
1 '

CD

ESD-TR-72-308

MULTI-PATH CONTROL STRUCTU
FOR PROGRAMMING LANGUAGES

Charfes J. Prenner

•m LIST
: NO. 7$3&f.

y No. /of p~- cvs,

August f972

DEPUTY FOR COMMAND AND MANAGEMENT SYSTEMS
HQ ELECTRONIC SYSTEMS DIVISION (AFSC)
L. G. Hanscom Field, Bedford, Massachusetts 01730

MS

Approved for public release;
distribution unlimited.

(Prepared under Contract No. FF9628-7[-C-0f73 by Harvard University,
Cambridge, Massachusetts.) , _ _
 L AOlS^Cu

•

I

LEGAL NOTICE

When U.S. Government drawings, specifications or other data are used for any
purpose other than a definitely related government procurement operation, the
government thereby incurs no responsibility nor any obligation whatsoever; and
the fact that the government may have formulated, furnished, or in any way sup-
plied the said drawings, specifications, or other data is not to be regarded by
implication or otherwise as in any manner licensing the holder or any other person
or conveying any rights or permission to manufacture, use, or sell any patented
invention that may in any way be related thereto.

OTHER NOTICES

Do not return this copy. Retain or destroy.

•

ESD-TR-72-30C

MULTI-PATH CONTROL STRUCTURES
FOR PROGRAMMING LANGUAGES

Charles J. Prenner

August 1972

DEPUTY FOR COMMAND AND MANAGEMENT SYSTEMS
HQ ELECTRONIC SYSTEMS DIVISION (AFSC)
L. G. Hanscom Field, Bedford, Massachusetts 01730

Approved for public release;
distribution unlimited.

(Prepared under Contract No. F19628-71-C-0173 by Harvard University,
Cambridge, Massachusetts.)

FOREWORD

This report was prepared in support of Project 2801, Task
280102 by Harvard University, Cambridge, Massachusetts under
Contract F19628-71-C-0173, monitored by Capt Triston J. Rosenberger,
ESD/MCIT, and was submitted September 1972.

This technical report has been reviewed and is approved.

SYLVIA R. MAYER
Project Officer

ME^VIN B. W
Director, Information Sys. Tech.
Deputy for Command & Mgmt Sys

NS, Col, USAF

ABSTRACT

This dissertation applies the techniques of extensible languages to
the problem of introducing multi-path control structures into pro-
gramming languages. A control extension facility is defined which
consists of a set of control primitives and a framework for combining
them. The primitives are embedded in an existing extensible language—
ELI. Using the facilitv, it is possible to realize both conventional
and non-conventional control regimes by extension. Such extensions
are simplified through the use of the control interpreter, which allows
the programmer direct control over the assignment of processors to
paths. A set of examples is presented which demonstrates the power of
the facility for both the implementation and clarification of complex
control structures.

Although the use of the primitives in the synthesis of control struc-
tures is emohasized, the primitives are also given a formal semantic
definition which is used to demonstrate that they are feasible (i.e.,
they can be implemented on contomporarv hardware) and that they have
an efficient realization.

iii

TABLE OP CONTENTS

Page

List of figures

Synopsis

viii

lx

Chapter 1. INTRODUCTION

1. Multi-Path Control Structures
1.1 Motivation
1.2 Design Criteria
1.3 Overview

2. Survey of Previous Work
2.1 Linguistic Work
2.2 Formal Specifications
2.3 Operating Systems
2.4 Other Work

1-1
1-1
1-7
1-10

1-16
1-16
1-24
1-31
1-33

Chapter 2. INFORMAL DESCRIPTION OF MPEL1

1. Processors
1.1 Interpreter as Processor
1.2 Multiplexing of Interpreters
1.3 Paths of Control

2. Paths
2.1
2.2

Informal Description of a Path
Path Creation and Deletion

2.3 Path Initialization
2.4 Path Evaluation
2.5 Data Sharing
2.6 Path Termination
2.7 Path Synchronization
2.8 Path Dependency
2.9 Intra-Path Control Primitives

3» The Control Interpreter
3.1 Communication with the CI
3.2 Synchronization
3.3 The Environment of the Control Interpreter
3.4 Path Scheduling

2-3
2-3
2-6
2-8

2-11
2-11
2-15
2-16
2-22
2-24
2-27
2-29
2-32
2-37

2-41
2-41
2-45
2-47
2-50

I

4. User Defined Scheduling 2-54
4.1 Scheduler Extension 2-54
4.2 Canonical Inactive Sets 2-61
4.3 Scheduling Errors 2-64

5. External Interrupts 2-66
5.1 Classes of Interrupts 2-66
5.2 Interrupt Structure 2-68
5.3 Processor Level Interrupts 2-70
5.4 Path Level Interrupts 2-76
5.5 Relation to Processor Multiplexing 2-82
5.6 Data Passage 2-86

6. Index to Chapter 2 2-89

Chapter 3. EXTENSIONS

1. Coroutines 3-2

2. Synchronization 3-6

3. Parallel Processing 3-10

4. Simulation 3-24

5. Monitoring and Relative Continuity 3-36

6. Backtracking 3-49

Chapter 4. THE FORMAL DEFINITION OP MPEL1

1. Introduction 4-1
1.1 Representation 4-1
1.2 Evaluator Recursion 4-4
1.3 Stacks 4-8
1.4 Synchronization 4-11

2. The EL1 Evaluator 4-14
2.1 Declarations and Initialization 4—15
2.2 Form 4-21
2.3 List Structure 4-23
2.4 Literal Procedure 4—24
2.5 Block 4-24
2.6 Declaration 4-26
2.7 Conditional 4-29
2.8 Selection 4-31
2.9 Assignment 4—34
2.10 Iteration 4-35
2.11 Procedure Application 4—39
2.12 Labelled Statement 4-46

vi

3. The Control Primitives
3.1 GETPATH
3.2 PAP, PAPQ, DPAP, DPAPQ
3.3 PPETCH, PSTORE
3.4 TSET, CLEAR
3.5 MDEP, DEPENV
3.6 DELETE\PATH
3.7 GOTO, RETFROM
3.8 MYPATH
3.9 EVAL

3.10 COPY
3.11 CIA, CONTPATH
3.12 ENAELEYPRO, DISABLE\PRO, LEVEL, INUSE
3.13 ENABLENPATH, DISABLEX^ATH
3.14 MASK, UNMASK, INTERRUPT
3.15 STOP\PATH

4. Auxiliary Procedures

5. Primitive Procedures

6. Index to Chapter 4

4-47
4-48
4-50
4-54
4-56
4-57
4-64
4-67
4-70
4-71
4-72
4-74
4-79
4-82
4-85
4-87

4-94

4-100

4-110

Chapter 5. EVALUATION AND CONCLUSIONS

1. Other facilities
1.1 Extended CIA Call
1.2 Extended Mode facility
1.3 Termination of Dependents

2. Implementation Issues
2.1 Storage Management
2.2 Input-Output
2.3 Relation to an Operating System

3. Critical Discussion
3.1 The Control Primitives
3.2 The Formal Definition

4. Conclusions and Suggestions for Future Research

5-1
5-1
^4
5-9

5-12
5-12
5-20
5-21

5-25
5-25
5-33

5-43

Appendix 1

Appendix 2

Appendix 3

References

Introduction to EL1

Syntax of EL1

CI Procedures and Interrupt Response Forms

vii

LIST OP FIGURES

figure Page

2-1 Paths Q and P1 Before PAP 2-20

2-2 Paths Q and P1 After PAP 2-20

2-3 Nesting of Schedulers 2-59

2-4 The Definition of INITD 2-63

3-1 Trees x, y, and Modified y 3-4

viii

SYNOPSIS

This dissertation applies the techniques of extensible

languages to the problem of introducing multi-path control

structures into programming languages. A control extension

facility is defined which consists of a set of control

primitives and a framework for combining them. Using this

facility, it is possible to realize both conventional and

non-conventional control regimes by extension. Such

extensions are simplified through the use of the control

interpreter, which allows the programmer direct control over

the assignment of processors to paths. The use of the

primitives in the synthesis of control structures is

emphasized* However, the primitives are also given a formal

semantic definition which is used to demonstrate that they

are feasible, (i.e. they can be implemented on contemporary

hardware) and that they have an efficient realization.

Chapter 1 gives the motivation for this research and

contains a survey of related work.

Chapter 2 presents an informal description of the

multi—path control facility. The primitives are embedded in

an existing extensible language, namely, EL1 [Weg70]. We

use the term MPEL1 to describe the language obtained through

the addition of the control primitives to EL1. All of the

material in this chapter — the control primitives and the

ix

framework provided by the control interpreter — is original

except for the intra-path control primitives EVAL, GOTO and

RETFROM, all of which have counterparts in existing

languages.

Chapter 3 describes how a variety of multi-path control

structures can be defined as extensions to MPEL1. Although

many of the examples have appeared in the literature, their

straightforward reali2ation in terms of the primitives and

framework of MPEL1 is original.

Chapter 4 presents a formal semantic description of

MPEL1. The definition is divided into two parts. First, a

formal description of an EL1 evaluator is presented. It is

similar to the definition of EL1 given in [Weg70], but has

been updated to reflect changes in the language which have

been included in a current implementation [Weg72]. The

second part is a formal definition of the control

primitives. This latter part and the modifications made to

the semantic model in order to host evaluator multiplexing

are original.

Chapter 5 contains some concluding remarks about the

multi-path facility. First, a number of implementation

issues are discussed. Second, an assessment of the control

primitives and their formal model is given. Lastly, a

number of areas for future research are described.

Appendix 1 presents a brief description of EL1.

Appendix 2 gives an augmented syntax for EL1. It is

reprinted from [Weg70],

Appendix 3 presents the MPEL1 defintions of the control

interpreter procedures and interrupt response forms

described in chapter 2. All of this material is original

A brief description of this research was presented at

the International Symposium on Extensible Languages,

Grenoble, France, September, 1971, under the title "The

Control Structure Facilities of ECL." A copy of the paper

appears in the Symposium's Proceedings [Sch71].

xi

Chapter 1

INTRODUCTION

1. MULTI-PATH CONTROL STRUCTURES

1.1 Motivation

A considerable amount of programming language research

has been directed towards the development of extensible

languages. The tern 'extensible' has been applied to a

number of quite different languages, and there is still

disagreement in the field as to what characterizes a truly

extensible language [Sch71]. Most 'extensible' languages

have provided mechanisms for extension in one or more of the

following areas.

(1) Data type extension allows new data types to be

created in terms of built-in or previously defined

ones. It is usually possible to construct data

types for arrays of homogeneous objects and

structures composed of heterogeneous objects.

(2) Operator extension allows for the definition of new

operations or the redefinition of existing ones.

Por example, the meaning of '+' can be changed to

cover addition over new data types.

(3) Syntax extension allows the programmer to state his

1-2

algorithm in a more convenient notation than that of

the basic language, provided that he can describe

the mapping between the new notation and existing

language constructs.

In each of the cases above, a language component, which had

previously been a constant, becomes a variable. For

example, in early high-level languages (ALG01r-60, FORTRAN)

the number of data types available is constant - integers,

reals, or n-dimensional arrays of integers or reals (where n

is fixed at the time of compilation.) In an extensible

language, the number of data types available is potentially

infinite. The methodology of extensible languages has been

to abstract what is fundamental in a given language

component and then add to the language the primitives and

framework necessary to allow the component to sustain

variation.

The development of extensible languages may be

considered a reaction to two other trends in programming

languages. The first of these is the development of shell

languages [Ch68]. These languages purport to service a wide

class of users by making the language a conglomeration of

the facilities needed by each class. The second trend is

the development of specialized extensions to existing

languages - the addition of SNOBOL-like pattern matching to

AKJOL, for example. The former trend is not viable since

the shell becomes quite unwieldy as the number of

1-3

application areas increase. The latter simply adds more

dialects to Babel.

One of the most popular examples of the second trend is

the addition of multi-path control operations to existing

languages. [An65][Op65][Da66]. Here we have proposals for

extensions to allow for asynchronous tasks, coroutines,

fork-join constructions, synchronization operations,

simulation primitives, and the like. Numerous papers have

appeared in the literature which describe how one or more of

the above can be added to some language (usually ALGOL-60.)

Unfortunately, most of these proposals are incomplete,

usually taking the form of an English language description

or a sketch of an implementation. An explication of the

effect of extension upon the language as a whole or a study

of what fundamental operations underlie all of these

extensions are never presented.

Fxtension facilities to allow for multiple paths of

control have been ignored in most extensible language
*

proposals. This is surprising since the number of (ad-hoc)

extensions which have been proposed make this area ripe for

the application of the techniques of extensibility.

This thesis attacks the problem of introducing

multi-path control structures into programming languages

*

The few exceptions are discussed in section 1.2.1.

1-4

through the use of the extensible language method, namely, a

set of language primitives and a framework are proposed

which allow for the synthesis of all known multi-path

control structures and, hopefully, for the synthesis of an

unspecified number of others. The primitives allow for

systematic variation in four areas.

(1) Path Organization - Paths of control (sequential

processes) do not have to be designated as

conforming to any particular control behavior (such

as a task or coroutine structure.) The control

relationship between paths is determined entirely by

their use. facilities for data sharing are provided

commensurate with the generality of the control

discipline in effect.

(2) Scheduling - Any multi-path facility must surely

allow for the concurrent activation of paths, i.e.

parallel processing. If the number of paths to be

activated concurrently exceeds the number of

processors available, then some path-scheduling

technique must be employed. The proposed framework

allows the scheduler to be defined at the language

level.

(3) Synchronization - Whenever a language admits

concurrent evaluation, some mechanism must be

provided to allow the parallel paths to synchronize

their activities. Although no synchronization

1-5

operator or special data type is assumed, the

necessary handles are provided so that hand-tailored

synchronization operations may be constructed.

(4) Interrupts - An interrupt facility is provided which

allows a path to be interrupted by a signal which is

generated by another path or by an external source.

The primitives are defined as extensions to the

evaluator of an existing extensible language - EL1 [Weg70],

EL1 was chosen as the host language for a number of reasons,

first, EL1 contains no multi-path facilities. Second, EL1

has both stack and dynamic storage allocation. The latter

provides a convenient mechanism for data sharing between

paths. Third, the "dynamic'' structure of EL1 provides an

environment in which the evaluation of a program is not tied

to its textual structure. fourth, an

implementation-oriented formal definition of EL1 exists.

Hence, the effect of proposed control primitives upon the

language can be determined by performing modifications to

the semantic model. Finally, embedding the primitives in

EL1 avoided the creation of yet another extensible language.

A TEST-ANB-SET operation is assumed in order to allow
the control primitives to synchronize their activities, c.f.
1.1.3.

Here we refer to the fact that EL1 uses a dynamic scope
rule to identify the meanings of free variables "(as in LISP;
and to the fact that variables may be bound to fragments of
EL1 programs (called FORMs) which may be evaluated in any
environment.

1-6

The multi-path primitives are described both in English

and in terms of a revised formal model of EL1. The former

serves as an informal introduction and the latter provides a

precise definition of the semantics of the primitives and

their relation to the EL1 evaluator. The formal definition

is crucial for two reasons. First, most of the control

primitives do not have counterparts in conventional

programming languages. Thus, the informal description must

concentrate on motivating the primitives and giving a

general description of their actions. An attempt at

completeness in this section would make it essentially

unreadable. Second, to propose sophisticated linguistic

primitives without giving a model is a relatively worthless

pursuit - only the language designer will ever understand

exactly how they work.

For the remainder of the thesis we will use the term

'MPEL1* (multi-path EL1) to denote the language obtained by

adding the control primitives to EL1. The term 'EL1* will

be used to refer to the original definition of EL1.

1-7

1.2 Design Criteria

In this section we will discuss a number of criteria

which might be used to Judge the merit of a set of

multi-path primitives and their formal model. In chapter 5,

we will evaluate the MPEL1 primitives and model in terms of

these criteria.

The first criterion is 'cost.' There are a number of

measures which apply. First, the amount of 'code' needed to

implement the primitives should be small. Hopefully, the

primitives will use facilities which already exist in the

language whenever possible. Second, the primitives should

be reasonably efficient. If they are too slow, they will

merely be curiosities to be played with instead of tools to

be used to solve real problems. Lastly, and most

importantly, the overheads associated with the multi-path

facility should not be distributed throughout the language

evaluatorj a program which does not use the primitives

should not pay for their existence in the language.

The next criterion is the generality of the universe in

which the primitives are defined. Here, we refer to the

number of processors which are available for the

simultaneous evaluation of paths. Any set of primitives

which are defined in a multi-processor environment will

surely be acceptable if the number of processors is

restricted to one. The converse, however, is not

1-8

necessarily true. Primitives which are feasible in a

uni-processor environment may prove to be quite expensive in

the more general environment. Secondly, problems which are

non-issues with a single processor become significant in

light of multi-processing. For example, with a single

processor only one primitive can be executing at any given

time. Hence, the primitives do not require any explicit

synchronization. With multi-processing, two primitives may

execute simultaneously and therefore may require

synchroni2ation. Thus, a multi-processing environment

exposes issues which do not arise in the restricted single

processor case.

Turning to the formal model, the most important

criterion is that the model should explain the primitives.

Presumably, the language level control primitives are

designed to facilitate the synthesis of multi-path control

structures. They are cast at a high enough level to

suppress the constant and display the variable. Hence, they

are probably sufficiently complex that their feasibility or

implementation is not immediately obvious. The formal

definition should explicate how the language primitives may

be constructed from some smaller set of primitives which are

intuitively acceptable, i.e. they can be implemented on

existing hardware.

We close this section by posing the question "Why

I-S

bother?', i.e. are multiple paths of control really

necessary in programming languages? Formally, of course, the

answer is no - multiple paths of control do not add any

computational power. In this sense, data definition

facilities are just as useless. In both cases, however,

their value lies in the representational power provided.

Data type extension facilities allow one to define the data

structures which are appropriate for a given problem. The

resulting algorithm is usually cleaner and more concise than

one in which the data is represented in some indirect

fashion using some fixed set of data types. Similarly,

algorithms which call for a multi-path structure suffer

Teatly when they are compressed into a single path of

control. In some sense, the situation is worse for control

than for data. To illustrate, it is usually possible to use

one data structure to represent another with a major loss of

notational convenience but a tolerable loss of speed. For

examplei arrays of integers can be used to represent lists.

However, in order to simulate a multi-path control structure

with a single control path one may have to construct an

interpreter. In this case, the result will certainly be

intolerably slow!

1-10

1.3 Overview

In this section we present an outline of the multi-path

facility. In all cases, the topics are covered in more

detail in the chapters that follow. This section is

included in the hope that an initial pass through the

facility will aid the reader in his understanding of the

components as they are presented linearly in the sequel.

The first topic to be considered is the underlying

machine model. Since the language is to be machine

independent, no specific machine organization is assumed.

However, a number of features that can be found in most

contemporary hardware systems are presumed. It is assumed

that there exist a fixed number of processors available for

the simultaneous evaluation of paths. Each one may evaluate

only one path of control at a time. A processor must always

be kept busy. Thus, an idling path is defined for each one

- the path it evaluates in the absence of any "real* paths.

Associated with each processor are a set of external

interrupts, e.g. timer interrupt, light-pen interrupt, or

processor to processor interrupt, and a priority interrupt

system. Processor communication and synchronization is

achieved through the interrupt system and through the use of

an interlock instruction which relies upon the arbiting

property of memory (TEST-AIYD-SET).

1-11

A path records the dynamic evaluation of an EL1

program. Associated with each path is an environment which

contains the name—value bindings created by the dynamic

execution of the program and an activation record (an EL1

structure) which contains a handle on the path's environment

and information that describes the status of the path.

Activation records also provide a linguistic means of

talking about paths in the language, e.g. most control

primitives take as argument a pointer to the activation

record of the path to which the primitive is to be applied.

Control primitives are defined which allow for path creation

and deletion, modification of a path's environment,

initialization of a program to be evaluated in the path,

interruption of one path by another, transfer of control

between paths, etc.

A path is active if a processor is currently evaluating

a program in the path's environment. Since the evaluation

of a program in a path is isoaorphic to the data structure

modifications made in the path hy the processor, we may

speak of the path itself as being evaluated by the

processor. If a path (P) is being evaluated by a processor

(Q), then we say that Q is assigned to P. A path is not

active if a processor is not currently assigned to it. A

path is being modified if it is active or if a control

primitive that affects its environment is being applied to

it.

1-12

A path may only be modified by one processor at any

given time. If a path is active, then the path is being

modified by the processor which is evaluating it. If an

environment modifying control primitive is being applied to

a path, then it is being modified by the processor of the

path which has executed the primitive. A processor

TEST—AND-SETs a memory location in the activation record of

the path to be modified. If two processors simultaneously

attempt to modify a path, then a runtime error results.

Thus, the TEST-AMD-SET instruction is used only to insure

that two (or more) processors do not modify a path

simultaneously, i.e. to protect the system against fatal

language-level program bugs.

The framework in which the primitives are cast

completes the built-in multi-path facility. Essentially,

the framework consists of the existence of a distinguished

path, the control interpreter (CI), which is treated

specially by the control primitives. It is the only path to

which other paths may pass control. This is achieved by

means of the control primitive CIA which transfers control

to the CI, specifying a function to be applied in its

environment. The CI path, in conjunction with the control

primitives and the interrupt facility, provides the handle

If a processor TEST-AND-SETs the word and finds it
'unlocked', then it simply continues the evaluation. If,
however, the processor finds the word 'locked , then it
generates the runtime error.

1-13

necessary for the synthesis of multi-path control

structures. Two properties of the control interpreter path

facilitate such constructions. First, the execution of any

function (passed via CIA) in its environment is indivisible

with respect to CIA calls of the same function by other

paths, i.e. if two paths simultaneously CIA some procedure,

say f, then the execution of one CIA call of f will run to

completion before the other is allowed to begin. The two

executions of f are ordered linearly in time. Second,

control transfers between paths must go through the control

interpreter. Thus, it acts as a control switchyard. The

consolidation of indivisibility and path-switching in the

control interpreter simplifies the synthesis of control

structures without any loss of descriptive power. For

example, the control interpreter can be used to realize any

sort of synchronization operation or path scheduling regime

by extension.

It is important to distinguish the control primitives

and the CI path from the program being evaluated in the

control interpreter's environment. This program, written in

EL1, uses the fact that it is executed in the CI path in

conjunction with certain control primitives and the

interrupt system to provide an initial extension to the

built-in facility. In particular, the program evaluates CIA

called procedures and provides a simple path scheduler which

allows for the synthesis of concurrent processes. Since

1-14

this program is written in EL1, it is easily understood and

is available for modification or redefinition by the user.

The CI framework, in conjunction with the control

primitives, allows for the construction of conventional

multi-path organizations such as coroutines and concurrent

processes. In addition, MPEL1 can host non-conventional

control regimes such as monitoring and relatively continuous

evaluation. Chapter 3 gives examples which demonstrate how

these control structures, among others, may be realized as

straightforward extensions in MPEL1.

To summarize, MPEL1 provides an extensible multi-path

facility. The extensible nature of MPEL1 is best viewed in

terms of three concentric levels:

(1) The control primitives and the existence of

the CI are built-in and constitute the basis

for the multi-path facility.

(2) The MPEL1 program which is evaluated in the

CI environment executes CIA called procedures

and performs path scheduling.

(3) MPEL1 programs utilize the control primitives

and communicate with the CI in order to

produce a given control regime.

We conclude this section with a brief comment about the

formal model. In the previous section, we indicated that it

is desirable to have the formal model explain the control

1-15

primitives. The meta-language used to describe MPEL1 is EL1

with the inclusion of only four control primitives (TSET,

CLEAR, EVAL, GOTO.) Thus, the semantics of the primitives

are specified in terms of EL1 and a small set of control

primitives. Since the primitives used in the meta-language

have a straightforward realization on existing hardware, the

model is pragmatically valid at the base level, c.f. 5.3.2.

1-16

2. SURVEY OF PREVIOUS WORK

This dissertation builds on previous work in a number

of programming language research areas, namely, introduction

of multi-path facilities, extensible languages and formal

semantic specification. In addition, our research also

touches upon work done in operating systems and abstract

models of parallel systems. A complete survey of all of

these areas would surely be beyond the scope of this paper.

Hence, we will restrict our discussion to those papers which

are directly relevant to the current work. Comprehensive

bibliographies may be found in [ACM70][Ste66][Chris69].

2.1 Linfxiistic Work

Most proposals for language additions which allow for

the creation of multiple paths of control have been attempts

to permit user specification of program segments that may be

executed concurrently. Some sort of synchronization

facility is usually provided to allow the parallel segments

to coordinate their activities.

Anderson [An65] proposes additions to ALGOL-60 to

provide for parallel processing. He introduces five

statement types: fork, .-join, release and terminate. The

fork statement specifies a list of labels to which control

is to be passed in parallel. The last logical statement in

1-17

the body of code following each label is to be either a goto

X, where X is the label of a .join statement or a terminate

statement, which indicates that this path has no successor.

The .loin statement specifies the labels of the parallel

paths that must complete before control can pass through the

join. Obtain and release are used to provide

synchronization. The obtain statement prevents other paths

from accessing the values of the variables in the obtain "'s

variable list. Release is the logical counterpart of

obtain, i.e. it allows access to variables previously

obtained.

Opler [Op65] suggests the addition of a DO TOGETHER

statement to FORTRAN. The statement specifies a set of

DO-loops which may be evaluated concurrently. When all

Taths have completed, processing continues with the

statement following the DO TOGETHER.

Variations on the above have been proposed by

Conway [Co63]f Wirth [Wi66], who suggests the use of the

operator and to indicate a lack of commitment in the

sequencing of program segments, and Gosden [G066], who

recommends the use of and for paths that rejoin and also for

ones that do not.

Dijkstra [Di68a] proposes the introduction of a

parallel compound statement (parbegin parend) into

1-18

ALGOL-60, where the statements of the block are to be

evaluated concurrently. Evaluation of the block is

completed when all statement evaluations have completed.

Synchronization is achieved through the use of semaphores

and their associated operations, P and V.

PL/I [Be70] allows procedures to be called as separate

asynchronous tasks. The task structure, however, is

strictly hierarchical - a created task is always dependent

upon the block of the parent task that created it. If

control returns from a creator block, then all tasks created

by that block are forcibly terminated. Synchronization is

achieved through the use of EVENT variables; one WAITS for

an event to occur. The occurrence of an event is signaled

by COMPLETION, or by the I/O subsystem - in the case of

event variables associated with I/O activities. PL/I also

provides an interrupt handling facility. The programmer may

associate a program (called an 'on-unit') with a 'condition'

which may be built-in (e.g. SUBSCRIPTRANGE) or

user-defined. The on-unit is evaluated if the condition

obtains during the evaluation of the program. User-defined

conditions must be raised explicitly by means of a SIGNAL

statement.

Most of the multi-path facilities described above have

See section 3.2 for a complete description of
semaphores.

1-19

not been fully incorporated into their host languages.

Hence, the semantic relation between the control primitives

and the rest of the language is occasionally quite fuzzy.

For example, in Anderson's proposal the effect of non-local

gotos out of parallel segments is not explained. We note,

however, that these proposals are suggestions of desirable

language features and do not purport to be complete language

designs.

Next to parallel processing, coroutines have been the

form of multi-path control most frequently discussed in the

literature [Co63a],[Mdl],[Kn68]. Coroutines are useful

whenever the solution to a problem cannot be easily cast

into a single hierarchical structure. They have been

characterized in many ways - from mutual subroutines that

may call upon each other to procedures that use their own

storage to retain information about their internal state

between calls.

Neither of the above viewpoints is fruitful, since they

both attempt to explain coroutines in terms of hierarchical

control. For example, the use of own storage allows a

procedure to construct its own separate mini-hierarchy so

that upon subsequent calls it can resume execution from

where it left off. A more reasonable view of coroutines is

in terms of multiple-paths of control in which each path

maintains its own control hierarchy. When one path wishes

1-20

to 'resume' a coroutine path, it simply transfers control to

the path. Since the hierarchies are separate, the state of

the original path remains intact.

Discrete simulation languages, such as SIMULA [Da66],

use a multi-path coroutine structure to effect clock-driven

simulations. Processes are maintained on a queue, termed

the sequencing set (SQS), in the order in which they are to

be evaluated in 'system time'. A number of processes may be

set to be evaluated at the same 'system time', i.e.

concurrently with respect to the system being simulated.

However, these processes are evaluated in an interleaved

manner as coroutines, not as parallel processes. Control

resides in one process until it either terminates,

reschedules itself for later evaluation, or passes control

to another process. This mode of operation is called

'quasi-parallelism.' To achieve the effect of concurrent

processing, the programmer must explicitly deal with the

scheduling of processes.

SIMULA provides a large number of scheduling operations

to facilitate management of the SQS; primitives exist which

allow processes to be removed from the SQS, added to the SQS

before or after some particular process, or added before all

processes to be evaluated at a specified time. More

recently, SIMULA67 [Da7C] has recognized the essential

coroutine structure of SIMULA and allows these scheduling

1-21

operations to be realized as extensions using the two

operations DETACH (which passes control out of a coroutine

process) and RESUME (which passes control to a coroutine

process) and the ability to define a SQS in the language

(via a data definition facility.) These operations also

allow other multi-path control structures to be synthesized

(in a uni-processor environment.)

In lieu of a survey of extensible languages, which

would unnecessarily lengthen this section, we will limit

ourselves to discussion of the multi-path control facilities

of a number of extensible languages. For general surveys of

extensible languages see [Chris69][Ger69][Sch71].

AliCOI. 68 [vanW69] allows for 'collateral elaboration'

where the sequence in which a set of expressions are

evaluated is left indeterminate, e.g. they may be evaluated

either simultaneously, sequentially in any order, or in an

interleaved fashion. ALGOL 68 also allows parallel clauses

in the spirit of Dijkstra's parallel compound statement,

where

parbegin s1; s2; s3 parend

becomes

par(s1, s2, s3).

The constituent statements of a parallel clause are

elaborated collaterally. The programmer may use semaphores

(objects of mode sema) to synchronize the operation of the

1-22

statements. Here, the P and V operations appear as down and

up, respectively. The monadic operator '/' is used to

initialize a semaphore, i.e. / takes an int argument and

returns a new sema whose integer count is initialized to the

value of the int.

Standish [St68][St69] has proposed a number of control

features for PPL, including mechanisms for parallel

processing, interrupts, continuously evaluating expressions

(a construct that allows the free variables in an expression

to be monitored so that if the value of any one of them

changes, the expression is immediately reevaluated,) and

control contracts which allow the user to manipulate the

control interfaces between processes.

More recently, Poupon [Po71] has implemented a number

of these features in an experimental version of a current

implementation of PPL [Ta71]. A PPL process is a data

structure which represents the dynamic incarnation of a

procedure call. The components of a process include the

formal parameters and locals of the procedure, a STATUS

component (which may take on the values ACT (active),

SUS (suspended), or TED (terminated) and a RESULT component

which is used to reference the 'result* of the process. The

values of these components may be selected and modified by

other processes, e.g. if P references a process then

P[STATUS] <- SUS

1-23

suspends the process P. All active PPL processes are

evaluated concurrently.

PPL also contains the following two control operations.

First, it is possible to specify that a PPL process is to be

evaluated relatively continuous [Fi70] to all other

processes. The evaluations of all other processes are

delayed until the process terminates or indicates that it

has completed the desired (relatively continuous)

processing. Second, PPL provides a type of continuously

evaluating expression in the WAITUNTIL statement, e.g.

WAITUNTIL(A + B = 3)

When a WAITUNTIL is encountered, the expression is

evaluated. If the value is TRUE, then the process

continues. Otherwise, the process is suspended with control

positioned at the WAITUNTIL statement. It is made active

whenever the value of any variable in the expression is

changed. Hence, the process will continue as soon as the

expression becomes TRUE.

OREGANO [Be71] allows for the construction of

coroutines and parallel tasks (perhaps with assciated

priorities.) Synchronization is achieved through the use of

event variables and the operations wait (wait for event to

occur), cause (cause the event), and reset (re-initialize

the event variable). Tasks, coroutines, and procedure calls

are treated in a homogeneous fashion, namely, the invocation

1-24

of each involves the allocation of a contour which contains

local variables, environmental information and an

instruction pointer. Contours are managed using a retention

strategy, i.e. a contour remains in the system as long as

it is reachable from some 'active* contour. Contours which

are no longer reachable are returned to the free storage

pool by an automatic reclamation technique such as garbage

collection. The retention strategy allows for a more

flexible tasking structure than some of the languages

described above, say FL/I, since the environment required by

a created task will remain as long as necessary, independent

of.the actions of the creator task.

2.2 Formal Specifications

We now turn to a discussion of work done in the area of

formal semantic models of programming languages. The

approaches taken to this problem have been quite diverse,

ranging from compiler-based specifications [Car66] to string

processor models [vanW66]. Unfortunately, most of these

models are oriented towards describing languages which admit

only a single path of control. This is not surprising,

however, since most languages have a single-path control

structure - the notable exceptions being the ones described

earlier in this section. For our purposes, it will suffice

to review only those papers which are reasonably relevant to

1-25

this paper. For more complete surveys of the field see

[Ste66][Wegn69].

Landin [Lan65][Lan65] has investigated the use of the

laiabda-calculus as a basis for the formal description of

programming languages. He demonstrates how various language

constructs can be cast as lambda-expressions and gives a

mechanical procedure for the evaluation of

lambda-expressions in terms of an interpreter for an

automaton - the SECD machine. The applicative aspects of

programming languages (recursion, parameter bindings, scope

rules) are handled reasonably in this approach. However,

the more imperative aspects of languages (assignment,

transfers of control) must be modelled either by twisting

them into applications or by introducing imperative features

into the lambda-calculus.

McCarthy [McCar66] proposes a language definition

method which uses a state vector to hold the current values

of all variables accessible to a program. The result of

evaluating a program P in language L with respect to an

initial state vector Vo, is defined to be the final state

I vector V which is obtained by using a semantic function F/L

associated with language L to sequence through P and produce

state vectors V1,...,Vn=V' which record the successive

values of the variables used in P. Hence, F/L acts as an

interpreter for programs written in L.

1-26

ULD, the method and meta-language for language

definition developed at the IBM Vienna Laboratories

[Luc68a][Iuc68b], must be considered the most ambitious

effort in the field. The original work was undertaken to

provide a formalism for the formal definition of PL/I. More

recently, ULD has been successfully used to describe the

semantics of other languages [Ger70][Rey69].

Basically, one describes the semantics of a language L

by describing a basic abstract machine which is composed of

a set of machine states and a (possibly non-deterministic)

state transition function /\. Corresponding to any program

P in L there exists an initial machine state So. A

computation is a sequence of states So ,..., Sn, such that

Si+1 £. /\(Si). A machine state is represented as a

structured object, i.e. as a finite tree with named

components. All of this is cast in a meta-language which is

a conglomeration of conditional expressions, functional

composition, the propositional calculus, and two operators

(a selector and constructor) used to manipulate the

structured objects.

McCarthy's formalism and ULD utilize two significant

techniques. Pirst, programs are represented abstractly as

data structures which display the essential semantic

structure of the program, while suppressing human-oriented

syntactic sugaring. McCarthy defines the term abstract

1-27

syntax to describe this representation . Second, the

formalisms are interpreter-based, i.e. the semantics of a

language are described by an interpreter (written in the

meta-language} which evaluates abstract representations of

programs in the semantic environment provided by the model.

Hence, one language is defined by describing its semantic

interpreter as a program in another.

A number of criticisms may be leveled at the two

formalisms. Pirst, the semantic environments in which the

meta-lanruages are cast are unnecessarily restrictive.

Here, we refer to the data structures of the meta-language

which are used to record the state of the computation.

McCarthy can use a simple fixed-length vector since the

number of variables in any program in the language he is

defining (a restricted subset of ALGOL-60) is constant and

control can be described by a single statement number. In

UT.D, although the tree structures provides a more flexible

environment than a single state vector, restrictions on

sharing of components force circumlocutions in the

representation of common program language constructs.

Second, although it contains standard language constructs,

the ULD meta-language uses an obscure notation in which

familiar concepts are recast in unfamiliar settings. Hence,

Note that a complete language definition must include
a specification of the concrete ([written) representation of
the language and a description of the mapping from concrete
to abstract form.

1-28

learning ULD is as difficult an intellectual effort as

understanding some of the languages it is used to describe.

Wegbreit [Weg70] resolves these issues, to some extent,

in his formal definition of EL1. The language is defined by

presenting a set of EL1 programs which constitute an EL1

evaluator. Hence, EL1 serves as its own meta-language. The

data definition facility provides a sufficiently rich set of

data structures so that the abstract syntax representation

of programs and the semantic environment necessary for the

evaluation of EL1 programs can be represented both directly

and clearly. Because the direct representation of semantic

structures and the fact that EL1 is a fluent notation for

expressing algorithms, the formal definition is extremely

readatle. Complete understanding of the language is

achieved by an iterative process, in which one's

understanding of the formal definition reinforces one's

understanding of the language, and conversely.

EL1 raises two related issues concerning formal

definitions. The first of these is linguistic circularity.

As Wegbreit notes, some such circularity is inescapable. To

define a language L, one uses a meta-language L'. But how

is L' defined?. Either L=L'(as in the definition of EL1),

L' is self evident and requires no formal definition, or L'

is defined by yet another language I". The last of these

choices yields a potentially infinite regress, unless the

1-29

chain is terminated by introducing a circularity or using a

meta-language whose definition is obvious, e.g. a Turing

machine representation. While simple meta-languages are

logically attractive, they are inappropriate frameworks in

which to cast language definitions. Either one becomes lost

in the details associated with the simplistic language or

one builds layers of definition on top of the language, in

which case each layer must be examined for correctness. In

addition, the evaluation process as represented in the

simple language may misrepresent the essential qualities of

the language mechanisms. This leads us to our second issue

- implementation independence. Here, we do not refer to

machine independence (i.e. non—reliance upon a specific

machine organization) but rather to whether or not the

rorraal definition should encompass a preferred data

structure organization to be used in an implementation of

the language. Tor example, ULD defines PL/I without

indicating any possible implementation, whereas, the EL1

formal definition is cast in terms of a specific set of data

structures to be used by the evaluator. We will return to

this issue again in section 5-3.2.

One additional property of the ELI formal definition

must be discussed. The property may also be found in

McCarthy's formalism and in classic definitions of

LISP [McCar60]. Although in all of these formalisms the

name-value environment in which a program is evaluated is

1-30

described explicitly (Wegbreit's name-pdl, McCarthy's

state-vector, and LISP's A-list,) the control structure of

the program is implicitly recorded in the recursive

procedures of the semantic interpreter. This presents no

problem in the formalisms described above since the

languages defined allow for only a single path of control.

However, if a language admits multiple paths of control,

where each path can affect the intra-path control structure

of another, then the program's control structure must be

removed from the interpreter and included as part of the

semantic environment so that the effects of these actions

may be clearly explicated.

One formalism that attempts to include control

structure as part of the semantic environment is Johnston's

contour model [Jo71]. The model has been used in the design

and specification of ORBGANO [Be71]. The model consists of

two components: a fixed reentrant algorithm and a

time-variant record of execution. The latter is realized by

nested contours which may be used to represent procedure or

block activations. A processor is defined as an (ep,ip)

pair, where ip is a pointer to an 'instruction' and ep is a

pointer to a contour, which in turn defines the environment

(by its relation to other contours) in which the instruction

is to be executed. Many such processors can be defined and

represent loci of control within the program. A fundamental

axiom of the model is that contours are managed using a

1-31

retention strategy, c.f. 1.2.1. Languages defined using

the model tend to exploit this axiom to the hilt as opposed

to exploring other implementation strategies (e.g. stacks)

which may be more efficient in certain cases.

2.3 Operating Systems

Computer operating systems have made use of the concept

of multiple paths of control as a means of achieving a more

efficient utilization of hardware and as a design

methodology. In the former case, it has been observed that

user programs (processes) do not require the use of a

processor at various times during their execution, e.g.

while waiting for I/O. Hence, it is profitable for the

system to maintain more processes than processors and

multiplex the processors across the processes as required.

In the latter case, it has been found useful to describe an

operating system as a society of cooperating sequential

processes, associating one process with each user program

and one process with each peripheral device [Di68b].

Saltzer [Sa66] defines the Traffic Controller as the

program responsible for the orderly switching of processors

between processes. A set of primitives are defined which

allow a process to specify to the controller that (a) it has

no further use for its processor, (b) it should be given a

1-32

processor again at some later time, (c) the further

execution of some other process is to be stopped, and (d)

some process can now make use of a processor. This model

was incorporated into the MULTICs system [Cor65].

Rappaport [Ra68] discusses his experience with two

implementations of the MULTICs Traffic Controller. In the

first version many processes are allowed to execute inside

the Traffic Controller simultaneously to prevent the

Controller from becoming a system bottleneck. This requires

numerous interlocks to insure that the processes do not

interfere with one another. In the second version, only one

process is allowed to execute inside the controller at any

."iven time. Thus, only a single global interlock is

required. Rappaport notes that both the size of the

controller and the time required to execute the primitives

were reduced significantly in the second version.

Madnick [Ma68] shows that the use of a single global

interlock will not cause a bottleneck unless the number of

processors in the system is large, e.g. more than 5.

Wirth [Wi69] advocates the removal of input-output

interrupts from machine language programming and suggests

that they be replaced by a set of instructions which allow

for the creation, termination, and synchronization (using

semaphores) of parallel processes. In addition, a generic

I/O instruction (DOIO) is proposed which performs a

specified I/O activity to completion. The programmer can

1-33

conceptualize his program in terms of processes in which

concurrent I/O is realized by starting a process to perform

the I/O and then waiting (via a P operation) until the I/O

is complete as opposed to fielding I/O interrupts at

arbitrary points in his program. V/irth gives an

implementation of the instructions as subroutines which are

invoked by supervisor calls on an IBM 360.

2.4 Other Work

Eefore we conclude this survey, we must discuss three

recent works in the area of control structures which do not

fit conveniently into any of the research areas described

above.

Ieavenworth [Lea69] describes a language in which a

programmer can define his own control structures since he

can access the state of the language interpreter. The

language, McC360 [Bur68] is similar to ISWIM [Lan66] and the

interpreter resembles the SECD machine interpreter. It is

possible to save entire machine states, construct new

states, modify saved states, and install some saved state as

the current machine state. For example, to simulate

non-deterministic control using the primitives proposed by

Floyd [F167] one saves one copy of the machine state for

each value of the choice function, i.e. at each point at

1-34

which a non-deterministic choice must be made the machine

state is replicated as many times as necessary. When a

choice leads to failure, a saved state (which corresponds to

a choice point) is installed as the current state.

Coroutines can be obtained by defining a resume function

which saves the current machine state for later resumption

and restores some saved state. Unfortunately, most of the

interesting control structures are obtained using the

concept of 'saving entire machine state', which does not

lend itself to an efficient implementation. In addition,

concurrent operation is achieved by the multiplexing of a

single processor (the interpreter) across machine states.

fisher [Fi70] describes a set of control primitives

which 'span our conceptual notion of control ... and can be

easily composed to form more specialized control

structures.' Six primitives, which are embedded in a

programming language (CDL), are defined: seq which specifies

that a set of statements are to be evaluated sequentially,

par which specifies that a set of expressions are to be

evaluated independently, cond which is similar to the LISP

conditional [McCar60], monitor which allows an expression to

be evaluated as soon as a condition becomes TRUE, synch

which allows for the indivisible evaluation of an expression

and cont which allows the evaluation of an expression to be

relatively continuous with respect to the evaluation of

1-35

*

other control paths. Fisher's return operation, which

returns control from one process to another, may be

considered a seventh primitive.

Fisher (rives three definitions of the primitives: (a)

in English, (b) a CD1 interpreter written in CDL, (c) a CDL

interpreter which uses only seq and cond. The first of

these is useful as an informal description but, of course,

is not precise. In the second, the more interesting

primitives (rronitor, synch, and cont) are defined by direct

circularity (e.g. if a CDL program performs a cont, then

the interpreter performs a cont.) Such circularity is

acceptable (and unavoidable) in the formal definition of

some language primitives. For example, in a definition of

LISP, CAR, CDR and CONS are defined using CAR, CDR, and CONS

directly. Here, the direct circularity is acceptable since

the operations are intuitively clear and involve simple

manipulations of well defined data structures. Fisher's

primitives, however, involve complex actions performed upon

less well defined structures, e.g. no clear definition of

the term 'process' is given. Hence, their definition by

direct circularity is suspect since it provides little

insight into the mechanisms involved. In the last

definition, pseudo—parallel processing is achieved by

managing the processes on a queue and evaluating them (one

Conts may be nested. Hence, many levels of relative
continuity may be invoked.

1-36

at a time) according to their level of relative continuity.

Thomas [Tho71] addresses the question 'How can

processes be represented in order to facilitate synthesis of

complex behavior patterns.* His answer is cast in terms of a

state-oriented model in the spirit of Landin and

Leavenworth. Here, each process has its own processor. A

processor uses a state transition rule to change the state

of its process. A state is a collection of many state

components, which include the program being executed (prog),

the program counter (JDC), the name-value bindings for the

process (prog-id), a set of programs to be evaluated as

responses to interrupts (hjo), and a dump which is used to

save the most important components of the state when an

interrupt occurs. Thomas's work is an improvement upon

previous state—oriented models of control since he includes

enough structure in the state to describe adequately both

the internal aspects of processes and the interface

operations between interacting processes. The

multi-processor orientation of the model conveys the concept

of concurrently evolving processes in a fashion superior to

models in which the parallelism is simulated using a single

processor.

Chapter 2

INFORMAL DESCRIPTION OF MPEL1

In this chapter, we present an informal discussion of

the control primitives and framework which constitute the

multi-path control facility of MPEL1. We assume that the

reader is familiar with EL1, as described in [Weg70] or

[Weg72]. If not, the reader is encouraged to read Appendix

1, a brief introduction to EL1, at this point.

The control primitives appear in the language at the

syntactic and semantic level of procedure calls. Formally,

they are defined as objects of mode CSUBR

(control-subroutine.) For each primitive, we give a

pseudo-procedure heading which specifies the name, mode and

bind-class of each argument and the mode of the value

returned by the CSUBR. We then give an English description

of its semantics. Here, we are primarily concerned with

providing motivation and understanding, without attempting

to be formally precise or complete. For each primitive, a

precise specification of its semantics is given in the

formal definition of Chapter 4.

Section 1 motivates the concept of paths of control.

Section 2 discusses paths and their associated operations in

detail. In sections 3 and 4 the framework provided by the

control interpreter and its role in path synchronization and

2-2

scheduling is discussed. External interrupts are introduced

in section 5- Section 6 is an index of the terms used in

the chapter.

As the control primitives interact rather heavily with

one another in the synthesis of multi-path control

structures, it is difficult to exhibit complete illustrative

examples until all the primitives have been presented.

Thus, we postpone the latter until Chapter 3« We also defer

justification of the multi-path facility and comparison with

other proposals until Chapter 5.

2-3

1. PROCESSORS

Before we turn to the informal description of MPEL1, we

must first discuss the concept of 'processor.' In

particular, we will discuss the distinctions between

program, process and processor; the multiplexing of

processors; and the relationship between processor

assignment and the synthesis of new control behavior.

1.1 Interpreter as Processor

In this section, we will first consider the three

components of a computation as performed by a sequential

computing device, namely, program, process and processor.

We will then discuss the concept that an interpreter for a

programming language may be considered an abstract processor

for programs written in the language.

A program is the definition of a computation, i.e. it

specifies a sequence of actions which may be performed to

obtain a desired result. A process is the performance of

the computation specified by a program. Information is

usually associated with a process to specify the set of

accessible memory locations and to indicate the action which

is currently being performed. A processor is an agent who

performs the actions which constitute the process as

specified by the program. In particular, the processor

updates the information associated with the process. To

2-4

illustrate, consider a program written in the machine code

of a digital computer. The computation to be performed is

specified by a sequence of instructions. The execution of

the program constitutes a process in which information is

maintained as to which instruction is currently being

executed (program-counter) and the range of memory which may

be addressed by the process. The processor is the

central-processing-unit (CPU) of the computer. The CPU

performs the actions specified by each instruction as stored

sequentially in memory. After each instruction, the

program-counter for the process specifies the next

instruction to be executed by the processor. Hence,

instructions which modify the program-counter can cause a

change in the sequence of instructions executed.

In section 1.2.2, we discussed various interpreter

based models which have been used to specify the semantics

of programming languages. These interpreters may be viewed

as processors for programs written in the language being

modeled. To illustrate, the interpreter performs the

actions specified by the program in the semantic space

provided by the model. The evaluation of the program by the

interpreter constitutes a process in which the interpreter

must maintain records which specify the variables (memory

locations) accessible to the program. In addition, upon

completion of some action for the program, the interpreter

must be able to know which action is to be performed next.

2-5

Let us consider the way in which the records described

above are maintained in the interpreter model for EL1

described in [Weg70]. The interpreter uses a ROW

(name-stack) to record the names of variables which are

being used by the program. Each entry in the ROW contains

the name of the variable and a pointer to its value, which

may be on a STACK or in the heap. The information as to

which action is to be performed next, however, is implicitly

recorded in the control structure of the interpreter itself.

For example, to evaluate the statements of a block, the

interpreter uses a FOR loop which executes each statement in

turn. The use of the environment of the interpreter to

store information about the process being evaluated presents

no difficulty if the interpreter is to be used to evaluate

only one process. However, if we wish to consider an

interpreter as a processor, and we desire that this

interpreter be able to switch its attention from process to

process, then the interpreter cannot implicitly record the

control flow of any one process in its own control

structure.

We postpone further discussion of the above constraint

upon interpreter based models until chapter 5. In the

sections which follow, we will use the terms evaluator and

processor interchangeably to describe an EL1 interpreter

which explicitly records the control structure of the

program it is evaluating.

2-6

1.2 Multiplexing of Interpreters

In the last section, we discussed how an interpreter

may be considered to be a processor independent of the

process it is evaluating. Here, we relate this concept to

the evaluation of multiple asynchronous processes.

We will assume that there exist some finite number of

evaluators which are available for the simultaneous

evaluation of sequential processes. However, we will not

put a bound on the number of processes which may be

considered to be evaluating concurrently, i.e. there exists

no limit on the number of processes which may be logically

evaluated in parallel, even though only some subset of the

processes are actually being evaluated at the same time.

Hence, the evaluators must be multiplexed across the

processes; each one of the concurrent processes must be run

on a processor at some time.

The obvious implication of evaluator multiplexing is

that an evaluator must be able to switch its attention from

process to process, i.e. an evaluator must be able to stop

evaluating one process and start evaluating another. Hence,

an evaluator must not retain information implicitly about

the process it is evaluating.

To insure that each of the concurrent processes will be

evaluated at some time, there must exist a mechanism which

2-7

will force an evaluator to switch its attention from one

process to another. To achieve this, we will assume that

each processor has some number of external interrupts

associated with it. An external interrupt may be described

as a signal sent from some external processor to an

evaluator to indicate that some event has occurred. jfor

example, a timer interrupt may be described as a signal from

a processor which is dedicated to marking elapsed time. It

is important to note that interrupts are associated with

processors, not processes. An external interrupt signals an

evaluator independent of the process which is being

evaluated. Kence, if some process is interested in the fact

that some external interrupt has occurred, then there must

exist some mechanism which allows this fact to be dispatched

to the interested process.

We could, of course, avoid the problems involved with

the multiplexing of evaluators by simply assuming that each

process has its own evaluator. Whenever a new concurrent

process is created, a new evaluator can be created to effect

its evaluation. The dynamic creation of processors,

however, implies that either an additional processor is

added or that the existing ones are actually realized by the

multiplexing of some fixed number of processors at a lower

level. The former is difficult to achieve since it requires

the dynamic addition of new hardware. We reject, the latter

on two counts. First, it only serves to suppress the issues

2-8

of multiplexing. Second, we hope that our evaluators

directly model a set of physical processors capable of

simultaneous processing. If the evaluators are themselves

concurrent processes which are multiplexed over some smaller

set, then the model is incorrect. N evaluators will not

represent N processors capable of simultaneous activity.

It is our thesis that the control relationships between

processes can best be explicated in a language in which the

user can obtain a handle on the assignment of processors to

processes. This requires that the multiplexing of

evaluators be made explicit in the language. In MPEL1, the

multiplexing is achieved through the use of a distinguished

process which is discussed in the next section and is

described in detail in section 2.3.

1.3 Paths of Control

Concurrent execution is not the only control

relationship which may obtain among processes. For example,

a set of processes may exhibit a coroutine relationship,

which requires that only one process from the set be

evaluated at any given time. A coroutine process will only

be evaluated when control is explicitly passed to it from

the active process. Processes may also exhibit a subroutine

relationship. In this case, one process creates a second

one and passes control to it while indicating that the

2-9

calling process should cease evaluation. When the called

process has completed, the calling process resumes

execution.

It is important to note that the control relationships

described above are not properties of the processes

involved. Whether tvo processes act as coroutines,

asynchronous processes or subroutines depends entirely upon

the control organization which they have mutually decided

upon. The control relationships may be intermixed: two

processes may first act as coroutines and then later as

asynchronous tasks. Hence, we will drop the semantically

loaded word 'process' in favor of the term 'path.' A path of

control corresponds to the dynamic evaluation of a

sequential EL1 program. Paths are not inherently

asynchronous processes or coroutines, although paths may

exhibit these relationships, among others.

Explicit control over processor multiplexing plays a

vital role in the creation of control relationships among

paths. Jor example, two paths may be made into asynchronous

tasks by including them in the set over which the evaluators

are being multiplexed. A path may be forced to cease

evaluation by removing it from the set (assuming that it is

not currently being evaluated.) A coroutine relationship may

be established by insuring that only one of the coroutines

is in the set at any time. The point is that a control

2-10

relationship between paths is essentially a specification of

the way in which processors are to be assigned to the paths

involved. If a language does not allow for explicit

assignment, then it must be achieved by some circumlocution.

MPEL1 provides a framework in which the assignment of

processors to paths can be explicitly controlled by the

programmer. This is achieved through the use of the control

interpreter path (Cl). The CI gives interpretation to the

control relationship which is to obtain among a set of

paths. It contains data structures that indicate which

paths are currently being evaluated and which paths are

eligible for concurrent evaluation. Other paths may access

these data structures, and thus affect the assignment of

processors to paths. Consequently, the control interpreter

path, in conjunction with its associated control primitives,

provides the handle on processor multiplexing which is

necessary for the synthesis of arbitrary behavior patterns

among paths.

2-11

2. PATHS

In the last section, we described a path of control as

the dynamic evaluation of a sequential EL1 program. Here,

we will give a more precise definition of the term 'path.'

In addition, we will introduce the control primitives which

are applicable to paths.

Whenever a language admits multiple paths of control, a

number of related issues, such as data sharing and

synchronization, must be discussed. Hence, a number of the

subsections below are devoted to these path related issues.

2.1 Informal Description of a Path

The evaluation of an EL1 program is a sequential

process in which the flow of control can be modified by

procedure calls, compound forms (blocks), conditionals

gotos, and FOR loops. Certain data structures must be

maintained by the evaluator to record the control history of

the evaluation. These records include information as to

which procedures have been entered, which right hand sides

of conditionals have been followed, etc. The records are

necessary so that the evaluator may know how to continue

evaluation of the program upon completion of a control

modifying operation. An MPEL1 path is the union of the data

structures required by the evaluator to effect the

evaluation of an EL1 program. Note that one of the data

2-12

structures required is a representation of the pro£ram whose

evaluation constitutes the path of control. In particular,

associated with each path is an environment and an

activation record.

A path's environment consists of two related parts: the

identifier environment and the intra-path control.

The identifier environment contains all the name—value

pairs accessible to a program at a given point in its

evaluation. Name-value pairings are created by procedure

application or by explicit declaration. for procedure

application, the names correspond to the formal parameters

of the procedure and the values are the values obtained by

evaluating the corresponding actual parameters of the

particular call. JFor explicit declaration, the names are

the identifiers listed in the declaration and the values are

the values obtained by repeated evaluation of the

initialization form, or default values of the appropriate

mode if no initialization form is specified, c.f. Appendix

1. Name-value pairs are removed from the identifier

environment upon exit from the corresponding procedure call

in the case of formal parameters and upon exit of the block

in which declared in the case of explicit declarations.

The intra-path control contains the records associated

with the control history of the path. The records

constitute a partial history of control within the path

2-13

which includes all procedure calls which have not yet been

completed and all blocks which have not yet been exited.

The intra-path control must be related to the identifier

environment so that the evaluator may update the latter when

necessary, e.g. on block exit. Note, however, that the

records kept do not constitute a complete history; there are

no records of completed procedure calls or blocks which have

been exited.

The design of EL1 allows an evaluator for the language

to maintain its data structures using a stack discipline.

The multi-path facility has been designed to preserve the

stack discipline for sequential programs. Thus, both

components of an MPEL1 path's environment are managed as

stacks.

The activation record (ACTRC) of a path is defined as

an EL1 STRUCT. It serves as a system 'handle' on the path.

The components of an ACTRC contain vital information about

the path. In particular, the location and size of a path's

(stack) environment is stored in its ACTRC. The components

of an ACTRC may be grouped into two classes:

(1) Those components which may be modified only by the

control primitives, and hence may only be read by

a program.

(2) Those components which may be read and written by

the program to effect communication with the

2-14

control primitives.

The various components of an ACTRC will be introduced, as

needed, in the sections that follow. The complete

definition of the mode ACTRC appears in section 4.2.1. The

class to which a given component belongs will be obvious

from the discussion in which it is introduced.

A given control extension may require new fields to be

added to activation records. For example, a scheduling

algorithm which associates priorities with paths may require

an additional integer component in which the path's priority

is to be stored. We will refer to such components as

extended components as opposed to the basic components of

the original definition of ACTRC. The implementation of

extended components, without any loss of notational

convenience, can be achieved through the use of the extended

mode definition facility of EL1, c.f. 5.1.2.

All activation records are allocated in the heap and

thus may be referenced by pointers. The mode ARPTR is

defined as a PTR(ACTRC) for convenience in discussing paths.

ARPTRs have a practical value as well: two paths are

identical if and only if their ARPTRs are equal, a simple

pointer comparison.

2-15

2.2 Path Creation and Deletion

A path is created by calling upon the control primitive

GET\PATH.

GET\PATH<-CSUBR(SIZE:INT;ARPTR)

The integer argument specifies the amount of core (in K) to

be initially allocated for the path's environment. GET\PATH

allocates the environment and activation record for the path

and returns a pointer to the paths's ACTRC. The boolean

components STKEFLG (stack—environment-flag) and ELGELG

(eligibility-flag) of the path's ACTRC are set to TRUE to

indicate that the path possesses an environment and that the

path may be evaluated by a processor, respectively. If

ELGFLG is TRUE we say that the path is eligible for

evaluation. In addition, the path is enabled for certain

path-level interrupts and certain fields of the ACTRC are

initialized to meaningful default values. These settings

will be described at appropriate points in the sections that

follow.

When a path is no longer needed it may be explicitly

deleted by calling upon the control primitive DELETE\PATH.

DELETE\PATH<-CSUBR(PATH:ARPTR;NONE)

DELETE\PATH reclaims the path's environment, if possible,

2-16

and sets the boolean component ELGPLG to FALSE. Once

deleted, a path is no longer eligible for evaluation and

therefore an error occurs if an attempt is made to pass

control to it. Note that the ACTRC is retained as long as

it is referenced by an eligible path. A path may not

perform self-deletion, i.e. a call to DELETE\PATH with

itself as argument, as this would require control to be

returned to an ineligible path. Self-deletion requires a

call upon the control interpreter path, c.f. 2.3-2.

2.3 Path Initialization

GET\PATH creates an environment in which a computation

may be performed but does not indicate what is to be

computed. In order for paths to be of any use there must

exist a mechanism for specifying the program which is to be

evaluated in the path's environment. The primitive control

functions PAP (path-apply) and PAPQ (path-apply-quoted) are

used to initialize the computation that the path is to

perform. The relation between these two functions is the

same as the relation between SET and SETQ is LISP [We67];

It is not the case that STKEPXG is TRUE if and only if
ELGPLG is TRUE, since the environment of a path which has
been deleted may have to be preserved if there exist paths
which are dependent upon it, c.f. 2.2.8. It is true,
however, that if ELGPLG is TRUE then STKEFXG must be TRUE; a
path which is eligible for evaluation always has an
environment associated with it.

2-17

the former evaluates its first argument while the latter

does not.

PAP<-CSUJBR (F :FORM, P: ARPTR; ARPTR)

PAPQ<-CSUBR(F:FORM UNEVAL,P:ARPTR;ARPTR)

Since the only distinction between PAP and PAPQ is in the

bind class of their first argument, the following discussion

will only reference PAP, the interpretation for PAPQ being

derivative.

Let Q denote the path which has called PAP. The first

argument (F) to PAP specifies a procedure call to be applied

in the environment of the path which is the second argument

(P) to PAP. If P is identical to Q, then the procedure

call is evaluated in the environment of Q. If P is not

eligible for evaluation (P.ELGFLG^FALSE) then an error is

generated in path Q.

Let F =G(A1,A2, ... ,AN). The interpretation of the

procedure application is as follows:

If we define a procedure QUOTE which returns its single
argument unevaluated, then

PAp(QUOTE(FOO(X,Y),P))=PAPQ(FOO(X,Y),P).

QUOTE can be defined trivially in EL1 as follows:

QUOTE <- EXPR(X:FORM UNEVAL; FORM) X;

•*

If the form F is not a procedure call, then the
environment of P is modified so that if control passes to
it, then the form will be evaluated in P's environment.

2-18

(1) G is evaluated in the environment of Q to produce

a procedure body G'.

(2) The formal parameters of G' are hound to the

actuals A1, ... ,AN as if the procedure was to be

applied in Q.

(3) The bindings of the formals of G' are copied into

the environment of P, except for bindings to

objects which lie in the heap, in which case no

copy is made.

(4) The environment of P is modified so that if

control passes to P, then the body of G' will be

evaluated.

(5) PAP returns a pointer to path P as result.

Note that PAP only modifies the environment of a path;

no transfer of control is performed.

The following example illustrates the effect of PAP

upon the arguments to the PAP'ed procedure call.

BEGIN
DECL A:INT JBYVAL 3;
DECL B:PTR(INT) BYVAL ALL0C(INT LIKE 2);
DECL C:INT BYREF VAL(ALLOC(lNT LIKE 1));
DECL P1:ARPTR BYVAL GET\PATH(1);
DECL POO:ROUTINE;
POO<-EXPR(V:INT BYVAL,W:INT BYREF,X:PTR(INT) BYREF,

Y:INT BYREF,Z:INT BYREP;INT)
BEGIN
V+W+VAL(X)+Y+Z
END;

PAP(F00(A,A,B,C,A+A),P1)
END;

Figure 2-1 displays the state of the paths just before

2-19

the PAP is evaluated. Note the difference between the

values of B and C. B is of mode PTR(INT). The value of B

(a pointer to an integer in the heap) is in the environment

of path Q. C is of mode INT. The value of C, however, is

not in the environment of path Q. It is in the heap.

Figure 2-2 displays the state of the paths just after the

PAP has been evaluated. All of FOO's arguments, except for

C, have been copied into the environment of P1. Note that

although the value of B has been copied into path P1, the

two paths may both reference the integer pointed to by B.

2-20

Figure 2-1 Paths Q and F1 Before PAP

Figure 2-2 Paths Q and P1 After PAP

2-21

The treatment of arguments to PAPed procedures insures

that the environment of the path PAPed into will not contain

references to the environment of the path performing the

PAP. If a path could reference the environment of another,

then some mechanism would have to be employed to insure that

the environment remained intact as long as the path retained

a reference to it. Thus, it would be necessary to impose

control restraints upon the paths involved. A control

regime in which paths may obtain such references can be

realized usinr the control primitives described in section

2.2.8.

The use of PAP is not restricted to initialization

only; PAP may be used to apply a procedure in the

environment of a path which has already started a

computation. The programmer must provide the

synchronization necessary to insure that the path PAPed into

is not being evaluated at the time that the PAP is

performed, c.f. 1.1.3. If many procedure calls are PAPed

into the environment of a path, then they are executed in

the reverse of the order in which they were PAPed. When the

evaluation of the body of a PAPed procedure is completed,

then evaluation of the path continues from the point it was

at when the PAP originally occurred. A user defined path

termination function is called upon exit from the outermost

PAPed procedure, c.f. 2.2.6,

2-22

2.4 Path Evaluation

The two proceeding sections have specified the

primitives for path creation (GET\PATH) and initialization

(PAP.) No mechanism has yet been introduced which allows

control to be passed to a path. An initialized path is

eligible for evaluation but is certainly not being

evaluated. Thus, we must specify the way in which

evaluators are assigned to paths. Since it is possible to

create an arbitrary number of paths which are to be

evaluated concurrently by a bounded number of evaluators,

the assignment must surely involve some notion of

scheduling. Path scheduling is described in detail in

section 2.3.5. This section introduces the terminolgy to be

used in discussing multiple paths of control.

A scheduler is a mechanism for multiplexing the

evaluation of paths by a fixed number of evaluators. A

scheduler uses a scheduling algorithm to choose a path to be

evaluated from a set of paths which are available for

evaluation. A path is active if it is currently being

evaluated. A path is inactive if it is not active but is

contained in the set of paths from which the scheduler

chooses. A path is running if it is either active or

inactive. A path is stopped if it is not running. A path

is reachable if it is running or if its ARPTR is accessible

from the environment or activation record of a reachable

2-23

path. A path is lost if it is not reachable.

A created and initialized path is initially stopped.

It may become a running path by explicitly including it in

the set of inactive paths, c.f. 2.3.5. A path which has

been deleted is no longer eligible for evaluation and

therefore the scheduler will not allow it to become active.

The inclusion of inactive paths in the set of running

paths requires some explanation. If a path isn't currently

being evaluated, then it certainly isn't running on a

processor. The classification is justified by the fact that

the scheduling of paths is essentially transparent to the

paths being scheduled, hence it isn't possible for a given

path to determine (without some special action) which paths

are active and which are inactive. Thus, the running paths

are those paths which are being evaluated concurrently,

although only the active paths are being evaluated

simultaneously.

It is sometimes desirable to explicitly remove a path

from the set of running paths. For example, if a path is to

cease further evaluation until some condition is true, then

it can be temporarily removed from the running set to insure

that an evaluator will not be assigned to it. When the

condition becomes true, then the path can be returned to the

set of inactive paths. Evaluation of the path will continue

as soon as it is made active by the scheduler.

2-24

It is also desirable to have the ability to indicate

that a path should not become active vithout explicitly

removing it from the set of inactive paths. For example, if

a path Q wishes to PAP into another path P, it could check

the set of running paths and remove P from the set to insure

that it will not become active. But suppose that P is not

in the running set. Q cannot safely perform the PAP because

it is possible that some other path will asynchronously

include P in the inactive set. Hence, P may become active

while the PAP is being performed. Activation records

contain the boolean component DORMANT which is used to

indicate that a path should not be allowed to become active.

The scheduler will not assign an evaluator to a path with

DORMANT=TRUE. If DORMANT is set to TRUE while a path is

active, then once the path becomes inactive it will not

become active again until DORMANT is set to PA1SE.

2.5 Data Sharing

It may be necessary fcr a .set of jaths to access common

data structures in order to collectively perform a given

computation. In general, paths may not share data by

referencing the environments of other paths, unless the

paths involved are willing to constrain their control

relationships to an organization in which such sharing is

*

If P is active, this may take some time, c.f. 2.5.5.

2-25

feasible, c.f. 2.2.8. Thus, most data structures shared

between paths will lie in the heap. In this section, we

will discuss the various means by which paths may share

data.

All paths are embedded in a global, or top-level,

environment. The global environment consists of name-value

pairs in which all values lie in the heap. If a path

references a variable which is not currently defined in its

environment then the reference is taken to be to the value

of that variable in the global environment. Since all paths

have the same global environment, sharing can be achieved by

referencing the same top-level variables.

Sharing may also be achieved by using the control

primitive PAP. Since the arguments to a PAPed procedure

call are evaluated in the environment of one path and the

procedure call in another, PAP provides a mechanism which

allows sharing relations to be established at the time a

path is initialized* There are two cases of interest.

Pirst, a path may pass a pointer as argument to a PAPed

procedure call. Although the pointer is copied into the

environment of the path PAPed into and thus is itself not

shared, the object to which it points is accessible from

both paths. In the second case, a path may pass an argument

The method by which global variables are initialized is
discussed in Appendix 1.

2-26

which is bound directly to an object in the heap. In this

case, if the bind class is BYREF, then PAP will pass the

argument directly to the PAPed path without making a copy.

Hence, both paths reference the same object.

A path may obtain the value of a variable defined in

the environment of another path via the control primitive

PPETCH (path-fetch.)

PFETCH<-CSUBR(NAME:SYMBOL,P:ARPTR;ANY)

PPETCH searches the environment of path P for the most

recent occurrence of the variable NAME and returns either

the value of the variable (if the value lies in the heap) or

a copy of the value of the variable (if the value is in the

environment of P.)

A path may change the value of a variable defined in

the environment of another via the control primitive PSTORE

(path-store.)

PSTORE<-CSUBR(NAME:SYMBOL,P:ARTPR,VAI:ANY;NONE)

PSTORE searches the environment of path P for the most

recent occurrence of the variable NAME and replaces its

current value with VAL. (An error occurs if VAL cannot be

converted to the mode of the value of NAME.)

Both PPETCH and PSTORE require that the path P be not

active. If P is active, then an error occurs in the

environment of the path performing the PPETCH (PSTORE). If

P is inactive but becomes active while the search is being

2-27

performed, then an error occurs in the environment of the

scheduler. A more useful error is generated if the variable

NAME does not exist in the environment of P. In this case,

the programmer may supply (via MPEL1 error handling) another

path to be searched through. Thus, it is possible to

construct arbitrary searches through a given set of paths.

Although PFETCH and PSTORE will usually be used to

update or copy pointers to objects in the heap, they also

provide a mechanism, although inefficient, whereby a path

can share an object in the environment of another. Assuming

the appropriate synchroni2ation is available, a path P can

stop another path Q, obtain a copy of the value of a

variable contained in Q's environment, modify the copy, use

PSTORE to replace the original with the updated version and

then allow Q to continue evaluation. The two paths are

effectively sharing the object since all modifications made

by both paths will be reflected in the data.

2.6 Path Termination

A path is terminated if it is no longer eligible for

evaluation. The control primitive DELETE\PATfi makes a path

ineligible for evaluation since it sets ELGFLG to FALSE and

usually deletes the path's environment. DELETE\PATH is of

P is being modified, thus it cannot become active, c.f.
1.1.3.

2-28

limited usefulness by itself, however, because the above is

all that it does. The fact that a path has terminated may

be of interest to other paths, DELETE\PATH provides no

mechanism for broadcasting the path's demise. A path may

desire, upon termination, to return a value to some set of

paths which are waiting for its value. DELETE\PATH does not

provide for a value to be associated with a path.

The capabilities described above can be achieved,

however, by using DELETE\PATH in conjunction with other

control facilities of MPEL1. A procedure can be written

which will cause a path to wait until a given path

terminates and another can be written which will cause

explicit termination of a path along with notification to

all waiting paths, c.f. 3.3.

There is one point still remaining. When a path exits

the outermost procedure call in its environment, it is

probably trying to indicate that it would like to be

terminated. In addition, it might be useful to specify the

value returned by the outermost procedure call as the value

of the path itself. Although it would seem desirable to

allow a path to terminate itself implicitly in this way, the

termination procedures described above must be called

explicitly. The solution is straightforward. We include

the component TERMINATION\FORM as one of the fields of an

activation record. When a path exits its outermost

2-29

procedure call, the value returned by the procedure is bound

to the identifier "LAST\ VALUE" and then the TERMINATION\FORM

is evaluated. The form can save the last value, notify any

waiting paths and call DELETE\PATH to actually terminate the

path. The TERMINATION\K)RM is initially set by GET\PATH to

be a procedure call which will cause DELETE\PATH to be

called. Since DELETE\PATH usually deletes the path's

environment, the last value should be copied into the heap,

if it is not there already. Otherwise, the value will be

lost when the path's environment is reclaimed.

2.7 Path Synchronization

If paths are allowed to evaluate concurrently, then

they must be provided with a mechanism which permits them to

synchronize their activities. Por example, if a path P

desires to cease evaluation until another path Q terminates,

then it might first test the value of Q.ELGPLG and then add

itself to a queue of paths waiting for Q to terminate, viz.

Q.ELGFLG -> LEG IN
Put self on queue associated with Q;
Cease evaluation
END

Let us assume that when Q terminates it indicates that all

paths on its queue may become active. If Q terminates after

P tests Q.ELGFLG but before the block above is evaluated, P

will never be awakened! P and Q must be able to synchronize

their actions, i.e. P must insure that Q does not terminate

2-30

while it is in the process of performing the wait and,

conversely, Q must insure that P does not try to wait while

it is in the process of termination. The way in which paths

may effect synchronization is discussed in detail in section

2.3.2. In this section, we will discuss synchronization

with respect to the control facilities described earlier.

Let us first consider synchronization in relation to

the path scheduler. If the scheduler has access to more

than one evaluator, then it is obvious that a mechanism for

path synchronization is necessary. However, if the

scheduler is multiplexing paths using only one evaluator

then a synchronization facility is still necessary since the

scheduling of paths is transparent to the running paths. In

particular, in between testing Q.ELGZLG and queuing itself,

P may become inactive and Q may become active. If Q

terminates, then the situation is as disastrous as if P and

Q had been active simultaneously.

The control primitives PAP, PFETCH, and PSTORE contain

no built in synchronization. Por example, if two paths try

to concurrently PAP into the same path, then the system will

not insure that first one PAP will occur and then the other.

In fact, an error will be generated to indicate the lack of

synchronization, c.f. 1.1.3. Thus, unless the organization

of one's paths is such that it is impossible to perform

concurrent PAPs into a path, one must provide a layer of

2-31

synchronization around the control primitive, c.f. 3«3-

The general rules with respect to the use of PAP, PFETCH and

PSTORE are as follows.

(1) The affected path should be not active and should

not be allowed to become active until the control

primitive has completed its action.

(2) Only one of the control primitives may be applied

to a path at a given time.

The control primitive TSET (test-and-set) may be used

for path synchronization as an alternative to the mechanism

described in section 2.3.2. TSET is defined as follows.

TSET<-CSUBR(X:INT;BOOL)
BEGIN
If X is 0, then set X to 1 and return TRUE.
Otherwise, return FALSE.
END;

TSET is an indivisible operation with respect to a set of

active paths; if two paths simultaneously TSET the same

integer, whose current value is 0, then TSET will return

TRUE to one path and FALSE to the other. Variations on TSET

[La68] [IBM68] have been described in the literature. TSET

is included as an MPEL1 control primitive because it

provides the most basic mechanism for inter-path

synchronization. In order for it to be used for

synchronization, however, TSET requires that a path go into

2-32

a loop continuously calling it until TRUE is returned. This

phenomenon is known as the busy wait and is obviously quite

wasteful. The energy of the evaluator would be better spent

upon a path which could do some useful work. The facility

described in section 2.3.2 allows for path synchroni2ation

at a much lower cost since it provides for a nonbusy wait.

2.8 Path Dependency

All MPEL1 paths discussed so far may be considered to

be independent in the sense that no path can directly

reference the stack environment of another. This phenomenon

is a result of the fact that the control primitive PAP

copies all arguments which would ordinarily be passed BYREJ?

and of the fact that the control primitive PPETCH returns a

copy of the value of its argument. It is sometimes useful,

however, to organize a set of paths in a tree structure in

which a path P may directly reference the stack environment

of some path Q which is higher in the tree. In this

situation we may say that P is dependent upon Q in the sense

that P requires Q's environment in order to evaluate

properly. In this section, we will explore the concept of

path dependency and introduce the control primitives

necessary to establish this path organization.

To unset the integer one uses the control primitive
CLEAR, which sets the integer to 0. Although CLEAR does not
have to be defined as primitive, it is included for
symmetry.

2-3 7

A path is initially independent• One path can cause

another path to become directly dependent upon it by calling

upon the control primitive MDEP (make-direct-dependent.)

MDEP<-CSU£R(P:ARPTR;ARPTR)

When a path P becomes a direct dependent of another path Q,

it may then reference the entire identifier environment of Q

up to and including all variables defined in Q at the point

at which MDEP was called. MDEP returns a pointer to the

path which has become the direct dependent. MDEP generates

an error if P=Q, if P is already the direct dependent of

some path other than Q, or if a circular dependency would be

created.

The following definitions will simplify the discussion

of path dependency. A path P is dependent upon a path Q if

and only if either P is a direct dependent (dd) of Q or if

there exists paths P1, »•. ,Pn such that

P dd P1 dd P2 ... Pn dd Q

If P directly depends upon Q, then Q directly supports P.

If P depends upon Q, then Q supports P. The sub-environment

of a path Q which may be referenced by a directly dependent

path P is the directly accessible environment of Q with

respect to P. The accessible environment of a path P is the

union of the directly accessible environment of P with all

environments directly accessible to the supporters of P.

We may now restate the conditions under which a path Q

2-34

may make a path P its direct dependent:

(1) P is not dependent on any path (except perhaps Q.)

(2) Q does not depend upon P.

(3) P and Q are not the same path, i.e. P#Q.

A path may obtain a reference to a variable in its

accessible environment by calling upon the control primitive

DEPENV.

DEPENV<-CSUBR(X:SYMBOL;ANY)

DEPENV searches for X in the environment of the path in

which it is called and if it is not found then it searches

for it in the accessible environment of the path. If no X

is found in the accessible environment, then the global

value of X is returned as the result of DEPENV. The

restriction on MDEP that P is not directly dependent upon
*

any path except Q allows DEPENV to be a single valued

procedure since a path can be directly dependent upon only

one path.

The control primitive DPAP is defined as follows.

DPAP<-CSUBR (F: FORM, P: ARPTR; ARPTR)

The effect of DPAP is identical to that of PAP except for

the following modification: if P is dependent upon the path

performing the DPAP, then all arguments passed BYREF to the

DPAPed procedure which reference the accessible environment

of P are passed directly to it, i.e. no copy is made.

The effect of multiple MDEPs is to extend the
environment of Q which is directly accessible to P

2-35

The concept of directly accessible environment requires

closer examination. In particular, three points are of

interest: a precise description of the directly accessible

environment, the observation that the direct dependents of a

path may have different directly accessible environments,

and the restrictions imposed upon the intra—path control of

a supporting path.

The directly accessible environment corresponds

precisely to the identifier environment of the path when

MDEP is called, i.e. it is composed of all the variables

which could be referenced by the path at the point MDEP is

called. For example, consider the following block:

BEGIN
DECL X:IKT BYVAL 4;

BEGIN
DECL Q:ARPTR BYVAL MD£P(A);
DECL R:INT BYVAL 5;
DECL S:ARPTR BYVAL KDEP(B);
DECL T:INT BYVAL 6;
POO(R,X,MDEP(C));
EXPR(M:INT,N:INT;INT)(EUM(M+N,MDEP(D)))(R,X);
MDEP(B);

END;
END;

The directly accessible environments of A,B,C and D are:

2-36

A: X, ... Q is not included since it is not
in the identifier environment when
MDEP is called.

B: R,Q,X, ... Same as for A , with respect to S.

C: T,S,R,Q,X, e.. All declarations are included, but
the formals of the procedure KJM
are not, since they are not
included in the environment until
the procedure is entered.

D: N,M,T,S,R,Q,X... The formals of the literal
procedure are included, but the
formals of PUM are not.

B: T,S,R,Q,X, ... The second MDEP(B) allows B to
reference T and S.

From the example above it should be obvious that the direct

dependents of a given path way have different directly

accessible environments, ftote that the effect of the second

MDEP(B) is to extend the portion of the environment of the

path which is accessible to it.

The intra-path control of a supporting path must be

constrained so that no portion of its identifier environment

is deleted until all dependents, who can access that

portion, are terminated. In the example above, the path may

not exit the inner block until B,C, and D have terminated.

It may not exit the outer block until A has terminated. A

supporting path has essentially three options: terminate all

dependents who can reference the sub-environment which is

about to be deleted; wait until all dependents have

terminated before deleting the sub-environment; and

terminate itself, in which case the environment of the path

2-37

will be retained until all dependents have terminated. The

last case invokes the situation described in section 2.2.2,

where ELGPLG becomes .FALSE but STKEPIG remains TRUE. If a

path attempts to delete a portion of its environment which

is accessible to a non-terminated dependent, then an error

is generated with the accessible environment still intact.

The error may be handled by the programmer. To facilitate

this, a simple recursive procedure can be written to

determine which of the dependents must be terminated, c.f.

5.1.;.

2.S Intra-Path Control Primitives

There are five primitives which are primarily concerned

with intra-path control: GOTO, RETPROM, MYPATH, COPY and

EVAL.

In order to understand the use of GOTO we must first

discuss the treatment of labels in EL1. Each statement in

an EL1 block may have one or more labels associated with it,

e.£>

L1: L2: FOO(A,B) => TRUE

All labels are implicitly DECLared to be variables of mode

LABEL as the last declarations of the block in which they

appear. It is also possible to explicitly declare a

variable to be of mode LABEL and to pass a label valued

variable as a parameter to a procedure. It is not possible,

2-36

however, to assign to a label variable or to return an

object of mode LABEL as the result of a procedure.

GOTO is defined as follows:

COTO<-CSUBR(l:LABEL;NONE)

GOTO modifies the environment of the path so that evaluation

will continue with the statement specified by the label L in

the most recent incarnation of the block in which L was

declared. Note that L must specify a block which has been

entered by the path performing the GOTO, i.e. it is not

possible to pass control between paths by calling GOTO in

one path with a label which references the environment of

another. Transfer of control between paths is achieved

through the use of the control interpreter, c.f. 2.3-1*

The control primitive RETFROM

RETFROM<-CSUBR(ENAME:SYMBOL,VAL:ANY;NONE)

is used to return control from the most recent explicit call

on the procedure ENAME with VAL as result. If the

environment of the path does not contain an explicit call on

An explicit call on a procedure is one in which the
form which is to evaluate to a procedure body is of mode
SYMBOL, e.g.

EOO(A,B,C)

is an explicit call on POO,wheras

BEGIN TRUE => POO END (A,B,C)

is not.

2-39

FNAME, then an error occurs.

Since GOTO and RETPROM can cause portions of the

identifier environment of a path to be deleted, they must be

used with caution in a supporting path. For example, a

local GOTO, i.e. within a block, presents no problem, but a

non-local GOTO will induce a runtime error if there exist

non-terminated paths which are dependent upon the

environment deleted, c.f. 2.2.8.

The control primitive MYPATH

MYPATH<-CSUBR(;ARPTR)

returns a pointer to the activation record of the path in

which it is called. Since MYPATH has a null argument list,

it is defined as a NOPIX operator [Weg72], i.e. it may be

called without being followed by an empty set of

parentheses, e.g.

Y<-MYPATH. TERMINATI0N\PORM

as opposed to

Y<-MYPATH().TERMINATION\FORM.

The control primitive COPY

COPY<-CSlLBR (P: ARPTR; ARPTR)

creates a copy of the path specified by P and returns a

pointer to the activation record of the new path. If P was

directly dependent upon some path Q, then the new path, say

T, is also directly dependent upon Q. P and T have

precisely the same accessible environments., T does not,

2-40

however, support the same paths as P. In fact, it does not

support any path. Thus, although P and T have identical

environments, their interpretations as paths are slightly

different.

The control primitive EVAL

EVAIX-CSUER(P:PORM;ANY)

evaluates the form P in the current path's environment.

EVAL returns as result the value obtained by evaluating the

form.

If T was to support the same paths as P, then it would
be possible for a path to be direcly dependent upon two
paths.

2-41

3. THE CONTROL INTERPRETER

In the last section, we discussed the path related

issues of scheduling and synchronization while postponing

the explanation of how they are resolved in MPEL1. Here, we

introduce the control apparatus necessary to resolve these

issues.

There exists one distinguished path in MPEL1, the

control interpreter (Cl) path. The CI path is composed of

an environment and an activation record, just like any path

which has been created by GET\PATE. In particular, the

global variable PCIAR is bound to a pointer to the control

interpreter's activation record. The program being

evaluated in the environment of the CI may be defined in

EL1. However, the distinguishing feature between the CI and

its fellow paths is that it is the only path to which other

paths may directly pass control and it is the only path that

may directly pass control to a path other than the CI. In

the following sections, we will discuss how the CI path may

be used to provide a mechanism for path scheduling and

synchronization.

3.1 Communication with the CI

A path may pass control to the CI by calling upon the

control primitive CIA (control-interpreter-apply.)

CIA<-CSUER(EN:ONEOP(SYMBOL,ROUTINE),ARG:ANY;REF)

2-42

If FN is a symbol, then it specifies the name of a procedure

to be applied in the environment of the CI. If FU is a

ROUTINE, then it specifies the body of the procedure to be

applied. ARG specifies the argument to the procedure. If

the mode of ARG is not of class PTR, then ARG is copied into

the heap and the argument to the procedure is taken to be a

pointer to the copy.

The CIA call is carried out as follows:

(1) FK and ARG are stored in the components of the

path's activation record named CIA\IN and CIA\ARG

respectively. Both components are of mode REF.

(2) Control is transferred from the environment of the

path to the environment of the CI. Although it is

possible that the CI is currently active, we

postpone discussion of this case until the next

section. Hence, let us assume that the CI is not

active.

The program in the CI path then performs the following

actions.

(a) If CIA\PN is a SYMBOL, then it is evaluated to

produce a procedure to be applied.

(b) The procedure obtained in (a), or CIA\.FN itself, is

applied to the argument specified by CIA\ARG.

(c) Control is passed back to the path which performed

2-43

the CIA. Although it is possible to pass control

to a path other than the one which performed the

CIA, we defer explanation of this ability until

after we have described the environment of the CI.

(3) When control is returned to the path, the CIA

primitive returns the REF specified by the

CIA\RESU1T component of the path's activation

record. Hence, a CIA called procedure may

effectively return a result in the environment of

the path which performed the CIA by assignment to

the CIA\RESuTT component of the path's activation

record.

At this point, it may be useful to discuss briefly the

differences between PAP and CIA, since they both have the

effect of generating a procedure application in the

environment of another path. First, CIA may be used only to

apply a procedure in the environment of the CI, whereas PAP

may be used to apply a procedure call in any path.

Secondly, CIA requires that the procedure to be applied take

exactly one argument of mode class PTR, whereas the

arguments to a PAPed procedure are not restricted with

respect to number or mode. Lastly, CIA transfers control to

the CI to apply the procedure; PAP, on the other hand, never

transfers control between paths.

2-44

The limitation that a CIA called procedure take only

one argument (of mode class PTR) also requires some

explanation. We have limited it in this way since a call in

which the procedure takes an arbitrary number of arguments

(with no restrictions on the modes of the arguments) can be

achieved by extension, c.f. 5.1.1. In addition, the

passage of multiple arguments to a CIA called procedure

requires the construction of a list of the arguments even in

the case where only one argument is passed. Since CIA
*

called procedures usually require only one argument, it

would seem counter-productive to build in a mechanism which

is wasteful in the common case.

We have not yet specified how the CI returns control to

the path which has performed the CIA call. The return is

achieved by calling upon the control primitive CONTPATH

(continue-path)

CONTPATH<-CSU£R(P:ARPTR;ARPTR)

which may only be called in the CI environment. CONTPATH

inspects P's activation record to determine whether or not P

may become active. It may not become active if any of the

following are true:

(1) P-ELGPLG=FALSE. (P has been deleted.)

(2) P.DORMANT=TRUE. (P is temporarily restrained from

evaluating.)

Examine the examples in the next chapter.

2-45

(3) P is currently being modified.

If none of the above conditions hold, then control is

transferred from the CI to the path, otherwise an error is

generated in the CI. CONTIATH TSETs the MOD field of the

path's ACTRC to indicate that the path is being modified.

When a path Q passes control to the CI for a CIA call,

it is essentially performing a RETrROM("CONTPATH,,,Q) in the

environment of the CI; in other words, the result returned

by CONTPATH is the ARPTR of the path performing the CIA

call. Note, however, that returning control from the CI to

a path P does not necessarily have the effect of performing

a RETPROM("CIA",P.CIA\RESULT) because it is possible that

while control resided in the CI, one or more procedures have

been PAPed into P's environment. Kence, execution in P will

continue with the evaluation of the body of the last PAPed

procedure or with a return from the CIA call if no such

procedures exist.

3.2 Synchronization

In the last section, we postponed discussion of the

effect of a CIA call in the case where the CI is already

active. Here, we discuss the interpretation and

P is being modified if it is active or being PAPed
into, or being Pl'KL'Ched from, etc. In general, P is being
modified if P.MOD has been TSET, c.f. 1.T.3.

2-46

implications of such a call.

In section 2.2.1, we characterized a path as the union

of the data structures required by an evaluator, i.e. a

path is the set of records which must be maintained to

effect the evaluation of a sequential EL1 program by a

single evaluator. Although a path may be evaluated by

different evaluators during its lifetime, it may be

evaluated by only one evaluator at any instant. Thus, it is

not logically admissible for two or more evaluators to be

evaluating the same path simultaneously. In particular, the

CI may be evaluated by only one processor at a time. Hence,

if two paths attempt to pass control to an inactive CI, then

one will actually achieve passage while the other will be

forced to wait. When the CI becomes inactive, as a result

of a call to CONTPATH, then the waiting path may pass

control to it. Consequently, the CI acts as a single access

resource with respect to other paths.

The role played by the CI path in the construction of

synchronization operations should now be obvious. The

operation of any procedure which is only called in the CI

environment is indivisible with respect to calls on that

procedure by other paths, i.e. if two paths both CIA the

same procedure, then the execution of one call will be

completed before the execution of the other is allowed to

begin. Any actions which require indivisible operation can

2-47

simply be done in the CI environment. For example, consider

the problem of path termination discussed in section 2.2.7.

If P wishes to wait for Q to terminate, it CIA calls a

procedure which checks to see if Q has already terminated.

If it has terminated, then the procedure allows control to

flow back to P, otherwise the procedure puts P on a queue

associated with paths waiting for Q and indicates to the CI
*

that P wishes to cease evaluation. When Q terminates, it

CIA calls a procedure which puts all the paths waiting on Q
*#

into the set of inactive paths and then calls D£LETE\PATH.

Since paths are added and removed from the queue only when

control is in the CI, it is impossible for a path to cause

itself to be queued forever.

3.3 The Environment of the Control Interpreter

In section 2.3.1, we introduced the control primitives

CIA and CONTPATH which may be used to transfer control to

and from the CI path. In this section and the next we will

discuss the way in which these primitives can be used in

conjunction with a set of non-primitive ELI procedures to

effect path scheduling and synchronization. Note that the

organization described here consists of the conventions

The way in which a CIA called procedure indicates this
is discussed in 2.3.4.

#*

Recall that the inactive paths are those paths which
would be active if there existed enough processors.

2-4£

imposed by the (non-primitive) program being evaluated in

the CI path, c.f. 1.1.3-

We must first describe the identifier environment in

which a CIA called procedure is applied. .For each variable

in the identifier environment, we will give its name, mode

and a brief description of its use.

DECL LASTRUN:ARPTR;

When the CIA called procedure is applied, LASTRUN contains a

pointer to the ACTRC of the path which performed the CIA

call. Upon completion of the CIA called procedure, the CI

will pass control to the path specified by LASTRUN, unless

it has been set to NIL. In this case, the CI selects an

inactive path and passes control to it instead of the

original path.

DECL INACTIVEQ:ARQPTR;

INACTIVEQ is a queue of the paths which are currently

inactive, i.e. those paths which would be active if there

were enough evaluators. INACTIVEQ.FIRST specifies the first

path on the queue; INACTIVEQ.LAST specifies the last path on

the queue. A path is linked to the next path on the queue

through the NEXT component of its activation record, e.g.

INACTIVEQ.FIRST.NEXT is the ARPTR of the second path on the

queue.

DECL NPROC:INT;

ARQPTR is a mode which is defined in the global
environment to be a STRUCT(FIRST:ARPTR,LAST:ARPTR).

2-49

NPROC specifies the number of processors over which the

paths are being multiplexed. Thus, NPROC is an upper bound

on the number of paths which may be active at the same time.

DECL NPPROC:INT;

NFPROC specifies the number of processors which are free in

the sense that they are not currently being- used to evaluate

a path, i.e. the number of processors which are idling-.

DECL PROCNUM:INT;

i:&ch processor has a unique integer N associated with it

(1 <N < NPROC.) PROCNUM is the number of the processor which

was evaluating the path which performed the CIA call.

Hence, PROCNUM specifies the processor which will evaluate

the CIA called procedure.

DECL USER\SCKEDULER:ROUTINE;

The USER\SCHEDULER is the procedure which is being used to

select which inactive paths should become active. As the

name implies, the procedure may be supplied by the user,

c.f. 2.4.

DECL PAVECT:ROW(NPROC,STRUCT(CURPATH:ARPTR,IDLEPATH:ARPTR));

Por I#PROCNUM, PAVECT[I].CURPATH specifies the path being

evaluated by the I'th processor. Each processor has an

idling path associated with it, i.e. a path which it

evaluates if it has no 'real' path to evaluate. NPPROC is

the number of processors which are evaluating their idling

paths. If processor K is idling, then

PAVECK[K].CURPATH=PAVECK[K].IDLEPATH.

2-50

Note that

PAVECT[PROCNUM].CURPATH=LASTRUN

i.e. the processor which is currently evaluating the CI

path is the processor which was evaluating the path which

performed the CIA call.

DECL RUNSET\1LAG:BC0L;

The RUNSET\FLAG is initially set to FALSE. If a CIA called

procedure adds paths to the set of running paths, then it

should set RUNSET\ELAG to TRUE to indicate that additional

paths may have to be scheduled.

DECL PIVECT:ROW(NPROC,LIST);

PIVECT is used in conjunction with processor to processor

interrupts. We postone further discussion of PIVECT until

section 2.5.5.

3.4 Path Scheduling

In the last section, we described the environment in

which a CIA called procedure is applied. Here, we will

describe the way in which the CI uses these data structures

in the performance of path scheduling.

Let us assume that a path P has executed the following

statement:

CIA("ECO",Q)

Control passes to the CI as described in section 2.3.1.

However, before the procedure is applied to its argument,

2-51

the CI performs the following actions:

(1) LASTRUN is set to P.

(2) RUNSETYFLAG is set to FALSE.

(3) PROCKUM is set to the number of the processor

which had been evaluating P.

Upon completion of the CIA called procedure, the CI

performs the following actions:

(1) If LASTRUN is NIL, then the CI calls upon the

USER\SCHEDULER to obtain a path to be evaluated by

the processor. If the USER\SCHEDULEF returns NIL,

then the CI chooses the idle path associated with

the processor, i.e. PAVECT[FROChUM].IDLEPATli, and

increments NEPROC by one. In any case, the CI

binds LASTRUN to the path to which the processor

is to be given.

(2) If RUNSET\PLAG is TRUE, then the CI determines if

there are any free processors (NEPROC#0) and, if

so, it sends an interrupt to one of them to force

it to pass control to the CI to obtain a 'real'

path to evaluate, c.f. 2.5.5.

(3) The CI sets PAVECT[PROCNUM].CURPATH to LASTRUN to

indicate which path the processor will be

evaluating.

(4) The CI passes control to the path to be evaluated

and positions itself to accept the next CIA call

by executing the following statement.

2-52

LASTRUN<-CONTfATH(LASTRUN)

The USER\SCHEEULER is initially bound to a procedure

which removes the first activation record from the INACTIVEQ

and returns a pointer to it as result, i.e. as the path to

be evaluated. If the INACTIVEQ is empty, then the procedure

returns NIL. If paths are always added onto the tail of the

INACTIVEQ by CIA called procedures, then the paths are

scheduled on a 'round-robin' basis.

To obtain a better understanding of the use of the CI

as single access resource in relation to its use as a path

scheduler, let us again turn to our path termination

example. If P wishes to cease evaluation until Q

terminates, then it simply sets LASTRUN to NIL to indicate

to the CI that the processor should be given to another

path. When Q terminates, it appends all paths waiting for

its termination onto the tail of the INACTIVEQ and then sets

RUNSET\ELAC to TRUE to indicate to the CI that there are

additional paths to be scheduled. Both P and Q require

indivisible execution coupled with the ability to modify the

scheduler's queues. The CIA call provides both of these

Since Q will no longer be runnable, it will set LASTRUN
to NUi. In this case, it is not really necessary to set
RUNSET\PLAC to TRUE, since the fact that LASTRUN=NIL will
cause new paths to be scheduled anyway. Note, however, that
it is possible that a path may add additional paths to the
INACTIVEQ, and still wish to continue evaluation. In this
case, it must set RUNSET\PLAG to TRUE.

2-53

facilities since it allows a procedure to obtain indivisible

execution in the environment of the path scheduler.

In section 2.2.4, we defined a scheduler as a mechanism

for multiplexing the evaluation of an arbitrary number of

paths by a fixed number of evaluators. The path scheduler,

as described above, does not quite fit this definition. The

problem is as follows: if NPROC paths are currently active

and none of the paths ever perform a CIA call, then the

inactive paths will never become active. Hence, the

evaluators will not be multiplexed over all paths. The

solution to this problem is straightforward. If, after some

given length of time, a path refuses to relinquish its

evaluator, then the path's evaluation is interrupted by a

"TIMER" interrupt. The response to the interrupt generates

a CIA call which puts the path at the end of the INACTIVEQ

and sets LASTRUN to ML. The path scheduler can then give

the evaluator to another path via the mechanism described

above. A more detailed description of the way in which this

'time-out' is accomplished is given in section 2.5.5.

Since the CI is an MPEL1 path, the actions performed by

it to effect path scheduling can be described by a set of

EL1 procedures. These procedures are listed in Appendix 3«

In the next section, we will discuss how these procedures,

in conjunction with the CIA control primitive, may be used

to extend the path scheduler itself.

2-54

4. USER DEFINED SCHEDULING

When a processor "becomes free, the CI uses a simple

algorithm to assign it to an inactive path: it is given to

the first path on the queue of inactive paths. It is surely

not desirable that this algorithm be the only one which may

ever be used to assign processors to paths. Eor example, a

given language application might require paths to be

scheduled on the basis of associated priorities. Although

it is conceivable that we could circumvent the fixed

algorithm by suitably adjusting the inactive queue to insure

that the next path chosen by the scheduler is the one which

is desired, it would be inconvenient and inefficient to do

so. Hence, we desire a mechanism which will allow both user

control over path scheduling and the addition of data

structures to the CI environment to support the extended

scheduler.

4.1 Scheduler Extension

Three different methods may be used to extend the path

scheduler: rebinding of the procedure which is called to

obtain the next path to be evaluated, nesting of schedulers,

and complete redefinition of the CI procedures and

environment. The first of the above is exceedingly simple

to accomplish but provides the weakest form of extension.

The second combines the first method with the ability to

2-55

call upon the CI procedures recursively in order to obtain a

nesting of schedulers. The last method requires the largest

amount of work, hut allows the user the ability to rewrite

the control interpreter completely.

In section 2.3-3, we indicated that to obtain a path to

be evaluated, the CI calls upon the ROUTINE bound to the

variable USER\SCHEDULER. Hence, the scheduling algorithm

can be changed by simply CIA calling a procedure which binds

USER\SCHEDULER to a user defined procedure. Upon completion

of the CIA call, the user's scheduling algorithm will be

employed by the CI.

There are two disadvantages with this method. First,

if the user defined scheduler requires additional data

structures, then it must resort to the use of global

variables. Secondly, there is no convenient way to nest the

schedulers, i.e. if the scheduling algorithm is to be

redefined more than once, then each new scheduler must

understand the organization of the previous one. In

addition, there is no convenient way of keeping track of how

many times and the order in which the scheduler has been

redefined. Hence, it is difficult to revert back to a

previous scheduler once a new one has been installed.

Consequently, this method of scheduler extension is of

limited usefulness.

2-56

The second method of scheduler extension resolves the

problems associated with the first.

The actions of the control interpreter path are

embodied in the definition of one EL1 procedure, C\I. In

particular, C\I applies the CIA called procedure to its

argument, calls upon the scheduler if necessary, and passes

control out of the control interpreter via CONTPATH. Since

C\I is written in EL1, its actions are easily understood and
**

it may be called from a user program. If C\I is called

recursively in the environment of the CI, then path

scheduling and the processing of CIA calls will be performed

by the inner call. C\I assumes that the variables discussed

in section 2.3«3 exist in the environment in which it is

called and declares local variables with the same names

which are bound BYREF to their counterparts in the

environment, e.g.

CECL LASTRUN:ARPTR BYREF LASTRUN;

The procedure C\I may be used to achieve a nesting of

schedulers by CIA calling a procedure, say IKIT\SCHEEULER,

which performs the following actions.

(1) USER\SCHEDULIR is declared locally to be the

The definition of the procedure C\I is given in
Appendix 3.

**

Although it should only be called in the CI
environment, because of the call on COKTPATH.

2-57

routine to be used as the new scheduler.

(2) Other variables that are needed by the new

scheduler are declared locally.

(3) The data structures which define the inactive set

of the previous scheduler are mapped into the data

structures to be used by the new scheduler. As

this is a complicated process, we postpone

discussion of how it can be accomplished.

(4) The procedure C\I is called recursively. C\I will

bind USER\SCHEDULER to the procedure bound locally

above. Scheduling will continue in an environment

which includes the data structures required by the

new scheduler.

It is possible to return control over path scheduling

back to the previously defined scheduler by CIA calling a

procedure, say TERft\SCHIOXJLER, which performs the following

actions.

(1) The control primitive RETFROK is used to return

control to the body of the procedure which

initiated the recursive call on C\I, i.e.

RETPROM(,,C\I",NIL)

(2) The data structures which define the inactive set

for the current scheduler are mapped into the data

structures required by the old scheduler. Again,

we postpone discussion of how this can be

accomplished.

2-58

(3) The procedure returns control to the previous

incarnation of C\I by a normal procedure exit.

Since the recursive call on C\I bound the

variables used in the previous call BYREF, the

values of the variables are still valid, e.g

PROCNUM correctly specifies the number of the

processor which is currently evaluating the CI

path.

Figure 2-3 illustrates the flow of control in the CI

with respect to nesting of schedulers. Down arrows indicate

the passage of time, right arrows indicate calls to

procedures, and left arrows indicate returns from

procedures. INIT\SCHEHJLER is a procedure which is CIA

called to initialize a new scheduler as described above and

TERM\SCHEDULER is a procedure which is called to return

control back to the previous scheduler.

This will be true only if USER\SCHEDULER is the only
variable declared by the initializing procedure whose name
is in common with the variables of section 2.3.3-

2-59

Paths scheduled by initial
scheduler in the environ-
ment of the original call
to C\I

CIA call of
ItiII\SCK£LULEfc

New scheduler
initiali2ation

Recursive call of C\I

 —• 5*

1

Paths sched-
uled usinr
new scheduler

CIA call of
TERM\SCHEDULFI

i.eturr: fioD orig-
inal CIA call of
IiJI\£CHilULHi \{

REHROM("C\I,,,MIL)

Data structures of the
old scheduler are
restored

1

Paths scheduled using
original scheduler

figure 2-3 Nesting of Schedulers

2-60

The last way in which the scheduler may be extended is

to rewrite the procedures which constitute the control

interpreter itself. Although we believe that the

organization imposed by the procedures of Appendix 3

facilitates the construction of new schedulers and

synchronization operations, it is possible that another

organization may be more suitable for a given class of

problems. Hence, the user is free to completely restructure

the CI path in terms of his own data structures, procedures

and the control primitves CIA and CONTPATH.

2-61

4.2 Canonical Inactive Sets

In the last section, we postponed discussion of the way

in which the data structures of one scheduler are mapped

into the data structures of another. Here, we will discuss

the issues involved in the mapping and suggest a way in

which they may be resolved.

If a new scheduler is going to take over responsiblity

for path scheduling, then it must have some way of knowing

which paths are running. PAVECT specifies the active paths,

but the inactive paths may be contained in some arbitrary

data structrure. It is certainly undesirable for each new

scheduler to have to know from which scheduler it is taking

over and how that scheduler maintained the set of inactive

paths. Hence, we desire a mechanism which will allow a

scheduler to be installed without knowledge of the innards

of the previous one.

The solution is straightforward. We define the

canonical form for the inactive set as follows: the inactive

set of paths is in canonical form if and only if all

inactive paths are contained on the queue INACTIVEQ. Each

procedure that initializes a new scheduler as described in

the last section must provide two procedures to be bound as

local variables to the names MAPC (map-canonical) and MAPO

(map-own.) MAPC is used to map the inactive set from the

form used by the scheduler into canonical form; MAPO is used

2-62

to map the inactive set from canonical form into the form to

be used by the scheduler. MAPC and MAPO are both initially

bound in the CI path to the following procedure body:

EXPR(;NONE)NOTHING;

since the initial scheduler keeps the inactive set in

canonical form. The initializing procedure may map the

inactive set from the form being used by the previous

scheduler into the form required by the scheduler being

initialized by first calling the MAPC procedure associated

with the previous scheduler and then calling the MAPO

procedure associated with the new scheduler. When control

is to be returned to a previous scheduler, then the

procedure which has been returned to via the

RETFROM(,,C\r,,NIL), i.e. the procedure which had been used

to initialize the scheduler, can call its own MAPC procedure

and then the previous scheduler's MAPO procedure so that the

inactive set may be returned to the form required by the

previous one. To illustrate, let us assume that a certain

scheduler requires the set of inactive paths be divided into

two queues: one queue for those inactive paths which are

DORMANT and one queue for those inactive paths which are

not. Let us also assume that the procedure used to

initialize this scheduler is named INITD and that it takes

as argument the ROUTINE to be used as the scheduler. INITD

is defined in figure 2-4. Note that ENTERL, which is

defined in Appendix 3, enters the path as the last element

2-6:

of the queue specified by the second argument.

INITIK-EXPR (S: ROUTINE ;NONE)
BEGIN
MAPC(); NT MAP OLD INACTIVE SET INTO CANONICAL FORM;

BEGIN
DECL USERXSCHEDULER:ROUTINE BYREF S;
DECL INACTD:ARQPTR; NT TO BE USED FOR DORMANT PATHS;
DECL INACT:ARQPTE; NT TO BE USED EOR OTHER PATHS;
DECL MAPO,MAPC:ROUTINE;
MAPO<-EXPR(;NONE)

BEGIN
DECL T:ARPTR BYVAL INACTIVEQ.FIRST;
DECL Q:ARPTR;
TAG:T=NIL => NOTHING;
Q<-T.NEXT;
[) T.DORMANT => ENTERL(T,INACTD);

ENTERL(T,INACT) (];
T<-Q;
GOTO TAG
END;

MAPC<-EXPR(;NONE)
BEGIN
IMCTD.FIRST=NIL => INACTIVEQ<-INACT;
INACT.EIRST=NIL => INACTlVEQ<-INACTD;
INACTIVE<-INACT;
INACTIVE. LAST. NEXK-INACTD. FIRST;
INACTIVE. IASK-INACTD. LAST
END;

MAPO(); NT MAP INACTIVE SET INTO NEW EORM;
C\I(5: NT SCHEDULE PATHS WITH NEW SCHEDULER;
MAPCQ NT MAP QUEUES INTO CANONICAL EORM;
END;

MAPOO NT MAP QUEUES INTO FORM REQUIRED
BY OLD SCHEDULER;

END;

Figure 2-4: The definition of INITD

2-64

4.3 Scheduling Errors

In section 2.3.1, we described the three conditions

under which COIvTPATH would refuse to pass control to a path.

Of these three, two can be explicitly checked by the path

scheduler to insure that it does net choose a path which

will be rejected by CONTPATH. It is probably desirable,

although not absolutely necessary, for the path scheduler to

check for these conditions and take appropriate action. JFor

example, a path which has ELGPLG=JFALSE can simply be removed

from the inactive set and a path with DORMAWT=TRUE can

simply be retained in the inactive set.

Recall that a path is being modified if it is active or

if an environment modifying control primitive is being

applied to it. If it is being modified, the MOD field of

its ACTRC has been 1SET by a control primitive. Although

the scheduler can determine if a path is active by examining

the PAVECT, in general it cannot determine if the path is

being modified since control primitives can be applied to

the path asynchronously with respect to the actions of the

CI.

Of course, the check for these conditions can be made
explicitly in the the body of the scheduler, or implicitly
by an error handling routine which responds to the error
generated by CONTPATh' and returns a different path to be
evaluated.

2-65

If the scheduler attempts to pass control to an active

path, then the path must exist in the active set and the

inactive set. Hence, there is either a bu£ in the scheduler

or in one of the procedures which has access to the

schedulers queues.

2-66

5. EXTERNAL INTERRUPTS

In this section, we will discuss the external interrupt

facility of KPEL1. Recall that external interrupts are

required to effect processor multiplexing, c.f. 2.3.4. In

addition, external interrupts provide a mechanism whereby

paths may respond to events which occur outside the scope of

the language.

External interrupts affect the evaluation of paths,

i.e. the evaluation of the path is interrupted by the

occurrence of an interrupt. To be able to speak of one path

sending an interrupt to another, it is necessary to extend

the concept of external interrupt. This extension will be

described below.

5.1 Classes of Interrupts

An interrupt may be loosely defined as a signal which

indicates the occurrence of some event. There must be at

least two agents associated with an interrupt, namely, one

agent to generate the signal and one agent to receive it.

It will be convenient to divide interrupts into two classes:

external interrupts which are generated by (external)

processors, and internal interrupts which are generated by

path evaluators.

An internal interrupt is a signal from a path evaluator

2-67

to the path it is evaluating. The signal is usually sent to

indicate that some error has occurred in the evaluation.

The interrupt occurs synchronously with respect to the

path's evaluation. .For example, if a path attempts to

select a non-existent component of a structure, then a

signal will be sent to the path to indicate the selection

error. In MPEL1, internal interrupts are handled as in EL1

[Weg70]. No change in semantics is necessary for MPEL1

since internal interrupts affect the evaluation of only one

path. When an internal interrupt occurs, the identifier

environment is searched for a binding of an identifier which

is uniquely associated with the interrupt (e.g.

"SELECTIONVFAULT".) If the identifier is found and it is

bound to a procedure definition, then the procedure is

called as the path's response to the interrupt. If no

binding is found, then a standard system error handling

procedure is called.

An external interrupt is a signal which is sent from

one processor to another. The signaling processor may

either be an evaluator or a special processor which is

dedicated to a given task, e.g. a timer, I/O device. The

effect of an external interrupt is to interrupt

asynchronously the evaluation of the path which is being

evaluated by the signaled processor. V.'e may now clarify the

distinction between internal and external interrupts. In

both cases the final recipient of the interrupt is a path.

2-68

In the former case, the signal is generated as a result of

some action taken internally by the path itself. In the

latter case, the signal is generated by some action which is

external to the path. The path is interrupted simply

because it is being evaluated by the processor to which the

signal was sent.

In EL1, as described in [Weg70], there is only one path

of control and only one evaluator, hence, external

interrupts may be handled in the same fashion as internal

ones. The identifier environment is searched for a

procedure which is associated with the particular external

interrupt. In MPEL1, however, there are multiple paths of

control. Consequently, it is possible that a path is not

being evaluated at the time an external interrupt arrives

for which it is 'enabled.' In addition, it is usually

desirable to associate priorities with external interrupts

to facilitate in their processing. EL1 provides no

mechanism for treating interrupts on a priority basis.

Consequently, additional control apparatus is necessary in

order to incorporate external interrupts into the multi-path

control structure of MPEL1.

5.2 Interrupt Structure

In this section, we will discuss a number of issues

relating to the introduction of external interrupts into

2-69

MPEL1. In particular, we will consider the requirements

placed upon any interrupt structure by processor

multiplexing and multiple paths of control.

External interrupts are associated with processors, not

paths. The processor receives the signal and responds to it

by interrupting its current activity and taking some

pre—specified action. Por example, consider the CPU of a

digital computer. When an interrupt occurs, the CPU itself

is interrupted independent of which process it is executing.

Some interrupt program is executed and then the interrupted

process is resumed. The interrupt program can inform the

process about the occurrence of the interrupt by resuming it

at some pre-specified process—dependent location. Thus, if

we associate external interrupts with processors, then they

can be associated with paths by extension.

Although external interrupts are associated with

processors, a language level response to an interrupt must

be evaluated in the environment of a path - whichever path

is being evaluated by the processor when the interrupt

occurs. The response borrows the environment of the current

path because it requires an environment for its evaluation

and the current path just happens to be available.

Paths may wish to respond to interrupts as well. If we

associate responses with interrupts on a path-independent

basis, i.e. one response form per interrupt per processor,

2-70

then it becomes difficult to allow paths to respond

differently to a given interrupt. Conversely, if we

associate the response forms on a path-dependent basis, i.e.

when an interrupt occurs the response form associated with

the current path is used, then it becomes difficult for a

path to insure that it will be notified that an interrupt

has occurred because of processor multiplexing. It is

possible that when an interrupt occurs, the path which is

interested in it is not the one which is currently being

evaluated.

The essential point is that an interrupt structure is

required which will allow a path to be notified of an

interrupt even if the interrupt occurs while the associated

processor is evaluating another path. In addition, paths

must be allowed to respond to interrupts in different ways.

To resolve the issues described above, it would seem

desirable to associate an interrupt structure with each

processor and, in addition, associate a related structure

with each path. The processor level structure may be used

to dispatch the interrupt information to all interested

paths.

5»3 Processor level Interrupts

In section 2.3.3, we indicated that the number of

processors over which paths are being multiplexed was stored

2-71

in NPROC. Let us assume that each of the NPROC processors

has NEI associated external interrupts. Each external

interrupt has a unique identifier associated with it, e.g.

"TIMER", ""LIGHT\PEN", "I0\COMPLETION'.) In addition, each

processor has NPRGLEV priority levels, where 1 is the

highest priority and NPROLEV is the lowest. A processor may

be enabled for one external interrupt at each priority

level, but it may not be enabled for the same external

interrupt on more than one level. Associated with each

external interrupt is a form which is to be evaluated as

response to the interrupt.

A processor may be enabled for an external interrupt by

a call to the control primitive ENABLENPRO.

ENABLE\PRO<-CSUBR (El NAME: SYMBOL, LEV: INT, RESP: 10RM; NONE)

The processor which evaluates this primitive will be enabled

for the external interrupt named EINAME at priority level

LEV with response form RESP. An error is generated if the

processor is already enabled for the interrupt or if the

level is already associated with some interrupt.

A processor may be disabled with respect to an external

interrupt by calling upon the control primitive DISABLE\PRO.

DISAELE\PRO<-CSUBR(EINAME:SYMBOL;NONE)

The processor level interrupt structure is essentially
an abstraction of priority interrupt systems found in
practice on contemporary hardware systems.

2-72

After a call to DISALLE\PRO, the processor is no longer

enabled for EINAME interrupts and the level at which it was

enabled is available for association with another interrupt.

It is sometimes desirable to modify the response form

associated with an interrupt without having to disable and

re-enable it. To facilitate this, the data structure which

associates response forms with interrupts is accessible from

the language, and thus may be modified by assignment. The

response forms for all priority levels of all processors are

contained in the global data structure RESPONSE which is of

mode:

ROW(NPROC,ROW(NPfiOLEV,FORM)).

Hence, RESPONSE[N][M] specifies the response to the

interrupt enabled at level M on processor N. In addition,

the trivial control primitives LEVEL and INUSE may be used

to obtain the interrupt status of the current processor.

LEVEL("TIMER") returns the priority level at which the timer

interrupt is enabled. INUSE(3) returns the symbolic name of

the interrupt enabled at level 3, or NIL if the level is not

currently associated with an interrupt. Hence, if the

"TIMER" interrupt is enabled, then

INUSE(LEVEL("TIMER") V'TIMER".

Note that the data structures which associate external

interrupts with priority levels are not accessible from the

language. This restriction is necessary, since correct

modification of these structures, i.e. for enabling or

2-73

disabling, may require communication with the underlying

machine.

The interpretation of an external interrupt is as

follows. Let us assume that initially there are no

interrupt responses in progress. When an external interrupt

occurs, the interrupted processor evaluates the form

associated with the interrupt In the environment of the path

which it is currently evaluating. If any lower priority

interrupts arrive during the evaluation of the response,

then the response to the lower level interrupt is not

initiated until the higher level response is completed. If

a higher level one arrives during the evaluation of the

response, then the current evaluation is suspended and the

response associated with the higher level one is initiated,

i.e. it is nested within the lower level response. Upon

completion of the evaluation of a response, the priority of

the interrupt associated with the suspended response is

compared with the highest priority of the interrupt

responses which have not yet been initiated. If the former

is greater than or equal to the latter, then evaluation of

the suspended response continues. Otherwise, the evaluation

of the response associated with the highest level waiting

interrupt is initiated. For example, if three interrupts

"X", "Y", and "Z" interrupt the processor, and the

priorities associated with these interrupts are 3, 1 and 2,

respectively, then the arrival of "Y" will suspend the

2-74

evaluation of the response for "X". The response for UY"

v/ill not be interrupted by the arrival of "Z". Upon

completion of the response for "Y", the response for "Z"

will be initiated since it is at a higher priority than "X".

Upon completion of the response for "Z", the evaluation of

the response for "X" will continue.

If the evaluation of an interrupt response is never

completed, then the responses for lower priority interrupts

will never be initiated. For example, if an interrupt

response performs a CIA which subsequently switches the

processor to another path, then the processor will not

initiate any lower priority responses because the interrupt

nesting is recorded in the intra-path control of the. path in

which the response was initially evaluated. In addition, if

the original path is evaluated by another processor, then an

attempt may be made to continue evaluation of a lower

priority interrupt while a higher one is in progress.

Consequently, although it is desirable for interrupt

responses to avail themselves of the power of the CI, they

should always return control to the path in which the

interrupt originally occurred. Hence, processor level

interrupt responses may be thought of as 'borrowing' the

environment of whichever path is being evaluated at the time

An error will be generated by CONTPATH if an attempt is
made to evaluate a different path on the processor, or to
evaluate the path on a different processor.

2-75

that the interrupt occurs.

If an interrupt resjonse is completed by a RETFROM or a

GOTO, then the priority level at which the processor is

evaluating is taken to be the priority level of the most

recently suspended response above the point to which the

RETFROM or GOTO is made, i.e. if the intra-path control is

flushed above the point at which an interrupt response was

initiated, then the response is automatically completed.

Upon completion of the RETFROM or GOTO, evaluation continues

with the most recently suspended response, or the highest

level waiting response, whichever has the higher priority.

We note, however, that although RETFROM and GOTO may be used

by response forms, it is probably undesirable to do so. A

processor level interrupt response may be responding to an

interrupt which is of interest to another path. If the

response form is not allowed to complete properly, then the

path may never receive the information it desires.

Since the actions of processor level interrupt

responses are restricted as described above, an additional

mechanism is necessary to make effective use of external

interrupts. In particular, we specified that external

interrupts would be used to insure that the evaluators were

multiplexed across all running paths. But it is not

possible to use a processor level interrupt to force the

processor to evaluate another path since the evaluation of

2-76

the response form must be completed before the switch can

occur. Secondly, we have not specified how a processor

level interrupts may be used to dispatch an interrupt to

another path. In the next section, we will introduce the

additional control apparatus necessary to achieve these

capabilities.

5.4 Path Level Interrupts

In this section, we will discuss the concept of path

level external interrupts. A path level interrupt is a

signal sent from one path to another. Although path level

interrupts are external interrupts in the sense that the

signal arrives asynchronously with respect to the evaluation

of the path, they may be considered to be pseudo interrupts

in the sense that the interrupt does not take effect until

the path is actually evaluated. Hence, we will refer to

path level interrupts as pseudo interrupts.

Each path has NPALEV priority levels associated with

it, where 1 is the highest priority and WPALEV is the

lowest. A path may be enabled for one pseudo interrupt at

each priority level, but it may not be enabled for the same

for example, the form CIA(P,MYPATH), where F is a
procedure which puts the current path on the INACTIVEQ and
sets LASTRUN to NIL (forcing the CI to schedule some other
l^ath), could not be used since control leaves the path from
within the CIA control primitive and thus the evaluation of
the response form is not completed.

2-77

pseudo interrupt at more than one level. Associated with

each pseudo interrupt is a form which is to be evaluated as

response to the interrupt. Thus, the path level pseudo

interrupt structure parallels the processor level 'real'

interrupt structure. A pseudo interrupt is referenced by a

symbolic name, e.g. "WALDO", "PLEASE\TERMINATE". A number

of control primitives are defined to effect enabling,

disablinr, masking and generation cf pseudo interrupts.

Their description follows.

The last argument to each of the control primitives

described below specifies the path to which the actions of

the primitive are to be applied. If the argument is not

supplied to the primitive, i.e defaulted to NIL, then the

actions are to be applied to the path which executes the

call. If the path to which the primitive applies is not the

current path, then it must not be modified while the

primitive is being applied. Consequently, the path cannot

be active.

The control primitive ENABLE\PATH enables a path for a

pseudo interrupt.

ENABLE\PATH<-CSUBR (PEINAME: SYMBOL, LEV: INT,

RESP:FORM,PATH:ARPT R;NONE)

The path is enabled for pseudo interrupt PEINAME at level

LEV with response form RESP. An error is generated if the

path is already enabled for a pseudo interrupt at level LEV

2-78

or if the path is already enabled for PEINAME interrupts at

some level.

A path may be disabled with respect to a pseudo

interrrupt by calling upon the control primitive

DISABLE\PATH.

DISABLE\PATH<-CSUBR(PEINAME:SYMBOL,PATH:ARPTR;NONE)

After a call to L1SABLE\PATH, the path is no longer enabled

for the interrupt specified by PEINAME and the level at

which PEINAME was enabled is available for association with

another pseudo interrupt.

A pseudo interrupt may be generated by a call to

INTERRUPT.

INTERRUPT<-CSUBR(PEINAME:SYMBOL,P:ARPTR;NONE)

Let us first assume that P is not the path which called

INTERRUPT. Recall that P cannot be active. If the path

specified by P is enabled for PEINAME interrupts at some

level, then the response form that it has associated with

PEINAME will be evaluated in its environment as soon as it

is evaluated by some processor. If P was in the midst of

the evaluation of a response to some pseudo interrupt at a

higher priority level, then the response to PEINAME will be

evaluated when all higher priority responses have been

completed. The interrupt is only 'pseudo' since no

processor is physically interrupted. INTERRUPT merely

records information in the path's activation record. To

2-79

send a pseudo interrupt to an active path, it is necessary

to physically interrupt the processor which is evaluating

the path and then use the primitive INTERRUPT. Hence, a

'real' external interrupt is required. The control

primitive which provides this facility is described in the

next section.

If P specifies the path which has called INTERRUPT,

then the response to the interrupt is immediately evaluated

in the current path's environment, unless the path is

currently evaluating a higher level interrupt response.

The interpretation of path level interrupts is

identical to that of processor level interrupts, as

described in the last section. Lower priority level

responses are delayed until higher level ones complete.

Higher level responses take precedence over the evaluation

of lower level ones. However, we have not specified the

relation between processor interrupt levels and path

interrupt levels. The relation is as follows: the path

interrupt levels are of strictly lower priority than

processor interrupt levels. Hence, any processor interrupt

takes precedence over any path level interrupt.

Consequently, if a processor level response generates path

level interrupts for the current path, then the path level

responses will not be initiated until all processor level

responses have been completed.

2-80

The addition of the path interrupt structure resolves

the problems described at the end of the last section,

first, to force processor multiplexing, the external

interrupt can generate a pseudo one which will be processed

after all processor level responses are completed. The

response to the pseudo interrupt can safely switch the

processor to another path via a CIA call. The original path

is simply left in the midst of a path level interrupt

response. Secondly, a REEFROM or GOTO out of a path level

response can only affect the current path's processing.

Hence, if a processor level interrupt desires to perform a

RETFROM or GOTO without any effect upon a lower priority

processor interrupt, then it can generate a path level one

to perform the desired action. Finally, the processor level

interrupt response may dispatch the fact that a given

interrupt has occurred by sending pseudo interrupts to all

interested paths.

It is sometimes desirable to mask a path against

certain pseudo interrupts, i.e. a path may wish to remain

enabled for a given interrupt, but have the interrupt
*

response delayed for some time. Hence, a mechanism is

Note that this cannot be achieved by having the path
generate a self pseudo interrupt at a priority higher than
the interrupt to be masked, since all lower level interrupts
will then be masked as well, which is not necessarily the
desired effect.

2-81

desired which will mask a path against an interrupt while

allowing the occurrence of other interrupts at higher or

lower priority levels. Two control primitives provide this

facility: MASK and UNMASK.

MASK<-CSUBR(PEINAME:SYMBOL,PATH:ARPTE;NONE)

UNMASK<-(£UBR(PEINAME:SYMBOL,PATH:ARPTR;NONE)

If a pseudo interrupt is sent to a path which has masked

against that interrupt, then the fact that the interrupt
-it-

occurred is recorded, but no response is generated. If an

interrupt is UNMASKed and if the interrupt occurred while it

was masked, then the response is generated according to the

priority rules described above.

The data structures associated with path level

interrupts are stored in the activation record of each

path. Hence, they are accessible from the language. As

was the case with processor level interrupts, the response

forms associated with pseudo interrupts may be directly

modified without disabling and re-enabling the interrupt.

Note, however, that direct modification of other structures

may not have the desired effect, for example, if a path

Multiple interrupts are lost. Alternatively, we could
maintain a count of the number of times a given pseudo
interrupt has occurred. An interrupt structure of this sort
would be a straightforward extension of the current
facility.

**

The structures are described in detail in section
4.3.13.

2-82

attempts to unmask itself, with respect to a certain

interrupt, by direct modification of the appropriate data

structure, then the response form will not be automatically

triggered. Hence, the structures may be examined to discern

the status of a path's interrupt levels, but most

modifications should be made via the appropriate control

primitive.

5.5 Relation to Processor Multiplexing

In section 2.3-4, we mentioned the use of interrupts in

processor multiplexing but deferred explanation; we now

remedy this omission. There are two problems to be solved.

First, how can an idling processor be assigned to an

inactive path? Second, how can an active path occasionally

be forced to perform a CIA call which will give its

processor to another path? We will assume that the external

interrupts "TIMER" and "PRO\PRO" are associated with each

processor. A "TIMER" interrupt is sent to its associated

processor after a fixed interval of time has elapsed.

Hence, a processor may keep track of how long it has been

evaluating a particular path. A "PRO\PRO" interrupt is one

which is sent from one processor to another. We will assume

that each processor is able to send a "PRO\PRO" interrupt to

any other processor. A "PRO\PRO" interrupt may be used to

force a processor to stop evaluating a particular path.

2-83

The control primitive STOP\PATH may be used to send a

"PRO\PRO" interrupt to a processor.

STOP\PATH<-CSUBR(P:ARPTR;NONE)

STOP\PATH sends a "PRO\PRO" interrupt to the processor which

is evaluating path P. If P is not currently being

evaluated, then no action occurs. STOP\PATH may only be

called from the environment of the CI. This restriction is

necessary since the assignment of processors to paths can be

unambiguously determined only by the processor evaluating

the CI

We will assume that each processor is enabled for

"TIMER" and "PRO\PRO" interrupts, viz.

FNAELEVPRO("PRO\PRO", 1 ,PRO\PRO\K)RW)

ENAELE\PRO("TIMER »,2,TIMER\EORM)

In addition, we will assume that GET\PATH enables each path

P for the following pseudo interrupts.

FNABLE\PATH("CI\TO\PATH",1,CI\PATH\PORM,P)

FNAJSLE\PATH(MTIME\OUT" ,2,TIME\0UT\F0RM,P)

The four forms are given in Appendix 3- Their use in

processor multiplexing will be described informally below.

In section 2.3.3, we postjoned discussion of the

structure PIVECT, which is defined in the environment of the

control interpreter. Here, we describe its use in the

processing of "PRO\PRO" interrupts. The PIVECT is used

essentially as a communication vector to allow one processor

2-84

to specify a list of actions (forms to be evaluated) to be

taken by another processor, where PIVECT[N] is the list for

the N th processor.

Por example, let us assume that the scheduler wishes to

interrupt an idling processor because some real path

requires evaluation, let as also assume that the idling

path for the processor is P, i.e. PAVECT[K].IDLEPATH=P,

where N is the number of the processor. The scheduler

executes STOP\PATH(P). A "PROYPRO" interrupt is sent to the

idling processor. The response form (PRO\PRO\FORM)

generates a pseudo interrupt *»CI\TO \PATK" for path P. The

response form CI\PATH\10RM passes control to the CI and

evaluates all forms on the list PIVECT[PROCNUM]. In

particular, if the scheduler has previously placed a form on

the list which when evaluated will set LASTRUN to NIL, then

upon completion of the CIA call the processor will be

assigned to an inactive path. Hence, the effect of the

above scenario is to force an idling processor to pass

control to the CI where the scheduler can assign it to an

inactive path. Note that the pseudo interrupt is necessary

since the processor is to be switched to another path. All

processor level responses must be completed before the

switch can be made.

STOP\PATH may also be used in conjunction with PIVECT

to force an active path to cease evaluation. An appropriate

2-85

form can be put on the PIVECT list of the processor which is

evaluating the path and then a call to STOP\PATH can be

executed. When control passes to the CI due to the response

to the "CIXTOVPATH" interrupt, then the evaluation of the

form on the PIVECT list can take the desired action. For

example, examine the definition of the procedure SUSPEND in

section 3.3. If path P wishes to suspend an active path Q,

then P adds a form to the PIVECT entry for the processor of

Q and then executes STOP\PATH(Q). When the form is

evaluated, Q will be suspended and P can be allowed to

resume execution.

It is important to note that if a "PRO\PRO" interrupt

is sent to the processor of a path which is waiting to

perform a CIA call, then the interrupt response will be

evaluated before the CIA call is executed. Consequently, it

is impossible for the processor to be switched to another

path before the interrupt response is generated. Thus, the

response will always be generated in the environment of the

path specified by STOP\PATH.

We now turn to the problem of how to effect the

This is not true if the processor is enabled for
"PRO\PROn interrupts at some lower priority and the CIA call
in question is executed by the response to a higher level
processor interrupt. In this case, however, it is still
impossible for the processor to be switched to another path
before the response is evaluated due to the constraints upon
processor level interrupts, c.f. 2.5.3-

2-86

multiplexing of processors over all paths. The "TIMER"

interrupt provides a straightforward solution. Whenever a

timer interrupt occurs, the associated response form

decrements a count stored in the activation record of the

path that it is evaluating. When the count reaches zero,

the pseudo interrupt "TIMEXOUT" is generated. The response

to the pseudo interrupt performs a CIA call which places the

path at the end of the IWACTIVEQ and sets LASTRUN to NIL to

indicate that a new path should be scheduled to run on the

processor. The count is stored in the integer component

TICKS\LEFT and is initialized by the scheduler to be the

number of timer 'ticks' which may occur before the path is

forced to 'time-out.' As was the case with "PRO\PRO"

interrupts, a pseudo interrupt is required since the

processor level response must be completed before the

processor can be assigned to another path.

5.6 Data Passage

In the previous sections, we have neglected to discuss

the fact that an external interrupt may have data associated

with it. For example, a light-pen interrupt may specify

spacial coordinates. We will assume that the information

associated with a given external interrupt will be stored as

the value of an associated global variable. As the data is

completely dependent upon the type of external interrupt and

upon the implementation of the language, e.g. how I/O

2-87

transactions are specified, we will not specify the names or

the modes of these variables.

The primary issue with respect to external interrupt

data is whether or not there is a mechanism which assures

that the data structures involved can be updated safely.

.For example, suppose that an external interrupt "POO" has

associated with it some data D. Whenever a "F00" interrupt

occurs, D is to be added to a list of Ds which are to be

processed by a path P. After P processes an element of the

list, it removes the element and processes the next one.

Some synchronization is required to insure that the list is

updated safely. The solution is straightforward. The

response to the "POO" interrupt performs a CIA call to add D

to the queue and then sends a pseudo interrupt to path P to

indicate that additional data has arrived. P also performs

a CIA call to remove elements from the list. Hence, the

list will be safely updated since only one path at a time

can pass control to the CI.

There is one hitch, however! Suppose that the "POO"

interrupt occurs on the processor which is evaluating the CI

path during the performance of the CIA called procedure

which removes elements from the queue. How can the

information be added safely to the list? Many solutions are

possible. The simplest one seems to be as follows. If P

has passed control to the CI to delete an element from the

2-88

list, then P is not currently being evaluated "by a

processor. The interrupt response can detect this case by

using MYPATH and by checking the value of LASTEUW. D can be

stored directly into path P using one of the control

primitives described earlier, e.g. PSTORE. When P resumes

evaluation, it can detect that the data was stored in its

environment while the CIA call was being evaluated, and

thus, process it directly.

2-89

6. INDEX TO CHAPTER 2

CIA 41

CIA\ARG 42

CIA\EN 42

CIA\RESUIT 43

CI\PATH\10RM 83

CLEAR 31

CONTPATH 44

COPY 39

DELETE\PATH 15

DEPEKV 34

]JISALLE\PATK 78

LISABLE\PRO 71

DORMANT 24

DPAP 34

ELGZLG 15

ENAPJLE\PATH 77

ENABI£\PRO 71

EVAL 40

GET\PATH 15

GOTO 37

INACTIVEQ 48

INTERRUPT 78

IN\USE 72

2-90

LASTRUN 48

LEVEL 72

MASK 81

MDEP 33

MOD 45

MYPATH 39

NFPROC 49

NPROC 48

PAP 17

PAPQ 17

PAVECT 49

PCIAR 41

PFETCH 26

PIVECT 50, 83

PROCNUM 49

PRO\PRO\FORM 83

PSTORE 26

RESPONSE 72

RETEROM 38

RUNSET\ELAG 50

STKEFLG 15

ST0P\PATH 83

TERMINATION\IDRM 28

2-91

TICKS\LEfT 66

TIMH?\iORM 83

TIME\OUT\K)RK 83

TSET 31

UNMASK 81

USER\SCHEDULER 49

Chapter 3

EXTENSIONS

In this chapter, we illustrate by example how the

primitives and framework of MPEL1 can be used to synthesize

a wide variety of multi-path control structures. The

examples range in complexity and familiarity from coroutines

to relatively continuous evaluation. This chapter serves

two purposes. .First, it reinforces the reader's

understanding of the multi—path facility by presenting

examples which have appeared frequently in the literature.

Thus, it serves as a supplement to the informal description

of Chapter 2. Second, it demonstrates the power of the

facility for both the implementation and clarification of

complex control structures.

In each of the sections below, the desired multi-path

behavior is described informally and then a set of MPEL1

procedures which effect the control structure are presented.

These procedures, described in terms of the control

primitives, may be viewed as defining extensions to MPEL1 to
*

allow for the specified control structure. In some

sections, we have included a programming example to

Of course, these extensions appear syntactically as
procedure calls. More convenient notations can be realized
through the use of a syntax-extension facility, c.f. 1.1.1.

3-2

illustrate how the extension might be used in practice.

All of the examples in this chapter assume that the

control interpreter is being driven by the procedures of

Appendix 3. Hence, the Cl environment is as described in

section 2.3.3.

1. COROUTINES

A set of paths exhibit a coroutine relationship if only

one path from the set is being evaluated at any given time,

c.f. 1.2.1, 2.1.3. The active path may 'resume' another

path, which implies that control is to be transferred from

the former to the latter leaving the evaluation state of the

former intact. Evaluation of the latter path proceeds from

the point it was at the last time it was active. Here, we

will define the control functions COCALL, which is used to

initialize a coroutine path, and RESUME, which is used to

transfer control between coroutine paths, and demonstrate

their use in solving a simple problem.

COCALL takes as argument a procedure call to be

evaluated in a new path. It creates a new path, uses PAP to

set up the procedure call and a dummy call to RESUME, and

returns a pointer to the new path.

3-3

COCALL <- EXPR(COCALLP:EORM UNEVAL; ARPTR)
BEGIN

DECL P:ARPTR EYVAL GET\PATH(1);
PAP(COCALLP.P);
PAPQ(RESUME(NIL,NIL),P);
NT Dummy call to RESUME for first

resumption;
P

END;

RESUME takes two arguments. The first specifies the

path (PATH) to which control is to be passed. The second

specifies the value (V) to be returned from the call to

RESUME contained in the environment of PATH. RESUME PAP's a

call to RETEROM into the environment of PATH. The procedure

to be returned from is RESUME, i.e. the call to RESUME in

the environment of PATH, and the value to be returned is V.

RESUME then transfers control to PATH by CIA calling an

explicit procedure which simply sets LASTRUN to PA1H so that

when control leaves the CI, PATH will be evaluated instead

of the original path. When PATH is evaluated, the RETEROM

is executed and V is returned as the value of the call to

RESUME in the environment of PATH. Note that the original

path is left in a state such that when another path tries to

resume it, then the call to RESUME just described is the one

which will be returned from. Also note that the first time

a COCALLed path is resumed a return is made from the dummy

call to RESUME and then the COCALLed procedure call is

evaluated.

3-4

RESUME <- EXPR(PATH:ARPTR, V:ANY; ANY)
BEGIN

PAPQ(RETEROM("RESUME",V),PATH);
CIA(EXPR(P:ARPTR; NONE)(LASTRUN<-P),PATH)

END;

Consider the following problem: given two binary trees

x and y, where x and y have the same number of nodes but not

necessarily the same structure, walk each tree in prefix

order and assign to each node of y two times the node value

of the corresponding node of x. E.g,.

figure 3-1. Trees x, y and modified y

The data structure definitions are:

TREE <- PTR(NODE);

NODE <- STRUCT(LS:TREE, RS:TREE, NOLE\VAL:INT);

To solve this problem, we will define a procedure

TREE\DOUBLE which will create two new paths Px and Py (using

COCALL) making a total of three paths, including the path in

which TREE\DOUBL£ is called (which we will refer to as Po.)

Px (Py) will perform the prefix walk of tree x (tree y.) Po

will RESUME Px (Py) when it requires the next node of tree x

3-5

(tree y). When RESUMEd, Px (Py) will walk to the next node

of the tree and then RESUME Po, passing it a pointer to the

node. Note that since Px and Py are separate paths they

retain their internal state upon returning the next node to

Po.

TREE\IX)UB1E is defined as follows.

TREE\DOUBLE <- EXPR(X:TREE, Y:TREE; TREE)
BEGIN

DEC! PX,PY:ARPTR;
DFCL NX,NT:TRIE
PX <- COCALL(V.ALK(X,MYPATH));
PY <- COCALLCV'ALKCYjMYPATh1));

NT Create the paths Px and Py
and set up calls to WALK
in their environments;

LOOP: NX <- R£SUME(PX,NIL);
NY <- RESUME(PY,NIL);

NT Resume Px to get the next
node of x, which is then
bound to NX. The result of
RESUME is a pointer to the
next node. Do the same
for Py;

NX=NII => Y;
NT Px returns NIL

when all nodes have been
walked;

VAL(NY).NODE\VAL <- 2*VAL(NX).N0DE\VAL;
NT Make the node of y be two

times the node of x;
GOTO LOOP

END;

The procedure WALK is defined as follows:

WALK <- EXPR(T:TREE, COPATH:ARPTR; NONE)
BEGIN

WALK1(T); NT Walk the tree;
RESUME(COPATH,NIL)
NT Resume Po with NIL to indicate

that all nodes have been processed;
END;

where

3-6

WALK1 <- EXPR(T:TREE; NONE)
BEGIN

T=NIL => NOTHING;
" RESUME('COPATH,T); NT Resume Po with T;
WALKI(T.LS); NT Walk the tree via

recursive calls;
WALKI(T.RS)

END;

2. SYNCHRONIZATION

In section 1.2.1, we indicated that semaphores and

their associated operators (P and V) may be used to

synchronize parallel processes, but deferred explanation.

Here, we will show how P and V may be defined in MPEL1.

As described by Dijkstra [Di68a], a semaphore is a

'special-purpose' integer upon which only two operations are

valid - P and V. The V operation increases the value of the

semaphore by 1 in a single indivisible operation. The P

operation decreases the value of a semaphore by 1 as soon as

the resulting value would be non-negative (>0). Hence, a P

operation on a non-positive (_<0) semaphore cannot be

completed until another process performs a V operation on

the same semaphore. The P operation, therefore, represents

a potential delay in the execution of a process. Note that

if some N processes all perform a P operation on a semaphore

whose value is zero, and some other process performs a V on

it, then only one of the N processes will be allowed to

proceed.

3-7

In MPEL1, a semaphore may be defined as a pointer to a

STRUCT consisting of two components, viz.

SEM <- PTR(SEM/ELT);

SEM\ELT <- STRUCT(COUNT:INT,WLIST:ARQFTR);

The first component COUNT is an integer that specifies the

semaphore's value. The second component is a queue of

ACTRCs (linked together through their NEXT components) which

corresponds to those paths which have started, but not yet

completed, P operations on the semaphore. Hence, the WLIST

holds all paths whose progress has been delayed due to the

non-positivity of the semaphore. Here, the indivisibility

of P and V is effected by performing the operations in the

environment of the CI, where the data structures can be

safely modified. The MPEL1 definitions of P and V are as

follows:

P<-EXPR(X:SEM; NONE)
BEGIN

DEC! Y:SEM\ELT BYREF VAl(X):
MYPATH H PCIAR => CIA(,,P",XJ;
Y.COUNT GT 0 => Y.COUNT <- Y.COUNT-1;
ENTER!(LASTRUN, Y.WLIST);
LASTRUN <- Nil

END;

V <- EXPR(X:SEM; NONE)
BEGIN

DEC! Z:ARPTR;

The mode ARQPTR is defined as a STRUCT(.FIRST :ARPTR,
LAST:ARPTR),c.f. 3-3.3.

**

Recall that PCIAR points to the CI's ACTRC and that
ENTER! adds the path which is its first argument to the end
of the queue specified by its second argument, c.f.
Appendix 3.

3-8

DECL Y:SEM\ELT BYREE VAL(X):
MYPATII # PCIAR => CIAC'V'SX);
Y.COUNT <- Y.COUNT+1;
Y.WLIST.PIRST=NIL => NOTHING;

NT Complete the P operation for
one delayed path;

Y.COUNT <- Y.COUNT-1;
Z <- Y.WLIST.FIRST;
Y.WLIST.PIRST <- Y.WLIST.PIRST.NEXT;
Y.WLIST.PXRST=NIL -> Y.WLIST.LAST <- NIL;
ENTERL(Z, INACTIVEQ);
RUNSET\PLAG <- TRUE

END;

A P operation is realized by CIA calling the same

procedure P with the SEM as argument. Hence, if a path

executes P(S), F(S) is also executed in the CI. Here, if

the count is positive, then it is decremented by one and the

path is allowed to continue. Otherwise, the path is entered

on the semaphore's WLIST and LASTRUN is set to NIL to

indicate that the path cannot proceed. The scheduler will

choose some other path to run. Thus, the P operation

performed by the path is not allowed to 'complete.'

The V operation causes V(S) to be applied in the CI

environment. Here, the count is incremented by one. If the

WLIST is empty, then no further action is taken. Otherwise,

the procedure 'completes' the delayed P operation for some

path on the WLIST by decrementing the count, removing the

path from the list, adding the path to the inactive set so

that it will be scheduled, and setting RUN£ET\FLAG to TRUE

to indicate to the scheduler that there exist additional

paths to be run.

3-9

If a semaphore, say S, is initialized to 1, then it may

be used to control a single—access resource, provided that

all paths perform a P(S) before accessing the resource and a

V(S) upon completion. Hence, once a path has performed a

P(S) all others will be prevented from accessing the

resource until the corresponding V(S) is performed. If,

however, a semaphore S is initialized to some n>1, then n

processes may perform P(S) before the semaphore becomes

non-positive. A semaphore initialized in this way can be

used to represent the n—fold availability of a resource,

(e.g. n tape drives.)

Saul and Kiddle [Sa71] have shown that if P and V are

allowed to return values, then the number of different

semaphores and the number of references to semaphores in a

program can be reduced. Por example, a list of free

'buffers' could be associated with a semaphore and the

semaphore initialized to the number of buffers. The P

operation removes one buffer from the list and returns a

pointer to the buffer as its value. The V operation takes

an additional argument which is a pointer to a buffer to be

returned to the free list. Hence, a single extended

semaphore is used both to maintain a count of the free

buffers and to synchronize access to a free list as opposed

to having one semaphore maintain the count and a second

synchronize access. The definition of extended semaphores,

as described above, is straightforward in MPEL1. The mode

3-10

SEi-i\ELT can "be modified to include a pointer to the list and

the definition of P (V) can be changed to remove (return)

buffers to the list while control resides in CI.

Variations on P and V, such as wait and cause in

0REGAN0 [Ee71], can be constructed in MPEL1 by defining the

appropriate data structures and then using the CI to provide

indivisble operation coupled with a mechanism for indicating

that a previously blocked path may now continue execution.

3. PARALLEL PROCESSING

In this section we will discuss a set of procedures

which may be used to manage paths which are being evaluated

concurrently, i.e. as asynchronous processes. These

include procedures which allow for the creation,

synchronization, suspension, and termination of parallel

paths.

Por this section we will assume that the following

components have been added to the definition of ACTRC, i.e.

they are extended components, c.f. 2.2.1.

ACTRC<—STRUCT(
PAL:STRUCT(OWNER:ARPTR,WLIST:ARQPTR),

If two paths are to be evaluated concurrently, then
they may be evaluated simultaneously, sequentially in any
order, or in an interleaved fashion. In particular, no
assumption is made as to the relative speeds of (the
evaluations of) the paths. This assumption is consistent
with standard definitions of parallel processing [Li68a].

5-11

PV ALRET: BOOL, PVAI,Q:ARQPTR,PAVAL: REP, ...);

PAL is a path-access-lock which is used to synchronize

access to the activation record and environment of the path.

PVALRET is TRUE if and only if the path has returned a

value. PVALQ is a queue of paths waiting for the path to

return a value. PAVAL is a pointer to the 'value' of the

path. These components will be discussed in more detail

below.

The procedure CREATE takes a single argument which is a

procedure call to be evaluated asynchronously with respect

to the current path. CREATE allocates a new path, PAPs the

procedure call into its environment and then enters the path

on the INACTIVFQ so that it will be assigned to a processor.

Note that RUNSFT\FLAG is set to TRUE to inform the scheduler

that additional paths may be scheduled, c.f. 2.3.3. The

TERMINATI0N\PORM will be discussed later in this section.

The current path and the CREATEd path are evaluated

concurrently.

CREATE<-EXPR(CREATEP:PORM UNEVAL; ARPTR)
BEGIN

DECL CREATEP:ARPTR;
CREATEP <- PAP(CREATEP, GETXPATH(1));
CREATEP.TERMINATION\PORM <-

QUOTE(TERMV(LAST\VALUE,MYPATH));
NT See the discussion of TERMV below;
ENTER\INACTIVBQ(CREATEP);
CREATEP

END;

ENTER\IKACTlVEQ(P:ARPTR;NONE)
BEGIN

MYPATK//PCIAR => CIAC'ENTERXINACTIVEQ", P);

3-12

Ei,TERL(P,INACTIV£Q);
RUNSET\PLAG <- TRUE

END;

The procedure RESUME, which is used to transfer control

between coroutines, uses the primitive PAP without

determining if the path PAPed into is active or not. RESUME

assumes that the path is not active. This assumption is

reasonable since in a coroutine relationship only one path

is active at a time. With asynchronous paths, however, the

above assumption is not valid - two paths may be active

simultaneously. If a path attempts to PAP' a procedure into

the environment of an active path, then an error occurs,

c.f. 1.1.3- An error also occurs if two paths

simultaneously attempt to PAP procedures into the

environment of a third. In general, a mechanism is required

which allows one path to examine and modify another one

without interference from any other concurrent path. In

addition, a control function is required which will force a

path to become not active and prevent it from becoming

active for some period of time.

We could associate a binary semaphore, i.e. one whose

COUNT is initialized to 1, with each path to synchronize

access. When one path wishes to access another, then it

performs a P operation on the path's semaphore, modifies the

path, and then performs a V operation to release the path.

In the last section, however, we observed that extended

semaphores are sometimes more convenient than pure ones.

3-13

Here, although semaphores are sufficient to provide the

desired synchronization, they are deficient in one respect:

the semaphore does not specify who has access to the path.

It only records the fact that some path is accessing it.

The lack of information can be inconvenient in certain

situations. For example, if a path PO passes a path P1 to

some procedure f, viz.

f(pD

and f must modify the environment of P1, then f has no way

of knowing whether or not PO already has access to the path.

In particular, if PO has access to P1, having performed a P

on the appropriate semaphore, and f performs a P on the same

semaphore, then PO will be permanently blocked. Hence, f

would have to take a second argument which specifies whether

or not PO already has access to P1.

In lieu of P and V, we will use the procedures LOCKP

and UNLOCK! to synchronize access to a path. LOCKI takes an

ARPTR as argument and returns FALSE if the path executing

LOCKP already has access to the path. Otherwise, it returns

TRUE as soon as the path may have access. Hence, a

procedure can determine whether or not the path in which it

is called already had access at the time it was called.

UNLOCKP allows some other path to have access to the path

which is the argument to UNLOCKP. LOCKP and UNLOCKP use the

PAL field of the activation record which is a structure that

consists of an OWNER field and a WLIST (as in a SEM\ELT.)

3-H

The OWNER field is either NIL (if no path has access) or is

the ARPTR of the path which has access. LOCKP and UNLOCKP

are defined as follows.

LOCKP<- EXPR(P:ARPTR; BOOL)
BEGIN

DECL OWNER:ARPTR BYREF P.PAL.OWNER;
MYPATH#PCIAR =>

BEGIN
OWNER=MYPATH => FALSE;
NT Already locked by this path;
CIA("LOCKP", P);
TRUE

END;
BEGIN

OWNER=NIL => OWNER<-LASTRUN;
ENTERL(LASTRUN,P.PAL.WLIST);
LASTRUN <- NIL

END;
TRUE

END;

UNLOCKP <- EXPR(P:ARPTR; NONE)
BEGIN

DECL OWNER:ARPTR BYREF P.PAL.OWNER;
DECL Q:ARPTR;
MYPATE § PCIAR =>

BEGIN
OWNER=NIl => NOTHING;
CIA("UNLOCKP",P)

END;
(Q<-P.PAL.WLIST.FIRST)#NIL =>

BEGIN
REMOVE(Q.P.PAL.WLIST);
NT c.f. Appendix 3;
ENTERL(Q, INACTIVEQ);
NT Allow path to be scheduled;
RUNSET\FLAG <- TRUE
P.PAL.OWNER <- Q;
NT Q has access to P;

END;
OWNER <- NIL
NT No paths waiting;

END;

Once a path PC has LOCKPed another, say P1, no other

path can access P1. Before PO can modify PI, however, it

must insure that P1 is not active and that it will not

3-15

become active while being modified. The procedure SUSPEND

may be used to achieve this effect. If the path to be

suspended is not active, then SUSPEND simply sets the

DORMANT field of its ACTRC to TRUE to indicate to the

scheduler that the path should not be scheduled, c.f.

2.2.4. If the path is active, then SUSPEND sends a

"PRO\PRO" interrupt to the processor which is evaluating the

path and adds a form to the appropriate PIVECT entry. The

form will be evaluated when the processor transfers control

to the CI due to the "CIXTOXPATH" pseudo interrupt, c.f.

2.5.5. The evaluation of the form causes the DORkANT field

of the path being suspended to be set to TRUE, and allows

the suspending path to continue execution.

SUSPEND <- EXPR(P:ARPTR; NONE)
BEGIN

DECL B:BOOL;
DECL Q:ARPTR;
DECL PROCrINT;
MYPATE H PCIAR =>

BEGIN
B <- LOCKP(P);
NOT P.DORMANT -> CIA("SUSPEND",?);
B -> UNIOCKP(P)

END;
LASTRUN=P =>

BEGIN
P.DORMANT <- TRUE:
ENTER\INACTIVEQ(P);
UNLOCKP(P);
LASTRUN <- NIL

END;

NT Determine if P is active

POR I <- 1,..., NPROC TILL PR0O0 DO
[) PAVECT[I].CURPATH = P => PROC<-I (];
PKOC = 0 => P.DORMANT<-TRUE;
NT P is not active;
PIVECT[PROC] <-

CONS(LIST("SUSPREQ",

5-16

ALLOC(REF LIKE
ALLOC(ARPTR LIKE LASTRUN))),

PIVECT[PROC]);
NT The form is (SUSPREQ P), where P

is the suspending path;
STOP\FATH(P);
LASTRUN <- NIL

END;

SUSPREQ <- EXPR(P:ARPTR; NONE)
BEGIN

ENTER\INACTIVEQ(P);
LASTRUN.DORMANT <- TRUE:
ENTER\INACTIVEQ(LASTRUN);
LASTRUN <- NIL

END;

CONS <- EXPR(A:EORM, B:EORM; EORM) ALLOC(DTPR 01 A,B);

LIST <- EXPR(E:FORM LISTED; FORM) (LIST1(E));

LIST1 <- EXPR(E:EORM; EORM)
BEGIN

E = NIL => NIL;
CONS(EVAL(E.CAR),LIST1(E.CDR))

END;

If the path (PO) calling SUSPEND has already LOCKPed

the path to be suspended (P1) and P0#P1, then upon return

from SUSPEND PO still has access to the suspended path. If,

however, P0=P1 (self-suspension,) then SUSPEND will UNLOCKP

the path.

The procedure CONTINUE allows a SUSPENDed path to

continue execution. CONTINUE simply sets the DORMANT field

of the ACTRC to EALSE. If the path is on the INACTIVEQ then

it will be scheduled as usual. Otherwise, it will only

continue execution when it is put on the INACTIVEQ.

CONTINUE leaves the PAL in the state it was in when CONTINUE

3-17

was called. CONTINUE returns TRUE or FALSE as the path was

or was not suspended.

CONTINUE <- EXPR(P:ARPTR; BOOL)
BEGIN

DECL R, B:BOOL
MYPATH#PCIAR =>

BEGIN
R <-

BEGIN
B <- LOCKP(P);
NOT P.DORMANT => FALSE;
CIAO'CONTINUE'SP);
TRUE

END;
B -> UNLOCKP(P);
R

END;
P.DORMANT <- IALSE

END;

Usin/: the control procedures described above, we can

now define PAPPLY - a procedure which can be used to PAP a

procedure call into the environment of a concurrent path.

PAPPLY uses LOCK! to obtain access to the path. It then

SUSPENDS the path if necessary, PAPs the procedure call, and

then allows the path to continue execution if it was not

suspended previously.

PAPPLY <- EXPR(PAPPLYF:FORM UNEVAL; PAPPLYP:ARPTR; ARPTR)
BEGIN

DECL PAPLYB, PAPPLYSB:BOOL;
PAPPLYB <- LOCKP(PAPPLYP);
NOT PAPPLYP.DORMANT ->

BEGIN
PAPPLSB <- TRUE:
SUSPEND(PAPPLYP)

END;
IAP(PAPPLYF, PAPPLYP);
PAPPLYSB -> CONTINUE(PAPPLYP);
PAPPLYB -> UN10CKP(PAPPLYP)

END;

It is sometimes useful for a path to 'return' a value.

3-18

For example, one path might CREATE a set of paths to be

evaluated concurrently, wait for all of them to terminate

and then use the values computed by the paths. The

procedures WAITV and TERMV, in conjunction with the ACTRC

components PVALRET, PVALQ, PAVAL, can be used to wait for a

path's value and to specify the value to be returned by a

path upon termination, respectively.

WAITV examines the PVALRET component of the path X. If

it is TRUE, then the path has terminated and the value

associated with the path, which is referenced by the PAVAL

component, is returned immediately. Otherwise, X has not

yet terminated. In this case, the current path is queued on

the PVALQ of X to indicate that it is waiting for X's value

and LASTRUN is set to NIL to indicate that the current path

is blocked. WAITV uses LOCKP to insure that X does not

terminate while it is examining the ACTRC.

WAITV <- EXPR(X:ARPTR ;REE)
BEGIN

DECL Y:REE;
DECL E:BOOL;
MYPATH # PCIAR =>

BEGIN
L: B<-LOCKT(X);

X.PVALRET =>
BEGIN

Y<-X.PAVAL;
B->UNLOCKP(X);
Y

END;
CIA("WAITVM,X);
GOTO L

END;
ENTERICLASTRUN,X.PVALQ);
NT Add the path to the queue of paths

waiting for the value of X;
UNLOCKP(X);

3-19

NT Allow other paths to access X;
LASTRUN <- NIL

END;

TERMV can be used to specify that a path P is to be

terminated and that a value V is to be the value associated

with the path. TERMV sets PVALRET to TRUE to indicate that

a value has been returned. If the mode of V is not of class

PTR, then V is copied into the heap and the value of the

path is a pointer to the copy. In any case, a pointer to

the path's value is stored in PAVAL. All paths waiting for

the value (and termination) of the path are added to the

INACTIVEQ so that they may continue execution. DELETE is

called to indicate that the path is no longer eligible for

evaluation. TERMV uses LOCKP to insure that no path

attempts to WAITV for the path's value while it is in the

process of terminating the path.

A CREATEd path may return a value implicitly by exiting

the outermost procedure call in its environment, in which

case the value returned is the result returned by the

procedure. When control underflows in this way, the

TERMINATION\FOPM 'TERMV(LASTVALUE, MYPATH)' is evaluated

which produces the desired effect, c.f. 2.2.6.

TERMV <- (V:ANY, P:ARPTR; NONE)
BEGIN

DECL Q:ARPTR;
DECL B:BOOL;
B <- LOCKP(P)
P // MYPATE -> SUSPEND(P):
P.PVALRET => TERM\ERROR();
V # NIL ->

P.PAVAL <-
BEGIN

3-20

MDCV^CLASS^'PTR" => V;
ALL0C(MD(V) LIKE V)

END;
P.PVALRET <- TRUE;
Q <- P.PVALQ.FIRST;

*

WHILE Q // NIL DO
BEGIN

REMOVE(Q, P.PVALQ);
ENTER\IMCTIVEQ(Q);
Q<-P.PVALQ.FIRST

END;
P/'MYPATH => r)DELETE(P); B => UNLOCKP(P) (];
DELETF,(P)
NT DELETE is described below;

END;

The procedure DELETE may be used to indicate that a

concurrent path is no longer eligible for evaluation.

DELETE suspends the path if necessary, and then calls

DELETE\PATH. Self-deletion always leaves the PAL unlocked

so that other paths may access the deleted path's ACTRC.

DELETE <- EXPR(P:ARPTR; NONE)
BEGIN

DECL B:B00L;
MYPATH//PCIAR =>

BEGIN
B <- LOCKP(P);
P//MYPATH -> SUSPEND(P);
CIA(,,DELETE,,,P);
£ -> UNLOCK(P)

END;
DELETE\PATH(P);
P=LASTRUN =>

BEGIN
P.DORMANT <- TRUE;
UNLOCKP(P);
LASTRUN <- NIL

END
END;

Since the procedure CREATE uses the control primitive

PAP to initialize the computation to be performed by the

'WFILE f DO g' is an abbreviation for an iteration with
a zero step, i.e. it is equivalent to 'IQR I<-1,1, ..., N
WHILE f DO g .

3-21

concurrent path, there are no restrictions placed upon the

evaluation of paths so CREATEd. In particular, there are no

constraints placed upon the intra-path control of an

individual path. Such freedom is feasible since no path can

directly reference the environment of another. All shared

data lies in the heap.

A fork statement, c.f. 1.2.1, can be used to produce a

multi-path organization in which one control path creates a

set of paths to be evaluated concurrently and the creator

path resumes execution only after all PORKed control paths

have completed their execution. In this restricted control

regime the PORKed paths may obtain references to the

environment of their creator since the creator is

constrained to wait for their termination. The procedure

PORK can be used to effect this organization. PORK takes a

list of procedure calls as its single argument. Por each

element of the list it allocates a dependent path, c.f.

2.2.8, and DPAPs the procedure call into the path. The new

paths are put on the INACTIVEQ so that they will be

evaluated concurrently and then PORK waits for all of the

paths to terminate. PORK returns a ROW(REF) whose

components are the values returned (in the sense of WAITV

and TERMV) by the PORKed paths.

PORK <- EXPR(PORKL:PORM LISTED; ROW(REP))
BEGIN

DECL F0RKN:1NT BYVAL LENGTHX(lORKl);
DECL PORKI:ROV/(ARPTR) BYVAL

CONST(ROW(ARPTR) SIZE PORKN);
DECL PORKV:ROW(REF) BYVAL

3-22

CONST (ROW (REP) SIZE FORKN);
FOR FORKK-1, ..., FORKN DO

BEGIN
FORKP[FORKI]<-DPAP(FORKL.CAR,

MDEP(GET\PATK(1)));
FORKP[FORKI] .TERMINATION\FORM<-

QUOTE(TERMV(LAST\VALUE,MYPATE));
ENTER\IMCTIVEQ(PORKP[PORKI]);
NT Start the path;
FORKL<-FORKL.CDR;
NT Next procedure call
FORKL#NIL => NOTHING;
FOR K-1 ,..., FORKN DO
FORKV[I]<-WAITV(FORKP[I])
NT Wait for all paths to terminate;

END;
FORKV
NT Return the ROW of values;

END;

LENGTHX <- FXPR(F:FORM;INT)
BEGIN

F = NIL => 0;
1 + LENGTEL(F.CDR)

END;

The advantage of the FORK organization is that it

allows an argument to a concurrent process to be passed

BYREF, even if the argument is a stack object. Hence, a

path can construct a 'large object' on its stack and then

pass it to concurrent paths without causing the object to be

copied. With CREATE it would be necessary to allocate the

object in the heap in order to allow concurrent paths to

access it. For example, suppose we would like to compute

C <- (A MM B) MA (B MM A);

where A, B and C are NxN matrices and MM and MA represent

matrix multiplication and addition, respectively. Let us

also assume that we would like to perform the two matrix

multiplications concurrently and to compute the sum of the

3-23

two intermediate matrices as soon as each row is available.

We will create 3 FCRKs. The first fork will compute B MM A,

the second will compute A MM B, and the third will compute

the sum. The first two forks will signal the third, using

semaphores, every time they have completed a row. Assuming

that M <- ROW(N,ROW(W,INT)) and that N, A, B and C are

defined in the environment, we have

BEGIN
DECL LA,AB:M;
DECL SAB,SBA:SEM BYVAL ALLOC(SEM\ELT);
FORK(MUX(A,B,AB,SAB),

MUL(B,A,BA,SbA),
SUM(C,AB,BA,SAB,SBA))

END;

where

MUL <- FXPR(X:M, Y:M, Z:M, S:SEM; NONE)
BEG IK

FOR K-1,...,N DO
EOF. J<-1,...,N DO

BEGIN
Z[I][J1 <-

BEGIN
FOR L<-1,...,N DO

S<-S + X[I][L] * Y[L][J];

END;
v(s)
NT Indicate row completed;

END
END;

and

SUM <- EXPR(RES:M, X:M, Y:M, SX:SEM, SY:SEM; NONE)
BEGIN

FOR I <- 1,...,N DO
BEGIN

p(sx)*
NT Wait for row of X;
P(SY);
NT wait for row of Y;
NT Row I is ready;
FOR J <- 1,...,N DO

RES[I][J] <- X[I][J]+Y'.r/".J]

3-24

END
END;

Since FORK is used, the matrices A, B, C and AB are not

copied when passed as arguments to the concurrent paths.

4. SIMULATION

In this section, we will present a set of MPEL1

procedures which may be used to effect a clock driven

simulation. We will use the organization and terminology of

the simulation language SIMUA [Da66]. Hence, this section

also demonstrates how the control structure of an existing

language may be synthesized using the primitives and

framework of MPEL1.

In SIMULA, c.f 1.2.1, a simulation consists of the

processing of a time ordered sequence of events (called

event notices.) Associated with each event notice is the

system time at which it is to occur and a single process

whose evaluation constitutes the 'processing' of the event.

Processes may delete event notices, thereby canceling the

event, and schedule new events by including an event notice

(with an associated process) in the sequence of event

notices. Although many events may be set to occur at the

same system time, the associated processes are evaluated

sequentially. Hence, only one process is active at any

3-25

given time.

Before we can be more precise, we must introduce some

data definitions.

SEPTR <- PTR(SET\DESC, ELT\DESC);

SET\DESC <- STRUCT(SUC:SEPTR, PRED:SEPTR);

ELE\DESC <- STRUCT(SUC:SEPTR,
PRED:SEPTR,
PROCESS:ARPTR);

SET <- PTR(SET\EESC);

ELEMENT <- PTR(ELE\DESC);

EVENTN <- PTR(EVNT\LESC);

EVNT\DESC <- STRUCT (EV TIME :INT,
NEXTEV:EVENTN,
PEEVEV: EVENTN,
ELM:ELEMENT);

ACTRC <- (..., EVM:EVENTH, ...);

NT EVN is an extended component;

A SET describes an ordered sequence of set ELEMENTS.

There is one permanent member of the set, namely, the

SET\DESC. If S is a SET, then S is empty if and only if

S.PRED=S.SUC=S. Otherwise, S and the ELEMENTS of the set

form a doubly-linked circular list. Each ELEMENT contains a

PROCESS field which points to the ACTRC of a path. Eence,

we may say that a SET describes a set of processes. Since

the association is indirect (through an ELT\DESC) a process

may be a member of more than one set. An ELEMENT, however,

may be a member of only one set at a time.

3-26

We define four procedures which operate on sets. FIRST

and LAST return the first and last elements of a set,

respectively, or MIL if the set is empty. INCLUDE adds an

ELEMENT to a SET (at the 'end') and EXTRACT removes an

ELEMENT from a SET.

EIRST <- EXPR(S:SET; ELEMENT)
BEGIN

S.SUC=S => NIL;
S.SUC

END;

LAST <- EXPR(S:SET, ELEMENT)
BEGIN

S.PRED=S => NIL;
S.PRED

END

INCLUDE <- EXPR(E:ELEMENT, S:SET; NOME)
BEGIN

E.PREL <- S.PRED;
E.SUC <- S;
S.PRED.SUC <- E;
S.PRED <- E

END

EXTRACT <- EXPR(E:ELEMENT; NONE)
BEGIN

E.PRED=E.SUC=NIL => NOTHING;
E.PRED.SUC <- E.SUC;
E.SUC.PREP <- E.PRED

END

An event-notice (EVENTN) is a pointer to an object of

mode EVNT\DESC. Associated with each EVENTN is the system

time at which it is to occur (EVTIME), pointers to the next

and previous event notices or NIL if the event notice is the

last or current one, and an ELEMENT whose PROCESS field

gives the process (path) to be evaluated. The global

To shorten the discussion, we will not distinguish
between - ointers and the objects to which they point.

3-27

variable CURRENT, which is of mode EVENTN, references the

doubly-linked list of event notices which is ordered

according to non-decreasing: values of the EVTIME components.

This list, called the sequencing set (SQS), describes the

events which constitute the simulation. If a process is not

referenced from the SQS, then it is said to be passive and

its EVN component is Nil. Otherwise, the EVN component

points to the event notice which references the process, i.e

if C is an EVENTN in the SQS then

C.ELE.PROCESS.EVN = C

Hence, a process may be associated with at most one event

notice.

The process currently being evaluated is the one

referenced by CURRENT.ELE.PROCESS. The current system time

is CURRENT.EVTIME. The NOPIX operators CUR and TIME return

the ELEMENT and the system time associated with the CURRENT

event notice, respectively. The time reference of a EVENTN

may be obtained using the procedure EVTIME.

CUR <- EXPR(;ELEMENT) CURRENT.ELM;

EVTIME <- EXPR(E:ELEMENT; INT)
BEGIN

E.PROCESS.EVN=NIL => 0;
E.PROCESS.EVN.EVTIME

END;

TIME <- EXPR(;INT) (EVTIME(CUR));

We may now describe the procedures which operate on the

SQS, and thus provide the means whereby processes can affect

the scheduling of events. In all cases, the procedures take

3-28

ELEMENTS as arguments. Hence, references to event notices

or processes are always indirect.

The procedure CANCEL removes the event notice

associated with the referenced processes (if one exists)

from the SQS, thereby canceling the event and making the

process passive. TERMINATE has the same effect as CANCEL,

except that the process may never be reactivated, i.e. it

is ineligible for evaluation in the sense of DELETE\PATEI.

CA,.CEL(CUR) will cause control to be transferred to the next

process on the SQS; the associated event notice becomes

CURRENT. In this case, CANCEL uses the control primitive

CIA to transfer control to the appropriate process.

CANCEL <- EXPR(i:ELEMENT; NONE)
BEGIN

E.PROCESS.EVN=NIL => NOTHING;
DELEVN(E.PROCESS.EVN) => CIA("PASS",CURRENT)

END

PASS <- EXPR(EV:EVENTN; NONE)
BEGIN

LASTRUN <- EV.ELM.PROCESS;
LASTRUN=NIL => SIMERRQR()

END;

DELEVN <- EXPR(EV:EVENTN; BOOL)
BEGIN

EV.PROCESS.EVN <- NIL;
NT Path is passive;
RECURRENT => [)EV.PREVEV.NEXTEV<-EV.NEXTEV;

EV. NEXTEV=NIL=> FALSE.;
EV.SUC.PREVEV<-EV.PRFVEV;
FALSE(];

CURRENT <- CURRENT.NEXTEV;
NT CURRENT is deleted;
CURRENT. PREVX-NIL;
TRUE
NT Return TRUE if the current EVEN IN

has been deleted;
END;

>-29

TERMINATE <- EXFR(E:ELEMENT; NONE)
BEGIN

E.PROCESS.EVN=WIL => NOTHING:
DELEVN(E.PROCESS.PVN) => CIA(,,TERKPASS", CURRENT);
CIA ("EELETEXPATH1', E. PROCESS)

END;

TERMPASS <- EXPR(EV: EVENT; NONE)
EEGIN

DFLETF\PATH(LASTRUN);
NT Path may not be reactivated;
PASS (IV)

END;

The procedure NEWFROC takes a procedure call to be

evaluated in the environment of a new process (in the sense

of PAP.) NFWPROC creates a new ELEMENT and a new path and

uses PAP to initialize the environment of the path. The

TERMINATION\PORM is set to be TERMINATF(CUR). Hence, exit

from the PAPed procedure will cause the process to be

TERMINATEd. NEWPROC returns the ELEMENT which references

the new passive process.

NEWPROC <- FXPR(F:FORM UNEVAL; ELEMENT)
BEGIN

DECT, F:ELEMENT BYVAL
ALLOC(ELE\DESC OF NIL,NIL,GET\PATH(1));

E.PROCESS.TERMINATION\FORM <-
QUOTE(TERMINATE(CUR));

PAP(F,E.PROCESS);
E

END;

The two procedures, ACTIVATE and REACTIVATE may be used

to schedule future events. In both cases, the first

argument F (an ELEMENT) specifies the process to be

associated with the new event. In the former case, the

process must be passive. Otherwise, no scheduling takes

place. In the latter case, if the process is not passive,

>30

then the associated event notice is deleted and the event is

essentially re-scheduled. The other arguments (T,AFTER,E2)

to both procedures determine where in the SQS the new event

notice, say N, is to be inserted. If E2 is non-null and if

E2.PROCESS is not passive, then N is inserted before or

after E2.ELE.PR0CESS.EVN as AFTER is FALSE or TRUE,

respectively. Otherwise, if E2 is null, then N is inserted

before or after all event notices at time T (T=0 => TIME) as

AFTER is FALSE or TRUE. Hence, if E is an element whose

process is passive, then all of the following transfer

control to the process referenced by E.

ACTIVATE (E)

ACTIVATE(E,TIME)

ACTIVATE(E,0,FALSE,CUR)

REACTIVATE <-
EXPR(E:ELEMENT,T:INT,AFTER:BOOL,E2:ELEMENT;NONE)
LEGIN

E2#NIL AND E2.PROCESS.EVN=NIL => NOTHING;
E.PROCESS.EVN#NIL => DELEVN(E.PROCESS.EVN);
SCHEDULE(E,[)E2#NIL => EVTIME(E2);

1=0 => TIME;
T(], AFTER, E2)

END;

ACTIVATE <-
EXPR(E:ELEMENT, T:INT, AFTER:BO0L, E2:ELEMENT; NONE)

LEGIN
E2//NIL AND E2.PROCESS.EVN=NIL => NOTHING;
E.PROCESS.EVN#NIL => NOTHING;
SCHEDULE(E,[)E2#NIL => EVTIME(E2);

1=0 => TIME;
T(], AFTER, E2)

END;

3-31

SCHEDULE <-
EXPR(E:ELEMENT, T:INT, AFTER:BOOL,E2:ELEMENT; NONE)

BEGIN
DECL TE: INT BYVAL TIME;
DECL SC, C:EVENTN BYVAL CURRENT;
DECL N:EVENTN BYVAL

ALLOC(EVENT\DESC OF T,NIL,NIL,E);
BEGIN

E2 H NIL =>
INSERT(N,E2.PROCESS.EVN,AFTER);

T LT TIME => SIM\ERROR():
L: C.NEXTEV = NIL => INSERT(N, C, AFTER);

AND(C.EVTIME LT T,
C.NEXTEV.EVTIME GE T,
NOT AFTER)

OR
AND(C.EVTIME LE T,

C.NEXTEV.EVTIME GE T,
AFTER) =>
INSERT(N,C.NEXTEV,FALSE);

C <- C.NEXTEV;
GOTO L

END;
N.ELM.PROCESS.EVN <- N;

NT Process is not passive;
CURRENT H SC => CIA("PASS",CURRENT);

END;

INSERT <-
EXPR(NEW:EVFNTN, OLD:EVENTN, AFTER:BOOL; NONE)

BEGIN
AFTER =>

BEGIN
NEW.NEXTEV <- OLD.NEXTEV;
NEW.PREVEV <- OLD;
OLD.NEXTEV <- NEW;
NEW.NEXTEV § NIL =>

NEW.NEXTEV.PREVEV <- NEW;
END;

NEW.NEXTEV <- OLD;
NEW.PREVEV <- OLD.PREVEV;
OLD.PREVEV <- NEW;
NEW.PREVEV $ NIL => NEW.PREV.NEXTEV <- NEW;
OLD = CURRENT => CURRENT <- NEW

END;

The procedure HOLD makes the current process be

inactive for X units of system time.

HOLD <- EXPR(X:INT;NONE) (REACTIVATE(CUR,TIMEfX,TRUE));

3-32

To illustrate the use of the procedures described

above, we will present a set of MPEL1 procedures which

describe a simple epidemic model (as defined in [Da66].)

A contagious, nonlethal disease is circulating through

a fixed size POPULATION. To combat the disease, certain

actions are taken by a public health organization. When an

individual is infected, he is noncontagious for INCUBATION

days (during which he has no SYMPTOMS,) after which he is

contagious for LENGTHI days (during which he has SYMPTOMS.)

Each DAY of the latter period he may seek TREATMENT, in

which case he is immediately and permanently cured, (i.e he

becomes immune.) The probability of seeking treatment on any

given day I is PR0J3TREAT[I]. Each contagious sick person

has some number of CONTACTS per day. lor each contact, the

probability of infecting an uninfected person is PRINF. An

untreated infection terminates after LENGTHI days.

Two types of processes are created - one to represent a

SICK\PERSON and one to represent the TREATMENT of an

individual. In the former case, each SICK\PERSON has an

environment (ENV) which is the set of people he has

infected. TREATMENT processes represent the public

countermeasures taken against the disease. A patient is

removed from his environment. If he has SYMPTOMS then he is

immediately cured; his LNV is searched and each member is

treated. Otherwise, the patient is given a 'cheap pill'

3-33

which has a probability PROBMASS of success. His ENV is not

searched. The simulation ends after SIMPERIOD days.

POPULATION, LENGTH, CONTACTS, SIMPERIOD, INCUBATION,

PRINP, PROBMASS, and PROBTREAT are assumed as global

constants. In addition, U1, U2, U3 and U4 are NOPIX

operators which represent different streams of pseudc—random

numbers. The procedure call DRAW(PR0B,U1) makes a random

drawing with probability PROE of success, in which case it

returns TRUE. The procedure call POISSON(CONTACTS,U2)

returns a random drawing from the Poisson distribution with

mean CONTACTS. UNINTECTED is used to record the number of

UNINPECTED people in the population.

The simulation befins with one path that executes the

block presented below. The SQS is initialized to contain a

single event-notice for the current path. The first

SICK\PER3CK process is activated, after which the initial

path holds for the duration of the simulation.

BEGIN
CURRENT <- ALLOC(EVNT\DESC 01

0,NIL,NIL,ALLOC(ELEMVDESC OP KIL,NIL,KYPATH);
CURRENT.ELM.PROCESS.EVN <- CURRENT;

NT Not passive;
UNINEECTED <- POPULATION;
ACTIVATE(NEWPR0C(3ICK\PERS0N()));
HOLD(SIMPERIGD)

i\ND;

The procedures SICK\PERS0N, INTECT, and TREATMENT are

defined as follows.

>34

SICKXPERSON <- EXPR(; NONE)
BEGIN

DECL SYMPTOMS:BOOL;
DECL ENV:SET BYVAL ALLOC(SET\DESC);
UNINFECTED <- UNINFECTED - 1;
SYMPTOMS <- FALSE;
HOLD(INCUBATION);

NT Wait till the end of the
incubation period;

SYMPTOMS <- TRUE;
FOR DAY <- 1, ... , LENGTH! DO

BFGIN
NT Either seek treatment or infect

some contacts;
DRAW(PROBTEA1T DAY],U1) =>

ACTIVATE(NEWPROC(TREATMENT(CUR)));
INFECT(POISSON(CONTACTS,U2),ENV);
HOLD(1)
NT Wait one day;

END
END;

TriyPCT K—
' EXPR(N:INT, S:INT; NONE)

BEGIN
NT N is the number of contacts;
NT S is the ENV;
FOR I <- 1, ... , N DO
BEGIN

DRAW(PRINF * UNINFECTED/POPULATION,U3) =>
BEGIN

INCLUDE(NEWPROC(SICK\PERSON()),S);
NT Infect one person;
ACTIVATE(LAST(S))
NT Start him now;

END
END

END;

3-35

TREATMENT <-
EXPR(PATIENT:ELEMENT; NONE)

BEGIN
DECL I'M:SET;
DECT SYMPTOMS:BOOL;
EXTRACT(PATIENT);
NT Remove patient from ENV;

ENV <- PEETCH(,,ENVM,PATIENT.PFOCESS);
SYMPTOMS <- PIETCH("SYMPTOMS",PATIENT.PROCESS);
NT Pl'ETCK the values of SYMPTOMS

and ENV from the SICK\PERSON beinf treated;
SYMPTOMS =>

BECIN
TERMINATE(PATIENT);
WHILE EIRST(ENV) # NIL DO
NT Treat each person in the ENV;
(ACTIVATE(NEWPROC(TREATMENT (.FIRST (ENV))))
NT EIRST(ENV) is deleted from the set

ENV upon activation of the process;
END;

D A',(FROBMASS,U4) => TERMINATE (PATIENT)
ui Otherwise, leave the patient in the system,

but removed from his ENV;
END;

3-36

5. MONITOIUKG AMD RELATIVE CONTINUITY

Control primitives which allow a variable to be

monitored for changes in its value have appeared in a number

of languages. l?or example, the WAITUNTIL primitive of

2FL [Po72] and wisher's monitor primitive [j?i70] allow a

process to be resumed as soon as an associated condition

becomes TRUE, c.f. 1.2.1, 1.2.3- Here, we discuss how

monitoring can be realized in MPEL1.

Let us assume that we desire a function of the form

MONITOR(X,V,EXP)

where X is a variable of mode integer, V is an integer and

EXP is a FORM. The interpretation of MONITOR is that when

X=V, then EXP is to be evaluated. If X=V when the MONITOR

is executed, then EXP is evaluated immediately. It should

be clear that it is sufficient to monitor assignments to X,

i.e. if it is possible to obtain control every time the

variable X is assigned a new value, then we can surely

detect when it is given the value V. This ability is

provided by the extended mode facility of EL1, c.f. 5.1»2.

In particular, the extended mode facility allows the

user to define a new mode, say SINT (sensitive-integer),

which is identical to the mode INT except that a

We will restrict our discussion to integers.
Monitoring of other data types can be achieved by analogous
techniques.

>-37

user—del ined assignment function will be called whenever an

object of mode SI1\I is to be assigned. For example, we can

define 3INT, HCNITOR and the SINT assignment function as

follows.

SINT <- STRUCT(I:IKT, V:INT, EXP:EGRM, MELGzDOOL);

MONITOR <-
EX?i;(X:^INT,V:INT, i:EXT; NONE)

BEG II.
HOT UE(X).MFLG =>

BECIN
UR(X).I = V => EVAL(E);
URtxJ.V <- V;
UR(X).EXP <- P;
M1TJG <- TRUE

END;
MONITCR\ERROR()

END;

SINT\ASSIGN <-
EXPR(S:£INT, V:INT; INT)

BEG IK
Ui.(C).I <- V; NT V is the new value;
NOT UR(S).MELG => V;
ur:(s).v = v =>

BEGIN
UR(£).M1LG <- EA1SE;
EVAL(UR(S).EXP);
V

END;
V

END;

If X is a SINI, UR(X).I is the actual integer,

UR(X).MFLG is TRUE if and only if the integer is being

monitored, UR(X).V is the value being monitored for, and

UR(X).EXP is the expression to be evaluated. Whenever an

The procedure UR is used to indicate that selection is
to be performed upon the underlying representation of SINT.
This is required since it is also possible to construct user
defined selection functions.

3-38

assignment to a SINT is made, the procedure SINT\A3SIGN is

called. If the particular SINT is being monitored and if it

will now be equal to UR(S).V, then EXP is evaluated and the

monitor is turned off.

Two points should be stressed, first, SINTs act just

like INTs except for assignment. Whenever a SINT is in hand

and an INT is required, the SINT is treated as if it were an

integer, using a user—defined conversion function

[Weg70][Weg71]. Second, only SINT assignments are affected;

the overheads associated with monitoring are not passed on

to all INTs.

In the example above, EXP will be evaluated in the

environment of whichever path performs the assignment that

sets the SINT to the specified value. Other semantics for

MONITOR operations are possible. lor example, fisher's

monitor operation constructs a new process in which EXP is

to be evaluated. The value returned by monitor is a

reference to this process (which is also apparently

cyclically testing the condition.) The operation unmonitor

may be used to destroy a monitor process. It is possible to

construct many monitor processes which are all testing the

same variable.

Here, for simplicity, we have limited ourselves to one
EXP per SINT. The general case is discussed below.

>39

A description of monitor would be a straightforward

extension of the example above, v/ere it not for the subtle

relation between monitor and another of Fisher's primitives,

namely, the cont operation. We will first discuss how the

cont operation may be realized in MPEL1 and then describe a

monitor operation which is consistent with this reali2ation

and with Fisher's definition.

If a process executes cont(exp) then the expression

will be evaluated relatively continuous with respect to the

evaluation of other processes; all other processes must

pause while the exp is evaluated. If exp creates new

jxocesses, then they inherit the level of relative

continuity of their creator. Kence, many levels of relative

continuity can be created. At any riven time, only those

processes at the hifhest level may be evaluated. When

higher—level proceses terminate, processes at lower levels

are allowed to continue execution.

In MPEL1, we will replace cont by the two NOFIX

operators STARTRC and FiiDRC. STAR1RC indicates that the

level of relative continuity of the path should be increased

by one. FKDRC indicates that the level should be decreased

by one. Thus, in MPEL1, cont(exp) is replaced by

[) CTARTRC; exp; ENLRC (]

The implementation of relative continuity is

straightforward. We include the intefer component LEVEL as

3-40

an extended component of the mode ACTRC. LEVEL specifies

the level of relative continuity at which the path is

evaluating. Initially, all paths have LEVEL=0. The

path-scheduler is redefined, using the techniques of section

2.4, to include the integer RCLEVEL in the CI environment

and to maintain paths on the INACTIVEQ in the order of their

level component (highest to lowest.) RCLEVEL indicates the

level of relative continuity at which the system is being

evaluated. The procedure CREATE is modified to give the

path created the same level of relative continuity as the

creator.

When a path P executes STARTRC, RCLEVEL and P.LEVEL are

incremented by one. If there exist active paths at lower

levels of relative continuity, then each of these paths is

.interrupted (using ST0P\PATH) and forced to pass control to

the CI and execute RELSTOP. When each path passes control

to the CI, it is put on the INACTIVEQ. When the last of

these is processed, then P is allowed to continue execution.

The mechanism used here is similar to the one employed by

SUSPEND, c.f. 3-3.

We also assume that the procedures of section 3.3 are
redefined to use the procedure INSERT! (as opposed to
ENTERL) to place paths on the INACTIVEQ. INSERTL places the
path on the queue at the appropriate point according to its
LEVEL component.

3-41

STARTRC <- EXPR(; HONE)
BEGIN

MYPATF#PCIAR => CIA ("STARTRC");
LASTRUN.LEVEL <- RCLEVEL <- RCLEVEL+1;
UPRC()

END;

UPRC <- EXPR(; NONE)
BEGIN

DFCL N:INT BYVAL LASTRUN.LEVEL;
IDR I <- 1, ..., NPROC DO

BEGIN
PAVFCT[I].CURPATH // PAVFCT[I].IDLEPATH

AND
PAVECT[I].CURPATH.LEVEL LT N =>

BEGIN
PIVECT[I]<-

COKS(LlST("RELSTOP",
ALLOC(REF LIKE

ALLOC(ARPTR LIKE
LASTRUN))),

PIVECTTPROC]);
S10P\IATH(PAVECT[I].CURPATH);
B <- TRUE

END;
END;

B => LASTRUN <- NIL

RELSTO? <- FXPR(P:AFPTR; NONE)
BEG IK

DFCL B:BOOL;
INSERT!(LASTRUN);
LASTRUN <- Nil;
FOR I <- 1, ..-, N TILL B DO

BEGIN
AND(PAVI CT[I]. CURPATH#PAVECT[11.IDLEPTH,

I//PROCNUM,
PAVFCT[I].CURPATH.L£VEL LT RCLEVEL)

=> B <- TRUE
END;

B => NOTHING;
NT Not all paths at lower levels

have stopped;
INSERTL(P) NT All have stopped;

END;

When a path P executes ENDRC, then P.LEVEL is

decremented by one and the path is inserted at the

appropriate point in the INACTIVEQ. If there still exists

3-42

paths (either active or on the INACIIVEQ) at the current

RCLEVEL, then no further action occurs. Otherwise, RCLEVEL

is set to be equal to the LEVEL of the first path on the

INACTIVEQ.

ENDRC <- EXPR(; NOME)
EEGIN

DECL B:BOOL
MYPATH#PCIAR => CIA("ENDRC")i
LASTRUN.LEVEL <- LASTRUN.LEVEL-1;
INSERTL(LASIRUN) j
LASTRUN <- NIL;
FOR I <- 1,..., NPROC TILL B DO

BEGIN
I=PROCNUM => NOTHING
PAVECir I]. CURPATHjfPAVECl [I]. IDLEPATE

AND
PAVECT[I]. CURPATH.LEVEL=RCLEVEL

=> B <- TRUE
END;

B => NOTHING;
NT There exists an active path

at the current RCLEVEL;
RCLEVEL GT INACTIVEQ.FIRST LEVEL =>

RCLEVEEX-IN ACTIVEQ . FIRST . LEVEL
END;

RCSCHEDULE is used to perform path scheduling. Let P

be the first non-DORMANT path on the INACTIVEQ. If P.LEVEL

is less than RCLEVEL, then no path is scheduled. If P.LEVEL

is equal to RCLEVEL, then P is scheduled. Otherwise, if

P.LEVEL is greater than RCLEVEL, then RCLEVEL is set to

P.LEVEL, TASTRUN is set to P and UPRC is called to determine

if any active paths are at a lower level of relative

continuity, and if so, to interrupt them. The latter case

If a path is not in the running set (e.r. it has
performed a P operation and is on the semaphore's WLIST,)
then its level is not counted until it again becomes a
running path. See the discussion of monitor paths below.

3-43

can occur when a monitor process is activated as described

below,

RCSCHEDULE <- EXPR(; ARPTR)
BEG IK

DECL Y:ARPTJR;
Y <- INACTIVEQ.FIRST;

L: Y=NIL => NIL;
RCLEVEL GT Y.LEVEL => NIL;
RCLEVFL=Y.FIRST.LEVEL AND NOT Y.DORMANT =>

BEGIN
REMOVE(Y,INACTIVEQ);
Y

END;
RCLEVEL LT Y.FIRST.LEVEL =>

BEGIN
LASTRUN <- Y.FIRST;
REMOVE(LASTRUN,INACTIVEQ);
RCLEVEL <- LASTRUIi.LEVEL;
UPRC();
LASTRUN

END;
Y <- Y.NEXT;
GOTO L

END;

INSERT! is used to place paths on the INACTIVEQ. If

the LEVEL of the path P to be inserted is greater than the

current RCLEVEL, then LASTRUN (the current path) is

inserted, LASTRUN is set to Nil, and then P is inserted.

Hence, scheduling is forced. Since P will be first on the

INACTIVEQ, and RCLEVEL is less than P.LEVEL, then RCSCHEDULE

will interrupt all active paths at lower LEVELS and then

allow P to be evaluated. If P.LEVEL is less than or equal

to RCLEVEL, then P is simply placed at the appropriate point

in the queue.

INSERT! <- EXPR(P:ARPTR); NONE)
BEGIN

DECL Q:ARQPTR BYREF INACTIVEQ;
DECL Y:ARPTR BYVAL Q.FIRST;
LASTRUN//NIL AND P.LEVEL GT RCLEVEL ->

BEGIN

3-44

INSERTL(LASTRUN);
LASTRUN <- NIL
NT iorce a call to RCSCKEDULE;

END;
Y=NIL => ENTEKL(P,Q);
Y.LEVEL IE P.LEVEL =>

BEGIN
Q.EIRST <- P;
P. NEXT <- Y

END;
Q.LAST GE P.LEVEL =>

BEGIN
P.NEXT <- NIL;
Q.LAST.NEXT <- P;
Q.LAST <- P

ENL;
Y.NEXT=NIL => ENTERL(P,Q);
Y.NEXT.LEVEL IE P.LEVEL =>

BEGIN
P.NEXT <- Y.NEXT;
Y.NEXT <- P

END
END;

We can now describe the complete semantics of the

monitor operation. Here, SINT is defined as follows:

SINT <- PTR(STRUCT(INTP:INT, ML1ST:MPTR));

MPTR <- PTR(MELT);

MELT <- STRUCT(VALUE:INT, PATH:ARPTR, NEXT:MPTR);

The MLI3T is a list of the processes monitoring the SINT.

Each MELT specifies the VALUE to te checked and the path to

be evaluated.

The procedure MONITOR creates a path P (which is added

to the MI1ST of N) to be activated when N is assigned the

value V. E is the form to be evaluated by P. P is given

the same level of relative continuity as the path executing

the MONITOR. In addition, P is enabled for the interrupt

"UNMON" to allow for unmonitoring. It is important to note

3-45

that since P is not considered to be a running path (it is

neither active nor on the INACTIVEQ), P.LEVEL has no effect

upon RCLEVEL. Hence, when P is activated RCLEVEL may be

higher or lower than P.LEVEL. In the former case, P will

not be evaluated until RCLEVEL is lowered to P.LEVEL. In

the latter case, P has priority over all other paths.

Hence, they must be interrupted so that P may evaluate.

INSERT! detects this fact and forces scheduling to achieve

the desired effect. If P=RCLEVEL, then the interpretation

is straightforward.

The definitions of MONITOR and SINT\ASSIGN are as

follows.

MONITOR <- EXPR(N:SIMT,V:INT, E:EORM UNEVAL; ARPTR)
BEGIN

DECL P:ARPTR EYVAL PAFQ(EVAL(I), GET\PATH(1));
I CL K:MPTR BYVAL ALLOC(MELT OE V,P,NIL);
P.LEVEL <- MYPATH.LEVEL;
NT Relative continuity level is inherited:
EIiABTE\PATH("UNMON" ,3*,QUOTE(DELETE(MYPATH)) ,P) ;
NT To allow for unmonitoring;

*

CIA("MONITOR1",M,N,V) ;
P

END;

HC1.TJ.O?-:1 <- EXPR(M:KPT:;, N:SINT, V:REE; NONE)
BEGIN

UR(N).VALUE = VAL(V) =>
BEGIN

INSERT!(M.PATH, INACTIVEQ);
RUNSET\ILAG <- TRUE

END;
M.NEXT <- UR(N).MLIST.NEXT;
UR(N).MLIST <- M

END;

Here, we pass three arguments to the CIA called
procedure. This is not consistent with the definition given
in section 2.3.1» but can be achieved by extension, c.f.
5.1.1.

3-46

SIN!E\ASSIGN <- (N:SINT, Y:INT; INT)
£EGIK

CIA("D0\ASSIGN",N,Y);
Y

END;

DOVASSIGfc <- EXPE(S:SINT, V:EEE; NONE)
BEGIN

DECL Y:KLIST BYVAL UR(S).MLIST;
Y/'NIL =>

WHILE Y.NEXT § NIL DO
BEGIN

Y.NEXT.VALUE=VAL(V) =>
BEGIN
INSEPTL(Y.NEXT.PATH,INACTIVEQ);
Y.NEXT <- Y.NEXT.NEXT;
END;

Y <-Y.NEXT
END;

UE(S).MLIST.VALUE=V =>
BEGIN

INSERTL(UR(S).MLIST.PATK,INACTIVEQ);
UR(S).MLIST <- UR(S).MLIST.NEXT;

END; NT Process first of list;
NT Now perform assignment;
UR(S).INTP <- VAL(V)

END;

For example, consider the following block

BEGIN
DECL X:SINT BYREF X;
NT Assume MYPATH.LEVEL=0;
STARTEG*
NT MY1-ATH. LEVEL = 1;
MONITOR (X, 3, QL'OTE(PRINT ("X=3 "))) 5
NT The LEVEL of the new process is 1;
X=1 =>

BEGIN
STARTRC;
NT MYPATH.LEVEL =2;
X <— 3 *
C1:ENDRC;
NT MYPATH.LEVEL=1;
O*- • • • •

END;
ENDRC;
NT MYPATH.LEVEL=0;
X <- 3;
\jj. • •. ;

END

3-47

If X initially has the value 1, then the monitor

process will not become active until control reaches C2,

since RCLEVEL=2 at C1. If, however, X is not initially

equal to 1, then the monitor process will become active

before control reaches C3» since it is at a higher level of

relative continuity than the path performing the assignment.

Hence, STARTC, EKIRC and MONITOR effect an interrupt

mechanism. If a path creates a monitor process at a higher

level of relative continuity, e.g.

[)STARTC; MONITOR(X,Y,f); ENDRC(];

then if the condition becomes TRUE, the monitor path will

essentially interrupt the original path, since the former is

at a higher level. Conversely, the path can mask itself

against the effect of the monitor by subsequently executing

two STARTRCs to put itself at a higher level than the

monitor.

The procedure UNMCNITOR, destroys the path P which is

monitoring the SIKT N. If the path has not been activated,

then it is simply deleted. Otherwise, if it is active, it

is interrupted (using STOP\PATH) and forced to call

DELETE\PATI!. If it is not active, then it is sent an UNMON

interrupt (for which all monitor paths are enabled) which

will cause the path to delete itself if it ever becomes

active.

>46

UNMONITOE <- EXPR(P:ARPTR K:SINT; NONE)
BEGI;:

DECL Y:MFTR EYVAL UE (N). MUSI;
DECL PR:INT;
MYPATH // PCIAR => CIA("UKMONITOR"TI'FK);

BFGIN
Y.PATII=P => [) UR (N). MLIST<-UR (H)• MLIST. NEXT;

DELETE\PATH(P)(];
WHILE Y.NEXT § NIL DO

BEGIN
Y.NEXT.PATH=P => [)Y.NEXT<-Y.NEXT.NEXT;

DI1ETE\PATH(P)(];
Y <- Y.NEXT

END
END;

NOT F.ELGPLG => NOTHING;
NT Otherwise P must be killed;
FOR I <- 1,..., NPROC TILL PR GT 0 DO

[)PAVECT[I1.CURPATH.P => PR<-I(]
pp-0 => INTEFJttJPT(,,UKMON,l,P);
STOP\PATE(P);
PIVECT[I] <-

CONS(QUOTE(BEGIN
LELET'E\PATH (LASTRUN);
LASTRUN <- NIL

END,
PIVECT[I]);

END;

3-49

6. BACKTRACKING

The notion of backtracking [Go65] often allows a more

concise representation of an algorithm than would be

possible without it. Such an algorithm usually requires

that a choice be made at one or more points during its

evaluation. If the choice is a 'bad' one, then the

algorithm must backtrack to the most recent choice—point at

which another choice was available, select a new choice, ar.d

then resume execution. Hence, it must be possible to

reconstruct (at some later time) the machine state at each

choice point. This can be done either explicitly or

implicitly. Programs which explicitly handle their own

backtracking tend to be obscure and error prone - they must

record all changes to data and control. Hence, control

procedures which allow lor the automatic restoration of

machine states are desirable.

Floyd [1167] proposes three operations and an

implementation technique which allow for automatic

backtracking in a flow chart language. The two operations

are:

A control structure which is related to, but distinct
from, backtracking is multi-tracking. In backtracking,
choices are processed sequentially - when one value leads to
FAILURE, the next value is chosen. With multi-tracking all
choices are explored in parallel, via the creation of
parallel paths. If a path is unsuccessful, then it notifies
its creator who then terminates all other choice paths (and
their descendants.)

3-50

choice(n) An integer from the set 1, ..., n is chosen.

fail fail 'undoes' all actions performed since the

last choice. Another integer, say k, is taken

from the choice set and the algorithm continues

from the choice-point as if k were the original

choice. If all integers from the set have been

tried, all actions are undone back to the next

previous choice point, etc.

success All accumulated output is printed. If all

solutions to a problem are desired, then

backtracking is initiated.

Function calls are not permitted in Floyd's language.

Hence, to allow reconstruction of machine states it is only

necessary to record changes to variables and the control

flow through decision points. In a language with function

calls, say EL1, it becomes necessary to record the call and

block structure (intra-path control) at a choice point so

that it may be reinstated upon subsequent failure. below,

we discuss how (single-path) backtracking can be effected

using the MPEL1 multi-path facility.

We will assume that the global variable LACKUP

references a path which will be used to effect restoration

of choice-points. Whenever a new CHOICE is made, control is

passed to BACKUP, which then returns control to a COPY of

3-51

the original path. Hence, the call structure and the values

of variables in the identifier environment are preserved.

If an unsuccessful choice has teen made then the procedure

FAIL can be used to return to the previous choice—point.

FAIL simply passes control to the BACKUP path which then

returns control to a copy of the original path with a new

value from the choice set. SUCCESS takes two arguments.

The first specifies a value to be irreversibly printed on an

output device. The second is a BOOL which specifies whether

or not all solutions are desired. The procedure definitions

are as follows.

CHOICE <- EXPR(N:INT; INT)
BEGIN

PAPQ(KEWCHOICE(N,MYPATH),BACKUP);
CIA("SWITCH\PATHS,BACKUP)

END;

SWITCH\PATHS <- EXPR(P.ARPTR; NCNE)(LASTRUN <- P);

NEWCHOICE <- EXPR(N:INT BYVAL, OLDP:ARPTR; NONE)
BEGIN

WHILE N // 0 DO
BEGIN

DECL NEWP:ARPTR
NEWP <- COPY(OLDP);
PAP(RETFROM("CHOICE",N),NEWP)
CIAO'SWITCHXPATHS", NEWP);
N <- N-1

END
END;

FAIL <- EXPR(; NONE) (CIA("SWITCH\PATHS"),BACKUP));

SUCCESS <- EXPR(SOL: ANY, ALLSOL:BOOL; NONE)
BEGIN

PRINT(SOL);
ALLSOL => FAII();
CIA("DELETE\PATH",MYPATH)

END;

3-52

Note that if CHOICE is called many times in the

program, then nested calls to NEWCHOICE will be PAPed into

BACKUP. Exit from the procedure NEWCEOICE corresponds to

failure 01' all choices at a given point. Control is thus

returned to the call to NEWCHOICE for the previous

choice-point.

One additional mechanism is necessary to insure that

the complete machine state at a choice—point is restored.

The control primitive COPY copies the bindings of variables

in the identifier environment of the path. If a variable is

bound to a pointer to an object in the heap, then the

pointer is copied but the object referenced is not. Hence,

when NEWCHCICE returns to a COPY of a path, it is possible

that changes to heap objects will not be 'undone.* To insure

that heap values are restored correctly, it is necessary to

redefine assignment, i.e. "<-". In the procedures below,

ASSIGN! is functionally equivalent to the original

definition of <- and HEAP is a boolean procedure which

returns TRUE if and only if its argument lies in the heap.

ASSIGN!(<-, EXPK(VAE:ANY, VAL:AKY; ANY)
BEGIN

NOT HEAP(VAR) => ASSIGN!(VAR.VAE);
PAPQ(RESTORE(VAR,VAR),BACKUP);
ASSIGN!(VAR,VAX)

END);

ASSIGN!(RESTORE, EXPK(VAR:ANY: OLBVAL:ANY BYVAL; NONE)
(ASSIGN!(VAR,OLDVAL));

Whenever an assignment is to be made to a heap object,

the procedure RESTORE is PAPed into the BACKUP path. The

3-53

second ar; ument to RESTORE is passed JJYVAL SO that the old

value may be retained separately. When 1A1L transfers

control to tsACKLJP, all heap objects modified since the last

choice roir.t will be restored to their original values since

the calls to RESTORE are executed in the reverse of the

order in which they were PAPed.

Although the procedures described above effect

automatic backtracking, the mechanism employed is rather

expensive. At each choice point the entire call structure

is saved! A similar, but more efficient realization of

backtracking- is described in [Pr72], Here, instead of

saving the entire machine state at each choice point, only

the 'difference' between states is saved. In addition, the

programmer may distinguish between assignments which are to

be 'undone' upon failure, and those which are not, thus

avoiding unnecessary record keeping.

Chapter 4

THE KJRKAL DEFINITION 01 MPEL1

This chapter presents the formal definition of EL1 and

the control primitives.

Section 1 discusses some preliminary issues and serves

as an introduction to the definition. Sections 2 and 3

present the formal definitions of the constructs of EL1 and

the control primitives, respectively. The auxiliary

procedures used in the definition are listed in Section 4.

Section 5 lists and defines the procedures which are assumed

as linguistic primitives. Finally, Section 6 is an index of

the modes, variables, procedures, and evaluator labels used

in the definition.

1.1 Representation of Programs, Paths and Evaluators

The concrete syntax, or external representation of EL1

is described by the BNF grammar in Appendix 2. An EL1

program is a terminal string derived from the syntactic

class <program>. For example,

1;

p(q(a),b,c,);

[)p=> x<-1 ; 3 (];

4-2

The abstract syntax, or internal representation of an

EL1 program is a list structure which may be defined using

the data-type definition facility of EL1. The

correspondence between the external and internal

representations is specified by augments to the BNF grammar

in Appendix 2. Techniques for mapping programs written in

concrete syntax into this type of abstract syntax are well

known and will not be discussed here. The abstract syntax

representations for the programs above are:

1

(p (q a) b c)

(BLOCK! (CLAUSE! P (<- x 1)) 3)

The evaluation of an EL1 program is performed in the

environment of a path. The environment consists of three

related structures: the name—stack, the value—stack, and the

control-stack. The name-stack contains an entry for each

variable created in the evaluation of the program. Each

entry consists of the variable's name and a pointer to its

value. The value—stack contains all data objects created by

the program which have not been explicitly ALLOCated in the

heap. The control-stack describes the current state of the

evaluation, i.e. the current nesting of blocks, procedure

applications, etc.

The path's activation record contains pointers to the

environmental structures described above, fields which are

4-3

used to communicate with the control primitives and other

path-related information.

A program is evaluated in a path's environment by an

evaluator. Only one path may be evaluated by an evaluator

at any given time, although it may process different paths

at different times. In addition, an evaluator must always

be associated with some path, i.e. it must always be kept

busy. We will assume that there are some constant number

(NPROC) of evaluators available for the simultaneous

evaluation of paths.

During its evaluation, an EL1 program may call upon the

control primitives to create and delete paths, specify or

change the programs to be evaluated in a path's environment,

assign evaluators to paths, modify a path's environment,

etc.

The formal definition of MPEL1 will consist of a

program which defines the I th of NPFOC identical

evaluators. Since both an MPEL1 program and a path can be

represented as EL1 data structures, it is possible to

describe an evaluator for the language and the control

primitives as a set of MPEL1 procedures. The evaluator

described here, however, is written essentially in EL1. The

control primitives TSET, CLEAR, EVAL and GOTO are the only

ones used by the evaluator. The vast majority of the

control primitives are not included in the meta-language.

4-4

Thus, the control primitives are explained in terms of

(single-path) EL1 and the four primitives listed above, c.f.

5.3.2.

1.2 Evaluator Recursion

The evaluation of an EL1 program is a recursive

process, i.e. the evaluator of a given language construct

may call upon the evaluators of other constructs, or itself,

recursively. for example, nested procedure calls require

the procedure application evaluator to be called within

itself. Since EL1 procedures are capable of recursion, the

number of recursive calls may reach an arbitrary depth. The

evaluator however, may not effect the recursion by invoking

recursive procedure calls in its own environment, for then

if it is subsequently called upon to evaluate another path

and the original path is evaluated by another evaluator, the

resulting evaluation of both paths will be erroneous.

Hence, the evaluators must be 'reentrant' with respect to

the paths they are called upon to evaluate. All records

relating to the evaluation of a path must be stored in the

environment of the path itself.

The control-stack of the path is used in conjunction

with a programming discipline to allow an evaluator to

obtain the effect of recursion without recursive procedure

4-5

calls. There are five issues to be resolved.

(1) How is the return point specified?

(2) How are the arguments to the recursive call

specified?

(3) How are the arguments to the current call saved?

(4) How is the result of a call specified?

(5) How is the return to the previous call accomplished?

Before we discuss these issues, we must first give a general

outline of the structure of the evaluator.

The evaluator is essentially an EL1 BLOCK. The local

variables of the block are used to specify the path being

evaluated and to hold other temporary values. Corresponding

to each construct of the language, (e.g. selection,

assignment) there is a labelled sequence of statements which

constitute a sub-evaluator for that construct.

Corresponding to each control primitive is a labelled

sequence of statements which constitute the body of the

control subroutine. Control never leaves the block except

for calls to procedures used by the evaluator which do not

involve recursive evaluation, e.g. to search the

name-stack. When an evaluator switches paths, it saves the

'state' of the current path in the corresponding ACTRC,

installs the state of the new path, and continues evaluation

of the new path from wherever the previous evaluator of the

path left off.

4-6

To perform a 'recursive' call, the following statements

are executed:

PUSHCO'TAG") ;NT Specify return point;
GOTO FCO ;NT 'call' TOO;

TAG: CHECKM(INT) ;NT Statement to be executed
upon return;

i.e. the symbolic name of a label to which control is to be

transferred upon return is pushed onto the control stack of

the path being evaluated. To return, the following

statements are executed:

L <- P0PC(1) ;NT L is bound to the return
label;

GOTO EVAL(L)

i.e., the return label is popped off the control stack and

control is transferred to the labelled statement. To

improve the readability of the description of the evaluator,

the two sequences of statements above are abbreviated as

follows:

and

CALL POO;
CHECKM(INT);

RETURN;

The argument to each sub-evaluator is a pointer to the

list structure which is the instance of that construct to be

evaluated. The local variable P is used to point to the

argument. For example, to evaluate

V[1] => 3 ;

for which the abstract syntax representation is

4-7

(CLAUSE! (SEL! V 1) 3)

the clause-evaluator would bind F to the second element of

the list and call upon the selection—evaluator. The value

returned by a sub-evaluator, i.e. the result of evaluating

a given construct, is pointed to by the local variable

EVRES.

Since any language construct may be invoked

recursively, each sub-evaluator must save its argument. To

facilitate this, a control mode is associated with each one.

When a sub-evaluator is called, an object of the

corresponding ir.ode is pushed onto the control stack. The

fields of the control mode are used to save the elements of

the list structure for this particular call. In addition,

the object may contain fields which are used to hold values

computed during the evaluation. Thus, the fields of a

control mode correspond to the formal parameters and local

variables which would be used if the evaluator was able to

use recursive procedure calls.

Occasionally, it is useful to allow a control mode to

contain a field RETURN which specifies the label to which

control is to be returned upon completion of the evaluation.

If a return is to be made when the top object on the control

A call is actually made to the general evaluator
EVAL\H)RiM which dispatches to the appropriate evaluator,
namely EVSEL.

4-8

stack is not a SYMBOL, (i.e. the symbolic name of a label,)

then the RETURN component of the object is selected and

control is passed to the specified point in the evaluator

without popping the object off of the stack.

The evaluator described in section 4.2 is not complete

because a number of sub-evaluators which were defined in

[Weg70] are assumed to be linguistic primitives. In

particular, the data type constructors (e.g. ROW, STRUCT)

and the object generators (ALLOC and CONST) are not defined.

Their omission is justified by the fact that we are

primarily concerned with the semantics of EL1 which are

directly relevant to the control primitives. In all cases,

the omitted sub-evaluators have marginal interaction with

the multi-path facility. Hence, their inclusion, although

straightforward, would simply lengthen the description of

the evaluator and thus weaken this work. The missing

sub-evaluators, along with the other linguistic primitives,

are defined in section 4.5.

1.3 Stacks

In section 4.1.2, we described a path's environment as

consisting of three stacks. Here, we will discuss these

stacks in more detail.

4-9

Each path possesses a name, value and control stack.

They are pointed to by the NS, VS, and CS fields of the

path's ACTRC, respectively. Associated with each stack is a

current stack index, which is stored in the NP, VP and CP

fields of the ACTRC, respectively. The stack index

specifies the number of objects which have been 'pushed'

onto the stack. When a path is active, the current values

for NP, VP and CP are contained in the corresponding

evaluator's local variables NP, VP and CP.

The name stack is actually a ROW of STRUCTs, namely

NAME\STACK <- ROW(STRUCT(NAMF:SYMBOL, VALUErREF));

Hence, entries are pushed onto and popped off of the name

stack by storing into the appropriate entry of the row and

updating NP appropriately.

The control and value stacks, are objects of mode
*

STACK. STACKS have the following properties:

(1) They may hold objects of any mode.

(2) They may be indexed as ROWs, e.g. the value of

CS[CP] is a pointer to the top object on the control

stack, CS[1] is a pointer to the object on the

bottom of the stack.

(3) If an object is 'popped' off of the stack, all

STACKs and stack operations as defined here, differ
from the definitions given in [Wep;70J. We defer
justification of the changes until Sectior, ';».,3»2,

4-10

references to it are set to NIL. Thus it is

impossible to retain a pointer to an object which

has been removed from a stack.

The following stack operations are defined as linguistic

primitives:

(1) PUSH <- CEXPR(0£J:ANY, S:STACK;REP). OBJ is copied

onto the top of the stack S. The number of objects

on the stack is increased by one. PUSH returns a

pointer to the object which has been pushed onto the

stack.

(2) PLUSH <- CEXPR(S:STACK, INDEX:INT; NONE) If there

are N objects on the stack S, then the N th through

the INDEX+1 objects are removed from the stack.

Hence, after the PLUSH, there remain INDEX objects

on the stack.

(3) INSTACK <- CEXPR(PTR:REF,

IND1:INT,

IND2:INT, S:STACK; BOOL)

INSTACK returns TRUE if and only if the object

referenced by PTR is on the stack S and is one of

the objects S[IND1+1] through S[IND2] or is a

sub-object of one of them, i.e. if and only if PTR

points into the stack between the ranges specified.

(4) HEAP <- CEXPR(PTR:REP;BOOL) returns TRUE if and only

if PTR points to an object which is not on a STACK.

Note that PUSH and PLUSH do not update the stack index

4-11

associated with the stack.

A number of stack functions are defined in terms of

these primitives to facilitate stack management and the

referencing of objects on a stack. For example, T0PC1 is

defined as a NOJTIX operator and returns a pointer to the top

object on the control stack. A complete list of these

functions is given in section 4.4.

It is intended that in an implementation of MPEL1 a

path's environment will be implemented as three LIJO stacks.

Hence, although the mode STACK guarantees that a 'dangling

reference' cannot occur (i.e. a reference to an object

which has teen popped off of the stack), the evaluator must

not rely on this property. In particular, since it is

possible (via path-dependency) for one path to obtain a

reference to the value stack of another, the mechanisms

which insure that 'dangling references' do not occur are of

central importance in the definition.

1.4 Synchronization

The NPROC evaluators require a means of mutual

synchronization. We could, of course, postulate the

existence of a CI' which is CIA'-called by the evaluators to

effect the synchronization. Unfortunately, this leads to

direct circularities in the definitions of some of the

4-12

control primitives. For example, to perform a CIA one must

perform a CIA'. Hence, the essence of the control will not

be explained. These issues will be discussed further in

section 5.3«2, where we give a justification for the formal

definition as a whole. Instead, the evaluators will

synchronize themselves using the control primitives TSET and

CLEAR. Although this will lead to direct circularities in

the definitions of these operations, the circularities are

not as suspect since the operations are themselves

intuitively acceptable. They can be implemented in one

machine instruction.

Synchronization is required by the evaluators:

(1) to insure single access to the control interpreter

path,

(2) to insure that a path is evaluated by only one

evaluator at a time,

(3) to insure that the environment of a path is modified

by only one evaluator at a time,

(4) to detect and process external interrupts.

The activation record of each path contains a field

MOD, of mode INT, which is used to provide synchronization

in the first three cases above. Whenever a path is active,

its MOD field has been TSET by the corresponding evaluator.

Hence, if a path F is active, then TSET(F.MOD) returns

FALSE. In particular, this is true of the CI path. Kence,

4-13

the evaluators may determine if the CI path is being

evaluated.

Any control primitive that modifies the environment of

a path other than the one in which it is called, TSETs the

MOD field of the path in question. Hence, if TSET(P.MOD)

returns PALSE then P is either active or being modified by a

control primitive.

External interrupts are sent to an evaluator by an

external processor or by another evaluator. To 'send' an

interrupt, a structure associated with the evaluator is

modified to indicate the type of interrupt and its priority

level and then a flag is set to indicate that an interrupt

is pending. The evaluator checks this flag at points during

the evaluation at which it is convenient to allow an

interrupt. If the flag is set, then it determines whether

or not a response is to be initiated by examining the

associated interrupt structure. Synchronization is required

to insure that the evaluator and the interrupt generator do

not modify the structure at the same time. A

processor-interrupt-lock is associated with each evaluator.

An evaluator TSETs this lock before accessing its interrupt

structure. If the lock is set, then the evaluator goes into

a busy wait upon the lock.

Justification for this model of interrupts will be
given in section 5-3.2.

4-14

2. THE EL1 EVALUATOR

In this section we present the definition of the

sub-evaluators for the language constructs of EL1. .For each

construct, examples of its use are given both in concrete

and abstract syntax representation. A sub-evaluator is
*

specified by a labelled sequence of statements. Global

constants are identifiers whose values are accessible to the

NPROC evaluators but are not modified by them. Global

variables are identifiers v/hose values are modified by the

evaluators to effect inter—evaluator communication. All

modes introduced are assumed to be global constants.

The EL1 evaluator presented here is similar to the

evaluator in [Weg70], but has been updated to reflect

changes in the language which have been included in a

current implementation [Weg72]. The major difference

between the two is in the method used to handle evaluator

recursion, c.f. 4.1.2.

The first subsection describes evaluator initialization

and the use of each local variable defined by an evaluator.

The complete definition of an evaluator is the
concatenation of the sub-sections 4.2.i Evaluators (for i
between 1 and 12) and 4.3.i Evaluators (for i between 1 and
15).

2.1 Declarations and Initialization

Global Constants

4-15

NPROC

PRO\PRO\FORM

TIMER\FORM

NPALEV

NPROLEV

;NT The number of processors;

;NT "PRO\PRO" response form;

;NT "TIMER" response form;

;NT The number of processor
interrupt levels;

;NT The number of path
interrupt levels;

Global Variables

PCIAR

PRO\PATH

IDLE

INIT\STATE

;NT PTR to CI path;

;NT A ROW(NPROC,ARPTR) which
specifies the assignment of
processors to paths;

;NT A ROW(NPROC,ARPTR) which
specifies the idle path for
each processor;

;NT A ROW(NPROC,SYMBOL) which is
used to coordinate the
initialization;

Modes

FORM <- PTR(INT, ATOM, DTPR, DDB, REP);

MODE <- PTR(DDE);

DDB <- STRUCT(CLASS:SYMBOL,
D:PTR(DDB,

ROW(S TRUCT(SYM:SYMBOL,TYPE:MODE)),
ROW(MODE),
SIPUCT(TYPE:MODE,LENGTH:INT)),

);

4-16

NT See section 4.5 for a discussion
of the fields of a DDE;

NT See [Weg70] for a complete discussion
of modes in EL1;

DTPR <- STRUCT (CAR :FORK, CDR:FORM);

NAME\STACK <- ROW(STRUCT(NAME:SYMBOL, VALUE:RET));

VALUE\STACK <- STACK;

CONTROL\STACK <- STACK;

NSPTR <- PTR(NAME\STACK);

VSPTR <- PTR(VALUE\STACK);

CSPTR <- PTR(CONTROL\STACK);

ARPTR <- PTR(ACTRC);

ACTRC <-
STRUCT(NS:NSPTR,

VS:VSPTR,
CS:CSPTR,
NP:INT,
VP:INT,
CP:INT,
CIA\FN:REF,
CIA\ARG:REP,
CIA\RESULT:REP,
STKEFLG:BOOL,
ELGFLG:BOOL,
DORMANT:BOOL,
MOD:INT,
SPATE:BOOL,
LFLG:BO0L,
DS:ARPTR,
DSN:INT,
DSC:INT,
DSV:INT,
LBRO:ARPTR,
PLEV:ARPTR,
LASTSON:ARPTR,
LOWCP:LNT,
NEXT:ARPTR,
TERMINATIONXPORM:PORM,
TICKS\LEFT:INT,
USER\AR: ARPTR,
PRO:INT,
INPROI:INT,
INTIKFO:ITE);

4-17

Evaluator

EVALUATOR <-
EXPR(PROCNUM:INT, INITCI:BOOL, PROG:FORM; NONE)

BEGIN

NT The following variables are used
in intra-path evaluation;

DECL F:FORM:
DECL EVRES:REF;
DECL NS:PTR(NAME\STACK):
DECL V£:PTR(VALUE\STACK);
DECL CS:PTR(CONTROL\STACK)

BYVAL ALLOC(CONTROL\STACK SIZE 3);
DECL RESULT\SLOT, AUX\RESULT\SLOT:PTR(VALUE\STACK)

BYVAL ALLOC(VALUE\STACK SIZE 1);
DECL NP, VP, CP, RSP, ARSP:INT;

NT The following variables are used in
inter-path evaluation;

DECL PATH:ARPTR;
DECL SPATH,IFLC:BOOL;

NT The following variables are used as temps
by the evaluator;

DECL Q, P:ARPTR;
DECL L, N, M, NAME\INDEX:INT;
DECL S, TEMP:FORM;
DECL B:BOOL;

N <- 1;
CAIL EVGETPATH1; NT P points to a new path;
IDLE[PROCNUM] <- P ;NT Indicate idle path created;
INITCI -> GOTO INIT1;
TSET(P.MOD);
PRO\PATH[PROCNUM] <- P;
INSTALL\STATE(P);

INIT2: INIT\STATE[PROCNUM] # "CIREADY" -> GOTO INIT2
CALL INIT\INTERRUPTS;
INIT\STATE[PROCNUM] <- "PROREADY";

NT IDLE!;

DOIDLE: F <- QUOTE(WHILE TRUE DO NOTHING);
CALL EVAL\FORM;

INIT1: PUSHC(,,DOIDLE"P);
CALL EVGETPATH1 ;NT Create CI path;
PCIAR <- P;

4-18

TSET(PCIAR.MOD);
INSTALL\STATE(PCIAR);
INSTALL\GLOBAL\ENV()

NT Install initial top level
bindings for paths;

CALL INIT\INTERRUPTS;
FOR I <-1, ..., NPROC DO
INIT\STATE[I] <- "CIREADY";
FOR I<-1, ..., NPROC DO
BEGIN
I = PROCNUM => NOTHING;
L: INIT\STATE[I] $ "PROREADY" -> GOTO L
END;

NT Other processors are ready;

PUSHN("IDLE\PATHS" PUSHV(IDLE));
PUSHN(,,PROGM ,PUSHV (PROG)) ;

P<-QUOTE(INIT\CI(IDLE\PATHS,PROG));
CALL EVAL\FORM; NT Initialize CI;

INITXINTERRUPTS:
F <- QUOTECENAELEXPROCTROXPRO", 1, PRO\PRO\PORM);
CALL EVAL\FORM;
F <- QUOTECENAELEXPROC'TIMER"^, TIMER\EORW));
CALL EVAL\JORM;
RETURN;

Discussion

The arguments to an evaluator specify its number

(1<PROCNUM<NPROC), a boolean which indicates whether or not

the evaluator is to initialize the control interpreter path,

and a form which is the program to be evaluated. Hence,

assuming that PROGRAM is to be evaluated, the NPROC

evaluators are initialized as follows:

4-19

EVALUAT0R(1,IRUE,PR0GRAM) J
EVALUATOR(2) !

EVALUATOR(NPROC-1) J
' EVALUATOR(NPROC)

where '!' indicates that the evaluators execute the

procedure calls simultaneously.

Each evaluator I (I//1) creates a path; enables itself

for "PROVPRO" and "TIMER" interrupts; and then idles.

Evaluator 1 creates both its idle path and the control

interpreter path; installs the 'top-level' environment

(i.e. initializes top level bindings for all of the control

subroutines, 1uilt—in functions, etc.); enables itself for

interrupts; waits for the other processors to complete their

initialization; binds the vector of idle paths and the

program to be evaluated to variables in the CI's environment

and then evaluates the procedure call

INIT\CI(IDLE\PATHS,PROC) in the CI environment.

1NIT\CI defines the variables to be used by the CI,

creates a path in which the program is to be evaluated, and

then calls C\I to commence path scheduling, c.f. Appendix

3.

Note that the 'top-level' environment of the evaluators
is distinct from the 'top-level' environment seen by the
paths.

4-20

The declared variables of an evaluator may be divided

into three classes according to their use.

The first set of variables are used for intra-path

evaluation. NS, VS, and CS point to the name, value, and

control stacks of the path which is being evaluated. NP,

VP, and CP index the top element of the three stacks. P

specifies the current form which is being evaluated. EVRES

is used to point to the value obtained by the evaluation of

P. The value specified by EVRES may be in the heap, on the

value stack of some path, or in the RESULT\SLOT.

The second set of variables are used for inter-path

evaluation. PATH specifies the path which is currently

being evaluated. SPATH indicates whether or not PATH is a

supporting path. If IPLG is TRUE, then PATH is currently

evaluating a path or processor interrupt response.

The third set of variables is used locally in various

parts of the evaluator.

The RESULT\SLOT (AUX\RESULT\SLOT) is used by the
evaluator to hold the result produced by the evaluation of a
language construct in certain cases. A value contained in
the result\slot is called a pure—value.

4-21

2.2 Form

Modes

ATOM<-STRUCT(PRINT\NAME:PTR(STRING),TLB:REF);

SYMBOL<-PTR(ATOM);

STRING<-ROW(CHAR);

Evaluator

EVAL\FORM: ;NT F is the form to be evaluated;

F=NIL => RETURN\NOTHING;
M <- MVAL(F);
M = ATOM -> GOTO EVSYM;
M = DTPR -> GOTO EVDTPR;
BEGIN

M = INT => EVRESULT(VAL(F),INT);
M = REF => EVR£SULT(VAL(F)fMVAL(VAL(F)));
M = DDB => EVRESULT(CONST(MODE LIKE F),KODE)

END;

RETURN;

EVSYM: NAME\INDEX <- FIND\NAME(NS,NP,F);
EVRES <- [) NAKFAINDEX | 0 => NS[NAME\INDEX].VALUE;

RETURN;

Auxiliary Functions

EVRESULT <-
EXPR(PRES:ANY, RESMODE:MODE; REF)

BEGIN
DECL TEMP:REF;
DECL TEMPI:INT;
BEGIN

MD(PRES) = REF AND
INSTACK(PRES, 0, RSP, RESULT\SLOT) =>

BEGIN
TEMP <- RESULT\SLOT;
RESULT\SLOT <- AUX\RESULT\SLOT;
TEMPI <- RSP;
AUX\RESULT\SLOT <- TEMP;
ARSP <- TEMPI

4-22

END
END;
FLUSH(RESULT\SLOT, 0); RSP <- 0;
EVRES <- PUSHR(PRES, RESMODE);
EVRES

END;

FIND\NAME <-
EXPR(STACK:PTR(NAME\STACK),

HTCH\INDEX:INT,
NAME:SYMBOL; INT)

BEGIN
DECL K:INT BYREP HIGH\INDEX;
DECL RESULT:INT;
FOR I <- H,H-1 ... , 1 TILL RESULT # 0 DO

BEGIN
STACK[I1.NAME = NAME ->

RESULT <- I
END;

RFSULT
END;

Discussion

EVAL\FORM performs the evaluation of a form F based

upon the mode M of the object referenced by P. If VAL(P) is

atomic then EVRES is set to the value of the SYMBOL in the

current environment or the top level binding of the SYMBOL.

If it is a DTPR then control is transferred to the list

structure evaluator. If it is an integer then EVRES is set

to a copy of the integer which is pushed onto the

RESULT\SLOT. Note that REPs are used to specify constants

in the list structure representation of an MPEL1 program

(e.g. TRUE, FALSE, 'C, etc.) If VAL(P) is a DDB

(data—definition- block) then EVRES is set to a pointer to

The abstract syntax representaton of identifiers with
the same spelling are pointers to a unique ATOM.

4-23

the DDB (i.e. a mode.)

EVRESULT is used to push an object onto the

RESULT\SLOT. The second argument to FVRESULT specifies the

mode of the object. If the first argument is a REF, then

the object to be copied is the VAL of the argument.

Otherwise, the first argument specifies the object to be

copied.

2.3 List Structure

Evaluator

EVDTPR:
S <- I1.CAR;
MVAL(S) # ATOM -> GOTO APPLY;
S = "EXPR!" -> GOTO EVEXPR;
S = "BLOCK!" -> GOTO EVBLOCK;
S = "IF!" -> GOTO EVIF;
S = "CLAUSE!" -> GOTO EVCLAUSE;
S = "FOR!" -> GOTO EVFOR;
S = "SEL!" -> GOTO EVSEL;
S = "SELQ!" -> GOTO EVSELQ;
S = "DECL!" -> GOTO EVDECL;
S = "LABST!" -> GOTO EVLABST;
S = "<-" -> GOTO EVASSIGN;
COTO APPLY;

Discussion

If the CAR of the list is not a SYMBOL then the list

structure is evaluated as a procedure application. If the

CAR is a SYMBOL which indicates that the form is a language

construct then control is transferred to the appropriate

sub-evaluator. Otherwise, the list structure is evaluated

as a procedure application.

4-24

2,4 Literal Procedure

Example

EXPR(X:INT; BOOL) [) X = 0 => TRUE ; FALSE (];

(EXPR! ((X INT BYREF)) BOOL
(BLOCK! (CLAUSE! (= X 0) TRUE) FALSE))

Evaluator

EVEXPR: EVRESULT(CONST(FORM LIKE F), FORM);
RETURN;

Discussion

The value of a literal procedure is a pointer to the

procedure.

2.5 Block

BEGIN B1 => 1; 2 END;

(BLOCK! (CLAUSE! B1 1)2)

[) DECL X:INT ; FOO(X) (];

(BLOCK! (DECL! (X) INT) (FOO X))

4-25

Modes

BLOCK\ELOCK <-
STRUCT(OLD\NP:INT,

OLL\VP:INT,
CUR\NP:INT,
CUR\VP:INT,
STATEMENT\LIST: PORM ,
RETURN:SYMBOL);

Evaluator

EVBLOCK:PUSHC(CONST(ELOCK\ELOCK OF
NP, VP, NP, VP, P.CDR, "RETBLOCK"));

EVRES <- NIL;
i:T The value of a block is initially NOTHING;

EVBLK1:
T0PC1.STATEMENT\LIST = NIL -> RETURN;
CALL ALLOW\INTERRUPT;
F <- TOPC1-STATEMENT\LIST;
TOPC1.STATEMENT\LIST <- F.CDR;
F <- F.CAR;
CALL FVAL\FORM;
GOTO EVBLK1;

RETBLOCK:
MVAL(EVRES) = LABEL -> ERROR("illegal\result");
NOT PURE\VALUE ->

BEGIN
INSTACK(EVRES, TOPC1.0LD\VP, VP, VS) ->

EVRESULT(EVRES, MVAL(EVRES))
END;

NP <- TOPC1.0LD\NP;
PLUSH(VS, TOPC1.OLD\VP);
POPC1\RETURN;

Discussion

A block is evaluated by evaluatin£ each statement on

its statement list. Since the initial statements of a block

may be declarations which add to the identifier .environment

it is necessary to record in the BLOCK\BLOCK the indices of

4-26

NP and VP which specify the environment in which the

statements of the block are being evaluated. To allow for

external interrupts, a call to ALLOW\INTERFUPT is made

before the evaluation of each statement.

When the last statement of the block is evaluated,

control is transferred to RETBLOCK. If the last value

computed in the block is not a pure—value and it exists in

the portion of the stack environment of the path which will

be deleted upon block exit, then the value is copied into

the result slot. The name and value stacks are flushed back

to the level they were at before the block was entered, the

BLOCK\BLOCK is removed from the control stack, and control

returns to the caller of EVAL\FORM.

The value of a block is the value returned by the last

statement executed.

2.6 Declaration

Examples

DECL X, Y:1NT;

(DECL! (X Y) INT)

DECL Y:INT BYREF Z;

(DECL! (Y) INT BYREF Z)

4-27

DECL X:INT BYVAL 3;

(DECL! (X) INT BYVAL 3)

[) X; L: POO (];

(BLOCK! (DECL! (L) LABEL
(LABST! L POO)) X (LABST! L POO))

Modes

DECL\BLOCK <-
STRUCT(ID\LIST:PORM,

TYPE:FORM,
INITDtPORM,
FXP\MODE:MODE);

LABEL <- STRUCT(CPINDEX:INT, ST\LIST:FORM, PATH:ARPTR);

.•:

Evaluator - ' . —B

EVDECL:MVAL(T0PC2) # BLOCK\BLOCK ->
ERROF("illegal\declaration");

PUSHC(CONST(DECL\BLOCK OP
CADR(F), CADDR(P), F.CDR.CDR.CDR));

EVDECL1:
p <-; TOPC1.TYPE;
CALL EVAL\FORM;
CHECKM(MODE);
TOPC1.EXP\MODE <- VAL(EVRES);
AND(TOPC1.INITD # NIL,

TOPC1.INITD.CAR = "LABST!",
VAL(EVRES) = LABEL) -> GOTO DECL\LABEL;

TOPC1.INITD = NIL -> GOTO DECL\NO\INIT;
P <- CADR(TOPCI.INITD);
CALL EVAL\PORM;
MVAL(EVRES) # TOPC1.EXP\MODE ->

BECIN
COMPATIBLE(TOPC1.EXP\MODE, EVRES) ->

EVRESULT(EVRES, TOPC1.EXP\MODE)
END;

NOT PURE\VALUE AND TOPC1.INITD.CAR = "BYREP" ->
GOTO DECL\BYREP;

PUSHN(TOPC1.ID\LIS T.CAR, PUSHV(EVRES));
GOTO DECL\LOOP;

DECLNBYREP:
PUSHN(TOPC1.ID\LIST.CAR, EVRES);

4-28

GOTO DECL\LOOP;

DECL\NO\INIT:
TOPC1.EXP\MODE=LABEL OR

TOPC1 .EXP\MODE. CLASS=,,GENERICW

-> ERROR("illepal\declaration");
PUSHN(TOPC1.IL\LIST.CAR, GENV(TOPC1.EXP\MODE));
GOTO PECL\LOOP;

DECLXLABEL:
PUSHN (TOPC1. IL\LIST . CAR,

PUSHV(CONST(LABEL OP CP - 2,
TOPC1.INITD, PATH)));

DECLXLOOP:
TOPC3-CUR\NP <- NP;
TOPC3.CUR\VP <- VP;
TOPC1.ID\LIST <- TOPC1.ID\LIST.CDR;
TOPC1.ID\LIST # NIL -> GOTO EVDECL1;
P0PC(2); NT Pop DECLVELOCK and CALL from EVBLOCK;
EVRES <- NS[NP]. VALUE;
GOTO EVBLK1;

Discussion

A declaration may only appear at the statement level of

a block. The evaluation of a declaration results in the

addition of one or more identifiers to the environment. The

CUR\NP and CUR\VP fields of the BLOCK\BLOCK of the block are

updated to reflect this addition.

Por each identifier on the identifier list the

following actions are performed. The type field is

evaluated to produce a mode which is saved in the EXP\MODE

component of the DECL\BLOCK. If the mode is LABEL then it

is treated specially (see below). If the INITD field is

NIL, then the identifier is bound to a default value on the

value stack for the mode EXP\MODE. If it is not NIL, then

4-29

the initialization form is evaluated. If the initialization

is to be BYREF and the result of evaluation is not a

pure—value then the identifier is bound directly to the

result. Otherwise, the identifier is bound to a copy of the

result, which is pushed onto the value stack.

If the EXP\MODE is LABEL, then the identifier is bound

to an entry on the value stack which specifies the

BLOCK\£LOCK with which the label is associated, the sub-list

of the statement list of the block starting with the

labelled statement, and the current path.

The value of a declaration is the value associated with

the last identifier bound on the name stack,

2.7 Conditional

Example

[) B -> FCO(A,E) ; A => B ; FALSE (];

(BLOCK! (IP! B (F00 A B)) (CLAUSE! A B) FALSE)

Mode

COND\BLOCK <- STRUCT(LHSF:FORM, RHSF:FORM);

x

4^30

Evaluator

EVIF: MVAL(T0PC2) # BL0CK\EL0CK ->
ERROR("illegal\conditional");

PUSHC(CONST(C0ND\BL0CK OF CADR(F), CABDR(F)));
F <- T0PC1.LHSF;
CALL EVAL\FORM;
CHECKM(BOOL) AND VAL(EVRES) = TRUE -> GOTO EVIF1;
P0PC(1);
RETURN\NOTHING;

EVIF1:
F <- T0PC1.RHSF;
CALL EVAL\FORM;
P0PC1\RETURN; NT Return to EVBLOCK loop;

EVCLAUSE:
MVAL(T0PC2) # BLOCK\BLOCK ->

ERROR(Mille£al\conditionalM);
PUSHC(CONST(COND\BLOCK OF CADR(F), CABDR(F)));
F <- T0PC1.LHSF;
CALL FVAL\FORK;
CHECKM(BOOL) AND VAL(EVRES) = TRUE ->

GOTO EVCLAUSE1;
P0PC(1);
RETURN\NOTHING;

EVCLAUSE1:
F <- T0PC1.RHSF;
CALL EVAL\FORK;
P0PC(2); NT Flush COND\BLOCK

and CALL from EVBLOCK;
RETURN; NT Exit block;

Discussion

A conditional may only appear at the statement level of

a block.

If the LHSF of an IF! form evaluates to TRUE, then the

RHSF is evaluated and control returns to the EVBLOCK loop.

If the LHSF of a CLAUSE! form evaluates to TRUE then the

RHSF is evaluated and the result is taken as the value of

4-31

the block. In either case, if the LHSF evaluates to FALSE,

then the value of the conditional is NOTHING.

2.8 Selection

Examples

X[3]

(SEL! X 3)

NS[NP].VALUE

(SELQ! (SEL! NS NP) VALUE)

Mode

SEL\BLOCK <-
STRUCT(OBJF:FORM,

SEL\K)RM:FORM,
OBJrREF,
INDEX:INT,
SAVE\FLAG:BOOL);

Evaluator

EVSEL:PUSHC(CONST(SEL\BLOCK OF CADR(F), CADBfi(F)));
F <- TOPC1.0BJF;
CALL EVAL\PORM;
MVAT,(EVRES).CLASS = "PTR" -> DEREF(EVRES);
SAVE\VAL(); NT Save object on value-stack

if pure—value;
F <- T0PC1.SEL\F0RM;
CALL FVAL\FORM;

BEGIN
MVAL(EVRES) = INT => T0PC1.INDEX <- VAL(EVRES);
CHECKM(SYMBOL);
T0PC1.INDEX <-

SEJJECTOR\IKDEX(MVAL(TOPC1.0BJ), VAL(EVRES));
END

4-32

EVSEL1: T0PC1.INDEX LE 0 OR
TOPC1.INDEX GT LENGTH(VAL(T0PC1.OBJ)) ->

ERROR("selection\fault");
EVRES <-SELECT(TOPC1.0BJ, TOPC1.INDEX);
TOPC1.SAVE\FLAG -> GOTO UNSAVE\VAL;
POPC1\RETURN;

UNSAVE\VAL:
EVRESULT(EVRES, MVAL(EVRES));
POPV(1); NT Pop saved object off of value stack;
P0PC1\RETURN;

EVSELQ:
PUSHC(CONST(SEL\BLOCK OP CADR(P), CADDR(P)));
P <- TOPC1.0BJF;
CALL EVAL\FORM;
MVAL(EVRES).CLASS = "PTR" -> DEREP(EVRES);
SAVE\VAL();
T0PC1.INDEX <-

SELECTOR\INDEX(MVAL(T0PC1.OBJ),
TOPC1.SEL\FORM);

GOTO FVSEL1;

Auxiliary Functions

SAVE\VAL <-
EXPR(; NONE)

BEGIN
PUREXVALUE =>

BEGIN
TOPC1.0BJ <- PUSHV(EVRES);
TOPC1.SAVE\PLAG <- TRUE

END;
TOPC1.0BJ <- EVRES

END;

SELECTOR\INDEX <-
EXPR(M:MODE, S-.SYMBOL; INT)

BEGIN
DECL L:INT;
M.CLASS § "STRUCT" =>

ERROR("selectionXfault"):
FOR I <- 1, ... , LENGTH(VAL(M.D)) TILL L GT 0 DO

[) M.D[I].SYM = S => L <- I (];

END;

4-33

Discussion

Two types of selection forms are defined for compound

objects, namely selection (SEL!) and selection-quoted

(SELQ!). In either case, the OBJF is evaluated. If the
*

result is a pointer, it is dereferenced to produce a

non-pointer value. If the result is a pure value then it is

saved on the value stack.

SEL! and SELQ! differ in the method used to obtain the

index of the component to be selected.

SELQ! calls SELECTOR\INDEX to obtain, from the mode of

the object, the index associated with the symbolic field

name specified by SEL\IDRM. SEL! evaluates the SEL\K)RK.

If the result is an integer then it uses it as the index.

If the result is a SYMBOL, then it calls SELECTOR\INDEX to

obtain the index. The primitive procedure SELECT is called

to select the appropriate component of the object. SELECT

returns a pointer to the selected component.

The result of a selection form is the component of the

object.

VAL is applied repeatedly until a non-pointer object
is obtained. Selection is the only language construct in
which pointer coercion is automatic.

4-34

2.9 Assignment

Examples

X <- 1

(<- X 1)

S <- Y.CAR

(<- S (SELQ! Y CAR))

Modes

ASSIGN\BLOCK <-
STRUCT(LHSF:FORM,

RHSF:FORM,
OBJrREF,
SAVE\FLAG:BOOL);

Evaluator

EVASSIGN:
PUSHC(CONST(ASSIGN\BLOCK OF CABR(F), CADDR(F)));
F <- T0PC1.LHSF;
CALL EVAL\FORM;
SAVE\VAL();
F <- T0PC1.RHSF;
CALL FVAL\FORM:
NOT COMPATIBLE(MVAL(TOPC1.0£J), EVRES) ->

ERROR("assign\error");
ASSIGN(T0FC1.OBJ, EVRES);
T0PC1.SAVE\FLAG -> GOTO UNSAVF\VAL;
EVRES <- TOPC1.0BJ;
PCPC1\RETURN;

Discussion

The LHSF is evaluated first. If the result is a

pure-value then it is saved on the value stack. The RHSF is

then evaluated. If the 2 objects obtained are compatible

4-35

then the primitive function ASSIGN is used to perform the

mode-dependent assignment. The value of an assignment form

is the object specified by OBJF after the assignment has

been completed, unless the LHSF was a pure value in which

case the value of the assignment is a copy of the modified

LHSF.

2.10 Iteration

Examples

FOR I <- 1, ..., N DO SUM <- SUM + 1;

(FOR I 1 NIL N NIL (<- SUM (+ SUM 1)))

FOR I <- 1,3, ..., K TILL P(I) DO
[) B => Q(X) ; T(X) (];

(FOR I 1 3 K (TILL . (P I))
(BLOCK! (CLAUSE! B (Q X)) (T X)))

FOR K- 1,3, ..., N WHILE B DO (FOO(X));

(FOR I 1 3 N (WHILE . B) (F00 X))

Modes

FOR\BLOCK <-
STRUCT(0LD\NP:INT,

0LD\VP:INT,
NAME:FORM,
INITF:FORM,
STEPF:FORM,
LIMITF:FORM,
TESTF:FORM,
C0ND\FLAC:B00L,
BODY:FORM,
STEP:INT,

4-36

LIMIT:INT,
RETURN:SYMBOL);

Evaluator

EVPOR:
PUSHC(CONST (K)R\BLOCK OF

NP,
VP,
F<-F.CDR I.CAR,
F<-F.CDR i.CAR,
F<-F.CDR i.CAR,
JK-F.CDR] .CAR,

;F<-F.CDRJ i.CAR,
BEGIN

F.CAR = NIL => FALSE;
F.CAR.CAR = "TILL" => TRUE;
FALSE

END,
1 :F<-F.CDRJ i.CAR,
11

o,
"RETFOR")):

PUSHN(T0PC1.NAME, GENV(INT));
F <- T0PC1.INITF;
CALL EVAL\FORM;
CHECKM(INT);
NSV1 <- VAL(EVRES);
F <- T0PC1.STEPF;
F = NIL -> GOTO EVF0R5;
CALL EVAL\FORM;
CHECKM(INT);
T0PC1.STEP <- VAL(EVRES) - NSV1;

EVF0R5:
F <- T0PC1.LIMITF;
F = NIL -> GOTO EVF0R1;
CALL EVAL\FORM;
CHECKM(INT);
T0PC1.LIMIT <- VAL(EVRES);

EVF0R1:
T0PC1.TESTF // NIL -> GOTO EVF0R3;

EVF0R2:
CALL ALLOW\INTERRUPT;
SIGN(TOPCI.STEP) * (NSV1 - T0PC1.LIMIT) GT

0 -> GOTO ENDFOR;
F <- T0PC1.B0DY;
CALL FVAL\FORM;
NSV1 <- NSV1 + T0PC1.STEP;
GOTO FVF0R2;

4-37

EVP0R3:
CALL ALLOW\INTERRUPT;
SIGN(TOPCI.SIEP) * (NSV1 - IOPC1.LIMIT) GT

0 -> GOTO ENDPOR;
P <- TOPC1.TESTP.CDR;
CALL EVAL\PORW;
CHECKS(BOOL);
TOPC1.COND\PLAC = VAL(EVRES) -> GOTO ENDPOR;
P <- TOPC1.BODY;

• • CALL EVAL\PORJ<J;
NSV1 <- NSV1 + TOPC1.STEP;
GOTO EVPOR3;

ENDPOR:
RETURN\NOTHINC;

RETPOR:
NP <- TOPC1.0LD\NP;
PLUSH (VS, TOPC1. OLD\VP);
POPC1\RETURN;

Auxiliary Punction

SIGN <-
EXPR(N:INT; INT)
BEGIN

N = 0 => 0;
N GT 0 => 1;
-1

END;

Discussion

There are two types of iteration, namely, iteration

without-test and iteration with-test. In either case, a

name-stack entry is made for the iteration variable. The

initial value for the iteration variable is obtained by

evaluating INITP. If STEPP is non-null then it is evaluated

and the iteration STEP is taken to be the difference between

it and the result of evaluating INITP, otherwise the STEP is

defaulted to 1. If the LIMITP is non-null, it is evaluated

4-38

to yield the iteration limit, otherwise the LIMIT is

defaulted to 0. The values for STEP and LIMIT are saved in

the P0R\BL0CK.

For an iteration without test (TESTF=NIL), the

iteration body is evaluated 0 or more times until the

iteration variable exceeds the LIMIT.

For an iteration with test (TESTF#NIL), the iteration

body is evaluated 0 or more times until either the iteration

variable exceeds the limit or the result of evaluating
*

TESTF.CDR is equal to the C0ND\FLAC.

Since the evaluation of an iteration form adds an

identifier to the environment, return from the evaluation

must be via the return component in the F0R\BLOCK.

To allow for external interrupts, a call to

ALLOW\INTERRUPT is made before each evaluation of the body.

The result of an iteration form is NOTHING.

C0ND\FLAG is set to TRUE or FALSE as TESTF.CAR equals
"TILL" or "WHILE", respectively.

4-39

2.11 Procedure Application

Examples

FOO(A, B, C + D)

(POO A B (+ C D))

(EXPR(X:INT,Y:INT BYVAL;INT)(X<-Y))(A,E)

((EXPR! ((X INT BYREF)(Y INT BYVAL))
INT (<- X Y)) A B)

Modes

FN\BLOCK <-
STRUCT(OLD\NP:INT,

OLD\VP:INT,
ARG\LIST:FORM,
RESULTXTYPE: MODE,
PROC:REF,
TYPE:SYMBOL,
NAME:SYMBOL,
RETURN:SYMBOL,
ENTERED:BOOL);

BINDP\BLOCK <-
STRUCT(ACTUAL\LIST:FORM,

FORMAL\LIST: FORM,
EXP\MODE:MODE.
BCLASS:SYMBOL);

CEXPR <-
STRUCT(FORMAL\LIST:FORM,

BODY:ROW(INT),
RESULT\TYPE:FORM);

CSUBR <-
STRUCT(FORMAL\LIST:FORM,

BODY:SYMBOL,
RESULT\TYPE:MODE);

4-40

Evaluator

APPLY:PUSHC(CONST(PN\BLOCK OP
HP,
VP,
P.CDR,
NIL,
NIL,
NIL,
NIL,
"RETPN",
PALSE));

P <- F.CAR;
MVAL(P) = ATOM -> T0PC1.NAME <- P;
NT Save name of procedure;
CALL APPLY1;
MVAL(T0PC2) B PAP\BLOCK AND T0PC2.PATH § PATH ->

GOTO DOPAP;
APPLY2:

T0PC1.ENTERED <- TRUE;
T0PC1.TYPE = CEXPR -> GOTO APCEXPR;
T0PC1.TYPE = CSUBR -> GOTO APCSUBR;
P <- CADDDR(TOPCI.BODY);
CALL EVAL\FORM;

PROCRET:
PROC\EXIT(T0PC1.OLD\VP, T0PC1.RESULT\TYPE);
RETURN;

APPLY1:
CALL EVALVFORM;
DEREP(EVRES);
M <- MVAL(EVRES);
NOT OR(M = CEXPR, M = CSUBR,

M = DTPR AND EVRES.CAR = "EXPR!") ->
ERROR("unboundXproc");

T0PC2.TYPE <- M;
T0PC2.PR0C <- EVRES;
CALL BINDF;
T0PC2.TYPE = DTPR -> PUTNAMES(T0PC2.PROC.CDR.CAR):
T0PC2.TYPE = CEXPR -> PUTNAMES(T0PC2.PROC.PORMALS);
P <- [) T0PC2.TYPE = DTPR => CADDR(T0PC2.PROC);

T0PC2,PR0C.RESULT\TYPE (1
CALL FVAL\PORM;
CHECKM(MODE);
T0PC2.RESULT\TYPE <- VAL(EVRES);
CALL ALLOW\INTERRUPT;
RETURN;

APCEXPR: XCT(T0PC1.PROC.BODY); NT execute code procedure;
GOTO PROCRET;
NT Result is set by code procedure

4-41

and is pointed to by EVRES;

APCSUBR: GOTO EVAL(TOPCI.PROC.BODY)

NT Transfer control to appropriate
point in evaluator;

RETFN: HP <- TOPC1,OLD\NP;
VP <- TOPC1.0LD\VP;
POPC1\RETURN;

BINDF:
PUSHC(CONST(BINDF\BLOCK OF

TOPC3.ARG\LIST,
BEGIN

T0PC3.TYPE = DTPR =>
CADR(T0PC3.PR0C);

TOPC3. PROC. FORMALS
END));

BINDP3:
TOPC1.FORMAL\LIST = NIL -> GOTO ENDBIKDF;
T0PC4.TYPE = CSUBR -> GOTO BINDF 1;
F <- CADR(TOPC1.FORMAL\LIST.CAR);
CALL FVAL\FOR*i;
CHECKM(MODE);
TOPC1.EXP\MODE <- VAL(EVRES);

BINDF4:
TOPC1.BCLASS <- CADDR(T0PC1.F0RMAL\LIST.CAR);
TOPC1.BCLASS = "UNEVAL" -> GOTO BINDUNEVALED;
TOPC1.BCLASS = "LISTED" -> GOTO BINDLSTED;
TOPC1.ACTUAL\LIST = NIL -> GOTO GENDEF;
F <- TOPC1.ACTUAL\LIST.CAR;
CALL EVAL\FORM;
BEGIN

T0PC1.EXP\M0DE.CLASS = "GENERIC" =>
TOPC1.EXP\MODE <-

RESOLVE(TOPC1.EXP\MODE, MVAL(EVRES));
NOT COMPATIBLE(TOPC1.EXP\MODE, EVRES) ->

ERROR("type\fault")
END;
TOPC1.EXP\MODE # MVAL(EVRES) ->

EVRESULT(EVRES, TOPC1.EXP\MODE);
TOPC1.BCLASS = "BYREF" AND NOT PURE\VALUE ->

GOTO BINDBYREF;
PUSHN(NIL, PUSHV(EVRES)); NT Bind BYVAL;
GOTO BINDFLOOP;

BINDBYREF:
PUSHN(NLL, EVRES);

4-42

GOTO EINDFLOOP;

BINDUNEVALED:
TOPC1.EXP\MODE § FORM ->

ERROR(Mmode\bind\class\misnatch");
PUSHN(NIL, PUSHV(TOPC1.ACTUAL\LLST.CAR));
GOTO BINDFLOOP;

BINDLSTD:
CHECKM(FORM);
PUSHN(NIL, TOPC1.ACTUALXLIST);
TOPC1.ACTUAL\LIST <- NIL;

BINDFLOOP:
TOPC1.ACTUAL\LIST # NIL ->

TOPC1.ACTUAL\LIST <- TOPC1.ACTUAL\LIST.CDR;
TC?C1.EORMAL\LIST <- TOPC1.FORMAL\LIST.CDR;
GOTO BINDE3;

ENDBINDE:
POPC1\RETURN;

BINDF1:
TOPC1.EXP\MODE <- CADR(TOPC1.FORMAL\LIST.CAR);
GOTO EINDE4;

GENDEE:
TOPC1.EXP\MODE = LABEL OR
TOPC1.EXP\MODE.CLASS = "ONEOF" ->

ERROR("illegalVDinding*1) ;
PUSKN(NIL, GENV(TOPC1.EXP\MODE));
GOTO BINDFLOOP;

Auxiliary Functions

PUTNAMES <-
EXPR(L:FORM BYVAL; NONE)

BEGIN
DECL N:INT BYVAL TOPC2.0LD\NP;
FOR I <- N + 1, ... , NP BO

[) NS[I].NAME <- L.CAR.CAR; L <- L.CDR (]
END;

RESOLVE <-
EXPR(U:MODE, R:MODE; MODE)

BEGIN
DECL FFrBOOL;
U = ANY => R;
U. CLASS § "GENERIC" => ERRORC'resolveXerror");
FOR I <- 1, ... , LENGTH(VAL(U.D)) TILL FI DO

4-43

[) U.D[I] = R => FF <- TRUE (];
EF = TRUE => R;
ERROR("resolve\error")

END;

PROC\EXIT <-
EXPR(OLDVP:INT, EXPMODE:MODE; REE)

BEGIN
MVAL(EVRES) = LABEL => ERROR("illegal\result");
BEGIN

EXPMODE = NONE => EVRESULT(ALLOC(NONE), NONE);
EXPMODE.CLASS = "GENERIC" =>

EXPMODE <- RESOLVE(EXPMODE, MVAL(EVRES));
NOT COMPATIBLE(EXPMODE, EVRES) =>

ERROR("type\fault")
END;
OLDVP = VP => EVRES;
INSTACK(EVRES, OLDVP, VP, VS) =>

EVRESULT(EVRES, EXPMODE);
MVAL(EVRES) = EXPMODE => EVRES;
EVRESULT(EVRES, EXPMODE)

END;

Discussion

A form (f a1 a2 ...an), where f does not specify that

the form is a language construct is treated as a call on the

procedure f with actual parameters a1 ,..., an.

Procedure application is carried out in five steps:

(1) f is evaluated to obtain a procedure.

(2) The formal parameters of the procedure are bound to

the actuals a1 ,..., an.

(3) The result type of the procedure is evaluated to

obtain the EXPECTED\MODE of the call (i.e. the mode

of the object which will be returned by the

procedure.)

(4) The procedure body is evaluated.

4-44

(5) The procedure PROC\EXIT is called to check the mode

of the result against the EXPECTED\MODE and to check

whether the result exists in the portion of the

stack environment which will be deleted upon

procedure exit.

A procedure is either an explicit procedure, a code

proceduret or a control subroutine.

An explicit procedure is one which is defined in EL1

and whose external representation is of syntactic type

<exprnt>, c.f. Appendix 2.

A code procedure (CEXPR) is one written in a language

other than EL1. All (non-control) primitives (such as +, -,

VAL, MD, CONST, ALLOC) are assumed to be defined as code

procedures. The BODY component of a code procedure is a

ROW(INT) which specifies the machine code to be executed.

A control subroutine (CSUBR) is one of the control

primitives described in chapter 2. The body of a control

subroutine specifies the point in the evaluator to which

control is to be passed to perform the desired control

action.

The formal parameters to a procedure are represented as

a list of the form

((P1 MF0RM1 ECLASS1) ... (Pn MFORMn BCLASSn))

where Pi is the name of the i th formal, MFORMi is a form

4-45

which is to be evaluated to obtain the mode of the i th
*

formal , and BCLASSi must be one of the following SYMBOLS:

BYVAL, BYREF, UNEVAL, or LISTED.

If an argument is passed BYVAL, then the formal is

bound to a copy of the value of the corresponding actual.

If an argument is passed BYREF, then the forma] is bound to

the result of evaluating the argument itself (unless the

result is a pure-value.) An UJJEVALed argument is bound to a

pointer to the list structure for its corresponding actual

(which is not evaluated). A LISTED argument is bound to a

pointer to the remaining argument list. If the list of

actuals is exhausted before all formals have been bound,

then the remaining formals are bound to objects which are

the default values for the corresponding modes.

All arguments are evaluated in the identifier

environment which exists at the point at which the procedure

call is made, hence the names of the formals are not put

onto the name stack until all arguments are evaluated. The

names of the formals of CSUBRs are never put on the stack.

The result-type is evaluated in an environment which

includes the bindings of the formals.

The modes of the formals for CSUBRs are assumed to be
implicit in the list structure. Hence, no evaluation is
necessary.

4-46

At this point, a call to ALLOW\INTERRUPT is made to

allow for external interrupts. In addition, a check is made

to see if the body of the procedure is to be applied in the

environment of another path (due to a call on PAP.) If so,

control is transferred to DOPAP. Otherwise, the body of the

procedure is evaluated.

Since a procedure application may add identifiers to

the environment, return from the procedure application must

be via the RETURN component of the EN\ELOCK.

2.12 Labelled Statement

Examples

L: X <- 1;

(LABST! L (<- X 1))

L1: L2: EOO(A,E);

(LABST! L1 (LABST! L2 (ECO A B)))

Evaluator

EVLABST:
E <- E.CDR.CDR.CAR;
GOTO FVAL\EORM;

Discussion

The value of a labelled statement is the value obtained

by evaluating the statement itself.

4-47

3. THE CONTROL PRIMITIVES

In this section we present the definitions of the

bodies of the control subroutines. The definitions of the

control primitives are installed as 'top-level' bindings by

INSTALL\GLCBAL\ENV as objects of mode CSUBR. The BODY

component of a CSUBR specifies the label in the evaluator at

which the body of the CSUBR is defined. Recall that calls

upon the control primitives appear syntactically in EL1

programs as procedure calls (c.f. 4.2.11). Hence, when

control is transferred to the body of the control

subroutine, the arguments for the call have been bound on

the name stack of the path.

Eor each control primitive we present its definition as

a CSUBR in the format of a procedure heading which specifies

the modes and bind classes of its arguments, the mode of its

result and the evaluator label at which its body is located.

Evaluator initialization, including the initialization
of top-level bindings, is discussed in section 4.2.1

**

The body of a control subroutine references its
arguments via the NOFIX operators NSV1, NSV2, etc., e.g.
KSV1 is equivalent to VAL(NS[NP].VALUE) - the last argument
passed to the control subroutine.

4-48

3.1 GET\PATH

Definition

GET\PATH<-CSUER(N:INT;ARPTR) EVGETPATH;

Example

Q <- GET\PATH(3);

Mode

ENV\BLOCK <- STRUCT(OLD\NP:INT,
OLD\VP:INT,
RETURN:SYMBOL);

Global Constants

CI\PATH\K)RM

TIME\OUT\K)RM

NSQUANT

VSQUANT

CSQUANT

NT "CI\PATH" response form;

NT "TIME\OUT" response form;

NT Minimum size for NAME\STACK;

NT Minimum size for VALUE\STACK;

NT Minimum size for CONTROL\STACK;

Evaluator

EVGETPATH:
N <- 1;
CALL EVGETPATH1:
RETURN\RESULT(P);

EVGETPATH1:
P <- ALLOC(ACTRC);

NT Initialize path level interrupt structure;

P.INTINFO.CURLEV <- NPALEV + 1;
P.INTINFO.WAITLEV <- NAPLEV + 1;
P.INTINFO.RESPP] <- CI\PATH\PORM;

4-49

P.INTINPO.TYPE
P.INTINEO.RESP
P.INTINPO.TYPE

1] <- "CIXPATH" ;
2] <- TlME\OUT\FORM ;

=2] <- "TIMEXOUT" ;

NT Initialize stacks ;

P.US <- ALLOC(NAMEXSTACK SIZE N*NSQUANT):
F.VS <- ALLOC(VALUE\STACK SIZE N*VSQUAKT);
P.CS <- ALLOC(CONTROL\STACK SIZE N*CSQUANT);

PUSHC(CONST(ENV\BLOCK OF 0, 0, "DELPTH"), P);
P.STKEFLG <- TRUE;
P.ELGFLG <- TRUE;

NT Initialize termination form;

P.TERMINATI0N\F0RM <-
QUOTE(CIA("DELEEE\PATH", MYPATH));

RETURN;

NT Control underflow handler;

DELPTH: PUSHN("LAST\VALUE",PUSHV(EVRES));
F <- PATH.TERI-aNATION\K)RM;
CALL EVAL\FORM;
ERROR("terminationXerror");

Discussion

GET\PATH creates a new path. The path's ACTRC is

allocated in the heap. It is enabled for the path level

interrupts "CI\PATHM and "TIMEXOUT". The label (DELPTH) of

a statement in the evaluator to which control is to be

transferred upon control underflow is pushed onto the

control\stack. The initial termination form for the path is

set to be one which will call DELETE\PATH.

Control is transferred to DELPTH upon exit from the

outermost procedure call which has been PAPed into the path.

4-50

The last value computed is bound to the name LAST\VALUE and

the path's TERMINATI0N\FORM is evaluated. If the

TERMINATI0N\F0RM does not terminate the path, then an error

occurs.

3-2 PAP, PAPQ, DPAP, DPAPQ

Definitions

PAP <- CSUBR(F:FORM, P:ARPTR; ARPTR) EVPAP;

PAPQ <- CSUBR(F:FORM UKEVAL, P:ARPTR; ARPTR) EVPAP;

DPAP <- CSUBR(F:FORM, P:ARPTR; ARPTR) FVDPAP;

DPAPQ <- CSUBR(F:F0RM UNEVAL, P:ARPTR; ARPTR) EVDPAP;

Examples

PAPQ(FO0(A, B), P1)

DPAP(X, MDEP(GET\PATH(1)))

Mode

PAP\BL0CK <- STRUCT(PATH:ARPTR, DEPFLG:B00L);

Evaluator

EVDPAP: B <- TRUE; GOTO EVPAP1;

EVPAP: B <- FALSE;

EVPAP1: NSV1 = NIL OR NSV1 = PATH -> GOTO EVPAP3;
EXISTS(NSV2,

SEL!,

4-51

SELQ!,
FOR,
DECL!,
BLOCK!,
<-,
EXPR,
IP!
CLAUSE!,
LABST!) -> GOTO DOPAP1;

PUSHC(CONST(PAP\BLOCK OF NSV1, B));
F <- NSV2;
GOTO APPLY;

NT Begin the procedure application;

NT APPLY passes control to DOPAP just before
the procedure is applied;

DOPAP:CHECKXPATH(T0PC2.PATH):
MOVE\ARGS(T0PC2.DEPFLG);
PUSHC("APPLY2", T0PC2.PATH);
CLEAR(T0PC2.PATH.MOD);
POPC1 ; NT Pop unused FN\BLOCK;
P <- TOPC1.PATH;
POPC1; NT Pop PAP\BLOCK;
RETURN\RESULT(P);

NT Evaluate the form in the current
path's environment;

EVPAP3: F <- NSV2;
CALL EVAL\FORM;
RETURN\RESULT(NSV1);

NT Modify environment of target path so that
the form will be evaluated\

D0PAP1: CHECK\PATH(NSV1);
PUSHC(NSV2, NSV1); NT Save form on CONTROL\STACK ;
PUSHC ("PAPF'1, NSV1);
CLEAR(TOPC2.PATH.MOD);
RETURN\RESULT(NSV1);

NT PAPF evaluates the form which is the top
element of the control stack;

PAPF: F <- VAL(T0PC1);
P0PC1;
GOTO EVAL\FORM;

4-52

Auxiliary Functions

CHECK\PATH <-
EXPR(P:ARPTR; MOKE)
BEGIN

NOT TSFT(P.MOD) -> ERROR("path\mod");
NOT P.STKEFLG -> ERROR1(Mno\stacks",P)

END;

EXISTS <-
EXPR(P:PORM, L:FORM LISTED; BOOL)

BEGIN
MVAL(P) ft DTPR -> FALSE;
INSET(P.CAR, L)

END;

INSET <-
EXPR(X:PORM, L:FORM; BOOL);

BEGIN
L = NIL => PALSE;
X = L.CAR => TRUE;
INSET(X, L.CDR)

END;

MOVEXARGS <-
EXPR(DPLG:BOOL; NONE)

BEGIN
DECL P:ARPTR BYVAL T0PC2.PATH;
DECL ED:ARPTR;
DECL N:INT BYVAL TOPC1.OLD\NP;
TOPC1.0LDW <- P.NP;
TOPC1.0LDVVP <- P.VP;
PUSHC(VAL(TOPC1), P)
POR I <- N + 1, ... , NP DO

BEGIN
DECL B:EOOL;
MVAL(NS[I].VALUE) = LABEL =>

PUSHN(NS[I].NAME, GENV(LABEL, P), P);
B <-

BEGIN
DFLG AND (DD <- DDEP(PATH, P)) § NIL =>

INSTACK(NS[I].VALUE, DD.DSV, VP.VS);

NOT HEAP(NS[II.VALUE)
END;

PUSHN(NS[I].NAME,
BEGIN

B => PUSHV(NS[I "LVALUE, P) ;
NS[I].VALUE

4-53

END,
P)

END
END;

Discussion

(D)PAP(Q) arranges for the evaluation of a form or the

application of a procedure in the environment of another

path. If NSV1 is null, or is equal to the current path,

then the form NSV2 is simply evaluated in the current path's

environment.

If NSV2 is not a procedure application, then the

environment of NSV1 is modified, so that if control is

passed to it, the form will be evaluated. This is

accomplished by pushing the form and the evaluator label

PAPE onto the control stack of NSV1.

If NSV2 is a procedure application, then a PAP\ELOCK is

pushed onto the control stack of the current path and the

procedure application is "evaluated". APPLY checks to see

if the procedure application is to be applied in the current

environment or not .just before it evaluates the body of the

procedure (i.e. after the actuals and result-type have been

evaluated.) If APPLY detects a PAP\BLOCK immediately

preceding the EN\BLOCK it has placed on the control stack,

then it passes control to DOPAP in lieu of evaluating the

procedure body.

4-54

MOVE\ARGS copies the arguments and FN\BLOCK into the

environment of NSV1. The boolean argument specifies whether

or not the PAP was a dependent one, i.e. whether arguments

which exist in the accessible environment of NSV1 are to be

passed directly or are to be copied.

DOPAP pushes the interpreter label APPLY2 onto the

control stack of NSV1 so that if control is passed to NSV1,

the body of the procedure will be evaluated.

The modification word in NSV1's ACTRC is TSET to insure

that two evaluators do not simultaneously modify NSV1's

environment.

The result of (D)PAP(Q) is NSV1.

3-3 PEETCH, PSTQRE

Definitions

PEETCH <- CSUBR(NAME:SYMBOL, P:ARPTR BYVAL; ANY) EVPEETCH;

PSTORE <- CSUBR(VALUE:ANY,
NAME:SYMB3L,
P:ARPTR BYVAL) EVPSTORE;

4-55

Examples

PFETCH("XM, P)

PSTORE(A+£, "Y", Q)

Evaluator

EVPPETCH:SETUP();
NOT HEAP(EVRES) -> EVRESULT(EVRES, MVAL(EVRES));
NSV1 H PATH -> CLEAR(NSV1.MOD);
RETURN;

EVPSTORE: SETUP();
NOT COMPATI£LE(MVAL(EVRES), NS3) ->

ERROR1("assignXerror",NS3);
ASSIGN(EVRES,NS3);
NSV1 $ PATH -> CLEAR(NSV1.MOD);
RETURN\NOTHING;

Auxiliary Function

SETUP <-
EXPR(; NONE)

BEGIN
NSV1 = NIL -> NSV1 <- PATH;
NSV1 $ PATH AND NOT TSET(NSVI.MOD) ->

ERROR("path\modM);
NOT NSV1.STKEFLG -> ERROR("no\stacks",NS1);
NAMEXINDEX <-

PIND\NAME(NSV1.NS,
N <- [) NSV1 = PATH => NP; NSV1.NP (1,
NSV2);

NAME\INDEX = 0 -> ERROR("noYbinding");
EVRES <- NSV1.NS[NAME\INDEX].VALUE

END;

4-56

Discussion

PFETCH obtains the most recent binding of the

identifier specified by NSV2 in the path specified by NSV1.

If the identifier is not bound directly to an object in the

heap, then the value of the identifier is copied into the

RESULT\SLOT.

PSTORE assigns NSV2 to the most recent binding of the

identifier NSV2 in the path NSV1. The modes of the objects

must be compatible for assignment.

In either case, an error occurs if there is no binding

for NSV2 in path NSV1.

3.4 TSET, CLEAR

Definitions

TSET <- CSUBR(X:INT; BOOL) EVTSET;

CLEAR <- CSUER(X:INT; ME) EVCLEAR;

Evaluators

EVTSET: RETURN\RESULT(TSET1(NSV1), BOOL);

EVCLEAR:CLEAR1(NSV1);
RETURN\NOTHING;

4-57

Discussion

TSET 'sets' the integer NSV1 and returns TRUE or

EALSE as NSV1 was 'unset' or 'set' previously. The test-

and—set is an indivisible operation. CLEAR 'unsets' the

integer in a single indivisible operation.

3.5 MDEP, DEPENV

Definitions

MDEP <- CSUBR(P:ARPTR; ARPTR) EVMDEP;

DEPENV <- CSUBR(X:SYMBOL; ANY) EVDEPENV;

Examples

P <- MDEP(GET\PATH(1));

DECL X:INT BYREF DEPENV("WALDO");

Evaluators

EVMDEP: NSV1 = PATH OR NSV1 = NIL ->
ERROR("dependency");

NOT TSET(NSV1.MOD) ->
ERROR("path\mod");

NSV1.DS § NIL AND NSV1.DS # PATH ->
ERR0R1("dependency",NSV1);

IISV1.DS = PATH -> REM\DEPLIST(NSV1, PATH);
NT Remove NSV1 from the

list of dependents;
DDEP(NSV1, PATH) # NIL ->

ERR0R1("dependency",NSV1);
NT If FATH is a dependent of NSV1 then

a circular dependency will be created;
BEGIN

(NSV1.DSN <- EIND\NENTRY()) = 0 =>

4-58

BEGIN
NSV1.DSN <- 0;
NSV1.DSC <- 1;
NSV1.DSV <- 0;

END;
FIND\CENTRY\VENTRY(NSV1.DSN,NSV1)

END;
ADD\DEPLIST(NSV1, PATH);
C£[PATH.LOWCP]["RETURN"] <- "CHECK\SUPPORT";

NT Smash RETURN component ;
CLEAR(NSV1.HOP);
RETURN\RESULT(NSV1);

CHECK\SUPPORT:
NOT CHECK\LEV(CP - 1) -> ERROR("non\support");
MVAL(TOPCI) = PN\BLOCK -> GOTO RETPN;
MVAL(TOPCI) = BLOCK\BLOCK -> GOTO RETELOCK;
xMVAL(TOPCl) = POR\BLOCK -> GOTO RETPOR;
GOTO DELPTH;

EVDEPENV:
NAME\INDEX <- PIND\NAME(N£, NP, NSV1);
NAME\INDEX # 0 ->

BEGIN
EVRES <- NS[NAME\INDEX].VALUE;
RETURN

END;
P <- PATH;

EVDEPENV1:
P.DS = NIL ->

BEGIN
EVRES <- NSV1.TLB;

NT Return top level binding;
RETURN

END;
NAKE\INDEX <- PIND\NAME(P.DS.NS, P.DSN, NSV1);
NAKE\INDEX § 0 ->

BEGIN
EVRES <- P.DS.NS[NAME\INDEX].VALUE;
RETURN

END;
P <— P.DS*
GOTO EVDEPENV1;

4-59

Auxiliary Functions

ADD\DEPLIST <-
EXPR(SON:ARPTR, PATH:ARPTR; NONE)

BEGIN
SON.DS <- PATH;
PATH.LOWCP = 0 =>

BEGIN
NT No dependents previously;

PATH.SPATH <- SPATH <- TRUE;
PATH.LASTSON <- SON;
PATH.LOWCP <- SON.DSC;
SON.PLEV <- NIL;
SON.LBRO <- NIL

END;
PATH.LOWCP = SON.DSC =>

BEGIN
NT New dependent at same level;

SON.PLEV <- NIL;
SON.LBRO <- PATH.LASTSON;
PATH.LASTSON <- SON

EN1;
KT SON is first at lower level;

SON.PLEV <- PATH.LASTSON;
PATH.LASTSON <- SON;
PATH.LOWCP <- SON.DSC

END;

CHECK\LEV <-
EXPR(CPLEV:INT; BOOL)

BEGIN
DECL P:ARPTR BYVAL PATH.LASTSON;
DFCL I1:ARPTR;
CPLEV GE P.DSC => TRUE;

LOOP: P1 <- CHECK\TERM(P);
P1 = P => PALSE; NT Not all sons have terminated;
P1 = NIL =>

BEGIN
PATH.LASTSON <- NIL;
PATH.LOWCP <- 0;
PATH.SPATH <- PALSE;
SPATH <- PALSE;
TRUE

END;
CPLEV GE P.DSC =>

BEGIN
PATH.LASTSON <- P1;
PATH.LOWCP <- P1.BSC;
TRUE

END;
GOTO LOOP

4-60

END;

CHECK\TERM <-
EXPR(P:ARPTR; ARPTR)

BEGIN
DECL P2:ARPTR BYVAL P;

LOOP: P2.STKEFLG => P;
P2.LBR0 = NIL => P2.PLEV;
P2 <- P2.LBR0;
GOTO LOOP

END;

DDEP <-
EXPR(FATHER:ARPTR, SON:ARPTR; ARPTR)

BEGIN
SON.DS = NIL => NIL;
SON.DS = FATHER => SON;
DDEP(FATHER, SON.DS)

END;
NT If SON is dependent upon FATHER,then DDEP

returns SON if it is directly dependent
or some path P, such that P d.d. FATHER
and SON is dependent upon P;

FIND\CENTRY\VENTRY <-
EXPR(N:INT, P:ARPTR; NONE)

BEGIN
DECL E:MODE;
DECL R, R1:INT;
FOR I <- CP, CP - 1, ... , 1 TILL R GT 0 DO

BEGIN
E <- MVAL(csril);
OR(E = FOR\BLOCK,

E = FN\BLOCK AND CS[I].ENTERED = TRUE,
E = ENV\BLOCK,
E = ELOCK\BLOCK) AND CS[I].OLD\NP LT N ->

R <- I;
OR(E = FOR\BLOCK,

E = IN\BLOCK,
E = ENV\BLOCK,
E = ELOCK\BLOCK) => R1 <- I

END;
P.DSC K— R*
P!DSV <- CS[R1].0LD\VP

END;

FINDXNENTRY <-
EXPR(; INT)

BEGIN

4-61

DECL R:INT;
NT Find index of last named entry on name-stack;

FOR I <- KP, NP - 1, ... , 1 TILL R GT 0 DO
[) NS[I].NAME H NIL => R <- I (];

R
END;

PREV <-
EXPR(X:ARPTR; ARPTR)
BEGIN

X.LBRO # NIL => X.LBRO;
X.PLEV # NIL => X.PLEV;
NIL

END;

REM\DEPLIST <-
EXPR(SON:ARPTR, PATH:ARPTR; NONE)

BEGIN
DECL P1, P2:ARPTR;
PATH.LASTSON = SON =>

BEGIN
(PATH.LASTSON <- PREV(SON)) § NIL =>

PATH.LOWCP <- PATH.LASTSON.DSC;
PATH.LOWCP <- 0

END;
P1 <- PATH.LASTSON;

LOOP: (P2 <- PREV(P1)) = SON =>
BEGIN

P1.LBRO H NIL AND P2.PLEV # NIL =>
[) Pl.PLEV <- P2.PLEV; P1.LBRO <- NIL (];

PREV(P1) <- PREV(P2)
END;

P1 <- P2;
GOTO LOOP

END;

Discussion

MDEP makes the path NSV1 dependent upon the current

path.

The ACTRC of a dependent path must specify which path

it is directly dependent upon and the point at which it is

4-62

dependent. For a dependent path P, the DS field specifies

the direct supporter path. The DSN field specifies an index

in the name-stack of DS which defines the directly

accessible environment of P with respect to DS. DSC is an

index into the control stack of DS which specifies the

control block which, when deleted, will destroy the

name—stack entry corresponding to DSN, i.e. DSC is the

highest level to which control may flow in DS until P

terminates. DSV specifies the lowest point on the value

stack of DS which is accessible to P.

The ACTRC of a supporting path must specify which paths

are directly dependent upon it and the levels at which they

are dependent. Por a supporting path Q, LCWCP specifies the

lowest point on Q's control stack at which a path was made

a d.d. LASTSON specifies the last path which was made a

direct dependent. All d.d. paths at a given CP level are

linked through the LBRO field of their ACTRC's. The oldest

d.d. at a given CP level, i.e. one with no LBRO, points

through the PLEV component of its ACTRC to the d.d. at the

next highest CP level.

MDEP first checks whether or not NSV1 may become

directly dependent upon PATH. In particular, it checks for

self -dependency and circular dependency. If NSV1 is already

By lowest, we mean closest to the top of the stack,
i.e. most recent.

4-63

directly dependent upon PATH, then NSV1 is removed from the

list of directly dependent paths by calling REM\DEPLIST.

Next, the environment of PATH is examined to determine

the values of DSN, DSC and DSV for NSV1. DSN is set to the

index of the most recent named entry on the name stack of

PATH. CSK is set to the stack index of the control-block

which added the entry corresponding to DSN to the identifier

environment. DSV is set to the index of the last entry on

the value-stack used by the identifiers associated with the

control-block, namely, OLD\VP for the next lower

control-block. If no named NS entry is found, DSMt DSC and

DSV are set to reference the ENV\£LOCK at the top of the

stack.

ADD\DFPLIST is called to add NSV1 to the list of paths

d.d. upon PATH. If PATH was not previously a supporting

path, the SPATH flag is set in PATH's ACTRC and in the

environment of the evaluator. All sub-evaluators that add

identifiers to the environment of the path, namely, EVLLOCK,

EVFOR, and APPLY, return by transferring control to the

label specified by the RETURN component of the corresponding

control-block. Hence, to insure that the portion of the

identifier environment accessible to NSV1 is not deleted

prematurely, the RETURN component of PATH's control stack

entry corresponding to DSC is modified to be the evaluator

label CHECK\SUPPORT which will determine whether or not all

4-64

d.d.s at this level have terminated.

CHECK\LEV returns TRUE if all paths which are directly-

dependent upon PATH at a control-stack entry below CPLEV

have terminated. LASTSON, LOWCP, and SPATH are updated

appropriately. If control can be returned safely from the

control-block, i.e. if CHECK\LEV returns TRUE, then

CHECK\SUPPORT transfers control to the appropriate return

label based upon the mode of the control stack entry.

The value returned by MDEP is NSV1.

DEPENV obtains the most recent binding of NSV1 in the

accessible environment of PATH. The identifier environment

of PATH is searched first. If no binding for NSV1 is found,

then the name stack of the path specified by PATH.DS (the

direct supporter path) is searched starting with PATH.DSN.

If no binding is found then PATH.DS.DS is searched, etc. If

no binding is ever found, then the top-level binding of NSV1

is returned. Note that DEPENV does not copy the binding of

NSV1 into the RESUXT\SI£)T, as does PFETCH. Thus, DEPENV may

return a reference to the environment of another path.

3.6 DELETE\PATH

Definition

DELETE\PATH <- CSUER(PATH:ARPTR; NONE) EVDELETEPATH;

4-65

Example

CIA("DELETE\PATH",P);

Evaluator

EVDELETEPATH:
NSV1 = PCIAR ->

ERROR("deletion");
PATH H PCIAR ->

ERROR("CI\procedure");
NOT TSET(NSVI.MOD) ->

ERROR("path\mod");
NSV1.LASTSON = NIL -> GOTO NOSONS;
NSV1.FLGFLG <- PALSE;
SEARCH(NSVI);

EVDEL1:
CLEAR(NSV1.MOD);
RETURN\NOTHINC;

'°DELETE\ENV(NSV1);
NSV1.ELGFLG <- FALSE;
NSV1.DS = NIL -> GOTO EVDEL1;
SEARCH(NSV1.DS);
GOTO EVDEL1

Auxiliary Functions

SEARCH <-
EXPR()(:ARPTR; NONE)

BEGIN
DECL E:BOOL;
DECL Y, Z:ARPTR BYVAL X.LASTSON;
X.ELGFLG => NOTHING;

NT No action if eligible for evaluation;
BEGIN

L: Z <- CHECK\TERW(Y);
Z = Y => B <- TRUE;

NT At least one son hasn't terminated;
Z = NIL => NOTHING;

NT No more levels;
Y <- Z;

NT Else set Y to first son
at previous level;

GOTO L
END;
B => NOTHING;
NT At least one son hasn't terminated;

4-66

DELETE\ENV(X);
NT Otherwise we can delete environment;

X.DS = NIL => NOTHING;
SFARCH(X.DS) NT Search father;

END;

DELETE\ENV <-
EXPR(P:ARPTR; NONE)

BEGIN
P.STKEFLG <- FALSE;
P.VS <- P.CS <- P.NS <- NIL;
P.NP <- P.CP <- P.VP <- 0

END;

Discussion

DELETE\PATH makes NSV1 ineligible for evaluation. If

NSV1 has no direct dependents, then the stack-environment of

NSV1 is reclaimed. Otherwise, the stack environment is

reclaimed if and only if all dependents of NSV1 are

ineligible for evaluation. Hence, a path may terminate but

its stack environment will remain as long as necessary. If

NSV1 has no direct dependents, but is itself a dependent

path, then the stack environment of NSV1.DS is reclaimed if

NSV1 was the last d.d. still eligible for evaluation.

The procedure SEARCH is used to determine if a path's

stack environment may be deleted. If all sons of X have

terminated, then the environment of X is deleted and if

X.DS#NLL, SEARCH is called recursively on X^LS,

4-67

3.7 GOTO, RETEROM

Definitions

GOTO <- CSUER(L:LABEL; NONE) EVGOTO;

RETFROM <- CSUBR(FKAME:SYMEOL, VAL:ANY; NONE) EVRETEROM;

Examples

GOTO ECO;

RETEROM("RESUME",N);

Evaluators

EVGOTO: NSV1.PATH // PATH ->
ERROR("illegal\GOTO");

SPATH AND NOT CHECK\LEV(NSV1.CIINDEX) ->
ERROR("non\support");

IEIC -> CINTRPT(NSV1.CPINDEX);
CS[NSV1.CPINDEX].STATEMENT\LIST <- NSV1.ST\LIST;
FLUSH (CS, NSV1. CPINDEX) ;
CP <- NSV1.CPINDEX;
NP <- TOPC1.CUR\NP;
FLUSH(VS,TOPC1.CUR\VP);
VP <- TOPC1.CUR\VP;
GOTO EVELK1;

EVRETEROM:
N <- 0;
EOR I <- CP,CP-1, ..., 1 TILL N GT 0 DO

BEGIN
ANB(MVAL(CS[I]) = FN\£10CK,

CS[I].NAME = NSV2,
CS[I].ENTERED) => H <- I;

END;
,, = 0 -> ERROR("no\call\to\return\from");
SPATH AND NOT CHECK\LEV(N-1) ->

ERROR("non\support"j;
IFIC -> CINTRPT(N-I);
EVRES <- NS1;
FLUSH(CS,N);
CP <- N;
GOTO PROCRET;

4-68

MVAL(CS[I]) = INT\ELOCK
AND CS[IK "RETURN"]#,,COFYRT,,

Auxiliary function

CINTRPT <-
EXPR(N:INT; NONE)

BEGIN
FOR I <- CP, CP-1, ..., N DO

BEGIN
.csrii)
csrilr"

=> REM\lflTRPT(I)
END;

NO\PRO\INTS AND NO\PATH\INTS ->
IFLG <- FALSE

END;

Discussion

GOTO returns control to the statement and block

specified by L. RETFROM returns control from the most

recent explicit call on the procedure FNAME with VAL as

result.

The actions necessary to perform a GOTO or a RETFROM

are quite similar. Basically, they may be divided into

three parts.

(1) The CS index of the BL0CK\BIOCK or PN\BLOCK is

found.

(2) The path-flags SPATH and IFLG are examined to

determine if the stacks may be simply flushed or if

special processing is required.

(3) The RETFROM or GOTO is performed.

The CS index of the BLOCK\BLOCK to GOTO is stored in

4-69

the CP\INDEX field of the label. The CS index of the

EN\BLOCK to RETEROM is obtained by searching the control

stack for the most recent EN\ELOCK with ENTEREL=TRU£ and

whose NAME field is identical to NSV2.

We will assume, for the moment, that the special

processing described in (2) is not necessary.

The GOTO is completed by storing NSV1.ST\LIST as the

current statement list of the block specified by

NSV1.CPINDEX, flushing the stacks to the appropriate levels,

and then transferring control to EVBLK1. The RETEROM is

completed by setting EVRES to be the result to be returned,

flushing the control stack to the EK\J3LGCK and then

transferring control to PROCRET to return from the

procedure.

Note that both GOTO and RETEROM flush the stacks to

some higher point. Consequently, unless special checks are

made, the environment required by a dependent path may be

destroyed or an interrupt response will be abnormally

terminated. Thus the interrupt tables will not be updated
*

correctly. The path flags SPATH and IELG indicate to GOTO

that special processing is required before the GOTO may be

completed.

The remaining discussion references GOTO only
interpretation for RETEROM is essentially the same.

- the

4-70

If SPATH is TRUE, then PATH is a supporting path.

Hence, EVGOTO must determine whether or not a return to the

block specified by NSV1.CPINDEX will delete part of the

accessible environment of a non-terminated dependent path.

CHECK\LEV is used to perform this check and update the

path-dependency lists if necessary.

If IPLG is TRUE, then PATH is currently evaluating at

either a path or processor interrupt level. Hence, EVGOTO

must determine which interrupt responses are being 'skipped'

over in returning to NSV1.CPINDEX and update the interrupt

tables appropriately. CINTRPT searches the control stack

for INT\BLOCKs and modifies the interrupt tables to indicate

that the corresponding interrupt responses have completed.

3.8 MYPATH

Definition

MYPATH <- CSUER(;ARPTR) EVMYPATH;

4-71

Example

MYPATH # PCIAR => CIA("PMtX);

Evaluator

EVMYPATH:

RETURN\RESULT(PATH);

Discussion

MYPATH returns a pointer to the current path. Note

that MYPATH is a NOPIX operator.

3.9 EVAL

Definition

EVAL <- CSUBR(F:K)RM; ANY) EVEVAL;

Example

GOTO EVAL(T0PC1.RETURN);

4-72

Evaluator

EVEVAL: F <- NSV1;
GOTO EVAL\PORM;

Discussion

EVAIi evaluates the form specified by NSV1 in the

current path's environment. Thus, 1VAL(P) is essentially

equivalent to FAP(P,MYPATH).

3.10 COPY

Definition

COPY <- CSUBR(P:ARPTR; ARPTR);

Example

S <- COPY(KYPATH);

Evaluator

EVCOPY: BFCIN
NSV1 = NIL => Q <- PATH;
Q <- NSV1

END;

NT Q is the path to be copied;

Q = PATH -> SAVE\STATE(Q);
N <- LENCTE(Q.NS)/NSQUANT;
CALL EVGETPATH1; NT P points to the new path;
Q f, PATH AND NOT TSET(Q.MOD) ->

ERROR("path\mod");
NOT Q.ELCFLG -> ERROR("no\stacks");
POR I <- 1, ... , Q.VP DO (P.V£[I] <- Q.VS[Ij)j

NT Copy value-stack;
POK I <- 1, ... , Q.NT DO

4-73

BEGIN
P.NSril.NAME <- Q.NS[I].NAME;
P.NS I .VALUE <-

BEGIN
INSTACK(Q.NS[I1.VALUE,0,Q.VP,Q.VS) =>

MAP\PTR(Q.NS[I].VALUE,Q.VS,P.VS);
Q.NS[I].VALUE

END
END;
NT MAP\PTR returns a pointer to the entry in P.VS

corresponding to the entry in Q.VS for
Q.NS[I].VALUE;

FOR I <- 1, ..., Q.CP DO
BEGIN

p.csri]<-Q.csri]j
MVALlP.CSril) = INT\BLOCK AND

P.CSrij.CLASS = "PRO" =>
P.CS[I][,,RETURK,»] <- "COPYRT"

END;

NT Copy stack indices;

P.NP <- Q.NP; P.VP <- Q.VP; P.CP <- Q.CP;

P.INTINPO <- Q.INTINFO;

NT Copy interrupt structure;

P.DORMANT <- Q.DORMANT;
P.TERMIN;\TION\PORM <- Q.TERMINATION\PORM;

NT Make dependent upon same path if any;

Q.DS # NIL ->
BEGIN

Q.PLEV jj NIL =>
BEGIN

P.PLEV <- Q.PLEV;
Q.PLEV <- NIL;
Q.LBRO <- P

END;
P.LBRO <- Q.LBRO;
Q.LBRO <- P

END;

P.DS <- Q.DS; P.DSC <- Q.DSC;
P.DSN <- Q.DSN; Q.DSV <- Q.DSV;

Q H PATH -> CLEAR(Q.MOD);
RETURN\RESULT(P);

4-74

COPYRT: POPC1\RETURN;

Discussion

Only paths which are eligible for evaluation may be

copied. The new path is made the direct dependent of

NSV1.DS. If the path to be copied is in the midst of

evaluating processor level interrupts, then the RETURN

components of the corresponding INT\BLOCKs are modified so

that the processor interrupt tables will not be updated

incorrectly.

3.11 CIA, COIITIATH

Definitions

CIA <- CSUBR(FN:SYM\RTKE, ARGrANY; REF) EVCIA;

CONTPATH <- CSUBR(P:ARPTR; ARPTR) EVCOKTPATH;

Examples

CIA("P",X);

CIA(EXPR(X:ARPTR; NONE) (LASTRUN <- X), P);

LASTRUM <- CONTPATH(LASTRUN);

4-75

Mode

SYM\RTNE <- ONEQE(SYMBOL,
PTR(DTPR),
PTR(CSUBR),
PTR(CEXPR));

Evaluators

EVCIA: PATH = PCIAR -> ERROR("ille£al\callu);
EVCIA1: TSET(PCIAR.MOD) -> GOTO EVCIA2;

CALL ALLOW\INTERRUPT;
NT Allow for interrupt while waiting

for CI to become available;
COTO EVCIA1;

EVCIA2: PATH.CIAXARG <-
BEGIN

MD(lvSVl).CLASS H "FIR" =>
ALLOC(MD(NSV1) LIKE NSV1);

NSV1
END;

PATH.CIA\EN <- NSV2;
PUSHCC'RETCI"); NT Return label for

when control returns;
NSV1.INPR0I <-

BEGIN
NOT NO\PRO\INTS => PROCNUM;
0

END;
P.INPROI =0 -> PRO\PATH[PROCNUM] <- NIL;
SAVE\STATE(PATK);
CLEAR(PATH.MOD);
EVRESULT(PATH.ARPTR);
INSTALL\STATE(PCIAR);
RETURN; NT Return in CI environment;

RETCI: RETURN\RESULT(PATH.CIA\RESULT);

EVCONTPATH:
0R(NSV1 = NIL,

PATH H PCIAR,
NSV1 = PCIAR,
NOT NSV1.ELGELG,
NSV1.DORMANT) -> ERROR("ineligibleXpath");

NOT TSET(NSVI.MOD) -> ERROR("path\mod"J;
BEGIN

NSV1.INPR0I H 0 OR PRO\PATH[PROCNUM] # MIL =>

4-76

BEGIN
NSV1.INPB0I # PROCNUM OR

P # PRO\PATH[PROCNUM] =>
ERROR1("inelicible\path",NSV1);

NSV1.INPROI <- 0
END;

PRO\PATH[PROCNUM] <- NSV1
END;
SAVE\STATE(PCIAR);
CLEAR (PCIAR.iMOD);
INSTALL\STATE(PRO\PATH[PROCNUM]) ;
CALL CEECK\INTERRUPT;
RETURN; NT Return in environment of path;

Auxiliary Junctions

SAVEXSTATE <-
EXPR(P:ARPTR; NONE)

BEGIN
P.NP <- HP;
P.VP <- VF;
P.CP <- CP;
P.SPATH <- SPATH;
P.LFLC <- IELC

END;

INSTALLNSTATE <-
EXPR(P:ARPTR; NONE)

BEGIN
NS <- P.NS;
VS <- P.VS;
CS <- P.CS;
PATH <- P;
NP <- P.NP;
VP <- P.VP;
CP <- P.CP;
SPATH <- P.SPATH;
IPLG <- P.IELG

END;

4-77

Discussion

CIA and CONTPATH switch control to and from the CI

path, respectively.

The first argument to CIA, NSV2, is either the name of

a procedure to be applied in the CI environment or a pointer

to the procedure itself. MSV1 is to be the argument to the

procedure specified by NSV2. If NSV1 is not of mode class

PTR, then it is copied into the heap and the argument to

NSV2 is the pointer to the copy.

Before control can be switched from the path to the CI,

the evaluator must be sure that no other one is evaluating

the CI path. Hence, it performs a busy wait on the field

PCIAR.MOD. When another evaluator switches control out of

the CI, it clears PCIAR.MOD. Thus, TSET will eventually

return TRUE and the CIA may proceed. Note that once the

TSET returns TRUE, all other evaluators that attempt CIA

calls will be forced into busy waits.

The INPROI field of a path's ACTRC and the global

vector PRO\PATH are used to insure that if a path performs a

CIA call while processing a processor level interrupt, then

the processor will not be given to another path nor will the

path be evaluated by a different processor, c.f 2.5-3»

When evaluator I is evaluating path P, then

PRO\PATH[I]=P and P.INPROI=0.

4-78

When evaluator I is evaluating the CI path due to a CIA

call made by path P not during a processor level interrupt

then PRO\PATH[I]=NIL and P.INPROT=0.

When evaluator I is evaluating the CI path due to a CIA

call made by P during a processor level interrupt then

PRO\PATH[I]=P and P.INPROI=I.

Having set INPROI and PRO\PATK appropriately, the

'state' of PATH is saved and its MOD field is cleared since

it is not active or being modified. Hence, it may be PAPed

into while the CIA call is being evaluated. EVRES is set to

the result to be returned in the CI environment, namely

PATH. The 'state' of the CI is restored and a RETURN is

made in the CI environment. Since control can only leave

the CI via a call to COKTPATH and since it is not possible

to PAP into the CI environment, the RETURN will cause a

return from the call to CONTPATH with the ARPTR of the path

performing the CIA call as the result.

COKTPATH, having determined that control may be

switched from the CI to the path specified by N£V1, saves

the state of the CI path and clears PCIAR.MOD so that a busy

waiting evaluator may gain access to the CI. NSV1 is then

installed as the current path. Before a RETURN is made in

the environment of I\iSV1, CONTPATH checks for any pending

pro-level or path-level interrupts.

4-79

If control ever returns to RETCI, then PATH.CIA\RESULT

is returned as the value of the CIA call.

3.12 ENABLE\PRO, DISABLE\PRO, LEVEL, INUSE

Definitions

ENABLE\PRO <- CSUBR(EINAME:SYMBOL,
L:INT,
RESP:FORM; NONE) EVENABLE\PRO;

DI^ABLE\PRO <- CSUBR(EINAME:SYMBOL; NONE) EVDISABLE\PRO;

LEVEL <- CSUBR(EINAME:SYMBOL; INT) EVLEVEL;

INUSE <- CSUBR(LEV:INT; SYMBOL) EVINUSE;

Examples

ENABLE\PRO(,,PRO\PRO"f 1, PRO\PRO\PORM) ;

DISABLE\PRO("LIGHTXPEN");

INUSE (LEVEL("TIMER")) = "TIMER";

Modes

SROW <- ONEOF(ROW(NPROLEV,SYMBOL),ROW(NPALEV,SYMBOL));

PITE <- STRUCT(WAITLEV:INT,
CURLEV:INT,
WAITING:ROW(NPROLEV,BCOL),
INPROC:ROW(NPROLEV,BOOL}.
TYPE:ROW(NPROLEV,SYMBOL));

4-80

Global Variables

RESPONSE ; NT A ROW(NPROC, R0W(NPR0LEV,FORM));

PRO\INT\TAE ; NT A ROW(NPROC,FITE);

Evaluators

EVENA£LE\PRO:
LEV(NSV3, PR0\INT\TAB[PR0CNUM1.TYPE) # 0 OR

IN\USE(NSV2, PRO\INT\TAB[PROCNUM].TYPE) # NIL =>
ERROR("pro\interrupt");

PR0\IKT\TAB[PR0CNUM].TYPE[NSV2] <- NSV3;
NT Indicate name of interrupt;

RESP0NSE[PR0CNUM][NSV2] <- NSV1;
NT Set up response form;

ENABLEXPROCESSOR(NSV3, NSV2);
RFTURN\NOTHING;

EVDISABLE\FRO:
L <- LEV(NSV1, PRO\INT\TAB[PROCNUM].TYPE);
L = 0 => RETURN\NOTHING;
PPO\INT\TAB[PROCNUM].TYPE[L] <- NIL;
RFSPONSE[PROCNUM][L] <- NIL;
DISABLE\PE0CESS0R(NSV1, L);

EVLEVEL:RETURN\RESULT(LEV(NSV1,PRO\INT\TAB[PROCNUM].TYPE));

EVINUSE:
RETURN\RESULT(IN\USE(NSV1,PRO\INT\TAB[PROCNUK].TYPE));

Auxiliary Functions

LEV <-
EXPR(N:SYMBOL, R:SROW; INT)

BEGIN
DECL L:INT;
N = NIL => 0;
FOR I <- 1, ... , LENGTH(R) TILL L GT 0 DO

[) R[I] = N=> L <- I (];

END;

IN\USE <-
EXPR(N:INT, R:SROW; SYMBOL)

[) II GT LENGTH(R) OR N LT 1 => 0; R[N] (];

4-81

Discussion

The global tables PRO\INT\TA£ and RESPONSE describe the

current state of the processor interrupt structure, where

the i th entry in each table describes the state of the i th

processor.

The PRO\INT\TAB is a row of PITEs. The fields of a

P1TE and their interpretations are as follows.

(1) TYPE[J] is the symbolic name of the interrupt

enabled at level J.

(2) WAITING[J] is TRUE if and only if a TYPE[J]

interrupt has occurred and the associated response

form has not yet been evaluated.

(3) INPROG[J] is TRUE if and only if the evaluation of

the response form for a TYPE[J] interrupt has been

initiated but has not yet completed, i.e. the

response is in progress.

(4) WAITLEV - the level of the highest priority waiting

interrupt, or NPROLEV+1 if no interrupts are

waiting.

(5) CURLEV - the highest priority level of the response

forms currently in progress, or NPROLEV+1 if no

response forms are in progress.

RESPONSE[I][J] is the response form associated with the

interrupt enabled at level J on processor I.

4-82

EHAELE\PRO enables the current processor for EINAME

interrupts at level L with response form RESP, if LEV is not

already in use and the processor is not already enabled for

E1NAME interrupts at some level. £NALLE\PROCESSOR performs

any machine—dependent actions necessary to enable the

processor.

DISABLE\PRO disables the current processor v/ith respect

to EINAME interrupts by setting the appropriate entries in

the PRO\INT\TAE and RESPONSE tables to NIL and calling upon

PISA BT.E\ PROCESSOR to perform any necessary machine-

dependent actions.

LEVEL returns the level at which the processor is

enabled for EINAME interrupts, or 0 if it is not enabled.

INUSE returns the symbolic name of the interrupt

enabled at level N, or NIL if LEV is out of bounds or the

processor is not enabled at that level.

3.13 ENABLE\PATH, DISAELE\PATH

Definitions

ENAELE\PATH <- CSUBR(PEINAME:SYMBOL,
EV:INT,
ESP:PORM,
PATH:ARPTR; NONE) EVEWABLE\PATH;

4-83

DISABLE\PATH <- CSUBR(PEINAME:SYMBOL,
PATH:ARPTR; NONE) EVDLSABLE\PATH;

Examples

ENABLE\PATH("CI\TO\PATHM, 1, CI\PATH\FORM);

DISABLE\PATH("WALDO", P);

Mode

ITE <- STRUCT(WAITLEV:INT,
CURLEV:INT,
WAITING:ROW(NPALEV,BOOL),
INPROG:ROW(NPALEV,BOOL),
RESP:ROW(NPALEV,FORM),
TYPE:ROW(NPALEV,SYMBOL),
MASK:ROW(NPALEV,BOOL));

Evaluator

EVENABLE\PATH:
P <- EIXPATH(NSVI);
LEV(NSV4, P.INTINFO.TYPE) # 0 OR

IK\USE(NSV3, P.INTINFO.TYPE) # NIL ->
ERROR (Mpath\interrupt,,);

P.INTINPO.TYPE[NSV3j <- NSV4;
NT Indicate name;

P.INTINFO.RESP[NSV3] <- NSV2;
NT Indicate response form;

P $ PATH -> CLEAR(P.MOD);
RFTURN\NOTHING;

EVDISABLE\PATH:
P <- FLXPATH(NSVI);
L <- LEV(NSV2, P.INTINFO.TYPE);
L = 0 -> GOTO RTCLEAR;
P.INTINFO.TYPE[L] <- NIL;

NT Clear name;
P.INTINPO.RESP[L] <- NIL;

NT Clear response form;

RTCLEAR: P # PATH -> CLEAR(P.MOD);
RFTURN\NOTHING;

4-84

Auxiliary Function

FIXPATH <-
EXPR(P:ARPTR; ARPTR)

BEGIN
P = NIL => PATH;
P = PATH => PATH;
NOT TSET(P.MOD) -> ERROR("path\modM);
P

END;

Discussion

The INTINPO field of a path's ACTRC describes the

current state of the path's interrupt structure. The

components of an ITE, the mode of INTINIO, have

interpretations analogous to their counterparts in a PITE,

as described in the previous section. The two additional

fields are interpreted as follows:

(1) RESP[I] is the response form associated with the

pseudo interrupt enabled at level I.

(2) MASK[I] is TRUE if and only if the path is masked

against interrupts of type TYPE[I].

*

ENA£LE\PATH enables the path specified by NSV1 for

PEINAME interrupts at level LEV with response form RESP

unless LEV is already in use or the path is already enabled

for PEINAME interrupts at some level.

*

If NSV1 is NIL, then the current path is used as a
default.

4-85

DISABLE\PATH disables the path specified by NSV1 with

respect to PEINAME interrupts.

3.14 MASK, UNMASK, INTERRUPT

Definitions

MASK <- CSUBR(PEINAME:SYMBOL, PATH:ARPTR; NONE) EVKASK;

UNMASK <- CSUBR(PEINAME:SYMBOL, PATH:APPTR; NONE) EVUNMASK;

INTERRUPT <- CSUBR(PEIKAME:SYMBOL,
PATH:ARPTR; NONE) EVINTERRUPT;

Examples

MASK("LIGHT\PEK");

UNMASK("WALDO",P);

INTERRUPT("WALDO",P);

Evaluators

EVMASK: P <- PLXPATH(NSV1);
(L <- LEV(NSV2, P.INTINPO.TYPE)) = 0 ->

GOTO RTCLEAR;
P.INTINPO.MASK[L] <- TRUE;
P § PATH -> CLEAR(P.MOD);
RETURN\NOTHING;

EVUNMASK:
P <- PIXPATH(NSVI);
(L <- LEV(NSV2, P.INTINPO.TYPE)) = 0 ->

GOTO RTCLEAR;
P.INTINEO.MASKrL] <- FALSE;
P.INTINPO.WAITLEV <-

MINLEV\M(P.INTINPO.WAITING, P.INTINFO.MASK);
NOT(P = PATH AND P.INTINPO.CURLEV GT

4-86

P. INTINFO.WAITLEV) ->
GOTO RTCLEAR;

CALL CHECK\INTERRUPT;
RETURK\NOTHING;

EVINTERRUPT:
P <- PLXPATH(NSVI);
(I <- LEV(NSV2, P.INTINFO.TYPE)) = 0 ->

GOTO RTCLEAR;
P.INTINPO.WAITING[L] <- TRUE;
P.INTINFO.WAITLEV <-

MIKLEV\M(P.INTINFO.WAITING, P.INTINFO.MASK);
NOT(P = PATH AND

P.INTINPO.CURLEV GT P.INTINFO.WAITLEV) ->
GOTO RTCLEAR;

CALL CHECKXINTERRUPT;
RETURN\NOTHING;

Discussion

MASK masks a path against PEINAME interrupts by setting

the appropriate hit in the INTINFO field of the path's

ACTRC. A PEINAME interrupt sent to the path will be

detected, i.e. an entry will be made in the WAITING vector,

but the response form will not be evaluated until the

interrupt is unmasked.

When an interrupt is UNMASKed, the corresponding MASK

bit is set to FALSE. WAITLEV is recomputed since the

unmasked interrupt may have occurred, while masked, and it

may be of higher priority than any of the other waiting

interrupts. If the path specified by NSV1 is the current

path and if WAITLEV specifies a higher priority than CURLEV,

then a call to CHECK\INTERRUPT is made to initiate the

4-87

response to the interrupt at level WAITLEV.

INTERRUPT sends a PEINAME interrupt to the path

specified by NSV1. An entry is made in the WAITING vector

to indicate that the interrupt has occurred and WAITLEV is

recomputed in case the interrupt is of higher priority than

any of the other waiting interrupts. As with UNMASK, if

NSV1 specifies the current path, then WAITLEV is compared

with CURLEV to determine if the interrupt response should be

initiated now. If the path specified by N£V1 is not the

current path, then it must not be active. The interrupt

response will be evaluated the next time the path becomes

active, c.f. CONTFATH.

3.15 STOP\PATH

.Definition

STOP\PATH <- CSUBR(PATH:ARPTR; NONE) EVSTOP\PATH;

Example

STOP\PATH(PAVECT[I].IDLEPATH);

Global Variables

PIL ; NT A ROW(NPROLEV,INT);

PIV ; NT A ROW(NPROLEV,BOOL);

4-88

Modes

INT\BLOCK <- STRUCT(TYPE:SYMBOL, INDEX:INT, RETURN:SYMBOL);

BROW <- ONEOF(ROW(NPROLEV,LOOL), ROW(NPALEV,BOOL));

FROW <- ONEOF(ROW(KPROLEV,FORM),ROW(NPALEV,PORK));

INT\TAB\ELT <- ONEOF(ITE,PITE);

Evaluator

EVSTOP\PATH:
NSV1 = NIL OR NSV1 = PCIAR ->

ERROR (*'pro\interrupt");
PATH H PCIAR -> ERROR(,,CI\procedure,»);
N <- 0;
FOR I <- 1, ... , NPROC TILL N GT 0 DO
BEGIN

I H PROCNUM AND PRO\PATH[I] = NSV1 => N <- I
END;

N = 0 -> ERROR^'proXinterrupt");
GENER/TE\INT("PRO\PRO", PRO\INT\TAB[N], N);
RETURN\NOTHING;

NT ALLOW\INTERRUPT determines whether a
processor level interrupt has occurred.

ALLOWXINTERRUPT:
NOT PIF[PROCNUM] -> RETURN;

CINT1: NOT TSET(PIL[PROCNUM]) -> GOTO CINT1;
PIP[PROCNUM] <- FALSE;
IFLG <- TRUE;
GET\INT(PRO\INT\TAB[PROCNUM],

RESPONSE[PROCNUM],"PRO");
NT In this case, a higher priority

interrupt will always be found;

CINT2: CLEAR(PIL[PROCNUM]);
GOTO EVALNPORM; NT GET\INT binds F to

the response form;

NT RETINT is the return label of INT\BLOCKs;

4-89

RETINT : NOT TSFT(PIL[PROCNUM]) -> GOTO RETINT;
PIF[PROCNUM] <- PALSE;
REM\INTRPT(CP);
POPC1;

NT Now check for more processor
or path level interrupts;

MOREXINT:
BEGIN
GET\IKT(PRO\INT\TAB[PROCNUM],

RESPONSE!" PROCNUM], "PRO") =>
IFLG <- TRUE;

NO\PRO\INTS AND
GET\INT(PATH.INTINFO,

PATH.INTINFO.RESP, "PATH") =>
IFLG <- TRUE;

FALSE
END -> GOTO CINT2; NT Eval interrupt response;

NO\PRO\INTS AND NO\PATH\INTS -> IFLG <- FALSE;
CLEAR(PIL[PROCNUM]);
RETURN;

NT CHECK\INTERRUPT allows higher level
waiting interrupts to be processed, if
any exist;

CHECK\INTERRUPT:
NOT TSET(PIL[PROCNUM]) -> GOTO CHECKXINTERRUPT;
PIF[PROCNUM"
GOTO MORE\Il

muiri:
r TSET(PIL[PROCNUM])
FTPROCNUM] <- FALSE;
rO MOREXINT;

Auxiliary Functions

GENERATE\INT <-
EXPR(EINAME:SYMBOL, TABLE:INT\TAB\ELT, N:INT; NONE)

BEGIN
DECL L:INT;

LP: NOT TSET(PIL[K]) -> GOTO LP;
(L <- LEV(EINAME, TABLE.TYPE)) = 0 =>

CLEAR(PIL[N]);
TABLE.WAITING[L] OR TABLE.INPEOG[L] =>

CLEAR(PIL[N]);
TABLE.WAITING[L] <-~TRUE;
TABLE.WAITLEV <- MINLEV(TABLE.WAITING);
TABLE.CURLEV IE L => NOTHING;
PIF[N] <- TRUE;

NT The flag is set only if L is the highest
priority interrupt which has occurred;

4-90

CLEAR(PIL[N])
END;

REM\INTRPT <-
EXPR(CP:INT; NONE)

BEGIN
DECL TABLE:INT\TAB\ELT BYREP

BEGIN
CSrCPl.TYPE = "PRO" => PRO\INT\TAB[PROCNUM];
PATE.INTINFO

END;
'AJ
'A3

END;

TABLE.INPROG[TABLE.CURLEV] <- FALSE:
TABLE.CURLEV <- MINLEV(TABLE.INPROG)

GET\INT <-
12CPR(TABLE:INT\TAB\ELT, RESP:FROW, CLASi:SYMBOL; BCOL)

BEGIN
OR(TABLE.WAITLEV GT LENGTH(RESP),

BEGIN
CLASS = "PRO" => EALSE;
TABLE.MASK[TABLE.WAITLEV]

END,
TABLE.WAITLEV GE TABLE.CURLEV) => EALSE;

TABLE.INPROG[TABLE.WAITLEV] <- TRUE;
TABLE.CURLEV <- TABLE.WAITLEV;
TABLE.WAITING[TABLE.WAITLEV] <- EALSE;
TABLE.WAITLEV <-

BEGIN
CLASS = "PRO" => MINLEV(TABLE.WAITING);
MINLEV\M(TABLE.WAITING, TABLE.MASK)

END;
PUSHC(CONST(INT\BL0CK OP CLASS,

TABLE.CURLEV, "RETINT"));
P <- RESP[TABLE.CURLEV];
TRUE

END;

Discussion

STOP\PATH sends the external interrupt "PRO\PRO" to the

processor evaluating NSV1. The processor number is obtained

from the PRO\PATH vector. Por I#PROCNUM, PRO\PATH[J] is the

4-91

ARPTR of the path being evaluated by processor I, c.f.

CONTPATH.

GENERATE\INT sends an EINAME interrupt to processor N.

The interrupt is 'sent' as follows.

(a) PRO\INT\TAB[N].WAITING[J] is set to TRUE, where J is

the level at which processor N is enabled for EIUAKE

interrupts.

(b) WAITLEV is recomputed.

(c) If the priority of CURLEV is greater than or equal

to that of WAITLEV, then no further action is

necessary, since the interrupt will be processed

according to its priority.

(d) If WAITLEV is of a higher priority than CURLEV, then

PIF[N] is set to TRUE in order to 'signal' the fact

that a higher priority interrupt has occurred.

Note that GENERATE\IWT also specifies the actions that

must be taken by an external processor in order to interrupt

a processor. For example, a timer interrupt may be

considered as an external processor that executes

GENERATE\INT ("TIMER", PRO\INT\TAB[W],N)

after some interval of time has elapsed.

An evaluator detects that an external interrupt has

occurred by CALLing ALLOW\INTERRUPT at selected points,

namely before the evaluation of

(a) the body of a procedure,

4-92

(b) the body of an iteration statement,

(c) each statement in a block.

ALLOW\INTERRUPT returns immediately if PIP[PROCNUM] is

FALSE, otherwise it obtains the response form associated

with the interrupt and evaluates it.

To insure that ALLOW\INTERRUPT and GENERATE\INT can

both examine the PRO\INT\TAB entry without interference from

the other, the global vector PLL (processor-interrupt-lock)

is used to provide synchronization.

GET\INT updates PRO\INT\TA£[PROCNUM] and binds F to the

appropriate response form. An INT\ELOCK is pushed on the

control stack which specifies the class of interrupt (either

"PRO" or "PATH"), the interrupt level and a return label

("RETINT"). GET\INT returns PALSE if no interrupt response

is to be evaluated.

Upon completion of the evaluation of the response form,

control is passed to RETINT. PRO\INT\TA£[PROCNUM] or

PATH.INTINPO is updated as the interrupt was at

processor-level or path-level, respectively. The INT\BLOCK

is popped off of the stack. At this point (MCRE\INT), the

evaluator must determine if the priority of the highest

priority waiting interrupt is greater than the priority of

the interrupt associated with the response form currently in

progress (i.e. the priority of the interrupt which was

interrupted by the one just completed.) If so, the response

4-93

form for the highest priority waiting interrupt is

evaluated, otherwise the evaluation of the previous response

form is allowed to continue. Note that the path interrupt

levels are of lower priority than the processor interrupt

levels.

4-94

4. AUXILIARY PROCEDURES

ALTERN <-
EXPR(iM1:MODE, M2:M0DE; EOOL)

BEGIN
DECL B:BOOL;
M1 = NONE => TRUE;
MVAL(K2.D) = BDB AND M1 = M2.B => TRUE;
FOR I <- 1, ... , LENGTH(VAL(M2, D)) TILL B DO

[) M2.D[I] = M1 => B <- TRUE (];
B

END;

CADR <- EXPR(F:FORM; FORM) F.CDR.CAR;

CADDR <- EXPR(F:FORM; FORM) F.CDR.CDR.CAR;

CADDDR <- EXPR(F:FORM; FORM) P.CDR.CDR.CDR.CAR;

CHECKM <-
EXPR(M:MODE; BOOL)

[) MVAL(EVRES) § M => ERROR("type\fault"); TRUE (];

COMPATIBLE <-
EXPR(SINK:MODE, SOBJsREF; BOOL)

BEGIN
DECL SOURCE:MODE BYVAL MVAL(SOBJ);
SINK = SOURCE => TRUE;
SINK.CLASS = "PTR" AND SOURCE = NONE => TRUE;
SINK = REF AND SOURCE.CLASS = "PTR" => TRUE;
NOT (SINK.CLASS = "PTR" AND

SOURCE.CLASS = "PTR") =>
FALSE*

ALTERK(MVAL(VAL(SOBJ)), SINK) => TRUE;
FALSE

END;

DEREF <-
EXPR(R:REF: NONE)

[) MVAL(R).CLASS = "PTR" => DEREI(EVRES <- VAL(R)) (J;

4-95

ERROR <-
EXPR(S:SYMBOL; NONE)

BEGIN
DECL N:INT BYVAL FIND\NAME(NS,NP,S);
DECL EVRES:REF BYVAL [) N = 0 => S.TLB;

NS[N].VALUE (];
DEREF(EVRES);
NOT OR(MVAL(EVRES) = CEXPR,

MVAL(EVRES) = CSUBR,
MVAL(EVRES) = DTPR

AND EVRES.CAR = "EXPR!") =>
BEGIN

FRINT("ERROR");
PRINT(S);
ERR0R2()

END;
F <- CONS(ALLOC(REF LIKE EVRES) NIL);
GOTO EVAL\IORM

END;

NT If S is bound in the current environment to a procedure
definition, then the procedure is evaluated. Otherwise, an
error message is printed and ERR0R2 is called;

ERROR1 <-
EXPR(S:SYMBOL, PrARPTR; NONE)

BEGIN
CLEAR(P.MOD);
ERROR(S)

END;

NT ERROR1 is called whenever an error occurs and the
MOD field of a path has been set by a control
primitive. ERR0R1 clears the MOD field and calls ERROR.

GENV <-
EXPR(M:MODE, P:ARPTR; REF)

BEGIN
DFCL VS:VSPTR BYREF [) P = NIL => VS; P.VS (];
DECL VP:INT BYREF [) P = NIL => VP; F^F (];
VP <- VP + 1;
PUSH(CONST(M),VS)

END;

MINLEV\M <-
EXPR(TABLE:BROW, MASK:BROW; INT)

BEGIN
DECL L:INT;
FOR I <- 1, ... , LENGTH(TABLF) TILL L GT 0 DO

4-96

[) TABLE[I] AND NOT MASK[I] => L <- I (];
L = 0 => LENGTH(TABLE) + 1;
L

END;

MINLEV <-
EXPR(TABLE:BROW; INT)

BEGIN
DECL L:INT;
FOR I <- 1, ... , LENGTH(TABLE) TILL L GT 0 DO

[) TABLE[I1 => L <- I (];
L = 0 => LENGTH(TABLE) + 1;
L

END;

MVAL <- EXPR(P:REF; MODE) (MD(VAL(P)));

POPC <- EXPR(N:INT;NONE) [) FLUSH(CS,CP-N); CP <- CP-N (];

PURE\VALUE <-
EXPR(; BOOL)

BEGIN
RSP = 0 => PALSE;
EVRES = RESULT\SLOT[RSP]

END;

PUSHC <-
EXPR(CELT:ANY, P:ARPTR; NONE)

BEGIN
DECL CS:CSPTR BYREP [) P = NIL => CS; P.CS (];
DECL CP:INT BYREP [) P = NIL => CP; P.CP (];
CP <- CP + 1;
MD(CELT) =REP => PUSH(VAL(CELT),CS);
PUSH(CELT,CS)

END;

PUSHN <-
EXPR(NAME:SYMBOL, V:REP, P:ARPTR; NONE)

BEGIN
DECL NS:NSPTR BYREP [) P = NIL => NS; P.NS (];
DECL NP:INT BYREP [) P = NIL => NP; P.NP (];
NP <- NP + 1;
NS[NP].NAME <- NAME;
NS[NP].VALUE <- V

END;

4-97

PUSHR <-
EXPR(PRES:ANY, RESMODE:MODE; REF)

BEGIN
BEGIN

RSP <- RSP + 1;
RESMODE.CLASS = "PTR" AND MD(PRES) = REP =>

BEGIN
PUSH(CONST(RESMODE),RESULT\SLOT);
ASSIGN(RESULT\SLOT[RSP],PRES)

END;
RESMODE # BEGIN

MD(PRES) = REP => MVAL(PRES);
MD(PRES)

END =>
ERROR("type\fault");

MD(PRES) = REF => PUSH(VAL(PRES),EESULT\SLOT);
PUSH(PRES,RESULT\SLOT)

END;
RESULT\SLOT[RSP]

END;

PUSHV <-
EXPR(V:ANY, P:ARPTR; REP)

BEGIN
DEC! VSrVSPTR BYREP [) P = Nil => VS; P.VS (];
DECL VP:INT BYREP [) P = NIL => VP; P.VP (];
VP <- VP + 1;
MD(V) = REP => PUSH(VAL(V),VS);
PUSH(V,VS)

END;

RETURN\RESULT <-
EXPR(X:ANY; NONE)

BEGIN
EVRESULT(X, MD(X));
RETURN

END;

4-96

NOFLX Operators

NO\PATH\INTS <- EXPR(;BOOL)
(PATH.INTINPO.CURLEV GT NPALEV);

NO\PRO\INTS <- EXPR(;BOOL)
(PRO\INT\TAB[PROCNUM].CURLEV GT NPROLEV);

NS1 <- EXPR(;REF) KS[NP];

NS2 <- EXPR(;REF) KS[NP-1];

NS3 <- EXPR(;REF) NS[NP-2];

NS4 <- EXPR(;REF) NS[NP-3];

NS5 <- EXPR(;REF) NS[NP-4];

NSV1 <- EXPR(;ANY) (VAL(NS1))

NSV2 <- EXPR(;ANY) (VAL(NS2))

NSV3 <- EXPR(;ANY) (VAL(NS3))

NSV4 <- EXPR(;ANY) (VAL(NS4))

NSV5 <- EXPR(;ANY) (VAL(NS5))

POPC1 <- EXPR(;ANY)
BEGIN

DECI R:ANY BYVAL VAX(CS[CP]);
P1USH(CS,CP-1);
CP <- CP - 1;
R

END;

POPC1\RETURN <- EXPR(;NONE) [) POPC1 ; RETURN (];

RETURN <- EXPR(;NONE)
BEGIN

DECL S:SYMBOL;
MVAL(TOPCI) // SYMBOL => GOTO EVAL(TOPC1 ["RETURN"]);
S <- POPC1;
GOTO EVAL(S)

END;

4-99

RETURN\NOTHING <- EXPR(;NONE) (RETURN\RESULT(NIL));

T0PC1 <- EXPR(

T0PC2 <- EXPR(

T0PC3 <- EXPR(

T0PC4 <- EXPR(

T0PC5 <- EXPR(

REF) CS[CP];

REP) CS[CP-1];

REF) CS[CP-2];

REF) CS[CP-3];

REF) CS[CP-4];

4-100

5- PRIMITIVE PROCEDURES

A procedure is a linguistic primitive if it is used by

the evaluator but it is not defined therein. It is assumed

to be primitive for one of the following reasons:

(1) Its definition is elementary and conforms to

standard usage, e.g. integer addition.

(2) It represents a language construct whose definition

has no interaction with the control subroutines,

e.g. the mode constructors, and for which an

adequate definition is given in [Weg70J.

(3) Its definition involves machine—dependent concepts,

e.g. a test-and-set instruction.

For each procedure, the arguments and result-type are

given in the format of a code—procedure heading and the

definition is given in English.

Arithmetic Operations

+,-,*,/ <- CEXPR(X:INT, Y:INT; INT);

Integer addition, subtraction, multiplication and

division are defined with the customary interpretations.

Relational Operations - Arithmetic

LT,LE,GT,GE <- CEXPR(X:INT, Y:INT; BOOL);

4-101

Returns TRUE if and only if X is less than, less than

or equal to, greater than, or greater than or equal to y,

respectively.

Relational Operations - General

=,# <- CEXPR(X:0NE0F(INT,B00L,CHAR,REF),

Y:0NE0F(INT,BOOL,CHAR,REF);B00L)

Returns TRUE if and only if X and Y are of the same

mode and are identical, for REFs, X and Y must point to the

same object. /'(a,b) returns TRUE if and only if =(a,b)

returns FALSE.

Logical Operations

NOT <- CEXPR(X:B00L; BCOL);

Returns TRUE if and only if X is FALSE. NOT is a

PREFIX operator.

AND <- CEXPR(X:FORM LISTED; BOOL)

If X is NIL, then AND returns TRUE. Otherwise, if each

form on the list evaluates to TRUE, then the result is TRUE.

If any form evaluates to FALSE or a non-boolean value, then

the result is FALSE and the remaining forms are not

evaluated.

4-102

OR <- CEXPR(X:FORM LISTED; BOOL)

If X is NIL, then OR returns FALSE. Otherwise, if each

form on the list evaluates to EALSE or a non-boolean value,

then the result is FALSE. If any form evaluates to TRUE

then the result is TRUE and the remaining forms are not

evaluated.

Mode Constructing Operations

ROW <- CEXPR(X:FORM LISTED; MODE)

X must be a list of the form

(id f mf orm)

or

(id NIL inform)

In the former case, f must evaluate to an integer and the

mode created is 'row of eval(f) eval(mform)s'. In the

latter case, the mode created is 'length unresolved row of

eval(mform)s'. The CLASS field of the DDB created is "ROW".

For each of the mode constructors, X.CAR is either NIL
or an identifier which is to "be the 'shortname' of the mode
created. Shortnames are used for forward references in mode
definition, i.e. the shortname of a mode which has not yet
been created may be used in a mode definition. For example,
the actual definition of DTPR and FORM are:

DTPR <- STRUCT(CAR:"FORM", CDRr-'FORM") ;

FORM <- FORM::PTR(INT, BOOL, CHAR, DDB, DTPR);

In the definition of DTPR, the^mode FORM is referenced by
its symbolic shortname. 'FORM::' specifies that the
shortname of the mode produced is to be "FORM". For a
complete discussion of forward reference in EL1 mode
definitions see [Weg71].

4-103

STRUCT <- CEXPR(X:E0RM LISTED ; MODE)

X must be a list of the form

(id (id-1 mform-1) ... (id-n mform-n))

The mode 'structure whose i th component is of mode

eval(mform-i) and has selector id-i' is created. The CLASS

field of the DDE created is "STRUCT" and the D field points

to a ROW(STRUCT(SYM:SYMBOL, TYPE:M0DE)) of length n, where

D[i].SYM=id-i and D[i].TYPE=eval(mform-i).

PTR <- CEXPR(X:PORM LISTED: MODE)

X must be a list of the form

(id mform-1 ... mform-n)

The mode 'pointer to objects of modes

eval(mform-1) ,..., eval(mform-n)' is created. The CLASS

component of the created DDB is "PTR" and the D field is

either the mode eval(mform-1) if n=1, or a PTR to a

ROW(MODE) where D[I] = eval(mform-i).

ONEOE <- CEXPR(X:EORM LISTED, MODE)

X must be a list of the form

(id mform-1 ... mform-n)

The mode 'one of the modes eval(mform-1),...,eval(mform-n)'

is created. The CLASS field of the DDL created is "GENERIC"

and the D field is a pointer to a ROW(MODE), where

4-104

D[i]=eval(mform~i). The primitive mode ANY is defined as

ONEOF ('any-mode').

Data Object Operations

MD <- CEXPR(X:ANY; MODE)

MD returns the mode of the object X.

VAL <- CEXPR(X:REF; ANY);

VAL returns the object pointed to by X,

CONST <- CEXPR(X:FORM LISTED; ANY)

ALLOC <- CEXPR(X:FCRM LISTED; REF)

ALLOC and CONST create and initialize objects of any

mode. The only difference in their interpretations is that

ALLOC returns a pointer to the newly created object. The

list X must be in one of the following formats, c.f.

Appendix 3-

(1) (mform)

(2) (mform LIKE f)

(3) (mform SIZE fl f2 ... fn)

(4) (mform OP f1 f2 ... fn)

In each case, mform must evaluate to a mode m. In case one,

4-105

the default object of the mode m is generated. In case two,

the form f is evaluated and if the modes m and MD(eval(f))

are compatible then an object of mode m is generated with

value identical to eval(f). In case three, the results of

evaluating f1 , -.., fn are used to length-resolve the object

of mode m to be generated, i.e. f1 ... fn specify the

dimensions of the object. In case four, if m is a mode of

the form R0V/(m1), then f1 ... fn must evaluate to objects

whose modes are compatible with ml. If so, a ROW, say R, of

length n is created with R[i]=eval(fi). Otherwise, m must

be a STRUCT mode. In this case, an object of mode m is

generated, the components of which are copies of the values

obtained by evaluating f1 ... fn.

LENGTH <- CEXPR(X:ANY; INT)

LENGTH(X) is the number of components in X, provided

that MD(X).CLASS is either "ROW" or "STRUCT". If

MD(X).CLASS="PTR", then X is dereferenced, and LENGTH is

applied to the result. Otherwise, an error occurs.

Basically, two modes are compatible if, they are
identical, or if they are PTR modes and the sink mode (M)
can point to the object VAL(eval(f)). See section 4.5 for
the formal definition of compatibility.

4-106

Stack Operations

PUSH <- CEXPR(OBJ:ANY, S:STACK; REF);

See section 4.1.3-

FLUSH <- CFXPR(S:STACK, INDEX:INT; NONE);

See section 4.1.3.

INSTACK <- CEXPR(PTR:REF,

IND1:INT,

IND2:INT,

S:STACK; BOOL);

See section 4-1.3-

HEAP <- CEXPR(PTR:REF; BOOL);

See section 4-1.3-

MAP\PTR <- CEXPR(PTR:REF, OLDSTK:STACK,

NEWSTK:STACK; REF);

OLDSTK and NEWSTK must be component-wise identical and

PTR must point into OLDSTK. The result of MAP\PTR is a

pointer to the object in NEWSTK which corresponds to the

object referenced by PTR in OLDSTK. MAP\PTR is used only by

the control primitive COPY.

Miscellaneous

XCT <- CEXPR(X:R0W(INT); NONE)

The ROW(INT) is executed as machine code in the

4-107

environment of the path being evaluated. The code must bind

its result to the evaluator variable EVRES.

ASSIGN <- CEXPR(LEFT:KEF, RIGHT:REF; NONE)

MD(VAL(LEFT)) must be compatible with MD(VAL(RIGHT).

The object specified by RIGHT is copied into the object

specified by LEFT and MVAL(LEFT) is set to MVAL(RIGHT).

SELECT <- CEXPR(OBJ:REF, 1NDEX:INT; REF);

SELECT returns a pointer to the INDEX component of the

object referenced by OEJ.

ERR0R2 <- CEXPR(; NONE)

ERR0R2 performs machine—dependent error processing.

TSET1 <- CEXPR(X:INT; EOOL)

TSET1 is the machine—dependent operation of testing and

setting the value of a machine location in one instruction.

CLEAR1 <- CEXPR(X:INT; NONE)

CLEAR1 is the machine-dependent operation of unsetting

the value of a machine location in one instruction.

4-108

CALL <- CEXPR(X:LABEL, Y:SYMB0L; NONE)

Y is implicit in the notation of the evaluator and must

be the label associated with the next statement. Y is

pushed onto the control stack and control is transferred to

X, c.f. 4.1.2. CALL is a PREFIX operator.

INSTALL\CLOBAL\ENV <- CEXPR(; NONE)

The initial 'top-level' environment in which paths are

evaluated is installed by providing top-level bindings, i.e.

objects referenced by the TLB components of ATOMS, for all

of the following:

(1) the control primitives,

(2) all linguistic primitives defined in this section

(except for those under the headings stack

operations and miscellaneous,)

(3) PCIAR - a pointer to the control interpreter's

ACTRC,

(4) RESPONSE - the processor level response form matrix,

(5) the evaluator constants NPROC, NPALEV, NPROLEV,

(6) the procedures and forms in Appendix 3»

ENABLE\PnOCESSOR <- CEXPR(S:SYMBOL, L:INT; NONE);

ENABLFNPROCESSOR performs any machine—dependent actions

necessary to enable the current processor for S interrupts

4-109

at level L.

DISA£1E\PR0CESS0R <- CEXPR(S:SYMBOL, L:INT; NONE);

DISAELE\PROCE£SOR performs any machine-dependent

actions necessary to disable the current processor with

respect to S interrupts at level L.

Priorities of Operators

The following procedures are defined as INP1X

operators. They are listed in order of decreasing priority:

*,/

+,-

LT,GT,LE,GE=,#

AND

OR

<- (assignment is treated as an operator

even though its evaluation is via

a sub-evaluator)

e.g. X <- A+B=C AND D=E OR P

is equivalent to

(X <- ((((A+JB)=C) MB (D=E)) OR P))

4-110

6. INDEX TO CHAPTER 4

it 101

* 100

+ 100

- 100

/ 100

= 101

ACTRC 16

ADD\DEPLIST 59

ALLOC 104

ALLOW\INTERRUPT 88

ALTERN 94

AND 101

ANY 103

APPLY 40

APPLY2 40

ARPTR 16

ASSIGN 107

ASSIGN\BLOCK 34

ATOM 21

BINDF 41

BINDF\£LOCK 39

4-111

BLOCK\BLOCK 25

BROW 88

CADDDR 94

CADDR 94

CADR 94

CALL 106

CEXPR 39

CHECKM 94

CHECK\INTERRUPT 89

CHECK\LEV 59

CHECF\PATH 52

CHECK\SUPPORT 58

CHECK\TERM 60

CIA 74

CINTRPT 68

CI\PATH\PORM 48

CLEAR 56

CLEAE1 107

COMPATIBLE 94

COND\BLOCK 29

CONST 104

CONTFATH 74

CONTROL\STACK 16

COPY 72

COPYRT 74

CSPTR 16

4-112

CSQUANT 48

CSUBR 39

DDB . 15

DDEP 60

DECL\BL0CK 21

DELETE\ENV 66

DELETE\PATH 64

DELPTH: 49

DEFENV 57

DEREF 94

DISABLEX^ATH 83

DISA£LE\Htf) 79

DISABLE\PR0CESS0R ... 10S

DOPAP 51

DPAP 50

DPAPQ 50

DTPR 16

ENABLE \PATH 82

ENAELE\PR0 79

ENABLE\PROCESSOR 108

ENV\ELOCK 48

ERROR 95

ERR0R1 95

ERR0R2 107

EVAL 71

4-113

EVALUATOR 17

FVA1VF0RM 21

EVASSIGN 34

EVHLK1 25

EVBLOCK 25

EVCIA 75

EVCLAUSE 30

EVCLEAR 56

EVCONTPATH 75

EVCOPY 72

EVDECL 27

EVDELETEFATH 65

EVDEPENV 58

EVDISA£LE\PAIH 83

EVDISA£LE\PRO 80

EVDPAP 50

EVDTPR 23

FVENAELFAPATH 83

EVENAELE\PRO: 80

EVEVAL 72

EVEXPR 24

EVPOR 36

EVGETPATH 48

EVGETPATH1 48

EVGOTO 67

EVIF 30

4-114

EVINTERRUPT 86

EVINUSE 80

EVLABST 46

EVLEVEL 80

EVMASK 85

EVMDEP 57

EVMYPATH 71

EVPAP 50

EVPFFTCH 55

EVPSTORE 55

EVRESULT 21

EVRETFROM 67

EVSEL 31

EVSELQ 32

FVSTOP\PATH 88

EVSYM 21

EVTSET 56

EVUNMASK 85

EXISTS 52

FIND\CENTRY\VENTRY ... 60

EIND\NAME 22

EIND\KENTRY 60

EIXPATH 84

FLUSH 106

PN\ELOCK 39

FORM 15

4-115

FOR\LLOCK 35

PROW 88

GE 100

CENERATE\INT 89

GENV 95

CET\INT 90

CET\PATH 48

GOTO 67

GT 100

HEAP 106

IDLE 15

INIT\INTERRUPT3 18

INIT\STATE 15

INSET 52

INSTACK 106

INSTALL\GLOEAL\£NV ... 108

INSTALL\STATE 76

INTERRUPT 85

INT\LLOCK 88

INT\TAB\ELT 88

INUSE 79

IN\USE 80

ITE 83

LABEL 21

4-116

LE 100

LENGTH 105

LEV 80

LEVEL 79

LT 100

MAP\PTR 106

MASK 85

MD 104

MDEP 57

MINLEV 96

MINLEV\M 95

MODE 15

MOVE\ARGS 52

MVAL 96

MYPATH 70

NAME\STACK 16

NOT 101

NO\PATH\INTS 98

NO\PRO\INTS 98

NPALEV 15

NPROC 15

NPROLEV 15

NSi 98

NSPTR 16

NSQUANT 48

NSVi 98

ONEOF 10

OR 102

PAP 50

PAPP 51

PAPQ 50

PAP\EL0CK 50

PCIAR 15

PEETCH 54

PIL 87

PITE 79

PIV 87

POPC 96

P0PC1 98

P0PC1\RETURN 98

PREV 61

PROCRET 40

PROC\EXIT 43

PRO\INT\TAB 80

PRO\PATH 15

PRO\PRO\FORM 15

PSTORE 54

PTR 103

PURE\ VALUE 96

PUSH 106

4-117

4-118

PUSHC 96

PUSHN 96

PUSHR 97

PUSHV 97

PUTNAMES 42

REM\DEPLIST 61

REM\INTRPT 90

RESOLVE 42

RESPONSE 80

RETELOCK 25

RETCI 75

RETPN 41

RETPOR 37

RETPROM 67

RETINT 89

RETURN 98

RETURN\NOTHIKC 99

RETURN\RESULT 97

ROW 102

RTCLEAR 83

SAVE\STATE 76

SAVE\VAL 32

SEARCH 65

SELECT 107

SELECTOR\INDEX 32

4-119

SEL\LLOCK 31

SETUP 55

SIGN 37

SROW 79

STOP\PATE 87

STRING 21

STRUCT 103

SYMBOL 21

SYM\RTNE 75

7IMER\F0RM 15

TIME\OUT\PORM 48

TOPCi 99

TSET 56

TSET1 107

UNMASK 85

UNSAVE\VAL 32

VAL 104

VALUF\STACK 16

VSPTR 16

VSQUANT 48

XCT 106

Chapter 5

EVALUATION AND CONCLUSIONS

1. OTHER FACILITIES

In this section, we consider a number of features of

MPEL1 which were mentioned in chapter 2 or utilized in

chapter 3» hut for which no detailed explanation has yet

been given.

1.1 Extended CIA Call

In section 2.3.1, we indicated that it is possible, by

extension, to CIA call procedures that take more than a

single argument, but deferred explanation. Here, we remedy

this omission and consider one additional point.

The procedure ECIA (extended-CIA) takes an indefinite

number of arguments. The first argument specifies the

procedure to be applied in the CI's environment (as in CIA.)

The remaining arguments to ECIA are evaluated to yield the

arguments for the procedure application. ECIA constructs a

list whose first element is the procedure specification and

whose tail is a list of REFs that point to the evaluated

5-2

arguments. ECIA then performs a CIA call on the procedure

EVAL with this list as argument. The list is evaluated in

the environment of the CI as a call to the procedure with

the specified arguments. Thus, ECIA effects the CIA call of

a procedure with an arbitrary number of arguments. The

definition of ECIA is as follows.

ECIA <—
' EXPR(FN:0NE0F(SYMI30L,R0LTTINE),ARGS:F0RM LISTED;REF)
BEGIN

DECL CIAREStREF BYREF ALLOC(REF);
MYPATK.CIA\RESULT <- CIARES;
CIA("EVAL", CONS(BEGIN

MD(FN)=SYMBOL => FN;
ALLOC(REF LIKE FN)

END,
EVALLST(ARGS));

VAL(CIARES)
END;

EVALLST <- EXPR(ARG£:FORM; FORM)
BEGIN

ARGS=NIL => NIL;
BEGIN

DECL A:ANY BYREF EVAL(ARGS.CAR);
DECL R:REF BYVAL

BEGIN
MD(A).CLASS=,IPTR" => A;
ALLOC(MD(A) LIKE A)

END;
NT If not a PTR mode, allocate as in CIA;
CONS(ALLOC(REF LIKE ALLOC(REF LIKE R)),

EVALLST(ARGS.CDR))
END

END;

ECIA requires that the arguments to the ECIA called

procedure be of mode class PTR. This is consistent with the

definition of CIA. A slightly different definition of

In the list structure representation of MPEL1 programs,
a REF evaluates to the object that it references. Hence, it
acts as a QUOTE for arbitrary objects, c.f. 4.2.2.

5-3

EVALLST allows the arguments to be of any mode, viz.

EVALLST <- EXPR(ARCS:FORM; FORM)
BEGIN

ARCS=flIL => NIL;
BEGIN

DECL A:ANY BYREF EVAL(ARGS.CAR);
DECL R:R£F BYVAL ALLOC(MD(A) LIKE A);
CONS(ALLOC(REF LIKE R), EVALLST(ARGS.CLR))

END
END;

Since the arguments are allocated in the heap, they are, in

effect, always passed LYVAL.

ECIA differs from CIA in that it does not return the

REF specified by the CIA\RESULT component of the path's

ACTRC. Instead, it allocates a REF in the heap, stores a

pointer to the REF in the CIA\RESULT component, and after

the CIA call on EVAL, returns the allocated REF as result.

If a procedure which is ECIA called wishes to have a value,

say R, returned as the result of the call to ECIA, then it

must execute

VAL(LASTRUN.CIA\RESULT) <- R;

The indirection insures that the value will be returned

correctly, even if another ECIA call is PAPed into the

environment of the path. This is not the case with nested

CIA calls, where it is possible for a result to be lost.

For example, suppose a path, say P, CIA calls a procedure F

which sets the CIA\RESULT component of P's ACTRC. If, while

the CIA call is being executed, another path executes

PAP(CIA("F"),P)

then when control returns to P, the second CIA call on F

5-4

will be executed and the value stored in P.CIA\RESULT by the

first call will be destroyed. The value returned by the

second call will also be incorrectly returned as the result

of the first call. If F is written to be ECIA called, then

the values will be returned correctly since each call to

ECIA retains a pointer to a distinct allocated REF which is

used to hold the result.

CIA could have been defined to return its result in a

manner similar to ECIA. This would require a REF to be

allocated for each CIA call, whether or not the CIA called

procedure returns a value. However, in our experience with

CIA we have found that the majority of CIA called procedures

do not return values. Thus, we have declined to include

this mechanism as primitive since it is used infrequently

and can be achieved by extension.

1.2 Extended Mode Facility

The examples in Chapter 3 utilize the extended mode

facility of EL1 [We£70][Weg71] in two ways. First, the

MONITOR operation uses a 'user-defined' assignment function

to check assignments to monitored variables on a

mode-dependent basis, c.f 3.5. Second, the addition of

extended components to the definition of ACTRC is achieved

through the use of the facility. Here, we will discuss the

5-5

extended mode definition facility and show how it can he

used to implement extended components.

Basically, the facility allows the programmer to

control the behavior of a mode M by specifying EL1

procedures to be called whenever an object of mode M is to

be assigned a value or whenever a component of an object of

mode M is to be selected. In addition, it allows for the

specification of a conversion procedure to be used in the

conversion of objects of mode M to other modes as required.

For example, consider the case of monitoring. Here, we

would like to monitor an integer and take some action if it

is assigned a certain value. Aside from assignment, the

integer is to act like any other 'normal'' integer. To

achieve this effect, we define the mode SINT as a STRUCT

with an integer component (I) that contains the monitored

integer, and one or more components which hold the

associated monitoring information. We then extend the mode
*

SINT by associating with it the three functions

SINT\ASSIGN, SINT\SELECT, SINT\CONVERT to be used in

assignment, selection, and conversion of objects of mode

SINT, respectively.

SINT\ASSIGN, discussed in section 3.5, assigns the

specified value to the I component of the SINT and

The details as to how these functions are associated
with the mode are given in [Weg70].

5-6

determines if it has been assigned the value being monitored

for. Since SINT's are to act as integers they cannot be

selected, even though they are structured objects. Hence,

an attempt to select a component of a SINT should generate

an error, viz.

SINT\SELECT <- EXPR(S:SINT, C:0NEOE(INT,SYMBOL); NONE)
(SELECT\ERROR());

Finally, to complete the illusion that an SINT, say X, is

really an integer, it is necessary to allow X to appear

where an integer value is required, e.g.

X+5

To achieve this, the procedure SIKT\CONVERT is called to

perform the appropriate conversion whenever an SINT is in

hand and an object of some other mode M is required, viz.

SINT\CONVERT <- EXPE(S:SINT, M:MODE; M)
BEGIN

DECL TEMP:INT;
M7^'INT => CONVERT\ERROR() ;
NT Only INT conversion is defined;
TEMP <- UR(S).I;
NT Select the component that contains the integer;
TEMP

END;

The use of UR requires some explanation. If SINT\CONVERT

executes the statement

TEMP <- S.I

in order to select the I component of the SINT, then

SINT\SELECT would be called to perform the selection and an

error would result. Hence, it is necessary for SINT\CONVERT

to specify that the selection is to be performed on the SINT

5-7

taken as an unextended mode. This is achieved by usinf the

procedure UR which specifies that the selection is to be

performed on the underlying representation of SINT.

SINT\ASSIGK also uses UR in order to assign to the I

component and to select the components of the SINT which

contain the monitoring data.

We can now describe how the mode ACTRC can be extended

to include components required by some control regime.

ACTRCs contain the basic component USER\AR which is of mode

REF. This component can be used to point to an object which

contains the extended components. A user-defined selection

function can then be used to select both basic and extended

components. For example, suppose we wish to extend ACTRC to

contain the four components PAL, PVALRET, PVALQ, and PAVAL

used in the parallel processing examples of section 3.3. We

define the mode USER\COMPS and the procedure ACTRC\SELECTION

as follows.

USER\COMPS <- STRUCT(PAL:STRUCT(OWNER:ARPTR,WL1ST:ARPTR),
PVALRET:BOOL
PVALQ:ARQPTR,
PAVAL:REF)

5-8

ACTRC\SELECTION <-
EXPR(P:ACTRC, I:OME0F(INT,SYM£OL); ANY)
BEGIN

DECL N:INT
UR(P).USER\AR=NIL ->

UR(P).USER\AR <- ALLOC(USER\COMPS);
BEGIN

*

MD(I)#IMT => N<-SELECTOR\INDEX(ACTRC,I) ;
N <- I

END
N=0 => UR(P).USER\AR[I];
N GT LENGTH(ACTRC) =>

UR(P).USER\AR[I-LENGTH(ACTRC)];
UR(P)[I]
NT Select basic component;

END;

When the first selection is performed on an ACTRC, a

USER\COMPS is allocated and a pointer to the object is

stored in USER\AR. If the component to be selected is a

basic component, then selection is performed on the ACTRC.

Otherwise, the appropriate component of the USER\COMPS is

selected. For example, if Q is an ARPTR, then evaluation of

the form Q.PVALRET will trigger the following procedure call

ACTRC\SELECTION(VAL(Q), ,,PVALRETI,)

Since PVALRET is not a basic component of the mode ACTRC,

SELECTOR\INDEX(VAL(Q),',PVALRET,,) returns zero, and thus the

PVALRET component of object referenced by Q@USER\AR is

selected.

SELECTOR\INDEX, defined in section 4.2.8, returns the
integer index associated with a symbolic selector, or zero
if the symbol is not a selector of the mode.

5-9

1.3 Termination of Dependents

In section 2.2.8, we noted that it is possible to

construct a procedure which will terminate all paths

dependent upon the sub-environment of a path. Here, we

present such a procedure, namely, TERM\DEPS.

The procedure can be called explicitly, say at the end

of a block, to terminate all dependent paths created in an

environment. It can also be called implicitly by binding

the procedure to the identifier associated with the error

condition ,,non\supportM. If an attempt is made to delete an

environment accessible to a non-terminated dependent path,

then TERM\DEPS is executed in response to the error

condition (which results in the dependents being

terminated,) and then the environment is safely deleted.

All dependents of a given path, say P, are linked

together (through their ACTRCs) in a tree structure as

described in section 4.3-5. P.LASTSON specifies the path

most recently made directly dependent upon P. All paths

with the same directly accessible environment are linked

together (starting with P.LASTSON) through the LBRO

component. The last of these (LBR0=NI1) is linked to the

paths directly dependent upon P with 'smaller' directly

accessible environments- It is only necessary to terminate,

i.e. make ineligible for evaluation, all direct dependents

who can reference the current directly accessible

5-10

environment and then terminate all of their dependents

(recursively.) This can be achieved by performing a tree

walk on the ACTRCs calling DELETE\PATH as necessary.

There is only one problem with this solution - some of

the dependent paths may be active and thus, they cannot be

terminated by calls to DELETE\PATH. We require a mechanism

which will insure that the actions of TERM\DEFS will be

relatively continuous with respect to the evaluations of all

(dependent) paths. The operators STARTRC and ENDRC,

described in section 3-5, provide this facility. Hence, we

simply bracket the substantive portion of the procedure with

these operators. TERK\DEPS and its auxiliary procedure

TERM\DEPS1 are defined as follows.

TERM\DEPS <- EXFR(; NONE)
BEGIN

DEC! P:ARPTR EYVAL MYPATH.LASTSON;
STARTRC;
NT The follwing block is executed

relatively continuous to all
other paths;

WHILE P#NIL DO
BEGIN

P.ELGELG => CIA(,,DELETE\PATH",P);
TERM\DEPS1(P.LASTSON);
NT Terminate all dependents

of this direct dependent;
P <- P.LBRO
NT P is next direct dependent;

END;
ENDRC
NT All dependents at current level

have been terminated;
END;

TERM\DEPS1 <- EXPR(P:ARPTR; NONE)
BEGIN

P=NIL => NOTHING;
P.ELGFLG -> CIA("BELETE\PATH",P);
TERM\DEPS1(P.LBRO);

5-11

TERM\DEPS1(P.PLEV);
NT At most one of P.LBRO and P.PLEV

will be non-null;
TERM\DEPS1(P.LASTSON)

END;

5-12

2. IMPLEMENTATION ISSUES

In previous chapters we have excluded discussions of

implementation issues in the interest of simplicity. Here,

we will restrict ourselves to those topics which are

directly related to the multi-path facility. Other issues,

such as the translation of MPEL1 programs from external to

internal representation, are of peripheral interest and have

been adequately discussed elsewhere [Weg70].

2.1 Storage Management

In MPFL1, storage (core) is designated as being either

stack or heap.

Stack storage may only be created by a call to

GET\PATH, where the integer argument specifies the number of

K of contiguous stack storage to be allocated for the path's

environment. Stack storage is retained until the path is

explicitly deleted (via a call to DELETE\PATH,) unless the

path has non-terminated dependents. In this case the

storage is retained until all dependents have terminated.

Since it is not always possible to predict a priori the

amount of stack storage required by an individual path, the

Actually, as described in chapter 4, three stacks are
allocated - the name, control and value stacks.

5-13

possibility of stack overflow exists. This can be handled

in one of two ways, first, the program can be aborted, with

suitable error messages presented to the user.

Alternatively, the stack may be automatically expanded and

the path's computation resumed. The latter is obviously

more desirable, since it permits a path to be created with a

small stack allocation and allows for growth, as required.

A stack may be expanded either by mapping it into a

larger continguous storage region or by linking it to

another stack segment.

The latter solution destroys the assumption that the

stack is contiguous. This presents a number of problems.

Pirst, it degrades the efficiency of system routines that

access the stack. For example, an additional check must be

included in the routine that searches the name stack to

determine if it is necessary to switch segments. Second,

programs which run at the end of a segment will suffer the

overhead of constantly switching between segments. In

addition, it is difficult to impose a reasonable

de-allocation policy for segments. If a segment is freed as

soon as control returns to a 'higher' segment, it may be

necessary to immediately re-allocate the segment if the

higher one overflows again. Conversely, if the segment is

not freed and the higher segment does not overflow again,

then the storage is wasted. Linked segments, however, do

5-14

not require the stack to be copied as in the former

solution.

The advantage of mapping the stack into a larger

segment is that the implementation can assume that the stack

is a contiguous block of storage. In addition, we note that

the ability to copy a stack is already present due to the

control primitive COPY - no additional mechanism is

required. Furthermore, as we will see below, a

compactifying garbage collection requires stack relocation.

It is feasible to delay the execution (via scheduling) of

all paths whose stacks have overflowed, and then map them

all during garbage collection.

In either scheme, it is desirable that stack overflows

occur at predictable points with respect to the path's

evaluation, e.g. only after all formals and locals of a

procedure call have been entered on the name stack. With

linked segments, this at least allows the compiler to assume

that all the locals and formals of a procedure are contained

in a contiguous block, thereby simplifying compiled

references to local variables. The mapping strategy

requires that the stacks can be 'read', i.e. that the

contents of each stack location can be unambiguously decoded

so that those words which require relocation can be

determined. Insuring that this condition holds whenever an

object is pushed onto a stack during evaluation imposes

5-15

severe constraints upon the system. If overflows can only

occur at certain points, then it is only necessary to insure

that the condition holds at these points.

The situation described above can be effected by

reserving a portion of the stack for stack extension. When

a 'hard' overflow occurs, the extension is appended to the

end of the stack. An interrupt is enabled which will be

triggered the next time the stack is 'clean' and the path is

allowed to continue. When the clean point is reached, the

stack may be expanded.

Stack storage is used to hold objects whose lifetime is

keyed to procedure (or block) activation, i.e. the objects

are created upon procedure call and deleted upon procedure

exit. Since the procedure call-block activation control

structure of MPEL1 is strictly hierarchical, these objects

can be managed using 1XF0 (last-in—first-out) stacks. MPEL1

also allows for objects whose lifetime is independent of the

call structure. These objects, created by calls to the

procedure ALLOC, are managed using a retention strategy,

i.e. the object exists as long as it can be referenced.

Storage for these objects is allocated from a free storage

region called the heap. When necessary, a garbage

collection is invoked to determine which storage block can

no longer be referenced. These blocks may be returned to

the free storage pool.

5-16

The multi-path environment of MPEL1 raises a number of

issues with respect to heap management.

(1) How is access to the free storage pool

synchronized?

(2) What is the retention strategy for paths?

(3) Can the garbage collector make use of additional

processors?

We consider each of these in turn.

*

If free blocks are contained on a single free list,

then synchronization can be achieved by associating a single

memory location with the list. This location is TSET by a

processor before accessing the list and CLEARed once the

desired free block lias been removed. If the memory location

has already been 'set", then the processor loops in a busy

wait until the location is CLEARed.

Although the above organization is sufficient for heap

management, it is not necessarily the most efficient one.

Eor example, if parallel paths perform many allocations,

then a considerable amount of each processors time may be

spent in the busy wait. Thus, heap allocation may become a

system bottleneck. If M free lists are used, then it is

possible for N processors to obtain heap storage

Here we use the term 'free-list' to denote any one of a
number of implementation techniques. for example, the
free-list may actually be a vector of lists, where each list
contains all blocks falling in a specific size range.

5-17

simultaneously. In this case, however, it may be necessary

to access more than one list before a block of the desired

size is found. In addition, the interlocking strategy in a

multi-list scheme will be more complex than with a single

global interlock. Hence, we will assume that

implementations will initially adopt the latter scheme and

impose more complex ones only if the need arises.

If a block of sufficiently large size cannot be found,

a garbage collection is required. In single—path EL1 this

involves marking all heap objects which are accessible to

the program by following all pointer chains to and within

the heap starting from so-called base—posi tions, e.g. all

objects on the path's stacks and top-level bindings. After

this first trace phase, unmarked heap locations correspond

precisely to those objects that can no longer be referenced.

At this point, two strategies are possible. Either the

inaccessible blocks are simply added to the free-list or the

accessible objects are mapped into one contiguous block,

leaving one large free block at one end of the heap. The

former strategy is called collection and the latter is

called compactification. If the heap is not contiguous,

i.e. there are stack segments interspersed between heap

segments, then in the latter case the stacks must be mapped

as well.

For a detailed discussion of compactifying garbage
collection in the heap see [Weg71a],

5-18

In MPEL1, the trace phase must insure that all paths

that may ever "become active are traced. A path is traced "by

tracing its activation record as a structure and considering

each object on its stacks as a base position. All paths

active at the time garbage collection occurs are traced.

The CI is always traced. If an unmarked activation record

is encountered, then it is traced as a path if and only if

it still possesses a stack environment. Otherwise, only the

activation record is traced (as a structure.) Since a path

can only become active if its ARPTR is accessible from an

active path or the CI, all potentially active paths will be

traced. If, in addition, we assume that GEIPATH maintains a

list of the ACTRCs of all allocated paths, then this list

can be scanned after the trace phase and all unmarked

activation records and their associated stacks can be

reclaimed since the paths can never become active.

In the discussion above, we have tacitly assumed that

it is possible to stop the evaluation of other active paths

so that the system may commence garbafe collection. This

can be accomplished as follows. When one processor wishes

to invoke garbage collection, it TSETs a rc-flag location.

If the rc-flag is not already set, then the processor sends

a MPRO\PROn interrupt to all other processors to indicate

that they should cease evaluation. If the go-flag is

already set, then some other processor has started the

garbage collection, so the processor idles waiting for the

5-19

MPRO\PRO" interrupt. In the following discussion it will be

convenient to refer to the processor that successfully TSETs

the go-flag as the master processor.

The multi-processor configuration can be used to

perform parts of the garbage collection in parallel. When a

processor receives the "PRO\PRO" interrupt, it begins

tracing the path it was evaluating. The master insures that

the CI is traced, if it was not active. When an unmarked

ACTRC is found, it is marked and placed upon a list of paths

to be traced. When a processor completes the tracing of a

path, it removes an ACTRC from the list (with suitable

interlocks) and traces it as a path. If the list is empty,

it idles waiting for a path to trace. When the master

detects that all paths are idling (by examining an idle-flag

associated with each processor,) it initiates the next

phase, namely, collection or compactification. In the

former case, the heap can be divided into segments and each

processor assigned a segment to collect. In the latter

case, after initial 'set-up' work by the master, the

additional processors may be used to perform the mapping of

storage in parallel. After this phase, the processors may

resume evaluation.

5-20

2.2 Input\0utput

Most computer systems allow input\output (I/O)

activities and program execution to proceed concurrently.

In this section, we will discuss how concurrent I/O can be

incorporated into the framework of MPEL1. As the actual

language I/O primitives are only of peripheral interest, we

will simply use the generic terms READ and PRINT.

The processor level interrupt facility of MPEL1 in

conjunction with an appropriate "START\I0" control primitive

to communicate with the I/O processors would allow a path to

handle its own concurrent I/O. However, as Wirth [Wi6S]

notes, it is conceptually simpler to assume that a given I/O

operation is synchronous with respect to a path's

evaluation, e.g. if a path performs a READ, then further

evaluation of the path is delayed until the input is

available. Concurrent I/O can then be realized by creating

parallel paths to perform I/O operations. Synchronization

can be achieved through the use of the CI framework, c.f.

3. *,2

Thus, it is only necessary to show how the synchronous

functions READ and PRINT can exploit a concurrent I/O

facility in terms of the MPEL1 framework. Typically, a

processor initiates concurrent I/O by executing an

instruction which sends an interrupt to an external

processor (I/O device.) The external processor indicates

5-21

that transmission has been completed by sending an interrupt

back to the processor. Thus, to perform a READ, the path

CIA calls a procedure which will queue the path as waiting

for I/O, sets LASTRUN to NIL so that the processor will be

given to another path, and then performs the "STARTIO".

When the I/O-complete interrupt occurs, the path may be put

on the INACTIVEQ so that it may be assigned to a processor.

Equivalently, one can think of the external processor as

being assigned to the path for the duration of the I/O

transmission. Because the external processor cannot perform

a CIA call, it is necessary to use interrupts to achieve the

same effect.

2.3 Relation to an Operating System

The underlying machine model upon which MPEL1 is based

can be summarized as follows:

(1) There exist n processors available for the
*

simultaneous evaluation of paths. A processor idles

if it has no path to evaluate. The processors share

a common address space.

(2) A timer interrupt facility exists.

(3) One processor may interrupt another via a

processor—to~processor interrupt.

Note that the processors do not have to be identical;
they may have different architectures.

5-22

(4) A test-and-set instruction exists, which allows for

processor synchronization via busy waits.

Typically, MPEL1 will be implemented in terms of a virtual

machine provided by an operating system. The control

structure of the virtual machine may not conform to the

requirements listed above. Por example, virtual processors

may actually be implemented by multiplexing a single

processor. Hence, they are capable of concurrent, but not

simultaneous, evaluation. Here, we will discuss the

implementation of MPEL1 in terms of various virtual machine

organizations.

MPEL1 can be implemented on the simplest of virtual

machines, namely, one which allows only one processor (a

job) to access an address space. In this case, the

"PRO\PRO" interrupt is not necessary since there is no other

processor to communicate with. If a timer is not available,

a similar effect can be achieved by counting the number of

function calls made by a path and generating an interrupt

after some specified number have occurred.

If the virtual machine allows many virtual processors

to access a common address space, then the question arises

as to how many should be used by MPEL1, i.e. what should

the value of n be? Here, it is only necessary to set it to

be equal to the number of real processors available, say m,

as this number represents the maximum simultaneous

5-23

evaluation of which the system is capatle. Of course, n can

be set lower than m.

The implementation, however, cannot assume that the m

virtual processors are 'real' since at any given time some

of the real processors may actually be assigned to other

tasks in the operating system. In particular, the concepts

of 'busy-wait' and 'idling' must be re-examined. In the

formal model, a processor goes into a busy wait if it

attempts to transfer control to the CI and cannot do so

because the CI is being evaluated by another processor. In

the context of an operating system, however, the virtual

processor is only a control path (with respect to the OS as

CI) and hence the real processor can be re-assigned to

another virtual processor. Similarly, a virtual processor

can put itself to sleep instead of idling. The CI will

awaken it when there exists a path to evaluate.

Both of the above can easily be achieved if the virtual

machine provides a means whereby virtual processors can

perform non-busy waits, for example, let us assume that

semaphores and the operations p and v are available. We

will associate one binary semaphore with each virtual

processor (SEMi) and one with the CI (CISEM). Before

passing control to the CI, a processor performs p(CISEM).

When a processor transfers control out of the CI it performs

a v(CISEM). To idle, processor i performs a p(SEMi), where

5-24

the semaphore is assumed to be initially 0. Thus, the

processor waits indefinitely. When the CI wishes to awaken

an 'idling' processor it simply performs a v(SEMi).

A "PROXPRO" interrupt is still required to implement

STOP\PATH(P), where P is not an idle path. Either an

interrupt or a mechanism which allows one virtual processor

to stop another, allows it to modify its registers, and then

allows it to continue will suffice. An example of the

latter mechanism appears in the TENEX [BBK70] operating

system. Here, it is possible to create multiple forks

(virtual processors) that access a common address space.

One fork may freeze (PFORK) another, modify its state, and

then allow it to continue (RFORK.)

We close this section with the observation that the

multi-path facility is quite machine independent. The

design allows an implementation to utilize whatever features

the virtual machine provides. In addition, the parts of the

system which relate to the operating system are isolated.

Hence, re-implementation of the language (or at least the

control facility) en another machine should be relatively

simple.

5-25

3. CRITICAL DISCUSSION

In this section, we present an evaluation of the

multi-path facility and its formal model. Both are examined

in terms of the design criteria discussed in section 1.2.

In addition, they are compared with some of the languages

and models discussed in section 1.2.

In evaluating the efficiency of the primitives and

framework of MPEL1, we refer frequently to their treatment

in the formal specification. This is reasonable since the

model is distinctly not implementation independent. The

data structures used by the evaluator are essentially the

ones to be used in an implementation. This is discussed in

more detail below.

3.1 The Control Primitives

The problem of 'size' turns out to be largely a pseudo

question. The primitives are used to define extensions for

various multi-path organizations. Typically, the code for

the extensions will outweigh the initial investment in the

primitives. Second, in the environment of a language

system, the primitives may be maintained on a library file

and loaded as required. Still, one would expect the amount

of code required to be small as compared with the rest of

the implementation. To facilitate this, the primitives

5-26

utilize other components of the language wherever feasible.

Por example, the primitives are defined as control

subroutines (CSUBRs), and thus their arguments may be

evaluated and bound in the same fashion as EL1 procedures.

The mode definition facility is used to define the data

types required by the primitives. PAP uses the

sub-evaluator APPLY. PPETCH, PSTORE and DEPENV all utilize

the name-stack search procedure. In addition, we note that

some of the auxiliary procedures required by the control

primitives can be implemented quite efficiently. Por

example, MINLEV can be implemented in a single machine

instruction if we assume reasonable values for NPALEV and

NPROLEV.

We can comment upon the amount of code required for the

control primitives in the current ECL implementation of

XPEL1 [Weg72]. Here, only GET\PATH, DELETE\PATH, PAP, CIA,

MYPATH, RETPEOM, and GOTO have been implemented and

constitute approximately A% of the system code. It is

expected that a complete implementation of the primitives

will require roughly 1000-1500 words of code.

We turn now to the question of the effect of the

ECL runs on a DEC PDP-10 computer under either the TOPS
or TENEX monitors. The system includes an EL1 interpreter,
garbage collector, mode—definition routines, and system
support code. It does not, however, include a compiler.

5-27

multi-path facility upon the evaluation of a single path of

control. An examination of the EL1 evaluator presented in

section 4.2 reveals four places in which the facility places

additional overheads upon the EL1 evaluator. We consider

each of these in turn.

Before it evaluates the body of a procedure, APPLY must

determine if the body is to be evaluated in the environment

of another path. This situation can arise as a result of a

call to PAP. The overhead can be kept to a minimum by

having PAP set a path-dependent flag. APPLY would only have

to make additional checks if the flag is set.

Return from procedure calls, blocks and FOR loops is

made through the RETURN component of the FN\hLOCK,

BLOCK\HLOCK and POR\BLOCK, respectively. This is required

so that attempts to delete accessible environments may be

trapped by simply modifying the RETURN component to be the

label CHECK\£UPPORT. In the absence of path dependency, the

RETURN component could be removed and the return effected

implicitly by each sub-evaluator. However, the additional

storage required by the inclusion of the RETURN component is

negligible as compared with the total amount of stack

storage required in the cases above.

A CALL to ALLOW\INTERRUPT is made before the evaluation

of each statement of a block, the body of a -FOR statement

and the body of a procedure call. The calls are required to

5-28

determine if an interrupt has occurred. These particular

points have been chosen for two reasons, Pirst, the value

of EVRES (the last value computed) is expendable, and thus

it does not have to be saved before evaluating a response

form. Second, it is not possible to construct a FORM whose

evaluation does not ultimately result in a call to

ALLOW\INTERRUPT. Therefore, the evaluator will always

respond to interrupts. The ability to interrupt a path,

perform an arbitrary computation, and then allow the path to

continue evaluation is desirable in an interactive

implementation of the language. Hence, these checks would

probably be included even in a single-path implementation.

The control primitive GOTO must scan the control stack

if the path is in the midst of an interrupt response or if

it is a supporting path. In either case, a path—dependent

flag (JFLG or SPATH) is set. If neither is set (the normal

case,) then GOTO may perform the transfer of control without

any additional checks. We note that a compiled local GOTO

(i.e. within a block) would not even have to check the

flags since the environment of the path cannot change.

From the discussions above it should be clear that the

inclusion of the multi-path facility in the language causes

no significant change in the time and space requirements of

a single path of control.

5-29

In considering the efficiency of the control primitives

themselves, we will restrict ourselves to those primitives

which are used most heavily in the examples of chapter 3,

namely, PAP and CIA. Many of the others have either trivial

implementations or simply involve the modification of

tables.

In the implementation of PAP, it is necessary to copy

the arguments to the PAPed procedure from the stacks of one

path to another. Although this may seem inefficient, we

note that the arguments are usually pointers to objects in

the heap, and thus they are inexpensive to copy. In any

case, the overhead is not significantly greater than if the

procedure took all of its arguments 13YVAL. If DPAP is used,

large stack objects can be passed LYREF without a copy being

made. Some copying can be avoided, and thus PAP made more

efficient, if the two paths are tied together for the

duration of the PAP, i.e. the arguments are pushed directly

onto the name and value stacks of the path being PAPed into

while the name stack of the original path is used to provide

an environment.

Turning to CIA, the primary issue is the amount of work

necessary to switch contexts, i.e. how difficult is it for

the evaluator to save the state of the current path and then

install the state and commence the evaluation of another?

Context switching is achieved by pushing the label of a

5-30

return statement onto the control stack, saving the three

stack pointers and some path dependent flags in the path's

ACTRC, loading the new path's stack pointers and flags and

then passing control to the return statement specified by

the label on the control stack of the new path. Since the

'state' of a path is described by a small set of variables,

context switching is relatively inexpensive.

One other issue relating to the CI must be discussed.

Since it acts as a single access resource with respect to

CIA calls by paths, there exists the possibility that the CI

may become a system bottleneck, i.e. processors will waste

much of their time in busy waits upon the CI. The situation

is similar, in essence, to the use of a global interlock to

control access to the traffic controller in a

multi-processor system, c.f. 1.2.3. In the latter case, it

has been found that a single interlock strategy is superior

to one in which many interlocks are used to permit

simultaneous access to the controller [Ra68],

Since MPEL1 will usually be implemented in the context

of an operating system, busy waits can be replaced with

non-busy waits, c.f. 5-2.3. However, the question remains

as to how often an evaluator will find the CI busy.

Madnick's [Ma6£] results show that for a small number of

evaluators the probability that the CI is busy is roughly

proportional to the number of evaluators and to the fraction

5-31

of time each spends executing in the CI environment. For

example, if there are three evaluators and each spends (on

the average) 5 percent of its time in the CI, then the

probability that an evaluator will find the CI busy on any

given CIA call is .15. Of course, the fraction of time

spent in the CI depends heavily upon the program being run,

i.e. on the complexity of the procedures which are CIA

called and the number of times they are called in relation

to non-CI evaluation.

The use of separate stacks for each path requires

justification. If the number of paths is small, then this

is not unreasonable. In addition, it is possible to

initialize the path with a small stack and allow for

expansion as required, c.f. 5.2.1. However, if many

control raths are defined, the amount of storage required

can become quite large. There are two alternatives. The

first is to completely abandon the stack, as in

OREGANO [Be71]. The second is to have all paths use a

single stack [Bo72]. In the former case, storage for the

path's environment is allocated from the heap and managed

using a retention strategy, i.e. by garbage collection or

reference counts. This technique imposes substantial and

unnecessary overheads upon single path evaluation, as the

stack discipline is sufficient but must be replaced by the

less efficient garbage collection mechanism. Thus, it is

unacceptable. The latter solution is quite attractive and

5-32

will be discusssed further in section 5.4.

Finally, we consider the facility's ability to

synthesize multi-path control structures. The examples in

chapter 3 demonstrate the range of the facility. In

particular, most of the control structure found in the

languages discussed in section 1.2.1 are included. Here, we

will compare MPEL1 with Fisher's CDL [1170], c.f. 1.2.4.

Fisher claims that as far as he has been able to

determine, his primitives "constitute a basis for the

mechanisms underlying control structures." If Fisher's

primitives can be synthesized or are primitive already in

MPEL1, then we can expect that MPEL1 also constitutes a

reasonable basis. We shall see. The CDL primitives were

described in section 1.2.4 and will not be defined again

here.

The primitives seq and cond are subsumed by the EL1

block, i.e.

seq(s1, ..., sn) = [)s1; s2; ...; sn(]

and

cond(p1,e1, ...pn, en) = [)p1 => e1; ... pn => en (]

The primitive par can be defined as a variation on FORK,

c.f. 3-3. synch is a variation on TSET, viz.

synch(I,e1,e2) =

EEC IK
NOT TSET(I) => e1;
e2*
CLEAR(I)

END

5-33

If several synch operations (with the same first argument)

are evaluated simultaneously, then only one will evaluate

e2, all others will evaluate e1. monitor and cont are

described in section 3.5. Thus, all of fisher's primitives

may be realized in MPEL1.

Let us examine the MPEL1 definition of cont. To allow

a path, say P, to evaluate relatively continuous to all

others, it is necessary to interrupt all other active paths

and then wait for them to queue themselves before allowing P

to continue. A somewhat similar definition of cont is given

by Thomas [Th71]. The amount of processing required to

implement cont in both MPEL1 and PGL (Thomas' language)

raises a question as to whether it should be defined as

primitive or obtained by extension. Of course, a clear and

precise formal definition of cont (which specifies an

efficient realization) would make it an acceptable

primitive. We will return to this topic in the next

section.

3.2 The formal Definition

The formal specification of MPEL1 consists of a

description of one of n identical evaluators. The evaluator

is always processing some MPEL1 control path but not

5-34

necessarily the same path at all times, i.e. it may switch

its attention from path to path. Because of this context

switching, the evaluator must be reentrant with respect to

the paths it evaluates. An examination of the procedures

v/hich constitute the evaluator reveals that it is written

essentially in EL1, i.e. it utilizes only a small number of

the control primitives, namely, TSET, CLEAR, EVAL, and GOTO.

The question arises as to why the control primitives and

framework of MPEL1 are not included in the meta—language; if

the primitives are to be used in the synthesis of multi-path

control structures why are they not utilized in their own

description? Let us consider such a model. In the following

discussion, we will use CI', CIA' and PAP' to denote uses of

these terms in the meta-language.

The multi-path organization to be described is one in

which exactly n interpreter paths are to be evaluated

concurrently. For each MPEL1 path there will be an

interpreter path (ipath) which evaluates it. Because the

correspondence is one—to-one, an ipath may record a path's

intra—path control in its own environment. In particular,

one ipath is dedicated to the evaluation of the CI path.

Only the ipaths are paths with respect to the CI". The

ipaths use the CI' to insure that exactly n of them are

evaluated concurrently and to synchronize the activation of

the ipath corresponding to the CI (ipath/CI). for example,

5-35

if a path, say P, wishes to perform a CIA call, its

interpreter (ipath/P) performs a CIA'. If ipath/CI is not

currently running, then it is passed control in order to

evaluate the CIA call. If ipath/CI is currently running,

i.e. if it is either active or on the INACTTVEQ', then

ipath/P is queued and an idling path run in its place. When

ipath/CI completes its current CIA call, the idling path is

stopped and the CIA call for P is executed by passing

control to ipath/CI. To PAP a procedure call into the

environment of P, an ipath modifies the environment of P and

then uses PAP' to force ipath/P to call the procedure

application routine.

A number of defects with this model should be

immediately obvious. .First, to describe the primitives CIA

and PAP is necessary to utilize CIA' and PAP", respectively.

Thus, there is a direct circularity in the definitions of

these primitives. As these are two of the more unusual

control primitives, the circularity is objectionable. Por

example, with two different interpretations of the

primitives in mind, one could consult the definition and

find both confirmed. In addition, one cannot determine if

the primitives have a reasonable implementation from their

description in the model. Second, the model requires the

use of the CI* in a rather sophisticated way, namely, to

insure that exactly n ipaths are evaluated concurrently. In

particular, a special scheduling algorithm is required.

5-36

However, this implies that CI extensions must be used in the

definitions of the primitives. Since such extensions are

usually more sophisticated than the primitives themselves,

we are in the position of defining reasonably simple

concepts in terms of more complex ones.

Let us contrast this model with the one presented in

chapter 4. Only four control primitives are used. Of

these, two (TSET and CLEAR) can be implemented in a single

machine instruction. EVAL is defined trivially as a CALL to

EVAL\FORM. GOTO, however, requires some discussion as it is

used in a number of ways. First, it is used to 'linearize'

control within the evaluator, i.e. to insure that all CALLs

to EVAL\FORM occur at the statement level of the block so

that no information about the path is retained implicitly in

the logic of the evaluator. Second, it is used to return

control to statements whose labels have been pushed onto the

control stack. Here, control is always returned to a

statement in the outermost block of the procedure EVALUATOR.

Finally, it is used in its own definition to transfer

control to EVELK1 after explicitly flushing the path's

stacks and installing the appropriate statement to be

evaluated in the BLOCK\BLOCK. Although the definition is

circular, note that the general GOTO is defined in terms of

explicit modifications to be made to the path's environment

and then a local jump to another statement in the same

block. Hence, the direct circularity actually lies in the

5-37

local GOTO. As local jumps are a fundamental notion and

have a straightforward implementation, the direct

circularity is acceptable.

In the MPEL1 model, CIA and PAP are both described in

terms of the four primitives discussed above and in terms of

modifications to the stacks which constitute the path's

environment. Thus, there can be no misinterpretation of

their semantics or question of the feasibility of their

implementation.

To emphasize that we have not been merely raising a

strawman, let us consider one of the formal definitions of

Fisher's primitives, which were discussed in section 1.2.4.

Here, we are concerned with the second of the three which

is a recursive evaluator similar in spirit to the original

ELI definition or a LISP definition of LISP. The control

structure of the path is implicit in the environment of the

evaluator. Thus, the MPEL1 evaluator outlined above might

have taken a similar form. The primitives cont, synch and

monitor are defined by direct circularity. For example, to

evaluate the form y, where

y <- (CONT x)

the evaluator essentially executes

cont (eval(Y.CDR.CAR))

*

The first is an English language description and the
third is only valid in a single processor environment.

^38

Thus, any number of different semantics could be associated

with cont and all would be equally valid. In addition, we

cannot determine if cont has a feasible implementation, or

if it is implementable. To illustrate, using direct

circularity we could define the primitive TMHAIT(M,T) which

returns TRUE if and only if Turing machine M halts when

given tape T. TMHAXT would be an extremely powerful

primitive, but unfortunately it cannot be implemented.

In the formal definition of MPEL1, all of the data

structures which constitute a path's environment are

represented explicitly. The control primitives are defined

as operations on these structures. This implies that the

model is implementation dependent, i.e. the primitives are

described in terms of a preferred implementation. Of

course, a precise implementation independent model would be

equally as valid. However, as we have seen above, there is

often a question as to the feasibility of control

primitives. Thus, it is especially important for control

that the model be as realistic as possible. To facilitate

this, only those control primitives which are intuitively

acceptable should be used in the model - the remaining ones

must be explicated therein.

The implementation oriented nature of the model offers

additional benefits as well. Pirst, it allows the language

designer to judge the efficiency of a primitive from its

5-39

treatment in the model. This was especially helpful in

determining the effects of the primitives upon the

evaluation of a single path, as discussed in the previous

section. Second, a machine language interpreter for MPEL1

can be coded directly from the model, without mentally

'de-recursing' the evaluator.

This last point requires additional comment. Since the

intra-path control is represented explicitly, the EL1

evaluator cannot be represented as a set of procedures which

call each other recursively as in [Weg70]. At first glance,

it would seem that the bookkeeping required to maintain the

necessary information on the control stack would make the

nodel inelegant and unreadable. Here, however, the data

definition facility of EL1 proved to be invaluable. In

particular, the use of control modes, c.f 4.1.2, allows the

necessary items to be gathered into one structure which is

then pushed onto the stack. The components of the object

may then be referenced by symbolic field names. This allows

a sub-evaluator to be written almost as if the field names

were the arguments to the sub-evaluator called as a

procedure.

The mode STACK was introduced in section 4.1.3

primarily to allow EL1 to be used as the meta-language of

the model. It is intended that ordinary LIK) stacks will be

used in an actual implementation of MPEL1. Thus, we must

5-40

determine whether the stack operations are actually

implementable. PUSH presents no problem as it simply pushes

an object onto the top of the stack. HEAP is trivial to

implement if the address space is divided into segments,

some of which are used for heap and the remainder used for

stacks. If a table of the segment assignments is

maintained, then HEAP reduces to a simple address

calculation. In the model, we use integers to index objects

on the stack. In an implementation, these will be replaced

by actual stack pointers. In this light, PLUSH simply

resets the stack pointer and INSTACK determines if the

pointer in question lies between the two stack pointers.

The only question remaining is whether or not it is

reasonable to index the stack as if it were a ROW. An

inspection of the model will show that only the

control-stack is so indexed. In particular, it is

referenced in only two ways. First, one of the topmost K

objects is referenced, where the modes of the top K objects

are known. Second, the stack is searched, starting from the

current value of CP. In the former case, since the objects

This is still possible even if the stack is allocated
in segments, since INSTACK is also given a reference to the
stack itself.

**

The name-stack is also indexed, but it is defined as a
ROW in the model. The value-stack is indexed only in COPY,
where the entire stack is copied, c.f. 5.2.1.

5-41

are of fixed size, an appropriate offset can be determined.

The latter case is also reasonable since objects pushed onto

the control stack are described by a finite set of modes,

i.e. they are either SYRBOLs or some control mode. Various

encodings can be used to distinguish the objects. For

example, the mode and size of the object could also be saved

on the stack. More efficient encodings are certainly

possible.

We conclude this section with a discussion of the

treatment of interrupts in the model. To send an interrupt

to an evaluator, a flag associated with the evaluator is

set. The evaluator checks this flag at certain points via

CAIis to AIXOW\INTERRUPT, c.f. 5.3-1. Of course, in an

implementation the interrupts do not actually occur at these

nice (or clean) points. Typically, an interrupt can occur

after any memory reference. Since our model uses a

high-level programming language, such interruption is below

our level of discourse.

When a real interrupt occurs in an implementation of

MPEL1, two different actions may be taken. First, the

response to the interrupt may be delayed until the evaluator

is willing to accept the interrupt. Alternatively, the

interrupt response can be initiated at the time the

Note that hardware usually accepts interrupts only at
clean points as well, although at a much finer level.

5-42

interrupt occurs. There are problems with the latter case

(especially if the response form is written in MPEL1.)

First, the evaluator nay be in the midst of switching

contexts (paths.) Thus, there is no environment to evaluate

in. Second, even if there is an environment, the stacks may

not be in reasonable enough shape to allow the evaluation of

an arbitrary form. In particular, if the response form

invokes a garbage collection, then heap objects referenced

only by the machine registers could be lost. Some of these

problems can be alleviated by specifying that portions of

the system code are not interruptible, i.e. that the

interrupt must wait till the next clean point. In general,

we would expect that hard interrupts of this sort would

perform the minimal necessary operations and then generate a

lower priority processor level interrupt to continue the

processing at the next convenient point, namely, at the next

call to ALLOW\INTERRUPT.

5-43

4. CONCLUSIONS ME SUGGESTIONS FOR FUTURE RESEARCH

This dissertation has investigated the problem of

introducing multi-path control structures into programming

languages. The approach taken has been to define a set of

control primitives and a language framework from which

various multi-path organizations can be realized by

extension. The primitives are cast in a multiple processor

environment to avoid any bias towards the single processor

case.

Our basic assumption has been that there are n physical

processors and k paths of control. We have shown that

various multi-path organizations and operations can be

described simply as specifications of the way in which the

processors are to be assigned to paths. The control

interpreter path allows the user control over this

assignment, and thus gives him the ability to synthesize

multi-path control structures. Two properties of the CI

facilitate this. First, all control transfers between paths

must be via the CI. Thus, it can keep track of the

processor-path assignments. Second, only one path may pass

control to the CI at a time. When a path transfers control

to the CI, using CIA, it specifies a procedure to be

evaluated in the CI environment. The evaluation of this

procedure is indivisible with respect to other CIA calls of

the same procedure (or others.) Thus, such procedures are

5-44

given an environment and a mode of operation in which they

can examine and modify the processor-path assignments. In

addition, since only the existence of the CI is assumed by

the primitives, it is possible to redefine or extend the

control interpreter in MPEL1.

In addition to providing a precise specification of the

semantics of the control primitives, the formal definition

of MPEL1 has yielded a number of other benefits. First, we

were able to determine that the control primitives are

pragmatically valid since the primitives of the model can be

realized on contemporary hardware. Second, because the

model is implementation-oriented we were able to use it to

assess the effect of the multi-path facility upon single

path evaluation. Finally, it demonstrates the values of

including the intra-path control as an explicit structure in

the meta-language.

Although we believe that MPEL1 constitutes a reasonable

basis for a multi-path facility, a number of additions and

generalizations can be made. Some of these are outlined

below.

Recently, Bobrow and Wegbreit (B-W) [J3o72] have

developed a technique which allows multiple paths of control

to be implemented on a single stack. If only a single

control path is used, then it runs as efficiently as it

would if it was assigned its own separate stack. Although

5-45

the use of separate stacks, as in MPEL1, is more reasonable

than a heap-garbage collection scheme, a single stack is

even more attractive. In particular, it avoids a number of

the overheads associated with stack expansion, as discussed

in section 5.2.1. Thus, it would be desirable to

incorporate the B-W technique into the multi-path facility.

It is interesting to note that the description of the

B-W technique uses a model similar to the formal model of

MPEL1, in that the paths' call structures are represented

explicitly. Although L-W give an English language

description, a formal specification of a programming

language which utilizes their technique would thus take the

form of the MPEL1 definition.

MPEL1 assumes that the n processors can all readily

access a common address space. This usually implies that

the processors are in close proximity to one another. The

construction of the ARPA network [Ro70] allows one to

consider distributed computations in which paths of control

are evaluated by processors on different nodes of the net.

This raises a number of questions. .For example, how can

data structures be shared effectively across many nodes? How

does one represent pointers to objects on other nodes? In

particular, how can garbage collection be effected in the

distributed environment? For our purposes, we are primarily

concerned with the modifications which must be made to the

5-46

CI and the control primitives. Should there be a CI for

each node or one master CI that resides on a single node?

Although the latter case is a straightforward extension of

the current CI, transfers of control between paths on a node

which does not contain the CI become rather slow. The

former solution avoids this problem, but the absolute

indivisibility of CI execution (with respect to paths on all

nodes) is lost. The primitives that access environments of

other paths (e.g PIETCH, DEPENV) may have to utilize the CI

in order to allow the processor to be reassigned while the

information is being transmitted from a path on another

node.

Except for the addition of a few intra-path control

primitives, single path KPEL1 is essentially ELI. We have

left this constant in order to focus on inter-path issues.

However, we believe that work remains to be done in the area

of intra-path control structures. Here, we refer to the

possibility of providing extension mechanisms which allow

for the compilation of control and environments. Most

languages do not allow for variation in the environmental

structures to be used in the evaluation of a program. Why

is this so? We believe that there are two reasons, first,

the most fundamental semantics of the language, e.g. the

scope rule, recursion, etc. restrict the class of

structures which may be used. Second, a compiler must know

what the environmental structures are in order to generate

5-47

code. Allowing variation in these structures makes

compilation difficult, if not impossible.

However, control over environmental structures can be

useful. For example, if a set of EL1 procedures reference

the same top-level variables and do not utilize recursion,

then their evaluation would best be effected using a

PORTRAN-like environmental structure in which storage for

locals and globals is only allocated once.

The problem can be approached in two ways, first, the

compiler can be made 'smart' in crder to deduce the

appropriate environmental structures. This requires

techniques from the field of program automation [Ch71].

Alternatively, a set of environmental primitives can be

included in the language. Using these, the programmer may

synthesize the environmental structures desired. The

compiler can then be appropriately parameterized to utilize

information provided by these primitives.

Appendix 1

INTRODUCTION TO EL1

The purpose of this appendix is to provide a brief

introduction to EL1 for those readers who are unfamiliar

with the language. It does not attempt to give a complete

description of EL1. We direct the reader who desires a more

precise description to either [Weg70], [Weg72], or Chapter

4.

At a superficial level, EL1 appears to be a

conventional programming language in the spirit of ALGOL 60.

It includes variables, arrays, assignments, procedure calls,

prefix and infix operators, block structure, labelled

statements and gotos. .For example, all of the following are

legal in EL1.

Q <- SQRT(A)/(R[3]-Y)

L: BEGIN
X <- PLM(A,B) - Z;
FI(X,R[I])

END;

L <- C OR D;

These examples, however, are a bit misleading in that

they are special cases of more general syntactic forms. To

illustrate, assignment is treated as a right-associative

binary operator whose value is its left hand operand.

A1-2

Blocks have values — the value of the last statement

evalutated.

The most basic unit in EL1 is the form. Examples of

forms are:

(1) constants such as 3 and FALSE,

(2) variables such as Y and KAME\IKDEX,

(3) expressions composed of infix and prefix operators

such as A+B, NOT D OR E[2],

(4) selections of compound objects such as PAVECT[I]

and P.CIA\RE£U1T,

(5) procedure calls like SUSPEND(P) and

ENTERL(PAVECT[PROCNUM],INACTIVEQ).

More complex forms may be constructed by combining forms

according to the syntax rules of the language. In general,

a form is a syntactically complete unit which may be

evaluated to yield a value. An EL1 program is a form which

is not contained as part of a larger form.

A block is a form which is composed of a sequence of

statements. Each statement of a block is either a form or

one of two types of conditionals, viz.

f -> g;

f => g;

In the former case, the interpretation is that if f is TRUE,

then g is evaluated and execution continues with the next

statement in the block. In the latter case, if f is TRUE

A1-3

then g is evaluated and the block is exited with the value

of g taken as the value of the block. For example, if V is

a vector of N integers, the folowing block computes the sum

of the positive elements.

BEGIN
I <- 1;

i: vrii > o -> s <- s + vril;
I = h => S;
I <- 1+1;
GOTO L

END;

Variables are ether top-level variables, formal

parameters to a ROUTINE, or declared variables local to a

block. In all cases, a variable must be declared to be of

some specific data type and it may only contain values of

that type throughout its lifetime. If a variable is used in

a block but is not defined therein, then it is said to be

free. E11 uses a dynamic scope rule for the identification

of free variables, i.e. the value of a free variable is the

value of the most recently created variable with that name

in the dynamic call structure of the program.

EL1 contains a number of built-in data types, called

modes, and a number of mode constructing operators which

allow for the creation of new data types, as required. The

built-in modes include BOOL (Boolean), CHAR (character), INT

(fixed-point integer), SYMBOL (non-numeric atom as in LISP

[We67]), MODE (the data type of data types), REF (pointers

to objects of any mode), EORM (similar to LISP

A1-4

S-expressions), and ROUTINE (user-defined or built-in

procedure). There are four mode constructing operators.

Each one yields a MODE value which may be assigned to a

variable of mode MODE. The operators are best explained by

example.

The operator ROW constructs modes for arrays of

homogeneous objects, for example, the statements

13 <- R0W(3,INT);

BOOLR <- ROW(BOOL);

assign to 13 and BOOLR the modes 'array of three integers'

and 'array of any number of Booleans', respectively.

Variables may be declared using these modes as follows.

DECL V:I3;

DECL B:BOOLR BYREE CONST(BOOLR SIZE 4);

V is a ROW of three integers. The length of the ROW is

fixed by the definition of 13. B is a ROW of four BOOLs.

Here, the length of the ROW is resolved at the time B is

created by specifying an initial value, and hence a length,

for the variable. The operator CONST will be discussed in

more detail below.

The operator STRUCT constructs modes for compound

objects whose components do not necessarily have the same

mode. Eor example, the statement

ENV\BLOCK<-STRUCT(OLD\NP:INT,OLD\VP:INT,RETURN:SYMBOL);

assigns to ENV\BLOCK the data type for a structured object.

A1-5

An object of mode ENV\ELOCK consists of three components:

(!) an INT named OLD\NP,

(2) an INT named OLD\VP,

(3) a SYMBOL named RETURN.

The operator PTR constructs modes for objects which may

point to other objects. The arguments to PTR specify the

modes of the objects to which an object of the new mode may

point. E.g,

I\OR\B\PTR <- PTR(INT, BOOL);

An object of mode I\OR\B\PTR may point to either an integer

or a Boolean. The operator ALLOC is used to create objects

of mode class PTR. ALLOC is discussed later in this

section.

The operator ONEOP constructs modes which represent one

of a set of modes. Por example, the statement

I\OR\B <- ONE0P(INT,BOOL);

assigns to I\OR\B the mode 'one of the modes INT or BOOL'.

It is not possible to construct an object of mode I\OR\B,

i.e. at the time a variable of mode I\OR\B is created, it

must be type resolved to either an INT or a BOOL. E.g.,

DECL X:I\OR\B BYREF CONST(INT);
DECL Y:I\OR\B BYREP CONST(BOOL);

X is of mode integer and Y is a Boolean. ONEOI may be used

to specify that an argument to a procedure may be an object

of one of a set of modes, c.f. 2.3-1. The built-in mode

ANY may be described as ONEOP('any mode').

A1-6

It should be noted that the arguments to the mode

operators may themselves be calls upon the operators. For

example, if N and M are integers, then a mode for N by M

integer matrices can be constructed as follows.

ROW(N,(ROW(M,INT));

The i th element (for i between 1 and N) of an object of

this mode is an M element ROW of integers.

The components of ROWs and STRUCTs may be selected.

The components of ROWs may only be selected by integer

indices. If V is an 13, then

V[1+1]

selects the second integer of the ROW. The components of

STRUCTs, however, may be selected either by integer indices

or by their symbolic field names. If E is an ENV\ELOCK,

then all of the following select the RETURN component.

E. RETURN
E["RETURN"]
E[3]

Objects of mode class PTR may also be selected in the sense

that the pointer is followed until a ROW or STRUCT is found

and then the selection is performed on the compound object.

For example, if P is a PTR(ENV\BLOCK) then

P.RETURN

selects the return component of the ENV\BLOCK.

A pointer may be followed explicitly by using the

operator VAL. The value of VAL is the object referenced by

A1-7

the pointer. If Q is an PTR(INT), then

VAL(Q) <- 3;

assigns 3 to the integer referenced by Q.

Variables are distinct from objects in EL1. Each

variable names some object. However, an object may be named

by more than one variable. In addition, several variables

may name different components of a single object. In £L1,

an object may lie either on a block structured stack or in a

free storage region called the heap. In the former case,

the lifetime of the object is the same as that of the block

in which it was created. In the latter case, the object

exists as long as it can be referenced.

An object is created either implicitly as the result of

a declaration or explicitly via calls to the object

generators CONST and ALLOC. In either case, the mode of the

object is fixed at the time of creation and the object

retains the mode thoughout its existence. For example, the

three statements

DEC! P:ENV\£LOCK;
DECL Q:ENV\J3L0CK BYREF

CONST(ENV\BLOCK OF 1,2, "DELPTH");
DECL T:I\OR\E\PTR;

generate three stack objects. P is initialized as an

ENv\BLOCK with default values for its components. Q is

initialized as an ENV\ELOCK with the components 1, 2 and

"DELPTH", respectively. T is initialized as a null

I\OR\B\PTR.

A1-8

If a stack object is returned as the value of the block

or procedure application in which it was created, then it

becomes a pure—value in the sense that assignments to it are

harmless, but useless, for example, consider the following

BEGIN
DECL X:INT;
[) DECL Y:INT; P=> Y ; X (] <- 4;
Xn~ 1+2

END;

If P is FALSE, then the value of the inner block is X, which

is then assigned the value 4. If, however, P is TRUE, then

the value of the block is Y, which is converted to a

pure-value. Assigning 4 to the pure—value has no effect

upon the future evaluation of the program.

The generator ALLOC is similar to CONST, except that

the object generated is allocated in the heap. ALLOC

returns a pointer to the object generated. Por example,

DECL P:I\OR\E\PTR;

P <- ALL0C(INT LIKE 1);

The I\OR\L\PTR P is constructed on the stack and is

initialized to NIL. An integer is allocated in the heap and

P is assigned a pointer to the integer. The value of the

integer may be accessed using the operator VAL, which has

been described earlier.

In EL1, ROUTINES subsume the notions of procedures and

A1-9

operators. A variable of mode ROUTINE may be assigned a

procedure value, viz.

FIB <- EXPR(X:INT; INT)
BEGIN

X = 0 => 1;
X = 1 => 1;
FIB(X-1) + FIB(X-2)

END;

The ROUTINE Fib computes the N th element in the Fibonacci

series, PIB takes a single formal parameter named X. The

mode of X is INT. The bind class of X is defaulted to be

BYREF (by reference,) i.e. an assignment to X would change
*

the value of the argument. The result type of the procedure

is INT, i.e. the mode of the object returned by the

procedure is INT.

A call to a ROUTINE may be written as a function name

followed by an argument list:

FIB(ENV\BLOCK.OLD\NP)

A ROUTINE valued variable can also be declared to be a

NOFIX, PREFIX or INFIX operator as it takes zero, one or two

arguments, respectively. In the first two cases, the

routines may be called without enclosing their arguments in

parentheses. In the last case, the arguments appear to

Other bind classes in EL1 are BYVAL, UNEVAL, and
LISTED. If BYVAL is used, then the formal is bound to a
copy of the actual parameter. UNEVAL and LISTED may only be
used if the mode of the formal is FORM. With UNEVAL, the
formal parameter is bound to the unevaluated list structure
for the actual. With LISTED, the formal is bound the
remaining argument list.

A1-10

either side of the operator. For example,

POUR <- EXPR(; INT) 4;
FUM <- EXPR(X:INT, Y:INT; INT) (X+Y+2);
PREFIX(FIB);
NOFIX(FOUR);
INFIX(FUM);

FIB POUR ; NT Same as FIE(POUR());
1 FUM 2 ; NT Same as FUM(1,2);

Top level variables may be assigned values without

explicit declaration. The first assignment to the variable

determines its mode. For example

X <- 1 + 1;

declares X to be of mode INT and binds it to the integer 2.

Subsequent to the assignment, X may only be assigned integer

values. The mode of X can only be changed by calling the

built-in routine FLUSH. E.g. FLUSH(X) disassociates X from

its mode and value. X may then be assignd a new value (and

mode), e.g.

X <- TRUE;

Appendix 2

SYNTAX OF EL1

The concrete syntax of EL1 is specified by a ENF

grammar. Non-terminals of the grammar are sequences of

characters enclosed in the brackets <>. All other symbols,

except for '::=' and 'I', are terminals of the grammar. The

rules of the grammar are of the form

<NT> : := A

where A denotes a string of terminals and non-terminals.

For compactness, the rules

<NT> ::= A1

<NT> ::= An

are abbreviated as follows.

<NT> ::= A2 i A2 ! ... |An

The abstract syntax representation of an EL1 program is

a list structure. The correspondence between the concrete

and abstract representations of EL1 is specified by augments

to the BNP grammar. In each of the rules below, the augment

is separated from the right hand side of the production by

the symbol 'C. An augment specifies the actions to be

taken when the corresponding reduction is made during the

A2-2

parse. There are four different formats for augments.

Their interpretations are best explained by example.

The augmented rule

<form9> ::= <selection> @ <selection>

specifies that in reducing a <selection> to a <form9>, the

list structure associated with the <selection> is to be

associated with the <fcrm9> directly.

The augmented rule

<selection> ::= <form3> . <id> @ (SELQ! <form3> <id>)

specifies that the list structure to be associated with the

<selection> is obtained by constructing a three element

list. The first element is the SYMBOL SELQ!. The second

and third elements are the list structures associated with

the <form3> and the <id>, respectively.

The augmented rule

<str-form>::=STRUCT(<structlist>) © STRUCT & <structlist>

specifies that the list structure to be associated with the

<str-form> is obtained by CONSing the SYMBOL STRUCT onto the

head of the list associated with the <structlist>. & is a

right-associative infix operator equivalent to CONS.

The augmented rule

<fmstr> ::= <fmstr> , <form> @ <fmstr> <-& <form>

specifies that the list structure to be associated with the

<fmstr> is obtained by placing the <form> at the end of the

A2-3

list specified by <fmstr>. For example, if the <form> is 4

and the <fmstr> is (1 2 3), then the resulting <fmstr> is

the list (12 3 4).

In an augment, the expression <NT>[i] specifies the

i th element of the list associated with <NT> and the

expression <NT-i> specifies the i th occurrence of the

non-terminal <NT> in the corresponding production.

The non-terminals <id>, <constant>, <prefixop>, and

<infixop> denote the (not necessarily disjoint) sets of

identifiers, constants, prefix operators and infix

operators, respectively.

The grammar follows.

<program>

<form>

<form9>

<blockbody>

<declstr>

:= <form>

:= <iteration>
! <fn-call>
! <exprnt>

<constant>
<id>
BEGIN <blockbody> EWD
<mform>
<selection>
<generation>
(<form>)

<declstr> ; <stat>
! <stat>
! <blockbody> ; <stat>

<declnt>
! <declstr> ; <declnt>

@ <form>

@ <iteration>
G <fn-call>
@ <exprnt>

@ <constant>
@ <id>
@ BLOCK! & <blockbody>
@ <mform>
<§> <selection>
@ <generation>
@ <form>

Q <declstr> <-& <stat>
G (<stat>)
@ <blockbody> <-& <stat>

@ (<declnt>)
6 <declstr> <-& <declnt>

A2-4

<declnt>

<idstr>

<initd>

<stat>

<iteration>

<fmit>

<fmit1>

<test>

<mform>

<mform2>

<str-form>

<structlist>

<bind-class> ::=

DECL <idstr> : <form>
! DECL <idstr> : <form>
<initd>

<id>
! <idstr> , <id>

BYVA1 <form>
IBYREF <form>

<form>
! <form> -> <form>
! <form> => <form>

@

@
@

Q
@

<4

! <id> : <stat> 6

FOR <id> <- <fmit> DO <form>

<fmit1>
! <fmit1> <test>

:= <form> <form>
! <form> ,

<form>
<form>

(DECL! <idstr> <form>)
DECL! & <idstr> & <form>
& <initd>

(<id>)
<idstr> <-& <id>

BYVAL <form>)
(BYREF <form>)

<form>
(II! <forro-1> <form-2>)
(CLAUSE!<form-1>
<form-2>)

(LABST! <id> <stat>)

@ (EOR! <id> <fmit>[1]
<fmit>[2] <fmit>[3]
<fmit>[4]<form>)

<f>mit1> <-& NIL
<fmit1> <-& <test>

(<form-1> NIL <form-2>)
(<form-1> <form-2>
<forra-3>)

:= WHILE <i'orm>
', TILL <form>

:= <mform2>

@

! <id> <mform2>

ROW (<form>)
ROW
PTE
ONEOE (<fmstr>)
<str-form>

©

©

WHILE . <form>)
TILL . <form>)

(<mform2>[1] NIL
<mform2>[2~
<mform2>[n'

(<mforw2>r
<raform2>[2]:..
<mform2>[n])

)
] <id>

(<form> , <form>) Q
(<fmstr>)

(

@

ROW NIL <form>)
ROW <form-1> <fornw2>)

PTR & <fmstr>
ONEOE & <fmstr>
<str-form>

:= STRUCT (<structlist>) @ STRUCT & <structlist>

<id> : <form>
j <structlist> ,

<id> : <form>

BYREF
BYVAL
LISTED
UNEVAL

@ ((<id> . <form>))
@ <structlist>

<-& (<id> . <form>)

@ BYREE
@ BYVAL
© LISTED
@ UNEVAL

A2-5

<selection>

<init>

<fmstr>

<fn-call>

<form2>

<form3>

<exprnt>

<exprl>

<generation>

<regionspec>

<forni3> • <id>
i <form3> [<form>]

LIKE <iorm>
| SIZE <fmstr>
! OF <fmstr>

<form>
1 <fmstr> , <forni>

<forni2> <infixop> <form>

! <form2>

<prei'ixop> <form2>
! <form3>

<forn3> ()
1 <form3> (<fmstr>)
! <form9>

EXPR (<exprl> ; <form>)
<formb>

i EXPR (; <form>)
<form9>

<id> : <lorir.>
<id> : <i"orm>
<bind—class>
<exprl> , <id>

<exprl> , <id>
<Lind-class>

<iorm>

<i'orra>

<re^ionGpec> (<forin>
<init>)

I <rep;iorispec> (<forin>)

ALLOC
! COIiSI

Q { SELQ! <form3> <id>)
© (SEL! <forni3> <form>)

& (LIKE <form>)
@ SIZE & <fmstr>
@ OF & <fmstr>

© (<form>)
@ <fmstr> <-& <form>

@ (<infixop> <form2>
<form>)

@ <Iorm2>

@ (<prefixop> <form2>)
@ <i'orm3>

<3 (<i'orm3>)
@ <forra3> & <fmstr>
© <form9>

@ (EXPR! <exprl> <form>
<form9>)

@ (EXPR! NIL <form>
<fcrm9>)

d ((<id> <form> EYREE))
@ ((<id> <form>

<bind—class>))
@ <exprl> <-& (<id>

<form> EYREF>)
0 <exprl> <-& (<id>

<form> <bind—class>))

@ <re£ionspec> & <form>
& <init>

@ (<regionspec> <form>)

@ ALLOC
@ CONST

Appendix 3

CI PROCEDURES AND INTERRUPT RESPONSE PORiMS

Modes

ARQPTR <- STRUCT(FIRST:ARPTR, LAST:ARPTR);

LIST <- PTR(DTPR);

LISTROW <- ROW(NPROC, LIST);

PROW <-
ROW(NTROC, STRUCT(CURPATH:ARITR, IDLEPATH:ARPTR));

NT NPROC is defined by INSTALL\GLODAL\ENV
to be equal to the number of processors;

Procedures

NT Ii\lIT\CI initializes the CI. Its arguments
specify the idle paths for the processors and
the form to be evaluated;

INIT\CI <-
E,;PR (IDLEVECT:ROW (NPROC, ARPTR), PROG: i ORM;NONE)
EEC IN

DECL LASIRUN:ARPTR;
DECL INACTIVEQ:ARQPTR;
DECL NPROC:INT EYREF NPROC;
DECL PROCNUM:INT EYVAL 1;
DECL USER\SCHEDULER:ROUTINE

BYVAL INITIAL\SCHEDULER;
DECL PAVECT:PROW;
DECL RUNSET\ELAC:EOOL;
DECL PIVECT:LISTROW;

NT Initialize the PAVECT;

FOR I <- 1, ..., ftPROC DO
PAVECT[I].IDLEPATH <- IDLEVECT[I];

NT Create a path in which to evaluate PROG;

LASTRUN <- GET\PATH(1);
PAPQ(£ VAL(PROG),LASTRUN);

A3-2

NT Commence scheduling;

C\I()

END;

C\I <- EXPR(; NONE)
BEGIN
DECL LASTRUN:ARPTR BYREF LASTRUN;
DECL INACTIVEQ:ARQPTR BYREF INAC1IVEQ;
DECL NPROC:INT BYREF NPROC;
DECL NEPROC:INT BYREF NEPROC;
DECL PROCNUM:INT BYREF PROCNUM;
DECL USER\SCHEDULER:ROUTINE BYREF USER\SCHEDULER;
DECL PAVFCT:PROW BYREF PAVECT;
DECL RUN£ET\FLAG:BOOL BYREF RUNSET\FLAG;
DECL PIVECT:LISTEOW BYREF PIVECT;

NT When C\I is initially called, LASTRUN specifies the
path to which control is to be transferred and
PROCNUM specifies the current processor;

CONTINUF\PATH:
PAVECT[PP.OCNUM].CURPATH <- LASTRUN;
LASTRUN.FRO <- PROCNUM;

NT Transfer control to the path;

LASTRUN <- CONTPATH(LASTRUN);

NT CONTPATH returns the ARPTR of the path performing
the CIA call;

PROCNUM <- LASTRUN.PRO;
RUNSET\FLAC <- FALSE;

NT Apply the CIA-called procedure;

BEGIN
MD (VAI. (LASTRUN . CIA\FN)) =ATOM =>

EVAL(LASTRUN.CIA\FN)(LASTRUN.CIA\ARG);
LASTRUN.CIA\FN(LASTRUN.CIA\ARG)

END;

NT If LASTRUN is NIL, then a nev path must
be scheduled;

LASTRUN=NIL -> GOTO NEWPATH;

NT If RUKSET\FLAG is FALSE, then simply
pass control to LASTRUN;

A3-3

NOT RUNSET\FLAG -> GOTO CONTINUE\PATH;

NT Otherwise, interrupt an idling- processor so
that it may be assigned to a path;

SIGNAL\IDLE\PROCESSOR();

GOTO CONTINUE\PATH;

NT Call the user's scheduler to obtain a path
to be assigned to the processor;

NEWPATH:
BEGIN

DECL B:BOOL;
B <- PAVECT[PROCNUM].IDLEPATH =

PAVECT[PROCNUM].CURPATH;

NT B is TRUE if and only if the current
processor has been idle;

LASTRUN <- (JSER\SCHEDUL£R();

NT LASTRUN is NIP if there exist no paths
to be run, otherwise it specifies the path to
be assigned to the processor;

LASTRUN H NIL =>
BEGIN

B -> NPPR0C<-NPPR0C-1;
NT One less idle processor;
SIGNAL\IDLE\PROCESSOR()
NT Signal another idle processor;

END;

NT Since there exists no path to run and
the processor was idle (B=TRUE), let it
continue to idle;

B => LASTRUN <- PAVECT[PROCNUM].IDLEPATH;

NT Otherwise, the processor was not idle
before the CIA call. Since there
are no paths to run, let it idle;

LASTRUN <- PAVECT[PROCNUM].IDLEPATH;
NFPROC <- NPPROC+1

END;

GOTO CONTINUE\PATH
END;

A3-4

SIGNAL\IDLE\PROCESSOR <- EXPR(;NONE)
BEGIN

DECL EPROC:INT;

NT If there exists an idle processor,
then it is interrupted. Otherwise,
no action is taken;

NEPROC=0 => NOTHING;
FOR K-1, ..., NPROC TILL EPROC GT 0 DO

BEGIN
I=PROCNUM => NOTHING;
NT Don't consider the current processor;
PAVECTril.CURPATH = PAVECT[I].IDLEPATH =>

JPROC<-I
END;

NT Put a form on PIVECT[EPROC] which will cause the
processor EPROC to call the USER\SCHEDUL£R when
EPROC passes control to the CI due to the
"PROXPRO" interrupt sent by STOP\PATH;

PIVECTrEPROCI <-
CONS(QUOTE(LASTRUN<-NIL),PIVECT[EPROC]);

ST0P\PATH(PAVECT[1PR0C].IDLEPATH)
END;

INITIAL\SCHEDULER <- EXPR(; ARPTR)
BEGIN

DECL Y:ARPTR;
Y <-INACTIVEQ.EIRST;

L: Y=NIL => NIL;
WOT Y.DORMANT =>

BEGIN
REMOVE(Y,INACTIVEQ);
Y.TICKS\LEET <- NUMTICKS;
NT Set the time allocation for the path;
Y

END;
Y <- Y.NEXT;
GOTO L

END;

ENTERL <- EXPR(P:ARPTR, QrARQPTK; NONE)
BEGIN

P.NEXT <- NIL;
Q.LAST=NIL => Q.EIRST<-Q.LAST<-P;
Q.LAST.NEXK-P;
Q.LASK-P

END;

A3-5

REMOVE <- EXPR(X:ARFTR, Y:ARQPTE; NONE)
BEGIN

DECL Z:ARPTR EYVAL Y.FIRST;
X=Z =>

BEGIN
(Y.FIRST <- Y.FIRST.NEXT)=NIL => Y.LASK-NII;

END;
L: Z.NEXT=X =>

BEGIN
Y.LAST=X -> Y.LASK-Z;
Z.NEXT <- X.NEXT

END;
Z <- Z.NEXT;
GOTO L

END;

Response Forms

NT PRO\PRO\IORM is the "PROXPRO" interrupt response form.
It generates the path level interrupt "CI\TO\PATK"
which then CIA calls a procedure which evaluates all
forms on the processor's PIVECT list;

PR0\PR0\FORM <- QUOTE(INTERRUPT("CI\TO\FATH"));

NT CI\PATH\FORM is the response form associated with
the "CIXTOYPATH" interrupt;

CI\PATK\FORM <- QUOTE(CIA("PROINT"));

PROINT <- EXPR(L:LIST; NONE)
BEGIN

DECL.L:LIST BYVAL PIVECT[PROCNUM];
PROEVAL(L);
PIVECT[PROCNUM] <- NIL

END;

PROEVAL <- EXPR(L:LIST; NONE)
BEGIN

L=NIL => NOTHING;
EVAL(L.CAR);
PROEVAL (L.CDR)

A3-6

END;

NT TIMER\FOEM is the "TIMER" interrupt response form. It
generates the path level interrupt "TIME\OUT" if the
path's time allocation has been exhausted;

TIMER\EORM <-
QUOTE(BEGIN

MYPATH=PCIAR => NOTHING:
MYPATH.TICKS\LEFT <-MYPATH.TICKS\LEFT-1;
MYPATH.TICKS\LEET=0 =>

INTERRUPT("TIME\OUT")
END);

NT TIME\OUT\EORM is the response form associated
with the "CI\TO\PATH" interrupt;

TIME\OUT\EORM <- QUOTE(CIA("NOTICE"));

NOTIiME <- EXPR(; NONE)
BEGIN

LASTRUN = PAVECT[PROCNUM].IDLEPATH =>
LASTRUK <- NIL;

NT Put the path of the INACTIVEQ and set
LASTRUN to NIL to force scheduling;

ENTERL(LASTRUN, INACTIVEQ);
LASTRUN <- NIL

END;

RE TERENCES

[ACM70]

[An65]

[BBN70]

[Be70]

[Ber71]

[Bo72]

[Bu68]

[Ch68]

[Ch72]

[Chris69]

[Co63]

[Co63a]

[Cor65]

Record of the Project MAC Conference on Concurrent
Systems and Parallel Computation, ACM, tew York,
1970.

Anderson, J.P. "Program Structures for Parallel
Processing," Comm. ACM Vol. 8, No. 12 (December
1965), pp. 785=758.

Bolt, Beranek, and Newman, Inc.
Manual," January 1970.

"TENfcX Technical

Beech, D. "A Structural View of FL/I," Computing
Surveys Vol. 2, No. 1 (March 1970), pp. 33-64.

Berry, B.M. "Introduction To 0REGAN0," in [Wegn71],
pp. 171-189.

Bobrow, D. and Wegbreit, B. "A Model for Stack
Implementation of Multiple Environments," Bolt,
Beranek and Newman, Inc. Report No. 2334, March
1972.

Burge, W.H. "McG - A Functional Programming
System," Report RC-2111, IBM T.J. Watson Research
Center, Yorktown Heights, New York (1968).

Cheatham, T.E. et al. "On the Basis for ELF - An
Extensible Language Facility," Proc. IJCC Vol. 32
(1968), pp. 937-9?7.

Cheatham, T.E. and Wegbreit, B. "A Laboratory for
the Study of Automating Programming," Proc. SJCC
(1972).

Christensen, C. and Shaw, C.J. (editors) "Proc.
of the Extensible Languages Symposium," in SIGPLAN
Notices, Vol. 4, No. 8, August 1969.

Conway, M.E. "A Multi-Processor System Design,"
Proc. FJCC Vol. 24 (1963), pp. 139-146.

Conway, M.E. "Design of a Separable
Transition-Diagram Compiler," Comm. ACM Vol. 6,
No. 7 (July 1963), pp. 396-408.

Corbato, F.J and Vyssotsky, V.A "Introduction and
Overview of the Multics System," Proc. FJCC Vol.
27 (1965).

R-2

[Da66] Dahl, 0. and Nygaard, K. "SIMULA - an ALGOL Based
Simulation Language," Comm. ACM Vol. 9, No. 9
(September 1966), pp. 671^78.

[Da70] Dahl, 0. et al. "SIMULA 67 Common Base Language."
Norwegian Computing Center No. S-22 (October 1970).

[DeBak67] DeBakker, J.W. formal Definition of Programming
Languages, Mathematish Centrum, Amsterdam 1967.

[Di66a] Dijkstra, E.W. "Cooperating Sequential Processes,"
in Programming Languages, edited by P. Genuys,
Academic Press, New York 0968).

[Di68b] Dijkstra, E.W. "The Structure of THE
Multi-Programming System," Comm. ACM Vol. 11, No.
6 (May 1968), pp. 341-346.

[Pi70] Pisher, D.A. Control Structures for Pro/Tramming
Languages, Doctoral Dissertation, Car negie-Me lion
University, June 1970.

[P167] Ployd, R.W. "Kondeterministic Algorithms," JACM,
Vol. 14 (October 1967), pp. 636-644.

[Ger69] Gerhart, S. A Survey of Extensible Languages,
Preliminary drafT^ The "TtANE Corporation, Santa
Monica, California, August 1969.

[Ger70] Gerhart, S. formal Definition of APL, Unpublished
paper, Computer Science Department, Carnegie—Mellon
University, March 1970.

[Gar66] Garwick, J.V. "The Definition of Programming
Languages by their Compilers," in [Ste66] pp.
139-141.

[Go65] Golomb, S.W. and Baumbert, L.D. "Backtrack
Programming," JACM, Vol. 12 (October 1965), pp.
636-644.

[Go66] Gosden, J.A. "Explicit Parallel Processing
Description and Control in Programs for Multi- and
Uni- Processor Computers," Proc. PJCC, Vol. 29
(1966), pp. 651-660.

[IBM68] "IBM System/360 Principles of Operation," IBM System
Reference Library No GA22-6821-7 (September 1968).

[Jo71] Johnston, J.B. "The Contour Model of Block
Structured Processes," in [Wegn71] pp. 55-82.

R-3

[Kn68] Knuth, D. The Art of Computer Programming;, Vol. 1,
Addison-Wesley, NewTork (l96fc>).

[La68] Lampoon, B.W. "A Scheduling Philosophy for
Multiprocessing Systems," Comm. ACM Vol. 11, No.
5 (May 1968), pp. 347-360.

[Lan64] Landen, P.J. "The Mechanical Evaluation of
Expressions," The Computer Journal, (January 1964),
pp. 306-320.

[Lan65] Landen, P.J. "A Correspondence between ALGOL 60 and
Church's Lambda-Notation, Parts I and II," Comm.
ACM, Vol. £, Nos. 2 and 3 (.February and March
TJE5), pp. 89-101, 158-165.

[Lan66] Landen, P.J. "The Next 700 Programming Languages,"
Comm. ACM, Vol. 9, No. 3 (March 1966), pp.
T57=164.

[Lea69] Leavenworth, b.M. "The Definition of Control
Structures in McG 360," Report EC 2376, IBM T.J.
V/atson Research Center, Yorktown Heights, New York,
1969.

[Lu68a] Lucas, I. et al. Informal Introduction to the
Abstract Syntax and Interpretation oT PL7I, TR
^5.083 IBM laboratory, Vienna, Austria,"Tune 1968.

[Lu68b] Lucas, P. and Wolk, K. On the formal Description
of PL/I, Report of the "IBM Laboratory, Vienna.
Tiustria, December 1968.

[Ma68] Madnick, S.E. "Multi-Processor Software Lockout,"
Proc. ACM National Conf. 1968, pp. 19-24.

[McCar60] McCarthy, John "Recursive functions of Symbolic
Expressions and Their Computation by Machine," Comm.
ACM, Vol 3, No. 4 (April 1960), pp. 184-195-

[McCar66] McCarthy, John "A Formal Description of a Subset of
Algol," in [Ste66] pp. 1-7.

[Mcll] Mcllroy, M.L. "Coroutines: Semantics in Search of a
Syntax," unpublished, Oxford University.

[Op65] Opler, A. "Procedure Oriented Language Statements
to facilitate Parallel Processing," Comm. ACM Vol.
8, No. 5 (May 1965), pp. 306-307.

R-4

[Po71]

[Pr72]

[Ra68]

[Rey69]

[Ro70]

[Sa66]

[Sa71]

[Sch71]

[St68]

[St69]

[Ste66]

[Ta71]

[Tho71]

Poupon, J. "Control Structure of PPL," in [Sch71].

Prenner, C.J. et al. "An Implementation of
Backtracking for Programming Languages," Proc. ACM
National Conference 1972.

Rappaport, R.L. "Implementing Multi-Process
Primitives in a Multiplexed Computer System,"
Masters Thesis, MIT, November 1968,

Reynolds, J.C. "A Set-Theoretic Approach to the
Concept of Type," working paper, NATO Science
Committee Conference, Techniques in Software
Engineering, Rome, Italy, October, 1969.

Roberts, L. and Wesler, B. "Computer Network
Development to Achieve Resource Sharing," Proc.
SJCC Vol. 36 (1970), pp. 543-549.

Saltzer, J.H. "Traffic Control in a Multiplexed
Computer System," Doctoral Dissertation, MIT, June,
1966.

Saul, H. and Riddle, W. "Communicating
Semaphores," Computer Science Department, Stanford
University, STAft-CS-71-202 (February 1971).

Schumann, S.(editor) "Proc. of the International
Sj'mposium on Extensible Languages," in SIGPLAN
Notices, Vol. 6, No. 12, December 1971.

Standish, T.A. A Preliminary Sketch of a
Polymorphic Programming Language, Centro de Calculo
Electronic, Universidad Nacional de Mexico, June
1966.

Standish, T.A. "Some Features of PPL, A Polymorphic
Programming Language," in [Chris69] pp.20-26.

Steel, T.B.(editor) Formal Language Description
Languages for Computer Programming, North-Holland,
Amsterdam, T%6.

Taft, E. "PPL Users Manual," Center for Research in
Commuting Technology, Harvard University, Cambridge,
Massachusetts, 1972

Thomas, R.H. A Model for Process Representation and
Synthesis, E©cToraT"I3issertation, MIT 1971.

R-5

[vanW66] vantoijngaarden, A. "Recursive Definition of Syntax
and Semantics," in [Ste66] pp. 13-18.

[vanW69] vanWijngaarden, A. et al. Report on the
Algorithmic Language Algol 68, MR 101, MatEematish
Centrum, Amsterdam, February T969.

[Weg70] Wegbreit, L. Studies in Extensible Languag.es,
Doctoral Dissertation, Harvard University,
Cambridge, Massachusetts, May 1S70.

[Weg71] Wegbreit, B. "The Treatment of Data Types in EL1,"
Center for Research in Computing Technology* Harvard
University, Cambridge, Massachusetts, 1971.

[Weg71a] Wegbreit, B. "Compactifying Garbage Collection in
the Heap," Center for Research in Computing
Technology, Harvard University, Cambridge,
Ma ssac huse t ts, 1971.

[Weg72] Wegbreit, B. et al. "£CL Programmer's Manual,"
Center for Research in Computing Technology, Harvard
University, Cambridge, Massachusetts, January 1972.

[We67] Weissman, C. Lisp 1.5 Primer, Dickenson, Belmont,
California, 19"oTT"

[Wegn69J V/egner, P. "Theories of Semantics," Technical
Report No. 69-10, Center for Information Sciences,
Brown University, September 1969.

[Wegn71] V/egner, P. and Tou, J.L. (editors) "Proceedings of a
Symposium on Data Structures in Programming
Languages," in SIGPLAN Notices, Vol. 6, No. 2,
February 1971.

[Wi66] V/irth, N. "A Note on Program Structures for
Parallel Processing," Comm. ACM, Vol. 9, No. 5
(May 1966), pp. 32&-321"

[Wi69] Wirth, h. "On Multi-Programming, Machine Coding,
and Computer Organization," Comm. ACM Vol. 12, No.
9 (September 1969), pp. 48£33E.

Unclassified
Security Classification

DOCUMENT CONTROL DATA -R&D
(Security classification of title, body of abstract and indexing annotation must be entered when the overall report Is classified)

^Za. REPORT SECURITY CL.ASSI FIC A TION

UNCLASSIFIED
1 ORIGINATING A c Tl VI T v (Corporate author)

Harvard University
Cambridge, Massachusetts 02138 26. GROUP

N/A
3 REPORT Tl TLE

MULTI-PATH CONTROL STRUCTURES
FOR PROGRAMMING LANGUAGES

4 DESCRIPTIVE NOTES (Type ot report and inclusive dates)

None
5 AuTHORlS) (First name, middle initial, last name)

Charles J0 Prenner

6 REPORT DATE

August 1972
7a. TOTAL NO. OF PAGES

380
7b. NO. OF REF5

64
6a. CONTRACT OR GRANT NO

FI9628-7I-C-0I73
b. PROJEC T NO.

c 2801

9a. ORIGINATOR'S REPORT NUMBER(S)

ESD-TR-72-308

90. OTHER REPORT NOtS) (Any other numbers that may be assigned
this report)

10 DISTRIBUTION STATEMENT

Approved for public release; distribution unlimited.

II- SUPPLEMENTARY NOTES 12. SPONSORING MILITARY ACTIVITY

Deputy for Command and Management Systems
Hq Electronic Systems Division (AFSC)
L G Hanscom Field, Bedford, Mass0 01730

13. ABSTRACT

This dissertation applies the techniques of extensible languages to the
problem of introducing multi-path control structures into programming
languages. A control extension facility is defined which consists of a set
of control primitives and a framework for combining them. The primitives
are embedded in an existing extensible language—ELI. Using the facility,
it is possible to realize both conventional and non-conventional control
regimes by extension. Such extensions are simplified through the use of the
control interpreter, which allows the programmer direct control over the
assignment of processors to paths. A set of examples is presented which
demonstrates the power of the facility for both the implementation and
clarification of comnlex control structures.

Although the use of the primitives in the synthesis of control structures
is emphasized, the primitives are also given a formal semantic definition
which is used to demonstrate that they are feasible (i.e. , they can be
implemented on contemporary hardware) and that they have an efficient
realization.

DD FORM
1 NO V 65 1473 Unclassified

Security Classification

Unclassified
Security Classification

KEY WO RDS
LINK A

Programming languages
Extensible programming languages
Control structures
Extensible control structures
Definition mechanism
Extension facility
Formal semantic specification
Interrupts
Cooperating sequential processes
Multiprogramming
Multiprocessing
Parallel processes
Coroutines

Unrlassl fipr\
Security Classification

