
ESD-TR-72-309

Q.
O

a>

£ A SPACE-EFFICIENT LIST STRUCTURE
TRACING ALGORITHM

Ben Wegbreit

June 1972

DEPUTY FOR COMMAND AND MANAGEMENT SYSTEMS
HQ ELECTRONIC SYSTEMS DIVISION (AFSC)
L. G. Hanscom Field, Bedford, Massachusetts 01730

Sponsored by: Advanced Research Projects Agency
1400 Wifson Boulevard
Arlington, Virginia 22209 *&

& #>

ARPA Order 952

^

s?
&

Approved for public refease;
distribution unlimited.

(Prepared under Contract No. FF9628-7I-C-0I74 by Harvard University,
Cambridge, Massachusetts.)

A n -v-V" - -

LEGAL NOTICE

When U. S. Government drawings, specifications or other data are used for any
purpose other than a definitely related government procurement operation, the
government thereby incurs no responsibility nor any obligation whatsoever; and
the fact that the government may have formulated, furnished, or in any way sup-
plied the said drawings, specifications, or other data is not to be regarded by
implication or otherwise as in any manner licensing the holder or any other person
or conveying any rights or permission to manufacture, use, or sell any patented
invention that may in any way be related thereto.

OTHER NOTICES

Do not return this copy. Retain or destroy

ESD-TR-72-309

A SPACE-EFFICIENT LIST STRUCTURE
TRACING ALGORITHM

Ben Wegbreit

June 1972

DEPUTY FOR COMMAND AND MANAGEMENT SYSTEMS
HQ ELECTRONIC SYSTEMS DIVISION (AFSC)
L. G. Hanscom Field, Bedford, Massachusetts 01730

Sponsored by: Advanced Research Projects Agency
1400 Wilson Boulevard
Arlington, Virginia 22209

ARPA Order 952

Approved for public release;
distribution unlimited.

(Prepared under Contract No. F19628-7I-C-0I74 by Harvard University,

Cambridge, Massachusetts.)

FOREWORD

This report was prepared in support of ARPA Order No. 952
by Harvard University, Cambridge, Massachusetts under Con-
tract F19628-71-C-0174, monitored by Capt T. J. Rosenberger,
MCIT, and was submitted September 1972.

This technical report has been reviewed and is approved.

~-77t
ME^VIN B. EMMON5, Colonel, USAF
Director, Information Systems Technology
Deputy for Command & Management Systems

ABSTRACT

This note presents an algorithm for tracing during garbage collection
of list structure. It requires onl" one bit for each level of doublv
branching structure traced. Compared to existing trace algorithms,
it generally requires less storage — often, substantially less.

iii

A SPACE-EFFICIENT TRACE ALGORITHM

Introduction

This note treats the problem of minimizing the temporary storage required by
the trace phase of a garbage collector for list structure. We are concerned here
with list structure such as that used in LISP [1] in which the nodes have two fields.
These fields, called car and cdr, may point either to another node or to an atom.

Garbage collection entails tracing through all structure in use and marking
each node encountered. Subsequent to tracing, a linear sweep over all nodes col-
lects those which are unmarked and puts them onto a free list. There are basic-
ally two existing techniques for tracing through list structure. Neither is entirely
satisfactory.

The first [1] uses a stack of pointers to those nodes whose tracing has been
postponed. When tracing the car pointer of a node, the cdr pointer is stacked if
it is non-atomic. Whenever an atom or marked node is encountered, the top stack
pointer is unstacked and traced. The maximum stack depth is the maximum number

of car pointers (whose corresponding cdr pointer is non-atomic) in any path followed

during tracing. Since this is potentially as large as the number of nodes in the

system, reserving a stack of this extent is impractical. Implementations generally
reserve a stack large enough to cover "reasonable" cases and give a system error
if this is exceeded.

The second technique [2] records the addresses of nodes to be revisited in
the structure itself. While tracing the car (respectively, cdr) pointer from a node,
the car (cdr) field is used to contain the address of the preceding node on the trace
path. When the algorithm encounters an atom or marked node, it returns to the
preceding node. To determine whether tracing from that node was via the car
pointer or via the cdr pointer, an extra flag bit is associated with each node. The

bit is turned on when tracing from the car pointer and is turned off when tracing
from the cdr pointer. Often there is no room for the flag bit in the node, or the
room must be used for other purposes. Hence, a bit map must be used. If there
are W bits per word and N nodes in the system, this requires N/W additional
words of storage.

Both trace techniques then require fairly large amounts of storage. The
second technique needs one bit for each node in the system. The first technique

needs a pointer stack equal in depth to the maximum anticipated car path traced;

this too may be large.

The Algorithm

The proposed algorithm unites certain desirable properties of the above two.
Observe that in the second algorithm it is not necessary to have a flag bit for
every node — rather, only for those nodes which must be revisited. At any point in
the trace, flag bits are needed only for those nodes on the trace path between the
base pointer and the node under consideration. Since the trace path grows and
shrinks in last-in-first-out order, a stack of flag bits can be used. Also, observe
that nodes with one or more atomic fields require no trace bits. A node with two

atomic fields is not traced and so never becomes part of the trace path. When re-
visiting a node with one atomic field, it is known that the traced field must have

been the non-atomic one. Hence, only those nodes on the trace path having two
non-atomic fields require a flag bit. The flag bit for the i such node is kept in
the i position of the bit stack. As the trace path grows and shrinks, the bit stack
is pushed and popped correspondingly.

Let push and pop be defined as the stack operations on a bit stack. Let
marked(X) be a routine which marks the node X and returns true if and only if the
node was previously marked. Let atom(X) be a predicate true only of atoms. For
simplicity, we assume that there is a single base pointer B which is the root of all

2
nodes in use. Let Y be initialized to B, and let X be initialized to NIL, the null
pointer. The trace algorithm is:

NEWNODE: if atom(Y) V marked(Y) V (atom(car(Y))Aatom(cdr(Y)))

then goto BACKUP;

if atom(car(Y))

then begin TEMP- cdr(Y); cdr(Y) - X; X - Y;

Y - TEMP; goto NEWNODE

end

else begin TEMP - car(Y); car(Y) - X; X - Y;

if not(atom(cdr(Y))) then push(l);

Y - TEMP; goto NEWNODE

end;

BACKUP: if X=NIL then goto TRACEDONE;

if atom(cdr(X))

then begin TEMP - car(X); car(X) - Y; Y - X;

X - TEMP; goto BACKUP

end;

if atom(car(X)) then goto CLIMB;

FLAG *• pop();

if FLAG=1 then begin push(O); TEMP «- cdr(X);

cdr(X) *- car(X); car(X) - Y;

Y - TEMP; goto NEWNODE

end;

CLIMB: begin TEMP - cdr(X); cdr(X) *- Y; Y - X;

X - TEMP; goto BACKUP

end;

The depth of the bit stack is an issue. The worst case is a single chain in

which each node has a non-atomic car and cdr, using all nodes in the system —

resulting in a path of length N. Providing for this would require a stack of N bits,

i.e., an amount of reserved storage identical to that required by the pointer

reversal technique. However, this is clearly a pathological case. For almost all

cases of interest, the maximum number of nodes on the trace path having two non-

atomic fields will be some small fraction of N and this fraction is all that need be

reserved.

Under this policy, the new algorithm is similar in its storage requirements

to the first technique. The improvement, a significant one, is that the elements

of the bit stack are more than an order of magnitude smaller than the pointers on

the stack of resumption points. For a stack consisting of a fixed number of

machine words, the bit stack holds far more elements. Hence, deeper structure

can generally be traced. Let P be the number of bits in a pointer. With the stack

of flag bits each car and cdr pointer on the trace path takes either one or no bits,

depending on whether or not the node containing that pointer has two non-atomic

fields. With the stack of resumption points, each cdr pointer takes no bits, while

each car pointer takes either P or zero — P if the node contains two non-atomic

fields and zero otherwise. Let A and D be the maximum number of car max max
and cdr pointers (belonging to nodes with two non-atomic fields) on the trace path

followed by the garbage collector in some configuration. The stack of flag bits uses

at most A + D bits and may use less. The resumption point stack uses max max J re
P • A . Hence, the proposed algorithm is an improvement whenever

A + D p max max
r > A max

Suppose the nodes are used primarily to represent binary trees of varying

depth. The average number of car and cdr pointers, A and D, followed during

tracing will be roughly equal. The condition P > (A +D)/A will surely
IYICLX irlclX ITlcLX

be satisfied. In fact, the stack of flag bits will be a considerable improvement.

Any configuration which can be traced with a resumption point stack of S words can

be traced with a bit stack of 2S/P words.

It must be pointed out that LISP tends to favor a skew in the cdr direction.

Hence, the relative performance of the bit stack will not be as great. However,

since atomic list elements give rise to nodes with one atomic field (so that no flag

bit is required), the bit stack algorithm still tends to work quite well. For example,

the list structure (A(BC)(H(IJ(KLM)N))(0(PQ)R)) forms a tree 10 levels

deep; yet because many list elements are atoms, only 3 flag bits are required. In

contrast, the resumption point technique needs 2 pointers; but, since each pointer

is P bits long, this requires a total of 2 P bits.

A second advantage of the bit stack arises from its symmetric treatment of

car and cdr chains. Successful use of the resumption point stack is rather

dependent on the particular organization of the list structure being traced, while

the bit stack technique is comparatively robust.

Acknowledgment

The author wishes to thank Mr. J. Spitzen for his helpful comments.

4

References

[1] J. McCarthy, "Recursive functions of symbolic expressions and their

computation by machine," CACM, vol. 3, pp. 184-195, April 1960.

[2] H. Schorr and W. Waite, "An efficient machine-independent procedure for

garbage collection in various list structures," CACM, vol. 10, pp. 501-506,

August 1967.

Footnotes

This research was supported in part by the U.S. Air Force, Electronics

Systems Division, under Contract F19628-71-C-0173 and by the Advanced

Research Projects Agency under Contract F19628-68-C-0379.

The author is with the Center for Research in Computer Technology, Harvard

University, Cambridge, Massachusetts.

1. There is room in the IBM 7090-7094 since one 36-bit word holds two 15-bit

pointers, each spanning the address space (leaving 6 spare bits). There is no

room in the PDP 10 since one 36-bit word holds two 18-bit pointers, each span-

ning the address space (leaving no spare bits). Depending on the representation

chosen, there may or may not be room on the IBM 360-370. One representation

uses two 32-bit words per node, each word containing a 24-bit pointer which

spans the address space (16 bits left over per node). Another representation uses

a single 32-bit word per node, containing two 16-bit pointers, each of which can

address 64 K words (leaving no spare bits).

2. Allowing a set of base pointers entails only a trivial addition to the algorithm.

Unclassified
Security Classification

DOCUMENT CONTROL DATA -R&D
(Security classification ot title, body ot abstract and indexing annotation must be entered when the overall report la classified)

l ORIGINATING ACTIVITY (Corporate author)

Harvard University
Cambridge, Massachusetts 02138

2a. REPORT SECURITY CLASSIFICATION

UNCLASSIFIED
2b. GROUP

N/A
3 REPORT TITLE

A SPACE-EFFICIENT LIST STRUCTURE TRACING ALGORITHM

*- DESCRIPTIVE NOTES (Type ot report and inclusive dates)

None
5- AuTHORtS) (First name, middle initial, last name)

Ben Wegbreit

6 REPORT DATE

June 1972
7a. TOTAL NO. OP PAGES 76. NO OF REFS

8«. CONTRACT OR GRANT NO.

FI9628-7I-C-0I74
6. PROJEC T NO

c.ARPA Order No. 952

9a. ORIGINATOR'S REPORT NUMBER(S)

ESD-TR-72-309

9b, OTHER REPORT NO(S> (Any other numbers that may be assigned
thia report)

10 DISTRIBUTION STATEMENT

Approved for public release; distribution unlimited.

II SUPPLEMENTARY NOTES 12. SPONSORING MILITARY ACTIVITY

Deputy for Command and Management Systems
Hq Electronic Systems Division (AFSC)
L G Hanscom Field, Bedford. Mass- 01730

13. ABSTRAC T

This note presents an algorithm for tracing during garbage collection
of list structure. It requires only one bit for each level of doublv
branching structure traced. Compared to existing trace algorithms, it
generally requires less storage — often, substantiallv less.

DD ,FN°ORVM.51473 Unclassified
Security Classification

Unclassified
Security Classification

KEY WORDS

List tracing
Garbage collection
Storage reclamation
Storage regeneration
Free storage management
List processing

Unclassified
Security Classification

