried, the

type is associated not with the object but rather with a descriptor consisting of

a type code and a pointer to the object. This results in significant econo-

mies whenever objects are generated in the free storage region.

Significant issues arise in communication between procedures. The

interfaces must:

(1) Allow identification of free variables in one procedure with those of a

lower access environment and supply data type information where

required.

(2) Handle a special, but important, subcase of #1 — non-local gotos out

of one procedure into a lower access environment.

(3) Check that the arguments passed to compiled procedure are compatible

with the formal parameter types.

(4) Check that the result passed back to a compiled procedure (from a

normal return of a called function or via a RETFROM) is compatible

with the expected data type.

These communication issues are somewhat complicated by the need to keep the

overhead of procedure interface as low as possible for common cases of two

compiled procedures linking in desirable (i.e., well-programmed) ways.

The basic technique is to include in the binding (i.e., parameter block) for

any new variable its name and its mode (i.e., its data type) in addition to its value.

Names are implemented as pointers to (or indices in) the symbol table. (With

reasonable restrictions on the number of names and modes, both name and mode

can be packed into a 32-bit word.) Within a compiled procedure, all variables

are referenced as a pair (block level number, variable number within that block).

Translation from name to such a reference pair is carried out for each bound

appearance of a variable during compilation; at run time, access is made using

a display (cf. [7]). However, a free appearance of a variable is represented

and identified by symbolic name. Connection between the free variable and

some bound variable in an enclosing access environment is made during

execution, implemented using either shallow or deep bindings (cf. [8] for an

explanation of the issues and a discussion of the trade-offs for LISP). Once

identification is made, the mode associated with the bound variable is checked

against the expected mode of the free variable, if the expected mode is known.

To illustrate the last point, we suppose that in some procedure, P, it is

useful to use the free variable BETA with the knowledge that in all correctly

functioning programs the relevant bound BETA will always be a character string.

To permit partial type checking during compilation, a declaration may be made

at the head of the first BEGIN-END block of P.

DECL BETA: STRING SHARED BETA;

This creates a local variable BETA of mode STRING which shares storage (i.e.,

binding by reference in FORTRAN or PL/I9) with the free variable BETA.

All subsequent appearances of BETA in P are bound, i.e., identified with the

local variable named BETA. Since the data type of the local BETA is known,

normal compilation can be done for all internal appearances of BETA. The real

identity of BETA is fixed during execution by identification with the free BETA of

the access environment at the point P is entered. When the identification of bound

and free BETA is made, mode checking (e.g., half-word comparison of two type

codes) ensures that mode assumptions have not been violated.

In the worst case, parameter bindings entail the same sort of type checking.

The arguments passed to a procedure come with associated modes. When a

procedure is entered, the actual argument modes can be checked against the

expected parameter modes and, where appropriate, conversion performed. Then

the names of the formal parameters are added to the argument block, forming a

complete variable binding. Notice that this works in all four cases of caller/callee

pairs: compiled/compiled, compiled/interpreted, interpreted/compiled and

interpreted/interpreted. Since type checking is implemented by a simple (usually

half-word) comparison, the overhead is small.

However, for the most common cases of compiled/compiled pairs, mode

checking is handled by a less flexible but more efficient technique. The mode of

the called procedure may be declared in the caller. For example:

DECL G: PROC(INT, STRING; COMPLEX) ;

specifies that G is a procedure-valued variable which takes two arguments, an

integer and a character string, and returns a complex number. For each call on G

in the range of this declaration, mode checking and insertion of conversion code can

be done during compilation, with the knowledge that G is constrained to take on

only certain procedure values. To guarantee this constraint, all assignments to

(or bindings of) G are type checked. Type checking is made relatively inexpensive

by giving G the mode PROC(INT, STRING; COMPLEX) - i.e., there is an entry in

the data type table for it — and comparing this with the mode of the procedure

value being assigned. The single comparison simultaneously verifies the

validity of the result mode and both argument modes.

Result types are treated similarly. For each procedure call,

a uniform call block is constructed which includes the name of the procedure

being called and the expected mode of the result (e.g., for the above example,

s= 7
This can be included in the LINK information .

the name field is G and the expected-re suit-mode field is COMPLEX). This is

ignored when compile-time checking of result type is possible and normal return

occurs. However, if interpreted code returns to compiled code, or if RETFROM

causes a return to a procedure by a non-direct callee, then the expected-result-

mode field is checked against the mode of the value returned.

Transfer of control to non-local labels falls out naturally if labels are

treated as named entities having constant value. On entry to a BEGIN-END block

(in either interpreted or compiled code), a binding is made for each label in that

block. The label value is a triple (indicator of whether the block is interpreted

or compiled, program address, stack position) . A non-local goto label L is

executed by identifying the label value referenced by the free use of L, restoring

the stack position from the third component of the triple, and either jumping to the

program address in compiled code or to the statement executor of the interpreter.

UNIT COMPILATION

In most programs the bulk of the execution time is spent performing the unit

operations of the problem domain. In some cases (e.g., scalar calculations on

reals), the hardware realizes the unit operations directly. Suppose, however, that

this is not the case. Optimizing such programs requires recognizing instances

of the unit operations and special treatment — unit compilation — to optimize these

units properly.

An extensible language makes recognition a tractable problem, since the

most natural style of programming is to define distinct data types for the unit

entities, and procedures for the unit operations in each problem area.

(Operator extension and syntax extension allow the invocation of these procedures

by prefix and infix expressions and special statement types.) Hence, the unit

operations are reasonably well-modularized. Detecting which procedures in the

program are the critical unit operations entails static analysis of the call and loop

structure, coupled with counts of call frequency during execution of the program

over benchmark data sets.

The critical unit operations generally have one or more of the following

characteristics:

(1) They have relatively short execution time; their importance is due to

the frequency of call, not the time spent on each call.

(2) Their size is relatively small.

(3) They are terminal nodes of the call structure, or nearly terminal nodes.

(4) They entail a repetition, performing the same action over the lower-level

elements which collectively comprise the unit object of the problem level.

Unit compilation is a set of special heuristics for exploiting these characteristics.

Since execution time is relatively small, call/return overhead is a signifi-

cant fraction. Where the unit operations are terminal, the overhead can be sub-

stantially reduced. The arguments are passed from compiled code to a terminal

unit operation with no associated modes. (Caller and callee know what is being

transmitted.) The arguments can usually be passed directly in the registers. No

bindings are made for the formal parameters. (A terminal node of the call

structure calls no other; hence, there can be no free uses of these variables.)

The result can usually be returned in a register, again, with no associated mode

information.

Since the unit operations are important far out of proportion to their size,

they are subject to optimizing techniques too expensive for normal application.

Optimal ordering of a computation sequence (e.g., to minimize memory refer-

ences or the number of temporary locations) can, in general,' be assured only

by a search over a large number of possible orderings. Further, the use

of identities (e.g., a*b+a*c -»• a*(b+c)) to minimize the computational cost

causes significant increase in the space of possibilities to be considered. The

use of arbitrary identities, of course, makes the problem of program equivalence

The only significant exception is for arithmetic expressions with no common
10 subexpressions,

(and, hence, of cost minimization) undecidable. However, an effective procedure

for obtaining equivalent computations can be had either by restricting the sort of

transformations admitted or by putting a bound on the degree of program

expansion acceptable. Either approach results in an effective procedure deliver-

ing a very large set of equivalent computations. While computationally intractable

if employed over the whole program, a semi-exhaustive search of this set for the

one with minimal cost is entirely reasonable to carry out on a small unit operator.

Similarly, to take full advantage of multiple hardware function units, it is some-

times necessary to unwind a loop and rewind it with a modified structure — e.g.,

to perform, on the i iteration of the new loop, certain computation which was
st th st formerly performed on the (i-1) , i , and (i+1) iteration. Again, a search is

required to find the optimal rewinding.

In general, code generation which tries various combinations of code

sequences and chooses among them (by analysis or simulation) can be used in a

reasonable time scale if consideration is restricted to the few unit operations

where the pay-off is significant. Consider, for example, a procedure which

searches through an array of packed k-bit elements counting the number of times

a certain (parameter-specified) k-bit configuration occurs. The table can either

be searched in array order — all elements in the first word, then all elements in

the next, etc. — or in position order — all elements in the first position of a word,

all elements in the next position, etc. Which search strategy is optimal depends

on k, the hardware for accessing k-bit bytes from memory, the speed of

shifting vs. memory access, and the sort of mask and comparison instructions

for k-bit bytes. In many situations, the easiest way of choosing the better

strategy is to generate code for each and compute the relative execution times

as a function of array length.

A separate issue arises from non-obvious unit operations. Suppose analysis

shows that procedures F and G are each key operations (i.e., are executed very

frequently). It may well be that the appropriate candidates for unit compilation

8

are F, G, and some particular combination of them, e.g., F; G or

"G(. . . F(. . .). . .)". That is, if a substantial number of calls on G are preceded

by calls of F (in sequence or in an argument position),the new function defined by

that composition should be unit compiled. For example, in dealing with complex

arithmetic, +, —, *, /, and CONJ are surely unit operations. However, it may

be that for some program, "u/v + v*CONJ(v)" is critical. Subjecting this combi-

nation to unit compilation saves four of the ten multiplications as well as a

number of memory references.

ASSUMPTIONS AND ASSERTIONS

If an optimizing compiler is to generate really good code, it must be

supplied the same sort of additional information that would be given to or

deduced by a careful human coder. Pragmatic remarks (e.g., suggestions that

certain global optimizations are possible) as well as explicit consent (e.g., the

REORDER attribute of PL/I) are required. Similarly, if programs are to be

validated by a program verifier, assistance from the programmer in forming

inductive assertions is needed. Communication between the programmer and

the optimizer/verifier is by means of ASSUME and ASSERT forms.

An assumption is stated by the programmer and is (by and large) believed

true by the evaluator. A local assumption

ASSUME(X > 0);

is taken as true at the point it appears. A global assumption may be extended

over some range by means of the infix operator IN, e.g.,

ASSUME(X > 0) IN BEGIN . . . END;

where the assumption is to hold over the BEGIN-END block and over all ranges

called by that block. The function of an assumption is to convey information

which the programmer knows is true but which cannot be deduced from the pro-

gram. Specifications of the well-formedness of input data are assumptions as

are statements about the behavior of external procedures analyzed separately.

Assertions, on the other hand, are verifiable. From the program text and

the validity of the program's assumptions, it is possible — at least in principle —

to validate each assertion. For example,

ASSERT(FOR I FROM 1 TO N DO TRUEP(A[I] > B[I])) IN BEGIN . . . END

should be provably true over the entire BEGIN-END block, given that all Dro-

gram assumptions are correct.

The interpreter, optimizer, and verifier each treat assumptions and

assertions in different ways. Since the interpreter is used primarily for debug-

ging, it takes the position that the programmer is not to be trusted. Hence, it

checks everything, treating assumptions and assertions identically — as extended

Boolean expressions to be evaluated and checked for true (false caus-

ing an ERROR and, in general, suspension of the program). Local assertions

and assumptions are evaluated in analogy with the conditional expression

NOT (expression) => ERROR(. . .)

(This is similar to the use of ASSERT in ALGOL W.12) Assumptions and

assertions over some range are checked over the entire range. This can be done

by checking the validity at the start of the domain and setting up a condition

monitor (e.g., cf. [13]) which will cause a software interrupt if the condition is

ever violated during the range.

Hence, in interpreted execution, assumptions and assertions act as

comments whose correctness is checked by the evaluator, providing a rather nice

debugging tool. Not only are errors explicitly detected by a false assertion, but

when errors of other sorts occur (e.g., overflow, data type mismatch, etc.),the

programmer scanning through the program is guaranteed that certain assertions

were valid for that execution. Since debugging is often a matter of searching the

execution path for the least source of an error, certainty that portions of the pro-

gram are correct is as valuable as knowledge of the contrary.

The compiler simply believes assertions and assumptions and uses their

validity in code optimization. Consider, for example, the assignment

10

X - B[I-J] - 60

Normally, the code for this would include subscript bounds checking. However, in

X - (ASSERT(1 < I-J A I-J ^ LENGTH(B)) IN B[I-J]) - 60

the assertion guarantees that the subscript is in range and no run-time check is

necessary.

While assertions and assumptions are handled by the compiler in rather the

same way, there are a few differences. Assumptions are the more powerful in

that they can be used to express knowledge of program behavior which could not

be deduced by the compiler, either because necessary information is not available

(e.g., facts about a procedure which will be input during program execution) or

because the effort of deduction is prohibitive (e.g., the use of deep results of

number theory in a program acting on integers). Separate compilation makes the

statement of such assumptions essential, e.g.,

ASSUME(SAFE(P)) IN BEGIN . . . END

insures that the procedure P is free of side effects and hence can be subject to

common subexpression elimination.

Unlike assumptions, assertions can be generated by the compiler as logical

consequences of assumptions, other assertions, and the program text. Consider,

for example, the following conditional block (cf. Appendix for syntax), where

L is a pointer to a list structure.

BEGIN L=NIL =»...;... CDR(L) . . . END

Normally, the CDR operation would require a check for the empty list as an

argument. However, provided that there are no intervening assignments to L,

the compiler may rewrite this as

BEGIN L=NIL =£> . . . ; ASSERT(L#NIL) IN BEGIN . . . CDR(L) . . . END END

in which case no checks are necessary. Assertions added by the compiler and

included in an augmented source listing provide a means for the compiler to

record its deductions and explicitly transmit these to the programmer.

The program verifier treats assumptions and assertions entirely differently.

11

* 14 15 Assumptions are believed. Assertions are to be proved or disproved '

on the basis of the stated assumptions, the program text, the semantics of the

programming language, and specialized knowledge about the subject data types.

In the case of integers, there has been demonstrable success — the assertion

verifier of King has been applied successfully to some definitely non-trivial

algorithms. Specialized theorem provers for other domains may be constructed.

Fortunately, the number of domains is small. In ALGOL 60, for example,

knowledge of the reals, the integers, and Boolean expressions together with an

understanding of arrays and array subscripting will handle most program assertions.

One might, conceivably, check the internal consistency of a set of assumptions,

i.e. , test for possible contradictions.

In an extensible language, the situation is more complex, but not drastically so.

The base language data types are typically those of ALGOL 60 plus a few others,

e.g., characters; the set of formation rules for data aggregates consists of arrays,

plus structures and pointers. Only the treatment of pointers presents any new

issues — these because pointers allow data sharing and hence access to a single

entity under a multiplicity of names (i.e., access paths). This is analogous to the

problem of subscript identification, but is compounded since the access paths may
1 f»

be of arbitrary length. However, recent work shows promise of providing proof

techniques for pointers and structures built of linked nodes. Since all extension

sets ultimately derive their semantics from the base language, it suffices to give

a formal treatment to the primitive modes and the builtin set of formation rules —

assertions on all other modes can be mapped into and verified on the base.

This gives only a formal technique for verification, i.e. , specifies what must be

axiomatized and gives a valid reduction technique. It may well turn out that such

reduction is not a practical solution if the resulting computation costs are

excessive. In such cases, one can use the underlying axiomatization as a basis

for deriving rules of inference on an extension set. These may be introduced in a

fashion similar to the specialized transformation sets discussed in the next section.

12

One variation on the program verifier is the notifier. Whereas the verifier

uses formal proof techniques to certify correctness, the notifier uses relatively

unsophisticated means to provide counterexamples. One can safely assume that

most programs will not be initially correct; hence, substantial debugging

assistance can be provided by simply pointing out errors. This can be done

somewhat by trial and error — generating values which satisfy the assumptions

and running the program to check the assertions. Since programming errors

typically occur at the extremes in the space of data values, a few simple heur-

istics may serve to produce critical counterexamples. If, as appears likely, the

computation time for program verification is considerable, the use of a simple,

quicker means to find the majority of bugs will be of assistance on online pro-

gram production. While the notifier can never validate programs, it may be help-

ful in creating them.

OPTIMIZATION, EXTENSION SETS, AND TRANSFORMATION SETS

One of the advantages of an extensible language over a special purpose

language developed to handle a new application arises from the economics of

optimization. In an extensible language system, each extended language L. is

defined by an extension set E. in terms of the base language. Since there is only

a single base, one can afford to spend considerable effort in developing optimi-

zation techniques for it. Algorithms for register allocation, common sub-

expression detection, elimination of variables, removal of computation from

loops, loop fusion, and the like need be developed and programmed only once.

All extensions will take advantage of these. In contrast, the compiler for each

special purpose language must have these optimizations explicitly included. This

is already a reasonably large programming project, so large that many special

purpose languages go essentially unoptimized. As the set of known optimization

techniques grows, the economic advantage of extensible language optimization

will increase.

13

There is one flaw in the above argument, which we now repair. There is

the tacit assumption that all optimization properties of an extended language L.

can be obtained from the semantics and pragmatics of the base. While the logi-

cal dependency is strictly valid, taking this as a complete technique is rather

impractical. While certain optimization properties — those concerned solely with

control and data flow — can be well optimized in terms of the base language, othei

properties depending on long chains of reasoning would tax any optimizer that

sought to derive them every time they were required.

The point, and our solution, may best be exhibited with an example. Conside:

FOO(SUBSTRING(I, J, X CONCAT Y))

which calls procedure FOO with the substring consisting of the I to (I+J-l)

character of the string obtained by concatenating the contents of string variable

X with string variable Y. In an extensible language, SUBSTRING and CONCAT

are defined procedures which operate on STRINGS (defined to be ARRAYS of

CHARacters).

SUBSTRING -

EXPR(I,J:INT, SrSTRING; STRING)

BEGIN

DECL SS:STRING SIZE J;

FOR K TO J DO SS[K] - S[I+K-1];

SS

END

CONCAT *-

EXPR(A,B:STRING; STRING)

BEGIN

DECL R:STRING SIZE LENGTH(A)+LENGTH(B);

FOR M TO LENGTH(A) DO R[M] - A[M]j

FOR M TO LENGTH(B) DO R[M+LENGTH(A)] - B[M];

R

END

14

One could compile code for the above call on FOO by compiling three suc-

cessive calls - on CONCAT, SUBSTRING, and FOO. However, by taking

advantage of the properties of CONCAT and SUBSTRING, one can do far better.

Substituting the definition of CONCAT in SUBSTRING produces

SUBSTRINGS J, A CONCAT B) =

BEGIN

DECL SSrSTRING SIZE J;

DECL S:STRING BYVAL

BEGIN
DECL R:STRING SIZE LENGTH(A)+LENGTH(B);
FOR M TO LENGTH(A) DO R[M] - A[M];
FOR M TO LENGTH(B) DO R[M+LENGTH(A)] - B[M];
R

END;

FOR K TO J DO SS[K] - S[I+K-1];

SS

END

The block which computes R may be opened up so that its declarations and

computation occur in the surrounding block. Then, since S is identical to R,

S may be systematically replaced by R and the declaration for S deleted.

BEGIN

DECL SS:STRING SIZE J;

DECL RtSTRING SIZE LENGTH(A)+LENGTH(B);
FOR M TO LENGTH(A) DO R[M] - A[M];
FOR M TO LENGTH(B) DO R[M+LENGTH(A)] +- B[M];

FOR K TO J DO SS[K] - R[I+K-1];

SS

END

This implies that R[M] is defined by the conditional block

BEGIN
M < LENGTH(A) =^> A[M];
B[M-LENGTH(A)]

END

Replacing M by I+K-l and substituting, the assignment loop becomes

15

FOR K TO J DO SS[K] - BEGIN
K s? LENGTH(A)-I+1 =*> A[I+K-1];
B[I+K-LENGTH(A)-1]

END

Distributing the assignment to inside the block, this has the form

FOR x TO vn DO BEGIN
U x < v. =*> fAx);

f2(x) 1

END

where v. are loop-independent values and f. are functions in x. A basic optimi-

zation on the base language transforms this into the equivalent form which avoids

the test

FOR x TO M]N(v0,v1) DO fj(x);

FOR x FROM MrN(v0,Vl) + l TO vQ DO f2(x);

Hence,SUBSTRINGS J, A CONCAT B) may be computed by a call on the

procedure

EXPR(I,J:INT, A,B:STRING; STRING)

BEGIN

DECL SS:STRING SIZE J;

FOR K TO MIN(J, LENGTH(A)-H-l) DO S[K] - A[I+K-1];

FOR K FROM MIN(J, LENGTH(A)-I+1)+1 TO J DO S[K] - B[I+K-LENGTH(A)-1];

SS

END

Normal common subexpression elimination will recognize that LENGTH(A),

1-1, and MIN(J,LENGTH(A)-I+1) need be calculated only once.

This could, in principle, be deduced by a compiler from the definitions of

SUBSTRING and CONCAT. However, there is no way for the compiler to know

a priori that the substitution has substantial payoff. If the expression

SUBSTRINGS,J,A CONCAT B) were a critical unit operation, the heuristic "try

all possible compilation techniques on key expressions" would discover it. How-

ever, the compiler cannot afford to try all function pairs appearing in the program

in the hope that some will simplify — the computational cost is too great. Instead,

the programmer specifies to the compiler the set of transformations (cf. [17] for

16

related techniques) he knows will have payoff.

TRANSFORM(I,J:INT, X,Y:STRING; SUBSTITUTE)

SUBSTRING(I, J, X CONCAT Y)

TO

SUBSTITUTE(Z:X CONCAT Y, SUBSTRING(I,J,Z)) (I,J,X,Y)

In general, a transformation rule has the format

TRANSFORM^ pattern variables) ; < action variables))

(pattern)

TO

(replacement)

All lexemes in the pattern and replacement are taken literally except for the

(pattern variables) and (action variables). The former are dummy arguments,

statement-matching variables, etc.; the latter denote values used to derive the

actual transformation from the input transformation schemata. In the above case,

the procedure SUBSTITUTE is called to expand CONCAT within SUBSTRING as

the third argument. The simplified result, 0>, is applied to the dummy argu-

ments. Hence, calls such as SUBSTRING^,2*N+C, AA CONCAT B7) are trans-

formed into calls on ^>(3,2*N+C, AA, B7)

When defining an extension set, the programmer defines the unit data types,

unit operations, and additionally the significant transformations on the problem

domain. These domain-dependent transformations are adjoined to the set of

base transformations to produce the total transformation set. The program, as

written, specifies the function to be computed; the transformation set provides

an orthogonal statement of how the computation is to be optimized.

For example, in adding a string manipulation extension, one would first

define the data type STRING (fixed length array of characters). Next,one defines

the unit operations: LENGTH, CONCATenate, SUBSTRING, SEARCH (for a

string x as part of a string y starting at position i and return the initial index or

zero if not present). Finally, one defines the transformations on program units

involving these operations.

17

TRANSFORM(X,Y:STRING) LENGTH(X CONCAT Y)

TO LENGTH(X)+LENGTH(Y)

TRANSFORM(A,X,Y,Z:STRING; SUBSTITUTE) X CONCAT Y CONCAT Z

TO SUBSTITUTE^: Y CONCAT Z; X CONCAT A) (X.Y.Z)

So long as the transformations are entirely local, they act only as macro

replacements. The significant transformations in an extension set are those

which make global, far reaching changes to program or data. Clearly, these

changes will require knowledge, assumed or asserted, about that portion of

the program affected by these changes.

Consider, for example, the issue of string variables in the proposed extensior

set. If a string variable is to have a fixed capacity, the type STRING is satisfactoi

If variable capacity is desired but an upper bound can be established for each strin

variable, the type VARSTRING could be defined like string VARYING in PL/I. If

completely variable capacity is required, a string variable would be implemented

as a pointer to a simple STRING (i.e., PTR(STRING)) with the understanding that

assignment of a string value to such a string variable causes a copy of the string

to be made and the pointer set to address the copy. With these three possible

representations available, one would define the data type string variable to be

ONEOF(STRING, VARSTRING, PTR(STRING))

Each string variable is one of these three data types. To provide for the worst

case, the programmer could specify each formal parameter string variable to be

This does not exhaust the list of possible representations for strings. To avoid

copying in concatenation, insertion, and deletion, one could represent strings by

linked lists of characters nodes: each node consisting of a character and a pointer

to the next node. A string variable could then be a pointer to such node lists. To

minimize storage, one could employ hashing to insure that each distinct sequence

of characters is represented by a unique string-table-entry; a string variable

could then be a pointer to such string-table-entries. Hashing and implementing

strings by linked lists could be combined to yield still another representation of

strings. In the interest of brevity, we consider only three rather simple repre-

sentations; however, the point we make is all the stronger when additional repre-

sentations are considered.
18

ONEOF(STRING, VARSTRING, PTR(STRING)) and specify each local string

variable to be a PTR(STRING). A program so written would be correct, but its

performance would, in general, suffer from unused generality. Each string

variable whose length is fixed can be redeclared

TRANSFORMS 1,D2:DECLIST, S:STATLIST, F:FORM, X; WHEN)

WHEN (CONSTANT(LENGTH(X))) IN
BEGIN Dl; DECL X:PTR(STRING) BYVAL F; D2; S END

TO

BEGIN Dl; DECL X:STRING BYVAL F; D2; S END

The predicate WHEN appearing in a pattern is handled in somewhat the same

fashion as are ASSERTions during program verification. It is proved as part of

the pattern matching; the transformation is applicable only if the predicate is

provably TRUE and the literal part of the pattern matches. Here, it must be

proved that LENGTH(X) is a constant over the block B and all ranges called by B.

If so, the variable can be of type STRING. Similarly, if there is a computable

maximum length less than a reasonable upper limit LIM, then the data type

VARSTRING can be used.

TRANSFORM(Dl,D2:DECLIST, B:BLOCK, F:FORM, K:INT, X; WHEN)

BEGIN Dl; DECL X:PTR(STRING) BYVAL F; D2;
WHEN(LENGTH(X) ^ K A K ^ LIM) IN B

END

TO

BEGIN Dl; DECL X:VARSTRING SIZE K BYVAL F; D2; B END

To prove an assertion for a variable X over some range, it suffices to

prove the assertion true of all expressions that are assignable to X in that range.

An assertion about LENGTH(X) is reasonable to validate since it entails only

theorem proving over the integers — once the string manipulation routines

are reinterpreted as operations on string lengths. Fortunately, most of the

interesting predicates are of this order of difficulty. Typical WHEN conditions

are: (1) a variable (or certain fields of a data structure) is not changed; (2) an

object in the heap is referenced only from a given pointer; (3) whenever control

19

reaches a given program point, a variable always has (or never has) a given

value (or set of values); (4) certain operations are never performed on certain

elements of a data structure. Such conditions are usually easier to check than

those concerned with correct program behavior, since only part of the action

carried out by the algorithm is relevant.

That is, the technique suggested above for simplifying proofs about string

manipulation operators by considering only string lengths generalizes to many

related cases. To verify a predicate concerned with certain properties, one

takes a valuation of the program on a model chosen to abstract those

19
properties. ' The program is run by a special interpreter which performs

the computation on the simpler data space tailored to the property. To correct

for the loss of information (e. g. , the values of most program tests are not

available), the computation is conservative (e.g. , the valuation of a conditional

takes the union of the valuations of the possible arms). If the valuation in the

model demonstrates the proposition, it is valid for the actual data space. While

this is a sufficient condition, not a necessary one, an appropriate model should

seldom fail to prove a true proposition.

CONCLUSION

An interpreter, a compiler, a source-level optimizer employing domain-

specific transformations, and a program verifier each compute a valuation

over some model. Fitting these valuators together so as to exploit the comple-

mentarity of their models is a central task in constructing a powerful program-

ming tool.

ACKNOWLEDGMENT

The author would like to thank Glenn Holloway and Richard Stallman for

discussions concerning various aspects of this paper.

20

REFERENCES

1 B WEGBREIT

The ECL programming system

Proc AFIPS 1971 FJCC Vol 39 AFIPS Press Montvale New Jersey

pp 253-262

2 A J PERLIS

The synthesis of algorithmic systems

JACM Vol 17 No 1 January 1967 pp 1-9

3 T E CHEATHAM et al.

On the basis for ELF — an extensible language facility

Proc AFIPS FJCC 1968 Vol 33 pp 937-948

4 D G BOBROW

Requirements for advanced programming systems for list processing

CACM Vol 15 No 7 July 1972

5 T E CHEATHAM and B WEGBREIT

A laboratory for the study of automating programming

Proc AFIPS 1972 SJCC Vol 40

6 W TEITELMAN et al.

BBN-LISP

Bolt Beranek and Newman Inc Cambridge Massachusetts July 19 71

7 E W DIJKSTRA

Recursive programming

Numerische Mathematik 2 (1960) pp 312-318. Also in Programming

Systems and Languages S Rosen (Ed) McGraw-Hill New York 1967

21

8 J MOSES

The function of FUNCTION in LISP

SIGSAM Bulletin July 1970 pp 13-27

9 IBM SYSTEM/360

PL/I language reference manual

Form C28-8201-2 IBM 1969

10 R SETHI and J D ULLMAN

The generation of optimal code for arithmetic expressions

JACM Vol 17 No 4 October 1970 pp 715-728

11 A V AHO and J D ULLMAN

Transformations on straight line programs

Conf Rec Second Annual ACM Symposium on Theory of Computing

SIGACT May 1970 pp 136-148

12 R L SITES

Algol W reference manual

Technical Report CS-71-230 Computer Science Department Stanford

University August 19 71

13 D G BOBROW and B WEGBREIT

A model and stack implementation of multiple environments

Report No 2334 Bolt Beranek and Newman Cambridge Massachusetts

March 19 72 submitted for publication
14 R F FLOYD

Assigning meanings to programs

Proc Symp Appl Math Vol 19 1967 pp 19-32

15 R F FLOYD

Toward interactive design of correct programs

Proc IFIP Congress 1971 Ljubljana pp 1-5

22

16 J POUPON and B WEGBREIT

Verification techniques for data structures including pointers

Center for Research in Computing Technology Harvard University

in preparation

17 B A GALLER and A J PERLIS

A proposal for definitions in Algol

CACM Vol 10 No 4 April 1967 pp 204-219

18 J C KING

A program verifier

PhD Thesis Department of Computer Science Carnegie-Mellon

University September 1969

19 M SINTZOFF

Calculating properties of programs by valuations on specific models

SIGPLAN Notices Vol 7 No 1 and SIGACT News No 14 January 19 72

pp 203-207

20 B WEGBREIT et al.

ECL programmer's manual

Center for Research in Computing Technology Harvard University

Cambridge Massachusetts January 19 72

23

APPENDIX: A BRIEF DESCRIPTION OF ELI SYNTAX

To a first approximation, the syntax of ELI is like that of ALGOL 60 or

PL/I. Variables, subscripted variables, labels, arithmetic and Boolean

expressions, assignments, gotos and procedure calls can all be written as in

ALGOL 60 or PL/I. Further, ELI is - like ALGOL 60 or PL/I - a block

structured language. Executable statements in ELI can be grouped together and

delimited by BEGIN END brackets to form blocks. New variables can be created

within a block by declaration; the scope of such variable names is the block in

which they are declared.

The syntax of ELI differs from that of ALGOL 60 or PL/I most notably in the

form of conditionals, declarations, and data type specifiers. For the purposes of

this paper, it will suffice to explain only these points of difference. (A more

complete description can be found in [20].)

A.l Conditionals

Conditionals in ELI are a special case of BEGIN END blocks. In general,

each ELI block has a value —the value of the last statement executed. Normally,

this is the last statement in the block. Instead, a block can be conditionally

exited with some other value Y by a statement of the form

@ ==> Y;
If £8 is TRUE then the block is exited with the value of Y ; otherwise, the next

statement of the block is executed. For example, the ALGOL 60 conditional

if &1 then rx else if @2 then Y2 else Y^

is written in ELI as

BEGIN &l =£> Yx ; ®2 ==> Y2 ; Y'g END

(Unconditional statements of an ELI block are simply executed sequentially —

unless a goto transfers control to a different labeled statement.)

A. 2 Declarations

The initial statements of a block may be declarations having the format

DECL £: Jf S ;

where £ is a list of identifiers, Jt is the data type, and S specifies the initiali-

zation. For example,

DECL X,Y: REAL BYVAL A[I] ;

This creates two REAL variables named X and Y and initializes them to separate

copies of the current value of A[I]. The specification S may assume one of three

forms:

24

(1) empty — in which case a default initialization determined by the data type

is used.

(2) BYVAL "V — in which case the variables are initialized to copies of the

value of f.

(3) SHARED "V — in which case the variables are declared to be synonymous

with the value of 'V.

A.3 Data types

Builtin data types of the language include: BOOL, CHAR, INT, and REAL.

These may be used as data type specifiers to create scalar variables.

Array variables may be declared by using the builtin procedure ARRAY.

For example,
DECL C: ARRAY(CHAR) BYVAL Y ;

creates a variable named C which is an ARRAY of CHARacters. The LENGTH

(i.e. , number of components) and initial value of C is determined by the value of 'V.

Procedure-valued variables may be defined by the builtin procedure PROC.

For example,

DECL G:PROC(BOOL,ARRAY(INT); REAL);

declares G to be variable which can be assigned only those procedures which take

a BOOL argument and an ARRAY(INT) argument and deliver a REAL result.

A.4 Procedures

A procedure may be defined by assigning a procedure value to a procedure-

valued variable. For example,

IPOWER *-
EXPR(X:REAL,N:INT; REAL)
BEGIN DECL RrREAL BYVAL 1; FOR 1 TO N DO R - R*X; R END

assigns to IPOWER a procedure which takes two arguments, a REAL and an INT

(assumed positive), and computes the exponential.

25

Unclassified
Security Classification

DOCUMENT CONTROL DATA -R&D
(Security classification of title, body of abstract and indexing annotation must be entered when the overall report Is classified)

I. ORIGINATING A c T l v l T Y (Corporate author)

Harvard University
Center for Research in Computing Technology
Cambridge, Mass. 02138

Za. REPORT SECURITY CLASSIFICATION

UNCLASSIFIED
2ft. GROUP

N/A
3 REPORT TITLE

MULTIPLE EVALUATORS IN AN EXTENSIBLE PROGRAMMING SYSTEM

4. DESCRIPTIVE NO T ES (Type of report and inclusive dates)

None
3. AUTHOR(S) (First name, middle initial, last name)

Ben Wegbreit

6. REPORT DATE

March 1973
7a. TOTAL NO. OF PAGES

30
76. NO. OF RE FS

20
6a. CONTRACT OR GRANT NO

FI9628-7I-C-0I73
9a. ORIGINATOR'S REPORT NUMBER(S)

b. PROJEC T NO. ESD-TR-73-II2

2801 Task 02
9ft. OTHER REPORT NOISI (Any other numbers that may be assigned

this report)

10 DISTRIBUTION STATEMENT

Approved for public release; distribution unlimited,

II SUPPLEMENTARY NOTES 12. SPONSORING MILITARY ACTIVITY

Deputy for Command and Management Systems
Hq Electronic Systems Division (AFSC)
L G Hanscom Field. Bedford, Mass. 01730

13. ABSTRAC T

An effective tool for programming includes a high-level language,
preferably extensible. A language alone is, however, not sufficient.
One wants a complete programming system with an interpreter, a fully
compatible compiler, a source level optimizer, and facilities for
proving properties of programs. The purpose of this paper is to dis-
cuss how these various evaluators of the language can be fitted together
and made to complement each other. The result, an extensible programming
system with multiple evaluators, provides a powerful programming tool.

DD FORM
1 NO V 65 1473 Unclassified

Security Classification

Unclassified
Security Classification

KEY WO RDS
LINK B

Programming svstem
Extensible
Interpreter
Compilers
Program verifier
Program Optimization and tuning

Unclassified
Security Classification

