G U S,

ESD-TR-72-308

COMn . ADONTO
L U4 T'r} POy

DRL.Call ‘Mo,

y No..

MULTI-PATH CONTROL STRUCTURES
FOR PROGRAMMING LANGUAGES

Charles J. Prenner

August 1972

!

A %
v SERNIEREEE Y =

DEPUTY FOR COMMAND AND MANAGEMENT SYSTEMS
" HQ ELECTRONIC SYSTEMS DIVISION (AFSC) £
L. G. Hanscom Field, Bedford, Massachusetts 0i730

.Approved for public release;
distribution uniimited.

TSV

(Prepared under Coniract No. FI9628-71-C-0i73 by Harvard University,
Cambridge, Massachusetts.) ! A TN
AD 758243

LEGAL NOTICE

When.U. S. Government drawings, specifications or other data are used for any
purpose other than a definitely related government procurement operation, the
government thereby incurs no responsibility nor any obligation whatsoever; and
the fact that the government may have formulated, furnished, or in any way sup-
plied the said drawings, specifications, or other data is not to be regarded by
implication or otherwise as in any manner licensing the holder or any other person
or conveying any rights or permission to manufacture, use, or sell any patented
invention that may in any way be related thereto.

OTHER NOTICES

Do not return this copy. Retain or destroy.

ESD-TR-72-30¢

MULTI-PATH CONTROL STRUCTURES
FOR PROGRAMMING LANGUAGES

Charles J. Prenner

August 1972

DEPUTY FOR COMMAND AND MANAGEMENT SYSTEMS
HQ ELECTRONIC SYSTEMS DIVISION (AFSC)
L. G. Hanscom Field, Bedford, Massachusetts 01730

Approved for public release;
distribution unlimited,

(Prepared under Contract No, FI19628-71-C-0173 by Harvard University,
Cambridge, Massachusetts,)

FOREWORD

This report was prepared in support of Project 2801, Task
280102 by Harvard University, Cambridge, Massachusetts under
Contract F19628-71-C-0173, monitored by Capt Triston J. Rosenberger,
ESD/MCIT, and was submitted September 1972.

This technical report has been reviewed and is approved.

%JVKQN_L\? M a,.(xm.-

. B T
SYLVIA R. MAYER /NB E} NS Col USAF
Project Officer D1rector, Information Sys. Tech.

Deputy for Command & Mgmt Sys.

ABSTRACT

This dissertation applies the techniques of extensible languapges to

the problem of introducing multi-path control structures into pro-
gramming languages. A control extension facilitv is defined which
consists of a set of control primitives and a framework for combining
them. The primitives are embedded in an existing extensible languape-—-
ELl. Using the facilitv, it is possible to realize both conventional
and non-conventional control recimes by extension. Such extensions

are simplified through the use of the control interpreter, which allows
the propgrammer direct control over the assignment of processors to
paths. A set of examples is presented which demonstrates the power of
the facility for both the implementation and clarification of complex
control structures.

Although the use of the pnrimitives in the synthesis of control struc-
tures is emnhasized, the primitives are also eiven a formal semantic

definition which is used to demonstrate that they are feasible (i.e.,
they can be implemented on contemporarv hardware) and that they have

an efficient realization.

TABLE OF CONTENTS

List of Figures

Synopsis

Chapter 1. INTRODUCTION

1. Multi-Path Control Structures
1.1 Motivation

1.2 Design Criteria

1.3 Overview

2. Survey of Previous Work

2.1 Linguistic Work

2.2 Formal Specifications
2.3 Operating Systems

2.4 Other Work

Chapter 2. INFORMAL DESCRIPTION OF MPELI

1. Processors
1.1
g -
p I

Je

The

Interpreter as Processor
Multiplexing of Interpreters
Paths of Control

Informal Description of a Path
Path Creation and Deletion
Path Initialization

Path Evaluation

Data Sharing

Path Termination

Path Synchronization

Path Dependency

Intra-Path Control Primitives

ontrol Interpreter

1
2
Bl
4
5
6
7
8
g
n
]
2
>
4

Communication with the CI

Synchronization

The Environment of the Control Interpreter
Path Scheduling

viii

ix

1-1
1-1
1-7

1-10

1-16
1-16
1-24
1-31
1-33

2-3
2-3
2-6
2-8

2-11
2-11
2-15
2-16
2-22
2-24
2-27
2-29
2-32
=57

2-41
2-41
2-45
2-47
2-50

4‘

5.

1.
2.
3.
4.
5.

User Defined Scheduling

4.1 Scheduler Extension
4.2 Canonical Inactive Sets
4.3 Scheduling Errors

External Interrupts

5.1 Classes of Interrupts

5.2 Interrupt Structure

5.3 Processor level Interrupts
5.4 Path Level Interrupts

5.5 Relation to Processor Multiplexing

5.6 Data Passage
Index to Chapter 2

Chapter 3. EXTENSIONS

Coroutines

Synchronization

Parallel Processing

Simulation

Monitoring and Relative Continuity

Backtracking

Chapter 4. THE FORMAL DEFINITION OF MPEL1

Introduction

1.7 Representation

1.2 Evaluator Recursion
1.3 Stacks

1.4 Synchronization

EL1 Evaluator

The

N ON

2.1 Declarations and Initialization

DO ON

-l et

N

b
o)
H
B

«3 List Structure

N =0VIONOo\NP

Literal Procedure
Block

Declaration
Conditional
Selection

Assignment

Iteration

Procedure Application
Labelled Statement

vi

2-54
2-54
2-61
2-64

2-66
2-66
2-68
2-770
2-76
2-82
2-86

2-89

5p

36
3-10
3-24
3-36
3-49

4-1
4~1
4-4

4-11

4-14
4-15 -
41

4-23
4-22
4-24
4-26
4-29
431
4-34
4-35
4-39
4-16

3. The Control Primitives 4-477

3.1 GETPATH 4-48

3.2 PAP, PAPQ, DPAP, DPAPQ 4~-50

3.3 PFETCH, PSTORE 4-54

5.4 TSET, CLEAR 4-56

3.5 MDEP, DEPENV 4-57

3.6 DELETE\PATH 4-64

3.7 GOTO, RETFROM 4-67

3.8 MYPATH 4-70

3.9 EVAL 4-71

3.10 COPY 4-72

3.11 CIA, CONTPATH 4~74

3.12 ENAELE\PRO, DISABLE\PRO, LEVEL, INUSE 4-79

3.13 EN PATH, DISABLE\PATH 4-82

3.14 MASK, MASK, INTERRUPT 4-85

3.15 STOP\PATH 4-87

4. Auxiliary Procedures 4~-94
5. Primitive Procedures 4-100
6. Index to Chapter 4 4-110

Chapter 5. EVALUATION AND CONCLUSIONS

1. Other Facilities 51
1.1 Extended CIA Call 5-1

1.2 Extended Mode Facility >4

1.3 Termination of Dependents 5-9

2. Implementation Issues 5-12
2.1 Storage Management 512

2.2 Input-Output 5-20

2.3 Relation to an Operating System 521

5« Critical Discussion 5-25
5.1 The Control Primitives 5-25

5.2 The Formal Definition 533

4. Conclusions and Suggestions for Future Research 5-43

Appendix 1 Introduction to EL1
Appendix 2 Syntax of EL1
Appendix 3 CI Procedures and Interrupt Response Forms

References

vii

2-1
2=2

24
31

LIST OF FIGURES

Paths Q and P1 Before PAP
Paths Q and P1 After PAP
Nesting of Schedulers

The Definition of INITD
Trees x, y, and Modified y

viii

2-20
2-20
2-59
2-63

34

SYNOPSIS

This dissertation applies the techniques of extensible
languages to the protlem of introducing multi-path control
structures into programming languages. A control extension
facility 1is defined which consists of a set of control
primitives and a framework for combining them. Using this
facility, it 1is ©possible to realize both conventional and
non—~conventional control regimes by extension. Such
extensions are simplified through the use of the control

interpreter, which allows the programmer direct control over

the assirnment of processors t¢ paths. The use of the
primitives in the synthesis of control structures is
enrhasived. However, the rrimitives are also given a formal
semantic definition which is used to demonstrate that they
are feasible, (i.e. they can be implemented on contenrorary

hardwarc) and that they have an efficient realization.

Chapter 1 gives the motivation for this research and

contains a survey of related work.

Chapter 2 presents an informal description of the
multi-path control facility. The primitives are embedded in
an existing extensible language, namely, EL1 [Weg70]. e
use the term MPEL1 to describe the language obtained through
the addition of the control primitives to EL1. All of the

material in this chapter — the control rrimitives and the

ix

framework provided by the control interpreter — is original

except for the intra-path control primitives EVAL, GOTO and
RETFROM, all of which have counterparts in existing

languages.

Chapter 3 describes how a variety of multi-path control
structures can be defined as extensions to MPEL1. Although
many of the examples have appeared in the literature, their
straightforward realization 1in terms of the primitives and

framework of MPEL1 is original.

Chapter 4 presents a formal semantic description of
MPEL1. The definition is divided into two parts. First, a
formal description of an EL1 evaluator is presented. It 1is
similar to the definition of EL1 given in [Weg70], but has
been updated to reflect changes in the language which have
been included in a current implementation [Weg72]. The
second part is a formal definition of the control
primitives. This latter part and the modifications made to
the semantic mcdel in order to host evaluator multiplexing

are original.

Chapter 5 contains some concluding remarks about the
multi-path facility. First, a number of implementation
issues are discussed. Second, an assessment of the control
primitives and their formal model is given. Lastly, a

number of arecas for future research are described.

Appendix 1 presents a brief description of EL1.

Appendix 2 gives an augmented syntax for EL]l. It 1is

reprinted from [Weg70].

Appendix % presents the MPEL1 defintions of the control
interpreter procedures and interrupt response forms

described in chapter 2. All of this material is original

A brief description of this research was presented at
the International Symposium on Extensible Ianguages,
Grenoble, France, September, 1971, under the title "The
Control OStructure Facilities of ECL." A copy of the paper

appears in the Symrosium”s Proceedings [Sch71].

xi

Chapter 1

JINTRODUCTION

1. MULTI-PATH CONTROL STRUCTURES

1.1 Motivation

A considerable amount of programming language research

has been directed towards the development of extensible

languages. The term ‘extensible’ has been applied to a
number of quite different Jlanguages, and there is still
disagreement in the field as to what characterizes a truly
extensible language [Sch71]. Most ‘extensible”’ languages
have provided mechanisms for extension in one or more of the
following areas.

(1) Data type extension allows new data types to be

created in terms of built—-in or previously defined
ones. It is wusually possible to construct data
types for arrays of homogeneous objects and
structures composed of heterogeneous objects.

(2) Operator extension allows for the definition of new

operations or the redefinition of existing ones.
For example, the meaning of ‘+° can be changed to

cover addition over new data types.

(3) Syntax extension allows the programmer to state his

algorithm in a more convenient notation than that of
the basic language, provided that he can describe
the mapping between the new notation and existing
language constructs.
In each of the cases above, a language component, which had
previously been &a constant, becomes a variable. For
example, in early high-level languages (ALGOI~60, FORTRAN)
the number of data types available is constant - integers,
reals, or n—dimensional arrays of integers or reals (where n
is fixed at the time of compilation.) In an extensible
language, the number of data types available is potentially
infinite. The methodology of extensible languages has been
to abstract what is fundamental in a given language
component and then add to the language the primitives and
framework necessary to allow the component to sustain

variation.

The development of extensible languages may be
considered a reaction to +two other trends in programming
languages. The first of these is the development of shell
languages [Ch68]. These languages purport to service a wide
class of users by making the language a conglomeration of
the facilities needed by each class. The second trend is
the development of specialized extensions to existing
languages - the addition of SNOBOI~like pattern matching to
AIGOL, for example. The former trend is not viable since

the shell Dbecomes quite unwieldy as the number of

13

arplication areas increase. The latter simply adds more

dialects to Babel.

One of the most popular examples of the second trend is
the addition of multi-path control operations to existing
languares. [An65][0p65][Dab6€]. Here we have proposals for
extensions to allow for asynchronous tasks, coroutines,
fork-join constructions, synchronization operations,
simulation primitives, and the like. Numerous papers have
arpeared in the literature which describe how one or more of
the above can be added to some language (usually ALGOI~60.)
Unfortunately, most of these proposals are incomplete,
usually taking the form of an English language description
ocr a sketch of an implementation. An explication of the
effect of extension upon the language as a whole or a study
of what fundamental operations underlie all of these

extensions are never presented.

Ixtension facilities to allow for multiple paths of
control hive been ignored in most extensible language
proposals. This is surprising since the number of (ad-hoc)
extensions which have been proposed make this area ripe for

the application of the techniques of extensibility.

This thesis attacks the problem of introducing
multi-path control structures into programming languages

*
The few exceptions are discussed in section 1.2.1.

1-4

through the use of the extensible language method, namely, a
set of language primitives and a framework are proposed
which allow for the synthesis of all known multi-path
control structures and, hopefully, for the synthesis of an

unspecified number of others. The rrimitives allow for
systematic variation in four areas.

(1) Path Organization — Paths of control (sequential

processes) do not have to be designated as
conforming to any particular control behavior (such
as a task or coroutine structure.) The control
relationship between paths is determined entirely by
their use. Facilities for data sharing are provided
commensurate with the generality of the control
discipline in effect.

(2) Scheduling — Any multi-path facility must surely

allow for the concurrent activation of paths, i.e.
parallel processing. If the number of paths to be
activated concurrently exceeds the number of
processors available, then some path-scheduling
technique must be employed. The proposed framework

allows the scheduler to be defined at the language

level.

(3) Synchronization - Whenever a language admits
concurrent evaluation, some mechanism must be
provided to allow the parallel paths to synchronize

their activities. Although no synchronization

i=h
¥*
operator or special data type 1is assumed, the
necessary handles are provided so that hand-tailored
synchronization operations may be constructed.

(4) Interrupts — An interrupt facility is provided which

allows a path to be interrupted by a signal which is

generated by another path or by an external source.

The primitives are defined as extensions to the
evaluator of an existing extensible language - EL1 [Weg70].
EL1 was chosen as the host language for a number of reasons.
First, EL1 contains no multi-path facilities. Second, EL1
has both stack and dynamic storage allocation. The Ilatter
provides a convenient mechanism foi*data sharing between
paths. Third, the “dynamic’ structure of EL1 provides an
environment in which the evaluation of a program is not tied

to its textual structure. Fourth, an

implementation-oriented formal definition of EIL1 exists.
Hence, the effect of proposed control primitives upon the
language can be determined by performing modifications to
the semantic model. Finally, embedding the primitives in
EL1 avoided the creation of yet another extensible language.

*

A TEST-AND-SET operation is assumed in order to allow
the control primitives to synchronize their activities, c.f.
1.1.3.

3%

Here we refer to the fact that EL1 uses a d ic scoge
rule to identify the meanings of free variables !as in LISP)

and to the fact that variables may be bound to fragments of

EL1 programs (called FORMs) which may be evaluated in any
environment.

1-6

The multi-path primitives are described both in English
and in terms of a revised formal model of EL1. The former
serves as an informal introduction and the latter provides a
precise definition of the semantics of the primitives and
their relation to the EL1 evaluator. The formal definition
is crucial for two reasons. [First, most of the control
primitives do not have counterparts in conventional
vrogramming languages. Thus, the informal description must
concentrate on motivating the primitives and giving a
general description of their actions. An attempt at
completeness in this section would make it essentially
unreadable. Second, to propose sophisticated linguistic
rrimitives without giving a model is a relatively worthless
pursuit - only the language designer will ever understand
exactly how they work.

For the remainder of the thesis we will use the term
‘MPEL1’ (multi-path EL1) to denote the language obtained by
adding the control primitives to EL1. The term °‘EL1° will
be used to refer to the original definition of EL1.

1.2 Design Criteria

In this section we will discuss & number of criteria
which night be used to Jjudge +the merit of a set of
multi=path primitives and their formal model. In chapter 5,
wve will evaluate the MPEL1 primitives and model in terms of

these criteria.

The first criterion is ‘cost.’ There are a number of
measures which apply. First, the amount of “code’ needed to
implement the primitives should be small. Hopefully, the
primitives will wuse facilities which already exist in the
languare whenever possible. Second, the primitives should
be reasonably efficient. If they are too slow, they will
merely be curiosities to be played with instead of tools to
be used to solve real problems. lastly, and most
importantly, the overheads associated with the multi-path
facility should not be distributed throughout the language
evaluator; a program which does not use the primitives

should not pay for their existence in the language.

The next criterion is the generality of the universe in
which the primitives are defined. Here, we refer to the
number of processors which @are available for the

simultaneous evaluation of paths. Any set of primitives
which are defined in & multi-processor environment will

surely be acceptable if the number of processors is

restricted to one. The converse, however, is not

1-8

necessarily true. Primitives which are feasible in a
uni-processor environment may prove to be quite expensive in
the more general environment. Secondly, problems which are
non—issues with a single processor become significant in
light of multi-processing. For example, with a single
processor only one primitive can be executing at any given
time. Hence, the pmrimitives do not require any explicit
synchronization. With multi-processing, two primitives may
execute simultaneously and therefore may require
synchronization. Thus, a nulti-processing environment
exposes issues which do not arise in the restricted single

ProCceSSOr case€e.

Turning to the formal model, the most important
criterion is that the model should explain the primitives.
Presumably, the language 1level control primitives are
designed to facilitate the synthesis of multi-path control
structures. They are cast at a high enough 1level to
suppress the constant and display the variable. Hence, they
are probably sufficiently complex that their feasibility or
implementation is not immediately obvious. The formal
definition should explicate how the language primitives may
be constructed from.some smaller set of primitives which are
intuitively acceptable, i.e. they can be implemented on

existing hardware.

We close this section by posing the question ‘Why

bother?’, i.e. are multiple paths of control really
necessary in rrogramming languvages? Formally, of course, the
answer 1is no - multiple paths of control do not add any
computational power. In this sense, data definition
facilities are Jjust as useless. In both cases, however,
their value lies in the representational power provided.
Data type extension facilities allow one to define the data
structures which are appropriate for a given protlen. The
resulting alporithm is usually cleaner and more concise than
one in which the data 1is represented 1in some indirect
fashion using some fixed set of data tyres. Similarly,
alrorithms which call for a mnmulti-path structure suffer
~-rcatly when they are compressed into a single path of
control. In some sense, the situation is worse for control
than for data. To illustrate, it is usually rossible to use
one data structure to represent another with a major loss of
notational convenience but a tolerable loss of speed. For
example, arrays of integers can be used to represent lists.
However, in order to simulate a multi-path control structure
with a single control path one may have to construct an

interpreter. In this case, the result will certainly be

intolerably slow!

1-10

1.3 Overview

In this section we present an outline of the multi-path
facility. In all cases, the topics are covered in more
detail in the chapters that follow. This section is
included in the hope that an initial pass through the
facility will aid the reader in his understanding of the

components as they are presented linearly in the sequel.

The first topic to be considered is the underlying
machine model. Since the 1language is to be machine
independent, no specific machine organization is assumed.
However, a number of features that can be found in most
contemporary hardware systems are presumed. It is assumed

that there exist a fixed number of processors available for

the simultaneous evaluation of paths. Each one may evaluate
only one path of control at a time. A processor must always

be kept busy. Thus, an idling path is defined for each one

-~ the path it eveluates in the absence of any ‘real’ paths.
Associated with each processor are a set of extermal
interrupts, e.g. timer interrupt, light-pen interrupt, or
processor to processor interrupt, and a priority interrupt
system. Processor communication and synchronization is
achieved through the interrupt system and through the use of
an interlock instruction which relies wupon the arbiting

property of memory (TEST-AND-SET).

1-11

A path records the dynmamic evaluation of an EL1

program. Associated with each path is an environment which

contains the name-value bindings created by the dynamic
execution of the program and an activation record (an EL1
structure) which contains a handle on the path’s environment
and information that describes the status of the path.
Activation records also provide a linguistic means of
talking about paths in the language, e.g. most control
primitives take as argument a pointer to the activation
record of the path to which the primitive is to be applied.
Control primitives are defined which allow for path creation
and deletion, modification of a path’s environment,
initialization of a program to be evaluated in the path,
interruption of one path by another, transfer of control

between paths, etc.

A path is active if a processor is currently evaluating
a program in the path®s environment. Since the evaluation
of a program in a path is isomorphic to the data structure
modifications made 1in the path by the processor, we may
speak of the path itself as being evaluated by the
processor. If a path (P) is being evaluated by a processor
(Q), then we say that Q is assigned to P. A path is not
active if a processor is not currently assigned to it. A

path is being modified if it is active or if a control

primitive that affects its environment is being applied to
it.

1-12

A path may only be modified by one processor at any
given tinme. If a path is active, then the path is being
modified by the processor which is evaluating it. If an
environment modifying control primitive is being applied to
a path, then it is being modified by the processor of the
path which has executed the primitive. A processor
TEST-AND-SETs a memory location in the activation record of
the path to be modified. If two processors simultaneous1¥
attempt to modify a path, then a runtime error results.
Thus, the TEST-AND-SET instruction is used only to insure
that two (or more) processors do not modify a path
simul taneously, i.e. to protect the system against fatal
language—-level program bugs.

The framework in which the primitives are cast
completes the built-in multi-path facility. Essentially,
the framework consists of the existence of a distinguished

path, the control interpreter (CI), which is treated

specially by the control primitives. It is the only path to
which other paths may pass control. This is achieved by
means of the control primitive CIA which transfers control
to the CI, specifying a function to be applied in its
environment. The CI path, in conjunction with the control

primitives and the interrupt facility, provides the handle

3*

If a processor TEST-AND-SETs the word and finds it

‘unlocked”, then it simply continues the evaluation. If
however, the processor finds the word “locked”, then it
generates the runtime error.

1-13

necessary for the synthesis of multi-path control
structures. Two rroperties of the control interpreter path
facilitate such constructions. First, the execution of any

function (passed via CIA) in its environment is indivisible

with respect to CIA calls of the same function by other
paths, i.e. 1if two paths simultaneously CIA some procedure,
say f, then the execution of one CIA call of f will run to
completion before the other is allowed to begin. The two
executions of f are ordered linearly in time. Second,
control transfers between paths must go through the control
interpreter. Thus, it acts as a control switchyard. The
consolidation of indivisibility and path-switching in the
control interpreter simplifies the synthesis of control
structures without any 1loss of descriptive power. For
example, the control interpreter can be used to realize any
sort of synchronization operation or rath scheduling regime

by extension.

It is impcrtant to distinguish the control rprimitives
and the CI path from the program being evaluated in the
control interpreter’s environment. This program, written in
EL1, wuses the fact that it is executed in the CI path in
conjunction with certain control ©primitives and the
interrupt system to provide an initial extension to the
built—in facility. In particular, the program evaluates CIA

called procedures and rrovides a simple path scheduler which

allows for the synthesis of concurrent processes. Since

1-14

this program is written in EL1, it is easily understood and

is available for modification or redefinition by the user.

The CI framework, 1in conjunction with the control
primitives, allows for the construction of conventional
nmulti-path organizations such as coroutines and concurrent
processes. In addition, MPEL1 can host non-conventional
control regimes such as monitoring and relatively continuous
evaluation. Chapter 3 gives examples which demonstrate how
these control structures, among others, may be realized as

straightforward extensions in MPEL1.

To summarize, MPEL1 provides an extensible multi-path
facility. The extensible nature of MPEL1 is best viewed in
terms of three concentric levels:

(1) The control primitives and the existence of
the CI are built-in and constitute the basis
for the multi-path facility.

(2) The MPEL1 program which is evaluated in the
CI environment executes CIA called procedures
and performs path scheduling.

(3) MPEL1 programs utilize the control primitives
and communicate with the CI in order to

produce a given control regime.

We conclude this section with a brief comment about the

formal model. In the previous section, we indicated that it

is desirable to have the formal model explain the control

1-15

primitives. The meta-language used to describe MPEL1 is EL1
with the inclusion of cnly four control rrimitives (TSET,
CLEAR, FVAL, GOTO.) Thus, the semantics of the primitives
are specified in terms of EL1 and a small set of control
primitives. Since the primitives used in the meta-language
have a straightforward realization on existing hardware, the

model is pragmatically valid at the base level, c.f. 5.3.2.

1-16

2. SURVEY OF PREVIOUS WORK

This dissertation builds on previous work in a number
of procsramming language research areas, namely, introduction
of multi-path facilities, extensible languages and formal
semantic specification. In addition, our research also
touches upon work done in operating systems and abstract
models of parallel systems. A complete survey of all of
these areas would surely be beyond the scope of this paper.
Hence, we will restrict ouwr discussion to those papers which
are directly relevant to the current work. Comprehensive

bibliorraphies may be found in [ACM70][Ste66][Chris69].

2.1 linguistic Work

Most prorosals for language additions which allow for
the creation of multiple paths of control have been attempts
to permit user specification of program segments that may be
executed concurrently. Some sort of synchronization
facility is usually provided to allow the parallel segments

to coordinate their activities.

Anderson [An65] proposes additions to ALGOI-60 to
provide for parallel processing. He introduces five

statement types: fork, join, release and terminate. The

fork statement specifies a list of labels to which control

is to be passed in parallel. The last logical statement in

1-17

the body of code following each label is to be either a goto
X, where X is the label of a join statement or a terminate
statement, which indicates that this path has no successar.
The join statement specifies the labels of the parallel
.paths that must complete tefore control can pass through the
Join. Obtain and release are used tc provide
synchronizaticn. The obtain statement prevents other paths
from accessine the values of the variables in the obtain’s
variable 1list. Release 1is the logical counterpart of
obtain, i.e. it allows access to variabies previously

ottained.

Opler [Or65] sugrests the addition of a DO TOGETEER
statement to FORTRAN. The statement specifies a set of
DO=loops which may be evaluated concurrently. When all
raths have completed, processing continues with the

staterent following the DO TOGETHER.

Variations on the above have been proposed by
Conway [Co63], Wirth [Wi66], who suggests the use of the
operator and to indicate a lack of commitment in the
sequencing of program segments, and Gosden [Go66], who
recommends the use of and for paths that rejoin and also for

ones that do not.

Di jkstra [Di6Ba] proposes the introduction of a

parallel compound statement (perbegin parend) into

1-18

ALGOI~60, where the statements of the block are to be
evaluated concurrently. Evaluation of the block is

completed when all statement evaluations have completed.

Synchronization is achieved through the use of semaphores
*

and their associated operations, P and V.

PL/I [Be70] allows procedures to be called as separate
asynchronous tasks. The task structure, however, is
strictly hierarchical - a created task is always dependent
upon the block of the parent task that created it. If
control returns from a creator block, then all tasks created
br that block are forcibly terminated. Synchronization is
achieved through the use of EVENT variables; one WAITS for
an event to occur. The occurrence of an event is signaled
by COMPLETION, or by the I/O subsystem - in the case of
event variables associated with I/O activities. PL/I also
provides an interrupt handling facility. The programmer may
associate a program (called an ‘on-unit’) with a ‘condition’
which may be built-in (e.g. SUBSCRIPTRANGE) or
user—defined. The on—unit is evaluated if the condition
obtains during the evaluation of the program. User-defined
conditions must be raised explicitly by means of a SIGNAL

statement.

Most of the multi-path facilities described above have

*

See section 3.2 for a complete description of
semaphores.

1-19

not been fully incorporated into their host languages.
Hence, the semantic relation between the control primitives
and the rest of the language is occasionally quite fuzzy.
For example, in Anderson’s proposal the effect of non-local
gotos out of parallel segments is not explained. We note,
however, that these proposals are suggestions of desirable

languare leatures and do not rurport to be complete language
designs.

Next to parallel processing, coroutines have been the
form of multi-path control most frequently discussed in the
literature [Co63a],[McI1l],[Kn68]. Coroutines are useful
whenever the solution to a problem cannot be easily cast
into a single hierarchical structure. They have been
characterized in many ways — from mutual subroutines that
may call upon each other to procedures that use their own
storage to retain information about their internal state

between calls.

Neither of the above viewpoints is fruitful, since they
both attempt to explain coroutines in terms of hierarchical
control. For example, the use of own storage allows a
procedure to construct its own separate mini-hierarchy so
that upon subsequent calls it can resume execution from
where it left off. A more reasonable view of coroutines is
in terms of multiple-paths of control in which each path
maintains its own control hierarchy. When one path wishes

1-20

to ‘resume’ a coroutine path, it simply transfers control to
the path. Since the hierarchies are separate, the state of

the original path remains intact.

Discrete simulation languages, such as SIMULA [Da66],
use a multi-path coroutine structure to effect clock-driven
simulations. Processes are maintained on a queue, termed

the sequencing set (SQS), in the order in which they are to

be evaluated in ‘system time’. A number of processes may be
set to be evaluated at the same ’‘system time’, i.e.
concurrently with respect to the system being simulated.
However, these processes are evaluated in an interleaved
manner as coroutines, not as parallel processes. Control
resides in one process until 1t either terminates,
reschedules itself for later evaluation, or rasses control
to another process. This mode of operation is called
‘quasi-parallelism.’ To achieve the effect of concurrent

processing, the programmer must explicitly deal with the
scheduling of processes.

SIMULA provides a large number of scheduling operations
to facilitate management of the SQS; primitives exist which
allow processes to be removed from the SQS, added to the SQS
before or after some particular process, or added before all
processes to be evaluated at a specified time. More
recently, SIMULA67 [Da70] bhas recognized the essential
coroutine structure of SIMULA and allows these scheduling

1-21

operations to be realized as extensions using the two
operations DETACH (which passes control out of a coroutine
process) and RESUME (which passes control to a coroutine
process) and the ability to define a SQS in the language

(via a data definition facility.) These operations also

allow other multi-path control structures to be synthesized

(in a uni-processor environment.)

In lieu of a survey of extensible languages, which
would wunnecessarily lengthen this section, we will limit
ourselves to discussion of the multi-path control facilities

of a number of extensible languages. For ceneral surveys of

extensible languages see [Chris69]{Ger69][SchTl].

MCOL 68 [vanW69] allows for “collateral elaboration”
where the sequence in which a set of expressions are
evaluated is left indeterminate, e.g. they may be evaluated
either simultaneously, sequentially in any order, or in an
interleaved fashion. ALCOL 6€ also allows parallel clauses
in the spirit of Dijkstra’s parallel compound statement,

where

parbegin s1; s2; s3 parend

becomes
par{ s1; a2, 83).
The constituent statements of a parallel clause are

elaborated collaterally. The programmer may use semaphores

(objects of mode sema) to synchronize the operation of the

1-22

statements. Here, the P and V operations appear as down and
up, respectively. The monadic operator °/° is used to
initialize a semaphore, i.e. / takes an int argument and
returns a new sema& whose integer count is initialized to the

value of the int.

Standish [St68][St€é9] has proposed a number of control
features for PPL, including mechanisms for parallel
processing, interrupts, continuously evaluating expressions
(a construct that allows the free variables in an expression
to be monitored so that if the value of any one of them
changes, the expression is immediately reevaluated,) and
contrcl contracts which allow the user to manipulate the

control interfaces between processes.

More recently, Poupon [Po71] has implemented a number
of these features in an experimental version of a current
implementation of PPL [Ta71]. A PPL process is a data
structure which represents the dynamic incarnation of a
procedure call. The components of a process include the
formal parameters and locals of the procedure, a STATUS
component (which may take on the values ACT (active),
SUS (suspended), or TED (terminated) and a RESULT component
which is used to reference the ‘result’ of the process. The
values of these components may be selected and modified by
other processes, e.g. if P references a process then

P[STATUS] <~ SUS

1-23

suspends the process P. All active PPL processes are

evaluated concurrently.

PPL also contains the following two control operations.
First, it is possible to specify that a PPL process is to be
evaluated relatively continuous [Fi70] to all other

processes. The evaluations of all other processes are
delayed until the process terminates or indicates that it
has completed the desired (relatively continuous)
processing. Second, PPL provides a type of continuously
evaluating expression in the WAITUNTIL statement, e.g.
WAITUNTIL(A + B = 3)

When a VWAITUNTIL is encountered, the expression is
evaluated. If the valuve is TRUE, then +the process
continues. Otherwise, the process is suspended with control
positioned at the WAITUNTIL statement. It is made active
whenever the value of any variable in the expression is
changed. Hence, the process will continue as soon as the

expression becomes TRUE.

OREGANO [Be71] allows for the construction of
coroutines and parallel tasks (perhaps with assciated
priorities.) Synchronization is achieved through the use of
event variables and the operations wait (wait for event to
occur), cause (cause the event), and reset (re-initialize
the event variable). Tasks, coroutines, and procedure calls

are treated in a homogeneous fashion, namely, the invocation

1-24

of each involves the allocation of a contour which contains
local variables, environmental information and an
instruction pointer. Contours are managed using a retention
strategy, i.e. @a contour remains in the system as 1long as
it is reachable from some ‘active’ contour. Contours which
are no longer reachable are returned to the free storage
pool by an autom&tic reclamation technique such as garbage
collection. The retention strategy allows for a more
flexible tasking structure than some of the languages
described above, say FL/I, since the environment required by
a created task will remain as long as necessary, inderpendent

of .the actions of the creator task.

2.2 Yormal Srecifications

Ve now turn to a discussion of work done in the area of
formal semantic models of programming languages. The
approaches taken to this problem have been quite diverse,
ranging from compiler-based specifications [Car66] to string
processor models [vanW66]. Unfortunately, most of these
models are oriented towards describing languages which admit
only a single path of control. This 1is not surprising,
however, since most languages have a single-path control
structure - the notable exceptions being the ones described
earlier in this section. For our purposes, it will suffice

to review only those papers which are reasonably relevant to

1-25

this paper. For more complete surveys of the field see

[Ste66][Wegn69].

Landin [Lan65][Lan65] has investigated the use of the
Jambde~calculus as a basis for the formal description of
programming langueges. He demonstrates how various language
constructs can be cast as lambda—-expressions and gives a
mechanical procedure for the evaluation of
lambde-exrressions in terms of an interpreter for an

automaton - the SECD machine. The applicative aspects of

progerammine languages (recursion, parameter bindings, scope
rules) are handled reasonably in this approach. However,

the more imperative aspects of languages (assignment,

transfers of control) must be modelled either by twisting
them into applications or by introducing imperative features

into the lambda-calculus.

McCarthy [McCar66] proposes a languare definition
method which uses a state vector to hold the current values
of all variables accessible to a progran. The result of
evaluating a program P in language L with respect to an
initial state vector Vo, is defined to be the final state

) vector V’ which is obtained by using a semantic function F/L
associated with language L to sequence through P and produce
state vectors Vl1,...,Vn=V° which record the successive
values of the variables used in P. Hence, F/IL. acts as an

interrreter for programs written in I.

1-26

ULD, the method and meta-language for language
definition developed at the IBM Vienna Laboratories
[Luct8a][IucbEb], must be considered the most ambitious
effort in the field. The original work was undertaken to
provide a formalism for the formal definition of PL/I. More
recently, ULD has been successfully used to describe the
semantics of other languages [Ger70][Rey69].

Basically, one describes the semantics of a language L

by describing a basic abstract machine which is composed of

a set of machine states and a2 (possibly non-deterministic)
state transition function /\. Corresponding to any program
P in L there exists an initial machine state So. A

computation is a sequence of states So ,..., Sn, such that

Si+1 € /\(Si). A machine state is represented as a
structured object, i.e. as a finite tree with named

components. All of this is cast in a meta-language which is

a conclomeration of conditional expressions, functional
composition, the propositional calculus, and two operatars
(a selector and constructor) used to manipulate the

structured objects.

McCarthy’s formalism and ULD utilize two significant
techniques. First, programs are represented abstractly as
data structures which display the essential semantic
structure of the program, while suppressing human—oriented

syntactic sugaringe. McCarthy defines the term abstract

1-27
*
syntax to describe this representation . Second, the
formalisms are interpreter-based, i.e. the semantics of a
languare are described by an interpreter (written in the
neta-language) which evaluates abstract representations of
programs 1in the semantic environment provided by the model.
Hence, one language is defined by describing its semantic

interpreter as a program in another.

A number of criticisms may be 1leveled at the two
formalisms. First, the semantic environments in which the
neta=lansuages are cast are unnecessarily restrictive.
Here, we refer to the data structures of the meta-language
which are used to record the state of the computation.
YcCarthy can use a simple fixed-length vector since the
number of variables in any program in the language he is
definins (a restricted subset of ALGOI~60) is constant and
control can be described by a single statement number. In
Ul.D, althougch the tree structures provides a more flexible
environment than a single state vector, restrictions on
sharing of components force circumlocutions in the
representation of common program language constructs.
Second, &although it contains standard language constructs,
the ULD meta~language uses an obscure notation in which

familiar concepts are recast in unfamiliar settings. Hence,

*

Note that a complete 1 e definition must include
a specification of the concrete (written) representation of
the language and a description of the mapping from concrete
to abstract form.

1-28

learning ULD is as difficult an intellectual effort as

understanding some of the languages it is used to describe.

Werbreit [Weg70] resolves these issues, to some extent,
in his formal definition of EL1. The languare is defined by
presenting a set of EL1 programs which constitute an EL1
evaluator. Hence, EL1 serves as its own meta-language. The
data definition facility provides a sufficiently rich set of
data structures so that the abstract syntax representation
of programs and the semantic environment necessary for the
evaluation of EL1 programs can be represented both directly
and clearly. Because the direct representation of semantic
structures and the fact that EL1 is a fluent notation for
expressing algorithms, the formal definition is extremely
readatle. Complete understanding of the language 1is
achieved by an iterative process, in which one’s
understanding of the formal definition reinforces one’s

understanding of the language, and conversely.

FI1 raises two related issues concerning formal
definitions. The first of these is linguistic circularity.
As Wegbreit notes, some such circularity is inescapable. To
define a language L, one uses a meta-language L°. But how
is L’ defined?. Either 1=I."(as in the definition of EL1),
L° is self evident and requires no formal definition, or L°
is defined by yet another language L°°. The last of these
choices yields a potentially infinite regress, unless the

1-29

chain is terminated by introducing a circularity or using a
nmeta~language whose definition 1is obvious, e.g. a Turing
machine representation. While simple meta-languages are
logically attractive, they are inappropriate frameworks in
which to cast language definitions. Either one becomes lost
in the details associated with the simplistic language or
one builds layers of definition on top of the language, in
which case each layer must be examined for correctness. In
addition, the evaluation process as represented in the
simple lanruage may misrepresent the essential qualities of
the languare mechanisms. This leads us to our second issue
- implementation 1independence. Here, we do not refer to
machine independence (i.e. non-reliance upon a specific
machine organization) but rather to whether or not the
l'ormal definition should encompass a preferred data
structure organization to be used in an implementation of
the Jlanguage. TFor example, ULD defines PL/I without
indicating any possible implementation, whereas, the EL1
formal definition is cast in terms of a specific set of data
structures to be used by the evaluator. We will return to

this issue again in section 5.3.2.

One additional property of the EL1 formal definition
must be discussed. The property may also be found in
McCarthy's formalism and 1in classic definitions of
LISP [McCar60]. Although in all of these formalisms the

name—-value environment in which a program is evaluated 1is

1-30

described explicitly (Wegbreit’s name-pdl, McCarthy’s
state~vector, and LISP’s A-list,) the control structure of
the program is implicitly recorded in the recursive
procedures of the semantic interpreter. This presents no
problem in the formalisms described above since the
langueges defined allow for only & single path of control.
However, if a language admits multiple paths of contral,
where each path can affect the intra—-path control structure
of another, then the program‘s control structure must be
removed from the interpreter and included as part of the
semantic environment so that the effects of these actions

may be clearly explicated.

One formalism that attempts to include control
structure as part of the semantic environment is Johnston’s
contour model [Jo71]. The model has been used in the design
and specification of OREGANO [Be71]. The model consists of

two components: a fixed reentrant algorithm and a

time-variant record of execution. The latter is realized by

nested contours which may be used to represent procedure or
block activations. A processor is defined as an (ep,ip)
pair, where ip is a pointer to an ‘instruction’ and ep is a
pointer to a contour, which in turn defines the environment
(by its relation to other contours) in which the instruction
is to be executed. Many such processors can be defined and
represent loci of control within the program. A fundamental

axiom of the model 1is that contours are managed using a

1-31

retention strategy, c.f. 1.2.1. Languages defined using
the model tend to exploit this axiom to the hilt as opposed
to explorine other implementation strategies (e.g. stacks)

which may be more efficient in certain cases.

2.3 Operating Systems

Computer operating systems have made use of the concept
of multiple paths of control as a means of achieving a more
efficient wutilization of hardware and as a design
me thodology. In the former case, it has been observed that
user programs (processes) do not require the use of a
processor at various times during their execution, e.g.
while waiting for I/0. Hence, it 1is profitable for the
system to maintain more processes than rprocessors and
multiplex the processors across the processes as required.
In the latter case, it has been found useful to describe an
operating system as &a society of cooperating sequential

processes, associating one process with each user program

and one process with each peripheral device [Di68b].

Saltzer [Sa66] defines the Traffic Controller as the

program responsible for the orderly switching of processars
between processes. A set of primitives are defined which
allow a process to specify to the controller that (a) it has
no further use for its processor, (b) it should be given a

1-32

processor again at some later time, (c) the further
execution of some other process is to be storped, and (d)
some process can now make use of a processor. This model
was incorporated into the MULTICs system [Coré%].
Rappaport [Ra68] discusses his experience with two
implementations of the MULTICs Traffic Controller. In the
first version many processes are allowed to execute inside
the Traffic Controller simultaneously to prevent the
Controller from becoming a system bottleneck. This requires
numerous interlocks to insure that the processes do not
interfere with one another. In the second version, only one
process is allowed to execute inside the controller at any
miven time. Thus, only a single global interlock is
required. Rappaport notes that both the size of the
controller and the time required to execute the primitives
were reduced significantly in the second version.
Madnick [Ma68] shows that the use of a single global
interlock will not cause a bottleneck unless the number of

processors in the system is large, e.g. more than 5.

Wirth [Wi69] advocates the removal of input—outrut
interrupts from machine language programming and suggests
that they be replaced by & set of instructions which allow
for the creation, termination, and synchronization (using
semaphores) of parallel processes. In addition, a generic
I/0 instruction (DOIO) is proposed which performs a

specified I/0 activity to completion. The programmer can

=22

concertualize his program in terms of processes in which
concurrent J/0 is realized by starting a process to perform
the I/0 and then waiting (via a P operation) until the I/0
is complete as opposed to fielding I/O interrupts at
arbitrary points in his program. Wirth gives an
implementation of the instructions as subroutines which are

invoked by supervisor calls on an IBM 360.

2.4 Other Work

Before we conclude this survey, we must discuss three
recent works in the area of control structures which do not
fit conveniently into any of the research areas described

above.

leavenworth [lea69] describes a language in which a
programmer can define his own control structures since he
can access the state of the langusge interpreter. The
languare, McC360 [Bur68] is similar to ISWIM [Lan66] and the
interpreter resembles the SECD machine interpreter. It is
possible to save entire machine states, construct new
states, modify saved states, and install some saved state as
the current machine state. For example, to simulate
non—deterministic control using the primitives proposed by

Floyd [F1€7] one saves one copy of the machine state for

each value of the choice function, i.e. at each point at

1-34

which a non-deterministic choice must be made the machine
state is replicated as many times as necessary. When a
choice leads to failure, a saved state (which corresponds to
a choice point) is installed as the current state.
Coroutines can be obtained by defining a resume function
which saves the current machine state for later resumption
and restores some saved state. Unfortunately, most of the
interesting control structures are obtained using the
concept of ‘saving entire machine state’, which does not
lend itself to an efficient implementation. In addition,
concurrent operation is achieved by the multiplexing of a

single processor (the interpreter) across machine states.

Fisher [Fi70] describes a set of control primitives
which ‘span our conceptual notion of control ... and can be
easily composed to form more specialized control
structures.’ Six primitives, which are embedded in a
programming language (CDL), are defined: seq which specifies
that a set of statements are to be evaluated sequentially,
per which specifies that a set of expressions are to be
evaluated independently, cond which is similar to the LISP
conditional [McCar60], monitor which allows an expression to
be evaluated as soon as a condition becomes TRUE, synch
which allows for the indivisible evaluation of an expression
and cont which allows the evaluation of an expression to be

relatively continuous with respect to the evaluation of

1-35
*
other control paths. Fisher’s return operation, which
returns control from one process to another, may be

considered a seventh primitive.

Yisher gives three definitions of the primitives: (a)
in Fnglish, (b) a CDL interpreter written in CDL, (c) a CDL
interpreter which uses only seq and cond. The first of
these is useful as an informal description but, of course,
is not precise. In the second, the more interesting

prrimitives (nonitor, synch, and cont) are defined by direct

circularity (e.g. if a CDL program performs a cont, then

the interpreter performs a 992£°) Such circularity is
acceptable (and unavoidable) in the formal definition of
sone languarce primitives. For example, in a definition of
1.ISP, CAR, CDR and CONS are defined using CAR, CDR, and CONS
directly. Here, the direct circularity is acceptable since
the operations are intuitively clear and involve simple
manipulations of well defined data structures. Fisher’s
rrimitives, however, involve complex actions performed upon
less well defined structures, e.g. no clear definition of
the term ‘process’ is given. Hence, their definition by
direct circularity 1is suspect since it provides little
insight 1into the mechanisms involved. In the last
definition, pseudo-parallel processing is achieved by

managing the processes on a queue and evaluating them (one

*

Conts may be nested. Hence, many levels of relative
continuity may be invoked.

1-36

at a time) according to their level of relative continuity.

Thomas [Tho71] addresses the question “How can
processes be represented in order to facilitate synthesis of
complex behavior patterns.’ His answer is cast in terms of a
state—oriented model in the spirit of Landin and
Leavenworth. Here, each process has its own processor. A

precessor uses & state transition rule to change the state

of its process. A state is a collection of many state

components, which include the program being executed (prog),

the program counter (pc), the name~value bindings for the
process (prog-id), a set of programs to be evaluated as
responses to interrupts (hp), and a dump which is wused to
save the most important components of the state when an
interrupt occurs. Thomas’s work is an improvement upon
previous state-oriented models of control since he includes
enough structure in the state to describe adequately both
the internel aspects of processes and the interface
operations between interacting processes. The
multi-processor orientation of the model conveys the concept
of concurrently evolving processes in a fashion superior to
models in which the parallelism is simulated using a single

processor.

Chapter 2

INFORMAL DESCRIPTION OF MPEL1

In this chapter, we present an informal discussion of
the control rprimitives and framework which constitute the
multi-path control facility of MPEL1. We assume that the
reader is familiar with EL1, as described in [Weg70] or
[Weg72]. If not, the reader is encouraged to read Appendix

1, a brief introduction to EL1, at this point.

The control primitives appear in the language at the
syntactic and semantic level of procedure calls. Formally,
they are defined as objects of mode CSUEBR
(control-subroutine.) For each primitive, we give a
pseudo—-procedure heading which specifies the name, mode and
bind-class of each argument and the mode of the value
returned by the CSUBR. We then give an English description
of its semantics. Here, we are primarily concerned with

providing motivation and understanding, without attempting

to be formally precise or complete. For each primitive, a
precise specification of its semantics 1is given 1in the

formal definition of Chapter 4.

Section 1 motivates the concept of paths of control.
Section 2 discusses paths and their associated operations in
detail. In sections 3 and 4 the framework provided by the

control interpreter and its role in path synchronization and

2-2

scheduling is discussed. External interrupts are introduced
in section 5. Section 6 is an index of the terms used in

the chapter.

As the control primitives interact rather heavily with
one another in the synthesis of mnulti-path control
structures, it is difficult to exhibit complete illustrative
examples until all the primitives have been presented.
Thus, we postpone the latter until Charter 3. We also defer
justification of the multi-path facility and comparison with
other proposals until Chapter 5.

=3

1. PROCESSORS

Before we turn to the informal description of MPEL1, we
must first discuss the concept of ‘processor.” 1In
particular, we will discuss the distinctions between
program, process and processor; the multiplexing of
Processors; and the relationship TDbetween processor

assignment and the synthesis of new control behavior.

1.7 Interpreter as Processor

In this section, we will first consider the three
components of a computation as performed by a sequential
computing device, namely, program, process and Pprocessor.
We will then discuss the concept that an interpreter for a
programming language may be considered an abstract processor

for prosrams written in the language.

A program is the definition of a computation, i.e. &
specifies a sequence of actions which may be performed to
obtain a desired result. A process is the performance of
the computation specified by &a program. Information is
usually associated with a process to specify the set of
accessible memory locations and to indicate the action which
is currently being performed. A processor is an agent who
performs the actions which constitute the process as
specified by the program. In particular, the processor

updates the information associated with the process. To

Bl

illustrate, consider a program written in the machine code
of a digital computer. The computation to be performed is
specified by a sequence of instructions. The execution of
the program constitutes a process in which information is
maintained as to which instruction 1is currently being
executed (program-counter) and the range of memory which may
be addressed by the process. The processor 1is the
central-processing—-unit (CPU) of the computer. The CPU
performs the actions sprecified by each instruction as stored
sequentially in memory. After each instruction, the
program—counter for the process specifies the next
instruction to be executed by the processor. Hence,
instructions which modify the program—counter can cause a

change in the sequence of instructions executed.

In section 1.2.2, we discussed various interpreter
based models which have been used to specify the semantics
of programming languages. These interpreters may be viewed
as processors for programs written in the language being
modeled. To illustrate, the interpreter performs the
actions specified Dby the program in the semantic space
provided by the model. The evaluation of the program by the
interpreter constitutes a process in which the interpreter
nust maintain records which specify the variables (memory
locations) accessible to the brogram. In addition, upon
completion of some action for the program, the interpreter

must be able to know which action is to be performed next.

2=5

Let us consider the way in which the records described
above are maintained in the interrreter model for EL1
described in [Weg70]. The interpreter uses a ROW
(name-stack) to record the names of variables which are
being use¢ by the program. Each entry in the ROW contains
the name of the variable and a pointer to its value, which
may be on a STACK or in the heap. The information as to
which action is to be performed next, however, is implicitly
recorded in the control structure of the interpreter itself.
For exanple, to evaluate the statements of a block, the
interpreter uses a FOR loor which executes each statement in
turn. The use of the environment of the interpreter to
store information about the process being evaluvated presents
no difficulty 1if the interpreter is to be used to evaluate
only one process. However, if we wish to consider an

interpreter as a processor, and we desire that this

interpreter be able to switch its attention from process to
process, then the interpreter cannot implicitly record the
control flow of any one process in 1its own control

structure.

We postpone further discussion of the above constraint
upon interpreter based models wuntil chapter 5. In the
sections which follow, we will use the terms evaluator and
processor interchangeably to describe an EL1 interpreter
which explicitly records the control structure of the

program it is evaluating.

1.2 Multiplexing of Interpreters

In the last section, we discussed how an interpreter
may be considered to be a processor independent of the
process it is evaluating. Here, we relate this concept to

the evaluation of multiple asynchronous processese.

We will assume that there exist some finite number of
evaluators which are available for the simultaneous
evaluation of sequential processes. However, we will not
put a bound on the number of processes which may be
considered to be evaluating concurrently, i.e. there exists
no limit on the number of processes which may be logically
evaluated in parallel, even though only some subset of the
processes are actually being evaluated at the same time.
Hence, the evaluators must be mnultiplexed across the
processes; each one of the concurrent processes must be run

on a processor at some time.

The obvious implication of evaluator multiplexing is
that an evaluator must be able to switch its attention from
process to process, i.e. an evaluator must be able to stop
evaluating one process and start evaluating another. Hence,
an evalvator must not retain information implicitly about

the process it is evaluating.

To insure that each of the concurrent processes will be

evaluated at some time, there must exist a mechanism which

Bt

will force an evaluator to switch its attention from one
process to another. To achieve this, we will assume that
each processor has some number of external interrupts
associated with it. An external interrupt may be described
as a signal sent from some external processor to an
evaluator to 1indicate that some event has occurred. For
example, a timer interrupt may be described as a signal from
a processor which is dedicated to marking elapsed time. It
is important to note that interrupts are associated with
processors, not processes. An external interrupt signals an
evaluator 1independent of the process which is being
evaluated. Eence, if some process is interested in the fact
that some external interrurt has occurred, then there nmust
exist some mechanism which allows this fact to be dispatched

to the interested rrocess.

We could, of course, avoid the problems involved with
the mnultiplexing of evaluators by simply assuming that each
process has its own evaluator. Whenever a new concurrent
process is created, a new evaluator can be created to effect
its evaluation. The dynamic creation of processors,
however, implies that either an additional processor is
added or that the existing ones are actually realized by the
nultiplexing of some fixed number of processors at a lower
level. The former is difficult to achieve since it requires
the dynamic addition of new hardware. We reject. the latter

on two counts. First, it only serves to suppress the issues

2-8

of multiplexing. Second, we hope that our evaluators
directly model a set of physical processors capable of
simultaneous ryrocessing. If the evaluators are themselves
concurrent processes which are multiplexed over some smaller
set, then the model is incorrect. N evaluators will not

represent N processors capable of simultaneous activity.

It is our thesis that the control relationships between
processes can best be explicated in a language in which the
user can obtain a handle on the assignment of processors to
Processes. This requires that the multiplexing of
evaluators be made explicit in the language. In MPEL1, the
multiplexing 1is achieved through the use of a distinguished
process which is discussed 1in the next section and is

described in detail in section 2.3.

1.3 Paths of Control

Concurrent execution 1s not the only control
relationship which may obtain among processes. For example,
a set of processes may exhibit a coroutine relationship,
which requires that only one process from the set be
evaluated at any given time. A coroutine process will only
be evaluated when control is explicitly passed to it from
the active process. Processes may also exhibit a subroutine
relationship. In this case, one process creates a second

one and passes control to it while indicating that the

29

calling process should cease evaluation. When the called
process has completed, the calling ©process resumes

execution.

It is important to note that the control relationships
described above are not properties of the processes
involved. Whether two rprocesses act as coroutines,
asynchronous rprocesses or subroutines depends entirely upon
the control organization which they have mutwally decided
upon. The control relationships may be intermixed: two
processes may first act as coroutines and then later as
asynchronous tasks. Hence, we will drop the semantically
loaded woré ‘process’ in favor of the term “path.’ A path of
control corresponds to the dynamic evaluation of a
sequential EL1 program. Paths are not inherently
asynchronous processes or coroutines, although paths may

exhibit these relationships, among others.

Explicit control over processor multiplexing plays a

vital role in the creation of control relationships among

paths. For example, two paths may be made into asynchronous
tasks by including them in the set over which the evaluators
are being multiplexed. A path may be forced to cease
evaluation by removing it from the set (assuming that it is
not currently being evaluated.) A coroutine relationship may

be established by insuring that only one of the coroutines

is in the set at any time. The point 1is that a control

2-10

relationship between paths is essentially a specification of
the way in which processors are to be assigned to the paths
involved. If a language does not allow for explicit

assignment, then it must be achieved by some circumlocution.

MPEL1 provides a framework in which the assignment of

processors to paths can be explicitly controlled by the

programmer. This is achieved throuch the use of the control

interpreter path (CI). The CI gives interpretation to the

control relationship which is to obtain among a set of
paths. It contains data structures that indicate which
paths are currently being evaluated and which paths are
eligible for concurrent evaluation. Other paths may access
these data structures, and thus affect the assignment of
processors to paths. Consequently, the control interpreter
path, in conjunction with its associated control primitives,
provides the handle on processor multiplexing which is
necessary for the synthesis of arbitrary behavior patterns

among paths.

2-11

2. PATHS

In the last section, we described a path of control as
the dynamic evaluvation of a sequential EL1 program. Here,
we will give a more precise definition of the term ‘path.’
In addition, we will introduce the control primitives which

are applicable to paths.

Whenever a language admits multiple paths of control, a
number of related 1issues, such as data sharing and
synchronization, must be discussed. Hence, a number of the

subsections below are devoted to these path related issues.

2.1 Informal Description of a Path

The evaluation of an EL1 program is a sequential
process in which the flow of control can be modified by
procedure calls, compound forms (blocks), conditionals
gotos, and IOR 1loops. Certain data structures must be
maintained by the evaluator to record the control history of
the evaluation. These records include information as to
which procedures have been entered, which right hand sides
of conditionals have been followed, etc. The records are
necessary so that the evaluator may know how to continue
evaluation of the program upon completion of a control
modifying operation. An MPEL1 path is the union of the data
structures required by the evaluator to effect the

evaluation of an EL1 program. Note that one of the data

2-12

structures required is a representation of the program whose
evaluation constitutes the path of control. In particular,

associated with each path 1is an environment and an

activation record.

A path’s environment consists of two related parts: the

identifier environment and the intra-path control.

The identifier environment contains all the name-value

pairs accessible to a program at a given point in its
evaluation. Name-value pairings are created by procedure
application or by explicit declaration. For procedure
application, the names correspond to the formal parameters
of the procedure and the values are the values obtained by
evaluatinge the corresponding actual parameters of the
particular call. For explicit declaration, the names are
the identifiers listed in the declaration and the values are
the wvalues obtained by repeated evaluation of the
initialization form, or default values of +the appropriate
mode if no initialization form is specified, c.f. Appendix
1. Name-value pairs are removed from the identifier
environment upon exit from the corresponding procedure call
in the case of formal parameters and upon exit of the ©block

in which declared in the case of explicit declarations.

The intra—path control contains the records associated
with the control history of the path. The records
constitute a partial history of control within the path

2-13

which includes all procedure calls which have not yet been
completed and all blocks which have not yet been exited.
The intra-path contrcl must be related to the identifier
environment so that the evaluator may update the latter when
necessary, €.fe. on block exit. Note, however, that the
records kept do not constitute a complete history; there are
no records of completed procedure calls or blocks which have

been exited.

The design of EL1 allows an evaluator for the language
to maintain its data structures using a stack discipline.
The multi-path facility has been designed to preserve the
stack discipline for sequential programs. Thus, both
components of an MPEL1 path’s environment are managed as

stackse.

The activation record (ACIRC) of a path is defined as

an EL1 STRUCT. It serves as a system ‘handle’ on the path.
The components of an ACIRC contain vital information about
the path. In particular, the location and size of a path’s
(stack) environment is stored in its ACTRC. The components
of an ACTRC may be grouped into two classes:
(1) Those components which may be modified only by the
control primitives, and hence may only be read by
a program.

(2) Those components which may be read and written by

the program to effect communication with the

214

control yrimitives.
The various components of an ACIRC will be introduced, as
needed, in the sections that follow. The complete
definition of the mode ACTRC appears in section 4.2.1. The
class to which a given component belonss will be obvious

from the discussion in which it is introduced.

A given control extension may require new fields to be
added to activation records. For example, a scheduling
algorithm which associates priorities with paths may require
an additional integer component in which the path’s priority
is to be stored. We will refer to such components as

extended components as opposed to the basic components of

the original definition of ACTRC. The implementation of
extended components, without any loss of notational
convenience, cen be achieved through the use of the extended

mode definition facility of EL1, c.f. 5.1.2.

All activation records are allocated in the heap and
thus may be referenced by pointers. The mode ARPIR is
defined as a PTR(ACTRC) for convenience in discussing paths.
ARPTRs have a practical value as well: two paths are
identical if and only if their ARPIRs are equal, a simple

pointer comparison.

2-15

2.2 Path Creation and Deletion

A path is created by calling upon the control primitive

GET\PATH.
GET\PATH<~-CSUBR(SIZE:INT;ARPTR)

The integer argument specifies the amount of core (in K) to
be initially allocated for the path’s environment. GET\PATH
allocates the environment and activation record for the path
and returns a pointer to the paths’s ACTRC. The boolean
components STKEFIG (stack—environment-flag) and EIGFIG
(eligibility-flag) of the path’s ACIRC are set to TRUE to
indicate that the path possesses an environment and that the
path may be evaluated by a processor, respectively. If
EIGFLG is TRUE we say that the path is eligible for

evaluation. In addition, the path is enabled for certain

path=-level interrupts and certain fields of the ACTRC are
initialized to meaningful default values. These settings
will be described at appropriate points in the sections that
follow.

When a path is no longer needed it may be explicitly
deleted by calling upon the control primitive DELETE\PATH.
DELETE\ PATH<~-CSUBR (PATH : ARPTR ; NONE)
DELETE\PATH reclaims the path’s environment, if possible,

2-16
*
and sets the boolean component ELGFIG to FALSE. Once
deleted, a path is no longer eligible for evaluation and
therefore an error occurs if an attempt is made to pass
control to it. Note that the ACIRC is retained as 1long as
it is referenced by an eligible path. A path may not
perform self-deletion, i.e. a call to DELETE\PATH with
itself as argument, as this would require control to be
returned to an ineligitle path. Self-deletion requires a

call upon the control interpreter path, c.f. 2.3.2.

2.3 Path Initialization

GET\PATH creates an environment in which a computation
may be performed but does not indicate what 1is to be
computed. In order for paths to be of any use there must
exist a mechanism for specifying the rrogram which is to be
evaluated in the path’s environment. The primitive control
functions PAP (path-apply) and PAPQ (path-apply-quoted) are
used to initialize the computation that the path is to
perform. The relation between these two functions is the

same as the relation between SET and SETQ is LISP [We67];

*

It is not the case that STKEFLG is TRUE if and only if
EIGFLG is TRUE, since the environment of a path which has
been deleted may have to be preserved if there exist paths
which are derendent upon it, c.f. 2.2.8, 1t is true,
however, that if EILGFIG is TRUE then STKEFIG must be TRUE; a
path which is eligible for evaluation always has an
environment associated with it.

2-17

the formei evaluates its first argument while the Ilatter
does not.
PAP<-CSUER(I':FORM,P:ARPTR ; ARFTR)
PAPQ<-CSUBR(F:FORM UNEVAL, P:ARPTR;ARPTR)
Since the only distinction between PAP and PAPC is in the
bind class of their first argument, the following discussion
will only reference PAP, the interpretation for PAPQ being

derivative.

Iet Q denote the path which has called PAP. The first
argunent (F) to PAP specifies a procedure call to be applied
in the envirogfent of the rath which is the second argument
(P) to PAP. If P is identical to Q, then the procedure
call is evaluated in the environment of Q. If P is not
eligible for evaluation (P.ELGFLG=FALSE) then an error is

generated in path Q.

let F =G(A1,A2, ... ,AN). The interpretation of the

procedure application is as follows:

3*

If we define a procedure QUOTE which returns its single
argument unevaluated, then

PAP(QUOTE(F00(X,Y),P))=PAPQ(F0O(X,Y),P).
QUOTE can be defined trivially in EL1 as follows:
QUOTE <~ EXPR(X:FORM UNEVAL; FORM) X;

* %

If the form F is not a procedure call, then the
environment of P is modified so that if control passes to
it, then the form will be evaluated in P’s environment.

(1)

(2)

EL,

(4)

(5)

2-18

G is evaluated in the environment of Q to produce
a procedure body G°.

The formal parameters of G° are bound to the
actuals Al, ... ,AN as if the procedure was to be
applied in Q.

The bindings of the formals of G® are copied into
the environment of P, except for bindings to
objects which lie in the heap, in which case no
copy is made.

The environment of P is modified so that if
control passes to P, then the body of G’ will be
evaluated.

PAP returns a pointer to path P as result.

Note that PAP only modifies the environment of a path;

no transfer of control is performed.

upon

The following example illustrates the effect of PAP

the arguments to the PAP’ed procedure call.

BEGIN
DECL A:INT BYVAL 3;

DECL B:PTR(INT) BYVAL ALLOC(INT LIKE 23;
DECL C:INT BYREF VAL(ALLOC(INT LIKE 1)

.
?

DECL P1:ARPTR BYVAL GET\PATH(1);

DECL FOO:ROUTINE;
FOO<-EXPR(V:INT BYVAL,W:INT BYREF,X:PTR(INT) BYREF,

Y:INT BYREF,Z:INT BYREF;INT)
BEGIN

V4+W+VAL(X)+Y+2Z

END;

PAP(FOO(A,A,B,C,A+A),P1)

END;

Figure 2-1 displays the state of the paths just before

2-19

the PAP is evaluated. Note the difference between the
values of B and C. B is of mode PTR(INT). The value of B
(a pointer to an integer in the heap) is in the environment
of path Q. C is of mode INT. The value of C, however, is
not in the environment of path Q. It is in the heap.
Fipure 2-2 displays the state of the paths just after the
PAP has been evaluated. All of FOO’s arguments, except for
C, have been copied into the environment of P1. Note that
although the value of B has been coried into path P1, the
two paths may both reference the integer pointed to by B.

2-20

P

=4 co) =

Figure 2-1 Paths Q and P1 EBefore PAF

N < > = =<

Fipure 2-2 Peths Q and P! Af'ter FAP

2-21

The treatment of arguments to PAPed procedures insures
that the environment of the path PAPed into will not contain
references to the environment of the path performing the
PAP. If a path could reference the environment of another,
then some mechanism would have to be employed to insure that
the environment remained intact as long as the path retained
a reference to it. Thus, it would be necessary to impose
control restraints uron the paths involved. A control
regime in which paths may obtain such references can be
realized using the control primitives described in section

Suidia b

The use of PAP is not restricted to initialization
only; PAT may be used to apply a procedure in the
environment of a path which has already started a
computation. The programmer must provide the
synchronization necessary to insure that the path PAPed into
is not being evaluated at the +time that the PAP is
performed, c.f. 1.1.3. If many procedure calls are PAPed
into the environment of a path, then they are executed in
the reverse of the order in which they were PAPed. When the
evaluation of the body of a PAPed procedure is completed,
then evaluation of the path continuves from the point it was
at when the PAP originally occurred. A user defined path

termination function is called upon exit from the outermost

PAPed procedure, c.f. 2.2.6.

2=-22

2.4 Path Evaluation

The two preceeding sections have specified the
primitives for path creation (GET\PATH) and initialization
(PAP.) No mechanism has yet been introduced which allows
control to be passed to a path. An initialized path is
eligible for evaluation but is certainly not being
evaluated. Thus, we must specify the way in which
evaluators are assigned to paths. Since it is possible to
create an arbitrary number of paths which are to be
evaluated concurrently by a bounded number of evaluators,
the assirnment nmust surely involve some notion of
scheduling. Path scheduling is described in detail in
section 2.3.5. This section introduces the terminolgy to be

used in discussing multiple paths of control.

A scheduler is a mechanism for multiplexing the
evaluation of paths by a fixed number of evaluators. A
scheduler uses a scheduling algorithm to choose a path to be

evaluated from a set of paths which are available for
evaluation. A path is active if it 1is currently being
evaluated. A path is inactive if it is not active but is
contained in the set of paths from which the scheduler
chooses. A path is running if it is either active or
inactive. A path is stopped if it is not running. A path
is reachable if it is running or if its ARPTR is accessible

from the environment or activation record of a reachable

2=-23

pathe A path is lost if it is not reachable.

A created and initialized path 1is initially stopped.
It may Dbecome a running path by explicitly including it in
the set of inactive paths, c.f. 2.3.5. A path which has
been deleted 1is no 1longer eligible for evaluation and

therefore the scheduler will not allow it to become active.

The inclusion of inactive paths in the set of running
paths requires some explanation. If a path isn“t currently
being evaluated, then it certainly isn’t running on a
processor. The classification is justified by the fact that
the scheduling of raths is essentially transparent to the
paths beins scheduled, hence it isn’t possible for a given
path to determine (without some special action) which paths
are active and which are inactive. Thus, the running paths
are those paths which are being evaluated concurrently,
although only the active paths are being evaluated

simultaneously.

It is sometimes desirable to explicitly remove a path
from the set of running paths. For example, if a path is to
cease further evaluation until some condition is true, then
it can be temporarily removed from the running set to insure
that an evaluator will not be assigned to it. When the
condition becomes true, then the path can be returned to the
set of inactive paths. Evaluation of the path will continue

as soon as it is made active by the scheduler.

2o

It is also desiratle to have the ability to indicate
that a path should not become active without explicitly
removing it from the set of inactive paths. For example, if
a path Q wishes to PAP into another path P, it could check
the set of running paths and remove P from the set to insure
that it will not become active.* But suppose that P is not
in the running set. Q camnot safely perform the PAP because
it 1is possible that some other path will asynchronously
include P in the inactive set. Hence, P may become active
while the PAP is being performed. Activation records
contain the boolean component DORMANT which 1is wused to
indicate that a path should not be allowed to become active.
The scheduler will not assign an evaluator to a path with
DORMANT=TRUE. If DORMANT is set to TRUE while a path is
active, then once the path becomes irnactive it will not

become active again until DORMANT is set to FAISE.

2.5 Data Sharing

It may be necessary for a set of yaths to access common
data structures in arder to collectively perform a given
computation. In general, paths may not share data by
referencing the environments of other paths, unless the
paths involved are willing to constrain their control

relationships to an organization in which such sharing is

*

If P is active, this may take some time, c.f. 2.5.5.

2-25

feasible, c.f. 2.2.8. Thus, most data structures shared
between paths will 1lie 1in the heap. In this section, we
will discuss the various means by which paths may share

data.

All paths are embedded in a global, or top-level,
environment. The global environment consists of name—value
pairs in which all valves 1lie in the heap. If a path
references a variable which is not currently defined in its
environment then the reference is taken to Ee to the wvalue
of that variable ir the glcbal environment. Since all paths
have the same global environment, sharing can be achieved by

referencing the same top-level variables.

Sharing may also be achieved by using the control
primitive PAP. Since the arguments to a PAPed procedure
call are evaluated in the environment of one path and the
procedure call in another, PAP provides a mechanism which
allows sharing relations to be established at the time a
path is 1initialized. There are two cases of interest.
First, a path may pass a pointer as argument to a PAPed
proc=dure call. Although the pointer is copied into the
environment of the path PAPed into and thus is 1itself not
shared, the object to which it points is accessible from

both paths. In the second case, a path may pass an argument

*

The method by which global variables are initialized is
discussed in Appendix 1.

2-26

which is bound directly to an object in the heap. In this
case, if the ©bind class is BYREF, then PAP will pass the
argument directly to the PAPed path without making a copy.

Hence, both paths reference the same object.

A path may obtain the value of a variable defined in
the environment of another path via the control primitive
PFETCH (path-fetch.)

PFETCH<~CSUBR(NAME:SYMBOL, P: ARPTR ; ANY)
PFETCH searches the environment of path P for the most
recent occurrence of the variable NAME and returns either
the value of the variable (if the value lies in the heap) or
a copy of the value of the variable (if the value is in the

environment of P.)

A path may change the value of a variable defined in

the environment of another via the control primitive PSTORE
(path-store.)
PSTORE<-CSUBR(NAME : SYMBOL, P: ARTPR, VAL: ANY ; NONE)
PSTORE searches the environment of path P for the most
recent occurrence of the variable NAME and replaces its
current value with VAL. (An error occurs if VAL cannot be

converted to the mode of the value of NAME.)

Both PFETCH and PSTORE require that the path P be not
active. If P is active, then an error occurs in the
environment of the path performing the PFETCH (PSTORE). If

P 1is inactive but becomes active while the search is being

2=-27

performed,*then an error occurs in the environment of the
scheduler. A more useful error is generated if the variable
NAME does not exist in the environment of P. In this case,
the programmer may supply (via MPEL1 error handling) another
path to be searched through. Thus, it 1s possible to

construct arbitrary searches through a given set of paths.

Although PFETCH and PSTORE will wusually be used to
update or cory pointers to objects in the heap, they also
provide a mechanism, although inefficient, whereby a path
can share an obtject in the environment of another. Assuming
the appropriate synchronization is available, a path P can
stop another path Q, obtain a copy of the value of a
variable contained in Q”s environment, modify the copy, use
PSTORE to replace the original with the updated version and
then allow Q to continuve evaluation. The two paths are
effectively sharing the object since all modifications magde
by both paths will be reflected in the data.

2.6 Path Termination

A path is terminated if it is no 1longer eligible for

evaluation. The control primitive DELETE\PATH makes a path
ineligible for evaluation since it sets ELGFLG to FALSE and
usually deletes the path’s environment. DELETE\PATH is of

*

P is being modified, thus it cannoct beccme active, c.f.
Tala3a

2-28

limited usefulness by itself, however, because the above is
all that it does. The fact that a path has terminated may
be of interest to other paths. DELFTE\PATH provides no
mechanism for broadcasting the path’s demise. A path may
desire, upon termination, to return a value to some set of
paths which are waiting for its value. DELETE\PATH does not
provide for a value to be associated with a path.

The capatilities described above can be achieved,
however, by using DELETE\PATH in conjunction with other
control facilities of MPEL1. A procedure can be written
which will cause a path to wait wuntil a given path
terminates and another can be written which will cause
explicit termination of a path along with notification to

all waiting paths, c.f. 3.3.

There is one point still remaining. When a path exits
the outermost procedure call in its environment, it is
probably trying to indicate that it would 1ike to be
terminated. In addition, it might be useful to specify the
value returned by the outermost procedure call as the value
of the path itself. Althoygh it would seem desirable to
allow a path to terminate itself implicitly in this way, the
termination procedures described above must be called
explicitly. The solution is straightforward. We include
the component TERMINATION\FORM as one of the fields of an

activation record. When a path exits 1its outermost

2-29

procedure call, the value returned by the procedure is bound
to the identifier "LAST\VALUE" and then the TERMINATION\FORM
is evaluated. The form can save the last value, notify any
waiting paths and call DELETE\PATH to actually terminate the
path. The TERMINATION\FORM is initially set by GET\PATH to
be a procedure call which will cause DELETE\PATH to be
called. Since DELETE\PATH usually deletes the path’s
environment, the last value should be copied into the heap,
if it 1is not there already. Otherwise, the value will be

lost when the path’s environment is reclaimed.

2.7 Path Synchronization

If paths are allowed to evaluate concurrently, then
they must te provided with a mechanism which permits them to
synchronize their activities. For example, if a path P
desires to cease evaluation until another path Q terminates,
then it might first test the value of C.ELGFLG and then add
itself to a queue of paths waiting for Q to terminate, viz.

Q.EICFIG -> EEGIN
Put self on queue associated with Q;
Cease evaluation
FND
Iet us assume that when Q terminates it indicates +that all
paths on its queue may become active. If Q terminates after
P tests Q.FIGFIG but before the block above is evaluated, P
will never be awakened! P and Q must be able to synchronize

their actions, i.e. P must insure that Q does not terminate

2-30

while it is 1in the rprocess of performing the wait and,
conversely, Q must insure that P does not try to wait while
it is in the process of termination. The way in which paths
may effect synchronization is discussed in detail in section
2.3.2. In this section, we will discuss synchronization

with respect to the control facilities described earlier.

Iet us first consider synchronization in relation to
the path scheduler. If the scheduler has access to more
than one evaluator, then it is obvious that a mechanism for
path synchronization is necessary. However, if the
scheduler is multiplexing paths using only one evaluator
then a synchronization facility is still necessary since the
scheduling of paths is transparent to the running paths. 1In
particular, in between testing Q.ELGFIG and queuing itself,
P may become inactive and Q may become active. If Q
terminates, then the situation is as disastrous as if P and

Q had been active simultaneously.

The control primitives PAP, PFETCH, and PSTORE contain
no built in synchronization. For example, if two paths try
to concurrently PAP into the same path, then the system will
not insure that first one PAP will occur and then the other.
In fact, an error will be generated to indicate the lack of
synchronization, c.f. 1.1.3. Thus, unless the organization
of one’s paths is such that it is impossible to perform

concurrent PAPs into a path, one must provide a layer of

2-31

synchronization around the control primitive, c.f. DiaiDm
The general rules with respect to the use of PAP, PFEICH and
PSTORE are as follows.

(1) The affected path should be not active and should

not be allowed to become active until the control
rrimitive has completed its action.
(2) Only one of the control primitives may be applied

to a path at a given time.

The control primitive TSET (test—-and-set) may be used
for path synchronization as an alternative to the mechanism
described in section 2.3.2. TSET is defined as follows.

TSET<-CSUBR(X:INT ; BOOL)

BEGIN

If X is O, then set X to 1 and return TRUE.

Otherwise, return FALSE.

END;
TSET is an indivisible operation with respect to a set of
active paths; if two paths simultaneously TSET the same
integer, whose current value is O, then TSET will return
TRUE to one path and FALSE to the other. Variations on TISET
[L=a68] [IBM68] have been described in the literature. TSET
is included as an MPEL1 control primitive because it
provides the most Dbasic mechanism for inter-path

synchronization. In order for it to be wused for

synchronization, however, TSET requires that a path go into

2-32
*
a loop continuously calling it until TRUE is returned. This
phenomenon is known as the busy wait and is obviously quite
wasteful. The energy of the evaluator would be better spent
upon a path which could do some useful work. The facility
described in section 2.3.2 allows for path synchronization

at a much lower cost since it provides for a nonbusy wait.

2.8 Path Dependency

All MFEL1 paths discussed so far may be considered to
be independent in the sense that no path can directly
reference the stack environment of another. This phenomenon
is a result of the fact that the control primitive PAP
copies all arguments which would ordinarily be passed BYREF
and of the fact that the control primitive PFETCH returns a
copy of the value of its argument. It is sometimes useful,
however, to organize a set of paths in a tree structure in
which a path P may directly reference the stack environment
of some path Q which is higher 1in the tree. 1In this
situation we may say that P i1s dependent upon Q in the sense
that P requires Q°s environment in order to evaluate
properly. In this section, we will explore the concept of
path dependency and introduce the control gprimitives

necessary to establish this path organization.

*

To unset the integer one uses the control primitive
CLEAR, which sets the integer to O. Although CLEAR does not
have to bte defined as primitive, it 1is included for
symmetry.

2=58

A path is initially independent. One path can cause

another path tc become directly dependent upon it by calling

upon the contrel primitive MDEP (make-direct-—dependent.)
MDEP<-CSUBR (F:ARPTR ; ARPTR)

When a path P becomes a direct dependent of another path Q,
it may then reference the entire identifier envirorment of Q
up to and including all variables defined in Q at the point
at which VMDEP was called. MDEP returns a pointer to the
path which has become the direct dependent. MDEP generates
an error if P=Q, 1if P is already the direct dependent of
some path other than Q, or if a circular dependency would be

created.

The following definitions will simplify the discussion
of path dependency. A path P is dependent upon a path Q if
and only if either P is a direct dependent (dd) of Q or if
there exists paths P1, <.. ,Pn such that

P dd P1 dd P2 ... Pn dd Q
If P directly depends upon Q, then Q directly supports P.
If P depends upon Q, then Q supports P. The sub—-environment
of a path Q which may be referenced by a directly dependent

path P is the directly accessible environment of Q with

respect to P. The accessible environment of a path P is the
union of the directly accessible environment of P with all

environments directly accessible to the supporters of P.

We may now restate the conditions under which a path Q

2-34

may make a path P its direct dependent:

(1) P is not dependent on any path (except perhaps Q.)

(2) Q does not depend upon P.

(3) P and Q are not the same path, i.e. P#Q.
A path may obtain a reference to a variable in its
accessible environment by calling upon the control primitive
DEPENV.

DEPENV<-CSUBR(X :SYMBOL ; ANY)

DEPENV searches for X in the environment of +the path in

which it is called and if it is not found then it searches

for it in the accessible environment of the path. If no X

is found in the accessible environment, then the global

value of X is returned as the result of DEPENV. The
restriction on yDEP that P is not directly dependent upon
any path except Q allows DEPENV to be a single valued
procedure since &a path can be directly dependent upon only

one path.

The control primitive DPAP is defined as follows.
DPAP<-CSUBR(F:FORM, P:ARPTR ; ARPTR)
The effect of DPAP is identical to that of PAP except for
the following modification: if P is dependent upon the path
performing the DPAP, then all arguments passed BYREF to the
DPAPed procedure which reference the accessible environment

of P are passed directly to it, i.e. no copy is made.

*

The effect of multiple MDEPs is to extend the
environnent of Q which is directly accessible to P

2-35

The concept of directly accessible environment requires
closer examinatione. In particular, three points are of
interest: a precise description of the directly accessible
environment, the observation that the direct dependents of a
path may have different directly accessible environments,
and the restrictions imposed upon the intra-path control of

a supporting path.

The directly @accessible environment corresponds
precisely to the 1identifier environment of the path when
MDEP is called, i.e. 1it is composed of all the variables
which could be referenced by the path at the point MDEP is
called. For example, consider the following block:

BEGIN
DECL X:INT BYVAL 4;
BEGIN
DECL Q:ARPTR BYVAL MDEP(A);
DECL R:INT BYVAL 5;
DECL S:ARPTR BYVAL MDEP(B);
DECL T:INT BYVAL 6;
FOO(R,X,MDEP(C));
EXPR&M:INT,N:INT;INT)(FUM(M+N,MDEIP(D)))(R,X);
MDEP(B);

END;
END;

The directly accessible environments of A,E,C and D are:

2-36

Ay By wam Q is not included since it is not
in the identifier environment when
MDEP is called.

g ByGsXs wes Same as for A , with respect to S.

0% 1,8:R56:8 wss All declarations are included, but
the formals of the procedure IUM
are not, since they are not
included in the environment until
the procedure is entered.

D: N,M,T,S,R,QyXe.. The formals of the literal
procedure are included, but the
formals of FUM are not.

B: T,S,R,QyX, ++.. The second MDEP(B) allows B to
reference T and S.

From the example above it should be obvious that the direct
dependents of a given path may have different directly
accessible environments. Note that the effect of the second
MDEP(B) is to extend the portion of the environment of the

path which is accessible to it.

The intra-path control of a supporting path must be
constrained so that no portion of its identifier environment
is deleted until all dependents, who can access that
portion, are terminated. In the example above, the path may
not exit the inner block until B,C, and D have terminated.
It may not exit the outer block until A has terminated. A
supporting path has essentially three options: terminate all
dependents who can reference the sub-environment which is
about to be deleted; wait wuntil all dependents have
terminated before deleting the sub-environment; and

terminate itself, in which case the environment of the path

=3

will be retained until all dependents have terminated. The
last case invokes the situation described in section 2.2.2,
wvhere ELGFIG becomes FALSE but STKEFIG remains TRUE. If a
path attempts to delete a portion of its environment which
is accessible to a non-terminated dependent, then an error
is generated with the accessible environment still intact.
The error may be handled by the programmer. To facilitate
this, a simple recursive procedure can be written to
détermine which of the dependents must be terminated, c.f.

Sl

2.9 Intra—Path Control Primitives

There are five primitives which are primarily concerned
with intra-path control: GOTO, RETFROM, MYPATH, COPY and
EVAL.

In order to understand the use of GOTO we must first
discuss the treatment of labels in EL1. Each statement in
an EL1 block may have one or more labels associated with it,
€efe

L1: I2: FOO(A,B) => TRUE
All labels are implicitly DECLared to be variables of mode
LABELL as the 1last declarations of the block in which they
appear. It is also possible to explicitly declare a
variable to be of mode LABEL and to pass a label valued

variable as a parameter to a procedure. It is not possible,

2-38

however, to assign to a 1label variable or to return an

object of mode LABEL as the result of a procedure.

GOTO is defined as follows:
COTO<~CSUBR(I.:LABEL;NONE)
GOTO modifies the environment of the path so that evaluation
will continue with the statement specified by the label L in
the most recent incarnation of the block in which L was
declared. Note that L must specify a block which has been
entered by the path performing the GOTO, 1i.e. it is not
possible to pass control between paths by calling GOTO in
one path with a label which references the environment of
another. Transfer of control between paths is achieved

through the use of the control interpreter, c.f. 2.3.71.

The control primitive RETFROM
RETFROM<-CSUER (FNAME : SYMEOL, VAL : ANY ; NONE)
is used to return control from the most recent exp}icit call
on the procedure FNAME with VAL as result. If the

environment of the path does not contain an explicit call on

¥*
An explicit call on a Erocedure is one in which the

form which is to evaluate to a procedure body is of mode
SYMBOL, e.g.

FOO(A,B,C)
is an explicit call on FOO,wheras

BEGIN TRUE => FOO END (A,B,C)

is not.

2-39

FNAME, then an error occurs.

Since GOTO and RETFROM can cause portions of the
identifier environment of a path to be deleted, they must be
used with caution in a surporting path. For example, a
local GOTO, i.e. within a block, presents no problem, but a
non-local GOTO will induce a runtime error if there exist
non-terminated paths which are dependent upon the

environment deleted, c.f. 2.2.8.

The control primitive MYPATH

MYPATH<-CSUBR(; ARPTR)
returns a pointer to the activation record of the path in
which it is called. Since MYPATH has a null argument list,
it is defined as a NOFIX operator [Wegi2], i.e. it may be
called without TDbeing followed bty an empty set of
parentheses, e.g.

Y<-MYPATH. TERMINATION\ FORM
as opposed to

Y<-MYPATH() . TERMINATION\FORM.

The control primitive COFPY
COPY<-CSUBR(P:ARPTR ; ARPTR)
creates a copy of the path specified by P and returns a
pointer to the activation record of the new path. If P was
directly dependent upon some path Q, then the new path, say
T, is also directly dependent upon Q. P and T have

precisely the same accessible environments. T does not,

2-40

however, support*the same paths as P. In fact, it does not
support any path. Thus, although P and T have identical
environments, their interpretations as paths are slightly

different.

The control primitive EVAL
EVAL<-CSUBR(F¥:FORM;ANY)
evaluates the form F in the current path’s environment.
EVAL returns as result the value obtained by evaluating the

form.

*

If T was to support the same paths as P, then it would

be hpossible for a path to be direcly dependent upon two
paths.

2-41

3. THE CONTROL INTERPRETER

In the last section, we discussed the path related
issues of scheduling and synchronization while postponing
the explanation of how they are resolved in MPEL1. Here, we
introduce the control apparatus necessary to resolve these

issues.

There exists one distinguished path in MPEL1, the
control interpreter (CI) path. The CI path is composed of

an environment and an activation record, just like any path
which has been created by GET\PATE. In particular, the
global variable PCIAR is bound to a pointer to the control
interpreter’s activation record. The rrogram being
evaluated in the environment of the CI may be defined in
EL1. However, the distinguishing feature between the CI and
its fellow paths is that it is the only path to which other
paths may directly pass control and it is the only path that
may directly pass control to a path other than the CI. In
the following sections, we will discuss how the CI path may
be used to provide &a mechanism for path scheduling and

synchronization.

3«1 Communication with the CI

A path may pass control to the CI by calling upon the
control primitive CIA (control-interpreter-apply.)

CIA<-CSUER(FN:ONEOF(SYMBOL,ROUTINE),ARG:ANY ;REF)

2-42

If FN is a symbol, then it specifies the name of a procedure
to be applied in the environment of the CI. If FN is a
ROUTINE, then it specifies the body of the procedure to be
applied. ARG specifies the argument to the procedure. If
the mode of ARG is not of class PTR, then ARG is copied into
the heapr and the argument to the procedure is taken tc be a
pointer to the copy.

The CIA call is carried out as follows:

(1) FIN and ARG are stored in the components of the
path’s activation record named CIA\FN and CIA\ARG
respectively. Both components are of mode REF.

(2) Control is transferred from the environment of the
rath to the environment of the CI. Although it is
possible that the CI 1is currently active, we
postpone discussion of this case until the next
section. Hence, let us assume that the CI is not

active.

The program in the CI path then performs the following
actions.
(a) If CIA\FN is a SYMBOL, then it is evaluated to
produce a procedure to be applied.
(b) The procedure obtained in (a), or CIA\FN itself, is
applied to the argument specified by CIA\ARG.
(c) Control is passed back to the path which performed

2-43

the CIA. Although it is possible to pass control
to a path other than the one which performed the
CIA, we defer explanation of this ability until

after we have described the environment of the CI.

(3) When control is returned to the path, the CIA
primitive returns the REF specified by the
CIA\RESULT component of the path’s activation
record. Hence, a CIA called procedure may
effectively return a result in the environment of
the path which performed the CIA by assignment to
the CIA\RESULIT component of the path’s activation

record.

At this point, it may be useful to discuss briefly the
differences between FPAP and CIA, since they both have the
effect of generating a procedure application in the
environment of another path. First, CIA may be used only to
apply a procedure in the environment of the CI, whereas PAP
may be used to apply a procedure call in any path.
Secondly, CIA requires that the procedure to be applied take
exactly one argument of mode class PTR, whereas the
arguments to a PAPed procedure are not restricted with
respect to number or mode. Lastly, CIA transfers control to
the CI to apply the procedure; PAP, on the other hand, never

transfers control between paths.

2-44

The limitation that a CIA called procedure take only
one argument (of mode class PIR) also requires some
explanation. We have limited it in this way since a call in
which the procedure takes an arbitrary number of arguments
(with no restrictions on the modes of the arguments) can be
achieved by extension, c.f. Se be s In addition, the
passage of multiple arguments to a CIA called procedure
requires the construction of a list of the arguments even in
the case where only one aigument is passed. Since CIA
called procedures usually require only one argument, it
would seem counter-productive to build in a mechanism which

is wasteful in the common case.

We have not yet specified how the CI returns control to
the path which has performed the CIA call. The return is
achieved by calling upon the control primitive CONTPATH
(continue-path)

CONTPATH<—-CSUBR(P:ARPTIR ; ARPIR)
which may only be called in the CI environment. CONTPATH
inspects P“s activation record to determine whether or not P
may become active. It may not become active if any of the
following are true:

(1) P.ELCFIG=FALSE. (P has been deleted.)

(2) P.DORMANT=TRUE. (P is temporarily restrained from

evaluating.)

*
Ixamine the examples in the next chapter.

2-45
>
(3) P is currently being modified.
If none of the above conditions hold, then control is
transferred from the CI to the path, otherwise an error is

generated in the CI. CONTYATH TSETs the MOD field of the

path’s ACTRC to indicate that the path is being modified.

When a path Q passes control to the CI for a CIA call,
it 1is essentially performing a RETFRON("CONTPATH",Q) in the
environment of the CI; in other words, the result returned
by CONTPATH is the ARPTR of the path performing the CIA
call. Note, however, that returninc control from the CI to
a path P does not necessarily have the effect of performing
a RETFROM("CIA",P.CIA\RESULT) because it is rpossible that
while control resided in the CI, one or more procedures have
been PAPed into P’s environment. Hence, execution in P will
continue with the evaluation of the btody of the last PAPed

procedure or with a return from the CIA call if no such

procedures exist.

3.2 Synchronization

In the last section, we postponed discussion of the
effect of a CIA call in the case where the CI is already

active. Here, we discuss the interpretation and

*

P is being modified if it 1is active or being PAPed
into, or ©being PIEICFed from, etc. In general, P is being
modified if P.MOD has been TSET, c.f. 1.1.3.

2-46

implications of such a call.

In section 2.2.1, we characterized a path as the union
of the data structures required by an evalwator, i.e. a
path is the set of records which must be maintained to
effect the evaluation of a sequential EL1 program by a
single evaluator. Althougch a path may be evaluated by
different evaluators during its 1lifetime, it may be
evaluated by only one evaluator at any instant. Thus, it is
not 1logically admissible for two or more evaluators to be
evaluating the same path simultaneously. In particular, the
CI may be evaluated by only one processor at a time. Hence,
if two paths attempt to pass control to an inactive CI, then
one will actually achieve passage while the other will be
forced to wait. When the CI becomes inactive, as a result
of a call to CONITPATH, then the waiting path may pass
control to it. Consequently, the CI acts as a single access

resource with respect to other paths.

The role played by the CI path in the construction of
synchronization operations should now be obvious. The
operation of any procedure which is only called in the CI
environment 1is indivisible with respect to calls on that
procedure by other paths, i.e. if two paths both CIA the
same procedure, then the execution of one call will be
completed before the execution of the other is allowed to

begin. Any actions which require indivisible operation can

2-47

simply be done in the CI environment. For example, consider
the problem of path termination discussed in section 2.2.7.
If P wishes to wait for Q to terminate, it CIA calls a
procedure which checks to see if Q has already terminated.
If it has terminated, then the procedure allows control to
flow back to P, otherwise the procedure puts P on a queue
associated with paths waiting for Q afd indicates to the CI
that P wishes to cease evaluation. When Q terminates, it
CIA calls a procedure which puts all the paths waiting on Q
into the set of inactive paths and then calls DELETE\PATH.**
Since paths are added and removed from the queue only when

control is in the CI, it is impossible for a path to cause

itself to te queued forever.

3.3 The Environment of the Control Interpreter

In section 2.3.1, we introduced the control primitives
CIA and CONTFATH which may be used to transfer control to
and from the CI path. In this section and the next we will
discuss the way in which these primitives can be used in

conjunction with a set of non-primitive EL1 procedures to

effect path scheduling and synchronization. ~Note that the

organization described here consists of the conventions

3*

The way in which a CIA called procedure indicates this
is discussed in 2.3.4.
* %
Recall that the inactive paths are those paths which
would ke active if there existed enough processors.

2-4€

imposed by the (non-primitive) program being evaluated in

the CI path, c.f. 1.1.3.

We must first describe the identifier environment in
which a CIA called procedure is applied. For each variable
in the identifier environment, we will give its name, mode
and a brief description of its use.

DECL LASTRUN:ARPTR;
When the CIA called procedure is arplied, LASTRUN contains a
pointer to the ACIRC of the path which performed the CIA
call. Upon completion of the CIA called procedure, the CI
will pass control to the path specified by LASTRUN, unless
it has been set to NIL. In this case, the CI selects an
inactive path and passes control to it instead of the
original path. i

DECL INACTIVEQ:ARQPTR;
INACTIVEQ is a queue of the paths which are currently
inactive, 1i.e. those paths which would be active if there
were enough evaluators. INACTIVEQ.FIRST specifies the first
path on the queue; INACTIVEQ.LAST specifies the last path on
the queue. A path is linked to the next path on the queue
through the NEXT component of its activation record, e.g.
INACTIVEQ.FIRST.NEXT is the ARPTR of the second path on the
queue.

DECIL. NPROC:INT;

*

ARQPIR is a mode which is defined in the global
environment to be a STRUCT(FIRST:ARPTR,LAST:ARPTR).

2-49

NPROC specifies the number of processors over which the
paths are being multiplexed. Thus, NPROC is an upper bound
on the number of paths which may be active at the same time.
DECL NFPROC:INT;
NFPROC specifies the number of processors which are free in
the sense that they are not currently being used to evaluate
a path, i.e. the number of processors which are idling.
DECL PROCNUM:INT;
ifach processor has a unique integer N associated with it
(1 <N < NPROC.) PROCNUM is the number of the processor which
was evaluatine the path which performed the CIA call.
Hence, PROCHUM srecifies the processcr which will evaluate
the CIA called procedure.
DECI. USER\SCHEDULER :ROUTINE;
The USER\SCHEDULER is the rrocedure which is being used to
select which 1inactive paths should become active. As the
name implies, the procedure may be supplied by the user,
c.f. 2.4.
DECL PAVECT:ROW(NPROC,STRUCT (CURPATH:ARPTR, IDLEPATH:ARPTR)) ;
For I#PROCNUM, PAVECT[I].CURPATH srecifies the path being
evaluated by the I°th processor. Each processor has an

idling path associated with it, i.e. a path which it

evaluates if it has no ‘real’ path to evaluate. NFPROC is
the number of rrocessors which are evaluating their idling

paths. If processor K is idling, then
PAVECK[K]+ CURPATH=PAVECK[K].IDLEPATH.

2-50

Note that

PAVECT[PROCNUM] . CURPATH=LASTRUN
i.e. the processor which is currently evaluating the CI
path 1is the processor which was evaluating the path which
performed the CIA call.

DECL RUNSET\FLAG : BOOL;
The RUNSET\FLAG is initially set to FAISE. If a CIA called
procedure adds paths to the set of runmning paths, then it
should set RUNSET\FLAG to TRUE to indicate that additional
paths may have to be scheduled.

DECL PIVECT:ROW(NPROC,LIST);
PIVECT is used in conjunction with processor to processor
interrupts. Ve rpostone further discussion of PIVECT until

section 2.5.5.

3.4 Path Scheduling

In the last section, we described the environment in
which a CIA called procedure is applied. Here, we will
describe the way in which the CI uses these data structures

in the performance of path scheduling.

Let us assume that a path P has executed the following

statement:

CIA("FOO",Q)

Control passes to the CI as described in section 2.3.1.

However, before the procedure is applied to its argument,

2-51

the CI performs the following actions:
(1) L1LASTRUN is set to P.
(2) RUNSET\FLAGC is set to FALSE.
(3) PROCNUM is set to the number of the processor
which had been evaluating P.

Upon completion of the CIA called procedure, the CI

performs the following actions:

(1) If LASTRUN is NIL, then the CI calls upon the
USER\SCHFDULFR to obtain a path to be evaluated by
the rrocessor. If the USER\SCHEDULER returns NII,
then the CI chooses the idle path associated with
the rrocessor, i.e. PAVECT[TROCNUM].IDLEPATH, and
increments NiPROC by one. In any case, the CI
btinds LASTRUN to the path to which the processor
is to be given.

(2) If RUNSET\FLAG is TRUE, then the CI determines if
there are any free processors (NFPROC#0O) and, if
so, it sends an interrupt to one of them to force
it to gpass control to the CI to obtain a ‘real’
path to evaluate, c.f. 2.5.5.

(3) The CI sets PAVECT[PROCNUM].CURPATH to LASTRUN to
indicate which path the processor will be
evaluating.

(4) The CI passes control to the path to bg evaluated
and positions itself to accept the next CIA call
by executing the following statement.

2-52

LASTRUN<-CONTFATH(LASTRUN)

The USER\SCHELDULER is initially bound to a procedure
which removes the first activation record from the INACTIVEQ
and returns a pointer to it as result, i.e. as the path to
be evaluated. If the INACTIVEQ is empty, then the procedure
returns NIL. If paths are always added onto the tail of the
INACTIVEQ by CIA called procedures, then the paths are

scheduled on a ‘round-robin’ basis.

To obtain a better understanding of the use of the CI
as single access resource in relation to its use as a path
scheduler, let wus again turn to our path termination
example. If P wishes to cease evaluation until Q
terminates, then it simply sets LASTRUN to NIL to indicate
to the CI that the processor should be given to another
path. When Q terminates, it appends all paths waiting for
its termination onto the tail of the INACTIVEQ and then sets
RUNSET\FLAG to TRUE to indicate to thi CI that there are
additional paths to be scheduled. Both P and Q require
indivisible execution coupled with the ability to modify the

scheduler’s queues. The CIA call provides both of these

*

Since Q will no longer be runnable, it will set LASTRUN
to NIL. In this case, it is not really necessary to set
RUNSET\FLAG to TRUE, since the fact that LASTRUN=NIL, will
cause new raths to be scheduled anyway. Note, however, that
it is possible that a path may add additional paths to the
INACTIVEQ, and still wish to continue evaluation. In this
case, it must set RUNSET\FLAG to TRUE.

253

facilities since it allows a procedure to obtain indivisible

execution in the environment of the path scheduler.

In section 2.2.4, we defined a scheduler as a mechanism
for multiplexing the evaluation of an arbitrary number of
paths by a fixed number of evaluators. The path scheduler,
as described above, does not quite fit this definition. The
problem is as follows: if NPROC paths are currently active
and none of +the paths ever perform a CIA call, then the
inactive paths will never become active. Hence, the
evaluators will not be multiplexed over all paths. The
solution to this problem is straightforward. If, after some
given lencth of time, a path refuses to relinquish its
evaluator, then the path’s evaluation is interrupted by a
"TIMER" interrupt. The response to the interrupt generates
a CIA call which puts the path at the end of the INACTIVEQ
and sets LASTRUN to ML. The path scheduler can then give
the evaluator to another path via the mechanism described
above. A more detailed description of the way in which this

‘time-out”’ is accomplished is given in section 2.5.5.

Since the CI is an MPELT path, the actions performed by
it to effect path scheduling can be described by a set of
EL1 procedures. These procedures are listed in Appendix 3.
In the next section, we will discuss how these procedures,
in conjunction with the CIA control primitive, may be used

to extend the path scheduler itself.

2-54

4. USER DEFINED SCHEDULING

When a processor becomes free, the CI uses a simple
algorithm to assign it to an inactive path: it is given to
the first path on the queue of inactive paths. It is surely
not desirable that this algorithm be the only one which may
ever be used to assign processors to paths. For example, a
given language application might require paths to be
scheduled on the basis of associated priorities. Although
it 1is conceivable that we could circumvent the fixed
algorithm by suitably adjusting the inactive queue to insure
that the next path chosen by the scheduler is the one which
is desired, it would be inconvenient and inefficient to do
so. Hence, we desire a mechanism which will allow both user
control over path scheduling and the addition of data
structures to the CI environment to support the extended

scheduler.

4.1 Scheduler Extension

Three different methods may be used to extend the path
scheduler: rebinding of the procedure which is called to
obtain the next path to be evaluated, nesting of schedulers,
and complete redefinition of the CI procedures and
environment. The first of the above is exceedingly simple
to accomplish but provides the weakest form of extension.

The second combines the first method with the ability to

2=55

call upon the CI procedures recursively in order to obtain a
nesting of schedulers. The last method requires the largest
amount of work, but allows the user the ability to rewrite

the control interpreter completely.

In section 2.3.3, we indicated that to obtain a path to
be evaluated, the CI calls upon the ROUTINE bound to the
variable USER\SCHIDULER. Hence, the scheduling algorithm
can be changed by simply CIA calling a procedure which binds
USER\SCHEDULER to a user defined procedure. Upon completion
of the CIA call, the user’s scheduling algorithm will be

employed by the CI.

There are two disadvantages with this method. A RE
if the user defined scheduler requires additional data
structures, then it must resort to the use of global
variables. Secondly, there is no convenient way to nest the
schedulers, i.e. 1if the scheduling algorithm is to be
redefined more than once, then each new scheduler must
understand the organization of the previous one. In
addition, there is no convenient way of keeping track of how
many times and the order in which the scheduler has been
redefined. Hence, it 1is difficult to revert back to a
previous scheduler once a new one has been installed.
Consequently, this method of scheduler extension is of

limited usefulness.

2-56

The second method of scheduler extension resolves the

problems associated with the first.

The actions of the control interpreter path *are
embodied in +the definition of one EIL1 procedure, C\I. 1In
particular, C\I applies the CIA called procedure to its
argument, calls upon the scheduler if necessary, and passes
control out of the control interpreter via CONTPATH. Since

C\I is written in EL1, its actions are easily understood and
*x

it may be called from a user program. If C\I 1is called
recursively in the environment of the CI, then path
scheduling and the processing of CIA calls will be performed
by the inner call. C\I assumes that the variables discussed
in section 2.3.3 exist in the environment in which it is
called an¢ declares 1local variables with the same names
which are bound BYREF to their counterparts 1in the
environment, e.g.

DECL LASTRUN:ARPTR BYREF LASTRUN;

The procedure C\I may be used to achieve a nesting of
schedulers by CIA calling a procedure, say INIT\SCHELUIIR,
which performs the following actions.

(1) USER\SCHEDULIR is declared locally to be the

*

The definition of the procedure C\I 1is given in
Appendix 3.
*x%

Although it should oné{ be called 1in the CI
environment, because of the call on CONTPATH.

257

routine to be used as the new scheduler.

(2) Other variatles that are needed by the new
scheduler are declared locally.

(3) The data structures which define the inactive set
of the previous scheduler are mapped into the data
structures to be used by the new scheduler. As
this is a complicated process, we postpone
discussion of how it can be accomplished.

(4) The procedure C\I is called recursively. C\I will
bind USER\SCHEDULER to the procedure bound locally
above. Scheduling will continue in an environment

which includes the data structures required by the

new scheduler.

It is possible to return control over path scheduling
back to the previously defined scheduler by CIA calling a
procedure, say TERM\SCHEDULER, which performs the following
actions.

(1) The control primitive RETFROM is used to return
control to the body of the procedure which
initiated the recursive call on C\I, i.e.

RETFROM("C\I",NIL)

(2) The éata structures which define the inactive set
for the current scheduler are mapped into the data
structures required by the old scheduler. Again,
we postpone discussion of how this can be

accomplished.

2=58

(3) The procedure returns control to the previous
incarnation of C\I by a normal procedure exit.
Since the recursive call on C\I bound the
variables used 1in the previous call EYREF, the
values of the variables are still wvalid, e.g
PROCNUM correctly specifies the number of the

rrocessor which is currently evaluating the CI
*

path.

Fipure 2-2 illustrates the flow of control in the CI
with respect to nesting of schedulers. Down arrows indicate
the passage of +time, right arrows indicate calls to
procedures, and left arrowvs indicate returns from
procedures. INIT\SCHEIULER is a procedure which is CIA
called to initialize a new scheduler as described above and
TERM\SCHEDULER is a procedure which 1is called to return

control back to the previous scheduler.

*

This will be true only if USER\SCHEDULER is the only
variable declared by the initializing procedure whose name
is in common with the variables of section 2.3.3.

2-59

Faths scheduled by initiazl
ccheduler in the environ-

nent of the original call
to C\I

CIA call of
\L/ InIT\SCHEIULER

—

New scheduler
initialization

VRecursive call of C\I
-

Paths schec-
uled usinc
new scheduler

CIA call of
TERM\SCHEDULIL

v

-
M(*C\I",
e RETFROM(“C\I",NIL) 1/

ILata structures of the
old scheduler are
restored

ieturn from orig—

inal CIA call of

1o IT\SCHEILULEK ¢/
-

Pathe scheduled using
orirsinal scheculer

Figure 2-3 Nesting of Schedulers

2-60

The last way in which the scheduler may be extended is
to rewrite the procedures which constitute the control
interpreter itself. Although we believe that the
organization imposed by the procedures of Appendix 3
facilitates the construction of new schedulers and
synchronization operations, it 1is ©possible that another
organization may be more suitable for a given class of
problems. Hence, the user is free to completely restructure
the CI path in terms of his own data structures, procedures

and the control primitves CIA and CONTFATH.

2-61

4.2 Canonical Inactive Sets

In the last section, we postponed discussion of the way
in which the data structures of one scheduler are mapped
into the data structures of another. Fere, we will discuss
the issues 1involved in the mapping and suggest a way in

which they may be resolved.

If a new schecduler is going to take over responsiblity
for path scheduling, then it must have some way of knowing
which paths are running. PAVECT specifies the active paths,
but the inactive paths may be contained in some arbitrary
data structrure. It is certainly undesirable for each new
scheduler to have to know from which scheduler it is taking
over and how that scheduler maintained the set of 1inactive
paths. Hence, we desire a mechanism which will allow a
scheduler to be installed without knowledge of the innards

of the previous one.

The solution 1is straightforward. We define the

canonical form for the inactive set as follows: the inactive

set of paths is in canonical form if and only if all
inactive paths are contained on the queue INACTIVEQ. Each
procedure that initializes a new scheduler as described in
the last section must provide two procedures to be bound as
local variables to the names MAPC (map-canonical) and MAPO
(map-own.) MAPC is used to map the inactive set from the

form used by the scheduler into canonical form; MAPO is used

2-62

to map the inactive set from canonical form into the form to
be used by the scheduler. MAPC and MAPO are both 1initially
bound in the CI path to the following procedure body:
EXPR(;NONE)NOTHING;

since the initial scheduler keeps the inactive set in
canonical form. The initializing procedure may map the
inactive set from the form ©being used by the previous
scheduler into the form required by the scheduler being
initialized by first calling the MAPC procedure associated
with the previous scheduler and then calling the MAPO
procedure associated with the new scheduler. When control
is to be returned to a previous scheduler, then the
procedure which has been returned to via the
RETFROM("C\I",NIL), i.e. the procedure which had been used
to initialize the scheduler, can call its own MAPC procedure
and then the previous scheduler’s MAPO procedure so that the
inactive set may be returned to the form required by the
previous one. To illustrate, let us assume that a certain
scheduler requires the set of inactive paths be divided into
two queues: one queve for those inactive paths which are
DORMANT and one queue for those inactive paths which are
not. Let wus also assume that the procedure used to
initialize this scheduler is named INITD and that it takes
as argument the ROUTINE to be used as the scheduler. INITD
is defined in Figure 2-4. Note that ENTERL, which is
defined in Appendix 3, enters the path as the last element

2-63

of the queue specified by the second argument.

INI%EEEEXPR(S:ROUTINE;NONE)
MAPC(); NT MAP OLD INACTIVE SET INTO CANONICAL FORM;
BEGIN
DECIL, USFR\SCHEDUIER:ROUTINE EYREF S;
DECL INACTD:ARQPIR; NT TO BE USED FOR DORMANT PATHS;
DECL. INACT:ARQPTE; NT TO BE USED FOR OTHER PATHS;
DECL MAPO,MAPC:ROUTINE;
MAPO<-EXFR(; NONE)
BIFGIN
DECL T:ARPTR EYVAL INACTIVEQ.FIRST;
DECL C:ARFTR;
TAG:T=NIL => NOTHING;
Q<-T.NEXT;
[) T.DORMANT => ENTERL(T,INACTD);
ENTERL(T,INACT) (];
T<-Q;
COTO TAG
END;
MAPC<—EXFR(; NONE)
BEGIN
INACTD.FIRST=NIL => INACTIVEQ<-INACT;
INACT.FIRST=NIL => INACTIVEQ<-INACTD;
INACTIVE<-INACT;
INACTIVE.LAST.NEXT<-INACTD.FIRST;
INACTIVE.LAST<~INACTD.LAST
END;
MAPO(); NT MAP INACTIVE SET INTO NEV FORM;
C\I(); NT SCHEDULE PATHS WITH NEW SCHEDULER;
MAPC NT MAP QUEUES INTO CANONICAL FORM;

END
MAPO() NT MAP QUEUES INTO FORM REQUIRED

BY OLD SCHEDULER;
END;

Figure 2-4: The definition of INITD

2-64

4.3 Scheduling Errors

In section 2.3.1, we described the three conditions
under which CONTPATH would refuse to pass control to a path.
Of these three, two can be explicitly checked by the path
scheduler to insure that it does nct choose a path which
will be rejected by CONTFATH. It 1is probably desirable,
although not atsolutely necessary, for the path schedulir to
check for these conditions and take appropriate action. ZFor
example, 2 path which has ELGFILG=FALSE can simply be removed
" from the inactive set and a path with DORMANT=TRUE can

simply be retained in the inactive set.

Recall that a path is being modified if it is active or
if an environment modifying control primitive 1is being
applied to it. If it is being modified, the MOD field of
its ACTRC has %been 1SET by a control primitive. Although
the scheduler can determine if a path is active by exanining
the PAVECT, in general it cannot determine if the path is
being modified since control primitives can be applied to
the path asynchronously with respect to the actions of the
€l

*

Of course, the check for these conditions can be made
explicitly in the the body of the scheduler, or implicitly
by an error handling routine which responds to the error
generated by CONTPATH and returns a different path to be
evaluated.

2-65

If the scheduler attempts to pass control to an active
path, then the path mnust exist in the active set and the
inactive set. Hence, there is either a bug in the scheduler

or in one of the procedures which has access to the

schedulers queues.

2-66

5. EXTERNAL INTERRUFTS

In this section, we will discuss the external interrupt
facility of MPEL1. Recall that external interrupts are
required to effect processor multiplexing, c.f. 2.3.4. In
addition, external interrupts provide a mechanism whereby
paths may respond to events which occur outside the scope of

the language.

External interrupts affect the evaluation of paths,
5 = the evaluation of the path is interrupted by the
occurrence of an interrupt. To be able to speak of one path
sending an interrupt to another, it is necessary to extend
the concert of external interrupt. This extension will be

described below.

5.1 Classes of Interrupts

An interrupt may te loosely defined as a signal which
indicates the occurrence of some event. There must be at
least two agents associated with an interrupt, namely, one
agent to generate the signal and one agent to receive it.
It will be convenient to divide interrupts into two classes:
external interrupts which are generated by (external)
processors, and internal interrupts which are generated by

rath evaluators.

An internal interrupt is a signal from a path evaluator

2-67

to the path it is evaluating. The signal is usually sent to
indicate that some error has occurred in the evaluation.
The interrupt occurs synchronously with respect to the
path’s evaluation. For example, if a path attempts to
select a non—existent component of a structure, then a
signal will be sent to the path to indicate the selection
€Irror. In MPEL1, internal interrupts are handled as in EL1
[Weg70]. No change in semantics 1is necessary for MPEL1
since 1internal interrupts affect the evaluation of only one
path. When an internal interrupt occurs, the identifier
environment is searched for a binding aof an identifier which
is uniquely associated with the interrupt (e.g.
“SELECTION\FAUL.T".) If the identifier is found and it is
bound to a procedure definition, then the procedure is
called as the path’s response to the interrupt. If no
binding is found, then a standard system error handling

procedure is called.

An external interrupt is a signal which 1is sent from
one processor to another. The signaling processor may
either be an evaluator or a special processor which is
dedicated to a given task, e.g. a timer, I/0 device. The
effect of an external interrupt is to interrupt
asynchronously the evaluation of the path which is being
evaluated by the signaled processor. We may now clarify the
distinction between internal and external interrupts. 1In

both cases the final recipient of the interrupt is a path.

2-6&

In the former case, the signal is generated as a result of
some action taken internally by the path itself. In the
latter case, the signal is generated by some action which is
external to the rath. The path 1is interrupted simply
because it is being evaluated by the processor to which the

signal was sent.

In EIL1, as described in [Weg70], there is only one path
of control and only one evaluator, hence, external
interrupts may be handled in the same fashion as internal
ones. The identifier environment 1is searched for a
procedure which is associated with the particular external
interrupt. In MPEL1, however, there are multiple paths of
control. Consequently, it is possible that a path is not
being evaluated at the time an external interrupt arrives
for which it is ‘enatled.’ In addition, it dis wusually
desirable to associate priorities with external interrupts
to facilitate in their processing. EL1 provides no
mechanism for treating interrupts on a priority basis.
Consequently, additional control apparatus is necessary in
order to incorporate external interrupts into the multi-path

control structure of MPEL1.

5.2 Interrupt Structure

In this section, we will discuss a number of issues

relating to the introduction of external interrupts into

2-69

MPEL1. In particular, we will consider the requirements
placed upon any interrupt structure by processor

multiplexing and multiple paths of control.

External interrupts are associated with processors, not
paths. The processor receives the signal and responds to it
by interrupting its current activity and taking some
rre=specified action. For example, consider the CPU of a
digital computer. When an interrupt occurs, the CPU itself
is interrupted independent of which process it is executing.
Some interrupt program is executed and then the interrupted
process 1is resumed. The interrupt program can inform the
process about the occurrence of the interrupt by resuming it
at some pre-specified process—dependent location. Thus, if
we associate external interrupts with processors, then they

can be associated with paths by extension.

Although external interrupts are associated with
processors, a language level response to an interrupt must
be evaluated in the environment of a path - whichever path
is being evaluated by the processor when the interrupt
occurs. The response borrows the environment of the current

path because it requires an environment for its evaluation

and the current path just happens to be available.

Paths may wish to respond to interrupts as well. If we
associate responses with interrupts on a path-independent

basis, i.e. one response form per interrupt per processor,

2-70

then it becomes difficult to allow paths to respond
differently to a given interrupt. Conversely, if we
associate the response forms on a path-dependent basis, i.e.
when an interrupt occurs the response form associated with
the current path 1is used, then it becomes difficult for a
path to insure that it will be notified that an interrupt
has occurred because of processor nultiplexing. It is
possible that when an interrupt occurs, the path which is
interested in it 1is not the one which is currently being

evaluated.

The essential point is that an interrupt structure is
required which will allow a path to be notified of an
interrupt even if the interrupt occurs while the associated
processor 1is evaluating another path. In addition, paths

must be allowed to respond to interrupts in different ways.

To resolve the issues described above, it would seem
desirable to associate an interrupt structure with each
processor and, in addition, associate a related structure
with each path. The processor level structure may be used
to dispatch the interrupt information to all interested

rathse.

5.3 Processor level Interrupts

In section 2.3.3, we indicated that the number of

processors over which paths are being multiplexed was stored

2-71

in NPROC. ILet us assume that each of the NPROC processors
has NEI associated external interrupts. Each external
interrupt has a unique identifier associated with it, e.g.
“TIMER", “"LIGHT\FEN", "IO\COMPLETION".) In addition, each
processor has NPROLEV priority 1levels, where 1 1is the
highest priority and NFROLEV is the lowest. A processor may
be enabled for one external interrurt at each priority
level, but it may not be enabled for the same external
interrupt on mcre than one level. Associated with each
external interrupt 1is a <form which is to be evaluated as
response to the interrupt.*

A processor may be enabled for an external interrupt by
a call to the control yrimitive ENABLE\PRO.

ENABLF\PRO<-CSUBR (EINAME : SYMBOL, LEV : INT ,RESP: FORM ; NONE)
The processor which evaluates this primitive will be enabled
for the external interrupt named EINAME at priority level
LEV with response form RESP. An error is generated if the
processor 1is already enabled for the interrupt or if the

level is already associated with some interrupt.

A processor may be disabled with respect to an external
interrupt by calling upon the control jrimitive DISABLE\PRO.
DISABLE\PRO<~CSUBR(EINAME:SYMBOL ; NONE)

* .
The processor level interrupt structure is essentially

ai. abstraction of priority interrupt systems found in
practice on contemporary hardware systems.

2=72

After a call to DISABLF\PRO, the processor 1is no longer
enabled for EINAME interrupts and the level at which it was

enabled is available for association with another interrupt.

It is sometimes desirable to modify the response form
associated with an interrupt without having to disable and
re—enable it. To facilitate this, the data structure which
associates resronse forms with interrupts is accessible from
the language, and thus may be modified by assignment. The
response forms for all priority levels of all processors are
contained in the global data structure RESPONSE which is of
mode :

ROV (NPROC, ROW(NPROLEV,FORM)) .
Hence, RESPONSE[N][M] specifies the response to the
interrupt enatled at level M on processor N. In addition,
the trivial control primitives LEVEL and IKUSE may be used
to obtain the interrupt status of the current processor.
LEVEL(“TIMER") returns the priority level at which the timer
interrupt is enabled. INUSE(3) returns the symbolic name of
the interrupt enabled at level 3%, or NIL if the level is not
currently associated with an interrupt. Hence, 1if the
HTIMER" interrupt is enabled, then

INUSE(LEVEL(TIMER"))="TIMER".
Note that the data structures which associate external
interrupts with priority levels are not accessible from the
language. This restriction 1s necessary, since correct

modification of these structures, i.e. for enabling or

2=if3

disabling, may require conmunication with the wunderlying

machine.

The interyretation of an external interrupt is as
follows. Iet us assume that initially there are no
interrupt responses in progress. When an external interrupt
OCCUrS, the interrupted processor evaluates the form

associated with the interrupt in the environment of the path

which it is currently evaluating. If any lower priority

interrupts arrive during the evaluation of the response,
then the response to the 1lower level interrupt is not
initiated until the higher level response is completed. 13
a higher level one arrives during the evaluation of the
response, then the current evaluation is suspended and the
response associated with the higher level one is initiated,
i.e. 1it is nested within the lower 1level response. Upon
conpletion of the evaluation of a response, the priority of
the interrupt associated with the suspended response 1s
compared with the highest priority of the interrupt
responses which have not yet been initiated. If the former
is greater than or equal to the latter, then evaluation of
the suspended response continues. Otherwise, the evaluation
of the response associated with the highest level waiting
interrupt is initiated. For example, if three interrupts
b L and %Z" interrupt the processor, and the
priorities associated with these interrupts are 3, 1 and 2,

respectively, then the arrival of "Y" will suspend the

iy

evaluation of the response for "X". The response for "Y*
will not be interrupted by the arrival of "Z". Upon
completion of the response for "Y", the response for "i"
will be initiated since it is at a higher priority than *X".
Upon completion of the resyonse for "Z", the evaluation of

the response for "X" will continue.

If the evaluation of an interrupt response 1is never
completed, then the responses for lower priority interrupts
will never be initiated. For example, if an interrupt
response performs a CIA which subsequently switches the
processor to another path, then the processor will not
initiate any lower priority responses because the interrupt
nesting is recorded in the intra-path control of the path in
which the response was initially evaluated. In addition, if
the original path is evaluated by another processor, then an
attempt may bte made to continve evaluation of a lower
priority interrupt while a higher one is 1in progress.
Consequently, although it 1is desirable for interrupt
responses to avail themselves of the power of the CI, they
should always return control *to the path in which the
interrupt originally occurred. Hence, processor 1level
interrupt responses may be thought of as “borrowing” the

environment of whichever path is being evaluated at the time

*

An error will be generated by CONTPATH if an attempt is
made to evaluvate a different path on the processor, or to
evaluate the path on a different processor.

2=T5

that the interrupt occurs.

If an interrurt resyponse is completed by a RETFROM or a
GOTO, then the priority 1level at which the processor is
evaluating is taken to be the priority 1level of the most
recently suspended resyponse above the point to which the
RETFROM or GOTO is made, i.e. if the intra-path control is
flushed atove the point at which an interrupt response was
initiated, then the response is automatically completed.
Upon completion of the RETFROM or GOTO, evaluation continues
with the most recently suspended response, or the highest
level waiting response, whichever has the higher priority.
We note, however, that although RETFROM and GOTO may be used
by response forms, it is probably undesirable to do so. A
processor level interrupt response may be responding to an
interrupt which is of interest to another path. If the
response form is not allowed to complete properly, then the

path may never receive the information it desires.

Since the actions of processor level interrupt
responses are restricted as described above, an additional
mechanism is necessary to make effective use of external
interrupts. In particular, we specified that external
interrupts would be used to insure that the evaluators were
multiplexed across all running paths. But it is not
possible to use a processor level interrupt to force the

processor to evaluate another path since the evaluation of

2-76

the reiponse form must be completed before the switch can
occur. Secondly, we have not specified how a processor
level interrupts may be used to dispatch an interrupt to
another path. In the next section, we will introduce the
additional control apmaratus necessary to achieve these

capabilities.

5.4 Path Ievel Interrurts

In this section, we will discuss the concept of path
level external interrupts. A path level interrupt is a
signal sent from one path to another. Although path level
interrupts are external interrupts 1in the sense that the
signal arrives asynchronously with respect to the evaluation
of the path, they may be considered to be pseudo interrupts
in the sense that the interrupt does not take effect until
the path is actually evaluated. Hence, we will refer to

path level interrupts as pseudo interrupts.

Each path has NPAIEV priority levels associated with
it, where 1 1is +the hirhest priority and NPALEV is the
lowest. A path may be enabled for one pseudo interrupt at

each priority level, tut it may not be enabled for the same

*

For example, the form CIA(F,MYPATH), where F is a
procedure which ruts the current path on the INACTIVEQ and
sets LASTRUN to NIL (forcing the CI to schedule some other
path), could not be used since control leaves the path from
within the CIA control primitive and thus the evaluation of
the response form is not completed.

2=T1

pseudo interrupt at more than one level. Associated with
each pseudo interrupt is a form which is to be evaluated as
response to the interrupt. Thus, the path level pseudo
interrupt structure vparallels the rprocessor level ‘real’
interrupt structure. A pseudo interrurt is referenced by a
symbolic name, e.g. "WALDO", "PLEASE\TERMINATE". A number
of control vprimitives are defined to effect enabling,
disabling/, masking and generation of pseudo interrupts.

Their description follows.

The last argument to each of the control gprimitives
described below specifies the path to which the actions of
the primitive are to be applied. If the argument 1is not
supplied to the primitive, i.e defaulted to NIL, then the
actions are to be applied to the path which executes the
call. If the path to which the primitive applies is not the
current path, then it must not be modified while the
primitive 1is ©being applied. Consequently, the path cannot

be active.

The contrel primitive ENAELE\PATH enables a path for a
pseudo interrupt.
FNALLE\ PATH<-CSUBR(PEINAME:SYMBOL,LEV:INT,
RESP:TFORM, PATH: ARPIR; NONE)
The path is enabled for pseudo interrupt PEINAME at level
LEV with resyonse form RESP. An error is generated if the
path is already enabled for a pseudo interrupt at level LEV

2-78

or if the path is already enabled for PEINAME interrupts at

some level.

A path may be disabled with respect to a pseudo
interrrupt by calling upon the <control ©primitive
DISABLE\PATH.

DISAEBLE\PATH<~-CSUBR(PEINAME:SYMBOL,PATH: ARPTR ; NONE)
After a call to DISABLF\PATH, the path is no longer enabled
for the interrupt specified by PEINAME and the level at

which PEINAME was enabled is available for association with

another pseudo interrupt.

A pseudo interrupt may be generated by a call to

INTERRUPT.
INTERRUPT<-CSUER (PEINAME: SYMEOL, P: ARPTR ; NONE)

Iet us first assume that P is not the path which called
INTERRUPT. Recall that P camnot be active. If the path
specified by P is enabled for PEINAME interrupts at some
level, then the response form that it has associated with
PEINAME will be evaluated in its environment as soon as it
is evaluated by some processor. If P was in the midst of

the evaluation of a response to some pseudo interrupt at a

higher priority level, then the response to PEINAME will be
evaluated when all higher priority responses have been
completed. The interrupt is only ‘pseudo’ since no
processor 1is physically interrupted. INTERRUPT nmerely

records information in the path’s activation record. To

2-79

send a pseudo interrupt to an active path, it 1is necessary
to physically interrupt the processor which is evaluating
the path and then use the primitive INTERRUPT. Hence, a
‘real” external interrupt is required. The control
primitive which provides this facility is described in the

next section.

If P specifies the path which has called INTERRUPT,
then the response to the interrupt is immediately evaluated
in the current path’s environment, unless the path is

currently evaluating a higher level interrupt response.

The 1interpretation of path level interrupts is
identical to that of processor level interrupts, as
described 1in the last section. Lower priority level
responses are delayed until higher level ones complete.
Higher level responses take precedence over the evaluation
of lower 1level ones. However, we have not specified the
relation between processor interrupt 1levels and path
interrupt 1levels. The relation is as follows: the path
interrupt 1levels are of strictly 1lower priority than
processor interrupt levels. Hence, any processor interrupt
takes precedence over any path level interrupt.
Consequently, if a processor level response generates path
level interrupts for the current path, then the path level
responses will not ©be initiated until all processor level

responses have been completed.

2-80

The addition of the path interrupt structure resolves
the problems described at the end of the last section.
First, to <force processor multiplexing, the external
interrupt can generate a pseudo one which will be processed
after all processor level responses are completed. The
response to the pseudo interrurt can safely switch the
processor to another path via a CIA call. The original path
is simply 1left in the midst of a path level interrupt
response. Secondly, a RETFROM or GOTO out of a path level
response can only affect the current path’s processing.
Hence, if a processor level interrupt desires to rerform a
RETFROM or GCTO without any effect upon a lower priority
processor interrupt, then it can generate a path level one
to perform the desired action. Finally, the processor level
interrupt response may dispatch the fact that a given
interrupt has occurred by sending pseudo interrupts to all

interested paths.

It is sometimes desirable to mask a path against
certain pseudo interrupts, i.e. a path may wish to remain
enabled for a given interrupt, but have the interrupt

*

response delayed for some time. Hence, a mechanism is

¥*

Note that this cannot be achieved by having the path
generate a self pseudo interrupt at a priority higher than
the interrupt to be masked, since all lower level interrupts
will then be masked as well, which is not necessarily the
desired effect.

2-81

desired which will mask a path against an interrupt while
allowines the occurrence of other interrupts at higher or
lower priority levels. TIwo control primitives provide this
facility: MASK and UNMASK.
MASK<-CSUBR(PEINAME:SYMBOL, PATH: ARPTE ; NONE)
UNMASK<=CSUBR(PEINAME: SYMBOL, PATH : ARPTR ; NONE)
If a pseudo interrupt is sent to a path which has masked
against that interrupt, then the fact that the interrupt
occurred is recorded, btut no response is generated. If an
interrupt is UNMASKed and if the interrupt occurred while it
was masked, then the response is generated according to the

priority rules described above.

The data structures associated with path level
interigpts are stored 1in the activation record of each
path. Hence, they are accessible from the language. As
was the case with processor level interrupts, the response
{forms associated with pseudo interrupts may be directly
modified without disabling and re—-enabling the interrupt.
Note, however, that direct modification of other structures

may not have the desired effect. TYTor example, if a path

*

Multiple interrupts are lost. Alternatively, we could
maintain a count of the number of times a given pseudo
interrupt has occurred. An interrupt structure of this sort
would be a straightforward extension of the current

facility.

%* ¥
1.3 1%‘he structures are described 1in detail 1in section

2-82

attempts to unmask itself, with respect to a certain
interrupt, by direct modification of the appropriate data
structure, then the response form will not be automatically
triggered. Hence, the structures may bte examined to discern
the status of a path”s interrupt 1levels, ©but most
modifications should be made via the appropriate control

primitive.

5.5 Relation to Processor Multiplexing

In section 2.%.4, we mentioned the use of interrupts in
processor multiplexing but deferred exrlanation; we now
remedy this omission. There are two problems to be solved.
First, how can an 1idling processor be assigned to an
"inactive path? Second, how can an active path occasionally
be forced to perform a CIA call which will give its
processor to another path? We will assume that the external
interrupts "TIMER" and "PRO\PRO" are associated with each
processor. A "TIMER" interrupt is sent to 1its associated
processor after a fixed interval of time has elapsed.
Hence, a processor may keep track of how long it has been
evaluating a particular path. A "PRO\PRO" interrupt is one
which is sent from one processor to another. We will assume
that each processor is able to send a "PRO\PRO" interrupt to
any other processor. A "PRO\PRO" interrupt may be used to
force a processor to stop evaluating a particular path.

2-83

The control primitive STOP\PATH may be used to send a

"PRO\PRO" interrupt to a processor.
STOP\ PATH<~CSUBR(P: ARPTR ; NONE)

STOP\PATH sends a "PRO\PRO" interrupt to the processor which
is evaluating path P. If P is not currently being
evaluated, then no action occurs. STOP\PATH may only be
called from the environment of the CI. This restriction is
necessary since the assignment of jrocessors to paths can be
unambiguously determined only by the processor evaluating

the CI

We will assume that each processor is enabled for
"TIMER" and "PRO\PRO" interrupts, viz.
FNABILE\ PRO("PRO\PRO" , 1, PRO\ PRO\ FORM)
ENAELE\PRO("TIMER",2,TIMER\FORM)
In addition, we will assume that GET\PATH enables each path
P for the following pseudo interrupts.
FNABLE\PATH("CI\TO\PATH",1,CI\PATH\FORM,F)
ENABLE\PATH(*TIME\OUT",2,TIME\OUT\FORM,P)
The four forms are given in Appendix 3. Their use in

processor multiplexing will be described informally below.

In section 2.3.3, we rpostyoned discussion of the
structure PIVECT, which is defined in the environment of the
control interpreter. Here, we describe its use in the

processing of "PRO\PRO" interrupts. The PIVECT is used

essentially as a communication vector to allow one processor

2-84

to specify a list of actions (forms to be evaluated) to be
taken by another processor, where PIVECT[N] is the list for

the N th processor.

For example, let us assume that the scheduler wishes to
interrupt an 1idling processor because some real path
requires evaluation. Iet as also assume that the idling
path for the processor is P, i.e. PAVECT[N].IDLEPATH=P,
where N is the number of the processor. The scheduler
executes STOP\PATH(P). A "PRO\PRO" interrupt is sent to the
idling processor. The response form (PRO\PRO\FORM)
generates a pseudo interrupt "CI\TO \IATE" for path P. The
response form CI\PATH\}ORM passes control to the CI and
evaluates all forms on the list PIVECT{PROCNUM]. 1In
particular, if the scheduler has previously placed a form on
the 1list which when evaluated will set LASTRUN to NIL, then
upon completion of the CIA call the processor will be
assigned to an 1inactive path. Hence, the effect of the
above scenario is to force an idling processor to pass
control to the CI where the scheduler can assign it to an
inactive path. Note that the pseudo interrupt is necessary
since the processor is to be switched to another path. All
processor level responses mnust be completed before the

switch can be made.

STOP\FATH may also be used in conjunction with PIVECT

to force an active path to cease evaluation. An appropriate

2-85

form can be put on the PIVECT list of the processor which is
evaluating the path and then a call to STOP\PATH can be
executed. When control passes to the CI due to the response
to the "CI\TO\PATH" interrupt, then the evaluation of the
form on the PIVECT list can take the desired action. For
example, examine the definition of the procedure SUSPEND in
section 3.3. If path P wishes to suspend an active path Q,
then P adds a form to the PIVECT entry for the processor of
Q and then executes STOP\PATH(C). When the form is
evaluated, (will be suspended and P can be allowed to

resune execution.

It is important to note that if a "PRO\PRO" interrupt
is sent to the processor of a path which is waiting to
perform a CIA call, then the interrupt iesponse will be
evaluated before the CIA call is executed. Consequently, it
is impossible for the rrocessor to be switched to another
path before the interrupt response is generated. Thus, the
response will always be generated in the environment of the

path specified by STOP\PATH.

We now turn to the problem of how to effect the

*

This is not +true 1if the processor is enabled for
"PRO\PRO" interrupts at some lower priority and the CIA call
in question is executed by the resyronse to a higher 1level
proccssor interrurt. In this case, however, it is still
impossible for the processor to be switched to another path
beggre the resronse is evaluated due to the constraints upon
processor levei interrupts, c.f. 2.5.3.

2-86

multiplexing of processors over all paths. The "“TIMER"
interrupt provides a straightforward solution. VWhenever a
timer interrurt occurs, the associated response form
decrements a count stored in the activation record of the
path that it is evaluating. When the count reaches =zero,
the pseudo interrupt "TIME\OUT" is generated. The response
to the pseudo interrupt performs a CIA call which places the
path at the end of the INACTIVEQ and sets LASTRUN to NIL to
indicate that & new path should be scheduled to run on the
processor. The count 1is stored in the integer component
TICKS\LEFT and is initialized by the scheduler to be the
number of timer “ticks® which may occur before the path is
forced to “‘time-out.” As was the case with "PRO\PRO"
interrupts, a pseudo interrupt 1is required since the
processor level response must be completed before the

processor can be assigned to another path.

5.6 Data Passage

In the previous sections, we have neglected tc discuss
the fact that an external interrupt may have data associated
with it. For example, a light-pen interrupt may specify
spacial coordinates. We will assume that the information
associated with a given external interrupt will be stored as
the value of an associated global variable. As the data is
completely dependent upon the type of external interrupt and
upon the implementation of the Ilanguage, e.g. how I/0

2-87

transactions are specified, we will not specify the names or

the modes of these variables.

The primary issue with respect to external interrupt
data 1is whether or not there is a mechanism which assures
that the data structures involved can be updated safely.
For example, supprose that an external interrupt "FO0" has
associated with it some data D. Whenever a "FOO" interrupt
occurs, D 1s to be added to a list of Ds which are to be
processed bty a path P. After P processes an element of the
list, it removes +the element and processes the next one.
Some synchronization is required to insure that the list is
updated safely. The solution 1is straightforward. The
response to the "FOO" interrupt performs a CIA call to add D
to the queue and then sends a pseudo interrupt to path P to
indicate that additional data has arrived. P also performs
a CIA call to remove elements from the list. Hence, the
list will be safely updated since only one path at a time
can pass control to the CI.

There is one hitch, however! Suppose that the ¥FOO"
interrupt occurs on the processor which is evaluating the CI
path during the performance of the CIA called procedure
which removes elements from the queue. How can the
information be added safely to the list? Many solutions are

possible. The simplest one seems to be as follows. If P

has passed control to the CI to delete an element from the

2-88

list, then P 1is not currently being evaluated by a
processor. The interrupt response can detect this case by
using MYPATH and by checking the value of LASTRUN. D can be
stored directly into path P using one of the control
primitives described earlier, e.g. PSTORE. When P resumes
evaluation, it can detect that the data was stored in its
environment while the CIA call was being evaluated, and

thus, process it directly.

2-89

6. INDEX TO CHAFTER 2

BB s e odsa s o A
CIBIRE & oa.6 .5 6.0 G2
B o & 50 v = &« « B2
CLRBESIET & + « & » & & 45
CI\PATH\}ORM 83
CLEAR . « « . . R
CONTPATH « o« v « « « « . 44

PELEIE\PATH . « « .« . . 15
DEPENV v o o o« « « « « « 34
DISAELENFATH « « « « « . 178
TISUERRERD & & o « « ~
DORMABNET « w o » o o s « 24
IRAR % o o % % 5 = o 0 o B

PEEBIE « o o o4 & &% & 19
FNAELE\PATH « « -« « « - 77
PHABEENPRD o 4 = 5 # & o T

EVAIJ ® ® @ e o © o e o+ o 40

GEPBETE « « & v &« 3 = & 15
COTO oooooo e ® o e 37

INACTIVEQ « « « - « - . 48
INEERRUPE + & < & » & 5 1B
TRUSE « o 6 @ » » 8 o s 12

LASTRUN

LEVH’ * > * L] * L J L J L] *
MASK - L J L J * ® e e e o o
MDE:P * L J > > * > L J L] * *
MOD - * > L] - - - L J * *®
MYPAm L] * > - * L] * * *
NITROC > * * *
NPROC * * L] > * * L] > *
PAP L] L] > ®* ® e e e o o
PAm - * > L J * * > * * L J
PAVECT * L J * * * * L J * L]
PCIAR L] L J * L J * * > L] *
PmCH L] L J L] > * * * * -
PIVECT L] * * - * * * > L J
PROCNUM * L J L J * L J * * *
PRO\PRO\FORM . . « . .
PSIORE * > > > > * L J L J *
RESK)NSE L L * * L J * > L J
RUNSET\FLAG « « « « « .
STKH'IB > * - * > * > *
EHINBETE &« 5 w s & @ 5

TERMINATION\IORM . . < .

48
72

81

33
45
59

49

i
VG

49

41

26

50, 83
49

83

26

72

50

15
83

28

TR & o = o 5 = o
TIMEF?\mP&M * * * > * L d *
TIME\OUT\FORM .+ + . . .

I w4 & @ & & % 8
USER\SCHEDULER « « . . «

86
83
83
31

81
49

2-91

Chapter 3

EXTENSIONS

In this chapter, we illustrate by example how the
primitives and framework of MPEL1 can be used to synthesize
a wide variety of multi-path control structures. The
examples range in complexity and familiarity from coroutines
to relatively continuous evaluation. This chapter serves
two purposes. first, it reinforces the reader’s
understanding of the noulti-path facility by rresenting
examples which have appeared frequently in the literature.
Thus, it serves as a supplement to the informal description
of Chapter 2. Second, 1t demonstrates the power of the
facility for both the implementation and clarification of

complex control structures.

In each of the sections below, the desired multi-path
behavior 1is described informally and then a set of MPEL1
procedures which effect the control structure are presented.
These procedures, described 1in terms of the control
primitives, may be viewed as defining extensions to MPEL1 to

*
allow for the specified control structure. In some

sections, we have included a rrogramming example to

*
Of course, these extensions appear syntactically as
procedure calls. More convenient notations can be realized
through the use of a syntax—extension facility, c.f. 1.1.1.

3-2

illustrate how the extension might be used in practice.

All of the examples in this chapter assume that the

control interrreter is being driven by the procedures of

Appendix 3. Hence, the CI environment is as described in

section 2.3.3.

1. COROUTINES

A set of paths exhibit a coroutine relationship if only
one path from the set is being evaluated at any given tine,
c.f. 1.2.1, 2.1.3. The active path may ‘resume’ another
path, which implies that control is to be transferred from
the former to the latter leaving the evaluation state of the
former intact. Evaluation of the latter path proceeds from
the point it was at the last time it was active. Here, we
will define the control functions COCALL, which is used to
initialize a coroutine path, and RESUME, which is wused to
transfer control between coroutine paths, and demonstrate

their use in solving a simple problem.

COCALL takes as argument a procedure call to be
evaluated in a new path. It creates a new path, uses PAP to
set up the procedure call and a dummy call to RESUME, and

returns a rointer to the new path.

=D

COCALL <= EXPR(COCALLP:FORM UNEVAL; ARPTR)
BEG%%CL P:ARPTR EYVAL GET\PATH(1);

PAP(COCALLP,P);

PAPQ(RESUME{NIL,NIL),P);

NT Dummy call to RESUME for first

resumption;
ENDE
RESUME takes two arguments. The first specifies the

path (PATH) to which control is to be passed. The second
specifies the value (V) to be returned from the call to
RESUME contained in the environment of PATH. RESUME PAP’s a
call to RETFROM into the environment of PATH. The procedure
to be returned from is RESUME, i.e. the call to RESUME in
the environment of PATH, and the value to be returned is V.
RESUME then transfers control to FATH by CIA calling an
explicit procedure which simply sets LASTRUN to PAL1H so that
when control 1leaves the CI, PATH will be evaluated instead
of the original path. When PATH is evaluated, the RETFROM
is executed and V is returned as the value of the call to
RESUME in the environment of PATH. Note that +the original
path is left in a state such that when another path tries to
resume it, then the call to RESUME just described is the one
which will be returned from. Also note that the first time
a COCAllLed path is resumed a return is made from the dummy
call to RESUME and then the COCAlLLed procedure call is

evaluated.

34

RES%ME <— FEXPR(PATH:ARPTR, V:ANY; ANY)
EGIN
P (RETFROM("RESUME",V) ,FATH) ;
CIA(EXPR(FP:ARPTR; NONE)(LASTRUN<-P),PATH)
END;
Consider the following problem: given two binary trees
x and y, where x and y have the same number of nodes but not
necessarily the same structure, walk each tree 1in prefix

order and assign to each node of y two times the node value

of the corresponding node of x. E.g.

Figure 7~1. Trees x, y and modified y

The data structure definitions are:
TREE <- PTR(NODE);
NODE <~ STRUCT(ILS:TRLE, RS:TREE, NOLE\VAL:INT);

To solve this problem, we will define a procedure
TREE\DOUBLE which will create two new yaths Px and Py (using
COCALL) making a total of three paths, including the path in
which TREF\DOUBLE is called (which we will refer to as Po.)
Px (Py) will perform the prefix walk of tree x (tree y.) Po
will RESUMF Px (Py) when it requires the next node of tree x

5

(tree y). When RESUMEd, Px (Py) will walk to the next node
of the tree and then RISSUME Po, passing it a pointer to the
node. [liote that since Px and Py are separate paths they
retain their internal state upon returning the next node to

Po.

TREE\IXOUBLE is defined as follows.

TREE\DOUBLE <- EXPR(X:TREE, Y:TREE; TREE)
BEGIN
DIFCI, PX,PY:ARPTIR;
DFCL NX,NY:TREE
PX <~ COCALLéWALKéX,MYPATHgg;
PY <~ COCALL(WALK(Y,MYPATH));

NT Create the paths Px and Py
and set up calls to WALK
in their environments;

I00P: NX <~ RESUMEEPX,NIL%;
NY <~ RESUME(FY,NIL);

NT Resume Px to get the next
node of x, which is then
bound to NX. The result of
RESUME is a pointer to the
next node. Do the same
for Py;

NX=MIT, => ¥3

NT Px returns NIL
when all nodes have been
walked;

VAL(IY) NODE\VAL <~ 2*VAL(NX).NODE\VAL;
NT Make the node of y be two
times the node of x;
GOTO LOOP
END;

The procedure WALK is defined as follows:

WALK <- EXPR(T:TREE, COPATH:ARPIR; NONE)

BEGIN
WATLK1(T); NT Walk the tree;
RESUME(COPATH,NIL)

NT Resume Po with NIL to indicate
that all nodes have been processed;
END;
where

36

WAIK1 <~ EXPR(T:TREE; NONE)
BEGIN
T=NII. => NOTHING;
“ RESUME(COPATH,T); NT Resume Po with T;
WALK1(T.IS); NT Walk the tree via
recursive calls;
WALK1(T.RS)
END;

2. SYNCHRONIZATION

In section 1.2.1, we indicated that semaphores and
their associated operators (P and V) may be used to
synchronize parallel processes, but deferred explanation.
Here, we will show how P and V may be defined in MPEL1.

As described by Dijkstra [Di6é8a], a semaphore is a
“special-purpose’ integer upon which only two operations are
valid — P and V. The V operation increases the value of the
semaphore by 1 in a single indivisible operation. The P
operation decreases the value of a semaphore by 1 as soon as
the resulting value would be non-negative (>0). Hence, a P
operation on a non-positive (<0) semaphore cannot be
completed until another process performs a V operation on
the same semaphore. The P operation, therefore, represents
a potential delay in the execution of a process. Note that
if some N processes all perform a P operation on a semaphore
whose value is zero, and some other process performs a V on
it, then only one of the N processes will be allowed to

proceed.

3T

In MPIL1, a semaphore may be defined as a pointer to a
STRUCT consisting of two components, viz.
SEM <- PTR(SENM/ELT); .
SEM\ELT <~ STRUCT(COUNT:INT,WLIST:ARQFIR);
The first component COUNT is an integer that specifies the
semaphore’s value. The second component 1is a queue of
ACTRCs (linked together through their NKEXT components) which
corresponds to those paths which have started, but not yet
completed, P orerations on the semaphore. Hence, the WLIST
holds all paths whose progress has been delayed due to the
nor—positivity of the semarhore. Here, the indivisibility
of P and V is effected by performing the operations in the
environment of the CI, where the data structures can be
safely ggéified. The MPEL1 definitions of P and V are as
follows:
P<-EXPR(X:SEM; NONE)
BEGIN
DECL Y:SEM\ELT BYREF VAL(X);
MYPATH §i PCIAR => CIA("P",X);
Y.COUNT GT O => Y.COUNT <- Y.COUNT-1;
ENTERL(LASTRUN, Y.WLIST);

LASTRUN <- NIL
END;

V <~ EXPR(X:SEM; NOMNE)
BEGIN
DECL Z:ARPTR;

¥*
The rode ARCFTR is defined as a STRUCT(FIRST:ARPIR,
TEASTsARDTR Jy6:Ts DuJeds

¥* ¥*

Recall that PCIAR points to the CI’s ACIRC and that
ENTERL adds the path which is its first argument to the end
of the queue specified by its second argument, I

54

Appendix 3.

3-8

b

DECL Y:SEM\ELT BYREF VAL(X);
MYPATE # PCIAR => CIA("V",X)
Y.COUNT <— Y.COUNT+1;

Y .WLIST.FIRSI=NIL => NOTHING;

NT Complete the P operation for
one delayed path;

Y.COUNT <~ Y.OOUNT-1;
Z <~ Y.WLIST.FIRST;
Y.WLIST.FIRST <~ Y.WLIST.}IRST.NEXT;
Y.WLIST.FIRST=NIL -> Y.WLIST.IAST <~ NIL;
ENTERL(Z, INACTIVEQ);
RUNSET\FLAG <~ TRUE

END;

A P operation is realized by CIA calling the same
procedure P with the SEM as argument. Hence, if a path
executes P(S), P(S) is also executed in the CI. Here, if
the count is positive, then it is decremented by one and the
path is allowed to continue. Otherwise, the path is entered
on the semaphore’s WLIST and LASTRUN is set to NIL to
indicate that the path cannot proceed. The scheduler will
choose some other path to run. Thus, the P operation

performed by the path is not allowed to ‘complete.’

The V operation causes V(S) to be applied in the CI

environment. Here, the count is incremented by one. If the
WLIST is empty, then no further action is taken. Otherwise,
the procedure ‘completes’ the delayedé P operation for some
path on the WLIST by decrementing the count, removing the
path from the list, adding the path to the inactive set so
that it will be scheduled, and setting RUNSET\FYLAG to TRUE
to indicate to the scheduler that there exist additional

paths to be run.

9

If a semarhore, say S, is initialized to 1, then it may
be used to control a single-access resource, provided that
all paths perform a P(S) before accessing the resource and a
V(S) upon completion. Hence, once a path has performed a
P(S) all others will be prevented from accessing the
resource until the corresponding V(S) is performed. If,
however, a semaphore S is initialized to some n>1, then n
processes may perform P(S) before the semaphore becomes
nor—positive. A semaphore initialized in this way can be
used to represent the n-fold availability of a resource,

(e.g. n tape drives.)

Saul and Riddle [Sa71] have shown that if Pand V are
allowed to return values, then the number of different
semaphores and the number of references to semaphores in a
program can tbte reduced. For example, a 1list of free
‘buffers’ could be associated with &a semaphore and the
semaphore initialized to the number of buffers. The P
operation removes one buffer from the 1list and returns a
pointer to the buffer as its value. The V operation takes
an additional argument which is a pointer to a buffer to be
returned to the free list. Hence, a single extended
semaphore is used toth to maintain a count of the free
buffers and to synchronize access to a free list as opposed
to having one semaphore maintain the count and a second
synchronize access. The definition of extended semaphores,

as described atove, is straightforward in MPEL1. The mode

3~10

SEM\ELT can be modified to include a pointer to the list and
the definition of P (V) can be changed to remove (return)

buffers to the list while control resides in Cl.

Variations on P and V, such as wait and cause in
OREGANO [Be'l1], can be constructed in MPEL1 by defining the
appropriate data structures and then using the CI to provide
indivisble operation coupled with a mechanism for indicating

that a previously blocked path may now continue execution.

3+ PARALLEL PROCESSING

In this section we will discuss a set of rprocedures
which may be*used to manage paths which are being evaluated
concurrently, 1L as asynchronous processes. These
include procedures which allow for the creation,
synchronization, suspension, and termination of parallel

paths.

For this section we will assume that the following
components have been added to the definition of ACIRC, i.e.
they are extended components, c.f. 2.2.1.

ACTRC<~STRUCT(<..
PAL :STRUCT(OWNER : ARPTR, WLIST : ARQPTR) ,

*

If two paths are to be evaluated concurrently, then
they may be evaluated simultaneously, sequentially in any
order, or in an interleaved <fashion. In particular, no
assunption is_made as to the relative speeds of (the
evaluations of) the paths. This assumption 1is consistent
with standard definitions of parallel processing [Li68a].

311

PVALRET : BOOL,PVALQ : ARQPTR , FAVAL:REF, ...);

PAL is a path-access-lock which is wused to synchronize

access to the activation record and environment of the path.
PVALRET is TRUE if and only 1if +the path has returned a
value. PVAIQ is a queue of paths waiting for the path to
return a value. PAVAL is a pointer to the ‘value” of the
path. These components will be discussed in more detail

below.

The procedure CREATE takes a single argument which is a
procedure call to be evaluated asynchronously with respect
to the current path. CREATE allocates a new path, PAPs the
procedure call into its environment and then enters the path
on the INACTIVEQ so that it will be assigned to a rrocessor.
liote that RUNSET\FLAG is set to TRUE to inform the scheduler
that additional paths may be scheduled, c.f. 2.%Z.3. The
TERMINATION\FORM will be discussed later in this section.
The current path and the CREATEQA path are evaluated
concurrently.

CREgggfﬁEXPR(CREATET:FORM UNEVAL; ARPTR)
DECL CREATEP:ARPTR;
CREATEP <- PAP(CREATEF, GET\PATH(1));
CREATEP. TERMINATION\FORM <-
QUOTE(TERMV (LAST\VALUE, MYPATH)) ;
NT See the discussion of TERMV below;
ENTER\INACTIVEQ(CREATEP);
CREATEP
END;

ENT%R\%NACTIVEQ(P:ARPTR;NONE)
FGIN
MYPATHHPCIAR => CIA("ENTER\INACTIVEQ", P);

=12

EiTERL(P,INACTIVEQ) ;
RUNSET\FLAG <~ TRUE
END;

The procedure RESUME, which is used to transfer control
between coroutines, uses the primitive PAF without
determining if the path PAPed into is active or not. RESUME
assumes that the path 1is not active. This assumption is
reasonable since in a coroutine relationship only one path
is active at a time. With asynchronous paths, however, the
above assumption is not valid -— two taths may be active
simultaneously. If a path attempts to PAP a procedure into
the environment of an active path, then an error occurs,
Bt e Vs An error also occurs if two paths
simultaneously attempt to PAP procedures into the
environment of a third. In general, a mechanism is required
which allows one path to examine and modify another one
without interference from any other concurrent path. In
addition, a control function is required which will force a

path to become not active and prevent it from becoming

active for some period of time.

We could associate a binary semaphore, i.e. one whose
COUNT is initialized to 1, with each path to synchronize
access. V¥When one rath wishes to access another, then it
performs a P operation on the path’s semaphore, modifies the
path, and then performs a V operation to release the path.
In the last section, however, we observed that extended

semaphores are sometimes more convenient than pure ones.

=13

Here, althourh semaphores are sufficient to provide the
desired synchronization, they are deficient in one respect:
the semaphore does not specify who has access to the path.
It only records the fact that some path is accessing it.
The 1lack of information can be inconvenient in certain
situations. Ior example, if a path PO passes a path FP1 to
some procedure f, viz.
£(p1)

and f must modify the environment of P1, then f has no way
of knowing whether or not FO already has access to the path.
In particular, if FO has access to P1, having performec¢ a P
on the aprropriate semarhore, and 1 performs a P on the same
semaphore, then PO will be permanently tlocked. Hence, 1
would have to take a second argument which specifies whether

or not PO already has access to Pl.

In lieu of P and V, we will use the procedures LOCKP
and UNLOCKT to synchronize access to a path. IOCKF takes an
ARPIR as argument and returns FALSE if the path executing
LOCKP already has access to the path. Otherwise, it returns
TRUE as soon as the path may have access. Hence, a
procedure can determine whether or not the path in which it
is called already had access at the time it was called.
UNLOCKP allows some other path to have access to the path
which is the argument to UNLOCKP. LOCKP and UNLOCKP use the
PAL field of the activation record which is a structure that

consists of an OWNER field and a WLIST (as in a SEM\ELT.)

3-14

The OWNER field is either NIL (if no path has access) or is

the ARPTIR of the path which has-access. LOCKP
are defined as follows.

LOCKP<- EXPR(P:ARPTR; BOOL)
BEGIN
DECL OWNER:ARPTR EYREF P.PAL.OWNER;
MYPATH#PCIAR =>
BEGIN
OWNER=MYPATH => FALSE;
NT Already locked by this path;
CIA("LOCKP", P);
TRUE
END;
BEGIN
OWNER=NIL => OWNER<-LASTRUN;
ENTERL(LASTRUN, P. PAL.WLIST) ;
LASTRUN <~ NIL
END;
TRUE
END;

UNLOCKP <- EXPR(P:ARPTR; NONE)
BECIN
DECL OWNER:ARPTR BYREF P.PAL.OWNER;
DECL Q:ARPTR;
MYPATE # PCIAR =>
BEGIN
OWNER=NIIL, => NOTHING;
CIA(“UNIOCKP",P)
END;
(Q<=P.PAL.WLIST.FIRST)#NIL =>
BEGIN
REMOVE(Q,P.PAL.WLIST);
HT @l A fendix 25
ENTERL(Q, INACTIVEQ);
NT Allow th to be scheduled;
RUNSET\FLAG <- TRUE
P.PAL.OWNER <~ Q;
NT Q has access to P;
END;
OWNER <- NIL
NT No paths waiting;
END;

and UNLOCKP

Once a path PO has LOCKPed another, say P1, no other

path can access Pl. Before PO can modify P1, however, it

must insure that P1 is not active and that

it will not

>=15

become active while being modified. The procedure SUSPEND
may be used to achieve this effect. If the path to be
suspended is not active, then SUSFEND simply sets the
DORMANT field of its ACIRC to TRUE to indicate to the
scheduler that the 1ath should not be scheduled, c.f.
Sl If the path 1is active, then SUSPEND sends a
"PRO\PRO" interrupt to the processor which is evaluating the
path and adds a form to the aprropriate PIVECT ehtry. The
form will be evaluated when the processor transfers control
to the CI due to the "CI\TO\PATH" pseudo interrupt, c.f.
P2 LT The evaluation of the form causes the DORIANT field
of the path being suspended to be set to TRUE, and allows

the suspending path to continue execution.

SUSPEND <~ FXPR(P:ARPTR; NONE)
BEGIN
DECI, E:BOOL;
DECL GQ:ARPTR;
DECL PROC:INT;
MYPATH # PCIAR =>
BEGIN
B <~ LOCKP(P);
NOT P.DORMANT -> CIA("SUSPEND",FP);
B => UNIOCKP(P)
ENL;
LASTRUN=P =>
BEGIN
P.DCRMANT <~ TRUE;
ENTER\ INACTIVEQ(P) ;
UNLOCKP(P) ;
LASTRUN <~ NIL
END3

NT Determine if P is active

FOR I <~ 1,..., NPROC TILL PROC>O DO
[) PAVECT[I].CURPATH = P => PROC<-I (];
PrhOC = O => P.DORMANT<-TRUE;
NT P is not active;
PIVECT[PROC] <~
CONS(IIST("SUSPREQ",

3-16

ALLOC(REF LIKE
ALLOC(ARPTR LIKE LASTRUN))),
PIVECTEPROC HE
NT The form is (SUSPREQ P), where P
is the suspending path;

STOP\FATH(P) ;
LASTRUN <~ NIL
END;

SUSPREQ <~ EXPR(P:ARPTR; NONE)
BEGIN
ENTER\INACTIVEQ(P);
LASTRUN.DORMANT <~ TRUE;
ENTER\ INACTIVEQ(LASTRUN) ;
LASTRUN <~ NIL
END;
CONS <~ EXPR(A:FORM, B:FORM; FORM) ALLOC(DTFR OF A,E);
LIST <~ FXPR(F:FORM LISTED; FORM) (LIST1(F));
LIST1 <~ EXPR(F:FORM; IORM)
BEGIN
F = NIL => NIL;
CCNS(EVAL(F.CAR),LIST1(F.CDR))
END;
If the path (PO) calling SUSPEND has already LOCKPed
the path to be suspended (P1) and PO#P1, then upon return
from SUSPEND PO still has access to the suspended path. If),
however, PO=P1 (self-suspension,) then SUSPEND will UNLOCKP

the path.

The procedure CONTINUE allows a SUSPENDed path to
continuve execution. CONTINUE simply sets the DORMANT field
of the ACTRC to FALSE. If the path is on the INACTIVEQ then
it will be scheduled as usual. Otherwise, it will only
continue execution when it 1is put on the INACTIVEQ.

CONTINUE leaves the PAL in the state it was in when CONTINUE

was called. CONTINUE returns TRUE or IALSE as the path

or was not suspended.

CONTINUE <~ EXPR(P:ARPTR; BOOL)
BEGIN
DECL R, B:BOOL
MYPATH#PCIAR =>

BEGIN
R <~
LEGIN
B <~ LOCKP(P);
NOT P.DORMANT => FALSE;
CIA("CONTINUE",P);
TKUE
END;
g->ummxﬂpn
END;
P.DORMANT <- FAISE

END;

Using the control procedures described above,

=17

was

can

now define PAPPLY - a procedure which can be used to PAP a

procedure call into the environment of a concurrent path.

PAPPLY uses ILOCKP to obtain access to the path.

It then

SUSPENDs the path if necessary, PAPs the procedure call, and

then allows the path to continuve execution if it was not

suspended previously.

PAPPLY <- EXPR(PAPPLYF:¥ORM UNEVAL; PAPPLYP:ARPTR; ARPIR)

BEGIN
DECI, PAPLYB, FAPPLYSB:BOOL;
PAPPLYB < 1OCKP(PAPPLYP);

NOT PAPPLYP.DORMANT —>
BEGIN
PAPPLSB <~ TRUE;
SUSPEND(PAPPLYP)
END;
TAP(PAPPLYF, PAPPLYP);
PAPPLYSB ~> CONTINUE{PAPPLYP);
PAPPLYB —> UNTOCKP(PAPPLYP)
END;

It is sometimes useful for a path to ‘return’ a value.

3-18

For example, one path might CREATE a set of paths to be
evaluated concurrently, wait for all of them to terminate
and then wuse the values computed by the paths. The
procedures WAITV and TERMV, in conjunction with the ACIRC
components PVALRET, PVAIQ, PAVAL, can be used to wait for a
path’s value and to specify the value to be returned by a

path upon termination, respectively.

WAITV examines the PVALRET component of the path X. If
it 1is TRUE, then the path has terminated and the value
associated with the path, which is referenced by the PAVAL
component, 1is returned immediately. Otherwise, X has not
yet terminated. In this case, the current path is queued on
the PVAIQ of X to indicate that it is waiting for X’s value
and LASTRUN is set to NIL to indicate that the current path
is blocked. WAITV uses LOCKP to insure that X does not
terminate while it is examining the ACIRC.

WAITV <~ EXPR(X:ARPTR;REF)
BEGIN
DECL Y:REF;
DECIL, B:BOOL;
MYPATH # PCIAR =>
BEGIN
L: B<-IOCKF(X);
X.PVALRET =>
BEGIN
Y<-X.PAVAL;
§k>UNLOCKP(X);

END;
CIA("WAITV",X);
GOTO L
END;
ENTERL(LASTRUN, X . PVAIQ) ;
NT Add the path to the queue of paths
waiting for the value of X;
UNLOCKP(??;

b ol &)

NT Allow other paths to access X;
LASTRUN <~ NIL
END;

TFERMV can be used to specify that a path P 1is to be
terminated and that a value V is to be the value associated
with the path. TERMV sets PVALRET to TRUE to indicate that
a value has been returned. If the mode of V is not of class
PTR, then V is copied into the heap and the wvalue of the
path is a pointer to the copy. In any case, a rointer to
the path’s value is stored in PAVAL. All paths waiting for
the value (and termination) of the path are added to the
INACTIVEQ so that they may continue execution. DELETE is
called to indicate that the path is no longer eligible for
evaluation. TERMV uses LOCKP to insure +that no path
attempts to WAITV for the path’s value while it is in the

process of terminating the path.

A CREATEd path may return a value implicitly by exiting
the outermost procedure call in its environment, in which
case the value returned 1is the result returned by the
procedure. When control wunderflows in this way, the

TERMINATION\FOEM ‘TERMV(LASTVALUE, MYPATH)’ is evaluated

which produces the desired effect, c.f. 2.2.6.

TERMV <- (V:ANY, P:ARPTR; NONE)
BEGIN
DECL, Q:ARPIR;
DECL B:BOOL;
B <~ ILOCKF(P)
P # MYPATE -> SUSPEND(P);
P.PVALRET => TERM\ERROR();
V £ NIL ~>
P.PAVAL <~
BEGIN

3~20

MD(V).CLASS=FPTR* => V;
ALIOC(MD(V) LIKE V)
END;
P.PVALRET <- TRUE;
Q <- F.PVAIQ.FIRST;
*

WHILE Q { NIL DO
BEGIN

REMOVE(Q PVALQB;
ENTER INACTIVEQ(Q
END9<-P PVALQ FIRST
P{MYPATH => [)DELETE(P); B => UNLOCKP(P) (];
DELETE(P)

NT DELETE is described below;
END;

The procedure DELFTE may be used to indicate that a
concurrent path is no Jlonger eligible for evaluation.
DELETE suspends the path if necessary, and then calls
DELETE\PATE. Self-deletion always leaves the PAL unlocked
so that other paths may access the deleted path’s ACTRC.

DELETE <~ EXPR(P:ARPTR; NONE)

BEGIN
DECL E:BOOL;
MYPATH{PCIAR =>
BEGIN
B <~ IOCKP(P);
P{{MYPATH -> SUSPEND(P);
CIA("DELETE",P);
B -> UNIOCK(P)
END;
DFLETENPATH(P) ;
P=LASTRUN =>
BEGIN
P.DORMAKT <- TRUE;
UNLOCKP(P) ;
LASTRUN <— NIL
END
EiiDs

Since the procedure CREATE uses the control primitive

PAP to initialize the computation to be performed by the

*
‘WI'ILE £ DO g° is an abbreviation for an iteration with

a zero step, l.e. 1t is equivalent to “FOR I<=ls1s sass N
WHILE £ DO g°.

321

concurrent path, there are no restrictions placed upon the
evaluation of paths so CREATEd. In particular, there are no
constraints placed upon the intra~-path control of an
individual path. Such freedom is feasible since no path can
directly reference the environment of another. All shared

data lies in the heap.

A fork statement, c.f. 1.2.7, can be used to produce a
multi-path organization in which one control rath creates a
set of paths to be evaluated concurrently and the creator
path resumes execution only after all FORKed control paths
have completed their execution. In this restricted control
recinme the YORKed paths may obtain references to the
environment of their creator since the creator is
constrained to wait for their termination. The procedure
FORK can be used to effect this organization. FORK takes a
list of rrocedure calls as its single argument. For each
element of the list it allocates a dependent path, c.f.
2.2.8, and DPAPs the procedure call into the path. The new
paths are put on the INACTIVEQ so that they will be
evaluated concurrently and then FORK waits for all of the
paths to terminate. TFORK returns a ROW(REF) whose
components are the values returned (in the sense of WAITV
and TERMV) by the FORKed paths.

FORK <~ EXPR(FORKL:FORM LISTED; ROW(REF))
BEC%ECL FORKN:INT BYVAL LENGTHL(XORKL);
DECL FORKF:ROV(ARPTR) BYVAL

CONST(ROW(ARPTR) SIZE FORKN);
DECL FORKV:ROW(REF) BYVAL

322

CONSTgROW(REF) SIZE FORKN);
FOR FORKI<-1, <., IORKN DO
BECIN
FORKP[FORKI]<-DPAP(FORKL. CAR,
MDEP(GET\PATE(1)));
FORKP[FORKI]. TERMINATION\ FORM<~
QUOTE(TERMV (LAST\VALUE,MYPATE)) ;
ENTER\INACTIVEQ(FORKP[FORKI]);
NT Start the gath;
FORKL<-FORKL. 3
NT Next procedure call
FORKI#NIL => NOTHING;
FOR I<-1 ,..., FORKN DO
FORKV[I]<—WAITV(FORKP[I])
NT Wait for all paths to terminate;
END;
FORKV
NT Return the ROW of values;
END;

LENGTHL <- FXPR(F:FORM;INT)
BEGIN
F = NIL => 03
1 + IFNGTEL(F.CDR)
END;

The advantage of the FORK organization is that it
allows an argument to a concurrent process to be passed
BYREF, even if the argument is a stack object. Hence, a
path can construct a “large object’ on its stack and then
pass it to concurrent paths without causing the object to be
copiede With CREATE it would be necessary to allocate the
object in the heap in order to allow concurrent paths to
access it. FYor example, suppose we would like to compute

C <~ (A MM B) MA (B MM A);
where A, BE and C are NxN matrices and MM and MA represent
matrix multiplication and addition, respectively. ILet us

also assume that we would like to perform the two matrix

muwltiplications concurrently and to compute the sum of the

3=23

two intermediate matrices as soon as each row is available.
lie will create 3 FORKs. The first fork will compute B MM A,
the second will compute A MM B, and the third will compute
the sum. The first two forks will signal the third, using
senmaphores, every time they have completed a row. Assuming

that M <~ ROW(N,ROW(N,INT)) and that N, A, b and C are
defined in the environment, we have

BEGIN
DECL LA,AE:M;
DECL SAD,SBA:SE‘ M BYVAL ALLOC(SEM\ELT);
FORK (MUI.{A, B, AB,SAB),

MUL(B,A,EA,SBA),

suyzc AB,BA,SAB,SEA))

END;

where
MUL <~ FXPR(X:M, Y:M, Z:M, S:SEM; NONE)
BEGIN
FOR I<=1,...,N DO
FOR J<_1’000,N DO

BEGIN
Z[I [J} <{-
FCIN
FOR L<-1,...,N DO
5 S<=S + X[JEL] * ¥Y[L]Ed s
END'
vV(s)
NT Indicate row completed;
END
END;
and
SUM <~ EXPR(RES:M, X:M, Y:M, SX:SEM, SY:SEM; NONE)
BEGIN
FOR I <~ 1,...,N DO
BEGIN
P(SX);
NT Wait for row of X;
P(SY);

NT Wait for row of Y;
NT Row I is ready;
FORJ <~ 1,...,N DO
RES{(I][J] <= X[IJ[I}HY"1"[J]

3-24

END
END;

Since FORK is used, the matrices A, B, C and AB are not

copied when passed as arguments to the concurrent paths.

4. SIMULATION

In this section, we will present a set of MPEL1
procedures which may be wused to effect a clock driven
simulation. We will use the organization and terminology of
the simulation language SIMUA [Da66]. Hence, this section
also demonstrates how the control structure of an existing
language may be synthesized using the primitives and
framework of MPEL1.

In SIMULA, c.f 1.2.1, a simulation consists of the
processing of a time ordered sequence of events (called

event notices.) Associated with each event notice 1is the

system time at which it is to occur and a single process
whose evaluation constitutes the “processing” of the event.
Processes may delete event notices, thereby canceling the
event, and schedule new events by including an event notice
(with an associated process) in the sequence of event
notices. Although many events may be set to occur at the
same system time, the assoclated processes are evaluated

sequentially. Hence, only one process 1is active at any

3-2

given time.

Before we can be more precise, we must introduce some
data definitions.
SEPIR <- PTR(SET\DESC, ELT\DESC);
SET\DESC <— STRUCT(SUC:SEPTR, PRED:SEPTR);
ELE\DESC <- STRUCT(SUC:SEPTR,
PRED:SEPTR,
IROCESS:ARPTR) ;
SET <~ PTR(SET\DESC);
ELEMENT <- PTR(ELE\DESC) ;
EVENTN <- PTR(EVNT\LESC) ;
EVNT\DESC <- STRUCT(EVTIME:INT,
NEXTEV:EVENTN,
FPREVEV:EVENTN,
ELM:FLEMELT);
ACIRC <= (ase+y EVNSEVENTN, «<.);

NT EVil is an extended component;

A SET describes an ordered sequence of set ELEMENTS.
There 1is one permanent member of the set, namely, the
SET\DESC. If & is a SET, then S is emrty if and only if
S.PRED=S.SUC=S. Otherwise, S and the ELEMENTs of the set
form & doutly-linked circular list. Each ELEMENT contains a
PROCESS field which points to the ACIRC of a path. Hence,
we may say that a SET describes a set of processes. Since
the association is indirect (through an ELT\DESC) a process
may be a member of more than one set. An FLEMENT, however,

may be a member of only one set at a time.

326

We define four procedures which operate on sets. FIRST
and LAST return the first and 1last elements of a set,
respectively, or NIL if the set is empty. INCIUDE adds an
ELFMENT to a SET {(at the “end’) and EXTRACIT removes an
FLEMENT from a SET.

FIRST <~ EXPR(S:SET; ELEMENT)

BEGIN
S SUC=S => NIl
S.SuC
END;
LAST <- EXPR(S:SET, ELEMENT)
BEGIN
SL.EREISS =2 NIL:
S.PRED
WD
INCIUDE <~ EXPR(E:ELEMENT, S:SET; NCHE)
BEGIN
E.PRFD <~ S.PRED;
E.SUC <~ S;
S.PRED.SUC <~ Ej;
S.PRED <~ E
END

EXTRACT <~ EXPR(E:EIEMENT; NONE)
EEGIN
E.PRED=E.SUC=IKIL => NOTHING;
F.SUC.PRFL <~ E.PRED
END
An event-notice (EVENTN) is a pointer to an object of
*

mode EVNT\DESC. Associated with each EVENIN 1is the system
time at which it is to occur (EVTIME), pointers to the next
and previous event notices or NIL if the event notice is the
last or current one, and an ELEMENT whose PROCESS field
gives the process (path) to be evaluated. The global

¥*

To shorten the discussion, we will not distinguish
between ointers and the objects to which they point.

327

variable CURRENT, which is of mode EVENTN, references the
doubly-linked 1list of event notices which 1is ordered
according to non-decreasing values of the EVTIME comporents.
This 1list, called the sequencing set (SQS), describes the
events which constitute the simulation. If a process is not
referenced from the SQS, then it is said to be passive and
its EVN component is NIL. Otherwise, the EVN component
points to the event notice which references the process, i.e
if C is an EVENTN in the SQS then
C.ELE.PROCESS.EVN = C
Hence, a process may be associated with at most one event

notice.

The 7process currently being evaluated 1s the one
referenced by CURRENT.ELE.PROCESS. The current system time
is CURRENT.EVTIME. The NOFIX operators CUR and TIME return
the ELEMENT and the system time associated with the CURRENT
event notice, respectively. The time reference of a EVENIN
may be obtained using the procedure EVIIME.

CUR <~ EXPR(;ELEMENT) CURRENT.ELM;
EVTIME <- EXPR(E:ELEMENT; INT)

BEGIN
E.PROCESS.EVN=NIL => O;
E.PROCESS.EVN.EVTIME
END3;

TIME <- EXPR(;INT) (EVTIME(CUR));
We may now describe the procedures which operate on the
SQS, and thus provide the means whereby processes can affect

the scheduling of events. 1In all cases, !l procedures take

5-2€

ELEMENTs as argunents. Hence, references to event notices

or processes are always indirect.

The 7procedure CANCEL removes the event notice
associated with the referenced processes (if one exists)
from the SCS, thereby canceling the event and making the
process passive. TERMINATE has the same effect as CANCEL,
except that the process may never te reactivated, 1i.e. it
is 1neligible for evaluation in the sense of DELETE\PATH.
CA..CEL(CUR) will cause control to be transferred to the next
process on the C&QS; the associated event notice becomes
CURRENT. In this case, CANCEL uses the control primitive
CIA to transfer control to the approrriate process.

CANCIT, <~ IEXPR(F:ELFMENT; NONE)
BEGINK
¥.PPOCESS. EVN=NIL => NOTHING;
DFLEVE(E.PROCFESS.EVN) => CIA("PASS*,CURRENT)
EiND

PASS <~ IXPR(EV:EVEKTN; NONE)
BEGIN
LASTRUN <- EV.ELii.PROCESS;
LASTRUN=NIIL => SIMERROR()
END3

DELEVH <- EXPR(EV:EVENTI; BOOL)
BEGIN

IV.PROCESS.EVIK <~ NIL;

RNT Path is passive;

FV#CUERRENT => [)EV.PREVEV.NEXIEV<—EV.REXTEV;
EV.NEXTEV=NII=> FALSE;
EV.SUC.PREVEV<-EV.PREVEV;
FALSE(];

CURRENT <- CURRENT.NEXTEV;

NT CURRENT is deleted;

CURRENT.PREV<~NIL;

TrUFE

NT Return TRUE if the current EVENTHN

— has been deleted;

3-29

TERMINATF <— EXPR(E:FLEMENT; NONE)
BEGIN
E.PROCESS.EVN=NIL => NOTHING;
DFLEVN(E.PROCESS.}FVN) => CIA(UTERMPASS", CURRENT);

CJA("LELETE\PATH",E.PROCESS)
END;
TERMPASS <~ EXPR(EV:FVENT; NONE)
BEGIN
DFLETF\PATH(LASTRUN) ;
NT Path may not be reactivated;

PASS(FV)
END;

The procedure NEWFROC takes a procedure call to be
cvaluated in the environment of a new process (in the sense
of PAP.) NFWPROC creates a new ELEMENT and a new path and
uses PAP to initialize the environment of the path. The
TERMINATION\FORM is set to be TERMINATE(CUR). Hence, exit
from the PAPed rprocedure will cause the process to be
TERMINATEd. NEWPROC returns the ELEMENT which references
the new passive process.

NEWPROC <~ EXPR(F:FORM UNEVAL; FLEMENT)
BEGIN
DECY, F:ELFMENT BYVAL
ALLOC(ELE\DESC OF NIL,NIL,GET\PATH(1));
E.PROCESS. TERMINATION\FORM <~

QUOTE(TERMINATE(CUR)) ;
PAP(F,E.PROCESS) ;

FiD;

The two procedures, ACTIVATE and REACTIVATE may be used
to schedule future events. In both cases, the (first
arpument F (an FLEMENT) specifies the process to be
associated with the new event. In the former case, the

process nust be passive. Otherwise, no scheduling takes

place. In the latter case, if the process is not passive,

=30

then the associated event notice is deleted and the event is
essentially re-scheduled. The other arguments (T,AFTER,E2)
to both procedures determine where in the SQS the new event
notice, say N, is to be inserted. If E2 is non—null and if
E2.PROCESS is not passive, then N 1is inserted before or
after E2.FLE.PROCESS.EVN as AYTER is FAISE or TRUE,
respectively. Otherwise, if E2 is null, then N is inserted
before or after all event notices at time T (T=0 => TIME) as
AFTER is FALSE or TRUE. Hence, if E is an element whose
process 1is passive, then all of the following transfer
control to the process referenced ty E.

ACTIVATE (E)

ACTIVATE(E, TIME)

ACTIVATE(E,O,FALSE, CUR)

REACTIVATE <-
EXPR(E:ELEMENT, T:INT, AFTER : BOOL, F2 : ELEMENT ; NONE)
LFGIN

12§11, AND E2.PROCESS.EVN=NIL => NOTHING;
b.PROCES? .EVN#NIL => DELEVN(E.PROCESS. EVN),
SCHEDULE(E, [)E2#/NIL => EVTIME(E2);
1=0 => TIME;
T(], AFTER, E2)
END;

ACTIVATE <~
EXPR(E:FLEMENT, T:INT, AFTER:BOOL, E2:ELEMENT; NONE)
BEGIN
E2{/NIL AND E2.PROCESS.EVN=NIL => NOTHING;
E.PROCESS.EVN#NIL => NOTHING;
SCHEDULE(E, [)E2#NIL => EVTIME(E2);
=0 =0 TIMES
T(], AFTER, "E2)
END;

D31

SCHEDULE <-
EXPg(EiﬁLEMENT, T:INT, AFTER:BOOL,E2:ELENENT; NONE)
FG
DECL TE: INT BYVAL TIME;
DECL SC, C:EVENTN BYVAL CURRENT;
DECL N:EVENTN LYVAL
ALIOC(EVENT\DESC OF T,NIL,NIL,E);
BEGIN
E2 § NIL =>
INSERT(N,E2.PROCESS.EVN,AFTER) ;
T LT TIME => SIM\ERROR();
L: C.NEXTEV = NIL => INSERT(N, C, AFTER);
AND(C.EVTIME LT T,
C.NEXTEV.EVTIME GE T,
NOT AFTER)
OR
AND(C.EVTIME LE T,
C.NEXTEV.EVTIME GE T,
AFTERE =>
INSERT(N,C.NEXTEV,FAILSE);
C <~ C.NEXTEV;
GOTO L
END;
N.FLM.PROCESS.EVN <- N;
NT Process is not passive;
DCURRENT # SC => CIA("PASS",CURRENT);
END;

INSERT <~
EXPR(NEW:EVENTN, OLD:EVENTN, AFTER:EOOL; NONE)
BEGIN
AFTER =>
BEGIN
NEW.NEXTEV <- OLD.NEXTEV;
NEW.PREVEV <- OLD;
OLD.NEXTEV <~ NEW;
NEW.NEXTEV { NIL =>
NEW.NEXTEV.PREVEV <— NEW;
END;

NEW.NEXTEV <- OLDj;

NEW.PREVEV <- OLD.PREVEV;

OLD.PREVEV <~ NEW;

NEW.PREVEV {f NII, => NEW.PREV.NEXTEV <~ NEW;
OLD = CURRENT => CURRENT <~ NEW

END;
The procedure HOLD makes the current process be
inactive for X units of system time.

HOLD <~ EXPR(X:INT;NONE) (REACTIVATE(CUR,TIME+X,TRUE));

=ge

To illustrate the use of the procedures described
above, we will rpresent a set of MPEL1 procedures which

describe a simple epidemic model (as defined in [Da66].)

A contagious, nonlethal disease is circulating through
a fixed size POPULATION. To combat the disease, certain
actions are taken by a public health organization. When an
individual 1is infected, he is noncontagious for INCULATION
days (during which he has no SYMPTOMS,) after which he is
contagious for LENGTHI days (during which he has SYMPTOMS.)
Each DAY of the latter period he may seek TREATMENT, in
which case he is immediately and permanently cured, (i.e he
becomes immune.) The probability of seeking treatment on any
given day 1 1is PROBIREAT[I]. Each contagious sick person
has some number of CONTACTs per day. Iror each contact, the
probability of infecting an uninfected person is PRINF. An

untreated infection terminates after LENGTHI days.

Two types of processes are created — one to represent a
SICK\PERSON and one to represent the TREATMENT of an
individual. In the former case, each SICK\PERSON has an
environment (ENV) which is the set of people he has
infected. TREATMENT processes rerresent the public
countermeasures taken against the disease. A patient is
removed from his environment. If he has SYMPTOMS then he is

immediately cured; his LNV is searched and each member is

treated. Otherwise, the patient is given a ‘cheap pill’

=50

which has a probability PROBMASS of success. His ENV is not
searched. The simulation ends after SIMPERIOD days.

POPULATION, LINGTEI, CONTACTS, SIMPERIOD, INCUBATION,
PRINF, PIIOBMASS, and PROBTREAT are assumed as global
constants. In addition, U1, U2, U3 and U4 are NOFIX
operators vhich rerresent different streams of pseudo-random
numbers. The procedure call DRAW(PROB,U1) makes a random
drawing with protability PROE of success, in which case it
returns 4TNUE. The rprocedure call POISSON(CONTACTS,U2)
returns a random drawing from the Poisson distribution with
mean CONYACTS. UNINFECTED is used to record the number of

UNINXECTFD peorle in the population.

The simulation begins with one path that executes the
block presented below. The SQS is initialized to contain a
single event-notice for the current path. The first
SICK\PH:ISClI process is activated, after which the initial
path holds for the duration of the simulation.

BEGIN
CURRENT <~ ALLOC(EVNT\DESC Ok
0, NIL,HIL,ALLOC(ELEM\DESC Of NIL,NIL,MYPATH);
CURRENT. ILi4. FROCESS.EVN <~ CURRELT;
NT Not passive;
UNINFECTED <~ POFULATION;
ACTIVATE(NEWPROC(SICK\PERSON()));
HOLD(SIMFERICD)
1.N1;

The procecdures SICK\PLRSON, INFECT, and TREATMENT are

defined as follows.

SICK\PERSON <~ EXPR(; NONE)
BEGIN
DECI, SYMPTOME : BOOL;
DECL ENV:SET BYVAL ALLOC(SET\DESC);
UNINYECTED <~ UNINY¥ECTED - 1;
SYMPTOMS <~ FALSE;
HOID(INCUBATION) ;
NT Wait till the end of the
incubation period;
SYMPTOMS <~ TRUE;
FOR DAY <~ 1, <e.. o LENGTHI IO
BFGIN
NT Either seek treatment or infect
some contacts;

DRAW PROBTEATESAYA
ACTIVATE(N &(TREATMENT(CUR))),

INFECTgPOISSON(CONTACTS ,U2),ENV);
HOLD(1
NT Wait one day;
END
D3

INIECT <~
EXPR(N:INT, S:INT; NONE)
BEGIN
NT N is the number of contacts;
NT S is the ENV;
FOR I <~ 1, «.. 4, N DO
BEGIN

DRAW(PRINF * UNINFECTEL/POFULATION,U3) =>

BEGIN

INCLUDE(NEWPROC(SICK\PERSON()),S)3

NT Infect one person;
ACTIVATE(LAST(S))
NT Start him now;
END
END
END3

3-34

TREATMENT <~
EXPR(PATIENT: ELEFMENT; NONE)
EEGIN
DECL ENV:SET;
DECI, SYMPTOMS:BOOL ;
FXTRACT(PATIENT);
NT Remove patient from ENV;
FNV <~ PFETCH(“ENV",PATIENT.PFOCESS);
SYMPTOMS <~ PFETCH("SYMPTCMS",PATIENT.PROCESS);
NT PYEICE the values of SYMPTOMS
and ENV from the SICK\PLRSOIl being treated;
SYMPTOMS =2
BFCIN
TERMINATk.(PATIENTé :
WHILE FIRST(ENV) NI, IO
NT Treat each person in the ENV;
(ACTIVATE(NEWPROC(TREATMENT(FIRST(ENV))))
NT FIRST(ENV) is deleted from the set
ENV upon activation of the process;
END;
D AL (FROBMASS,U4) => TERMINATE(PATIENT)
i1 Otherwise, leave the patient in the systen,
5 but removed from his ENV;
END;

=3b

3-36

5. MONITCORING AND RELATIVE CONTINUITY

Control gyrimitives which allow a variable to be
monitored for changes in its value have appeared in a number
of languages. For example, the WAITUNTIL primitive of
PPL [Po72] and Iisher’s monitor primitive [#i70] allow a
process to be resumed as soon as an associated condition
becomes TRUE, c.f. TaBioly 1a2aSs Here, we discuss how

monitoring can be realized in MPEL1.

Iet us assume that we desire a function of the form
MONITOR(X,V,EXP) .
where X is a variable of mode integer, V is an integer and
EXP is a FORMN. The interpretation of MONITOFE is that when
X=V, then I[XP is to be evaluated. If X=V when the MONITCR
is executed, then EXP is evaluated immediately. It should
be clear that it is sufficient to monitor assignments to X,
i.e. if' it 1is ©possible to obtain control every time the
variable X is assifmed a new value, then we can surely

detect when it 1is given the wvalue V. This ability is

provided by the extended mode facility of FL1, c.f. 5.1.2.

In particular, the extended mode facility allows the
user to define a new mode, say SINT (sensitive-integer),

which is identical to the mode IILT except that a

*

We will restrict our discussion to integers.
Monitoring of other data types can be achieved by analogous
techniques.

5=37

user—defined nssicmment function will bte called whenever an

object of mode SIKT is to be assigned. ror example, we can

define 5InT, HKCNILCR and the SINT assisnment function as
*

follows.

SINT <~ SThUCT(I:INT, V:INT, EXP:I¥CRM, MFLG:BOCL);

HMONITOR <~
EXAPR(Y:5INT,V:INT, T:isXP; NONE)
BEGIIL
NOT UL(X).4rlG =>

BFGIN
UR Xg.I = ¥ =5 BEUAL{F)s
UR(X).V <~ V3
UR(X).EXP <~ Fj

MAFIG <~ TRULE
ENL;
MONITCR\EIROR ()
ERL;

SINT\ASCIGL <~

EXPR(S:SINT, ViINT; INT)
LEGIL
[.;A:(C}o

10T UR

UBLE)

BEG

<~ V; NT V is the new value;
S).MFLG => V;

:V:>
1\
R(S).MFLG <~ TFALSE;
VAL(UR(S)EXP) ;

< 1] O bt <D~
-

ENL;
Y
ENDs
If Y is a S8INT, UR(X).I is the actual integer,
UR(X).MFLG is TRUE if and only if the integer is being
monitored, UR(X).V is the value being monitored for, and

UR(X).EXP is the expression to be evaluated. Whenever an

*

The procecure UR is used to indicate that selection 1is
to be performed upon the underlying representation of SINI.

This is required since it is also possible to construct user
defined selection functions.

3-38&

assignment to a SINT is made, the procedure SINT\ASSIGN 1is

called. If the particular SINT is being monitored and if it

will now be equal to UR(S).V, then EXP is evaluated and the
*

monitor is turned off.

Two points should be stressed. First, SINTs act just
like INTs excert for assignment. Whenever a SINT is in hand
and an INT is required, the SINT is treated as if it were an
integer, using a user—defined conversion function
[WegTO][WerT1]. Second, only SINT assignments are affected;
the overheads associated with monitoring are not passed on

to all INTs.

In the example above, EXP will be evaluated in the
environment of whichever path performs the assignment that
sets the SINT to the sprecified value. Other semantics for
MONITOR orerations are possible. Yor example, Fisher’s
monitor overation constructs a new process in which EXP is
to be evaluated. The value returned by monitor is a
reference to this process (which is also apparently
cyclically testing the condition.) The operation unmonitor
may be used to destroy a monitor process. It is possible to
construct many monitor processes which are all testing the

same variable.

*

& Here, for simplicity, we have limited ourselves to one
£XP per SINT. The general case is discussed below.

=35

A descriprtion of monitor would be a straightforward
extension of the example above, were it not for the subtle
relation between monitor and another of Fisher’s primitives,
namely, the cont operation. We will first discuss how the
cont operation may be realized in MPEL1 and then describe a
monitor oreration which is consistent with this realization

and with Fisher’s definition.

If a process executes cont(exp) then the expression

will be evaluated relatively continuous with respect to the

evaluation of other processes; all other processes nust
pause while the exp is evaluated. If exr creates new
rrocesses, then they inherit the level of relative
continuity of their creator. Fkence, many levels of relative
continuity can be created. At any given time, only those
processes at the highest level may be evaluated. When
higher-level mroceces terminate, processes at lower levels

are allowed to continue execution.

In PFL7, we will replace cont by the two NOFIX
operators OTARTRC and LiDRC. STARIRC indicates that the
level of relative continuity of the path should be increased
by one. FNDRC indicates that the level should be decreased
by one. Thus, in MPEL1, cont(exp) is replaced by

[) STARTRC; exp; ENLRC (]

The inplementation of relative continuity is

straightforward. We include the integer componeht LEVEL as

540

an extended conponent of the mode ACTRC. LEVEL, specifies

the level of relative continuity at which the path is
evaluating. Initially, all paths have LEVEI=O. The
path-scheduler is redefined, using the techniques of section
2.4, to include the integer RCLEVEL in the CI environment
and to maintain paths on the INACTIVEQ in the order of their
level component (highest to lowest.) RCLEVEL indicates the
level of relative continuity at which the system is being
evaluated. The procedure CREATE is modified to give the

path created the sare level of relative continuity as the

creator.

When a path P executes STARTRC, RCLEVEL and P.LEVEL are
incremented by one. If there exist active paths at lower
levels of relative continuity, then each of these paths is
interrupted (using STOP\PATH) and forced to pass control to
the CI and execute RELSTOP. When each path passes contrcol
to the CI, it 1is put on the INACTIVEQ. When the last of
these is processed, then P is allowed to continue execution.
The mechanism wused bhere is similar to the one employed by

SUSPEND, c.f. 3.3

s
ey

Ve also assume that the procedures of sectlon 3.3 are
redefined to use the procedure INSERTL. (as opposed to
ENTERL) to place paths on the INACTIVEC. INSERTL p{;ces the
path on the queue at the appropriate point according to its
LEVEL component.

341

STARTRC <-= FXPR(; NCNLE)
BEGIN
MYPATEHPCIAR => CIA("STARTRC");
TLASTRUN.IIVEL <- RCLEVEL <- RCLEVEIL+1;
UPRC()
END;

UPRC <~ EXPR(; NONE)
EEGIN
DFCL K:INT BYVAL LASTRUN.LEVEL;
FOR I <~ 1, ..., NPROC DO
BEGIN
PAVICT[I] CURPATH #f PAVECT[I].IDLEPATH

PAVLCTEI] .CURPATH.LEVEL LT N =>
BEG
PIVECTEI%
CONS(LIST("RELSTOP",
KHDMREELH@
ALIOC(ARPTR LIKE
LASTRUN))),
PIVECTEPHCC 15
Q1OP\IA'I‘H(PAVL T[1].CURPATH);
B <~ TRUE
END;
ENL;
B => LASTRUN <~ NIL
EilD;

RELSTOP? <- EXPR(P:ARPIR; NONE)
BEGIN
DECL E:BOCL3
INSERTL(LASTRUN) ;
LASTRUN <~ NII;
¥OR I <- 1, .., N TILL B DO
BIGIN
AnD(PAVlCTG P « CURPATH#PAVECT[1].IDLEPTH,
I#/PROCNUH,
PAVECT[I].CURPATH.LEVEL LT RCLEVEL)
=> B <~ TRUE
END3;
B => NOTHING;
NT Not all paths at lower levels
have stopped;
DINQERTL(P) NT A1l have stopped;
END;

When a path P executes ENDRC, then P.LEVEL is

decrenented ty one and the path 1is inserted at the

appropriate point in the INACTIVEQ. If there still exists

342

*
paths (either active or on the INACIIVEC) at the current

RCLEVEL, then no further action occurs. Otherwise, RCLEVEL
is set to be equal to the LEVEL of the first path on the

INACTIVEQ.

ENDRC <- EXPR(; NONE)
EEGIN
DECL B:BOOL
MYPATE#PCIAR => CIA(™ENDRC");
LASTRUN.LEVEL <~ LASTRUN.LEVEI~1;
INSERTL(LASTRUN) ;
LASTRUN <- NIL;
FOR I <~ 1,ese, NPROC TILL B IO
BEGIN
I=PROCNUM => NOTHING
PAVECT[I].CURPATH#PAVECT[I].IDLEPATEH
AND

PAVECT[I].CURPATH. LEVEL=RCLEVEL
=> B <~ TRUE
ENL;
B => NOTHING;
NT There exists an active path
at the current RCLEVEL;
RCLEVFIL GT INACTIVEQ.FIRST LEVEL =>
RCLEVEL<-INACTIVEQ.FIRST.LEVEL
END;

RCSCHFDULE is used to perform path scheduling. Iet P
be the first non—-DORMANT path on the INACTIVEC. If P.LEVEL
is less than RCLEVFL, then no path is scheduled. If P.LEVEL
is equal to RCLEVEL, then P is scheduled. Otherwise, if
P.IEVEL is greater than RCLEVEL, then RCLEVEL 1is set to
P.LEVEL, I.ASTRUN is set to P and UPRC is called to determine
if any active paths are at a 1lower level of relative

continuity, and if so, to interrupt them. The latter case

*

If a path is not in the running set (e.c. it has
performed a P operation and is on the semaphore’s WLIST,)
then its level is not counted until it again becomes a
running path. See the discussion of monitor paths below.

3-43

can occur when a monitor process is activated as described
below.

RCSCHEFDULE <- EXPR(; ARPTR)
BEGIN
DECL Y:ARPTR;
Y <~ INACTIVEQ.FIRST;
L: Y=NIL => NIL;
RCLEVFL GT Y.IEVEL => NIL;
HCL%%E%;Y.FIRST.LEVEL AND NOT Y.DORMANT =>
gEMOVE(Y,INACTIVEQ);
END%
RCLEVFL, IT Y.FIRST.LEVEL =>
EEGIN
LASTRUN <~ Y.FIRST;
REMOVE(LASTRUN, INACTIVEQ) ;
RCLEVEL <~ LASTRUN.LEVEL;
UPRC();
LASTRUN
FND;
Y <~ Y.NEXT;
geTo 1L
FND;

INSFRTL is used to place paths on the INACTIVEQ. If
the LEVEL of the path P to be inserted is greater than the
current RCLEVEL, then LASTRUN (the current path) is
inserted, LASTRUN 1is set to NII, and then P is inserted.
Hence, scheduling is forced. Since P will be first on the
INACTIVIQ, and RCLEVEL is less than P.LEVEL, then RCSCHEDULE
will interrupt all active paths at lower LEVELs and then
allow P to be evaluated. If P.LEVEL is less than or equal
to RCLEVEL, then P is simply placed at the appropriate point
in the queue.

INSERTL <~ EXPR(P:ARPTR); NONE)
BEGIN
DECL Q:ARQPTR BYREF INACTIVEQ;
DECL Y:ARPTR LYVAL Q.FIRST;

LASTRUN{/NIL AKND P.LEVEL GT RCLEVEL ->
BEGIN

544

INSERTL(LASTRUN);
LASTRUN <- NIL
EHDNT rorce a call to RCSCEEDULE;
Wy
Y=NIL => ENTERL(P?,Q);
Y.I1EVEL 1LE P.LEVEL =>
BEGIN
Q.FIRST <~ P;
P.NEXT <~ Y
ENLU;
Q.LAST GE P.LEVEL =>
BECIN
P.NEXT <~ RNIL;
Q.LAST.NEXT <- P;
Q.LAST <~ P
END3;
Y.NEXT=NIL => ENTERL(P,Q);
Y.NEXT.LEVEL IE P.LEVEL =>
BEGIN
P.NEXT <~ Y.NEXT;
Y.NEXT <~ P
END
END;

We can now describe the comnplete semantics of the
monitor operation. Here, SINT is defined as follovs:

SINT <- PTR(STRUCT(INTP:INT, MLIST:MPIR));

MPTR <- PTR(MELT);

MELT <- STRUCI(VAIUE:INT, PATH:ARFTR, NEXT:MPIR);
The MLIST is a list of the processes monitoring the SINT.
Each MILT specifies the VALUE to te checked and the path to
be evaluated.

The procedure MONITOR creates a path P (which is added
to the MIIST of N) to be activated when N is assigned the
value V. I is the form to be evaluated by P. P 1is given
the same level of relative continuity as the path executing
the MONITOR. In addition, P is enabled for the interrupt

"UNMORN" to allow for unmonitoring. It is important to note

3-45

that since P is not considered to be a running path (it is
neither active nor on the INACTIVEQ), P.LEVEL has no effect
upon RCLEVIT. Hence, when P is activated RCLEVEL may be
hirher or 1lower than P.LEVEL. In the former case, F will
not be evaluated until RCLEVEL is lowered to P.LEVEL. In
the latter case, P has priority over all other paths.
Hence, they must be interrupted so that P may evaluate.
INSERTL, detects this fact and forces scheduling to achieve
the desired effect. If P=RCLEVEL, then the interpretation

is straightforward.

The definitions of MONITOR and SINT\ASSIGN are as
follows.

MON£58§P<— IXPR(N:SINT,V:INT, "t FORM UNEVAL; ARPTR)
DECI, P:ARTTR LYVAL PAPQgEVAL(}), GET\FATH(1));
14 CL M:MPTIR BYVAL ALLOC(MELT Cr V,P,NIL);
P.LEVEL <~ MYFATH.LEVEL;
NT Relative continuity 1eve1 is inherited;
FLABIE \PAlH(“UNMOA",3 QUOlF(DELETF(MYPATHﬁ) P);
NT To allow for unmonitoring;

¥*

CIA("MONIIOR1" N, ¥) 3
END;

MCET011 &= EXPR(M:VMPTI, N:SINT, V:REF; NONE)
BEGIN
UR(N).VALUE = VAL(V) =>
BEGIN
INSFRTL(M.PATH, INACTIVEQ);
IRUNSET\ILAG <- TRUE
EN e
M.NEXT <~ UR(N\).MLIST.NEXT;
UR(N).MLIST <~ M
END;

*

Here, we pass three arguments to the CIA called
procedure. This is not consistent with the definition given
in section 2.3.1, but can be achieved by extension, c.f.
501010

SINT\ASSIGN <— (N:SIKT, Y:INT; INT)
BEGIN
CIA("DO\ASSIGN",N,Y);
Y

END;
DO\ASSIGN <~ EXPE(S:SINT, V:REF; NONE)
BEGIN
DECL Y:MLIST EYVAL UR(S).MLIST;
YHNIL =>
WHILE Y.NEXT # NIL DO
BEGIN
Y.NEXT.VALUE=VAL(V) =>
BEGIN
INSERTL(Y . NEXT.PATH,INACTIVEQ) ;
Y.NEXT <~ Y.NEXT.NEXT;
END;
Y <~Y.NEXT
END;
UR(S).MLIST.VAIUE=V =>
BEGIN

INSIRTL(UR(S) .MLIST.PATE, INACTIVEQ) ;
UR(S).MLIST <~ UR(S). MLIST NEXT3;
END; NT Process first of list;
NT Now perform assignment;
UR(S).INTP <~ VAL v?
END;

For example, consider the following block

BEGIN
DECL X:SINT BYREF X;
NT Assume MYPATH.LEVEI=O0;
STARTRC;
NT MYFPATH.LEVEL = 13
MONITCR(X,3, QUOTE(PRINE(“Y—B")))
NT The LEVEL of the new process is 1;

=1 =D
BEGIN
STARTRC;
NT MYPATH.LEVEL =23
X <~ 33
Ciz ENDRC 3
NT MYPATH.LEVEI=1;
C28 ces
ERTS
EIDRC;
RT MYPATH.LEVEI=O;
X <= 335
COF sas §

END

3-46

347

It X initially has +the value 1, +then the monitor
process will not Dbecome active until control reaches C2,
since RCLLEVEL=Z at Cl. If, however, X is not initially
equal to 1, +then +the monitor rrocess will become active
before control reaches C3, since it is at a higher level of
relative continuity than the path performing the assignment.
Hence, OTARTC, ENTRC and MONITCR effect an interrupt
mechanism. I a path creates a monitcr process at a higher
level oi relative continuity, €.ge.

[JSTARTC; MONITOR(X,Y,f); ENDRC(];
then if the condition becomes TRUE, the monitor rath will
essentially interrupt the original path, since the former is
at a hirher level. Conversely, the path can mask itself
against the effect of the monitor by subsequently executing
two STARTRCs to put itself at a higher 1level than the

monitor.

The procedure UNMCNITCOR, destroys the path P which is
ronitorins the SIKT N. 1f the path has not been activated,
then it is simply deleted. Otherwise, if it is active, it
is interrupted (using STOP\PATH) and forced to call
DELETE\PATI. If it is not active, then it is sent an UNMON
interrupt (for which all monitor paths are enabled) which
will cause the path to delete itself if it ever becomes

active.

UNMONITOR <— EXPR(F:ARFIR N:SINT; NOWE)
BEGI:!
DFCIL, Y:MPTR LYVAL UR(N).MLIST;
DECL PR:INT;
MYPﬁTH ﬁ PCIAR => CIA("UKMONITOR",VP,N);
SFGI
Y.PATH=P => [)UR(N) MLIST<-UR(N).MLIST.NEXT;
LDELETE\PATH(P)(];
WEILE Y.NEXT # NIL DO

BEGIN
Y.NEXT.PATH=P => [)Y.NEXT<-Y.NEXT.NEXT;
DELETENPATH(P)(]};
Y <~ Y.NEXT

END
FND;
NOT F.ELGFLG => LOTHING;
NT Otherwise P must te killed;
FOR I <~ 1,..., NPROC TILL PR GT O DO
g)PAVECT[I «CURPATH.P => PR<-I(]
PR=0 => INTERRUPT("ULMON",P);
STOP\PATH(P) ;
PIVE T[Ig <~
CONS{QUOTE(BEGIN
LELETE\PATH(LASTRUN) ;
LASTRUN <~ NIL
END
PIVECT[I]);

3-4&

3-49

6. BACKTRACKING

The notion of backtracking [Go65] often allows a more
concise representation of an algorithm than would be
possible without it. <Such an algorithm usually requires
that a choice be made at one or more points during its
evaluation. If the choice is a ‘btad” one, then the
algorithm must backtrack to the must recent choice-point at
which another choice was*available, select a new choice, ard
then resume execution. Hence, it must be possible to
reconstruct (at some later time) the machine state at each
choice point. This can be done either explicitly or
implicitly. Programs which explicitly handle their own
backtracking tend to be obscure and error prone — they must
record all changes to data and control. Hence, control

procedures which allow for the automatic restoration of

machine states are desirable.

Floyd [+r167] prcposes three operations and an
implementation technique which allow for automatic
backtracking in a 1low chart languare. The two operations

are:

*

A control structure which is related to, but distinct
from, backtracking is wmulti-tracking. In Dbacktracking,
choices are processed sequentially -~ when one value leads to
FAILURE, the next valuve is chosen. With multi-tracking all
clioices are explored in parallel, via the creation of
parallel paths. If a path is unsuccessful, then it notifies
its creator who then terminates all other choice paths (and
their descendants.)

3-50

choice(n) An integer from the set 1, ..., n is chosen.

fail fail “undoes’ all actions performed since the

last choice. Another integer, say k, is taken
from the choice set and the algorithm continues
from the choice-point as if k were the original
choice. If all integers from the set have been
tried, all actions are undone back to the next
previous choice point, etc.

Success All accumulated output 1is printed. If all
solutions to a problem are desired, then

backtracking is initiated.

Function calls are not permitted in Floyd’s language.
Hence, to allow reconstruction of machine states it is only
necessary to recorc¢ changes to variables and the control
flow throush decision points. In a language with function
calls, say FL1, it becomes necessary to record the call and
block structure (intra-path control) at a choice point so
that it may be reinstated upon subsequent failure. telow,
we discuss how (single-path) backtracking can be effected

using the MPEL1 multi-path facility.

We will assume that the global variable LACKUP
references a path which will be used to effect restoration
of choice-points. Whenever a new CHOICE is made, control is

passed to BACKUP, which then returns control to a COPY of

=9

the oricinal path. Herce, the call structure and the values
of variables in the identifier environment are preserved.
If an wisuccessful choice has bteen made then the procedure
FAIL, can be used to return to the previous choice-point.
FAIL simply passes control to the BACKUP path which then
returns control to a cory of the original path with a new
value from the choice set. SUCCESS takes two arguments.
The first specifies a value to be irreversibly printed on an
output device. The second is a BOOL which specifies whether
or not all solutions are desired. The procedure definitions

are as follows.

CHOICE <- EXPR(N:INT; INT)
EECIN
PAPQ(NEWCHOICE(N,MYPATH) , EACKUP) ;
CIA("SWITCH\PATHS, BACKUP)
END;

SWITCH\PATHE <- EXPR(P.ARPTR; NCNE)(LASTRUN <~ FP);

NEwggg%ﬁE <~ EXPR(N:INT BYVAL, OLDP:ARPTR; NONE)
WHILE N # O DO
BEGIN
DECI. NEWP:ARPTR
NEWP <- COPY(OLIP);
PAPgﬂETFROM("CHOICE",N),NEWP)
CIA("SWITCH\PATHS", NEWP);
N <= F=1
END
EliD;

FAIL <- EXPR(; KONE) (CIA("SWITCH\PATHS"),BACKUP));

SUCCLSS <— EXPR(SOL: ANY, ALLSOL:BOOL; NONE)
BEGIN
PRINT(SOL);
ALLSOL => FAIIL();
CIA("DELETE\PATH" ,MYPATH)
END;

=5

Note that if CHOICr 1is called many times 1in the
program, then nested calls to WEWCHOICE will be FAPed into
BACKUP. Fxit irom the procedure NEWCEOICE corresponds to
failure oi' all choices at a given point. Control is thus
returned to the call to NEWCHOICE for the previous

choice-point.

One additional mechanism is necessary to 1insure that
the complete machine state at a choice-point is restored.
The control primitive COPY copies the tindings of variables
in the identifier environment of the path. If a variable is
bound tc¢ a pointer to an object in the heap, then the
pointer 1is copied but the object referenced is not. Hence,
when NEWCHOICE returns to a COPY of a path, it 1is possible
that chanres to heap objects will not be “undone.” To insure
that heap values are restored correctly, it is necessary to
redefine assignment, 1.e. "<". In the procedures below,
ASSIGN! is functionally equivalent to the original
definition of <~ and HLAP 1s a boolean procedure which
returns TRUE if and only if its argument lies in the heap.

ASSICN! (<=, EAPK(VAR:ANY, VAL:AKY; ANY)

BEbﬁgl HEAP(VAR) => ASSIGN!(VAR,VAL);
PAFQ(RESTORE(VAR, VAR) , LACKUP)
ASSIGH!(VAR,VAL)

ELD);

ASSIGH! (RESTORE, EXPHEVAR:ANY' CLDVAL:ANY BYVAL; NONE)
ASSIGN! (VAR,OLDVAL));

?

Whenever an assignment is to te made to a heap object,

the procedure RESTORE 1is PAPed into the BACKUP path. The

=

second arcument to RAESTORE is passed LYVAL so that the old
value may Le retained separately. When FAIL transfers
control to pACKUP, all hear objects mocified since the last
choice roint will te restored to their orirfinal values since
the calls to RESTORE are executed in the reverse of the

order in which they were PAPed.

Althoush the procecures described above effect
automatic backtracking, the mechanism employed is rather
expensive. At each chcice point the entire call structure
is saved! A similar, but more efiicient realization of
backtracking is described in [Pr723}. Eere, instead of
saving the entire wvachine state at each choice point, only
the ‘difTerence”’ between states is saved. In addition, the
programmer may distinguish between assignrents which are to
be ‘undone’ uvon failure, and those which are not, thus

avoidine unneccssary recorc¢ keeping.

Chapter 4

THE FORMAL DEFINITION O MPELI1

This chapter rresents the formal definition of EL1 and

the control primitives.

Section 1 discusses some preliminary issues and serves
as an introduction to the definition. Sections 2 and 3
rresent the formal definitions of the constructs of EL1 and
the control primitives, respectively. The auxiliary
procedures used in the definition are listed in Section 4.
Section 5 lists and defines the procedures which are assumed
as linguistic primitives. Finally, Section 6 is an index of
the modes, variables, procedures, and evaluator labels used

in the definition.

1.1 Representation of Programs, Paths and Evalwators

The concrete syntax, or external representation of EL1

is described by the BNl grammar in Appendix 2. An EL1
program is a terminal string derived from the syntactic
class <program>. For example,

1;

p(q(a),b,c,);
Dp=> x<=1 5 3 (]

4-2

The abstract syntax, or internal representation of an

EL1 program is a list structure which may be defined using
the data—-type definition facility of El1. The
correspondence between the external and internal
representations is speé&fied by augments to the BNF grammar
in Appendix 2. Techniques for mapping programs written in
concrete syntax into this type of abstract syntax are well
known and will not be discussed here. The abstract syntax
representations for the programs above are:

1

(r (ga) te)
(BLOCK! (CLAUSE! P (<= x 1)) 3)

The evaluation of an FL1 program is performed in the

environment of a path. The environment consists of three

related structures: the name-stack, the value-stack, and the

control-stack. The name-stack contains an entry for each

variable created in the evaluation of the program. Each
entry consists of the variable’s name and a pointer to its

value. The value-stack contains all data objects created by

the program which have not been explicitly ALIOCated in the
heap. The control-stack describes the current state of the

evaluation, i.e. the current nesting of blocks, procedure

applications, etc.

The path’s activation record contains pointers to the

environmental structures described above, fields which are

4-3

used to communicate with the control primitives and other

path-related information.

A program is evaluated in a path’s environment by an
evaluator. Only one path may be evaluated by an evaluator
at any given time, although it may process different paths
at different times. In addition, an evaluator must always
be associated with some path, i.e. it must always be kept
busy. We will assume that there are some constant number

(NPROC) of evaluators available for the simultaneous

evaluation of raths.

During its evaluation, an EL1 program may call upon the
control primitives to create and delete paths, specify or
change the programs to be evaluated in a path’s environment,
assign evaluators to paths, modify a path’s environment,

etc.

The formal definition of MFEL1 will consist of a
program which defines the I th of NPROC identical
evaluators. Since both an MPEL1 progsram and a path can be
represented as EL1 data structures, it 1is possible to
describe an evaluator for the Ilanguage and the control
primitives as a set of MPEL1 procedures. The evaluator
described here, however, is written essentially in EL1. The
control primitives TSET, CLEAR, EVAL and GOTC are the only
ones used by the evaluator. The vast majority of the

control primitives are not included in the meta-language.

4-4

Thus, the control primitives are explained in terms of

(single~-path) FL1 and the four primitives listed above, c.f.
B i

1.2 Evaluator Recursion

The evaluation of an EL1 program is a recursive
process, 1i.e. the evaluator of a given language construct
may call upon the evaluators of other constructs, or itself,
recursively. For example, nested procedure calls require
the procedure application evaluator to be called within
itself. Since EL1 procedures are capable of recursion, the
number of recursive calls may reach an arbitrary depth. The
evaluator however, may not effect the recursion by invoking
recursive rrocedure calls in its own environment, for then
if it 1is subsequently called upon to evaluate another path
and the original path is evaluated by another evaluator, the

resulting evaluation of both paths will be erroneous.

Hence, the evaluators must be ‘reentrant® with respect to
the paths they are called upon to evaluate. All records
relating to the evaluation of a path must be stored in the

environment of the path itself.

The control-stack of the path is used in conjunction
with a programming discipline to allow an evaluator to

obtain the effect of recursion without recursive procedure

calls. There are five issues to be resolved.

(1) How is the return point specified?

(2) How are the arguments to the recursive call

specified?

(3) How are the arguments to the current call saved?

(4) How is the result of a call specified?

(5) How is the return to the previous call accomplished?
Before we discuss these issues, we must first give a general

outline of the structure of the evaluator.

The evaluator is essentially an EL1 BLOCK. The 1local
variables of the block are used to specify the path being
evaluated and to hold other temporary values. Corresponding
to each construct of the language, (e.g. selection,
assignment) there is a labelled sequence of statements which

constitute a sub—evaluator for that construct.

Corresponding to each control primitive is a 1labelled
sequence of statements which constitute the body of the
control subroutine. Control never leaves the block except
for calls to procedures used by the evaluator which do not
involve recursive evaluation, €.g. to search the
name-stack. When an evaluator switches paths, it saves the
‘state” of the current path in the corresponding ACTRC,
installs the state of the new path, and continues evaluation
of the new path from wherever the previous evaluator of the

path left off.

4-6

To perform a ‘recursive’ call, the following statements
are executed:
PUSHC("TAG") ;NT Specify return point;
GOTO FCO sNT ‘call’ FOO;
TAG: CHECKM(INT) ;NT Statement to be executed
upon return;
i.e. the symbolic name of a label to which control is to be
transferred uron return is pushed onto the control stack of

the path being evaluated. To return, the following

statements are executed:

I <~ POPC(1) ;sNT L is bound to the return
label;
GOTO EVAL(L)
i.e., the return label is popped off the control stack and
control is transferred to the labelled statement. To

improve the readability of the description of the evaluator,

the two sequences of statements above are abbreviated as

follows:
CAIL, FOO;
CHECKM(INT);
and
RETURN;

The argument to each sub-evaluator is a pointer to the
list structure which is the instance of that construct to be
evaluated. The local variable F is used to point to the
argumnent. For example, to evaluate

Y1) =3 §

for which the abstract syntax representation is

4-7

(CLAUSE! (SEL! V 1) 3)
the clause-evaluator would bind F to the second ilement of
the 1list and call upon the selection—evaluator. The value
returned by a sub-evaluator, i.e. the result of evaluating
a given construct, 1is pointed to by the local variable

EVRES.

Since any language construct may Dbe invoked
recursively, each sub-evaluator must save its argument. To

facilitate this, a control mode is associated with each one.

When a sub-evaluator is called, an object of the
corresponding mode is pushed onto the control stack. The
fields of the control mode are used to save the elements of
the list structure for this particular call. In addition,
the object may contain fields which are used to hold values
computed during the evaluation. Thus, the <fields of a

control mode correspond to the formal parameters and local

variables which would be used if the evaluator was able to

use recursive procedure calls.

Occasionally, it is useful to allow a control mode to
contain a field RETURN which specifies the label to which
control is to te returned upon completion of the evaluation.

If a return is to be made when the top object on the control

*

A call is actually made to the general evaluator
EVAL\FORM which dJdispatches to the appropriate evaluator,
namely EVSFI.

4-8

stack is not a SYMBEOL, (i.e. the symbolic name of a label,)
then the RETURN component of the object is selected and
control is passed to the specified point in the evaluator

without popping the object off of the stack.

The evaluator described in section 4.2 is not conplete
because a number of sub-evaluators which were defined in
[Weg70] are assumed to be 1linguistic primitives. In
particular, the data type constructors (e.g. ROW, STRUCT)
and the object generators (ALLOC and CONST) are not defined.
Their omission 1is justified by the fact that we are
primarily concerned with the semantics of EL1 which are
directly relevant to the control rrimitives. In all cases,
the omitted sub—evaluators have marginal interaction with
the multi-path facility. Hence, their inclusion, although
straightforward, would simply lengthen the description of
the evaluator and thus weaken this work. The missing
sub-evaluators, along with the other linguistic primitives,

are defined in section 4.5.

1.3 Stacks

In section 4.1.2, we described a path’s environment as
consisting of three stacks. Here, we will discuss these

stacks in more detail.

4-9

Each path possesses a name, value and control stack.

They are pointed to by the NS, VS, and CS fields of the
path’s ACTRC, respectively. Associated with each stack is a

current stack 1index, which is stored in the NP, VP and CP

fields of the ACTRC, respectively. The stack index
specifies the number of objects which have been “pushed’
onto the stack. When a path is active, the current values
for NP, VP and CP are contained in the corresponding

evaluator ‘s local variables NP, VP and CP.

The name stack is actually a ROW of STRUCTs, namely
NAME\STACK <- ROW(STRUCT(NAMF:SYMBOL, VAIUE:REF));

Hence, entries are pushed onto and popred off of the name
stack by storing into the appropriate entry of the row and

updating NP aprropriately.

TEe control and value stacks, are objects of mode
STACK. STACKs have the following properties:

(1) They may hold objects of any mode.

(2) They may be indexed as ROWs, e.g. the value of
CS[CP] is a pointer to the top object on the control
stack, CS[1] is a pointer to the object on the
bottom of the stack.

(3) If an object is “popped” off of the stack, all

¥*
STACKs and stack operations as defined here, differ

from the definitions given in [Weg70]. We defer
justification of the changes until Sectior: %.3%.2.

4-10

references to it are set to NIL. Thus it is
impossible to retain a pointer to an object which
has been removed from a stack.
The following stack operations are defined as linguistic
primitives:

(1) PUSH <~ CEXPR(CBJ:ANY, S:STACK;REF). OBJ is copied
onto the top of the stack S. The number of objects
on the stack is increased by one. PUSH returns a
pointer to the object which has been pushed onto the
stack.

(2) FLUSH <- CFXPR(S:STACK, INDEX:INT; NONE) If there
are N objects on the stack S, then the N th through
the INDEX+1 objects are removed from the stack.
Hence, after the FLUSH, there remain INDEX objects
on the stack.

(3) INSTACK <- CEXPR(PTR:REF,

IND1:INT,

IND2:INT, S:STACK; BOOL)
INSTACK returns TRUE if and only if the object
referenced by PIR 1is on the stack S and is one of
the objects S[IND1+1] through S[INIZ] or is a
sub-object of one of them, i.e. 1if and only if PIR
points into the stack between the ranges specified.

(4) HEAP <~ CEXPR(PTR:REF;BOOL) returns TRUE if and only
if PTR points to an object which is not on a STACK.

Note that FUSH and FLUSE do not update the stack index

=41

associated with the stack.

A nunmber of stack functions are defined in terms of

these primitives to facilitate stack management and the
referencins of objects on a stack. IFor example, TOPC1 is
defined as a NOFIX operator and returns a pointer to the top
object on the control stack. A complete 1list of these

functions is given in section 4.4.

It is intended that in an implementation of MPEL1 a
path’s environment will be implemented as three LIFO stacks.
Hence, although the mode STACK guarantees that a ‘dangling
reference’ cannot occur (i.e. a reference to an object
which has teen popred off of the stack), the evaluator must
not rely on this property. In particular, since it is
possible (via path-dependency) for one path to obtain a

reference to the value stack of another, the mechanisms
which insure that ‘dangling references’ do not occur are of

central importance in the definition.

1.4 Synchronization

The NPRCC evaluators require a means of mutual
synchronization. We could, of course, postulate the
existence of a CI° which is CIA“-called by the evaluators to

effect the synchronization. Unfortunately, this leads to

direct circularities in the definitions of some of the

4-12

control grrimitives. For example, to perform a CIA one must
perform a CIA°. Hence, the essence of the control will not
be explained. These issues will be discussed further in
section 5.3.2, where we give a justification for the formal
definition as a whole. Instead, the evaluators will
synchronize themselves using the control primitives TSET and
CLEAR. Althoygh this will lead to direct circularities in
the definitions of these operations, the circularities are
not as suspect since the operations are themselves
intuitively acceptable. They can be imrlemented in one

machine instructione.

Synchronization is required by the evaluators:

(1) to insure single access to the control interpreter
path,

(2) to insure that a path is evaluated by only one
evaluator at a time,

(3) to insure that the environment of a path is modified

by only one evaluator at a time,

(4) to detect and process external interrupts.

The activation record of each path contains a field
MOD, of mode INT, which is used to provide synchronization
in the first three cases above. Whenever a path is active,
its MOD field has been ISET by the corresponding evaluator.
Hence, if a path P is active, then TSET(P.MOD) returns
FAISE. In particular, this is true of the CI path. EHEence,

4-13

the evaluators may determine if the CI path is being
evaluated.

Any control primitive that modifies the environment of
a path other than the one in which it is called, TSETs the
MOD field of the path in question. Hence, if TSET(P.MOD)
returns FALSE then P is either active or being modified by a

control primitive.

External interrupts are sent to an evaluator by an
external processor or by another evaluator. To “send” an
interrupt, a structure associated with the evaluator is
modified to indicate the type of interrupt and its priority
level and then a flag is set to indicate that an interrupt
is pending. The evaluator checks this flag it points during
the evaluation at which it 1is convenient to allow an
interrupt. If the flag is set, then it determines whether
or not a response 1is to be 1initiated by examining the
associated interrupt structure. Synchronization is required
to insure that the evaluator and the interrupt generator do
not modify the structure at the same time. A
processor-interrupt-~lock is associated with each evaluator.
An evaluator TSETs this lock before accessing its interrupt
structure. If the lock is set, then the evaluator goes into

a busy wait upon the lock.

x*

Justification for this model of interrupts will be
given in section 5.3.2.

4-14

2. THE EL1 EVALUATOR

In this section we present the definition of the
sub-evaluators for the language constructs of EL1. For each
construct, examples of its use are given both 1in concrete
and abstract syntax rerresentation. A sub—eva%uator is
specified by a latelled sequence of statements. Global
constants are identifiers whose values are accessible to the
NPROC evaluators but are not modified by them. Global
variables are identifiers whose values are modified by the
evaluators to effect inter—-evaluator communication. All

modes introduced are assumed to be global constants.

The FI1.1 evaluator presented here 1is similar to the
evaluator in [Weg70], but has been updated to reflect
changes in the language which have been included in a
current implementation [Weg72]. The major difference
between the two is in the method used to handle evaluator

recursion, c.f. 4.1.2.

The first subsection describes evaluator initialization

and the use of each local variable defined by an evaluator.

*

The complete definition of an evaluator is the
concatenation of the sub-sections 4.2.1 Bvaluators (for i
?ggween 1 and 12) and 4.3.i Evaluators (for 1 between 1 and

4-15

2.1 Declarations and Initialization

Global Constants

NPROC ;NT The number of processors;
PRO\ PRO\FORM ;NT "PRO\PRO" response form;
TIMER\ FORM ;NT "TIMER" response form;

NPALEV ;NT The number of processor
interrupt levels;

NPROLEV ;NI The number of path
interrupt levels;

Global Variables

PCIAR ;NT PTR to CI path;

PRO\PATH ;NT A ROW(NPROC,ARPTR) which
specifies the assignment of
processors to paths;

IDLE sNT A ROW§NPROC,ARPTR) which
specif'ies the idle path for
each processor;

INIT\STATE ;sNT A ROW(NPROC,SYMBOL) which is
used to coordinate the
initialization;

Modes

FORM <~ PTR(INT, ATOM, DTPR, DDB, REF);
MODE <~ PTR(DDE);

IDB <~ STRUCT(CLASS :SYMBOL,
D: PTR(DDE
ROW%STRUCT(SYM :SYMBOL, TYPE:MODE)),
ROW(MODE) ,
STRUCT(TYPE:MODE, LENGTH:INT)),

¥

4-16

NT See section 4.5 for a discussion
of the fields of a DDB;

NT See [Weg70] for a complete discussion
of modes in EL1;

DTPR <~ STRUCT(CAR:FORM, CDR:FORM);

NAME\STACK <~ ROW(STRUCT(NAME:SYMBOL, VALUE:REF));
VALUE\STACK <~ STACK;

CONTROL\STACK <~ STACK;

NSPTR <~ PTR(NAME\STACK);

VSPTR <- PTR(VALUE\STACK);

CSPTR <- PTR(CONTROL\STACK);

ARPTR <- PTR(ACTRC);

ACIRC <~

STRUCT(NS :NSPTR,
VS:VSPIR,
CS:CSPTR,
NP:INT,
VP:INT,
CP:INT,
CIA\FN:REF,
CIA\ARG:REr,
CIA\RESUIT:REF,
STK :EOOL,
ELGFIG : BOOL,
DORMANT : BOOL,
MOD:INT,
SPATH : BOOL,
IFLG:BOOL,
DS:ARPTR,
DSN:INT,
BESCiINT,
DSV:INT,
LBRO:ARPIR,
FLEV: ARPIR,
LASTSON: ARPTR,
TIOWCP:INT,
NEXT:ARPIR,
TERMINATION\FORM:FORM,
TICKS\LEFT:INT,
USER\AR: ARPTR,
PRO:INT,
INPROI :INT,
INTINFO:ITE);

4-17

Evaluator
EVALUATOR <~
EXPR(PROCNUM:INT, INITCI:BOOL, PROG:FORM; NONE)
BEGIN
NT The followinﬁ variables are used
in intra-path evaluvation;
DECL F:FORM;

DECI, EVRES:REF;
DECI, NS:PTR(NAME\STACK);
DECL VS :PTR(VATUE\STACK 3
DECL CS:PTR(CONTROL\STACK)
BYVAL ALLOC(CONTRCL\STACK SIZE 3);
DECL RESULT\SIOT, AUX\RESULT\SIOT:FTR(VALUF\STACK)
BYVAL, ALLOC(VALUE\STACK SIZE 1);
DECL, NP, VP, CP, RSP, ARSP:INT;

NT The following variables are used in
inter-path evaluation;

DECI, PATH:ARPTR;
DECL SPATH,IFLG:BOOL;

NT The following variables are used as temps
by the evaluator;

DECL Q, P:ARPTR;

DECL L, N, M, NAME\INDEX:INT;
DECL S, TEMP:¥ORM;

DECYL B:BOOL;

N <~ 1;
CAIL EVGETPATH1; NT P points to a new path;
IDLE[PROCNUM] <~ P ; Indicate idle path created;
INITCI -> GOTO INIT1;
TSET(P.MOD);
PRO\PATHEPROCNUM] <~ P;
INSTALI\STATE(P);
INIT2: INIT\STATE[PROCNUM] # “CIREADY" -> GOTO INITZ2
CALL INIT\INTERRUPTIS;
INIT\STATE[PROCNUM] <~ "PROREADY";

N1 TELEES

DOIDLE: F <- QUOTE(WHILE TRUE DO NOTHING);
CALL EVAL\FORM;

INIT1: PUSHEC("DOIDLE",P);

CALL EVGETPATH] sNT Create CI path;
PCIAR <~ P;

4-18

TSET(PCIAR.MOD);
INSTALL\STATE(PCIARg;
INSTALL\GLOBAL\ENV (
NT Install initial top level
bindings for paths;
CALL INIT\INTERRUPTS;
FOR I <"‘1’ ooy NPROC m
INIT}STATE[I] <~ "CIREADY";
FOR <—1, e ooy NPROC DO
BEGIN
I = PROCNUM => NOTHING;
%ﬁDINIT\STATE[I] # "PROREADY" -> GOTO L
?

NT Other processors are ready;

PUSHNé"IDLE\PATHS" PUSHV(IDLE))
PUSHN ("PROG" , PUSHV { PROC)) 3

F<~QUOTE(INIT\CI (IDLE\PATHS, PROG)) ;
CAIT, EVAL\FORM; NT Initialize CI}

INIT\INTERRUPTS:
F <= QUOTE(ENAELE\PRO("PRO\PRO", 1, PRO\PRO\FORM);
CALL EVAL\FORM;
F <~ QUOTE(ENAELE\PRO("TIMER",2, TIMER\FORM));
CALL EVAIL\FORM;
RETURN;

Discussion

The arguments to an evaluator specify its number
(1<PROCNUM<NPROC), a boolean which indicates whether or not
the evaluator is to initialize the control interpreter path,
and a form which is the program to be evaluated. Hence,
assuming that PROGRAM is to be evaluated, the NPROC

evaluators are initialized as follows:

4-19

EVALUATOR(1,TRUE,PROGRAM) ;|
EVALUATOR(2) i

EVALUATOR(NPROC-1) !
" EVALUATOR{ NPROC)

where ‘|° indicates that the evaluators execute the

procedure calls simultaneously.

Each evaluator I (Iff1) creates a path; enables itself
for "PRO\PRO" and "TIMER" interrupts; and then idles.
Evaluator 1 creates both its idle path and the controi
interpreter path; installs the ‘top-level” environment
(i.e. initializes top level bindings for all of the control
subroutines, tuilt-in functions, etc.); enables itself for
interrupts; waits for the other processors to complete their
initialization; binds the vector of 1idle paths and the
program to be evaluated to variables in the CI°s environment
and then evaluates the procedure call

INIT\CI(IDLE\PATHS,PROG) in the CI environment.

INIT\CI defines the variables to be used by the C(CI,
creates a path in which the program is to be evaluated, and

then calls C\I to commence path scheduling, c.f. Appendix
Dia

*

Note that the ‘top-level’ environment of the evaluators
is distinct from the ‘top-level’ environment seen by the
paths.

4-20

The declared variables of an evaluator may be divided

into three classes according to their use.

The first set of variables are wused for intra-path
evaluation. NS, VS, and CS point to the name, value, and
control stacks of the path which is being evaluated. NP,
VP, and CP index the top element of the three stacks. F
specifies the current form which is being evaluated. EVRES
is wused to point to the value obtained by the evaluation of
F. The value specifiec¢ by EVRES may be in the hsap, on the
value stack of some path, or in the RESULT\SLOT.

The second set of variables are used for inter-path
evaluation. PATH specifies the path which is currently
being evaluated. SPATH indicates whether or not PATH is a
supporting path. If IFLG is TRUE, then PATH is currently

evaluating a path or processor interrupt response.

The third set of variables is used locally in various

parts of the evaluator.

3*

The RESULT\SIOT (AUX\RESULT\SIOT) is used by the
evaluator to hold the result produced by the evaluation of a
language construct in certain cases. A value contained in
the result\slot is called a pure-value.

4-21

2.2 Form
Modes

ATOM<~STRUCT (PRINT\NAME: PTR(STRING), TLE:REF) ;
SYMBOL<~PTR(ATOM) ;
STRING<-ROW(CHAR) ;

Evaluator

EVAL\FORM: sNT F is the form to be evaluated;

F=NII, => RETURN\NOTHING;
M <— MVAL(F);

M = ATOM => GOTO EVSYM;
M = DTPR -> GOTO EVDTPR;
BEGIN

M = INT => EVRESULT VALEFg,INT)-

M = REF => EVRESULT(VAL(F ,MVAL(VAL(Fg));

M = DDB => EVRESULT{CONST(MCDE ILIKE F),MODE)
END;
RETURN ;

EVRES <- [) NAME\INDEX # O => NS[NAME\INDEX].VALUE;
[VAL(F).TLB (]; [:

?

EVSYM: NAME\INDEX <- FIND\NAME%NS,NP,F);
RETURN ;

Auxiliary Functions

EVRESULT <-
EXPR(PRES:ANY, RESMODE:MODE; REF)
BEGIN
DECL TEMP:REF;
DECL TEMP1:INT;
BEGIN
MD(PRES) = REF AND
INSTACK(PRES, O, RSP, RESULT\SIOT) =>
BEGIN
TEMP <~ RESULT\SIOT;
RESULT\SLOT <= AUX\RESULT\SLOT}
TEMP1 <- RSP;
AUX\RESULT\SIOT <~ TEMP;
ARSP <~ TEMP1

4-22

END
END;
FLUSH(RESULT\SIOT, O); RSP <- O3
EVRES <~ PUSHR(PRES, RESMODE);
EVRES
END;

FIND\NAME <-
EXPR(STACK : PTR(NAME\STACK),
HIGH\INDEX:INT,
NAME:SYMBOL; INT)
BEGIN
DECL H:INT BYREF HIGH\INDEX;
DECL RESULT:INT;
FOR I <~ HE,B-1 «.. , 1 TILL RESULT # © DO

BEGIN
STACK[I7.NAME = NAME ->
REgUﬂT <- I
END;
RESULT
END;
Discussion

EVAL\FORM performs the evaluation of a form I based
upon the mode M of the object referenced by F. If VAL(F) is
atomic then EVRES is set to the value of the SYMBOL 1in thi
current environment or the top level binding of the SYMBOL.
If it is a DTPR then control is transferred to the 1list
structure evaluator. If it is an integer then EVRES is set
to a copy of the integer which 1is pushed onto the
RESULT\SLOT. Note that REFs are used to specify constants
in the list structure representation of an MPEL1 program
(e.g. TRUE, FAILSE, °‘C, etc.) If VAL(F) is a DDB
(data~definition- block) then EVRES is set to a pointer to

*

The abstract syntax representaton of identifiers with
the same spelling are pointers to a unique ATOM.

4-23

the DDB (i.e. a mode.)

EVRESULT is wused to push an object onto the
RESULT\SILOT. The second argument to EVRESULT specifies the
mode of the object. If the first argument is a REF, then
the object to be copied is the VAL of the argument.
Otherwise, the first argument specifies the object to be

copied.

2.3 List Structure

Evaluator
EVDTPR:

S <~ Y¥.CAR;
MVAL(S) # ATOM => GOTO APPLY;
S = YEXPhiw —> GOTO EVEXPR;
S = "ELOCK!" -> GOTO EVELOCK;
S = Wl -> GOTO EVIF;
S = "CLAUSE!" -> GOTO EVCLAUSE;
8 = YFORY" -> GOTO EVIOR;
& = HBgEIY -> GOTO EVSEL;
S = "SFLD e -> GOTO EVSEIQ;
S = “DECL!* -> GOTO EVDECL;
S = "LABST!" ~> GOTO EVLABST;
S = "= —> GOTO EVASSIGN;
GOTO APPLY;

Discussion

If the CAR of the list is not a SYMBOL then the 1ist
structure 1is evaluated as a procedure application. If the
CAR is a SYMBOL which indicates that the form is a language
construct then contrcl is transferred to the appropriate

sub-evaluator. Otherwise, the list structure 1is evaluated

as a procedure application.

4-24

2.4 Literal Procedure

Example

EXPR(X:INT; BOOL) [) X = O => TRUE ; FALSE (];
(EXPR! (éX INT BYREF)) BOOL
BIOCK! (CLAUSE! (= X O) TRUE) FALSE))
Evaluator

EVEXPR: EVRESULT(CONST(FORM LIKE F), FORM);
RETURN;

Discussion

The value of a literal procedure is a pointer to the

procedure.

2.5 Block

BEGIN B1 => 1; 2 END;

(BLOCK! (CLAUSE! B1 1) 2)

[) DECL X:INT ; FOO(X) (73
(BLOCK! (DECL! (X) INT) (F0O X))

4-25

Modes
BLOCK\BLOCK <~
STRUCT(OLD\NP:INT,

OLD\VP:INT,
CUR\NP:INT,
CUR\VP:INT,
STATEMENT\LIST:FORM,
RETURN : SYMBOL) ;

Evaluator

EVBLOCK : PUSHC(CONST(ELOCK\ BLOCK OF
NP, VP, NP, VP, F.CDR, “RETBLOCK"));
EVRES <- NIL;
T The value of a block is initially NOTHING;

EVBLK1:
TOPC1.STATEMENT\LIST = NIL -> RETURN;
CALL AILIOW\INTERRUPT;
F <~ TOPC1.STATEMENT\LIST;
TOPC1.STATEMENT\LIST <~ F.CDR;
F <~ F.CAR;
CALL FVAL\IORM;
GOTO EVBILK1;

RETBLOCK :
MVAL(EVRES) = LABEL -> ERROR("illegal\result");
NOT PURE\VAIUE ->
BEGIN
INSTACK(EVRES, TOPC1.OLD\VP, VP, VS) =>
FVRESULT(EVRES, MVAL(EVRES))

END;
NP <~ TOPC1.0LD\NP;

FILUSH(VS, TOPC1.OLD\VP);
POPC1\RETURN;

Discussion

A block is evaluated by evaluating each statement on
its statement list. Since the initial statements of a block

may be declarations which add to the identifier .environment

it 1is necessary to record in the ELOCK\BLOCK the indices of

4~26

NP and VP which specify the environment in which the
statements of the block are being evaluated. To allow for
external interrupts, a call to ALLOW\INTERRUPT is made

before the evaluation of each statement.

When the last statement of the block is evaluated,
control is transferred to RETBLOCK. If the last value
computed in the block is not a pure-value and it exists in
the portion of the stack environment of the path which will
be deleted upon block exit, then the value 1is copied into
the result slot. The name and value stacks are flushed back
to the level they were at before Phe block was entered, the
BLOCK\BLLOCK 1is removed from the control stack, and control
returns to the caller of EVAL\FORM.

The value of a block is the value returned by the last

statement executed.

2.6 Declaration

Examples

DECL X, Y:INT;
(DECL! (X Y) INT)

DECL Y:INT BYREF Z;
(DECL! (Y) INT BYREF Z)

4-27

DECL, X:INT BYVAL 3;
(DECL! (X) INT BYVAL 3)
[J) X3 Ly 0@ {13

(BLOCK! (DECL! (L) LABEL
(LABST! L FOO)) X (LAEST! L FC0))

Modes

DECL\BLOCK <~-
STRUCT(ID\LIST:FORM,
TYPE : FORM,
INITD:FORM,
FXP\MODE:MODE) ;

LABFL <- STRUCT(CPINDEX:INT, ST\LIST:FCRM, PATH:ARPTR);
Evaluator

EVDECL:MVAL(TOPC2) # BLOCK\BLOCK ->
FRROR("illegal\declaration");
PUSHC(CONST(DECL\ELOCK OF Beiss
CADR(F), CADDR(F), F.CDR.CDR.CDR));
EVDECL1:

+o i <=; TOPC1.TYPE; -
CALL EVAL\FORM;
CHECKM(MODE) 5 o
TOPC1.FXP\MODE <- VAL(EVRES);
AND(TOPC1.INITD # NIL,
TOPC1.INITD.CAR = “LABST!”,
VAL(EVRES) = LABEL) —-> GOTO DECL\LABEL;
TOPC1.INITD = NIL -> GOTO DECL\NO\INIT;
F <~ CADR(TOPC1.INITD);
CALL EVAL\FORM;
MVAL(EVRES) # TOPC1.EXP\MODE ->
BEGIN
COMFATIELE(TOPC1.EXP\MODE, EVRES) ->

s EVRESULT(EVRES, TOPC1.EXP\MODE)

NOT PURE\VALUE AND TOPC1.INITD.CAR = “BYREF" ->
GOTO DECL\EYREF;

PUSHN(TOPC1.I\LIST.CAR, PUSHV(EVRES));

GOTO DECL\LOOP;

DECL\ BYREF :
PUSHN(TOPC1.ID\LIST.CAR, EVRES);

4-28

GOTO DECL\ILOOP;

DECL\NO\INIT:
TOPC1.EXP\MODE=LABEL CR
TOPC1.EXP\ MODE. CLASS="GENERIC"
-> ERROR("™illegal\declaration");
PUSHN(TOPC1.ID\LIST.CAR, GENV(TOPC1.EXP\MODE));
GOTO DECI\LOOP;

DECL\LABEL :
PUSHN(TOPC1.ID\LIST.CAR,
PUSHV (CONST(LABEL OF CP - 2,
TOPC1.INITD, PATH)));
DECI\LOCP:

TOPC3.CUR\NP <- NP;

TOPC3.CUR\VP <~ VP;

TOPC1.ID\LIST <- TOPC1.ID\LIST.CDR;
TOPC1.ID\LIST # NIL —> GOTO EVDECL1;

POPC(2); NT Pop DECLABLOCK and CALL from EVBLOCK;
EVRES <— NS[NP].VALUE;

GOTO EVBLK1;

Discussion

A declaration may only appear at the statement level of
a Dblock. The evaluation of a declaration results in the
addition of one or more identifiers to the environment. The
CUR\NP and CUR\VP fields of the BLOCK\ELOCK of the block are
updated to reflect this addition.

For each identifier on the identifier 1list the
following actions are performed. The type field is
evaluated to produce a mode which is saved in the EXP\MODE
component of the DECI\BLOCK. If the mode is LABEL then it
is treated specially (see below). If the INITD field is
NIL, then the identifier is bound to a default value on the
value stack for the mode EXP\MODE. If it is not NIL, then

4-29

the initialization form is evaluated. If the initialization
is to be BYREF and the result of evaluation 1is not a
pure-value then the identifier 1is bound directly to the
result. Otherwise, the identifier is bound to a copy of the

result, which is pushed onto the value stack.

If the EXP\MODE is LAEBEL, then the identifier is bound
to an entry on the value stack which specifies the
BLOCK\BLOCK with which the label is associated, the sub-list
of the statement 1list of the .block Startihg with the
labelled statement, and the current path.

The value of a declaration is the value associated with

the last identifier bound on the name stacke.

2.7 Conditional

Example

[) B-> FOO(A,E) ; A =>B ; FAISE (];
(BLOCK! (IF! B (FOO A B)) (CLAUSE! A B) FAISE)

Mode

COND\BLOCK <~ STRUCT(LHSF:FORM, RHSF:FORM);

4-30

Evaluator

EVIF: MVAL(TOPC2) # BIOCK\BLOCK ->

ERROR("™illegal\conditional®);
PUSHC(CONQT(COND\BLOCK OF CADR(F), CADDR(F))),
F <~ TOPC1.1HSF;
CALL EVAL\FORM;
CHEC%MgBOOL) AND VAL(EVRES) = TRUE —=> GOTO EVIF1;
POPC(1

RETURN\NOTHING;
EVIFil:
F <~ TOPC1.RHSF;
CALL EVAL\FORM;
POPCI\RETURN; NT Return to EVBLOCK loop;
EVCLAUSE:
MVAL(TOPC2) # BLOCK\BLOCK ->
FRROR("illegal\conditional®);
PUSHC(CONST (COND\BLOCK OF CADR(F), CADDR(F))),
F <- TOPC1.1LHSF;
CAIL FVAL\FORN;
CEECKM(BOOL) AND VAL(EVRES) = TRUE ->
GOTO EVCLAUSE1;
POPC(1);
RETURKN\NOTHING ;
EVCLAUSE1:
F <~ TOPC1.RHSF;
CALL EVAL\FORN;
POPC(2); NT Flush COND\BLOCK
and CALL from EVELOCK;
RETURN ; NT Exit block;
Discussion

A conditional may only appear at the statement level of

a block.

If the ILHSF of an IF! form evaluates to TRUE, then the

RHSF 1is

evaluated and control returns to the EVBILOCK loop.

If the IHSF of a CLAUSE! form evaluates to TRUE then the

RHSF is evaluated and the result is taken as the value of

431

the block. 1In either case, if the LHSF evaluates to FALSE,
then the value of the conditional is NOTHING.

2.8 Selection

Examples
X[2]
(SEL! ¥ 3)
NS[NP].VAIUE

(SFIQ! (SEL! NS NP) VALUE)

Mode

SEL\BLOCK <-
STRUCT(OBJF :FORM,
SEL\FORM:FORM,
OBJ :REF,
INDEX:INT,
SAVE\FLAG :BOCL) ;

Evaluator

EVSEL : PUSHC(CONST(SFI\BLOCK OF CADR(F), CADLR(F)));

F <~ TOPC1.0BJF;

CALL EVAL\FORM;

MVAT.(EVRES).CLASS = "PTR" -> DEREF(EVRES);
SIVE\VAL(); NT Save object on value-stack

1f pure-value;

F <~ TOPC1.SEI\FORM;

CALL FVAL\IORM;
BFECIN

MVAL(EVRES) = INT => TOPC1.INDEX <- VAL(EVRES);
CHECKM(SYMBOL) ;

TOPC1.INDEX <-

SELECTOR\INDEX(MVAL(TOPC1.0BJ), VAL(EVRES));

END

EVSEL1: TOPC1.INDEX LE O OR
TOPC1.INDEX GT LENGTH(VAL(TOPC1.0BJ)) =>
ERROR("selectlon\fault")
EVRES <-SELECT(TOPC1.0BJ, TOPC1. INDEX),
TOPC1.SAVE\FLAG -> GOTO UNSAVE\VAL‘
POPC1\RETURN;

UNSAVE\VAL:
EVRESULT(EVRES, MVAL(EVRES));
POPV(1); NT Pop saved object off of value stack;
POPC1\RETURN;

EVSELQ:
PUSHC(CONST(SEL\BLOCK OF CADR(F), CADDR(F)));
F <~ TOPC1.0BJF;
CALL EVAL\FORM;
MVAL(EVRES) CLASS = "PTR" -> DEREF(EVRES);

SAVE\VAL
E} INDEX <~

SEI.ECTOR\ INDEX (MVAL(TOPC1. OBJg,
TOPC1.SEL\FORM) ;
GOTO EVSEL1;

Auxiliary Functions

SAVE\VAL, <~
EXPR(; NONE)
BEGIN
PURE\VALUE =>
IN
TOPC1.0EJ <— PUSHV(EVRES);
ENDTOPC1.SAVE\FLAG <~ TRUE
TOPC1.0BJ <~ EVRES
END;

SELECTOR\INDEX <-
EXPR(M:MODE, S:SYMBOL; INT)
BEGIN
DECL L:INT;
M.CLASS # “STRUCT" =>
ERROR ("selection\fault");
FORI <= 1, eae , LENGTH VAL(M. S) TIIL I GT O DO
[) m.o(ij.sin’="s = (33

END;

4-32

4-33

Discussion

Two types of selection forms are defined for compound
objects, namely selection (SEL!) and selection—quoted
(SEIQ!). In either case, the OBJF is evaluated. If the

*
result is a pointer, it 1is dereferenced to produce a

non-pointer value. If the result is a pure value then it is
saved on the value stack.

SEL! and SEIQ! differ in the method used to obtain the

index of the comporent to be selected.

SEIQ! calls SELECTOR\INDEX to obtain, from the mode of
the object, the index associated with the symbolic field
name specified by SEL\FORM. SEL! evaluates the SEL\FORM.
If the result 1is an integer then it uses it as the index.
If the result is a SYMBOL, then it calls SELECTOR\INDEX to
obtain the index. The primitive procedure SEILECT is called
to select the appropriate component of the object. SELECT

returns a pointer to the selected component.

The result of a selection form is the component of the

objecte.

*

VAL is arplied repeatedly until a non-pointer object
is obtained. Selection 1is the only language construct in
which pointer coercion is automatic.

4-34

2.9 Assignment

Examples

X <1

(<~ X 1)

S <~ Y.CAR

(<~ S (SEIQ! Y CAR))

Modes

ASSIGN\BLOCK <~
STRUCT(IHSF:FORM,
RHSF:FORM,
OBJ :REF,
SAVE\FLAG : BOOL) ;

Evaluator

EVASSIGN:
PUSHC(CONST(ASSIGN\BLOCK OF CADR(F), CADDR(F)));
F <~ TOPC1.ILHSF;
CAIL EVAL\FORM;
SAVE\VAL();
T <- TOPC!.RHSF;
CALL EVAL\FORM;
¥CT COMPATIBLE(MVAL(TOPC1.0BJ), EVRES) ->
FRROR("assign\error");
ASSIGN(TOFC1.0BJ, EVRES);
TOPC1.SAVE\FLAG ~> GOTO UNSAVE\VAL;
EVRES <- TOPC1.0BJ ;
POPC1\RETURN;

Discussion

The LESF is evaluated first. If the result is a
pure-value then it is saved on the value stack. The RHSF is

then evaluated. If the 2 objects obtained are compatible

4-35

then the primitive function ASSIGN is used to perform the
mode—dependent assignment. The value of an assignment form
is the object specified by OBJI after the assignment has
been completed, unless the LHSF was a pure value 1in which

case the value of the assignment is a copy of the modified

LHSF.

2.10 Iteration

Examples

FOR I <~ 1, ..., N DO SUM <~ SUM + 1;
(FOR T 1 NIL N NIL (<~ SUM (+ SUM 1)))

FOR I <~ 1,3, <e., K TILL P(I) DO
(V7B =570(X)75 T(x3 ZJ;

e 1(%150;&?11(4161,1\0%!11)3)((;2 X)) (T X)))

FOR I<- 1,3, ..., N WHILE B DO (FOO(X));
(FOR I 1 3 N (WHILE . B) (F0O X))

Modes

FOR\BLOCK <-

STRUCT(OLD\NP:INT,
OLD\VP:INT,
NAME: FORM,
INITF:FORM,
STFPF:FORM,
LIMITF:FORM,
TESTF:FORM,
COND\ FLAG : BOOL,
BODY :FORM,
STEP:INT,

4-36

LIMIT:INT,
RETURN:SYMBOL) ;

Evaluator

EVIOR:
PUSHC(CONST(FOR\ BLOCK OF
NP

?

VP,
F<~F.CDR).CAR,
F<~F.CDR).CAR,
F<-F.CDR).CAR,
F<-F.CIR).CAR,
F<~F.CDR).CAR,
BEGIN
F.CAR = NIL => FALSE;
F.CAR.CAR = "“TILL" => TRUE;
FALSE
END,
$I<—F.CDR).CAR,

9

O,
"RETFOR")) 5
PUSHN(TOPC1.NAME, GENV{INT));
F <~ TOPC1.INITF;
CAILL EVAI\FORM;
CHECKM(INT);
NSV1 <- VAL(EVRES);
F <- TOPC1.STEPF;
F = NIL -> GOTO EVFOR5;
CALL EVAIL\FORM;
CHECKM(INT);
TOPC1.STEP <~ VAL(EVRES) - NSV1;
EVFORS:
F <~ TOPC1.LIMITF;
F = NIL -> GOTO EVFOR1;
CALL EVAL\FORM;
CHECKM(INT);
TOPC1.LIMIT <- VAL(EVRES);
EVIFCR1:
TOPC1.TESTF # NIL -> GOTO EVFOR3;

EVIFORZ2:
CALL ALIOW\INTERRUPT;
SIGN(TOPC1.STEP) * (NSV1 - TOPC1.LIMIT) GT
O => GOTO ENDFOR;
F <~ TOPC1.BOLY;
CALL FVAL\FORM;
NSV1 <~ NSV1 + TOPC1.STEP;
GOTO EVIORZ2;

4-37

EVFOR3:
CALL ALIOW\INTERRUPT;
SIGN(TOPC1.STEP) * (NSV1 — TOPC1.LIMIT) GT
O -> GOTO ENDIOR;
F <~ TOPC1.TESTF.CDR;
CALL EVAIL\FORM;
CHECKY (BOOL) 3
TOPC1.CONI\FLAG = VAL(EVRES) —> GOTO ENDFOR;
F <~ TOPC1.BODY;
* CALL EVAL\FORMN;
NSV1 <~ NSV1 + TOPC1.STEP;
COTO FVFOR3;
ENDFOR:
RETURN\NOTHING;

RETFOR:
NP <~ TOPC1.OLD\NP;
FLUSH(VS, TOPC1.0LD\VP);
POPC1\RETURN;

Auxiliary Function

SICN <~
EXPR(N:INT; INT)
EEGIN
N=©Q=>0;
N GT O => 1;
e
FND;

Discussion

There are two types of iteration, namely, iteration
without—-test and iteration with—test. In either case, a
name-stack entry is made for the iteration variable. The
initial value for the iteration variable is obtained by
evaluating INITF. If STEPY is non—-null then it is evaluated
and the iteration STEP is taken to be the difference between
it and the result of evaluating INITF, otherwise the STEP is
defaulted to 1. If the LIMITF is non-null, it is evaluated

4-38

to yield the iteration 1limit, otherwise the LIMIT is
defaulted to O. The values for STEP and LIMIT are saved in
the FOR\BLOCK.

For an iteration without test (TESTF=NIL), the
iteration body is evaluated O or more times until the

iteration variable exceeds the LIMIT.

For an iteration with test (TESTF#NIL), the iteration
body is evaluated O or more times until either the iteration

variable exceeds the 1limit or the result of evaluating

*

TESTF.CDR is equal to the COND\FLAG.

Since the evaluation of an iteration form adds an
identifier to the environment, return from the evaluation

must be via the return component in the FOR\BLOCK.

To allow for external interrupts, a «call to

ALIOW\INTERRUPT is made before each evaluation of the body.

The result of an iteration form is NOTHING.

¥*

COND\FLAG is set to TRUE or FAILSE as TESTF.CAR equals
"TILL" or "WHILE", respectively.

2.711 Procedure Application

Examples

FOO(A, B, C + D)
(FOO A B (+ C D))
(EXPR(X:INT,Y:INT BYVAL;INT)(X<=Y))(A,E)

((EXPR! ((X INT BYREF)(Y INT BYVAL))
INT (<- X Y)) A B)

Modes

FN\BLOCK <-

STRUCT(OLD\NP: INT,
OLD\VP:INT,
ARG\LIST:FORN,
RESULT\TYPE: MODE,
PROC:REF,
TYPE:SYMPOL,
NAME :SYMEOL,
RETURN : SYMBOL,
ENTERED: BOOL) ;

BINDF\EIOCK <-
STRUCT (ACTUAIALIST: FORM,
FORMAL\LIST: FORM,
FXP\MODE: MODE
BCLASS : SYMBOL) ;

CEXPR <-
STRUCT(FORMAL\LIST : FORM,
BODY :ROW(INT),
RESULT\TYPE: FORM) ;

CSUBR <~
STRUCT (FORMAT\LIST :FORM,
BODY : SYMBOL,
RESULT\TYPE:MODE) ;

4-39

4-40

Evaluator

APPLY : PUSHC(CONST (FN\BLOCK OF
NP

?

F <~ F.CAR;
MVAL(F) = ATOM -> TOPC1.NAME <~ F;
NT Save name of procedure;
CALL APPLY1;
MVAL(TOPC2) = PAP\BIOCK AND TOPC2.PATH { PATH ->
GOTO DOPAP;
APPLY2:

TOPC1.ENTFRED <- TRUE;

TOPC1.TYPE = CEXPR -> GOTO APCEXPR;
TOPC1.TYPE = CSUBR -> GOTO APCSUBR;
F <~ CADDDR(TOPC1.BODY);

CALL EVAL\FORM;

PROCRET:
PROC\EXIT(TOPC1.0LD\VP, TOPC1.RESULT\TYPE);
RETURN ;

APPLY1:
CALL EVAL\FORM;
DFREF(EVRES) ;
M <~ MVAL(EVRES);
NOT OR(M = CEXPR, M = CSUER,
M = DTPR AND EVRES.CAR = “EXPR!") ->
ERROR ("unbound\ proc") ;

TOPC2.TYPE <- M;
TOPC2.PROC <~ EVRES;
CALL BINDF;
TOPC2.TYPE = DTPR -> PUTNAMES(TOPC2.PROC.CDR.CAR);
TOPC2. TYPE = CEXPR —> PUTNAMES (TOPC2.PROC.FORMALS);
F <~ [) TOPC2.TYPE = DTPR => CADDR(TOPC2.PROC);

TOPC2.PROC.RESULT\TYPE (]
CALL FVAL\FORM;
CHECKM(MODE) 3
TOPC2.RESULT\TYPE <~ VAL(EVRES);
CAILL ALIOW\INTERRUPT;
RETURN;

APCEXPR: XCT(TOPC1.PROC.BODY); NT execute code procedure;
GOTO PROCRET;
NT Result is set by code procedure

4-41

and is pointed to by EVRES;
APCSUBR: GOTO EVAL(TOPC1.PROC.BODY)

NT Transfer control to appropriate
point in evaluator;

RETFN: NP <~ TOPC1.OLD\NP;
VP <~ TOPC1.OLD\VP;
POPC1\RETURN;

BINDF:
PUSHC(CONST(BINDF\ BLOCK OF
TOPC3. ARG\ LIST,
BEGIN
TOPC3.TYPE = DTPR =>
CADR (TOPC3.PROC) ;
%?PCB.PROC.FORMALS

?

BINDF3:
TOPC1.ORMAINIIST = NIL -> GOTO ENDBINDF;
TOPC4.TYPE = CSUBR => GOTO BINDF1;

F <~ CADR(TOPC1.FORMAL\LIST.CAR);
CAIL FVAL\FORM;

CHECKM(MOLE) 3

TOPC1.EXP\MODE <- VAL(EVRES);

BINDF4:
TOPC1.BCLASS <~ CADDR(TOPC1.FORMAL\LIST.CAR);
TOPC1.BCLASS = "UNEVAL" -> GOTO BI NEVALED;
TOPC1.BCLASS = "LISTED" -> GOTO BINDLSTED;
TOPC1.ACTUAL\LIST = NIL -> GOTO GENDEF;
F <= TOPC1.ACTUAL\LIST.CAR;
CALL EVAL\FORM;
BEGIN
TOPC1.EXP\MODE. CLASS = "GENERIC" =>
TOPC1.EXP\MODE <~
RESOLVE(TOPC1.EXP\MODE, MVAL(EVRES));
NOT COMPATIBLE(TOPC1.EXP\MODE, EVRES) —>
ERROR(*type\fault")

END;

TOPC1. EXP\MODE §# MVAL(EVRES) ->
EVRESULT(EVRES, TOPC1.EXP\MODE);

TOPC1. BCLASS = “BYREF" AND NOT PURE\VALUE —>
GOTO BINDBYREF;

PUSHN(NIL, PUSHV(EVRES)); NT Bind BYVAL;

GOTO BINDFLOOP;

BINDBYREF:
PUSHN(NIL, EVRES);

4-42

GOTO EINDFLOOP;

BINDUNEVALED:
TOPC1.EXP\MODE # FORM ->
FRROR("mode\bind\class\mismatch");
PUSHN(NIL, PUSHV(TOPC1.ACTUAL\LIST.CAR));
GOTO EINDFLOOP;

BINDLSTD:
CHECKM(FORM) ;
PUSHN(NIL, TOPC1.ACTUAL\LIST);
TOPC1.ACTUAI\LIST <- NIL;

BINDFLOOP:
TOPC1.ACTUAINLIST # NIL ->
TOPC1.ACTUAL\LIST <- TOPC1.ACTGAL\LIST.CDR;
TCPC1.FORMAI\LIST <- TOPC1.FORMAL\LIST.CDR;
GOTO EINDF3;

ENDBINDF:
POPC1\RETURN;

BINDF1:
TOPC1.EXP\MODE <~ CADR(TOPC1.FORMAL\LIST.CAR);
GOTO LINDI4;

GENDEF':
TOPC1.EXP\MODE = LABEL OR
TOPC1.EXP\MODE.CLASS = "ONEOF" ->

, ERROR("illegal\binding"g;
PUSEN (NIL, GENV(TOPC1.EXP\MODEF)
GOTO EINDFLOOP;

.
’

Auxiliary Functions

PUTNAMES <-

EXPR(L:FORM BYVAL; KONE)
BEGIN
DECL N:INT BYVAL TOPC2.OLD\NP;
FORI <= N+ 1, eee , NP DO
[) NS[I].NAME <-— L.CAR.CAR; L <~ L.CIR (]

.
?

RESOLVE <-

EXPR(U:MODE, R:MODE; MODE)
BEGIN
DECL FF:BOOL;
U = ANY => R;
U.CLASS # "GENERIC" => ERRORé"resolve\error");
FOR I <= 1, <. , LENGTH(VAL(U.D)) TIIL FF DO

4473

[) U. D[I; = R => FF <~ TRUE (];

= TRUE
ERROR("resolve\error”)
END;
PROC\EXIT <-
EXPR(OLDVP:INT, EXPMODE:MODE; REF)
BEGIN
%%é%§EVREs) = LABEL => ERROR("illegal\result®);

EXPMODE = NONE => EVRESULT(ALLOC(NONE), NONE);
EXPMODE.CLASS = “GENERIC" =>
EXPMODE <- RESOLVE(EXPMODE, MVAL(EVRES));
NOT COMPATIBLE(EXPMODE, EVRES)
ERROR (" type\fault")

FND;
OLDVP = VP => EVRES;
INSTACK(EVRES OLDVP VP, VS) =>
EVRESULT(EVRES EXPMODE)
MVAL(EVRES) = EXPMODE => EVRES,
EVRESULT(EVRES, EXPMODE)
END;

Discussion

A form (f al a2 ...an), where f does not specify that
the form is a language construct is treated as a call on the

procedure f with actual parameters al ,..., an.

Procedure application is carried out in five steps:
(1) £ is evaluated to obtain a procedure.
(2) The formal parameters of the procedure are bound to

the actuals al ,..., an.

(3) The result type of the procedure is evaluated to
obtain the EXPECTED\MODE of the call (i.e. the mode
of the object which will be returned by the
procedure.)

(4) The procedure body is evaluated.

4-44

(5) The procedure PROC\EXIT is called to check the mode
of the result against the EXPECTED\MODE and to check
whether the result exists in the portion of the

stack environment which will be deleted wupon

procedure exite.

A procedure is either an explicit procedure, a code

procedure, or a control subroutine.

An explicit procedure is one which is defined in EI1
and whose extermal representation is of syntactic type

<exprnt>, c.f. Appendix 2.

A code procedure (CEXPR) is one written in a language
other than EL1. All (non-control) primitives (such as +, -,
VAL, MD, CONST, ALIOC) are assumed to be defined as code
procedures. The BODY component of a code procedure is a

ROW(INT) which specifies the machine code to be executed.

A control subroutine (CSUBR) is one of the control
primitives described in chapter 2. The body of a control
subroutine specifies the point in the evaluator to which
control 1is to be passed to perform the desired control

action.

The formal parameters to a procedure are represented as
a list of the form
((P1 MFORM1 BCLASS1) ... (Pn MFORMn BCLASSn))
where Pi is the name of the i th formal, MFORMi is a form

4-45

which is to be evaluated to obtain the mode of the i th
*

formal , and BCLASSi must be one of the following SYMBOLs:
BYVAL, BYREF, UNEVAL, or LISTED.

If an argument is passed BYVAL, then +the formal is
bound to a copy of the value of the corresponding actual.
If an argument is passed BYREF, then the formal is bound to
the result of evaluating the argument itself (unless the
result is a pure-value.) An UNEVALed argument is bound to a
pointer to the list structure for its corresponding actual
(which is not evaluated). A LISTED argument is bound to a
pointer to the remaining argument 1list. If the list of
actuals is exhausted before all formals have been bound,
then the remaining formals are bound to objects which are

the default values for the corresponding modes.

All arguments are evaluated in the identifier
environment which exists at the point at which the procedure
call is made, hence the names of the formals are not put
onto the name stack until all arguments are evaluated. The

names of the formals of CSUBRs are never put on the stack.

The result-type is evaluated in an environment which

includes the bindings of the formals.

*

The modes of the formals for CSUBRs are assumed to be
implicit in the 1list structure. Hence, no evaluation is
necessary.

4-46

At this point, a call to ALLOW\INTERRUPT is made to
allow for external interrupts. In addition, a check is made
to see if the body of the procedure is to be applied in the
environment of another path (due to a call on PAP.) If so,
control is transferred to DOPAP. Otherwise, the body of the

procedure is evaluated.

Since a procedure application may add identifiers to
the environment, return from the procedure application must

be via the RETURN component of the FN\ELOCK.

2.12 Labelled Statement

Examples
L: X <= 13
(LABST! L (<= X 1))
11: 1L2: FOO(A,B);

(LABST! 11 (LAEST! 12 (FOCO A B)))
Evaluator

EVLABST:
F <- F.CDR.CDR.CAR;
GOTO FVAL\FORM;

Discussion

The value of a labelled statement is the value obtained

by evaluating the statement itself.

4-47

3. THE CONTROL PRIMITIVES

In this section we present the definitions of the
bodies of the control subroutines. The definitions of the
control primitives are installed as ‘top-level’ bindings by
INSTALL\GLCBAL\ENV as objects of mode CSUER. The BODY
component of a CSUBR specifies the label in the evaluator at
which the Dbody of the CSUBR is defined. Recall that calls
upon the control primitives appear syntactically in ELI
programs as procedure calls (c.f. 4.2.11). Hence, when
control 1is transferred to the body of the control
subroutine, the arguments for the call have been bound on
the name stack of the path.**

For each control mrimitive we present its definition as
a CSUBR in the format of a procedure heading which specifies
the modes and tind classes of its arguments, the mode of its

result and the evaluator label at which its body is located.

*
Evaluator initialization, including the initialization
of top-level bindings, is discussed in section 4.2.1

* %

The body of a control subroutine references 1its
arguments via the NOFIX operators NSV1, NSV2, etc., e.g.
NSV1 is equivalent to VAL(NS[NP].VALUE) - the last argument
passed to the control subroutine.

4-48

3.1 GET\PATH

Definition

GET\PATH<-CSUBR(N:INT; ARPTR) EVGETPATH;

Example

Q <~ GET\PATH(3);

Mode

ENV\BLOCK <- STRUCT(OLD\NP:INT,
OLD\VP:INT,
RETURN : SYMBOL) ;

Global Constants

CI\PATH\FORM 3 NT "CI\PATH" response form;
TIME\OUT\FORM 3 NT "TIME\OUT" response form;
NSQUANT 3 NT Minimum size for NAME\STACK;
VSQUANT 3 NT Minimum size for VALUE\STACK;
CSQUANT 3 NT Minimum size for CONTROL\STACK;

Evaluator

EVGETPATH:
N <~ 1;
CALL EVGETPATH1;
RETURN\RESULT(P) ;

EVGETPATH1 :
P <- ALIOC(ACTRC);

NT Initialize path level interrupt structure;
P.INTINFO.CURLEV <- NPALEV + 1;

P.INTINFO.WAITLEV <— NAPLEV + 1;
P.INTINFO.RESP[1] <— CI\PATH\FORM;

4-49

P.INTINFO.TYPE[1] <— "CI\PATH" ;
P.INTINFO.RESP[2] <— TIME\OUT\FORM ;
P.INTINFO.TYPE[2] <- "TIME\OUT" ;

NT Initialize stacks ;

P.NS <~ ALIOC STACK SIZE N*NSQUANT);
P.VE <= ALLOC{VALUE\STACK SIZE N*VSQUANT};
P.CS <= ALIOC(CONTROL\STACK SIZE N*CSQUANT);
PUSHC(CONST(ENV\BLOCK OF 0O, O, "DELPTH"), P);
P.STKEFIG <~ TRUE;

P.FICGFIG <~ TRUE;

NT Initialize termination form;

P.TERMINATION\FORM <-
QUOTE(CIA("DLLETE\PATH", MYPATH));

RETURN;

NT Control underflow handler;

DELPTH: PUSHN ("LAST\VALUE" , PUSHV(EVRES));
F <~ PATH.TERMINATION\FORM;
CALL EVAL\FORM;
ERROR("termination\error");

Discussion

GET\PATH creates a new path. The path’s ACTIRC is
allocated in the heap. It is enabled for the path level
interrupts "CI\PATH" and "TIME\OUT". The label (DELPTH) of
a statement 1in the evaluator to which control is to be

transferred upon control wunderflow 1is pushed onto the

control\stack. The initial termination form for the path is

set to be one which will call DELETE\PATH.

Control is transferred to DELPTH upon exit from the

outermost procedure call which has been PAPed into the path.

4-50

The last value computed is bound to the name LAST\VALUE and
the path’s TERMINATION\FORM 1is evaluated. If the
TERMINATION\FORM does not terminate the path, then an error

OCCUr'S.

3.2 PAP, PAPQ, DPAP, DPAPQ

Definitions

PAP <~ CSUBR(F:FORM, P:ARPTR; ARPTR) EVPAP;

PAPQ <~ CSUBR(F:FORM UNEVAL, P:ARPTR; ARPTR) EVPAP;
DPAP <- CSUBR(F:FORM, P:ARPTR; ARPTIR) FVDPAP;

DPAPQ <- CSUBR(F:FORM UNEVAL, P:ARPTR; ARPTR) EVDPAP;

Examples

PAPQ(FOO(A, B), P1)
DPAP(X, MDEP(GET\PATH(1)))

Mode
PAP\BLOCK <- STRUCT(PATH:ARPTR, DEPFLG:BOOL) ;
Evaluator

EVDPAP: B <~ TRUE; GOTO EVPAP1;
EVPAP: B <- FALSE;
EVPAP1: NSV1 = NIL OR NSV1 = PATH -> GOTO EVPAF3;

EXISTS(NSV2,
SEL!,

4-51

SEIQ!,

FOR,

DECL!,

BIOCK!,

L= ?

EXER,

IF!,

CLAUSE!,

LABST!) —> GOTO DOPAP1;
PUSHC(CONST(PAP\ELOCK OF NSV1, B));
F <~ N3SV2;

GOTO APPLY

NT Begin the procedure application;

NT APPLY passes control to DOPAP just before
the procedure is applied;

DOPAP: CHECK\PATH(TOPC2.PATH) ;
MOVE\ARGS (TOPCZ2. DEPFLG) 5
PUQHcE"APPLyz" TOPC2. PATH),
CLEAR(TOPC2.PATH.MOD) ;

POPC1 ; NT Pop unused FN\BLOCK;
P <~ TOPC1.PATH;

POPC1; NT Po PAP\BLOCK
RETURN\RESULT(P

NT Evalgate the form in the current
path’s environment;

EVPAP3: F <~ NSV2;
CALL EVAL\FORM;
RETURN\RESULT(NSV1)

NT Modify environment of target path so that
the form will be evaluated;

DOPAP1: CHECK\PATH(NSV1);
PUSHC(NSV2, NSVij; NT save form on CONTROL\STACK ;
PUSHC("PAPF*, NSV1);
CLFAR(TOPC2.PATH. MOD) ;
RETURN\RESULT(NSV1) ;

NT PAPT evaluates the form which is the top
element of the control stack;

PAPF: F <- VAL(TOPC1)
POPC1;
GOTO EVAL\IORM;

Auxiliary Functions

CHECK\PATH <-
EXPR(P:ARPTR; NONE)
BEGIN
NOT TSFT(P.MOD) —> ERROR("path\mod");

END;

EXISTS <-
EXPR(F:FORM, L:FORM LISTED; BOOL)
BEGIN
MVAL(F) # DTPR -> FALSE;
INSET(F.CAR, L)
END;

INSET <-
EXPR(X:FORM, L:FORM; BOOL);
BEGIN
L = NIL => FALSE;
X = L.CAR => TRUL;
INSET(X, I1.CDR)
END;

MOVE\ARGS <—
R(DFLG : BOOL; NONE)
BEGIN
DECL P:ARPTR BYVAL TOPC2.PATH;
DFCL TD:ARPTR;
DECL N:INT BYVAL TOPC1.OLD\NP;
TOPC1.OLD\NP <~ P.NP;
TOPC1.0LD}VP <~ P.VP;
PUSHC(VAL(TOPC1), P);
FORI <= N+ 1, eee 4 NP DO
BEGIN
DECL B:BOOL;
MVAL(NS[I].VALUE) = LABEL =>

PUSHN(NS[I].NAME, GENV(LABEL, P), P);

EEGIN

NOT P.STKEFLG —> ERROR1("no\stacks",P)

4-52

DFLG AND (DD <— DDEP(PATH, P)) # NIL =>
INSTACK(NS[I].VALUE, DD.DSV, VP,VS);

DNOT HEAP(NS[I].VAIUE)
END;
PUSHN(N%&I].NAME,

BECIN

B => PUSHV(NS[I].VALUE, P);

NS[1].VALUE

4~-53

END,
E)
END
END;

Discussion

(D)PAP(Q) arranges for the evaluation of a form or the
application of a procedure 1in the environment of another
path. If NSV1 is null, or is equal to the current path,
then the form NSV2 is simply evaluated in the current path’s

environment.

If NSV2 1is not a procedure application, then the
environment of NSV1 1is modified, so that if control is
passed to it, the form will ©be evaluated. This is
accomplished by pushing the form and the evaluator label
PAPF onto the control stack of NSV1.

If NSV2 is a procedure application, then a PAP\BIOCK is
pushed onto the control stack of the current path and the
procedure application is "evaluated". APPLY checks to see
if the procedure application is to be applied in the current

environment or not just before it evaluates the body of the

procedure (i.e. after the actuals and result-type have been
evaluated.) If APPLY detects a PAP\BLOCK immediately
preceding the FN\BLOCK it has placed on the control stack,
then it passes control to DOPAP in lieu of evaluating the

procedure body.

4-54

MOVE\ARGS copies the arguments and FN\BLOCK into the
environment of NSV1. The boolean argument specifies whether
or not the PAP was a dependent one, i.e. whether arguments

which exist in the accessible environment of NSV1 are to be

passed directly or are to be copied.

DOPAP pushes the interpreter 1label APPIYZ2 onto the
control stack of NSVl so that if control is passed to NSV,
the body of the procedure will be evaluated.

The modification word in NSV1°s ACTRC is TSET to insure
that two evaluators do not simultaneously modify NSV1°s

environment.

The result of (D)FAP(Q) is NSV1i.

2.3 PFETCH, PSTORE

Definitions

PFETCH <- CSUBR(NAME:SYMBOL, P:ARPTR BYVAL; ANY) EVPFEICH;

PSTORE <~ CSUBR(VALUE:ANY,
NAME:SYMBOL,
P:ARPTR BYVAL) EVPSTORE;

4-55

Examples

PFETCH("X", P)
PSTORE(A+B, "Y", Q)

Evaluator

EVPFETCH:SETUP() ;
NOT HEAP(EVRES) -> EVRESULT(EVRES, MVAL(EVRES));
NSV1 § PATH -> CLEAR(NSV1.MOD);
RETURN;

EVPSTORE: SETUP();
NOT COMPATIBLEgMVAL(EVREs), NS3) ->
ERROR1("assign\error",NS3);
ASSIGN(EVRES,NS3) ;
NSV1 # PATH -=> CLEAR(NSV1.MOD);
RETURN\NOTHING;

Auxiliary Function

SETUP <~
EXPR(; NONE)
BEGIN
NSV1 = NIL -=> NSV1 <~ PATH;
NSV1 # PATH AND NOT TSETSNSV1.MOD) ->
ERROR("path\mod") ;
NOT NSV1.STKEFLG -> ERROR("no\stacks",NS1);
NAME}INDEX <~
FIND\NAME(NSV1.NS,
N <~ [) NSV1 = PATH => NP; NSV1.NP (],
NSV2) ;
NAME\INDEX = O -=> ERROR("no\binding");
EVRES <~ NSV1.NS[NAME\INDEX].VALUE
END;

4-56

Discussion

PFETCH obtains the most recent binding of the
identifier specified by NSV2 in the path specified by NSV1.
If the identifier is not bound directly to an object in the
heap, then the value of the identifier is copied into the

RESULT\SLOT.

PSTORE assigns NSVZ2 to the most recent binding of the
identifier NSV2 in the path NSV1. The modes of the objects

must be compatible for assignment.

In either case, an error occurs if there is no binding

for NSVZ2 in path NSV1.

3.4 ISET, CLEAR

Definitions

TSET <~ CSUBR(X:INT; BCOL) EVTSET;
CLEAR <- CSUBR(X:INT; NONE) EVCLEAR;

Evaluators

EVTSET: RETURN\RESULT(TSET1(NSV1), BOOL);

EVCLEAR:CLFAR1(NSV1);
RETURN\NOTHING ;

4-57

Discussion

TSET ‘sets”® the integer NSV1 and returns TRUE or
FAISE as NSV1 was “unset” or “set’ previously. The test—
and-set is an indivisible operation. CLEAR “unsets’ the

integer in a single indivisible operation.

3.5 MDEP, DEPENV

Definitions

MDEP <- CSUBR(P:ARPTR; ARPTR) EVMDEP;
DEPENV <-~ CSUBR(X:SYMBOL; ANY) EVDEPENV;

Examples

P <~ MDEP(GET\PATH(1));
DECL X:INT BYREF DEPENV("WALDO");

Evaluators

EVMDEP: NSV1 = PATH OR NSV1 = NIL —>
FRROR ("de ndency"
NOT TSET(NSV1.MOD
IRROR(" th\mod")
NSV1.DS # NIL AND NSV1.DS # PATH ->
ERROR1("dependency™,NSV1) ;
11EV1.DS = PATH -> REM\DEPLIST(NSV1 PATH) ;
NT Remove NSV1 from the
list of dependents;
DDEP(NSV1, PATH) # NIL ->
ERROR1("dependency”,NSV1);
NT If PATH is a dependent of NSV1 then
a circular dependency will be created;
BEGIN
(NSV1.DSN <~ FIND\NENTRY()) = 0 =>

BEGIN
NSV1.DSN <~ O3
NSV1.DSC <~ 1;
NSV1.DSV <~ O;
END;
FIND\CENTRY\VENTRY (NSV1.DSN,NSV1)
END;
ADD\DEPLIST(NSV1, PATH) ;
CS[PATH.LOWCP]["RETURN"] <~ "CHECK\SUFPORT";
NT Smash RETURN component ;
CLEAR(NSV1.MOD) ;
RETURN\RESULT(NSV1);

CHECK\SUFPORT:

EVDEPENV :

EVDEPENV 1

NOT CEECK\LEV(CP - 1) -=> ERROR('"non\support");

MVAL(TOPC1) = FN\BLOCK -=> GOTO RETFN;
MVAL(TOPC1) = BLOCK\BLOCK -> GOTO RETELOCK;
MVAL(TOPC1) = FOR\BLOCK -> GOTO RETFOR;
GOTC DELPTH;

NAME\INDEX <~ FIND\NAME(NS, NP, NSV1);
NAME\INDEX # O -=>
BEGIN
EVRES <~ NS[NAME\INDEX].VALUE;
RETURN
END;
P <~ PATH;

P.DS = NIL ->
BEGIN
EVRES <~ NSV1.TLE;
NT Return top level binding;
RETURN
END;
NAVE\INDEX <- FIND\NAME(P.DS.NS, P.DSN, NSV1);
NAME\INDEX # O =>
BEGIN
EVRES <~ P.DS.NS[NAME\INDEX].VALUE;
RETURN
FND;
P < P.DS;
GOTO EVDEPENV1;

4-58

4-59

Auxiliary Functions

ADD\DEPLIST <-
EXPR(SON : ARPTR, PATH:ARPTR; NONE)

BEGIN
SON.DS <- PATH;
PATH.IOWCF = O =>

BEGIN
NT No dependents previously;

PATH.SPATH <- SPATH <- TRUE;
PATH.LASTSON <- SON;
PATH.IOVWCP <- SON.DSC;
SON.PLEV <~ NIL;
SON.LBRO <- NIL
END;
PATH.IOWCP = SON.DSC =>

BEGIN
NT New dependent at same level;

SON.PLEV <- NIL;
SON.LBRO <- PATH.LASTSON;
PATH.LASTSON <- SON

ENL;

KT SON is first at lower level;
SCN.PLEV <- PATH.LASTSON;
PATH.ILASTSON <~ SON;

P/TH.LOWCP <~ SON.DSC

END;

CHECK\LFV <-
EXPR(CPLEV:INT; BCOIL)
BEGIN
DECL P:ARPTR EBEYVAL PATH.LASTSON;
DECL F1:ARPTR;
CPLEV GE P.DSC => TRUE;
LOOP: P1 <-~ CHECK\TERM(P);
P1 = P => FALSE; NT Not all sons have terminated;
Pl = R1L =>
BFGIN
PATH.LASTSON <~ NIL;
PATH.IOWCP <- O3
PATH.SPATH <- FALSE;
SPATH <- FALSE;
TRUE
END;
CPLEV GE P.DSC =>
BEGIN
PATH.LASTSON <~ P1;
PATH.IOWCP <- P1.DSC;
TRUE
END;
GOTO LOOP

4~60

END;

CHECK\TERM <~
EXPR(P:ARPTR; ARPTR)
BEGIN
DECL P2:ARPTR BYVAL P;
LOOP: P2.STKEFIG => P;
P2.1BRO = NIL => P2.PLEV;
P2 <~ P2.1BRO;
GOTO 1LOOP
END;

DDEP <-
EXPR (FATHER : ARPTR, SON:ARPTR;
BEGIN
SON.DS = NIL => NIL;
SON.DS = FATHER => §ON;
DDEP(FATHER SON.DS
END;

NT If SON is dependent upon FATHER, then DDLP
returns SON if it is directly deﬁpndent
or some path P, such that P d.d. FrA
and SON 1is dependent upon P;

ARPTR)

FIND\CENTRY\VENTRY <-
EXPR(N:INT, P:ARPTR; NONE)
BEGIN
DECI, F:MODE;
DECL, R, R1:INT;
FOR T %= €P, @B — 1y wee 5 1 900 R GL 6 10

BEG%N< MVAL(CS
S ’
OR(E = £ogx
T = FN\BLOCK AND CS[I].ENTERED = TRUE,
E = ENV\BLOCK,
E = ELOCK\BLOCK) AND CS[I].OLD\NP LT N =>
R <~ I;
OR(E = FOR\BLOCK,
E = FN\BLOCK,
= ENV\BLOCK
E = ELOCK\BLOCK) =>R1 <1
END;
P.DSC <~ R;
P.DSV <- CS[R1].OLD\VP

END;

FIND\NENTRY <-
R(; INT)
BEGIN

4-61

DECL R:INT;
NT Find index of last named entry on name-stack;
FOR I <~ NP, NP- 1, eee 5, 1 TILL R GT O DO
[) NS[I].NAME { NIL =>R <~ I (];

END;

PREV <-
EXPR(X:ARPTR; ARPTR)
BEGIN
X.LBRO # NIL => X.LBRO;
X.PLEV # NIL => X.PLEV;
NIL
END;

REM\DEPLIST <~
EXPR(SON:ARPTR, PATH:ARPTR; NONE)
BEGIN
DECL, P1, P2:ARPTR;
PATH.LASTSON = SON =>
BECIN
(PATH.LASTSON <-— PREV(SCN)) # NIL =>
PATH.LOWCP <- PATH.LASTSON.DSC;
PATH.IOWCP <- O
END;
P1 <— PATH. LASTSON;
LOOP: (P2 <- PREV(P1)) = SON =>
BEGIN
P1.IBRO # NIL AND P2.PLFV {# NIL =>
REg P1.PLEV <~ P2,PLEV; P1.LBRO <~ NIL (];
P P1) <~ PREV(P2)
END;
P1 <~ P2;
GOTO LOOP
END;

Discussion

MDEP makes the path NSV1 dependent upon the current
pathe.

The ACTRC of a derendent path must specify which path

it is directly dependent upon and the point at which it is

4~62

dependent. For a dependent path P, the DS field specifies
the direct suprorter path. The DSN field specifies an index
in the name-stack of DS which defines the directly
accessible environment of P with respect to DS. DSC is an
index into the control stack of DS which specifies the
control block which, when deleted, will destroy the
name-stack entry corresponding to DSN, 1i.e. DSC 1is the
highest 1level to which control may flow in DS until P
terminates. DEV specifies the lowest point on the value

stack of DS which is accessible to P.

The ACTRC of a supporting path must specify which paths
are directly dependent upon it and the levels at which they
are degendent. For a supporting path Q, LCWCP specifies the
lowest point on Q“s control stack at which a path was made
a ded. LASTSON specifies the last path which was made a
direct dependent. All d.d. paths at a given CP level are

linked through the LBRO field of their ACTRC’s. The oldest
ded. at a given CP level, i.e. one with no LBRO, points

through the PLEV component of its ACTIRC to the d.d. at the
next highest CP level.

MDEP first checks whether or not NSV1 may become
directly dependent upon PATH. In particular, it checks for
self-dependency and circular dependency. If NSV1 is already

*

By lowest, we mean closest to the top of +the stack,
i.e. most recent.

4-6%

directly dependent upon PATH, then NSV1 is removed from the
list of directly dependent paths by calling REM\DEFLIST.

Next, the environment of PATH is examined to determine
the values of DSN, DSC and DSV for NSVl. DSN is set to the
index of the most recent named entry on the name stack of
PATH. CEN 1s set to the stack index of the control-block
which added the entry corresponding to DSN to the identifier
environmente. DSV is set to the index of the last entry on
the value-stack used by the identifiers associated with the
control-block, namely, OLD\VP for the next lower
control-block. If no named NS entry is found, DSN, DSC and
DSV are set to reference the ENV\BIOCK at the top of the

stack.

ADD\DFPLIET is called to add NSV1 to the list of paths
d.d. upon PATH. If PATH was not previously a supporting
path, the SPATE flag is set in PATH’s ACTRC and in the
environnent of the evaluator. All sub-evaluators that add
identifiers to the environment of the path, namely, EVELOCK,
EVFOR, and APPLY, return by transferring control to the
label specified by the RETURN component of the corresponding
control-block. Hence, to insure that the portion of the
identifier environment accessible to NSV1 1is not deleted
prematurely, the RETURN component of PATH’s control stack
entry corresponding to DSC is modified to be the evaluator

label CHECK\SUPPORT which will determine whether or not all

4-64

d.d.s at this level have terminated.

CHECK\LEV returns TRUE if all paths which are directly
dependent upon PATH at a control-stack entry below CPLEV
have terminated. IASTSON, LOWCP, and SPATH are updated
appropriately. If control can be returned safely from the
control-block, i.e. if CHECK\LEV returns TRUE, then
CHECK\SUPPCRT transfers control to the appropriate return
label based upon the mode of the control stack entry.

The value returned by MDEP is NSV1.

DEPENV obtains the most recent binding of NSV1 1in the
accessible environment of PATH. The identifier environment
of PATH is searched first. If no binding for NSV1 is found,
then the name stack of the path specified by PATH.DS (the
direct supporter path) is searched starting with PATH.DSN.
If no binding is found then PATH.DS.DS is searched, etc. If

no binding is ever found, then the top-level binding of NSV1
is returned. Note that DEPENV does not copy the binding of

NSV1 into the RESULT\SIOT, as does PFETCH. Thus, DEPENV may

return a reference to the environment of another path.

3.6 DELETE\PATH

Definition

DELETE\PATH <- CSUER(PATH:ARPTR; NONE) EVDELETEPATH;

4-65

Example

CIA("DELETE\PATH",P);
Evaluator

EVDELETEPATH :
NSV1 = PCIAR ->
ERROR("deletion");
PATH # PCIAR ->
ERROR("CI\procedure™);
NOT TSET(NSV1.MOD) ->
ERROR ("path\mod") ;
NEV1.LASTSON = NIIL -> GOTO NOSONS;
NEV1.FIGFIG <- FALSE;
SEARCH(NSV1);
EVDEL1:
CLEAR(NSV1.MOD) ;
RETURN\NOTHING;
NOSORS::
DELETE\ENV (NSV1);
NSV1.FLGFIG <- FALSE;
NEV1.DS = NIL -> GOTO EVDEL1;
SEARCE(NSV1.DS);
GOTO EVDEL1

Auxiliary Functions

SEARCH <-
EXPR(X:ARPTR; NONE)
BEGIN
DECL: E:BOCL;
DECL Y, Z:ARPTR BYVAL X.LASTSON;
X.EIGFLG => NOTHING;
NT No action if eligible for evaluation;
BFGIN
T Z <- CHECK\TERM(Y);
Z =Y => B <~ TRUE;
NT At least one son hasn’t terminated;
Z = NIL => NOTHING;
NT No more levels;
Y <~ Z;
NT Else set Y to first son
at previous level;
GOTO L
END;
B => NOTHING;
NT At least one son hasn‘t terminated;

4~-66

DELETE\ENV(X) ;
NT Otherwise we can delete environment;
X.DS = NIL => NOTHING;
SFARCH(X.DS) NT Search father;
END;

DELETE\ENV <—
EXPR(P:ARPTR; NONE)
BEGIN
P.STKEFIG <~ FALSE;
P.VS <= P.CS < P.NS <— NIL;
P.NP <— P.CP < P.VP < O
END;

Discussion

DELETF\PATH makes NSV1 ineligible for evaluation. If
NSV1 has no direct dependents, then the stack-environment of
NSV1 is reclaimed. Otherwise, the stack environment is
reclaimed if and only if all dependents of NSVl are
ineligible for evaluation. Hence, a path may terminate but
its stack environment will remain as long as necessary. If
NSV1 has no direct dependents, but is 1itself a dependent
path, then the stack environment of NSV1.DS is reclaimed if

NSV1 was the last d.d. still eligible for evaluation.

The procedure SEARCH is used to determine if a path’s
stack environment may be deleted. If all sons of X have
terminated, then the environment of X 1is deleted and if

X.DS#NIL., SEARCH is called recursively on X.DS.

4-67

3.7 GOTO, RETFROM

Definitions

GOTO <— CSUBR(L:LABEL; NONE) EVGOTO;
RETFROVM <~ CSUEBR(FNAME:SYMEOL, VAL:ANY; NONE) EVRETFROM;

Examples

COTO FCO;
RETFROM("RESUME",N) ;

Evaluators

EVGOTO: NSV1.PATH {f PATH —=>

ERROR("illegal\GOTO");

SPATH AND NOT CHECK\LEV(NSV1.CFINDEX) —>
ERROR("non\support™) ;

IFIG —> CINTRPT(NSV1.CPINDEX);

CS[NSV1.CPINDEX].STATEMENT\LIST <- NSV1.ST\LIST;

FIUSH(CS,NSV1.CPINDEX);

CP <- NSV1.CPINDEX;

NP <- TOPC1.CUR\NP;

FLUSH(VS,TOPC1.CUR\VP) ;

VP <~ TOPC1.CUR\VP;

GOTO EVBLK1;
EVRETFROM:
N <~ O3
FOR I <- CP,CP-1, ..., 1 TILL N GT O DO
BFGIN
AND(MVAL(CS[IA) = FN\BLOCK,
CS[I].NAME = NSV2,
. CS[I].ENTERED) => N <~ I;
EN -

b

.. = O => ERROR("no\call\to\return\from");

SPATH AND NOT CHECK\LEV(N-1) =>
ERROR(™non\ support") ;

IFIC => CINTRPT(I+-1);

EVRES <- NS1;

FLUSH(CS,N);

CP <~ Nj;

GOTO PROCRET;

4-68

Auxiliary Function

CINTRPT <-
EXPR(N:INT; NONE)
BEGIN
FOR I <~ CP, CP~1, «.., N DO
BEGIN
MVAL(CS[I]) = INT\ELOCK
AND CSEI} g"RE'I‘URN"A#"OOPYRT"
= REM\ INTRPT(I)
0 EI\HI); AND NO\PATH\I >
NO\PRO\INTS NTS -
VRO IFLG b II:KI\.SE
END;
Discussion

GOTO returns control to the statement and block
specified by L. RETFROM returns control from the most
recent explicit call on the procedure FNAME with VAL as
result.

The actions necessary to perform a GOTO or a RETFROM
are quite similar. Basically, they may be divided into
three parts.
(1) The CS index of the BLOCK\BIOCK or ZFN\BLOXK is
found.

(2) The path-flags SPATH and IFIG are examined to
determine 1if the stacks may be simply flushed or if
special processing is required.

(3) The RETFROM or GOTO is performed.

The CS index of the BLOCK\BLOCK to GOTO is stored in

4-69

the CP\INDEX field of the label. The CSE index of the
FN\BLOCK to RETFROM is obtained by searching the control
stack for the most recent FN\BLOCK with ENTERED=TRUE and
whose NAME field is identical to NSVZ2.

We will assume, for the moment, that the special

processing described in (2) is not necessary.

The COTO is completed by storing NSV1.ST\LIST as the
current statement list of the Dblock specified by
NSV1.CPINDEX, flushing the stacks to the appropriate levels,
and then transferring control to EVBIK1. The RETrROM is
completed by setting EVRES to be the result to be returned,
flushin~ the control stack to the FN\BLOCK and then
transferring control to PROCRET to return from the

procedure.

Note that both GOTO and RETFROM flush the stacks to
some higher point. Consequently, unless special checks are
made, the environment required by a dependent path may be
destroyed or an interrupt response will be abnormally
terminated. Thus the interrupt tables will not be updateg
correctly. The path flags SPATH and IFLG indicate to GOTO
that special processing is required before the GOTO may be
completed.

*

The remaining discussion references GOTO only - the
interpretation for RETIROM is essentially the sane.

470

If SPATH is TRUE, then PATH 1is a supporting path.
Hence, FVGOTO must determine whether or not a return to the
block specified by NSV1.CPINDEX will delete part of the
accessible environment of a non-terminated dependent path.
CHECK\LEV is used to perform this check and update the
path—-dependency lists if necessary.

If IFIG is TRUE, then PATH is currently evaluating at
either a path or processor interrupt level. Hence, EVGOTIO
must determine which interrupt responses are being “skipped’
over in returning to NSV1.CPINDEX and update the interrupt
tables appropriately. CINTRPT searches the control stack
for INT\BLOCKs and modifies the interrupt tables to indicate

that the corresponding interrupt responses have completed.

3.8 MYPATH

Definition

MYPATH <~ CSUBR(;ARPTR) EVMYPATH;

4~71

Example

MYPATH # PCIAR => CIA("P",X);

Evaluator

EVMYPATH:
RETURN\RESULT (PATH) ;

Discussion

MYPATE returns a pointer to the current path. Note
that MYPATE is a NOFIX operator.

3.9 EVAL

Definition

EVAL <- CSUBR(F:FORM; ANY) EVEVAL;

Example

GOTO EVAL(TOPC1.RETURN);

Evaluator

EVEVAL: F <-— NSV1;
GOTO EVAL\FORM;

Discussion

EVAL evaluates the form
current path’s environment.

equivalent to FAP(¥,MYPATH).

3.10 COPY

Definition

COPY <~ CSUBR(F:ARFTR; ARPIR);
Example

S <~ COPY(MYPATH);
Evaluator

EVCOPY: BEGIN

4-72

specified by NSV1 in the
Thus, IVAL(F) is essentially

NSV1 = NIL => Q <- PATH;

Q <-~ NS8V1
END;

NT Q is the path to be copied;

Q = PATH -> SAVE\STATE(Q);
N <— LENGTH(Q.NS)/NSQUANT;
CALL EVGETFATH1; NT P points to the new path;
Q # PATH AKD NOT TSET(Q.MOL) —>
ERROR (“path\mod");
NOT Q.ELGFIG —> ERROR("no\stacks");
FOR I <~ 1, «e. , Q.VP DO (P.VS[I] <~ Q.VS[I]);

NT Copy value-stack;

FOR T <= 1, vee 5 Q<NP DO

4-73

BEGIN

P.NS{I7].VALUE <-
BEGIN
INSTACK(Q.NS[1].VALUE,0,Q.VP,(.VS) =>
MAP\PTR(Q.N5[1].VALUE,Q.VS,P.VS);
Q.NS[I].VALUE
END

P.NSsz.NAME <~ Q.NS[I].NAME;
I

END;

NT ﬁAP\PTR returns a pointer to the entry in P.VS
corresponding to the entry in Q.VS for
Q.NS[I1].VALUE;

FOR T & 1, suey Q.CP IO
BEGIN
P.CSEI]<—Q.CS[I];
MVAL(P.CS{I]) = INT\BLOCK AND
P.CS[I]. = ®PREW —>
P.CS[I]["RETURK"] <~ "COPYRT"
END;

NT Copy stack indices;
P.NP <~ Q.NP; P.VP <~ Q.VP; P.CP <~ Q.CP;
P.INTINFO <- Q.INTINFO;

NT Copy interrupt structure;

P.DORMANT <~ Q.DORMANT;
P.TERMINATION\IORM <~ Q.TERMINATION\FORM;

NT Make derendent upon same path if any;

Q.DS # NIL ->
BEGIN
Q.PLEV § NIL =>
BEGIN
P.PLEV <- Q.PLEV;
Q.PLEV <~ NIL;
Q.LBRO <~ P
END;
P.LBRO <~ Q.LBRO;
Q.LBRO <~ P
END;

P.DS <~ Q.IS; P.DSC <~ Q.DSC;
P.DSN <~ Q.DSN; Q.LSV <~ Q.DSV;

Q # PATH -> CLFAR(Q.MOD);
RETURN\RESULT(P) ;

4~14

COPYRT: POPCI\RETURN;

Discussion

Only paths which are eligible for evaluation may be
copied. The new path 1is made the direct derendent of
NSV1.DS. If the path to be copied 1is in the midst of
evaluating processor 1level interrupts, then the RETURN
components of the corresponding INT\BLOCKs are modified so
that the processor interrupt tables will not be updated

incorrectly.

311 CIA, CONTIATH

Definitions

CIA <- CSUER(FN:SYM\RTNE, ARG:ANY; REF) FVCIA;
CONTPATH <- CSUBR(P:ARFTR; ARPTR) EVCONTPATH;

Examples

CTA(TP X)5
CIA(EXPR(X:ARPTR; NONE) (LASTRUN <~ X), P);
LASTRUN <~ CONTPATH(ILASTRUN);

Mode

SYM\RTNE <~ ONEOF(SYMBOL,
PTR(DTPR)
PTR CSUBRZ
PTR(CEXPR));

Evaluators

EVCIA: PATH = PCIAR -> ERROR("illegal\call¥);
EVCIA1: TSET(PCIAR.MOD) => GOTO EVCIA2;
CALL ALLOW\INTERRUPT;
NT Allow for interrupt while waiting
for CI to become available;
GOTO EVCIA1;

EVCIA2: PATH.CIA\ARG <-
FGIN
MD(NSV1).CLASS # "PTR" =>
AITLOC(MD(NSV1) LIKE NSV1);
NSV1
END;
PATH.CIA\FN <- NSV2;
PUSHC("RETCI"); NT Return label for
when control returns;
NSV1.INPROI <-

BEGIN
gOT NO\PRO\INTS =»> PROCNUM;

END;
P.INPROI =0 -> PRO\PATH[PROCNUM] <- NIIL;
SAVE\STATE(PATE) ;
CLEAR(PATH.MOD) ;
EVRESULT(PATH ARPTR;;
INSTAIINSTATE(PCIAR);
RETURN; NT Return in CI environment;

RETCI: RETURN\RESULT(PATH.CIA\RESULT);

EVCONTPATH:

OR(NSV1 = NIL,

PATH {# PCIAR,

NSV1 = PCIAR,

NOT NSV1.EIGFIG,

NSV1.DORMANT) —> ERROR("ineligible\path");
NOT TSET(NSV1.MOD) => ERROR("path\mod"s?
BEGIN

NSV1.INPROI # O OR PRO\PATH[PROCNUM] # NIL =>

4-75

4~76

BEGIN
NSV1.INPROI # PROCNUM OR
P # PRO\PATH[FROCNUM] =>
ERROR1("ineligible\path",NSV1);
NSV1.INPROI <~ O
END;
PRO\PATH[PROCNUM] <- NSV1
END;
SAVE\STATE(PCIAR);
CLEAR(PCIAR.MOD) ;
INSTAIL\STATE(FRO\PATH[PROCNUM]) ;
CALL CEECK\INTERRUPT;
RETURN; NT Return in environment of pathj;

Auxiliary runctions

SAvgkgTATB <~
R(P:ARPTR; NCNE)
BEGIN
P.NP <- NP;
P.VP <- VF;
P.CP <~ CP;
P.SPATH <~ SPATH;
P.IFIC <~ IFICG
END;

INSTALIASTATE <~
EXPR{P:ARFPTR; NONE)
BEGIN
NS <~ P.NS;
VS <~ P.VS;
CE <~ P.CS;
PATH <- P;
NP <~ P.NP;
VP <~ P.VP;
CP <~ P.CP;
SFATH <- P.SPATH;
IFIG <~ P.IFLG
END;

4-T7

Discussion

CIA and CONTPATH switch control to and from the CI

path, respectively.

The first argument to CIA, NSV2, is either the name of
a procedure to be applied in the CI environment or a pointer
to the procedure itself. NSV1 is to be the argument to the
procedure specified by NSV2. If NSV1 is not of mode class
PTR, then it is copied into the heap and the argument to
NSV2 is the pointer to the copy.

Before control can be switched from the path to the CI,
the evaluator must be sure that no other one is evaluating
the CI path. FEence, it performs a busy wait on the field
PCIAR.MOD. When another evaluator switches control out of
the CI, it clears PCIAR.MOD. Thus, TSET will eventually
return TRUE and the CIA may proceed. Note that once the
TSET returns TRUE, all other evaluators that attempt CIA

calls will be forced into busy waits.

The INPROI field of a path’s ACTRC and the global
vector PRO\PATH are used to insure that if a path performs a
CIA call while processing a processor level interrupt, then
the processor will not be given to another path nor will the
path be evaluated bty a different processor, c.f 2.5.3.

When evaluator I is evaluating path P, then

PRO\PATH[I]=P and P.INPROI=O.

4-78

When evaluator I is evaluating the CI path due to a CIA
call mde by path P not during a processor level interrupt

then PRO\PATH[I]=NIL and P.INPROI=C.

When evaluator I is evaluating the CI path due to a CIA

call mde by P during a processor level interrupt then
PRO\PATH[I1]=P and F.INPROI=I.

Having set INPRCI and PRO\PATE arppropriately, the
‘state” of PATH is saved and its MOD field is cleared since
it is not active or being modified. Hence, it may be PAPed
into while the CIA call is being evaluated. EVRES is set to
the result to te returned in the CI environment, namely
PATH. The “state” of the CI is restored and a RETURN is
made in the CI environment. Since control can only Ileave
the CI via a call to CONTPATH and since it is not possible
to PAP into the CI environment, the RETURN will cause a
return from the call to CONTPATH with the ARPTIR of the path
performing the CIA call as the result.

CONTPATH, having determined that control may be
switched from the CI to the path specified by NEV1, saves
the state of the CI path and clears PCIAR.MOD so that a busy
waiting evaluator may fain access to the CI. NSV1 is then
inctalled as the current path. Before a RETURN is made 1in
the environment of NISV1l, CONTPATH checks for any pending

pro—level or path-level interrupts.

4-79

If control ever returns to RETCI, then PATH.CIA\RESULT

is returned as the valve of the CIA call.

3+12 ENADLE\PRO, DISABLE\PRO, LEVEL, INUSE

Definitions

ENABLE\PRO <~ CSUBR({EINAME:SYMBOL,

%Eégféoam; NONE) EVENAELE\FRO;
DICABLE\PRO <~ CSUBR(EINAME:SYMBOL; NONE) EVDISABLE\PRO;
LEVEL <- CSUBR(EINAME:SYMBOLj; INT) EVLIVEL;

INUSE <~ CSUBR(LEV:INT; SYMBOL) EVINUSE;

Examples

ENABLE\PRO("PRO\PRO"™, 1, PRO\PRO\FORM);
DISABLE\PRO("LIGHT\PEN") ;
INUSE(LEVEL("TIMER")) = "TIMER";

Modes

SROW <-— ONEOF(ROW(NPROLEV,SYMBOL),ROW(NPALEV,SYMBOL));

PITE <~ STRUCT(WAITLEV:INT,
CURLEV:INT,
WAITING :ROW(NPROLEV,BCOL),
INPROC:ROW(NPROLEV,BOOL%
TYPE:ROW(NPROLEV, SYBOL 5;

Global Variables

RESPONSE ; NT A ROW(NPROC, ROW(NPROLEV,FORM));

PRO\INT\TAE ; NT A ROW(NPROC,FITE);

Evaluators

EVENABLE\PRO:
LEV(NSV3, PRO\INT\TAB[PROCNUM].TYPE) # O OR
IN\USE(NSV2, PRO\INT\TAB[PROCNUM].TYPE) # NIL =>
ERROR("pro\interrupt");
PRO\INT\TAB[PROCNUM].TYPE%NSV2] <~ NSV3;
NT Indicate name of interrupt;
RESPONSE[PROCNUM][NSV2] <~ NsV1;
NT Set up response forrm;
ENABLF\ PROCESSOR(NSV3, NSV2);
RFTURN\NOTHING;

EVDISABLE\FRO:
L <- LEV(NSV1, PRO\INT\TAB[PROCNUVM].TYPE);
1. = O => RETURN\NOTHING;
PPO\INT\TAB[PROCNUM].TYPE[L] <~ NIL;
RESPONSE[PROCNUM EL <~ NIL;
DISABLE\PROCESSOR(NSV1, L);

EVLEVEL:RETURN\RESULT(LEV(NSV1,PRO\INT\TAB[PROCNUM].TYPE));

FVINUSE:
RETURN\RESULT(IN\USE(NSV1, PRO\INT\TAB[PROCNUN].TYPE)) ;

Auxiliary Functions

LEV <~
EXPR(N:SYMBOL, R:SROW; INT)
BEGIN
DECL L:INT;
N = NIL => O3
FOR I <~ 1, e.. , LENGTH(R) TIIL L GT O DO
[JR[II]=N=>L< I (];

END;
IN\USE <~

EXPR(N:INT, R:SROW; SYMEOL)
[) ¥ CT LENGTH(R) OR N LT 1 => 0; R[N] (];

4-81

Discussion

The global tables PRO\INT\TAB and RESPONSE describe the
current state of the processor interrupt structure, where
the i th entry in each table describes the state of the i th

processor.

The PRO\INT\TAB is a row of PITEs. The fields of a
PITE and their interpretations are as follows.

(1) TYPE[J] is the symbolic name of the interrupt
enabled at level J.

(2) WAITING[J] is TRUE if and only if a TYPE[J]
interrupt has occurred and the associated response
form has not yet been evaluated.

(3) INPROG[J] is TRUE if and only if the evaluvation of
the response form for a TYPE[J] interrupt has been
initiated but has not yet completed, 1i.e. the
response is in progress.

(4) WAITLEV - the level of the highest priority waiting
interrupt, or NPROLEV+1 if no interrupts are
waiting.

(5) CURLEV - the hirhest priority level of the response
forms currently in progress, or NPROLEV+1 if no

response forms are in progress.

RESPONSE[I][J] is the response form associated with the

interrupt enabled at level J on processor I.

4-82

ENABLF\PRO enables the current rprocessor for EINAME
interrupts at level L with response form RESP, if LEV is not
already in use and the processor is not already enabled for
EINAME interrupts at some level. ENAELE\PROCESSOR performs
any machine—-depencent actions necessary to enable the

processor.

DISABLF\PRO disables the current rrocessor with respect
to EINAME interrupts by setting the appropriate entries in
the PRO\INT\TAb and RESPONSE tables to NIL and calling upon
DISABLE\FROCESSOR to perform any onecessary machine-

dependent actions.

LEVEL returns the level at which the processor is

enabled for EINAME interrupts, or O if it is not enabled.

INUSE returns the symbolic name of the interrupt
enabled at 1level N, or NIL if LEV is out of bounds or the

processor is not enabled at that level.

313 ENABLE\PATH, DISAELE\PATH

Definitions

ENABLE\PATH <- CSUBR(PEINAME:SYMBOL,
EV:INT,
ESP:FORM,
PATH:ARPIR; NONE) EVENABLE\PATH;

4-83

DISABLE\PATH <- CSUBR(PEINAME:SYMBOL,
PATH:ARPTIR; NONE) EVDISAELE\PATH;

Examples

ENABLE\ PATH("CI\TO\PATH",1,CI\PATH\FORM);
DISABLE\PATH("WALDO", P);

Mode

ITE <~ STRUCT(WAITLEV:INT,
CURLEV : INT,
WAITING:ROW(NPALEV,BOOL),
TNPROG : ROW(NPALEV, BOOL) ,
RESP:ROW&NPALEV,IORM),
TYPE :ROW(NPALEV,SYMBOL),
MASK :ROW(NPALEV,BOOL)) ;

Evaluator

EVENABLFE\PATH:
P <~ FIXPATH(NSV1);
LEV(NSV4, P.INTINFO.TYPE) # O OR
IN\USE(NSV3, P.INTINFO.TYPE% # NIL =>
ERRO ("Eath interrupt®);
P.INTINFO.TYPE[SV3} <- NSV4;
NT Indicate name;
P.INTINFO.RESP[NSV3] <~ NSV2;
NT Indicate response form;
P ff PATH -=> CLEAR(P.MOD);
RETURN\NOTHING;

EVDISAELE\PATH:

P <~ FIXPATH(NSV1);
I, <~ LEV(NSV2, P.INTINFO.TYPE);
I, = O => GOTO RTCLEAR;
P.INTINFO.TYPE[L] <~ NIL;

NT Clear name;
P.INTINFO.RESP[L] <~ NIL;

NT Clear response form;

RTCLEAR: P # PATH -> CLEAR(P.MOD);
RETURN\NOTHING;

4-84

Auxiliary Function

FIXPATH <~
EXPR(P:ARPTR; ARPTR)

BEGIN
P = NIL => PATH;
P = PATH => PATH;
NOT TSET(P.MOD) —> ERROR("path\mod");
P

END;

Discussion

The INTINFO field of a path’s ACTRC describes the
current state of the path’s interrupt structure. The
components of an ITE, the mode of INTINIO, have
interpretations analogous to their counterparts in a PITE,
as described in the previous section. The two additional
fields are interpreted as follows:

(1) RESP[I] is the response form associated with the

pseudo interrupt enabled at level I.
(2) MASK[I] is TRUE if and only if the path is masked
against interrupts of type TYPE[I].

*

ENABLFE\PATH enables the path specified by NSV1 for
PEINAME interrupts at 1level LEV with response form RESP
unless LEV is already in use or the path is already enabled
for PEINAMF interrupts at some level.

*

If NSV1 is NIL, then the current path is used as a
default.

4-85

DISABLE\PATH disables the path specified by NSV1 with
respect to PEINAME interrupts.

3.14 MASK, UNMASK, INTERRUPT

Definitions

MASK <~ CSUBR(PEINAME:SYMBOL, PATH:ARPIR; NONE) EVMASK;
UNMASK <- CSUBR(PEINAME:SYMBOL, PATH:ARPTR; NONE) EVUNMASK;

INTERRUPT <~ CSUBR(PEINAME:SYMBOL,
PATH: ARPTR; NONE) EVINTERRUPT;

Examples

MASK ("LIGHT\PEN") ;
UNMASK ("WALDO",P) ;
INTERRUPT(“WALDO*,P);

Evaluators

EVMASK: P <~ FIXPATH(NSV1);
(I, <~ LEV(NSV2, P.INTINFO.TYPE)) = 0 =>
GOTO RTCLEAR;
P.INTINFO.MASK[L] <- TRUE;
P # PATH -> CLEAR(P.MOD);
RETURN\NOTHING;

EVUNMASK:
P <~ FIXPATH(NSV1);
(I <~ LEV(NSV2, P.INTINFO.TYPE)) = O <>
GOTO RTCLEAR;
P.INTINFO.MASK[L] <~ FALSE;
P.INTINFO.WAI K
MINLEV\M(P.INTINFO.WAITING, P.INTINFO.MASK);
NOT(P = PATH AND P.INTINFO.CURLEV GT

4~-86

P.INTINFO.WAITLEV) ->
GOTO RTCLEAR;
CALL CHECK\INTERRUPT;
RETURF\NOTHING;

EVINTERRUPT:
P <~ FIXPATH(NSV1);
(I < LEV(NSV2, P.INTINFO.TYPE)) = 0 =>
GOTO RTCLEAR;
P.INTINFO.WAITING[L] <~ TRUE;
P.INTINFO.WAITLEV <-
MINLEV\M(P.INTINFO.WAITING, P.INTINFO.MASK);
NOT(P = PATH AND
P.INTINFO.CURLEV GT P.INTINFO.WAITLEV) ->
GOTO RTCLEAR;
CA1L CHECK\INTERRUPT;
RETURN\NOTHING;

Discussion

MASK masks a path against PEINAME interrupts by setting
the approrriate %btit in the INTINFO field of the path’s
ACTRC. A PEINAME interrupt sent to the path will be
detected, i.e. an entry will be made in the WAITING vector,
but the response form will not be evaluated until the

interrupt is unmasked.

When an interrupt is UNMASKed, the corresponding MASK
bit 1is set to FALSE. WAITLEV is recomputed since the
unmasked interrupt may have occurred, while masked, and it
may be of higher priority than any of the other waiting
interrupts. If the path specified by NSV1 1is the current
path and if WAITLEV specifies a higher priority than CURLEV,
then a call to CHECK\INTERRUPT is made to initiate the

4-87

response to the interrupt at level WAITLEV.

INTERRUPT sends a PEINAME interrupt to the path
specified by NSVl. An entry is made in the WAITING vector
to indicate that the interrupt has occurred and WAITLEV is
recomputed 1n case the interrupt is of higher priority than
any of the other waiting interrupts. As with UNMASK, if
NSV1 specifies the current path, then WAITLEV is compared
with CURLEV to determine if the interrupt response should be
initiated now. If the path specified by NSV1 is not the
current path, then it must not be active. The interrupt
response will be evaluated the next time the path becomes
active, c.f. CONTFATH.

3.15 STOP\PATH

befinition

STOP\PATH <~ CSUBR(PATH:ARPTR; NONE) EVSTOP\PATH;
Example

STOP\PATH(FAVECT[I1].IDLEPATH);

GClobal Variables

PIT, ; NT A ROW(NPROLEV,INT);
PIV ; NT A ROVW(NPROLEV,BOOL);

Modes

INT\BLOCK <~ STRUCT(TYPE:SYMBOL, INDEX:INT, RETURN:SYMEOL);
BRCW <~ ONEOF(ROW(NPROLEV,BOOL), ROW(NFALEV,BOQL));

FRCY <~ ONEOF(ROW(NPROLEV,FORM),ROW(NPALEV,FORN));
INT\TAB\FLT <- ONEOF(ITE,PITE);

Evaluator

EVSTOP\PATE:
NSV1 = NIL OR NSV1 = PCIAR ->
ERROR("pro\interrupt");
PATH { PCIAR -> ERROR("CI\procedure");

N <~ O3
JOR I <- 1, <.. y, NPROC TILL N GT O DO
BEGIN
I # PROCNUM AND PRO\PATH[I] = NSV1 => N <~ I
END;

I = O => FRROR("pro\interrupt");
GENER/TE\INT("PRO\PRO", PRO\INI\TAB[N], N);
RETURN\NOTHING;

NT ALLOW\INTERRUPT determines whether a
processor level interrupt has occurred.

ALLOW\INTERRUPT:
NOT PIF[PROCNUM] -> RETURN;
CINT1: NOT TSET(PIL[PROCNUM]) -> GOTO CINT1;
PIF[PROCNUM& <~ FALSE;
IFIG <~ TRUE;
GET\INT (PRO\INT\TAB[PROCNUM],
RESPONSE[PROCNUM], "PRO") ;
NT In this case, a higher priority
interrupt will always be found;

CINT2: CLEAR(PIL[PROCNUM]);

GOTO EVAL\IORM; NT GET\INT binds F to
the response form;

NT RETINT is the return label of INT\BLOCKs;

4-88

4-89

RETINT: NOT TSFT(PIL[PROCNUM&) -> GOTO RETINT;
PIF[PROCNUM% <- FALSE;
REM\INTRPT(CP);
POPC1;

NT Now check for more processor
or rath level interrupts;

MORE\INT:
BEGIN
GET\INT(PRO\INT\TAB[PROCNUM],
RESPONSE[PROCNUM], ®PRO") =>
IFLG <~ TRUE;
NO\PRO\INTS AND
GET\INT(PATH. INTINFO,
PATH.INTINFO.RESP, "PATH") =>
IFLG <- TRUE;
FALSE
END -=> GOTO CINI2; NT Eval interrupt response;

NO\PRO\INTS AND NO\PATH\INTS -> IFLG < FALSE;
CLEAR (PIL[PROCNUM])’;
RETURI 3

NT CHECK\INTERRUPT allows higher level
walting interrupts to be processed, if
any exist;

CHECK\INTERRUPT:
NOT TSET(PIL[PROCNUM%) -2 GOTO CHECK\INTERRUPT;
PIF[PROCNUM] <~ FALSE;

COTO MORE\INT;

Auxiliary Functions

GENERATE\INT <-
EXPR(EINAME:SYMBOL, TABLE:INT\TAB\ELT, N:INT; NONE)
BEGIN
DECL L:INT;
IP: NOT TSET(PILBﬁA) -> GOTO 1P;
(L <~ LEV(EINAME, TABLE.TYPE)) = O =>
CLEAR(PIL[N]);
TABLE.WAITINGEL} OR TABLE.INPROG[L] =>
CLEAR(PIL[N]);
TABLE.WAITING[L] <~ TRUE;
TABLE.WAITLEV <~ MINLEV(TABLE.WAITING);
TABLE. CURLEV 1E L => NOTHING;
PIF[N] <~ TRUE;
NT The flag is set only if L is the highest
priority interrupt which has occurred;

CLEAR(PIL[N])

9

REM\INTRPT <~
EXPR(CP:INT; NONE)
BEGIN
DECL TABLF:INT\TAE\ELT BYREF
BEGIN
CS[CP].TYPE = "PRO" => PRO\INT\TAB[PROCNUM];
BART:: THTTNEO AL Js
END;

TABLE.INPROG[TABLE.CURLEV! <~ FALSE;
TABLE. CURLEV <~ MINLEV(T .INPROGS

END;

GET\INT <~
EXP% é(i[}‘é\ﬁl.E INT\TAB\ELT, RESP:FROW, CLAS: :SYMBOL; BOOL)
OR(TABLE.WAITLEV GT LENGTH(RESP),
BEGIN
CIASS = "PRO" => FALSE;
TABLE.MASK[TAELE.WAITLEV]
END,
TABLE.WAITLEV GE TAELE.CURLEV) => FALSE;
TABLE. INPROG[TABLE.WAITLEV] <~ TRUE;
TABLE.CURLEV <— TABLE.WAITLEV;
TABLF.WAITING[TABLE.WAITLEV] <- FALSE;
TABLE.WAITLEV <-

BEGIN
CLASS = "PRO" => MINLEV(TABLE.WAITING);

MINLEV\M(TABLE.WAITING, TABLE.MASK)
END;
PUSHC(CONST(INT\BLOCK OF CLASS,
TABLE.CURLEV, PRETINT"));

¥ <~ RESP[TABLE.CURLEV];
TRUE
END;

Discussion

4-90

STOP\FATH sends the external interrupt "PRO\PRO" to the

processor evéluating NSV1l. The processor number is obtained

from the PRO\PATH vector. For I#PROCNUM, PRO\PATH[J] is the

4-91

ARPTR of the path being evaluated by processor I, c.f.
CONTPATH.

GENERATE\INT sends an EINAME interrupt to processor N.
The interrupt is ‘sent’ as follows.

(a) PRO\INT\TAE[N].WAITING[J] is set to TRUE, where J is
the level at which processor N is enabled for EINANME
interrupts.

(b) WAITLEV is recomputed.

(c) If the priority of CURLEV is greater than or equal
to that of WAITLEV, then no further action is
necessary, since the interrupt will be processed
according to its priority.

(d) If WAITLEV is of a higher priority than CURLEV, then
PIF[N] is set to TRUE in order to “signal” the fact

that a higher priority interrupt has occurred.

Note that GENERATE\INT also specifies the actions that
must be taken by an external processor in order to interrupt
a processor. For example, a timer interrupt may ©be
considered as an external processor that executes

GENERATE\INT ("TIMER", PRO\INT\TAB[N],N)
after some interval of time has elapsed.

An evaluator detects that an external interrupt has
occurred by CALLing ALLOW\INTERRUPT at selected points,
namely before the evaluation of

(a) the body of a procedure,

4-92

(b) the body of an iteration statement,

(c) each statement in a block.
ALIOW\INTFRRUPT returns immediately if PIF[PROCNUM] is
FAILSE, otherwise it obtains the response form associated

with the interrupt and evaluates it.

To insure that AILLOW\INTERRUFT and GENERATE\INT can
both examine the PRO\INT\TAB entry without interference from
the other, the global vector PIL (processor-interrupt-lock)

is used to provide synchronization.

GET\INT updates PRO\INT\TAB[PROCNUM] and binds F to the
appropriate response form. An INT\ILOCK is pushed on the
control stack which specifies the class of interrurt (either
"PRO" or “PATH"), the interrupt level and a return label
("RETINT"). GET\INT returns FALSE if no interrupt response
is to be evaluated.

Upon completion of the evaluation of the response form,
control is passed to RETINT. PRO\INT\TAE[PROCNUM] or

PATH.INTINFO 1is updated as the interrupt was at
processor-level or path-level, respectively. The INT\BLOCK
is popped off of the stack. At this point (MORE\INT), the
evaluator must determine if the priority of the highest
priority waiting interrupt is greater than the priority of
the interrupt associated with the response form currently in
progress (i.e. the priority of the interrupt which was

interrupted by the one just completed.) If so, the response

4-93

form for +the highest priority waiting interrupt is
evaluated, otherwise the evaluation of the previous response
form is allowed to continue. Note that the path interrupt
levels are of 1lower priority than the processor interrupt

levels.

4-94

4. AUXILIARY PROCEDURES

ALTERN <-
EXPR(M1:MODE, M2:MODE; EOOL)
BEGIN
DECL E:BOOL;
M1 = KONE => TRUE;
MVAL(M2.D) = LDB AND M1 = M2.D => TRUE;
FOR I <~ 1, .. , LENGTH(VAL(M2, D)) TILL B DO
[) M2.D[I] = M1 => B <~ TRUE (];

END;
CADR <~ [XPR(F:FORM; FORM) F.CDR.CAR;
CADDR <~ EXPR(¥:FORM; FORM) F.CDR.CDR.CAR;
CADDDR <- FXPR(F:FORM; FORM) F.CDR.CDR.CDR.CAR;

CHECKM <-
EXPR(M:MODE; BOOL)
[) MVAL(EVRES) # M => ERROR("type\fault"); TRUE (];

COMPATIELE <-
EXPR(SINK:MODE, SOBJ:REF; BOOL)
BEGIN
DECI. SOURCE:MCDE EYVAL MVAL(SOBJ);
SINK = SOURCE => TRUE;
SINK.CLASS = “PTR" AND SOURCE = NONE => TRUE;
SINK = REF AND SOURCE.CLASS = "“PTR" => TRUE;
NOT (SINK.CLASS = “PTR" AND
SOURCE.CLASS = "PIR") =>

FAISE;
ALTERN(MVAL(VAL(SCBJ)), SINK) => TRUE;
FAISE

END;

DEREF <-
EXPR(R:REF; NONE)
[) MVAL{R).CLASS = "PTR" => DEREX(EVRES < VAL(R)) (]J;

4-95

ERROR <~
EXPR(S:SYMBOL; NONE)
BEGIN
DECI, N:INT BYVAL FIND\NAME(NS,NP,S);
DECL EVRES:REF BYVAL [) N = O => S.TLB;
NS[N].VALUE (];
DEREF(EVRES) ;
NOT OR(MVAL(EVRES CEXPR,
MVAL(EVRES CSUER,
MVAL(EVRES DTPR
AND EVRES.CAR = "EXPR!") =>
BEGIN
PRINTE"ERROR");
PRINT(S);
FRROR2(

END;
F <~ CONS(ALLOC(REF LIKE EVRES) NIL);
COTO EVAL\FORM
END;

NT If S is bound in the current environment to a procedure
definition, then the procedure is evaluated. Otherwise, an
error message is printed and ERRORZ is called;

ERROR1 <-
EXPR(S:SYMBOL, P:ARPTR; NONE)
BEGIN
CLEARéP.MOD);
ERROR(S)
END;

NT ERROR1 is called whenever an error occurs and the
MOD field of a th has been set by a control
primitive. ERROR1 clears the MOD field and calls ERROR.

GENV <~
EXPR(M:MODE, P:ARPTR; REF)

BEGIN
DFCL VS:VSPTIR BYREF [) P = NIL => VS; P.VS (];
DECL VP:INT BYREF [) P = NIL => VP; P.VP (];
VP <~ VP + 1;
PUSH(CONST(M),VS)

END;

MINLEV\M <~
EXPR(TAELE:EROW, MASK:EROW; INT)
BEGIN
DECL L:INT;
FTOR I <~ 1, ... , LENGTH(TABLE) TILL L GT O DO

ABLE AND NOT MASK[I] => L <~ 1 ;
L3 IR (thenm) & i L

MINLEV <~
EXPR(TAELE:BROW; INT)
BEGIN
DECL L:INT;
FOR I <~ 1, .. , LENGTH(TABLE) TILL L GT O DO
[) TABLE[I %H > T % I gj,
L = 0 => LENGTH(TABLE) + 13
L
END;

MVAL <~ EXPR(P:REF; MODE) (MD(VAL(E)));

POPC <~ EXPR(N:INT;NONE) [) FLUSH(CS,CE-N); CP <- CP-N (];

VALUE <-
R(; BOOL)
BEGIN
RSP = O => FALSE:
EVRES = RESULT\SLOT[RSP]
END;

PUSHC <-
EXPR(CELT:ANY, P:ARPTR; NONE)

BEGIN
DECL CS:CSPTIR BYREF [) P = NIL => €5; P.C5 (];
DECL CP:INT BYREF [) P = NIL => CP; P.CP (13
CP <~ CP + 1;
MD(CELT) =REF => PUSH(VAL(CELT),CS);
PUSH(CELT,CS)

END;

PUSHN <-
EXP%(NAME:SYMBOL, V:REF, P:ARPTR; NONE)
EGIN
DECL NS:NSPTR BYREF [) P = NIL => NS; P.NS (];
DECL NP:INT BYREF [) P = NIL => NP; P.NP (15
NP <— NP + 1;
NS[NP].NAME <~ NAME;
NS[NP].VAIUE < V

4-96

PUSHR <~
EXPR(PRES:ANY, RESMODE:MODE; REF)
BEGIN
BEGIN
RSP <~ RSP + 13
RESMODE.CLASS = "PTR" AND MD(PRES) = REF =>
BEGIN
PUSH(CONST(RESMODE) ,RESULT\SLOT) ;
ASSIGN(RESULT\SLOT[RSP],PRES)
END;
RESMODE {/ BEGIN
MDEPREsg = REF => MVAL(PRES);
MD(PRES
END =>
ERROR("type\fault");
MD(PRES) = REF => PUSH(VAL(PRES),RESULT\SLOT);
PUSH (PRES, RESULT\ SLOT)
END;
RESULT\SLOT[RSP]
END;
PUSHV <~
EXPR(V:ANY, P:ARPTR; REF)
BEGIN
DECL VS:VSPTR BYREF [) P = NIL => VS; P.VS (];
DECL VP:INT BYREF [) P = NIL => VP; P.VP (];
VP <= VP + 1;
MD(V) = REF => PUSH(VAL(V),VS);
PUSH(V,VS)
END;

RETURN\RESULT <-
EXPR(X:ANY; NONE)
BEGIN
EVRESULT(X, MD(X));
RETURN
END;

4-97

4-98

NOFIX Operators

NO\PATH\INTS <- EXPR(;BOOL)
(PATH. INTINFO.CURLEV GT NPALEV);

NO\PRO\INTS <~ EXPR(;BOOL)
(PRO\INT\TAB[PROCNUM].CURLEV GT NPROLEV);
NS1 <~ EXPR(;REF) NS[NP];
NS2 <~ EXPR(;REF) NS[NR-1];
NS3 <~ EXPR(;REF) NS[NR-2];
NS4 <~ EXPR(;REF) NS[NB-3];
NS5 <- EXPR(;REF) NS[NP-4];

NSV1 <- EXPR(;ANY) (VAL(NS1));
NSV2 <~ EXPR(;ANY) (VAI(NS2));
NSV3 <~ EXPR(;ANY) (VAL(NS3));
NSV4 <— EXPR(;ANY) (VAL(NS4));
NSV5 <~ EXPR(;ANY) (VAL(NS5));

POPC1 <~ EXPR(;ANY)

BEGIN
DECL R:ANY BYVAL VAL(CS[CP]);
FLUSH(CS,CP-1);
CP <~ CP - 1;
R
END;

POPCT1\RETURN <- EXPR(;NONE) [) POPC1 ; RETURN (];

RETURN <~ EXPR(;NONE)
BEGTII
DECL S:SYMBOL;
MVAL(TOPC1) { SYMBOL => GOTO EVAL(TOPC1[“*RETURN"]) ;
S <~ POPC1;
GOTO EVAL(S)
END;

4-99

RETURN\NOTHING <~ EXPR(;NONE) (RETURN\RESULT(NIL));

TOPC1 <- EXPR(;REF) CS[CP];

TOPC2 <- FXPR(;REF) CS[CP-1];
TOPC3 <- EXPR(;REF) CS[CP-2];
TOPC4 <- EXPR(;REF) CS[CP-3];
TOPC5 <- EXPR(;REF) CS[CP~4];

4-100

5« PRIMITIVE PROCEDURES

A procedure is a linguistic primitive if it is used by
the evaluator but it is not defined therein. It is assumed
to be primitive for one of the following reasons:

(1) Its definition is elementary and conforms to

standard usage, e.g. integer addition.

(2) It represents a language construct whose definition
has no interaction with the control subroutines,
€efe the mode constructors, and for which an
adeguvate definition is given in [Weg70].

(3) Its definition involves machine—derendent concerpts,

e.f. a test—and-set instruction.

For each procedure, the arguments and result-type are
given in the format of a code-procedure heading and the

definition is given in English.

Arithmetic Operations
+,—,%,/ <— CEXPR(X:INT, Y:INT; INT);

Integer addition, subtraction, multiplication and

division are defined with the customary interpretations.

Relational Operations — Arithmetic

LT,LE,GT,GE <~ CEXPR(X:INT, Y:INT; BOOL);

4~-101

Returns TRUE if and only if X is less than, 1less than
or equal to, greater than, or greater than or equal to y,

respectively.

Relational Operations — General
=,# <~ CEXPR(X:ONEOF(IMNT,BOOL,CHAR,REF),
Y :ONEOF(INT, BOOL, CHAR, REF) ; BOOL)

Returns TRUE if and only if X and Y are of the same
mode and are identical. Ior REFs, X and Y must point to the
same object. {(a,b) returns TRUE if and only if =(a,b)

returns FALSE.

Logical Operations

NOT <~ CEXPR(X:BOOL; BCOL);

Returns TRUE if and only if X is FALSE. NOT is a
PREFIX operator.

AND <- CEXPR(X:FORM LISTED; BOOL)

If X is NIL, then AND returns TRUE. Otherwise, if each
form on the list evaluates to TRUE, then the result is TRUE.
If any form evaluates to FALSE or a non-boolean value, then
the result 1is FALSE and the remaining forms are not

evaluated.

4~-102

OR <~ CEXPR(X:FORM LISTED; BOOL)

If X is NIL, then OR returns FALSE. Otherwise, if each
form on the list evaluates to FALSE or a non-toolean value,
then the result is FAILSE. If any form evaluates to TRUE
then the result is TRUE and the remaining forms are not

evaluated.

*

Mode Constructing Operations
ROW <~ CEXPR(X:FORM LISTED; MODE)

X must be a list of the form
(i@ f mform)
or
(id NIL mnform)
In the former case, f must evaluate to an integer and the
mode created is ‘row of eval(f) eval(mform)s’. In the
latter case, the mode created is “length unresolved row of

eval(mform)s’. The CLASS field of the DDB created is “ROW".

%*

For each of the mode constructors, X.CAR is either NIL
or an identifier which is to be the “shortname’ of the mode
created. Shortnames are used for forward references in mode
definition, i.e. the shortname of a mode which has not yet
been created may be used in a mode definition. For example,
the actual definition of DTPR and FORM are:

DTPR <~ STRUCT(CAR:"FORM", CDR:"FORM");
FORM <~ FORM::PTR(INT, BOOL, CHAR, DDB, DTPR);

In the definition of DIPR, the mode FORM 1is referenced by
its symbolic shortname. ‘FORM::” specifies that the
shortname of the mode produced is to be "FORM". For a
complete discussion of forward reference in EL1 mode
definitions see [Weg71].

4-103

STRUCT <- CEXPR(X:FORM LISTED ; MOLE)

X must be a list of the form

(id (id-1 mform-1) . . . (id-n mform-n))
The mode ‘structure whose i th component is of mode
eval(mform-i) and has selector id-i‘ is created. The CLASS
field of the DDB created is "STRUCT" and the D field points
to a ROW(STRUCT(SYM:SYMBOL, TYPE:MODE)) of length n, where
D[i].SYM=id-i and D[i].TYPE=eval(mformi).

PTR <~ CEXPR(X:FORM LISTED: MODE)

X must be a list of the form
(id mform-1 ... mformn)
The mode ‘pointer to objects of modes
eval(nform1) ,..., eval(mform-n)’ is created. The CLASS
component of the created DDB is "PTR" and the D field is
either the mode eval(mform—-1) if n=1, or a PIR to a
ROW(MODE) where D[I] = eval(mform—i).

ONEOF <~ CEXPR(X:FORM LISTED, MOLE)

X must be a list of the form
(id mnform1 ... mnformn)
The mode “one of the modes eval(mform—1),...,eval(mform—n)’
is created. The CLASS field of the DDE created is "GENERIC"
and the D field is a pointer to a ROW(MODE), where

4-104

D[i])=eval(mform-i). The primitive mode ANY is defined as

ONEOF (“any-mode).

Data Object Operations

MD <~ CEXPR(X:ANY; MODE)

MD returns the mode of the object X.

VAL, <~ CEXPR(X:REF; ANY);

VAL returns the object pointed to by X.

CONST <- CEXPR(X:FORM LISTED; ANY)
ALIOC <~ CEXPR(X:FCRM 1ISTED; REF)

ALLOC and CONST create and initialize objects of any

mode. The only difference in their interpretations is that
ALIOC returns a pointer to the newly created object. The
list X must be in one of the following formats, c.f.
Appendix 3.

(1) (mform)

(2) (mform LIKE f)

(3) (aform BIZE X1 42 ... Fi)

(4) (mform OF £1 £2 «es fn)

In each case, mform must evaluate to a mode m. In case one,

4-105

the default object of the mode m is generated. In case two,
the form f is ezaluated and if the modes m and MD(eval(f))
are compatible then an object of mode m is generated with
value identical to eval(f). In case three, the results of
evaluating f1 ,..., fn are used to length-resolve the object
of mode m to be generated, 1i.e. fl ... fn specify the
dimensions of the object. In case four, if m is a mode of
the form ROVW(m1), then f1 ... fn must evaluate to objects
whose modes are compatible with ml. If so, a ROW, say R, of
length n is created with R[i]=eval(fi). Otherwise, m nust
be a STRUCT mode. In this case, an object of mode m is

generated, the components of which are copies of the values

obtained by evaluating f1 ... fn.

LENGTH <- CEXPR(X:ANY; INT)

LENGTH(X) is the number of components in X, provided
that MD(X).CLASS is either MROW" or “STRUCT". I1f
MD(X).CLASS="PTR", then X is dereferenced, and IENGTH is

applied to the result. Otherwise, an error occurs.

*

Basically, two modes are compatible if. they are
identical, or if they are PTIR modes and the sink mode (M)
can point to the object VAL(eval(f)). See section 4.5 for
the formal definition of compatibility.

Stack Operations
PUSH <~ CEXPR(OBJ:ANY, S:STACK; REF);

See section 4.1.3.
FLUSH <~ CFXPR(S:STACK, INDEX:INT; NONE);
See section 4.1.3.
INSTACK <~ CEXPR(PTR:REF,
IND1:INT,
IND2:INT,
S:STACK; BOOL);
See section 4.1.3.
HEAP <~ CEXPR(PTR:REF; BOOL);
See section 4.1.3.
MAP\PTR <~ CEXFR(PTR:REF, OLDSTK:STACK,
NEWSTK:STACK; REF);

OLDSTK and NEWSTK must be component-wise identical

4~106

and

PTR must point into OLDSTK. The result of MAP\PIR is a

pointer to the object in NEWSTK which corresponds to

the

object referenced by PIR in OLDSTK. MAP\PIR is used only by

the control primitive COPY.

Miscellaneous

XCT <~ CEXPR(X:ROW(INT); NONE)

The ROW(INT) is executed as machine code in

the

4-107

environment of the path being evaluated. The code must bind

its result to the evaluvator variable EVRES.

ASSIGN <- CEXPR(LEFT:REF, RIGHT:REF; NCNE)

MD(VAL(LEFT)) must be compatible with MD(VAL(RIGHT).
The object srecified by RIGHT is copied into the object
specified by LFFT and MVAL(LEFT) is set to MVAL(RIGHT).
SELECT <- CEXPR(OBJ:REF, INDEX:INT; REF);

SELECT returns a pointer to the INDEX component of the

object referenced bty OEJ.

ERROR2 <- CEXPR(; NONE)

ERRORZ performs machine-dependent error processing.

TSET1 <~ CEXPR(X:INT; BOOL)

TSET1 is the machine-dependent operation of testing and

setting the value of a machine location in one instruction.

CLEAR1 <~ CEXPR(X:INT; NONE)

CLEAR1 is the machine-dependent operation of unsetting

the value of a machine location in one instruction.

4-108

CALL <- CEXPR(X:LABEL, Y:SYMBOL; NONE)

Y is implicit in the notation of the evalwator and must
be the 1label associated with the next statement. Y is

pushed onto the control stack and control is transferred to

X, c.foe 4.1.2. CALL is a PREFIX operator.

INSTALINGIOBAL\ENV <- CEXPR(; NONE)

The initial “top-level’ environment in which paths are
evaluated is installed by providing top-level bindings, i.e.
objects referenced by the TLB components of ATOMS, for all
of the following:

(1) the control primitives,

(2) all linguistic primitives defined in this section

(except for those under the headings stack

operations and miscellaneous,)

(3) PCIAR = a pointer to the control interpreter’s
ACTRC,

(4) RESPONSE — the processor level response form matrix,

(5) the evaluator constants NPROC, NPALEV, NPRCLEV,

(6) the procedures and forms in Appendix 3.

ENABLE\PROCESSOR <~ CEXPR(S:SYMBOL, L:INT; NONE);

ENABLF\PROCESEOR performs any machine-dependent actions

necessary to enable the current processor for S interrupts

4-109

at level L.

DISABLE\PROCESSOR <- CEXPR(S:SYMBOL, L:INT; NOMNE);

DISAELE\PROCESSOR performs any machine—dependent
actions necessary to disable the current processor with

respect to S interrupts at level L.

Priorities of Cperators

The following procedures are defined as INFIX
operators. They are listed in order of decreasing priority:
*of
s
LT,GT,LE,GE=, #
AND
OR
<~ (assignment is treated as an operator
even though its evaluation is via
a sub—evaluator)
€.g. X <~ A+B=C AND D=E OR F
is equivalent to

(X <= ((((A+B)=C) AND (D=E)) CR F))

e

=t
L)
[]
[]

ACTRC .

ADD\DEPLIST

e

INDEX TO CHAPTER 4

0 ww e NG

- - L 4 L] L] L) 101

..... .- 58

AI‘I’OC - L] * - * * L] *® *® 1 04

ALLOW\INTERRUPT &8
ALTE:RN ® e ®© ® ©© e e o e 94

AND . .

ANY . .
APPLY .

AFPPLY2 .
ARPTR .
ASSICN .

ASSIGN\BLOCK
ATOM . « o .

BINDFY o « «

BINDF\BLOCK

L] * * -* L] * 101
...... 103
*e & © e o o 40

« e« e o+« 40
s 6w baw 16
v % & &9 e 107

00000034
¥ s v o s 8 21

4-110

BLOCK\BLOCK . « « « « .

CA DDR - . * ° ° ° L) ° °

CHECKM « « o « o o« « « &
CHECK\INTERRUPT
GHECEIEY s o o w5 4
GRECRPEIE « o« » = = & &
CHECK\SUPPORT . « . . .
CHECK\TERM « « o« « « «
B 2 vass5e 8558
EEBE 2% 5 5 & « «
CINPATH\FORM « «
IR & o &% & @ @ @

COMERITEER v 5 & o & & @
CORIREBTOGE » « = & & = &
€51 1 R g
CORIERTET sow & % w & @ '
CONTROL\STACK « « « «
COPY « o v o o o o o o =

COPYRT * L] * * * L L * L

25

94
94
9%
106
39
94
89
59
52
58
60
74
68
48
56
107
9%
29
104
74
16
72
74

4-111

CSQUANT - * - . * L d - -
CSUBR L J - - * - * * L J *

DDB L J L J * * - L J - * - *

DDEP « ¢ o o o o o « « .

DEIETE\ENV . « ¢« <« o « &
BELETENPATH = « w & @ =
DELFIER 5 = & & & &
DEPENV ¢ o o o o o o o o
DEREE &6 oo = & & = 3
DISABLE\PATH . « + « &+ &
DISABLE\PRO + o « « & =
DISAELE\PROCESSOR . . .
DOPAR @« 5 « & & @ > % ®
RAR w o o o = & @ & & ®
BDEAFG * & &« & @ @ = o s =
FIPR o = = % @& & 8 =

ENABLE \PATH « « « « « -«

ENAHIE\PRO * - * - . L J *
ENABLE\PROCESSOR « « « &

ERROR ¢ ¢ ¢ o o o o o &
FRRORT ¢ o » = « » « » a
BEEORE = v »# 3 o 3 = » »
BVAL o o € o . & & & & =

48
39

82
79
10€
48
95
%
107
i

4~-112

4-113

FVALUATOR « « « « « - . 17
FVALNFORM « « « o « « . 21
FVASSHON o = = « = = = DBA
WEEY = o 5 0.4 s b 0 8 25
EVEIRCE s = o 3 % « ' . 25
EVCIA « v o o « e me U5
EVETLAUEE « « 5 & o & » & 30
FVCLFAR « = « « « « = - 56
EVCONTPATH « v « « o = « 75
FVCOPY o« v « v = = = = o T2
EVDECL o « o« o « « o « o 27
FVDELETEFATH « « « « . . 65
FVDEPENV « « « = « « . . 58
EVDISABLE\PATH 83
FVDISABLE\PRO 80
B &« & o 0 &0 s DO
EVDTPR « « « « 5 e
FVENABLE\PATH 83
EVENABLE\PRO: 80
EVEVAL « « o « « « o« « « T2
EUBEER = & » @ = & o ww B4
EVFOR o v o o o =« o « = 36
EVGETPATH .« « « « o . . 48
EVGETPATH1 « « « « . . . 48

EVGO‘IO * L] - * 4 * - - * 67

EVINTERRUPT « o « « «
BUINUSE. < & s % @ & &
EVIABST o o « o « « « &
EVLEVEL o « « o « o « «
EVMASK « « o o o « o « «
EVMDEP « « o« « « o « « «
EVMYPATH « « « « « « « .
EVPAP v v o v = « « « &
TUBTRTCH v « o & w5 4 «
EVPSTORE « v « « « « « &
EVRESULT o« « « « o o o «
EVREIFROM < o o o = s
BUSEE o o = & 6 5 & %
EISEE = 9% 56 & & 5 4
FVSTOP\PATH o« « « o + «
EVSYM v o o o o o « o «
EVISET « « « « o o« o « «
EVUNMASK « « « = « « « «
EXISTS . .

FIND\CENTRY\VENTRY . . .
FIND\NAME < « v « « o «
FIND\NENTRY « « « « « .
FIXPATH o o = o o o o o
TED o =m0 B e
FN\BLOCK « o « « o « « «
M & o woone o &8 w0

106

o)
15

4-114

FOR\I;IOCK ® ® o & o o o
TROW ¢ & % o9 & & @ o @

U 5 o it v Tt e B 15 206
GENERATENINT « « « « «
CENV v v ¢ o o o o « o &
BERINT « o » = w 5 "
G o 5 & o W

TR & & w5 5 & & 4 » o
INIT\INTERRUFPTS
TN & w = 5 5 @ «
IHEET o = o 6 © & & o
MBRBR v = & w %
INSTALL\GIOBAI\EKV . . .
INSTALINGTATE « + » + &
INTERRUPT « « « « « « &
IEREEEE &« w. s » &
DRTABNERT < < = - @ o
THUSHE o 5 o« o « = = =
IN\USE « o o « « o o « &
TE swewos®dnss

IJA-BEII . . ® e e e e o

4-115

35

100
89
95
90
48
67
100

106

15
18
15
52
106
10€
76
85

19

83

IE ¢ « o o »
ILENGTH . « .
IEV .« « « &
IEVEL . . .
LT o « « & &

MAP\PTR . .
MASK . « « .
T 2 = o %
MOEE 5 o
MINLEV . . .
MINLEV\M . .
MODE . « . «
MOVE\ARGS .
VAL & o « »
MYPATH . . .

NAME\STACK .
NOT .« « « «
NO\PATH\INTS
NO\PRO\INTS

NPALEV . . .
NPROC . «
NPROLEV . .
NSi o o o «
NSPTR . . .
NSQUANT . .

100
105
80
19
100

106
85
104
57
96
95
15
52
96
70

16
101
98
98
15
15
15
98
16

4~116

NSVi « « « &

ONEOF . . .
OR - - L] L J L 4

POPC1\RETURN
PREV « « « .
PROCRET . .
PROC\EXIT .
PRO\INT\TAB
PRO\PATH . .
PRO\ PRO\ FORM
PSTORE . « .
BB o s s &
PURE\VALUE .
PUSH

4-117

98

103
102

50
51
50
50
15
54
Sy
79
&7
96
98
98
61
40
43

15
15
54
103

106

PUSHC .
PUSHN .
PUSHR .
PUSHV .
PUTNAMES

REM\DEPLIST « « « « « «
REM\INTRPT « « o « = «

RESOLVE
RESPONSE
RETEIOCK
RETCT .
RETFN .
RETFOR .
RETFROM
RETINT .
RETURN .

- - - L] L] - - L]

L] L] L] L] L] - L] -

* L J > > * - * L J

L4 L - * L4 > L J -

RETURN\NOTHING « « . - .
RETURN\RESULT . « « . .

ROW . .
RTCLFAR

L d * L4 - - * - >

L4 L - * * * > >

SAVE\STATE « « ¢« « o & »
SAVE\VAI‘ L J > L J - L4 * * *

SEARCH .
SELECT .

* L - - > > - >

* L J - > L J > > -

SELECTOR\INDEX

96
96
97
97
42

61
90
42
80
25
7
41
57
67
89
98
99
97
102

83

4-118

4-119

SEINBLOCK @« « « « o = 31
SIS v ewwme s s o6 B9
DD & 55 i s o S @ G 27
SROW « o« « o o = o « = =« T9
STOP\PATE « « « « « - . 87
STHING o « « o » o« = & 21
SERIEE « « « w « e w w 10B
UL o = 5 & o & & w8 B
SYM\RINE « « « =« = o o . 15

TIMER\FORM . « « = « . . 15
TIME\OUT\FORV 48
TEEEE. « & =% & o8 e w 59

TSEI' e © e e e © o e © o 56
TSEIV] e o o o o i e e o 107

UNMASK ® © e e o e e o o 85
WBRERTIE « = « © = « & 22

73 AU
VALUE\STACK . . « . . . 16
USPTE « %8 = ©« s« % 16
VEOURHT « « 4 o = » = » 48

XCT L4 - L] L] L] Ll Ll L Ll * 106

Chapter 5

EVALUATION AND CONCLUSIONS

1. OTHER FACILITIES

In this section, we consider a number of features of
MPEL1 which were mentioned in chapter 2 or utilized in
chapter 3, but for which no detailed explanation has yet
been given.

1.1 Extended CIA Call

In section 2.3.1, we indicated that it is possible, by
extension, to CIA call procedures that take more than a
sinsle argument, but deferred explanation. Here, we remedy

this omission and consider one additional point.

The procedure ECIA (extended—CIA) takes an indefinite
number of arguments. The first argument specifies the
procedure to be applied in the CI's environment (as in CIA.)
The remaining arguments to ECIA are evaluated to yield the
arguments for the procedure application. ECIA constructs a
list whose first element is the procedure specification and

whose tail 1s a 1list of REFs that point to the evaluated

5-2

*

arguments. ECIA then performs a CIA call on the procedure
EVAL with this list as argument. The list is evaluated in
the environment of the CI as a call to the procedure with
the specified arguments. Thus, ECIA effects the CIA call of
a procedure with an arbitrary number of arguments. The
definition of ECIA is as follows.

ECIA <~
BgéPR(FN:ONEOF(SYMBOL,ROUTINE),ARGS:FORM LISTED;REF)
IN

DECL CIARES:REF BYREF ALLOC(REF);
MYPATHE.CIA\RESULT <- CIARES;
CIA("EVAL", CONS(BEGIN
MD(FN)=SYMBOL => FN;
ALLOC(REF LIKE FN)

END,
EVALIST(ARGS));
VAL(CIARES)
END;

EVALLST <~ EXPR(ARGS:FORM; FORM)
BEGIN
ARGS=NIL => NIL;
BEGIN
DECL A:ANY BYREF EVAL(ARGS.CAR);
DECL R:REF BYVAL
BEGIN
MD(A).CLASS="PTR" => A;
ENDAII.OC(MD(A) LIKE A)
b}
NT If not a PIR mode, allocate as in CIA;
CONS(ALLOC(REF LIKE ALIOC(REF LIKE R)),
EVALLST(ARGS.CDR))
END
END;

ECIA requires that the arguments to the ECIA called
procedure be of mode class PTR. This is consistent with the

definition of CIA. A slightly different definition of

¥*
In the list structure representation of MPEL1 programs,

a REF evaluates to the object that it references. Hence, it
acts as a QUOTE for arbitrary objects, c.f. 4.2.2.

>3

EVALLST allows the arguments to be of any mode, viz.
EVALIST <~ FXPR(ARGS:FORM; FORM)
BEGIN
ARGS=NIL => NIL;
BEGIN
DECL A:ANY BYREF EVAL(ARGS.CAR);
DECL R:REF BYVAL ALLOC(MD(A) LIKE A);
CONS(ALLOC(REF LIKE R), EVALIST(ARGS.CLR))
END
END;
Since the arguments are allocated in the heap, they are, 1in

effect, always passed EYVAL.

ECIA differs from CIA in that it does not return the

REF specified by the CIA\RESULT component of the path’s
ACTRC. Instead, it allocates a REF in the heap, stores a
pointer to the REF in the CIA\RESULT component, and after
the CIA call on EVAL, returns the allocated REF as result.
If a procedure which is ECIA called wishes to have a value,
say R, returned as the result of the call to ECIA, then it
must execute

VAL(ILASTRUN.CIA\RESULT) <~ R;
The indirection insures that the value will be returnéd
correctly, even 1f another ECIA call is PAPed into the
environment of the path. This is not the case with nested
CIA calls, where it 1s possible for a result to be lost.
For example, suppose a path, say P, CIA calls a procedure T
which sets the CIA\RESULT component of P°s ACTRC. If, while
the CIA call is being executed, another path executes

PAP(CIA("“F"),P)

then when control returns to P, the second CIA call on F

5-4

will be executed and the value stored in P.CIA\RESULT by the
first call will be destroyed. The value returned by the
second call will also be incorrectly returned as the result
of the first call. If F is written to be ECIA called, then
the values will be returned correctly since each call to
ECIA retains a pointer to a distinct allocated REF which is
used to hold the result.

CIA could have been defined to return its result in a
nanner similar to ECIA. This would require a REF to be
allocated for each CIA call, whether or not the CIA called
procedure returns a value. However, in our experience with
CIA we have found that the majority of CIA called rrocedures
do not return values. Thus, we have declined to include
this mechanism as primitive since it 1is used infrequently

and can be achieved by extension.

1.2 Extended Mode Facility

The examples in Chapter 3 utilize the extended mode
facility of EL1 [Weg70][Weg71] in two ways. First, the
MONITOR operation uses a “user—defined’ assignment function
to check assignments to monitored variables on a
mode~-dependent basis, c.f 3.5. Second, the addition of

extended components to the definition of ACTRC is achieved

through the use of the facility. Here, we will discuss the

o=D

extended mode definition facility and show how it can be

used to implement extended components.

Basically, the facility allows the programmer to
control the behavior of a mode M by specifying EL1
procedures to te called whenever an object of mode M is to
be assigned a value or whenever a component of an object of
mode M is to be selected. In addition, it allows for the
specification of a conversion procecure to be used in the
conversion of objects of mode M to other modes as required.
For example, consider the case of monitoring. Here, we
would like to monitor an integer and take some action if it
is assigned a certain value. Aside from assignment, the
integer is to act 1like any other ‘normal’ integer. To
achieve this effect, we define the mode SINT as a STRUCT
with an integer component (I) that contains the monitored
integer, and one or more components which hold the
associated monitoring iﬂformation. We then extend the mode
SINT by associating with it the three functions
SINT\ASSIGN, SINT\SELECT, SINT\CONVERT to be used in
assignment, selection, and conversion of objects of mode

SINT, respectively.

SINT\ASSIGN, discussed in section 3.5, assigns the
specified value to the I component of the SINT and

*

The details as to how these functions are associated
with the node are given in [WegT70].

5-6

determines if it has been assigned the value being monitored
for. Since SINT’s are to act as integers they cannot be
selected, even though they are structured objects. Hence,
an attempt to select a component of a SINT should generate
an error, viz.
SINT\SELECT <- EXPR(S:SINT, C:ONEOF(INT,SYMBOL); NONE)
(SELECT\ERROR()) ;
Finally, to complete the illusion that an SINT, say X, is
really an integer, it 1s necessary to allow X to appear
where an integer value is required, e.g.
X+5
To achieve this, the procedure SINT\CONVERT is called to
perform the appropriate conversion whenever an SINT is in
hand and an object of some other mode M is required, viz.
SINT\CONVERT <- EXPR(S:SINT, M:MODE; M)
BEGIN
DECL TEMP:INT;
M{#/INT => CONVERT\ERROR();
NT Only INT conversion is defined;
TEMP <~ UR(S).I;
NT Select the component that contains the integer;
TEMP
END;
The use of UR requires some explanation. If SINT\CONVERT
executes the statement
TEMP <~ S.I
in order to select the I comporent of the SINT, then
SINT\SELECT would be called to perform the selection and an
error would result. Hence, it is necessary for SINT\CONVERT

to specify that the selection is to be performed on the SINT

Seal

taken as an unextended mode. This is achieved by using the
procedure UR which specifies that the selection is to be
performed on the underlying representation of SINT.
SINT\ASSICl also uses UR in order to assign to the I
conponent and to select the components of the SINT which

contain the monitoring data.

We can now describe how the mode ACTRC can be extended
tc 1include components required by some control regime.
ACIRCs contain the basic comporent USERE\AR which is of mode
RE¥. This comronent can be used to point to an object which
contains the extended components. A user—defined selection
function can then be used to select both tasic and extended
components. TIor example, suppose we wish to extend ACIRC to
contain the four components PAL, PVAIRET, PVAIQ, and PAVAL
used in the parallel processing examples of section 3.3. Ve
define the mode USER\COMPS and the procedure ACTRC\SELECTION
as follows.

USER\COMPS <~ STRUCT(PAL:STRUCT(OWNER :ARPTR,WLIST:ARPTR),
PVALRET : BOOL

PVAIQ:ARQPIR,
PAVAIL:REF)

5-8

ACTRC\SELECTION <-
EXPR(P:ACTRC, I:ONEOF(INT,SYMEOL); ANY)
BEGIN
DECI, N:INT
UR(P).USER\AR=NIL —>
UR(P).USER\AR <- ALLOC(USER\COMPS);

BEGIN
*
MD(I)#INT => N<-SELECTOR\INDEX(ACTRC,I) ;
N<1I
END

=0 => UR(P).USER\AREI];
N GT LENGTH(ACTRC) =

UR(P).USER\AR[I-LENGTH(ACTRC)]
UR(P)[I] , |
NT Select basic component;
END;
When the first selection is performed on an ACIRC, a
USER\COMPS is allocated and a pointer to the object is
stored in USER\AR. If the component to be selected is a
basic component, then selection is performed on the ACTRC.
Otherwise, the appropriate component of the USER\COMPS is
selected. For example, if Q is an ARPIR, then evaluation of
the form Q.PVALRET will trigger the following procedure call

ACTRC\SELECTION(VAL(Q),"PVALRET")

Since PVALRET is not a tasic component of the mode ACIRC,
SELECTOR\INDEX(VAL(Q),"PVALRET") returns zero, and thus the
PVALRET component of object referenced by QOUSER\AR is

selected.

9*
SELECTOR\INDEX, defined in section 4.2.8, returns the

integer index asscciated with a symbolic selector, or zero
if the symbol is not a selector of the mode.

53

-
)

.5 Termination of Dependents

In section 2.2.8, we noted that it is possible to
construct a procedure which will terminate all paths
dependent uron the sub—environment of a path. Here, we

present such a procedure, namely, TERM\DEPS.

The procedure can be called explicitly, say at the end
of a block, to termirate all dependent paths created in an
environrent. It can also be called implicitly by binding
the procedure to the identifier associated with the error
condition "non\support". If an attempt is made to delete an
environment accessible to a non—terminated dependent path,
then TERM\DEPS is executed in response to the error
condition (which results in the dependents being

terminated,) and then the environment is safely deleted.

All dependents of a given path, say P, are linked
together (through their ACTRCs) in a tree structure as
described in section 4.3.5. P.LASTSON specifies the path
most recently mace directly dependent upon P. All paths
with the same directly accessible environment are linked
together (starting with P.LASTSON) through the LBRO
component. The last of these (LBRO=NIL) is 1linked to the
paths directly dependent upon P with “smaller” directly
accessible environments. It is only necessary to terminate,
18 make inel.igible for evaluation, all direct dependents

who can reference the current directly accessible

5-10

environment and then terminate all of their dependents
(recursively.) This can be achieved by performing a tree

walk on the ACIRCs calling DELETE\PATH as necessary.

There is only one problem with this solution — some of
the dependent paths may te active and thus, they cannot be
terminated by calls to DELETE\PATH. We require a mechanism
which will insure that the actions of TERM\DEFS will be
relatively continuous with respect to the evalwations of all
(dependent) paths. The operators STARTRC and ENDRC,
described in section 3.5, provide this facility. Hence, we
simply bracket the substantive portion of the procedure with
these operators. TERM\DEES and 1its auxiliary procedure
TERM\DEPS1 are defined as follows.

TERM\DEPS <-— EXFR(; NONE)

BEGIN
PDECL P:ARPTR EYVAL MYPATH.LASTSON;

STARTRC;
NT The follwing block is executed
relatively continuous to all

other gaths;
WHILE P#NIL DO

BEGIN
P.EIGFIG => CIA("DELETE\PATH",P);
TERM\DEPS1(P.LASTSON) ;

NT Terminate all dependents
of this direct dependent;

P <~ P.LERO
NT P is next direct dependent;
END;

ENDRC
NT All derendents at current level
have been terminated;
END;

TERM\DEPS1 <- EXPR(P:ARPTR; NONE)
BECIN
P=NIL => NOTHING;
P.EIGFLG —> CIA("DELETE\PATH",P);
TERM\DEPS1(P.LBRO) ;

5-11

TERM\DEPS1(P.FLEV) ;

NT At most one of P.LERO and F.PLEV
will be non-null;

DTERM\DEPS1 (P.LASTSON)

END;

5-12

2. IMPLEMENTATION ISSUES

In previous chapters we have excluded discussions of
implementation issues in the interest of simplicity. Here,
we will restrict ourselves to those topics which are
directly related to the multi-path facility. Other issues,
such as the translation of MPEL1 programs from external to
internal representation, are of peripheral interest and have

been adequately discussed elsewhere [WegT70].

2.1 Storare Management

In MPFL1, storage (core) is designated as being either

stack or heap.

Stack storage may only be created by a call to
GET\PATH, where the integer argument specifies the number of

K of contigugus stack storage to be allocated for the path’s
environnment. Stack storage 1is retained until the path is
explicitly deleted (via a call to DELETE\PATH,) unless the
path has non-terminated dependents. In +this case the

storage is retained until all dependents have terminated.

Since it is not always possible to predict a priori the
amount of stack storage required by an individual path, the

*

Actually, as described in chapter 4, three stacks are
allocated - the name, control and value stacks.

513

possibility of stack overflow exists. This can be handled

in one of two ways. First, the program can be aborted, with
suitable error messages presented to the user.
Alternatively, the stack may be automatically expanded and
the path’s computation resumed. The latter is obviously
more desirable, since it permits a path to be created with a

small stack allocation and allows for growth, as required.

A stack may be expanded either by mapping it into a
larger continguous storage region or by linking it to

another stack segment.

The latter solution destroys the assumption +that the
stack 1is contiguous. This presents a number of problems.
First, it degrades the efficiency of system routines that
access the stack. For example, an additional check must be
included in the routine that searches the name stack to
determine if it 1is necessary to switch segments. Second,
programs which run at the end of a segment will suffer the
overhead of constantly switching between segments. BB
addition, it 1is difficult to 1impose a reasonable
de-allocation policy for segments. If a segment is freed as
soon as control returns to a “higher” segment, it may be
necessary to immediately re—-allocate the segment if the
higher one overflows again. Conversely, if the segment is
not freed and the higher segment does not overflow again,

then the storare is wasted. Linked segments, however, do

5-14

not require the stack to be copied as in the former

solution.

The advantage of mapping the stack into a larger
segment is that the implementation can assume that the stack
is a contiguous block of storage. In addition, we note that
the ability to copy a stack is already present due to the
control primitive COPY - no additional mechanism 1is
required. Furthermore, as we will see below, a

compactifying parbage collection requires stack relocation.

It is feasible to delay the execution (via scheduling) of
all paths whose stacks have overflowed, and then map them

all during garbage collection.

In either scheme, it is desirable that stack overflows
occur at predictable points with respect to the path’s
evaluation, e.g. only after all formals and 1locals of a
procedure call have been entered on the name stack. With
linked segments, this at least allows the compiler to assume
that all the locals and formals of a procedure are contained
in a contiguous block, thereby simplifying compiled
references to local variables. The mapping strategy
requires that the stacks can be ‘read”, i.e. that the
contents of each stack location can be unambiguously decoded
so that those words which require relocation can be
determined. Insuring that this condition holds whenever an

object is pushed onto a stack during evaluation 1imposes

=15

severe constraints upon the system. If overflows can only
occur at certain points, then it is only necessary to insure

that the condition holds at these points.

The situation described above can be effected by

reserving a portion of the stack for stack extension. When

a “hard’ overflow occurs, the extension is appended to the

end of the stack. An interrupt is enabled which will be
triggered the next time the stack is ‘clean” and the path is
allowed to continue. When the clean point is reached, the

stack may be expanded.

Stack storage is used to hold objects whose lifetime is
keyed to procedure (or block) activation, i.e. the objects
are created upon procedure call and deleted upon procedure
exit. Since the procedure call-block activation control
structure of MPEL1 is strictly hierarchical, these objects
can be managed using LIFO (last—in-first—out) stacks. MPEL1
also allows for objects whose lifetime is independent of the
call structure. These objects, created by calls to the
procedure ALIOC, are managed using a retention strategy,
i.e. the object exists as long as it can be referenced.
Storage for these objects is allocated from a free storage
region called the heap. Vhen necessary, a garbage
collection is invoked to determine which storage block can

no longer be referenced. These blocks may be returned to

the free storage pool.

516

The multi-path environment of MPEL1 raises a number of
issues with respect to heap management.
(1) BHow is access to the free storage pool
synchronized?
(2) what is the retention strategy for paths?
(3) Can the garbage collector make use of additional
Trocessors?

We consider each of these in turn.

*
If free blocks are contained on a single free 1list,

then synchronization can be achieved by associating a single
memory location with the list. This location is TSET by a
processor before accessing the 1list and CLEARed once the
desired free block has been removed. If the memory location
has already bveen ‘set’, then the processor loops in a busy
wait until the location is CLEARed.

Although the above organization is sufficient for heap
management, it 1is not necessarily the most efficient one.

For example, if parallel paths perform many allocations,

then a considerable amount of each processors time may be
spent in the busy wait. Thus, heap allocation may become a
system bottleneck. If N Ifree lists are used, then it is

possible for N processors to obtain heap storage

*

Here we use the term “free-list” to denote any one of a
nunmber of implementation techniques. Yor example, the
free-list may actually be a vector of lists, where each list
contains all blocks falling in a specific size range.

5-17

simultaneously. In this case, however, it may be necessary
to access more than one list before a block of the desired
size is found. In addition, the interlocking strategy in a
multi-list scheme will be more complex than with a single
global interlock. Hence, we will assunme that
implementations will 1initially adopt the latter scheme and

impose more complex ones only if the need arises.

If a block of sufficiently large size cannot be found,
a pgarbagrse collection is required. In single-path EL1 this
involves marking all heap objects which are accessible to
the program ty following all pointer chains to and within

the heap starting from so—-called base-rositions, e.g. all

objects on the path’s stacks and top-level bindings. After
this first trace phase, unmarked heap 1locations correspond
precisely to those objects that can no longer be referenced.
At this point, two strategies are possible. Either the
inaccessible blocks are simply added to the free-list or the
accessible objects are mapped into one contiguous block,

leaving one large free block at one end of the heap. The

former strategy is called collection and the latter is
¥*

called compactification. If the heap is not contiguous,

i.e. there are stack segments 1interspersed between heap
segments, then in the latter case the stacks must be mapped

as well.

*

For a detailed discussion of compactifying garbage
collection in the heap see [WegTla].

5-18

In MPEL1, the trace phase must insure that all paths
that may ever tecome active are traced. A path is traced by

tracing its activation record as a structure and considering

each object on its stacks as a base position. All paths

active at the time gartage collection occurs are traced.
The CI is always traced. If an unmarked activation record
is encountered, then it is traced as a path if and only if
it still possesses a stack environment. Otherwise, only the
activation record is traced (as a structure.) Since a path
can only become active if its ARPIR is accessible from an
active path or the CI, all potentially active paths will be
traced. If, in additicn, we assume that GETPATH maintains a

list of the ACIRCs of all allocated paths, then this 1list

can be scanned after the trace phase and all unmarked
activation records and their associated stacks can be

reclaimed since the paths can never become active.

In the discussion above, we have tacitly assumed that
it is possible to stop the evaluation of other active paths
so that the system may commence garbage collection. This
can be accomplished as follows. When one processor wishes
to invoke garbage collection, it TSETs a gec—flag Ilocatiomn.
If the ge—flag is not already set, then the processor sends
a "PRO\PRO" interrupt to all other processors to indicate
that they should cease evaluation. If the ge—flag is
already set, then some other processor has started the

rarbage collection, so the processor idles waiting for the

5-19

"PRO\PRO" interrupt. In the following discussion it will be
convenient to refer to the processor that successfully TISETs

the gce-flag as the master processor.

The multi-processor configuration can be used to
perform parts of the garbage collection in parallel. When a
processor receives the YPRO\PRO" interrupt, it begins
tracing the path it was evaluating. The master insures that
the CI is traced, if it was not active. When an unmarked
ACTRC is found, it is marked and placed upon a list of paths
to be traced. VWhen a processor completes the tracing of a
path, it removes an ACTRC from the list (with suitable
interlocks) and traces it as a path. If the list is empty,
it idles waiting for a path to trace. When the master
detects that all paths are idling (by examining an idle-flag
associated with each processor,) it initiates the next

phase, namely, collection or compactification. In the

former case, the heap can be divided into segments and each
processor assigned a segment to collect. In the Ilatter
case, after initial “set-up® work by the master, the
additional processors may be used to perform the mapping of
storage in parallel. After this phase, the processors may

resune evaluation.

5-20

2.2 Input\Outrut

Most computer systems allow input\output (I/0)
activities and program execution to proceed concurrently.
In this section, we will discuss how concurrent I/0O can be
incorporated into the framework of MPEL1. As the actual
language 1/0 primitives are only of peripheral interest, we
will simply use the generic terms READ and PRINT.

The processor level interrupt facility of MPEL1 in
conjunction with an aprropriate "START\IO" control primitive
to communicate with the 1/0 processors would allow a path to
handle its own concurrent I/0. However, as Wirth [Wi6G]
notes, it is conceptually simpler to assume that a given I/0
operation is synchronous with respect to a path’s
evaluation, e.g. if a path performs a READ, then further
evaluation of the path is delayed wuntil the input is
available. Concurrent I/0 can then be realized by creating
parallel paths to perform I/0 operations. Synchronization
can be achieved through the use of the CI framework, c.f.
Sl

Thus, it is only necessary to show how the synchronous
functions READ and PRINT can exploit a concurrent I/0
facility in terms of the MPEL1 framework. Typically, a
processor initiates concurrent I/0 by executing an
instruction which sends an interrupt to an external

processor (I/0 device.) The external processor indicates

5-21

that transmission has been completed by sending an interrupt
back to the processor. Thus, to perform a READ, the path
CIA calls a procedure which will queue the path as waiting
for I/0, sets LASTRUN to NIL so that the processor will be
given to another path, and then performs the “STARTIO".
When the I/O-complete interrupt occurs, the path may be put
on the INACTIVEQ so that it may be assigned to a processor.
Equivalently, one can think of the external processor as
being assigned to the rath for the duration of the I/0
transmission. Because the external processor cannot perform
a CIA call, it is necessary to use interrupts to achieve the

same effect.

2.3 Relation to an Operating System

The underlying machine model upon which MPEL1 is based

can be summarized as follows:

(1) There exist n processors aviilable for the
simultaneous evaluation of paths. A processor idles
if it has no path to evaluate. The processors share
a common address space.

(2) A timer interrupt facility exists.

(3) One processor may interrupt another via a

processor—to-processor interrupt.

*
Note that the processors do not have to be identical;
they may have different architectures.

5-22

(4) A test-and-set instruction exists, which allows for
rrocessor synchronization via busy waits.

Typically, MPEL1 will be implemented in terms of a virtual
machine provided by an operating system. The control
structure of the virtual machine may not conform to the
requirements listed above. For example, virtuwal processors
may actually be implemented by multiplexing a single
processor. Hence, they are capable of concurrent, but not
simultaneous, evaluation. Here, we will discuss the
implementation of MPEL1 in terms of various virtual machine

organizations.

MPEL1 can be implemented on the simplest of virtual
machines, namely, one which allows only one processor (a
Jjob) to access an address space. In this case, the
"PRO\PRO" interrupt is not necessary since there is no other
processor to communicate with. If a timer is not available,
a similar effect can be achieved by counting the number of
function calls made by a path and generating an interrupt

after some specified number have occurred.

If the virtual machine allows many virtual processors
to access a common address space, then the question arises
as to how many should be used by MPEL1, 1i.e. what should
the value of n be? Here, it is only necessary to set it to
be equal to the number of real processors available, say m,

as this number represents the maximum simultaneous

=2y

evaluation of which the system is capatle. Of course, n can

be set lower than m.

The implementation, however, cannot assume that the m
virtual processors are ‘real’ since at any given time some
of the real processors may actually be assigned to other
tasks 1in the operating system. In particular, the concepts
of “busy-wait’ and ‘idling’ must be re-examined. In the
formal model, a processor goes 1into a busy wait if it
attempts to transfer control to the CI and cannot do so
because the CI is being evaluated by another processor. In
the context of an operating system, however, the virtual
processor is only a control path (with respect to the OS as
CI) and hence the real processor can be re-assigned to
another virtual processor. Similarly, a virtual processor
can put itself to sleer instead of 1idling. The CI will

awaken it when there exists a path to evaluate.

Both of the above can easily be achieved if the virtual
machine provides a means whereby virtual processors can
perform non-busy waits. ZYor example, let us assume that
semaphores and the operations p and v are available. Ve
will associate one binary semaphore with each virtual
processor (SEMi) and one with the CI (CISEM). Eefore
passing control to the CI, a processor performs p(CISEM).
When a processor transfers control out of the CI it performs

a v(CISEM). To idle, processor i performs a p(SEMi), where

5-24

the semaphore is assumed to be 1initially O. Thus, the
processor waits indefinitely. When the CI wishes to awaken

an “idling” processor it simply performs a v(SEMi).

A "PRO\PRO" interrupt is still required to implement
STOP\PATH(P), where P is not an idle path. Either an
interrupt or a mechanism which allows one virtual processor
to stop another, allows it to modify its registers, and then
allows it to continue will suffice. An example of the
latter mechanism appears in the TENEX [BBN70] operating
system. Here, it 1is possible to create multirle forks
(virtual processors) that access a common address space.
One fork may freeze (FFORK) another, modify its state, and
then allow it to continue (RFORK.)

We close this section with the observation that the
multi-path facility is quite machine independent. The
design allows an implementation to utilize whatever features
the virtual machine provides. In addition, the parts of the
system which relate to the operating system are isolated.
Hence, re-implementation of the language (or at least the
control facility) on another machine should be relatively

simple.

5-25

3. CRITICAL DISCUSSION

In this section, we present an evaluation of the
multi-path facility and its formal model. Both are examined
in terms of the design criteria discussed in section 1.2.
In addition, they are compared with some of the languages

and models discussed in section 1.2.

In evaluating the efficiency of the primitives and
framework of MPEL1l, we refer frequently to their treatment
in the formal specification. This is reasonable since the
model 1is distinctly not implementation independent. The
data structures used by the evaluator are essentially the
ones to be used in an implementation. This is discussed in

more detail below.

3.1 The Control Primitives

The problem of “size” turns out to be largely a pseudo
question. The primitives are used to define extensions for
various multi-path organizations. Typically, the code for
the extensions will outweigh the initial investment in the
primitives. Second, 1in the environment of a language
system, the primitives may be maintained on a library file
and loaded as required. Still, one would expect the amount
of code required to be small as comrared with the rest of

the implementation. To facilitate this, the primitives

5-2€

utilize other components of the language wherever feasible.
For example, the primitives are defined as control
subroutines (CSUBRs), and thus their arguments may be
evaluated and bound in the same fashion as EL1 procedures.
The mode definition facility is used to define the data
types required by the primitives. PAP uses the
sub—-evaluator APPLY. PFETICH, PSTORE and DEPENV all utilize
the name-stack search procedure. 1In addition, we note that
some of the auxiliary procedures required by the control
primitives can be implemented quite efficiently. For
example, MINLEV can be implemented in a single machine
instruction if we assume reasonable values for NPALEV and

NPROLEV.

We can corment upon the amount of code required for the
control primitives in the current ECL implementation of
MPEL1 [VWeg72]. Here, only GET\PATH, DELETE\PATH, PAP, CIA,
MYPATH, RETFROM, and GOTO have teen implemegted and
constitute approximately 44 of the system code. It is
expected that a conplete implementation of the primitives

will require roughly 1C00-1500 words of code.

We turn now to the question of the effect of the

*

ECL runs on a DEC PDP-10 computer under either the TOPS
or TENEX monitors. The system includes an EL1 interpreter,
garbage collector, mode-definition routines, and system
support code. It does not, however, include a compiler.

5-27

multi-path facility upon the evaluation of a single path of
control. An examination of the EL1 evaluator presented in
section 4.2 reveals four places in which the facility places
additional overheads upon the EL1 evaluator. We consider

each of these in turne.

Before it evaluates the body of a procedure, APPLY must
determine if the body is to be evaluated in the environment
of another path. This situation can arise as a result of a
call to PAP. The overhead can be kept to a minimum by
having PAP set a path-dependent flag. APPLY would only have

to make additional checks if the flag is set.

Return from procedure calls, blocks and FIFOR loops is
made through the RETURN component of the FN\ELOCK,
BLOCK\EBLOCK and FOR\BLOCK, respectively. This is required
so that attempts to delete accessible environments may be
trapped by simply modifying the RETURN component to be the
label CHECK\SUPPORT. In the absence of path dependency, the
RETURN component could be removed and the return effected
implicitly by each sub-evaluator. However, the additional
storage required by the inclusion of the RETURN component is
negligible as compared with the total amount of stack

storage required in the cases above.

A CALL to ALLOW\INTERRUPT is made before the evaluation
of each statement of a block, the body of a FOR statement
and the body of a procedure call. The calls are required to

5-28

determine if an interrupt has occurred. These particular
points have been chosen for two reasons. IYirst, the value
of EVRES (the last value computed) is expendable, and thus
it does not have to be saved before evaluating a response
form. Second, it is not possible to construct a FORM whose
evaluation does not ultimately result in a call to
ALIOW\INTERRUPT. Therefore, the evaluator will always
respond to interrupts. The ability to interrupt a path,
perform an arbitrary computation, and then allow the path to
continue evaluation is desirable in an interactive
implementation of the language. Hence, these checks would
probably be included even in a single-path implementation.

The control primitive GOTO must scan the control stack
if the path is in the midst of an interrupt response or if
it is a supporting path. In either case, a mpath-dependent
flag (IFLG or SPATH) is set. If neither is set (the normal
case,) then GOTO may perform the transfer of control without
any additional checks. We note that a compiled local GOTO
(i.e. within a block) would not even have to check the

flags since the environmment of the path cannot change.

From the discussions above it should be clear that the
inclusion of the multi-path facility in the language causes
no significant change in the time and space requirements of

a single path of contrcal.

29

In considering the efficiency of the control primitives
themselves, we will restrict ourselves to those primitives
which are used most heavily in the examples of chapter 3,
namely, PAP and CIA. Many of the others have either trivial
inplenentations or simply involve the modification of

tables.

In the implementation of PAP, it is necessary to copy
the arguments to the FAPed procedure from the stacks of one
path to another. Although this may seem inefficient, we
note that the arguments are usually pointers to objects in
the heap, and thus they are inexpensive to copy. In any
case, the overhead is not significantly greater than if the
procedure took all of its arguments BYVAL. If DPAP is used,
large stack objects can be passed EYREY without a copy being
made. Some corying can be avoided, and thus PAP made more
efficient, 1if the two paths are tied together for the
duration of the PAP, i.e. the arguments are pushed directly
onto the name and value stacks of the path being FPAPed into
while the name stack of the original path is used to provide

an environment.

Turning to CIA, the primary issue is the amount of work
necessary ‘to switch contexts, i.e. how difficult is it for
the evaluator to save the state of the current path and then
install the state and commence the evaluation of another?

Context switching is achieved by pushing the label of a

5=

return statement onto the control stack, saving the three
stack pointers and some path dependent flags in the path’s
ACTRC, 1loading the new path’s stack rointers and flags and
then passing control to the return statement specified by
the label on the control stack of the new path. Since the
‘state’ of a path is described by a small set of variables,

context switching is relatively inexpensive.

One other issuve relating to the CI must be discussed.
Since 1t acts as a single access resource with respect to
CIA calls by paths, there exists the possibility that the CI
may become a system bottleneck, i.e. processors will waste
much of their time in busy waits upon the CI. The situation
is similar, in essence, to the use of a global interlock to
control access to the traffic controller in a
multi-processor system, c.f. 1.2.3. In the latter case, it
has been found that a single interlock strategy is superior
to one in which many interlocks are used to permit

simultaneous access to the controller [Ra6&].

Since MPEL1 will usually be implemented in the context
of an operating system, busy waits can be replaced with
non-busy waits, c.f. F£.2.3. However, the question remains
as to how often an evaluator will find the CI busy.
Madnick’s [Ma6E€] results show that for a small number of
evaluators the probatility that the CI is busy is roughly

proportional to the number of evaluators and to the fraction

o=l

of time each spends executing in the CI environment. For
example, if there are three evaluators and each spends (on
the average) 5 percent of its time in the CI, then the
probability that an evaluator will find the CI busy on any
given CIA call is .15. Of course, the fraction of time
spent in the CI depends heavily upon the program being run,
i.e. on the complexity of the procedures which are CIA
called and the number of times they are called in relation

to non—CI evaluaticne.

The use of separate stacks for each path requires
justification. If the number of paths is small, then this
is not unreasonable. In addition, it 1is possible to
initialize the path with a small stack and allow for
expansion as required, c.f. S 1 However, if many
control raths are defined, the amount of storage required
can become quite large. There are +two alternatives. The
first 1is to completely abandon the stack, as in
OREGANO [Be71]. The second is to have all paths use a
single stack [Bo72]. 1In the former case, storage for the
path’s environment is allocated from the heap and managed
using a retention strategy, i.e. by garbage collection or
reference counts. This technique imposes substantial and
unnecessary overheads upon single path evaluation, as the
stack discipline is sufficient but must be replaced by the
less efficient garbage collection mechanism. Thus, it is

unacceptable. The latter solution is quite attractive and

5=32

will be discusssed further in section 5.4.

Finally, we consider the facility’s ability to
synthesize multi-path control structures. The examples in
chapter 3 demonstrate the range of the facility. In
particular, most of the control structure found in the
languages discussed in section 1.2.1 are included. Here, we

will compare MPEL1 with Fisher”s CDL [Fi70], c.f. 1.2.4.

Fisher claims that as far as he has been able to
determine, his primitives "constitute a basis for the
mechanisms underlying control structures.” If Fisher’s
primitives can be synthesized or are primitive already in
MPFL1, then we can expect that MPEL1 also constitutes a
reasonable Dbasis. We shall see. The CDL primitives were
described in section 1.2.4 and will not be defined again

here.

The primitives seq and cond are subsumed by the EL1

block, i.e.
gol(Els . waey &) = [JE1§ 828 oued 0]
and
cond(plsely =Dy 80) = [Jp1 => €15 «oe pn => en (]
The primitive par can be defined as a variation on FORK,
c.f. 3.3. synch is a variation on TSET, viz.
synch(I,el1,e2) =

BEGIN
NOT TSET(I) => el
=,

CLEAR(I)

END

=50

If several synch operations (with the same first argument)
are evaluated simultaneously, then only one will evaluate
e2, all others will evaluate el. monitor and cont are
described in section 3.5. Thus, all of Fisher’s primitives

may be realized in MPEL1.

Let us examine the MPEL1 definition of cont. To allow
a path, say P, to evaluate relatively continuous to all
others, it is necessary to interrupt all other active paths
and then wait for them to queue themselves before allowing P
to continue. A somewhat similar definition of cont is given
by Thomas [Th71]. The amount of processing required to
implement cont in both MPEL1 and PGL (Thomas® language)
raises a question as to whether it should be defined as
primitive or obtained by extension. Of course, a clear and
precise formal definition of cont (which specifies an
efficient realization) would make it an acceptable
primitive. We will return to this topic in the next

section.

3e2 The Formal Definition

The formal specification of MPEL1 consists of a
description of one of n identical evaluators. The evaluator

is always processing some MPEL1 control path but not

5-34

necessarily the same path at all times, i.e. 1t may switch
its attention from path to path. because of this context
switching, the evaluator must be reentrant with respect to
the paths it evaluates. An examination of the procedures
vhich constitute the evaluator reveals that it is written
essentially in EL1, i.e. it utilizes only a small number of
the control primitives, namely, TSET, CLEAR, EVAL, and GOTO.
The question arises as to why the control primitives and
framework of MPEL1 are not included in the mete-language; if
the primitives are to be used in the synthesis of multi-path
control structures why are they not utilized in their own
description? Let us consider such a model. In the following
discussion, wve will use CI°, CIA” and TAP® to denote uses of

these terms in the meta-language.

The multi-path organization to be described is one in
which exactly n interpreter paths are to be evaluated
concurrently. For each MPEL1 path there will be an
interpreter path (ipath) which evaluates it. Because the

correspondence is one-to—one, an ipath may record a path’s
intra-path control in its own environment. In particular,
one ipath is dedicated to the evaluation of the CI path.
Only the ipaths are paths with respect to the CI°. The
ipaths use the CI° to insure that exactly n of them are
evaluated concurrently and to synchronize the activation of

the ipath corresponding to the CI (ipath/CI). For example,

S 5

if a path, say P, wishes to perform a CIA call, its
interpreter (ipath/P) performs a CIA’. If ipath/CI is not
currently running, then it 1is passed control in order to
evaluate the CIA call. If ipath/CI 1is currently running,
i.e. if it is either active or on the INACTIVEQ®, then
ipath/P is queuved and an idling path run in its place. When
ipath/CI completes its current CIA call, the idling path is
stopped and the CIA call for P is executed by passing
control to ipath/CI. To PAP a procedure call into the
environment of P, an ipath modifies the enviromment of P and
then uses PAP®° to force ipath/P to call the procedure

application routine.

A nurber of defects with this model should be
immediately otvious. [Iirst, to describe the primitives CIA
and PAP is necessary to utilize CIA® and PAP’, respectively.

Thus, there 1is a direct circularity in the definitions of

these primitives. As these are two of the more unusual
control primitives, the circularity is objectionable. For
example, with two different interpretations of the
primitives in mind, one could consult the definition and
find both confirmed. In addition, one cannot determine if
the primitives have a reasonable implementation from their
description in the model. Second, the model requires the
use of the CI° in a rather sophisticated way, namely, to
insure that exactly n ipaths are evaluated concurrently. In

particular, a special scheduling algorithm is required.

>=5b

However, this implies that CI extensions must be used in the

definitions of +the primitives. Since such extensions are
usually more sophisticated than the primitives themselves,
we are in the position of defining reasonably simple

concepts in terms of more complex ones.

Iet us contrast this model with the one presented in
chapter 4. Only four control primitives are used. Of
these, two (TSET and CLEAR) can be implemented in a single
machine instruction. EVAL is defined trivially as a CALL to
EVAL\FORM. GOT0, however, requires some discussion as it is
used in a number of ways. ZFirst, it is used to “linearize’
control within the evaluator, i.e. to insure that all CAllLs
to EVAL\FORM occur at the statement level of the block so
that no information about the path is retained implicitly in
the 1logic of the evaluator. Second, it is used to return
control to statements whose labels have been pushed onto the
control stack. BEere, control 1is always returned to a
statement in the outermost block of the procedure EVALUATOCR.
Finally, it 1is used in its own definition to transfer
control to EVELK1 after explicitly flushing the path’s
stacks and installing the appropriate statement to Dbe
evaluated in the BIOCK\BLOCK. Although the definition is
circular, note that the general GOTO is defined in terms of
explicit modifications to be made to the path’s environment
and then a 1local jump to another statement in the same

tlock. Hence, the direct circularity actually lies in the

5-57

local GOTO. As local jumps are a fundamental notion and
have a straightforward implementation, the direct

circularity is acceptable.

In the MPEL1 model, CIA and PAP are both described in
terms of the four primitives discussed above and in terms of
modifications to the stacks which ccnstitute the path’s
environment. Thus, there can te no misinterpretation of
their semantics or question of the feasibility of their

implementation.

To emphasize that we have not been merely raising a
strawman, let us consider one of the formal definitions of
Fisher’s primitives, which were discussed in section *1.2.4.
Here, we are concerned with the second of the three which
is a recursive evaluator similar in spirit to the original
EL1 definition or a LISP definition of LISP. The control
structure of the path is implicit in the environment of the
evaluator. Thus, the MPEL1 evaluator outlined above might

have taken a similar form. The primitives cont, synch and

monitor are defined by direct circularity. For example, to
evaluate the form y, where

y <~ (CONT x)
the evaluator essentially executes

cont (eval(Y.CDR.CAR))

*

The first is an English language description and the
third is only valid in a single processor environment.

B3E

Thus, any number of different semantics could be associated
with cont and all would be equally valid. In addition, we
cannot determine if cont has a feasible implementation, or
if it 1s implementable. To 1illustrate, using direct
circularity we could define the primitive TMHAIT(M,T) which
returns TRUE if and only if Turing machine M halts when
given tape T. TMHALT would be an extremely powerful

primitive, but unfortunately it cannot be implemented.

In the formal definition of MPEL1, all of the data
structures which constitute a path’s environment are
represented explicitly. The control primitives are defined
as operations on these structures. This implies that the

model is implementation dependent, i.e. the primitives are

described 1in terms of a preferred implementation. Cf
course, a precise implementation independent model would be
equally as valid. However, as we have seen above, there is
often a question as to the feasibility of control
primitives. Thus, it 1is especially important for control
that the model be as realistic as possible. To facilitate
this, only those control primitives which are intuitively
acceptable should be used in the model - the remaining ones

must be explicated therein.

The implementation oriented nature of the model offers
additional benefits as well. First, it allows the language

designer to judge the efficiency of a primitive from its

5-39

treatment 1in the model. This was especially helpful in
determining the effects of +the primitives upon the
evaluation of a single path, as discussed in the previous
section. Second, a machine language interpreter for MPEL1
can be coded directly from the model, without mentally

‘de-recursing” the evaluator.

This last point requires additional comment. Since the
intra-path control 1is represented explicitly, the EL1
evaluator cannot be represented as a set of procedures which
call each other recursively as in [Weg/O]. At first glance,
it would seem that the bookkeeping required to maintain the
necessary information on the control stack would make the
1nodel inelegant and unreadable. Here, however, the data
definition facility of EL1 proved to be invaluable. 1In
particular, the use of control modes, c.f 4.1.2, allows the

necessary items to be gathered into one structure which is
then pushed onto the stack. The comporents of the object
may then be referenced by symbolic field names. This allows
a sub-evaluator to be written almost as if the field names
were the arguments to the sub-evaluator called as a

procedure.

The mode STACK was introduced in section 4.1.3
primarily to allow EL1 to be used as the meta-language of
the model. It is intended that ordinary LIFO stacks will be

used in an actual implementation of MPELl. Thus, we must

5-40

determine whether +the stack operations are actually
implementable. PUSH presents no problem as it simply pushes
an object onto the top of the stack. HEAP is trivial to
implement if +the address space is divided into segments,
some of which are used for heap and the remainder used for
stacks. If a table of the segment assignments is
maintained, then HEAP reduces to a simple address
calculation. In the model, we use integers to index objects
on the stack. In an implementation, these will be replaced
by actual stack pointers. In this 1light, FLUSH sinmply
resets the stack fpointer and INSTACK determines if the
pointer in question 1lies between the two stack pointers.*
The only question remaining 1is whether or not it is
reasonable to index the stack as 1if it were a ROW. An
inspection of the model will show that only the

*3¢
control-stack 1is so indexed. In particular, it is

referenced in only two ways. ZFYirst, one of the topmost K
objects is referenced, where the modes of the top K objects
are known. Second, the stack is searched, starting from the

current value of CP. In the former case, since the objects

*

This is still possible even if the stack 1is allocated
in segments, since INSTACK is also given a reference to the
stack itself.

3*%

The name-stack is also indexed, but it is defined as a
ROW in the model. The value-stack is indexed only in COPY,
where the entire stack is copied, c.f. 5.2.1.

541

are of fixed size, an appropriate offset can be determined.
The latter case is also reasonable since objects pushed onto
the control stack are described by a finite set of modes,

i.e. they are either SYMBOLs or some control mode. Various

encodings can be wused to distinguish the objects. For
example, the mode and size of the object could also be saved
on the stack. More efficient encodings are certainly

possible.

We conclude this section with a discussion of the
treatment of interrupts in the model. To send an interrupt

to an evaluator, a flag associated with the evaluator is

sete. The evaluator checks this flag at certain points via
CAlLs to ALLOVAINTERRUFT, c.f. 5.3.1. Of course, 1n an
inplementation the interrupts do not actually occur at these
nice (or clean) points. Typica%ly, an interrupt can occur
after any memory reference. Since our model uses a
high-level programming language, such interruption is below

our level of discourse.

When a real interrupt occurs in an implementation of
MPFEL1, two different actions may be taken. TFirst, the
response to the interrupt may be delayed until the evaluator
is willing to accept the interrupt. Alternatively, the

interrupt respronse can be 1initiated at the +time the

*

Note that hardware usually accepts interrupfs only at
clean points as well, although at a much finer level.

5-42

interrupt occurs. There are problems with the latter case
(especially if the resyonse form is written in MPEL1.)
First, the evaluator my be 1in the midst of switching
contexts (paths.) Thus, there is no environment to evaluate
in. Second, even if there is an environment, the stacks may
not be in reasonable enough shape to allow the evaluation of
an arbitrary form. In particular, if the response form
invokes a garbage collection, then heap objects referenced
only by the machine registers could be lost. Some of these
problems can be alleviated by specifying that portions of
the system code are not interruptitle, 1i.e. that the
interrupt must wait till the next clean point. In general,
we would expect that hard interrurts of this sort would
perform the minimal necessary operations and then generate a
lower priority processor level interrupt to continue the
processing at the next convenient roint, namely, at the next

call to ALLOW\INTERRUPT.

5-43

4. CONCLUSIONS AND SUGGESTIONS FOR FUTURE RESEARCH

This dissertation has investigated the problem of
introducing multi-path control structures into programming
languages. The approach taken has teen to define a set of
control rrimitives and a language framework from which
various multi-path organizations can be realized by
extension. The primitives are cast in a multiple processor
environment to avoid any bias towards the single processor

case.

Our tasic assumption has been that there are n physical
processors and k paths of control. We have shown that
various nmulti-path organizations and operations can be
described simply as specifications of the way in which the
processors are to be assigned to paths. The control

interpreter rath allows the user control over this

assignment, and thus gives him the ability to synthesize
multi-path control structures. Two properties of the CI
facilitate this. First, all control transfers between paths
must be via the CI. Thus, it can keep track of the
processor-rath assignments. Seconc, only one path may pass
control to the CI at a time. When a path transfers contrcl
to the CI, wusing CIA, it specifies a procedure to be
evaluated 1in the CI environment. The evaluation of this

procedure is indivisible with respect to other CIA calls of

the same procedure (or others.) Thus, such procedures are

5-44

given an environment and a mode of operation in which they
can examine and modify the processor-path assignments. In
addition, since only the existence of the CI is assumed by
the primitives, 1t 1is possible to redefine or extend the

control interpreter in MPEL1.

In addition to providing a precise specification of the
semantics of the control primitives, the formal definition
of MPEL1 has yielded a number of other benefits. TFirst, we
were able to determine that the control primitives are
pragmatically valid since the primitives of the model can be
realized on contemporary hardware. Second, because the
model is implementation—-oriented we were able to use it to
assess the effect of the multi-path facility upon single
path evaluation. Finally, it demonstrates the values of
including the intra-path control as an explicit structure in

the meta-language.

Although we believe that MPEL1 constitutes a reasonable
basis for a multi-path facility, a number of additions and

generalizations can be made. Some of these are outlined

belowe.

Recently, Bobrow and Wegbreit (B-W) [Bo72] have
developed a technique which allows muwltiple paths of control
to be implemented on a single stack. If only a single
control path 1is wused, then it runs as efficiently as it

would if it was assigned its own separate stack. Although

5-45

the wuse of separate stacks, as in MPEL1, is more reasonable
than a heap—-garbage collection scheme, a single stack is
even more attractive. In particular, it avoids a number of
the overheads associated with stack exransion, as discussed
in section Balsls Thus, it would be desirable to
incorporate the B-W technique into the multi-path facility.

It is interesting to note that the description of the
B~-W technique uses a model similar to the formal model of
MPEL1, in that the paths’ call structures are represented
explicitly. Although b-W give an English Ilanguage
description, a formal specification of a programming
language which utilizes their technique would thus take the
form of the MPEL1 definition.

MPFL1 assumes that the n processors can all readily
access a common address space. This usually implies that
the processors are in close proximity to one another. The
construction of the ARPA network [Ro70] allows one to

consider distributed computations in which paths of control

are evaluated by processors on different nodes of the net.
This raises a number of questions. For example, how can
data structures be shared effectively across many nodes? How
does one represent pointers to objects on other nodes? In
particular, how can garbage collectioh be effected in the
distributed environment? For our purposes, we are primarily

concerned with the modifications which must be made to the

5-46

CI and the control primitives. Should there be a CI for
each node or one master CI that resides on a single node?
Although the latter case is a straightforward extension of
the current CI, transfers of control between paths on a node
which does not contain the CI become rather slow. The
former solution avoids this problem, but the absolute
indivisibility of CI execution (with respect to paths on all
nodes) is lost. The primitives that access envirconments of
other paths (e.g PYETCH, DEPENV) may have to utilize the CI
in order to allow the processor to be reassigned while the
information is being transmitted from a path on another

node.

Except for the addition of a few intra-path control
primitives, single path MPEL1 is essentially EL1. We have
left this constant in order to focus on inter-path issues.
However, we believe that work remains to be done in the area
of intra—-path control structures. Here, we refer to the
possibility of providing extension mechanisms which allow
for the compilation of control and environments. Most
languages do not allow for variation in the environmental
structures to be used in the evaluation of a program. Why
is this s0? Ve believe that there are two reasons. First,
the most fundamental semantics of the language, e.g. the
scope rule, recursion, etce. restrict the class of
structures which may be used. Second, a compiler must know

what the environmental structures are in order to generate

5477

code. Allowing variation 1in these structures makes

compilation difficult, if not impossible.

However, control over environmental structures can be
useful. For example, if a set of EL1 procedures reference
the same top-level variables and do not wutilize recursion,
then their evaluation would best bYe effected using a
FORTRAN-1ike environmental structure in which storage for

locals and globals is only allocated once.

The problem can be approached in two ways. First, the
compiler can be made “smart’ in crder to deduce the
appropriate environmental structures. This requires
techniques from the field of program automation [Ch71].
Alternatively, a set of environmental primitives can be
included in the language. Using these, the programmer may
synthesize the environmental structures desired. The

compiler can then be appropriately parameterized to utilize

information provided by these primitives.

Appendix 1

INTRODUCTION TO EL1

The purpose of this appendix 1is to provide a brief
introduction to EL1 for those readers who are unfamiliar
with the language. It does not attempt to give a complete
description of EL1. We direct the reader who desires a more
precise descrirption to either [WegT0], [Weg72], or Chapter
4.

At a surerficial 1level, EL1 appears to be a
conventional programmine language in the spirit of ALGOL 60.
It includes variables, arrays, assignments, procedure calls,
prefix and infix operators, block structure, labelled
statements and gotos. For example, all of the following are

legal in EL1.

Q < SQRT(A)/(R[3]-Y)
L: BEGIN
X <~ FUM(A,B) - Z;
]k;;(x,R[IJ)

’

L <~ C OR D;

These examples, however, are a bit misleading in that
they are special cases of more general syntactic forms. To
illustrate, assignment is treated as a right-associative

binary operator whose value 1is 1its left hand operand.

Al-2

Blocks have values -— the value of the last statement
evalutated.

The most basic unit in EL71 is the form. Examples of
forms are:
(1) constants such as 3 and FALSE,
(2) variables such as Y and NAME\INDEX,
(3) expressions composed of infix and prefix operators
such as A+B, NOT D OR E[2],
(4) selections of compound objects such as PAVECT[I]
and P.CIA\RESULT,
(5) procedure calls like SUSPEND(P) and
ENTERL(PAVECT[PROCNUM], INACTIVEQ).
More complex forms may be constructed by combining forms
according to the syntax rules of the language. In general,
a form is a syntactically complete unit which may be
evaluated to yield a value. An EL1 program is a form which

is not contained as part of a larger form.

A vlock is a form which is composed of a sequence of
statements. Each statement of a block is either a form or
one of two types of conditionals, viz.

f->g;

f=>g;
In the former case, the interpretation is that if f is TRUE,
then g 1is evaluated and execution ccntinues with the next

statement in the block. In the latter case, if f 1is TRUE

A1-3

then g 1is evaluated and the blcck is exited with the value
of g taken as the value of the block. Iror example, if V 1is
a vector of N integers, the folowing block computes the sum

of the positive elements.

BECIN
I < 1;
L: V[I] > 0-=> S <~ S8 + V[I];
I =N =2 853
I <~ I+1;
GOTO L
END;

Variables are ether top~-level variables, formal
parameters to a ROUTINE, or declared variables local to a
block. 1In all cases, a variable must be declared to be of
some specific data type and it may only contain values of
that type throughout its lifetime. If a variable is used in
a block but 1is not defined therein, then it is said to be
free. FEl1 uses a dynamic scope rule for the identification
of free variables, i.e. the value of a free variable is the
value of the most recently created variable with that name

in the dynamic call structure of the program.

E11 contains a number of built-in data types, called
modes, and a number of mode constructing operators which
allow for the creation of new data types, as required. The
built—in modes include BOOL (Boolean), CHAR (character), INT
(fixed-point integer), SYMBOL (non—-numeric atom as in LISP
[We67]), MODE (the data type of data types), REF (pointers
to objects of any mode), FORM (similar to LISP

Al-4

S-expressions), and ROUTINE (user-defined or built-in
procedure). There are four mode constructing operators.
Each one yields a MODE value which may be assigned to a
variable of mode MODE. The operators are best explained by

exanmple.

The operator ROW constructs modes for arrays of

homogeneous objects. Yor example, the statements

I3 <— ROW(3,INT);

BOOLR <~ ROW(BOOL);
assign to I3 and BOOLR the modes ‘array of three integers”
and ‘array of any number of Booleans’, respectively.
Variables may be declared using these modes as follows.

DECL V:1I3;

DECL B:BOOLR BYREF CONST(BOOIR SIZE 4);
V is a ROW of three integers. The 1length of the ROW is
fixed by the definition of I3. B is a ROW of four BOOLs.
Here, the length of the ROW is resolved at the time B is
created by specifying an initial value, and hence a length,
for the variable. The operator CONST will be discussed in

more detail belowe.

The operator STRUCT constructs modes for compound
objects whose components do not necessarily have the same
mode. FYor example, the statement

ENV\BLOCK<~STRUCT (OLD\NP: INT,OLD\VP:INT, RETURN:SYMBOL) ;
assigns to ENV\BLOCK the data type for a structured object.

Al1-5

An object of mode ENV\ELOCK consists of three components:
(') an INT named OLD\NP,
(2) an INT named OLD\VP,
(3) a SYMBOL named RETURN.

The operator PIR constructs modes for objects which may
point to other objects. The arguments to PIR specify the
modes of the objects to which an object of the new mode may
point. E.g,

I\OR\B\PIR <~ PTIR(INT, BOOL);
An object of mode I\OR\B\PIR may point to either an integer
or a Boolean. The operator ALLOC is used to create objects
of mode class PTR. ALIOC 1is discussed 1later in this

section.

The operator ONEOI constructs modes which represent one
of a set of modes. For example, the statement
I\OR\B <~ ONBOFr(INT,EOOL);
assigns to I\OR\B the mode ‘one of the modes INI or BOOL’.
It 1is not possible to construct an object of mode I\OR\BL,
i.e. at the time a variable of mode I\OR\B is created, it
must be type resolved to either an INT or a BOOL. E.g.,

DECL X:I\OR\E BYREF CONSTéINT)'
DECL Y:I\OR\B BYREF CONST(BOOL);

X is of mode integer and Y is a Boolean. ONEOFr may be used
to specify that an argument to a procedure may be an object
of one of a set of modes, c.f. 2.3.1. The built-in mode

ANY may be described as ONEOF(‘any mode”).

A1-6

It should be noted that the arguments to the mode
operators may themselves be calls upon the operators. For
example, if N and M are integers, then a mode for N by M
integer matrices can be constructed as follows.

ROW(N, (ROW(M,INT));
The i th element (for i between 1 and N) of an object of

this mode is an M element ROW of integers.

The components of ROWs and STRUCTs may be selected.

The components of ROWs may only be selected by integer
indices. If V is an I3, then

V[1+1]
selects the second integer of the ROW. The components of
STRUCTs, however, may be selected either by integer indices
or by their symbolic field names. If E 1is an ENV\ELOCK,
then all of the following select the RETURN component.

E.RETURN

E["RETURN"]

EL3]
Objects of mode class PIR may also be selected in the sense
that the pointer is followed until a ROW or STRUCT is found
and then the selection is performed on the compound object.
For example, if P is a PTR(ENV\BLOCK) then

P.RETURN
selects the return component of the ENV\BLOCK.

A pointer may be followed explicitly by using the
operator VAL. The value of VAL is the object referenced by

A1=7

the pointer. If Q is an PTR(INT), then
VAL(Q) <~ 3;

assigns 3 to the integer referenced by Q.

Variables are distinct from objects in EL1. Each
variable names some object. However, an object may be named
by more than one variable. In addition, several variables
may name different components of a single object. In EL1,
an object may lie either on a block structured stack or in a
free storage region called the heap. In the former case,
the lifetime of the object is the same as that of the block
in which it was created. 1In the latter case, the object

exists as long as it can be referenced.

An object is created either implicitly as the result of
a declaration or explicitly via calls to the object
generators CONST and ALLOC. 1In either case, the mode of the
object 1is fixed at the time of creation and the object

retains the mode thoughout its existence. For example, the

three statements

DECL P:ENV\BLOCK;

DrCL Q:ENV\BILOCK BYREF

CONST(ENV\BLOCK OF 1,2, "DELPTH");

DECL T:I\OR\B\PIR;
generate three stack objects. P is initialized as an
ENV\BLOCK with default values for its components. Q is
initialized as an ENV\ELOCK with the components 1, 2 and

"DELPTH", respectively. T dis initialized as a null

I\OR\B\PTR.

A1-8

If a stack object is returned as the value of the block
or procedure application 1in which it was created, then it

becomes a pure-value in the sense that assignments to it are

harmless, but useless. IYor example, consider the following
BEGIN
DECL X:INT;
) DECL Y:INT; P=> Y ; X (] < 4;
+2
END;
If P is FALSE, then the value of the inner block is X, which
is then assigned the value 4. If, however, P is TRUE, then
the value of the block is Y, which is converted to a
pure-value. Assigning 4 to the pure-value has no effect

upon the future evaluation of the program.

The generator ALIOC is similar to CONST, except that
the object generated 1is allocated in the heap. ALLOC
returns a pointer to the object generated. For example,

DECL P:I\OR\E\PIR;

P <~ ALIOC(INT LIKE 1);
The I\OR\B\PTR P 1is constructed on the stack and is
initialized to NIL. An integer is allocated in the heap and
P is assigned a pointer to the integer. The value of the
integer may be accessed using the operator VAL, which has

been described earlier.

In EL1, ROUTINEs subsume the notions of procedures and

A1-9

operators. A variable of mode ROUTINE may be assigned a

procedure value, viz.

FIB <~ EXPR(X:INT; INT)

BEGIN
X=0=>1;
X=1=>1;

FIB(X-1) + FIB(X-2)

9

The ROUTINE FILb computes the N th element in the Fibonacci
series. FIB takes a single formal parameter named X. The
mode of X is INT. The bind class of X is defaulted to be

BYREF (by reference,) i.e. an assignment to X would change
*
the value of the argument. The result type of the procedure

is INT, i.e. the mode of the object returned by the

procedure is INT.

A call to a ROUTINE may be written as a function name
followed by an argument list:
FIB(ENV\ELOCK.OLD\NP)
A ROUTINE valued variable can also be declared to be a
NOFIX, PRErIX or INFIX operator as it takes zero, one ar two
argunents, respectively. In the first two cases, the
routines may te called without enclosing their arguments in

parentheses. In the last case, the arguments appear to

*

Other bind classes in EL1 are BYVAL, UNEVAL, and
LISTED. If BYVAL is wused, then the formal is bound to a
copy of the actual parameter. UNEVAL and LISTED may only be
used if the mode of the formal is FORM. With UNEVAL, the
formal parameter is bound to the unevaluated list structure
for the actual. With LISTED, the formal is bound the
remaining argument list.

A1-10

either side of the operator. TFor example,

FOUR <— EXPR(; INT) 4;

FUM <~ EXPR(X:INT, Y:INT; INT) (X+Y+2);
PREFIX(FIB);

NOFIXEFOUR :

INFIX(FUM);

FIB FOUR
1 FuM 2

NT Same as FIBEFOUR());
NT Same as FUM(1,2);

Top level variables may be assigned values without
explicit declaration. The first assignment to the variable
determines its mode. TYor example

¥ % 9% 95
declares X to te of mode INT and binds it to the integer 2.
Subsequent to the assignment, X may only be assigned integer
values. The mode of X can only be changed by calling the
built-in routine FIUSH. E.g. FILUSH(X) disassociates X from
its mode and value. X may then be assignd a new value (and
mode), €.g.

X <~ TRUE;

Appendix 2

SYNTAX OF EIAN

The concrete syntax of EL1 1is specified by a BNF
grammar. Non—terminals of the grammar are sequences of
characters enclosed in the brackets <>. All other symbols,
except for “::=" and “;°, are terminals of the grammar. The
rules of the grammar are of the form

<NT> :2:= A
where A denotes a string of terminals and non-terminals.
For compactness, the rules

SNTD = _A_1_

<NT> ::= An
are abbreviated as follows.

<NT> 3= A1l | A2 | ... 1An

The abstract syntax representation of an EL1 program is
a 1list structure. The correspondence between the concrete
and abstract representations of EL1 is specified by augments
to the BNF grammar. In each of the rules below, the augment
is separated from the right hand side of the rproduction by
the symbol “€°. An augment specifies the actions to be

taken when the corresponding reduction is made during the

A2-2

parse. There are four different formats for augments.

Their interpretations are best explained by example.

The augmented rule
<form9> ::= <selection> @ <selection>
specifies that in reducing a <selection> to a <form9>, the
list structure associated with the <selection> is to be

associated with the <form9> directly.

The augmented rule
<selection> ::= <form3> . <id> @ (SELQ! <form3> <id>)
specifies that the list structure to be associated with the
<selection> 1s obtained by constructing a three element
list. The first element is the SYMBOL SEIQ!. The second
and third elements are the list structures associated with

the <form3> and the <id>, respectively.

The augmented rule
<str—form>::=STRUCT(<structlist>) @ STRUCT & <structlist>
specifies that the list structure to be associated with the
<str-form> is obtained by CONSing the SYMBOL STRUCT onto the
head of the list associated with the <structlist>. & 1is a

right—associative infix operator equivalent to CONE.

The augmented rule
<fmstr> ::= <fmstr> , <form> @ <fmstr> <-& <form>
specifies that the list structure to be associated with the
<fmstr> 1is obtained by placing the <form> at the end of the

A2-3

list specified by <fmstr>. ZFor example, if the <form> is 4
and the <fmstr> is (1 2 3), then the resulting <fmstr> is
the list (12 3 4).

In an augment, the expression <NT>[i] specifies the
i th element of the 1list associated with <NI> and the
expression <NT-i> specifies the i th occurrence of the

non—terminal <NI> in the corresponding production.

The non—terminals <id>, <constant>, <prefixop>, and
<infixop> denote the (not necessarily disjoint) sets of
identifiers, constants, prefix orerators and infix

operators, respectively.

The grammar follows.

<{program> ::= <formw> @ <form>
<form> ::= <iteration> @ <iteration>
y <fr—call> @ <fn-call>
i <exprnt> @ <exyrrnt>
<form9> ::= <constant> @ <constant>
i <id> @ <id>
i BEGIN <blockbody> END @ BLOCK! & <blockbody>
y <mform> @ <mform>
 <selection> @ <selection>
iy <generation> @ <generation>
i (<form>) @ <form>
<blockbody> ::= <declstr> ; <stat> @ <declstr> <-& <stat>
, <stat> @ (<stat>)
i <blockbody> ; <stat> @ <blockbody> <-& <stat>
<declstr> ::= <declnt> @ (<declnt>)
i <declstr> ; <declnt> @ <declstr> <-& <declnt>

<declnt>

<idstr>

il

<initd>

<{stat>

<iteration>

il

i

<fmit>

<fmit1>

<{test>

il

<mform>

<mform2>

<{str—form>

<{structlist> ::=

<bind-=class>

<form>
<form>

DECL <idstr> :
i DECL <idstr> :
<initd>

<id>

' idstr> , <idd>

EYVAL <form>
 BYREF <form>

-> <form>
=> <form>

<stat>
TOR <ig>

<fmitl>
' <fmit1> <test>

LLOPN> 5 sws 3 CLOTED
| Lorm> , <forw>
<form>

oo e 9

'HILE <f'orm>
| TIIL <form>

<mform2>

1 <ié> : : <mform2>

(<form>)

| ROW 2 <form> , <form>)
! PTR (<fmstr>)

! ONEOF (<fmstr>)

, <str—form>

STRUCT (<structlist>)

<id> : <form>
i <structlist> ,
<id> : <form>

EYREF

i BYVAL
i LISTED
i UNEVAL

@
@

® 6060 O©Od O’

<~ <fmit> DO <form>

e 66

(SN S)]

A2-4

(DECL! <idstr> <form>)
DECL! & <idstr> & <form>
& <initd>

(<dd>)
{idstr> <& <id>

2 BYVAL <form> g
BYREF <form>

<form>

2 IF! <form—-1> <form—2>)
CLAUSE!<form—1>
<form-2>)

(LABST! <id> <stat>)

@ (FOR! <id> <fmit>[1]
<Amit>[2] <fmit>[3]
<fmit>[4]<form>)

<fmit1> <-& NIL
fmitl1> <& <test>

é <form—1> NIL <form-2>)
<form=1> <form—-2>
<form=3>)

é WEILE . <form>)
TILL . <form>)

@ (<mform2>£1] NIL

50 © PO

@
@
Q
@

<mform2> Staia
<mform2> ni

(<mform2 £] <id>
<nforme> s
<mform2>En]

2 ROW NIL <form>)

ROW <form-1> <form—2>)
PTR & <fmstr>

ONEOYF & <fmstr>
<str-form>

STRUCT & <structlist>

((<ia> . <form>))
<structlist>
<& (<id> . <form>)

BYREF
BYVAL
LISTED
UNEVAL

<{selection>

<init>

i

<fmstr>

<fn-call>

<forme>

<form3>

i

<exprnt>

Sexprl>

<generation> ::

<regionspec>

<form3> . <id>
v <torm3> [<form>]

LIKE <form>
i\ SIZE <fmstr>
i OF <fmstr>

<f'orm>

i <fmstr> , <form>

<form2> <infixop> <form>

1 <forme>

<prefixop> <forme>
v <form?>

<form3> ()
\ <form3> (<fmstr>)
, <form&>

FXPR (<exprl> ; <form>)

<form&>
EXFR (; <form>)
<formt>

<id> : <dorm>

i <id> : <torm>
<bind-class>
<exprl> , <id> : <form>

1 <exprl> , <id> : <form>

<tind-class>

<regionsyec> (<form>
LINE %>)
, <regionspec> (<form>)

ALLOC
. CONST

PeED ©®B® 6 B® 6O Odbe O

® ©

© e

Q@

&0 ® ®

A2-5

§ SEIQ! <form3> <id>)
SEL! <form3> <form>)

(LIKE <form>)
SIZE & <fmstr>
Or & <fmstr>

(<form>)
<fmstr> <& <form>

(<infixop> <form2>
<form>)
<form2>

(<prefixop> <form2>)
<torm3>

(<form3>)
{form?> & <fmstr>
<form9>

(EXPR! <exprl> <form>
<form9>)
(EXPR! NIIL <form>

<forngd>)
éé <id> <form> BYREF))
<id> <form>

<bind-class>))
<exprl> <=& (<ia>
<form> BYREF>)
<exyrl> <=& (<id>
<form> <bind-class>))

{regionspec> & <form>
& <init>
(<regionspec> <form>)

ALLOC
CONET

Appendix 3

CI PRCCEDURES AND INTERRUPT RESPONSE IORMS

Modes

ARQPTR <= STRUCT(FIRST:ARPTR, LAST:ARPTR);
LIST <- PTR(DTPR);
LISTROW <~ ROW(NPROC, LIST);

PROW <-
ROW(NPROC, STRUCT(CURPATH:ARFTR, IDLFPATE:ARPTR));

NT NPROC is defined by INSTALL\GLOBAL\ENV
to be equal to the number of processors;

Procedures

NT INIT\CI initializes the CI. Its arguments
specify the idle paths for the processors and
the form to te evaluated;

INII\CI <-
E.PR{IDLEVECT : ROW(NPROC, ARPTR),PROG:FORM;NONE)
BEGIN
DECL I.ASTRUN:ARPIR;
DECL INACTIVEGQ:ARQPTR;
DECL NPROC:INT BYREF NPROC;
DECL PROCNUM:INT BYVAL 1;
DECL USER\SCHEDULER :ROUTINE
BYVAL INITIAL\SCHEDULER;
DECL PAVECT:PROW;
DECL RUNSET\FLAG:bOOL;
DECL PIVECT:LISTROW;

NT Initialize the PAVECT;

FOR I <= 1, +.., NPROC DO
PAVECT[1].IDLEPATH <~ IDLEVECT[I];

NT Create a path in which to evaluate PROG;

LASTRUN <— GET\PATH(1);
PAPQ(EVAL(PROG),LASTRUN) ;

A2

NT Commence scheduling;
C\I()
END;

C\I <- FXPR(; NCNE)
BEGIN
DECL LASTRUN:ARPIR BYREF LASTRUN;
DECL INACTIVEQ:ARQPIR BYREF INACIIVECQ;
DECL NPROC:INT BYREF NPROC;
DECL NFPROC:INT EYREF NFPROC;
DECL PROCNUM:INT BYREF PROCNUMj;
DECL USERéSCHEDULER:ROUTINE EYREF USER\SCHEDULER;
DECL PAVECT:PROW BYREF PAVECT;
DECL RUNSET\FLAG:BOOL BYREF RUNSET\FLAG;
DECL PIVECT:LISTKOW EYREF PIVECT;

NT When C\I is initially called, LASTRUN specifies the
th to which control 1is to be transferred and
ROCNUM specifies the current processor;

CONTINUF\PATH:
PAVECT[PEOCNUM] « CURPATH <~ LASTRUN;
LASTRUKN.YRO <— PROCNUM;

NT Transfer control to the path;
LASTRUN <— CONTPATH(LASTRUN) ;

NT CONTPATH returns the ARPTR of the path performing
the CIA call;

PROCNUM <- LASTRUN.PRO;
RUNSET\FLAG <- FALSE;

NT Apply the CIA-called procedure;

BEGIN
MD(VAL(LASTRUN.CIA\FN))=ATOM =>
EVAL(LASTRUN.CIA\FN)(LASTRUN.CIA\ARG);
LASTRUN. CIA\FN(LASTRUN.CIA\ARG)
END;

NT If LASTRUN is NIL, then a new path must
be scheduled;

LASTRUN=NIL <> GOTO NEWPATH;

NT If RUNSET\FLAG is FALSE, then simply
pass control to LASTRUN;

A3-3

NOT RUNSET\FLAG -> GOTO CONTINUE\PATH;

NT Otherwise, interrupt an idling processor so
that it may be assigned to a path;

SICNAT\IDLE\FROCESSOR() ;
GOTO CONTINUE\PATH;

NT Call the user’s scheduler to obtain a path
to be assigned to the processor;

NEWPATH:
BEGIN
DECL B:BOOL;
B < PAVECT&PROCNUM%.IDLEPATH =
PAVECT[PROCNUM]. CURFATH;

NT B is TRUE if and only if the current
processor has been idle;

LASTRUN <- USER\SCHEDULER();

N1 LASTRUK is NII. if there exist no paths
to be run, otherwise it specifies the path to
be assigned to the processor;

LASTRUN {# NIL =>
BEGIN
B => NFPROCK-NFPROC-1;
NT One less idle processor;
SIGNAL\IDLE\ PROCESSOR()
NT Signal another idle rrocessor;
END;

NT Since there exists no rath to run and
the processor was idle (B=TRUE), let it
continve to idle;

B => LASTRUN <~ PAVECT[PROCNUNM].IDLEPATH;

NT Otherwise, the processor was not idle
before the CIA call. Since there
are no paths to run, let it idle;

LASTRUN <~ PAVECTgPROCNUM].IDLEPATH;
NFPROC <~ NFPROC+
END;

GOTC CONTINUE\PATH
END;

A3-4

SIGNAL}IDLE\PROCESSOR <- EXPR(;NONE)
BEGIN
DFECL FPROC:INT;

NT If there exists an idle processor,
then it is interrupted. Otherwise,
no action is taken;

NFPROC=0 => NOTHING;
FOR I<-1, ee.y, NPROC TILL FPROC GT O DO
BEGIN
I=PROCNUM => NOTHING;
NT Don“t consider the current processor;
PAVECT[{B . CURPATH = PAVECT[I].IDLEPATH =>
FPROCKL-I
END;

NT Put a form on PIVECT[FPROC] which will cause the
processor FPROC to call the USER\SCHEDULER when
FPROC passes control to the CI due to the
"PRO\PRO" interrupt sent by STOP\PATH;

PIVECT[FPROC] <-—
ONS(QUOTE(LASTRUN<-NIL), FIVECT[FPROC]) ;

- STOP\PATH(PAVECT[}PROC] . IDLEPATH)
L3

INITIAL\SCHEDULFR <- EXPR(; ARPIR)
EEGIN
DECL Y:ARPTR;
Y <-INACTIVEQ.FIRST;
L: Y=NIL => NIL;
NOT Y.DORMANT =>
BEGIN
REMOVE(Y, INACTIVEQ);
Y.TICKS\LEFT <~ NUMTICKS;
gT Set the time allocation for the path;

END;
Y <~ Y.NEXT;
GOTO L
END;

ENTERL <- EXPR(P:ARPTR, Q:ARQPTK; NCNE)
BEGIN
P.NEXT <- NIL;
Q.LAST=NIL => Q.FIRST<~Q.LAST<-P;
Q.LAST.NEXT<-P;
Q.LAST<-P
END;

A3-5

REM%VEI<— EXPR(X:ARFTR, Y:ARQPTR; NONE)
FGIN
DECL Z:ARPTR EYVAL Y.FIRST;
X=Z =>
BEGIN
(Y.FIRST <~ Y.FIRST.NEXT)=NIL => Y.LAST<-NIL;
END;
L: Z.NEXT=X =>
BEGIN
Y.LAST=X -> Y.LAST<-Z;
Z.NEXT <~ X.NEXT
END;
Z < ZNELT;
GOTO L
END;

Response Forms

NT PRO\PRO\IORM is the "PRO\PRO" interrupt response form.
It generates the path level interrupt "CI\TO\PATE"
which then CIA calls a procedure which evaluates all
forms on the processor ‘s PIVECT list;

PRO\PRO\FORM <- QUOTE(INTERRUPT("CI\TO\FATH"));

NT CI\PATH\IORM is the response form associated with
the "CI\TO\PATH" interrupt;

CI\PATH\FORM <- QUOTE(CIA("PROINT"));

PROINT <~ EXPR(I.:LIST; NONE)
BEGIN
DECL.L:LIST BYVAL PIVECT[PROCNUM];
PROEVAL(L);
PIVECT[PROCNUM] <~ NIL
END;

PROEVAL <~ EXPR(L:LIST; NONE)

BEGIN
I=NIL => NOTHING;
FVAL(L.CAR);

PROEVAL(L.CIR)

AZ-6

END;

NT TIMER\FOEM is the "TIMER" interrupt response form. It
generates the path level interrupt “TIME\OUT" if the
path's time allocation has been exhausted;

TIMER\FORM <—
QUOTE(BEGIN
MYPATH=PCIAR => NOTHING;
MYPATH.TICKS\LEFT <~MYPATH.TICKS\LEFT-1;
MYPATH. TICKS\LEFT=0 =>
INTERRUPT("TIME\OUT")
END);

NT TIME\OUT\rORM is the response form associated
with the “CI\TO\PATH" interrupt;

TIME\OUT\FORM <- QUOTE(CIA("NOTIME"));

NOTIME <~ EXPR(; NONE)

EEGIN

LASTRUN = PAVECT[PROCNUM].IDLEPATH =>
LASTRUN <~ NIL;
NT Put the path of the INACTIVEQ and set
LASTRUN to NIL to force scheduling;

ENTERL(LASTRUN, INACTIVEQ);
LASTRUN <~ NIL

END;

[ACMT70]

[An65]

[BBN70]

[Be70]

[Ber71]

[Bo72]

[Bub8]

[Ch68]

[Ch72]

[Chris69]

[Co63]

[Cob63a]

[Cor65]

REFERENCES

Record of the Project MAC Conference on Concurrent
Systems and Parallel Computation, ACM, Mew York,
1970.

Anderson, J.P. "Program Structures for Parallel
Processing,”" Comnm. ACM Vol. 8, No. 12 (December

1965), pp. T786-788. ~

Bolt, Beranek, and Newman, Inc. NTENEX Technical
Manual," January 1970.

Beech, D. "A Structural View of ZFL/I," Computi
Surve&s Vol. 2, No. 1 (March 1970), pﬁ. 33383.

Berry, L.M. "Introduction To OREGANO," in [Wegn71],
pp. 171=18¢.

bobrow, D. and Wegbreit, B. "A DModel for Stack
Implementation of Multiple Environments," bolt,
ggnek and Newman, Inc. Report No. 2334, March

Burge, W.H. "McG - A Functional Programming
System," Report RC-2111, IBM T.J. Watson Research
Center, Yorktown Heights, New York (196€).

Cheatham, T.E. et al. "On the Basis for ELF - An
Extensible Language Facility," Proc. 1JCC Vol. 32
(1968), pp. 937-947.

Cheatham, T.E. and Wegbreit, B. "A Laboratory for
the Study of Automating Frogramming," Proc. SJCC

(1972).

Christensen, C. and Shaw, C.J. (editors) "FProc.
of the Extensible Languages Symposium," in SIGPLAN
Notices, Vol. 4, No. &, August 1969.

Conway, M.E. "A Multi-Processor System Design,"
Proc. FJCC Vol. 24 (1S63), pp. 129-146.

Conway, Mo L "Design of a Separable .
Transition-Tiagram Compiler," Comm. ACM Vol. 6,
No. 7 (July 1S63), pp. 396-406.

Cortato, r.J and Vyssotsky, V.A "Introduction and
Overview of the Multics System," Proc. FJCC Vol.

27 (1965).

[Da66]

[Da70]
[DeBak67]

[Di6&a]

[Di68b]

[Fi70]

[¥167]

[Ger69]

[Ger70]

[Gar66]

[Go65]

[Go66]

[IB468]

[Jo71]

R-2

Dahl, O. and Nygaard, K. ¥“SIMULA - an AILGOL Eased
Simulation Lanﬁuage," Comm. ACM Vol. G, No. 9
(Sertember 1966), pp. 671-€78.

Dahl, O. et al. "SIMULA 67 Common Base Language,"
Norwegian Computing Center No. S-22 (October 19703.

DeBakker, J.W. Formal Definition of Programming
Languages, Mathematish Centrum, Amsterdam 1967.

Dijkstra, E.W. "Cooperating Sequential Processes,"
in Programming es, edited by F. Genuys,
Academic Press, New York (1S68).

Di jkstra, E.W. *The Structure of THE
Multl-Programmlng System," Comm. ACM Vol. 11, No.
6 (May 1968), ppr. 341-346.

Fisher, D.A. Control Structures for Programming
s, Doctoral Dissertation, C(arnegie-Mellon

University, June 1970.

Floyd, R.W. "iondeterministic Algorithms," JACM,
Vols 14 (October 1967), pp. 636-644.

Gerhart Se A Surve of LExtensible nggggges
Prellmlﬁary draf e "KRAND Corporation, a
Monica, California, August 1969.

Gerhart, S. Formal Definition of APL, Unpublished
paper, Computer Science Derartment, ‘Carnegle—Mellon
University, March 1S70.

Garwick, J.V. "The Definition of Programming

Lang s by their Compilers," 1in Ste6bb &
Thdyiy ’ [1 PP
Golomb, S.W. and Baumbert, L.D. "Backtrack

Propramml " JACM, Vol. 12 (October 1965) .
6365644 ng, Jgauil, s PP

Gosden, J.A. "Explicit Parallel Processing
Description and Control in Programs for Multi- and
Uni- Processor Computers," Proc. FJCC, Vol. 29

(19€6), pp. 651-660.

"IBM System/360 Principles of Operation," IBM System
Reference Library No GA22-6&21- (September 196%

Johnston, J.b. "The Contour Model of Block
Structured Frocesses," in [wegn’/1] pp. 55-82.

R-3

[Kn68] Knuth, D. The Art of Computer Programming, Vol. 1
Addisén—WesIey, New York 51968). 4 ’
[La68] Lampson, B.W. "A Scheduling Philosorhy for

Multiprocessing Systems," Comm. ACM Vol. 11, No.
5 (May 1968), pp. 347-360.

[Lan64] Landen, P.d. "The Mechanical Evaluation of
Expressions,” The Computer Journal, (January 1964),
pp. 306-320.

[Lan65] Landen, P.J. "A Correspondence between ALGOL 60 and
_ Church’s Lambda-Notation, Parts I and II," Comm.
ACM, Vol. &, Nos. 2 and 3 (February and WMarch

T965), pp. 89-101, 158-165.

[Lan66] Landen, P.J. "The Next 700 Programming Ianguages,"
Comme ACM, Vol. 9, No. 3 (March 1966), pp.

[Lea69] Leavenworth, b.M. "The Definition of Control
Structures in McG 360," Report RC 2776, IBM T.Jd.
¥%ggon Research Center, Yorktown Heights, New York,

[Lu6ta] Lucas, ¥. et al. Informal Introduction to the
Abstract Syntax and Interpretation of FPL/I, TR
25.C83 1BM fEBOratory, Vienna, Austria, June 1968.

[Lu68b] Iucas, P. and Wolk, K. On the Formal Description
of PL/I, Report of the TBM Iaboratory, vienna.
Austria, December 1568.

[Ma68] Madnick, S.E. "Multi-Processor Software ILockout,"”
Proc. ACM hational Conf. 1968, pp. 15-24.

[McCar60] McCarthy, dJohn "Recursive Functions of Symbolic
Expressions and Their Computation by Machine,™ Comm.
ACM, Vol 3, No. 4 (April 1960), pp. 1€4-195.

[McCar66] McCarthy, John "A Formal Description of a Subset of
Algol," in [Ste66] pp. 1-T.

[McIl] McIlroy, M.D. "Coroutines: Semantics in Search of a
Syntax," unprublished, Oxford University.

[0p65] Opler, A. "Procedure Oriented Language Statements
to Facilitate Parallel Processing,! Comm. ACM Vol.

8, No. 5 (May 1965), pp. 306-307.

[PoT1]
[Pr72]

[Ra68]

[Rey69]

[RoT0]

[Sa66]

[SaT1]

[Sch71]

[St68]

[St69]

[Ste66]

[TaT1]

[ThoT71]

Notices, Vol. 6, No. 12, Lecember 1§71.

Pouron, J. "Control Structure of PPL," in [Sch71].

Prenner, C.d. el al. "An Implementation of
Backtracking for Programmirg Languages," Proc. ACM
National Conference 1972.

Rappaport, R.L. "Implementing Multi-Process
Primitives in a Multiplexed Computer System,"
Masters Thesis, MIT, November 1568.

Reynolds, J.C. "A Set-Theoretic Approach to the
Concept of Type," working paper, NATO Science
Committee Conterence Techniques 1in Software
Engineering, Rome, Itaiy, October, 1969.

Roberts, L. and Wesler, B. UComputer Network
Development to Achieve Resource Sharing," Proc.
SJCC Vol. 36 (1970), pp. ©543-549.

Saltzer, J.H. "Traffic Control in a Multiplexed
Computer System," Doctoral Dissertation, MIT, June,
196¢€.

Saul, He and Riddle, We "Communicating
Semaphores,"” Computer Science Department, Stanford
University, STAN-CS~71-202 (rebruary 1971).

Schumann, S.(editor) "Proc. of the International
Symrosium _on Extensible ILanguages," in SIGPLAN

Standish, T.A. A Preliminary Sketch of a
Polymorrhic Programming uage, Centro de Calculo
E%ggtronlc, Unliversidad acliona ée DMexico, dJune

Standish, T.A. "Some Yeatures of PPL, A Polymorphic
Programming Language," in [Chris69] pp.20-26.

Steel, T.B.(editor) Formal Ianguagce Description
%§E§E§§§§ for Computer Programming, North-Holland,
msterdam, .

Taft, E. "IPL Users Manual," Center for Research in
Comruting Technology, Harvard University, Cambridge,
Massachusetts, 197

Thomas, R.H. A Model for Process Representation and
Synthesis, Doctoral Dissertation, MIE TCTT.

R-5

[vanW66] vanVi jngaarden, A. "Recursive befinition of Syntax
and Semantics,'" in [Ste66] pp. 13-18.

[vanW6S] vanWi jngaarden, A. et al. keport on the
Alporithmic Ianguage Algol 68, MR , Mathematish
Centrum, Amsterdam, February 1969.

[WegT0] Wegtreit, E. Studies 1in Extensible Languages,
Doctoral Disseériation, - Harvard University,
Camtridgee, Massachusetts, May 1S70.

[Weg71] Wegbreit, B. "The Treatment of Data Types in EL1,"
Center for Research in Computing Technolo%y, Harvard
University, Cambridge, Massachusetts, 1971.

[Wegil1a] VWertreit, B. "Compactifying Garbage Collection in
the Heap,*" Center for Research 1in Computing
Technology, Harvard University, Cambridge,
Massachusetts, 1971.

[WegT72] Wectreit, B. et al. "ECL Programmer’s Manual,"
Center for Kesearch in Computing Technology, Harvard
University, Cambridge, Massachusetts, January 1S72.

[WeobT7] Vleissman, C. Lisp 1.5 Frimer, Dickenson, Belmont,
California, 1¢07.

[WegnbS) Verner, P. "Theories of Semantics,” Technical
Report No. 6910, Center for Information Sciences,
Brown University, September 196€.

[Wegn71] VWegner, P. and Tou, J.L.(editors) "Proceedings of a
Symrosium on Data Structures in Programming
Languages," in SIGPLAN Notices, Vol. 6, No. 2
February 1971.

[Wi66] Virth, N. "A Note on Program Structures for
Paraliel Processingl” Comm. ACM, Vol. 9, No. 5
(May 19€6), pp. 320-321%

[Wi6eG] Wirth, L. %“On Multi-Programming, Machine Coding,
and Computer Organization," Comm. ACM Vol. 12, No.
9 (Ceptember 1969), pp. 48%-4SE.

Unclassified

Security Classification

DOCUMENT CONTROL DATA-R&D

(Security classilication ol title, body of abstract and indexing annotation must be entered when the overall report Is clasaified)

1. ORIGINATING ACTIVITY (Corporate author) 2a. REPORT SECURITY CLASSIFICATION
Harvard University UNCLASSIFIED
Cambridge, Massachusetts 02138 2b. GROUP

N/A
3. REPORT TITLE

MULTI-PATH CONTROL STRUCTURES
FOR PROCRAMMING LANGUAGES

4 OESCRIPTIVE NOTES (Type of report and Inclusive dates)

None

$. AUTHORI(S) (First name, middie initial, last name)

Charles J, Prenner

6. REPORT OATE 7a. TOTAL NO. OF PAGES 7b. NO. OF REFS

August 1972 380 64

8a. CONTRACT OR GRANT NO.

e

94. ORIGINATOR'S REPORT NUMBER({(S)

c. 2801 55

. OTHER REPORT NO(S) (Any other numbers that may be assigned
this report)

d.

10. OISTRIBUTION STATEMENT

Approved for public release; distribution unlimited.

1. SUPPLEMENTARY NOTES 12. SPONSORING MILITARY ACTIVITY

Deputy for Command and Management Systems
Hq Electronic Systems Division (AFSC)
L G Hanscom Field, Bedford, Mass, 01730

13. ABSTRACT

This dissertation applies the techniques of extensible languages to the
problem of introducing multi-path control structures into programming
languages. A control extension facility is defined which consists of a set
of control primitives and a framework for combining them. The primitives
are embedded in an existing extensible language--ELl. Using the facility,
it is possible to realize both conventional and non-conventional control
regimes by extension. Such extensions are simplified through the use of the
control interpreter, which allows the programmer direct control over the
assignment of processors to paths. A set of examples is presented which

demonstrates the power of the facility for both the implementation and
clarification of comnlex control structures.

Although the use of the primitives in the synthesis of control structures
is emphasized, the primitives are also given a formal semantic definition
which is used to demonstrate that they are feasihle (i.e., they can be

implemented on contemporarv hardware) and that they have an efficient
realization.

DD "&U..1473

Unclassified

Security Classification

Unclassified

Security Classification

KEY WORDS

LINK A LINK B

LINK C

ROLE

wT ROLE wT

ROLE wWT

Programming languages

Extensible programming languages
Control structures

Cxtensible control structures
Definition mechanism

Extension facility

Formal semantic specification
Interrupts

Cooperating sequential processes
Multiprogramming
Multiprocessing

Parallel processes

Coroutines

Unclassified

Security Classification

