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ABSTRACT 

This  dissertation  applies the techniques  of extensible  languages  to 
the problem of introducing multi-path  control structures  into  pro- 
gramming languages.     A control extension  facility is  defined which 
consists  of a set  of  control primitives  and a  framework  for  combining 
them.     The primitives   are  embedded  in  an  existing extensible   language— 
ELI.      Using  the   facilitv,   it   is  possible   to  realize  both   conventional 
and non-conventional  control  regimes by extension.     Such  extensions 
are simplified through  the  use  of  the   control interpreter, which  allows 
the programmer direct  control over the  assignment  of processors  to 
paths.     A set of examples  is presented which  demonstrates  the power of 
the  facility  for both  the implementation  and  clarification of  complex 
control structures. 

Although  the use  of  the primitives  in  the synthesis  of control struc- 
tures  is  emohasized,  the primitives  are also given  a formal semantic 
definition which  is  used to  demonstrate that  they  are  feasible   (i.e., 
they  can be  implemented on  contomporarv hardware)   and that  they have 
an  efficient  realization. 
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SYNOPSIS 

This dissertation applies the techniques of extensible 

languages to the problem of introducing multi-path control 

structures into programming languages. A control extension 

facility is defined which consists of a set of control 

primitives and a framework for combining them. Using this 

facility, it is possible to realize both conventional and 

non-conventional control regimes by extension. Such 

extensions are simplified through the use of the control 

interpreter, which allows the programmer direct control over 

the assignment of processors to paths. The use of the 

primitives in the synthesis of control structures is 

emphasized* However, the primitives are also given a formal 

semantic definition which is used to demonstrate that they 

are feasible, (i.e. they can be implemented on contemporary 

hardware) and that they have an efficient realization. 

Chapter 1 gives the motivation for this research and 

contains a survey of related work. 

Chapter 2 presents an informal description of the 

multi—path control facility. The primitives are embedded in 

an existing extensible language, namely, EL1 [Weg70]. We 

use the term MPEL1 to describe the language obtained through 

the addition of the control primitives to EL1. All of the 

material in this chapter — the control primitives and the 

ix 



framework provided by the control interpreter — is original 

except for the intra-path control primitives EVAL, GOTO and 

RETFROM, all of which have counterparts in existing 

languages. 

Chapter 3 describes how a variety of multi-path control 

structures can be defined as extensions to MPEL1. Although 

many of the examples have appeared in the literature, their 

straightforward reali2ation in terms of the primitives and 

framework of MPEL1 is original. 

Chapter 4 presents a formal semantic description of 

MPEL1. The definition is divided into two parts. First, a 

formal description of an EL1 evaluator is presented. It is 

similar to the definition of EL1 given in [Weg70], but has 

been updated to reflect changes in the language which have 

been included in a current implementation [Weg72]. The 

second part is a formal definition of the control 

primitives. This latter part and the modifications made to 

the semantic model in order to host evaluator multiplexing 

are original. 

Chapter 5 contains some concluding remarks about the 

multi-path facility. First, a number of implementation 

issues are discussed. Second, an assessment of the control 

primitives and their formal model is given. Lastly, a 

number of areas for future research are described. 



Appendix 1 presents a brief description of EL1. 

Appendix 2 gives an augmented syntax for EL1. It is 

reprinted from [Weg70], 

Appendix 3 presents the MPEL1 defintions of the control 

interpreter procedures and interrupt response forms 

described in chapter 2. All of this material is original 

A brief description of this research was presented at 

the International Symposium on Extensible Languages, 

Grenoble, France, September, 1971, under the title "The 

Control Structure Facilities of ECL." A copy of the paper 

appears in the Symposium's Proceedings [Sch71]. 

xi 



Chapter 1 

INTRODUCTION 

1. MULTI-PATH CONTROL STRUCTURES 

1.1 Motivation 

A considerable amount of programming language research 

has been directed towards the development of extensible 

languages. The tern 'extensible' has been applied to a 

number of quite different languages, and there is still 

disagreement in the field as to what characterizes a truly 

extensible language [Sch71]. Most 'extensible' languages 

have provided mechanisms for extension in one or more of the 

following areas. 

(1) Data type extension allows new data types to be 

created in terms of built-in or previously defined 

ones. It is usually possible to construct data 

types for arrays of homogeneous objects and 

structures composed of heterogeneous objects. 

(2) Operator extension allows for the definition of new 

operations or the redefinition of existing ones. 

Por example, the meaning of '+' can be changed to 

cover addition over new data types. 

(3) Syntax extension allows the programmer to state his 
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algorithm in a more convenient notation than that of 

the basic language, provided that he can describe 

the mapping between the new notation and existing 

language constructs. 

In each of the cases above, a language component, which had 

previously been a constant, becomes a variable. For 

example, in early high-level languages (ALG01r-60, FORTRAN) 

the number of data types available is constant - integers, 

reals, or n-dimensional arrays of integers or reals (where n 

is fixed at the time of compilation.) In an extensible 

language, the number of data types available is potentially 

infinite. The methodology of extensible languages has been 

to abstract what is fundamental in a given language 

component and then add to the language the primitives and 

framework necessary to allow the component to sustain 

variation. 

The development of extensible languages may be 

considered a reaction to two other trends in programming 

languages. The first of these is the development of shell 

languages [Ch68]. These languages purport to service a wide 

class of users by making the language a conglomeration of 

the facilities needed by each class. The second trend is 

the development of specialized extensions to existing 

languages - the addition of SNOBOL-like pattern matching to 

AKJOL, for example. The former trend is not viable since 

the  shell  becomes  quite unwieldy as the number of 
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application areas increase. The latter simply adds more 

dialects to Babel. 

One of the most popular examples of the second trend is 

the addition of multi-path control operations to existing 

languages. [An65][Op65][Da66]. Here we have proposals for 

extensions to allow for asynchronous tasks, coroutines, 

fork-join constructions, synchronization operations, 

simulation primitives, and the like. Numerous papers have 

appeared in the literature which describe how one or more of 

the above can be added to some language (usually ALGOL-60.) 

Unfortunately, most of these proposals are incomplete, 

usually taking the form of an English language description 

or a sketch of an implementation. An explication of the 

effect of extension upon the language as a whole or a study 

of what fundamental operations underlie all of these 

extensions are never presented. 

Fxtension facilities to allow for multiple paths of 

control have been ignored in most extensible language 
* 

proposals. This is surprising since the number of (ad-hoc) 

extensions which have been proposed make this area ripe for 

the application of the techniques of extensibility. 

This thesis attacks the problem of introducing 

multi-path control structures into programming languages 

* 

The few exceptions are discussed in section 1.2.1. 
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through the use of the extensible language method, namely, a 

set of language primitives and a framework are proposed 

which allow for the synthesis of all known multi-path 

control structures and, hopefully, for the synthesis of an 

unspecified number of others. The primitives allow for 

systematic variation in four areas. 

(1) Path Organization - Paths of control (sequential 

processes) do not have to be designated as 

conforming to any particular control behavior (such 

as a task or coroutine structure.) The control 

relationship between paths is determined entirely by 

their use. facilities for data sharing are provided 

commensurate with the generality of the control 

discipline in effect. 

(2) Scheduling - Any multi-path facility must surely 

allow for the concurrent activation of paths, i.e. 

parallel processing. If the number of paths to be 

activated concurrently exceeds the number of 

processors available, then some path-scheduling 

technique must be employed. The proposed framework 

allows the scheduler to be defined at the language 

level. 

(3) Synchronization - Whenever a language admits 

concurrent evaluation, some mechanism must be 

provided to allow the parallel paths to synchronize 

their activities.  Although no synchronization 
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operator or special data type is assumed, the 

necessary handles are provided so that hand-tailored 

synchronization operations may be constructed. 

(4) Interrupts - An interrupt facility is provided which 

allows a path to be interrupted by a signal which is 

generated by another path or by an external source. 

The primitives are defined as extensions to the 

evaluator of an existing extensible language - EL1 [Weg70], 

EL1 was chosen as the host language for a number of reasons, 

first, EL1 contains no multi-path facilities. Second, EL1 

has both stack and dynamic storage allocation. The latter 

provides a convenient mechanism for data sharing between 

paths. Third, the "dynamic'' structure of EL1 provides an 

environment in which the evaluation of a program is not tied 

to its textual structure. fourth, an 

implementation-oriented formal definition of EL1 exists. 

Hence, the effect of proposed control primitives upon the 

language can be determined by performing modifications to 

the semantic model. Finally, embedding the primitives in 

EL1 avoided the creation of yet another extensible language. 

A TEST-ANB-SET operation is assumed in order to allow 
the control primitives to synchronize their activities, c.f. 
1.1.3. 

Here we refer to the fact that EL1 uses a dynamic scope 
rule to identify the meanings of free variables "(as in LISP; 
and to the fact that variables may be bound to fragments of 
EL1 programs (called FORMs) which may be evaluated in any 
environment. 



1-6 

The multi-path primitives are described both in English 

and in terms of a revised formal model of EL1. The former 

serves as an informal introduction and the latter provides a 

precise definition of the semantics of the primitives and 

their relation to the EL1 evaluator. The formal definition 

is crucial for two reasons. First, most of the control 

primitives do not have counterparts in conventional 

programming languages. Thus, the informal description must 

concentrate on motivating the primitives and giving a 

general description of their actions. An attempt at 

completeness in this section would make it essentially 

unreadable. Second, to propose sophisticated linguistic 

primitives without giving a model is a relatively worthless 

pursuit - only the language designer will ever understand 

exactly how they work. 

For the remainder of the thesis we will use the term 

'MPEL1* (multi-path EL1) to denote the language obtained by 

adding the control primitives to EL1. The term 'EL1* will 

be used to refer to the original definition of EL1. 
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1.2 Design Criteria 

In this section we will discuss a number of criteria 

which might be used to Judge the merit of a set of 

multi-path primitives and their formal model. In chapter 5, 

we will evaluate the MPEL1 primitives and model in terms of 

these criteria. 

The first criterion is 'cost.' There are a number of 

measures which apply. First, the amount of 'code' needed to 

implement the primitives should be small. Hopefully, the 

primitives will use facilities which already exist in the 

language whenever possible. Second, the primitives should 

be reasonably efficient. If they are too slow, they will 

merely be curiosities to be played with instead of tools to 

be used to solve real problems. Lastly, and most 

importantly, the overheads associated with the multi-path 

facility should not be distributed throughout the language 

evaluatorj a program which does not use the primitives 

should not pay for their existence in the language. 

The next criterion is the generality of the universe in 

which the primitives are defined. Here, we refer to the 

number of processors which are available for the 

simultaneous evaluation of paths. Any set of primitives 

which are defined in a multi-processor environment will 

surely be acceptable if the number of processors is 

restricted to one.  The  converse,  however,  is  not 
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necessarily true. Primitives which are feasible in a 

uni-processor environment may prove to be quite expensive in 

the more general environment. Secondly, problems which are 

non-issues with a single processor become significant in 

light of multi-processing. For example, with a single 

processor only one primitive can be executing at any given 

time. Hence, the primitives do not require any explicit 

synchronization. With multi-processing, two primitives may 

execute simultaneously and therefore may require 

synchroni2ation. Thus, a multi-processing environment 

exposes issues which do not arise in the restricted single 

processor case. 

Turning to the formal model, the most important 

criterion is that the model should explain the primitives. 

Presumably, the language level control primitives are 

designed to facilitate the synthesis of multi-path control 

structures. They are cast at a high enough level to 

suppress the constant and display the variable. Hence, they 

are probably sufficiently complex that their feasibility or 

implementation is not immediately obvious. The formal 

definition should explicate how the language primitives may 

be constructed from some smaller set of primitives which are 

intuitively acceptable, i.e. they can be implemented on 

existing hardware. 

We close this section by posing the question "Why 
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bother?', i.e. are multiple paths of control really 

necessary in programming languages? Formally, of course, the 

answer is no - multiple paths of control do not add any 

computational power. In this sense, data definition 

facilities are just as useless. In both cases, however, 

their value lies in the representational power provided. 

Data type extension facilities allow one to define the data 

structures which are appropriate for a given problem. The 

resulting algorithm is usually cleaner and more concise than 

one in which the data is represented in some indirect 

fashion using some fixed set of data types. Similarly, 

algorithms which call for a multi-path structure suffer 

Teatly when they are compressed into a single path of 

control. In some sense, the situation is worse for control 

than for data. To illustrate, it is usually possible to use 

one data structure to represent another with a major loss of 

notational convenience but a tolerable loss of speed. For 

examplei arrays of integers can be used to represent lists. 

However, in order to simulate a multi-path control structure 

with a single control path one may have to construct an 

interpreter. In this case, the result will certainly be 

intolerably slow! 
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1.3 Overview 

In this section we present an outline of the multi-path 

facility. In all cases, the topics are covered in more 

detail in the chapters that follow. This section is 

included in the hope that an initial pass through the 

facility will aid the reader in his understanding of the 

components as they are presented linearly in the sequel. 

The first topic to be considered is the underlying 

machine model. Since the language is to be machine 

independent, no specific machine organization is assumed. 

However, a number of features that can be found in most 

contemporary hardware systems are presumed. It is assumed 

that there exist a fixed number of processors available for 

the simultaneous evaluation of paths. Each one may evaluate 

only one path of control at a time. A processor must always 

be kept busy. Thus, an idling path is defined for each one 

- the path it evaluates in the absence of any "real* paths. 

Associated with each processor are a set of external 

interrupts, e.g. timer interrupt, light-pen interrupt, or 

processor to processor interrupt, and a priority interrupt 

system. Processor communication and synchronization is 

achieved through the interrupt system and through the use of 

an interlock instruction which relies upon the arbiting 

property of memory (TEST-AIYD-SET). 
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A path records the dynamic evaluation of an EL1 

program. Associated with each path is an environment which 

contains the name—value bindings created by the dynamic 

execution of the program and an activation record (an EL1 

structure) which contains a handle on the path's environment 

and information that describes the status of the path. 

Activation records also provide a linguistic means of 

talking about paths in the language, e.g. most control 

primitives take as argument a pointer to the activation 

record of the path to which the primitive is to be applied. 

Control primitives are defined which allow for path creation 

and deletion, modification of a path's environment, 

initialization of a program to be evaluated in the path, 

interruption of one path by another, transfer of control 

between paths, etc. 

A path is active if a processor is currently evaluating 

a program in the path's environment. Since the evaluation 

of a program in a path is isoaorphic to the data structure 

modifications made in the path hy the processor, we may 

speak of the path itself as being evaluated by the 

processor. If a path (P) is being evaluated by a processor 

(Q), then we say that Q is assigned to P. A path is not 

active if a processor is not currently assigned to it. A 

path is being modified if it is active or if a control 

primitive that affects its environment is being applied to 

it. 
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A path may only be modified by one processor at any 

given time. If a path is active, then the path is being 

modified by the processor which is evaluating it. If an 

environment modifying control primitive is being applied to 

a path, then it is being modified by the processor of the 

path which has executed the primitive. A processor 

TEST—AND-SETs a memory location in the activation record of 

the path to be modified. If two processors simultaneously 

attempt to modify a path, then a runtime error results. 

Thus, the TEST-AMD-SET instruction is used only to insure 

that two (or more) processors do not modify a path 

simultaneously, i.e. to protect the system against fatal 

language-level program bugs. 

The framework in which the primitives are cast 

completes the built-in multi-path facility. Essentially, 

the framework consists of the existence of a distinguished 

path, the control interpreter (CI), which is treated 

specially by the control primitives. It is the only path to 

which other paths may pass control. This is achieved by 

means of the control primitive CIA which transfers control 

to the CI, specifying a function to be applied in its 

environment. The CI path, in conjunction with the control 

primitives and the interrupt facility, provides the handle 

If a processor TEST-AND-SETs the word and finds it 
'unlocked', then it simply continues the evaluation. If, 
however, the processor finds the word 'locked , then it 
generates the runtime error. 
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necessary for the synthesis of multi-path control 

structures. Two properties of the control interpreter path 

facilitate such constructions. First, the execution of any 

function (passed via CIA) in its environment is indivisible 

with respect to CIA calls of the same function by other 

paths, i.e. if two paths simultaneously CIA some procedure, 

say f, then the execution of one CIA call of f will run to 

completion before the other is allowed to begin. The two 

executions of f are ordered linearly in time. Second, 

control transfers between paths must go through the control 

interpreter. Thus, it acts as a control switchyard. The 

consolidation of indivisibility and path-switching in the 

control interpreter simplifies the synthesis of control 

structures without any loss of descriptive power. For 

example, the control interpreter can be used to realize any 

sort of synchronization operation or path scheduling regime 

by extension. 

It is important to distinguish the control primitives 

and the CI path from the program being evaluated in the 

control interpreter's environment. This program, written in 

EL1, uses the fact that it is executed in the CI path in 

conjunction with certain control primitives and the 

interrupt system to provide an initial extension to the 

built-in facility. In particular, the program evaluates CIA 

called procedures and provides a simple path scheduler which 

allows for the synthesis of concurrent processes.  Since 
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this program is written in EL1, it is easily understood and 

is available for modification or redefinition by the user. 

The CI framework, in conjunction with the control 

primitives, allows for the construction of conventional 

multi-path organizations such as coroutines and concurrent 

processes. In addition, MPEL1 can host non-conventional 

control regimes such as monitoring and relatively continuous 

evaluation. Chapter 3 gives examples which demonstrate how 

these control structures, among others, may be realized as 

straightforward extensions in MPEL1. 

To summarize, MPEL1 provides an extensible multi-path 

facility. The extensible nature of MPEL1 is best viewed in 

terms of three concentric levels: 

(1) The control primitives and the existence of 

the CI are built-in and constitute the basis 

for the multi-path facility. 

(2) The MPEL1 program which is evaluated in the 

CI environment executes CIA called procedures 

and performs path scheduling. 

(3) MPEL1 programs utilize the control primitives 

and communicate with the CI in order to 

produce a given control regime. 

We conclude this section with a brief comment about the 

formal model. In the previous section, we indicated that it 

is desirable to have the formal model explain the control 
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primitives. The meta-language used to describe MPEL1 is EL1 

with the inclusion of only four control primitives (TSET, 

CLEAR, EVAL, GOTO.) Thus, the semantics of the primitives 

are specified in terms of EL1 and a small set of control 

primitives. Since the primitives used in the meta-language 

have a straightforward realization on existing hardware, the 

model is pragmatically valid at the base level, c.f.  5.3.2. 
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2. SURVEY OF PREVIOUS WORK 

This dissertation builds on previous work in a number 

of programming language research areas, namely, introduction 

of multi-path facilities, extensible languages and formal 

semantic specification. In addition, our research also 

touches upon work done in operating systems and abstract 

models of parallel systems. A complete survey of all of 

these areas would surely be beyond the scope of this paper. 

Hence, we will restrict our discussion to those papers which 

are directly relevant to the current work. Comprehensive 

bibliographies may be found in [ACM70][Ste66][Chris69]. 

2.1 Linfxiistic Work 

Most proposals for language additions which allow for 

the creation of multiple paths of control have been attempts 

to permit user specification of program segments that may be 

executed concurrently. Some sort of synchronization 

facility is usually provided to allow the parallel segments 

to coordinate their activities. 

Anderson [An65] proposes additions to ALGOL-60 to 

provide for parallel processing. He introduces five 

statement types: fork, .-join, release and terminate. The 

fork statement specifies a list of labels to which control 

is to be passed in parallel. The last logical statement in 



1-17 

the body of code following each label is to be either a goto 

X, where X is the label of a .join statement or a terminate 

statement, which indicates that this path has no successor. 

The .loin statement specifies the labels of the parallel 

paths that must complete before control can pass through the 

join. Obtain and release are used to provide 

synchronization. The obtain statement prevents other paths 

from accessing the values of the variables in the obtain "'s 

variable list. Release is the logical counterpart of 

obtain, i.e. it allows access to variables previously 

obtained. 

Opler [Op65] suggests the addition of a DO TOGETHER 

statement to FORTRAN. The statement specifies a set of 

DO-loops which may be evaluated concurrently. When all 

Taths have completed, processing continues with the 

statement following the DO TOGETHER. 

Variations on the above have been proposed by 

Conway [Co63]f Wirth [Wi66], who suggests the use of the 

operator and to indicate a lack of commitment in the 

sequencing of program segments, and Gosden [G066], who 

recommends the use of and for paths that rejoin and also for 

ones that do not. 

Dijkstra [Di68a] proposes the introduction of a 

parallel  compound statement (parbegin .... parend) into 
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ALGOL-60, where the statements of the block are to be 

evaluated concurrently. Evaluation of the block is 

completed when all statement evaluations have completed. 

Synchronization is achieved through the use of semaphores 

and their associated operations, P and V. 

PL/I [Be70] allows procedures to be called as separate 

asynchronous tasks. The task structure, however, is 

strictly hierarchical - a created task is always dependent 

upon the block of the parent task that created it. If 

control returns from a creator block, then all tasks created 

by that block are forcibly terminated. Synchronization is 

achieved through the use of EVENT variables; one WAITS for 

an event to occur. The occurrence of an event is signaled 

by COMPLETION, or by the I/O subsystem - in the case of 

event variables associated with I/O activities. PL/I also 

provides an interrupt handling facility. The programmer may 

associate a program (called an 'on-unit') with a 'condition' 

which may be built-in (e.g. SUBSCRIPTRANGE) or 

user-defined. The on-unit is evaluated if the condition 

obtains during the evaluation of the program. User-defined 

conditions must be raised explicitly by means of a SIGNAL 

statement. 

Most of the multi-path facilities described above have 

See section 3.2 for a  complete  description  of 
semaphores. 
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not been fully incorporated into their host languages. 

Hence, the semantic relation between the control primitives 

and the rest of the language is occasionally quite fuzzy. 

For example, in Anderson's proposal the effect of non-local 

gotos out of parallel segments is not explained. We note, 

however, that these proposals are suggestions of desirable 

language features and do not purport to be complete language 

designs. 

Next to parallel processing, coroutines have been the 

form of multi-path control most frequently discussed in the 

literature [Co63a],[Mdl],[Kn68]. Coroutines are useful 

whenever the solution to a problem cannot be easily cast 

into a single hierarchical structure. They have been 

characterized in many ways - from mutual subroutines that 

may call upon each other to procedures that use their own 

storage to retain information about their internal state 

between calls. 

Neither of the above viewpoints is fruitful, since they 

both attempt to explain coroutines in terms of hierarchical 

control. For example, the use of own storage allows a 

procedure to construct its own separate mini-hierarchy so 

that upon subsequent calls it can resume execution from 

where it left off. A more reasonable view of coroutines is 

in terms of multiple-paths of control in which each path 

maintains its own control hierarchy. When one path wishes 



1-20 

to 'resume' a coroutine path, it simply transfers control to 

the path. Since the hierarchies are separate, the state of 

the original path remains intact. 

Discrete simulation languages, such as SIMULA [Da66], 

use a multi-path coroutine structure to effect clock-driven 

simulations. Processes are maintained on a queue, termed 

the sequencing set (SQS), in the order in which they are to 

be evaluated in 'system time'. A number of processes may be 

set to be evaluated at the same 'system time', i.e. 

concurrently with respect to the system being simulated. 

However, these processes are evaluated in an interleaved 

manner as coroutines, not as parallel processes. Control 

resides in one process until it either terminates, 

reschedules itself for later evaluation, or passes control 

to another process. This mode of operation is called 

'quasi-parallelism.' To achieve the effect of concurrent 

processing, the programmer must explicitly deal with the 

scheduling of processes. 

SIMULA provides a large number of scheduling operations 

to facilitate management of the SQS; primitives exist which 

allow processes to be removed from the SQS, added to the SQS 

before or after some particular process, or added before all 

processes to be evaluated at a specified time. More 

recently, SIMULA67 [Da7C] has recognized the essential 

coroutine structure of SIMULA and allows these scheduling 
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operations to be realized as extensions using the two 

operations DETACH (which passes control out of a coroutine 

process) and RESUME (which passes control to a coroutine 

process) and the ability to define a SQS in the language 

(via a data definition facility.) These operations also 

allow other multi-path control structures to be synthesized 

(in a uni-processor environment.) 

In lieu of a survey of extensible languages, which 

would unnecessarily lengthen this section, we will limit 

ourselves to discussion of the multi-path control facilities 

of a number of extensible languages. For general surveys of 

extensible languages see [Chris69][Ger69][Sch71]. 

AliCOI. 68 [vanW69] allows for 'collateral elaboration' 

where the sequence in which a set of expressions are 

evaluated is left indeterminate, e.g. they may be evaluated 

either simultaneously, sequentially in any order, or in an 

interleaved fashion. ALGOL 68 also allows parallel clauses 

in the spirit of Dijkstra's parallel compound statement, 

where 

parbegin s1; s2; s3 parend 

becomes 

par( s1, s2, s3 ). 

The constituent statements of a parallel  clause  are 

elaborated collaterally. The programmer may use semaphores 

(objects of mode sema) to synchronize the operation of the 
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statements. Here, the P and V operations appear as down and 

up, respectively. The monadic operator '/' is used to 

initialize a semaphore, i.e. / takes an int argument and 

returns a new sema whose integer count is initialized to the 

value of the int. 

Standish [St68][St69] has proposed a number of control 

features for PPL, including mechanisms for parallel 

processing, interrupts, continuously evaluating expressions 

(a construct that allows the free variables in an expression 

to be monitored so that if the value of any one of them 

changes, the expression is immediately reevaluated,) and 

control contracts which allow the user to manipulate the 

control interfaces between processes. 

More recently, Poupon [Po71] has implemented a number 

of these features in an experimental version of a current 

implementation of PPL [Ta71]. A PPL process is a data 

structure which represents the dynamic incarnation of a 

procedure call. The components of a process include the 

formal parameters and locals of the procedure, a STATUS 

component (which may take on the values ACT (active), 

SUS (suspended), or TED (terminated) and a RESULT component 

which is used to reference the 'result* of the process. The 

values of these components may be selected and modified by 

other processes, e.g. if P references a process then 

P[STATUS] <- SUS 
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suspends the process P.  All active PPL processes are 

evaluated concurrently. 

PPL also contains the following two control operations. 

First, it is possible to specify that a PPL process is to be 

evaluated relatively continuous [Fi70] to all other 

processes. The evaluations of all other processes are 

delayed until the process terminates or indicates that it 

has completed the desired (relatively continuous) 

processing. Second, PPL provides a type of continuously 

evaluating expression in the WAITUNTIL statement, e.g. 

WAITUNTIL(A + B = 3) 

When a WAITUNTIL is encountered, the expression is 

evaluated. If the value is TRUE, then the process 

continues. Otherwise, the process is suspended with control 

positioned at the WAITUNTIL statement. It is made active 

whenever the value of any variable in the expression is 

changed. Hence, the process will continue as soon as the 

expression becomes TRUE. 

OREGANO [Be71] allows for the construction of 

coroutines and parallel tasks (perhaps with assciated 

priorities.) Synchronization is achieved through the use of 

event variables and the operations wait (wait for event to 

occur), cause (cause the event), and reset (re-initialize 

the event variable). Tasks, coroutines, and procedure calls 

are treated in a homogeneous fashion, namely, the invocation 
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of each involves the allocation of a contour which contains 

local variables, environmental information and an 

instruction pointer. Contours are managed using a retention 

strategy, i.e. a contour remains in the system as long as 

it is reachable from some 'active* contour. Contours which 

are no longer reachable are returned to the free storage 

pool by an automatic reclamation technique such as garbage 

collection. The retention strategy allows for a more 

flexible tasking structure than some of the languages 

described above, say FL/I, since the environment required by 

a created task will remain as long as necessary, independent 

of.the actions of the creator task. 

2.2 Formal Specifications 

We now turn to a discussion of work done in the area of 

formal semantic models of programming languages. The 

approaches taken to this problem have been quite diverse, 

ranging from compiler-based specifications [Car66] to string 

processor models [vanW66]. Unfortunately, most of these 

models are oriented towards describing languages which admit 

only a single path of control. This is not surprising, 

however, since most languages have a single-path control 

structure - the notable exceptions being the ones described 

earlier in this section. For our purposes, it will suffice 

to review only those papers which are reasonably relevant to 
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this paper.  For more complete surveys of the field see 

[Ste66][Wegn69]. 

Landin [Lan65][Lan65] has investigated the use of the 

laiabda-calculus as a basis for the formal description of 

programming languages. He demonstrates how various language 

constructs can be cast as lambda-expressions and gives a 

mechanical procedure for the evaluation of 

lambda-expressions in terms of an interpreter for an 

automaton - the SECD machine. The applicative aspects of 

programming languages (recursion, parameter bindings, scope 

rules) are handled reasonably in this approach. However, 

the more imperative aspects of languages (assignment, 

transfers of control) must be modelled either by twisting 

them into applications or by introducing imperative features 

into the lambda-calculus. 

McCarthy [McCar66] proposes a language definition 

method which uses a state vector to hold the current values 

of all variables accessible to a program. The result of 

evaluating a program P in language L with respect to an 

initial state vector Vo, is defined to be the final state 

I vector V which is obtained by using a semantic function F/L 

associated with language L to sequence through P and produce 

state vectors V1,...,Vn=V' which record the successive 

values of the variables used in P. Hence, F/L acts as an 

interpreter for programs written in L. 
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ULD, the method and meta-language for language 

definition developed at the IBM Vienna Laboratories 

[Luc68a][Iuc68b], must be considered the most ambitious 

effort in the field. The original work was undertaken to 

provide a formalism for the formal definition of PL/I. More 

recently, ULD has been successfully used to describe the 

semantics of other languages [Ger70][Rey69]. 

Basically, one describes the semantics of a language L 

by describing a basic abstract machine which is composed of 

a set of machine states and a (possibly non-deterministic) 

state transition function /\. Corresponding to any program 

P in L there exists an initial machine state So. A 

computation is a sequence of states So ,..., Sn, such that 

Si+1 £. /\(Si). A machine state is represented as a 

structured object, i.e. as a finite tree with named 

components. All of this is cast in a meta-language which is 

a conglomeration of conditional expressions, functional 

composition, the propositional calculus, and two operators 

(a selector and constructor) used to manipulate the 

structured objects. 

McCarthy's formalism and ULD utilize two significant 

techniques. Pirst, programs are represented abstractly as 

data structures which display the essential semantic 

structure of the program, while suppressing human-oriented 

syntactic sugaring.  McCarthy defines the term abstract 
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syntax to describe this representation . Second, the 

formalisms are interpreter-based, i.e. the semantics of a 

language are described by an interpreter (written in the 

meta-language} which evaluates abstract representations of 

programs in the semantic environment provided by the model. 

Hence, one language is defined by describing its semantic 

interpreter as a program in another. 

A number of criticisms may be leveled at the two 

formalisms. Pirst, the semantic environments in which the 

meta-lanruages are cast are unnecessarily restrictive. 

Here, we refer to the data structures of the meta-language 

which are used to record the state of the computation. 

McCarthy can use a simple fixed-length vector since the 

number of variables in any program in the language he is 

defining (a restricted subset of ALGOL-60) is constant and 

control can be described by a single statement number. In 

UT.D, although the tree structures provides a more flexible 

environment than a single state vector, restrictions on 

sharing of components force circumlocutions in the 

representation of common program language constructs. 

Second, although it contains standard language constructs, 

the ULD meta-language uses an obscure notation in which 

familiar concepts are recast in unfamiliar settings. Hence, 

Note that a complete language definition must include 
a specification of the concrete ([written) representation of 
the language and a description of the mapping from concrete 
to abstract form. 
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learning ULD  is as difficult an intellectual effort as 

understanding some of the languages it is used to describe. 

Wegbreit [Weg70] resolves these issues, to some extent, 

in his formal definition of EL1. The language is defined by 

presenting a set of EL1 programs which constitute an EL1 

evaluator. Hence, EL1 serves as its own meta-language. The 

data definition facility provides a sufficiently rich set of 

data structures so that the abstract syntax representation 

of programs and the semantic environment necessary for the 

evaluation of EL1 programs can be represented both directly 

and clearly. Because the direct representation of semantic 

structures and the fact that EL1 is a fluent notation for 

expressing algorithms, the formal definition is extremely 

readatle. Complete understanding of the language is 

achieved by an iterative process, in which one's 

understanding of the formal definition reinforces one's 

understanding of the language, and conversely. 

EL1 raises two related issues concerning formal 

definitions. The first of these is linguistic circularity. 

As Wegbreit notes, some such circularity is inescapable. To 

define a language L, one uses a meta-language L'. But how 

is L' defined?. Either L=L'(as in the definition of EL1), 

L' is self evident and requires no formal definition, or L' 

is defined by yet another language I". The last of these 

choices yields a potentially infinite regress, unless the 
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chain is terminated by introducing a circularity or using a 

meta-language whose definition is obvious, e.g. a Turing 

machine representation. While simple meta-languages are 

logically attractive, they are inappropriate frameworks in 

which to cast language definitions. Either one becomes lost 

in the details associated with the simplistic language or 

one builds layers of definition on top of the language, in 

which case each layer must be examined for correctness. In 

addition, the evaluation process as represented in the 

simple language may misrepresent the essential qualities of 

the language mechanisms. This leads us to our second issue 

- implementation independence. Here, we do not refer to 

machine independence (i.e. non—reliance upon a specific 

machine organization) but rather to whether or not the 

rorraal definition should encompass a preferred data 

structure organization to be used in an implementation of 

the language. Tor example, ULD defines PL/I without 

indicating any possible implementation, whereas, the EL1 

formal definition is cast in terms of a specific set of data 

structures to be used by the evaluator. We will return to 

this issue again in section 5-3.2. 

One additional property of the ELI formal definition 

must be discussed. The property may also be found in 

McCarthy's formalism and in classic definitions of 

LISP [McCar60]. Although in all of these formalisms the 

name-value environment in which a program is evaluated is 
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described explicitly (Wegbreit's name-pdl, McCarthy's 

state-vector, and LISP's A-list,) the control structure of 

the program is implicitly recorded in the recursive 

procedures of the semantic interpreter. This presents no 

problem in the formalisms described above since the 

languages defined allow for only a single path of control. 

However, if a language admits multiple paths of control, 

where each path can affect the intra-path control structure 

of another, then the program's control structure must be 

removed from the interpreter and included as part of the 

semantic environment so that the effects of these actions 

may be clearly explicated. 

One formalism that attempts to include control 

structure as part of the semantic environment is Johnston's 

contour model [Jo71]. The model has been used in the design 

and specification of ORBGANO [Be71]. The model consists of 

two components: a fixed reentrant algorithm and a 

time-variant record of execution. The latter is realized by 

nested contours which may be used to represent procedure or 

block activations. A processor is defined as an (ep,ip) 

pair, where ip is a pointer to an 'instruction' and ep is a 

pointer to a contour, which in turn defines the environment 

(by its relation to other contours) in which the instruction 

is to be executed. Many such processors can be defined and 

represent loci of control within the program. A fundamental 

axiom of the model is that contours are managed using a 
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retention strategy, c.f. 1.2.1. Languages defined using 

the model tend to exploit this axiom to the hilt as opposed 

to exploring other implementation strategies (e.g. stacks) 

which may be more efficient in certain cases. 

2.3 Operating Systems 

Computer operating systems have made use of the concept 

of multiple paths of control as a means of achieving a more 

efficient utilization of hardware and as a design 

methodology. In the former case, it has been observed that 

user programs (processes) do not require the use of a 

processor at various times during their execution, e.g. 

while waiting for I/O. Hence, it is profitable for the 

system to maintain more processes than processors and 

multiplex the processors across the processes as required. 

In the latter case, it has been found useful to describe an 

operating system as a society of cooperating sequential 

processes, associating one process with each user program 

and one process with each peripheral device [Di68b]. 

Saltzer [Sa66] defines the Traffic Controller as the 

program responsible for the orderly switching of processors 

between processes. A set of primitives are defined which 

allow a process to specify to the controller that (a) it has 

no further use for its processor, (b) it should be given a 
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processor again at some later time, (c) the further 

execution of some other process is to be stopped, and (d) 

some process can now make use of a processor. This model 

was incorporated into the MULTICs system [Cor65]. 

Rappaport [Ra68] discusses his experience with two 

implementations of the MULTICs Traffic Controller. In the 

first version many processes are allowed to execute inside 

the Traffic Controller simultaneously to prevent the 

Controller from becoming a system bottleneck. This requires 

numerous interlocks to insure that the processes do not 

interfere with one another. In the second version, only one 

process is allowed to execute inside the controller at any 

."iven time. Thus, only a single global interlock is 

required. Rappaport notes that both the size of the 

controller and the time required to execute the primitives 

were reduced significantly in the second version. 

Madnick [Ma68] shows that the use of a single global 

interlock will not cause a bottleneck unless the number of 

processors in the system is large, e.g. more than 5. 

Wirth [Wi69] advocates the removal of input-output 

interrupts from machine language programming and suggests 

that they be replaced by a set of instructions which allow 

for the creation, termination, and synchronization (using 

semaphores) of parallel processes. In addition, a generic 

I/O instruction (DOIO) is proposed which performs a 

specified I/O activity to completion.  The programmer can 
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conceptualize his program in terms of processes in which 

concurrent I/O is realized by starting a process to perform 

the I/O and then waiting (via a P operation) until the I/O 

is complete as opposed to fielding I/O interrupts at 

arbitrary points in his program. V/irth gives an 

implementation of the instructions as subroutines which are 

invoked by supervisor calls on an IBM 360. 

2.4 Other Work 

Eefore we conclude this survey, we must discuss three 

recent works in the area of control structures which do not 

fit conveniently into any of the research areas described 

above. 

Ieavenworth [Lea69] describes a language in which a 

programmer can define his own control structures since he 

can access the state of the language interpreter. The 

language, McC360 [Bur68] is similar to ISWIM [Lan66] and the 

interpreter resembles the SECD machine interpreter. It is 

possible to save entire machine states, construct new 

states, modify saved states, and install some saved state as 

the current machine state. For example, to simulate 

non-deterministic control using the primitives proposed by 

Floyd [F167] one saves one copy of the machine state for 

each value of the choice function, i.e. at each point at 



1-34 

which a non-deterministic choice must be made the machine 

state is replicated as many times as necessary. When a 

choice leads to failure, a saved state (which corresponds to 

a choice point) is installed as the current state. 

Coroutines can be obtained by defining a resume function 

which saves the current machine state for later resumption 

and restores some saved state. Unfortunately, most of the 

interesting control structures are obtained using the 

concept of 'saving entire machine state', which does not 

lend itself to an efficient implementation. In addition, 

concurrent operation is achieved by the multiplexing of a 

single processor (the interpreter) across machine states. 

fisher [Fi70] describes a set of control primitives 

which 'span our conceptual notion of control ... and can be 

easily composed to form more specialized control 

structures.' Six primitives, which are embedded in a 

programming language (CDL), are defined: seq which specifies 

that a set of statements are to be evaluated sequentially, 

par which specifies that a set of expressions are to be 

evaluated independently, cond which is similar to the LISP 

conditional [McCar60], monitor which allows an expression to 

be evaluated as soon as a condition becomes TRUE, synch 

which allows for the indivisible evaluation of an expression 

and cont which allows the evaluation of an expression to be 

relatively continuous with respect to the evaluation of 
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* 

other control paths.  Fisher's return operation, which 

returns  control from one process to another, may be 

considered a seventh primitive. 

Fisher (rives three definitions of the primitives: (a) 

in English, (b) a CD1 interpreter written in CDL, (c) a CDL 

interpreter which uses only seq and cond. The first of 

these is useful as an informal description but, of course, 

is not precise. In the second, the more interesting 

primitives (rronitor, synch, and cont) are defined by direct 

circularity (e.g. if a CDL program performs a cont, then 

the interpreter performs a cont.) Such circularity is 

acceptable (and unavoidable) in the formal definition of 

some language primitives. For example, in a definition of 

LISP, CAR, CDR and CONS are defined using CAR, CDR, and CONS 

directly. Here, the direct circularity is acceptable since 

the operations are intuitively clear and involve simple 

manipulations of well defined data structures. Fisher's 

primitives, however, involve complex actions performed upon 

less well defined structures, e.g. no clear definition of 

the term 'process' is given. Hence, their definition by 

direct circularity is suspect since it provides little 

insight into the mechanisms involved. In the last 

definition, pseudo—parallel processing is achieved by 

managing the processes on a queue and evaluating them (one 

Conts may be nested. Hence, many levels of relative 
continuity may be invoked. 
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at a time) according to their level of relative continuity. 

Thomas [Tho71] addresses the question 'How can 

processes be represented in order to facilitate synthesis of 

complex behavior patterns.* His answer is cast in terms of a 

state-oriented model in the spirit of Landin and 

Leavenworth. Here, each process has its own processor. A 

processor uses a state transition rule to change the state 

of its process. A state is a collection of many state 

components, which include the program being executed (prog), 

the program counter (JDC), the name-value bindings for the 

process (prog-id), a set of programs to be evaluated as 

responses to interrupts (hjo), and a dump which is used to 

save the most important components of the state when an 

interrupt occurs. Thomas's work is an improvement upon 

previous state—oriented models of control since he includes 

enough structure in the state to describe adequately both 

the internal aspects of processes and the interface 

operations between interacting processes. The 

multi-processor orientation of the model conveys the concept 

of concurrently evolving processes in a fashion superior to 

models in which the parallelism is simulated using a single 

processor. 
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INFORMAL DESCRIPTION OF MPEL1 

In this chapter, we present an informal discussion of 

the control primitives and framework which constitute the 

multi-path control facility of MPEL1. We assume that the 

reader is familiar with EL1, as described in [Weg70] or 

[Weg72]. If not, the reader is encouraged to read Appendix 

1, a brief introduction to EL1, at this point. 

The control primitives appear in the language at the 

syntactic and semantic level of procedure calls. Formally, 

they are defined as objects of mode CSUBR 

(control-subroutine.) For each primitive, we give a 

pseudo-procedure heading which specifies the name, mode and 

bind-class of each argument and the mode of the value 

returned by the CSUBR. We then give an English description 

of its semantics. Here, we are primarily concerned with 

providing motivation and understanding, without attempting 

to be formally precise or complete. For each primitive, a 

precise specification of its semantics is given in the 

formal definition of Chapter 4. 

Section 1 motivates the concept of paths of control. 

Section 2 discusses paths and their associated operations in 

detail. In sections 3 and 4 the framework provided by the 

control interpreter and its role in path synchronization and 
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scheduling is discussed. External interrupts are introduced 

in section 5- Section 6 is an index of the terms used in 

the chapter. 

As the control primitives interact rather heavily with 

one another in the synthesis of multi-path control 

structures, it is difficult to exhibit complete illustrative 

examples until all the primitives have been presented. 

Thus, we postpone the latter until Chapter 3« We also defer 

justification of the multi-path facility and comparison with 

other proposals until Chapter 5. 
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1. PROCESSORS 

Before we turn to the informal description of MPEL1, we 

must first discuss the concept of 'processor.' In 

particular, we will discuss the distinctions between 

program, process and processor; the multiplexing of 

processors; and the relationship between processor 

assignment and the synthesis of new control behavior. 

1.1 Interpreter as Processor 

In this section, we will first consider the three 

components of a computation as performed by a sequential 

computing device, namely, program, process and processor. 

We will then discuss the concept that an interpreter for a 

programming language may be considered an abstract processor 

for programs written in the language. 

A program is the definition of a computation, i.e. it 

specifies a sequence of actions which may be performed to 

obtain a desired result. A process is the performance of 

the computation specified by a program. Information is 

usually associated with a process to specify the set of 

accessible memory locations and to indicate the action which 

is currently being performed. A processor is an agent who 

performs the actions which constitute the process as 

specified by the program. In particular, the processor 

updates the information associated with the process. To 
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illustrate, consider a program written in the machine code 

of a digital computer. The computation to be performed is 

specified by a sequence of instructions. The execution of 

the program constitutes a process in which information is 

maintained as to which instruction is currently being 

executed (program-counter) and the range of memory which may 

be addressed by the process. The processor is the 

central-processing-unit (CPU) of the computer. The CPU 

performs the actions specified by each instruction as stored 

sequentially in memory. After each instruction, the 

program-counter for the process specifies the next 

instruction to be executed by the processor. Hence, 

instructions which modify the program-counter can cause a 

change in the sequence of instructions executed. 

In section 1.2.2, we discussed various interpreter 

based models which have been used to specify the semantics 

of programming languages. These interpreters may be viewed 

as processors for programs written in the language being 

modeled. To illustrate, the interpreter performs the 

actions specified by the program in the semantic space 

provided by the model. The evaluation of the program by the 

interpreter constitutes a process in which the interpreter 

must maintain records which specify the variables (memory 

locations) accessible to the program. In addition, upon 

completion of some action for the program, the interpreter 

must be able to know which action is to be performed next. 
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Let us consider the way in which the records described 

above are maintained in the interpreter model for EL1 

described in [Weg70]. The interpreter uses a ROW 

(name-stack) to record the names of variables which are 

being used by the program. Each entry in the ROW contains 

the name of the variable and a pointer to its value, which 

may be on a STACK or in the heap. The information as to 

which action is to be performed next, however, is implicitly 

recorded in the control structure of the interpreter itself. 

For example, to evaluate the statements of a block, the 

interpreter uses a FOR loop which executes each statement in 

turn. The use of the environment of the interpreter to 

store information about the process being evaluated presents 

no difficulty if the interpreter is to be used to evaluate 

only one process. However, if we wish to consider an 

interpreter as a processor, and we desire that this 

interpreter be able to switch its attention from process to 

process, then the interpreter cannot implicitly record the 

control flow of any one process in its own control 

structure. 

We postpone further discussion of the above constraint 

upon interpreter based models until chapter 5. In the 

sections which follow, we will use the terms evaluator and 

processor interchangeably to describe an EL1 interpreter 

which explicitly records the control structure of the 

program it is evaluating. 
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1.2 Multiplexing of Interpreters 

In the last section, we discussed how an interpreter 

may be considered to be a processor independent of the 

process it is evaluating. Here, we relate this concept to 

the evaluation of multiple asynchronous processes. 

We will assume that there exist some finite number of 

evaluators which are available for the simultaneous 

evaluation of sequential processes. However, we will not 

put a bound on the number of processes which may be 

considered to be evaluating concurrently, i.e. there exists 

no limit on the number of processes which may be logically 

evaluated in parallel, even though only some subset of the 

processes are actually being evaluated at the same time. 

Hence, the evaluators must be multiplexed across the 

processes; each one of the concurrent processes must be run 

on a processor at some time. 

The obvious implication of evaluator multiplexing is 

that an evaluator must be able to switch its attention from 

process to process, i.e. an evaluator must be able to stop 

evaluating one process and start evaluating another. Hence, 

an evaluator must not retain information implicitly about 

the process it is evaluating. 

To insure that each of the concurrent processes will be 

evaluated at some time, there must exist a mechanism which 
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will force an evaluator to switch its attention from one 

process to another. To achieve this, we will assume that 

each processor has some number of external interrupts 

associated with it. An external interrupt may be described 

as a signal sent from some external processor to an 

evaluator to indicate that some event has occurred. jfor 

example, a timer interrupt may be described as a signal from 

a processor which is dedicated to marking elapsed time. It 

is important to note that interrupts are associated with 

processors, not processes. An external interrupt signals an 

evaluator independent of the process which is being 

evaluated. Kence, if some process is interested in the fact 

that some external interrupt has occurred, then there must 

exist some mechanism which allows this fact to be dispatched 

to the interested process. 

We could, of course, avoid the problems involved with 

the multiplexing of evaluators by simply assuming that each 

process has its own evaluator. Whenever a new concurrent 

process is created, a new evaluator can be created to effect 

its evaluation. The dynamic creation of processors, 

however, implies that either an additional processor is 

added or that the existing ones are actually realized by the 

multiplexing of some fixed number of processors at a lower 

level. The former is difficult to achieve since it requires 

the dynamic addition of new hardware. We reject, the latter 

on two counts. First, it only serves to suppress the issues 
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of multiplexing. Second, we hope that our evaluators 

directly model a set of physical processors capable of 

simultaneous processing. If the evaluators are themselves 

concurrent processes which are multiplexed over some smaller 

set, then the model is incorrect. N evaluators will not 

represent N processors capable of simultaneous activity. 

It is our thesis that the control relationships between 

processes can best be explicated in a language in which the 

user can obtain a handle on the assignment of processors to 

processes. This requires that the multiplexing of 

evaluators be made explicit in the language. In MPEL1, the 

multiplexing is achieved through the use of a distinguished 

process which is discussed in the next section and is 

described in detail in section 2.3. 

1.3 Paths of Control 

Concurrent execution is not the only control 

relationship which may obtain among processes. For example, 

a set of processes may exhibit a coroutine relationship, 

which requires that only one process from the set be 

evaluated at any given time. A coroutine process will only 

be evaluated when control is explicitly passed to it from 

the active process. Processes may also exhibit a subroutine 

relationship. In this case, one process creates a second 

one and passes control to it while indicating that the 
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calling process should cease evaluation. When the called 

process has completed, the calling process resumes 

execution. 

It is important to note that the control relationships 

described above are not properties of the processes 

involved. Whether tvo processes act as coroutines, 

asynchronous processes or subroutines depends entirely upon 

the control organization which they have mutually decided 

upon. The control relationships may be intermixed: two 

processes may first act as coroutines and then later as 

asynchronous tasks. Hence, we will drop the semantically 

loaded word 'process' in favor of the term 'path.' A path of 

control corresponds to the dynamic evaluation of a 

sequential EL1 program. Paths are not inherently 

asynchronous processes or coroutines, although paths may 

exhibit these relationships, among others. 

Explicit control over processor multiplexing plays a 

vital role in the creation of control relationships among 

paths. Jor example, two paths may be made into asynchronous 

tasks by including them in the set over which the evaluators 

are being multiplexed. A path may be forced to cease 

evaluation by removing it from the set (assuming that it is 

not currently being evaluated.) A coroutine relationship may 

be established by insuring that only one of the coroutines 

is in the set at any time. The point is that a control 
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relationship between paths is essentially a specification of 

the way in which processors are to be assigned to the paths 

involved. If a language does not allow for explicit 

assignment, then it must be achieved by some circumlocution. 

MPEL1 provides a framework in which the assignment of 

processors to paths can be explicitly controlled by the 

programmer. This is achieved through the use of the control 

interpreter path (Cl). The CI gives interpretation to the 

control relationship which is to obtain among a set of 

paths. It contains data structures that indicate which 

paths are currently being evaluated and which paths are 

eligible for concurrent evaluation. Other paths may access 

these data structures, and thus affect the assignment of 

processors to paths. Consequently, the control interpreter 

path, in conjunction with its associated control primitives, 

provides the handle on processor multiplexing which is 

necessary for the synthesis of arbitrary behavior patterns 

among paths. 
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2. PATHS 

In the last section, we described a path of control as 

the dynamic evaluation of a sequential EL1 program. Here, 

we will give a more precise definition of the term 'path.' 

In addition, we will introduce the control primitives which 

are applicable to paths. 

Whenever a language admits multiple paths of control, a 

number of related issues, such as data sharing and 

synchronization, must be discussed. Hence, a number of the 

subsections below are devoted to these path related issues. 

2.1 Informal Description of a Path 

The evaluation of an EL1 program is a sequential 

process in which the flow of control can be modified by 

procedure calls, compound forms (blocks), conditionals 

gotos, and FOR loops. Certain data structures must be 

maintained by the evaluator to record the control history of 

the evaluation. These records include information as to 

which procedures have been entered, which right hand sides 

of conditionals have been followed, etc. The records are 

necessary so that the evaluator may know how to continue 

evaluation of the program upon completion of a control 

modifying operation. An MPEL1 path is the union of the data 

structures required by the evaluator to effect the 

evaluation of an EL1 program. Note that one of the data 



2-12 

structures required is a representation of the pro£ram whose 

evaluation constitutes the path of control. In particular, 

associated with each path is an environment and an 

activation record. 

A path's environment consists of two related parts: the 

identifier environment and the intra-path control. 

The identifier environment contains all the name—value 

pairs accessible to a program at a given point in its 

evaluation. Name-value pairings are created by procedure 

application or by explicit declaration. for procedure 

application, the names correspond to the formal parameters 

of the procedure and the values are the values obtained by 

evaluating the corresponding actual parameters of the 

particular call. JFor explicit declaration, the names are 

the identifiers listed in the declaration and the values are 

the values obtained by repeated evaluation of the 

initialization form, or default values of the appropriate 

mode if no initialization form is specified, c.f. Appendix 

1. Name-value pairs are removed from the identifier 

environment upon exit from the corresponding procedure call 

in the case of formal parameters and upon exit of the block 

in which declared in the case of explicit declarations. 

The intra-path control contains the records associated 

with the control history of the path. The records 

constitute a partial history of control within the path 
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which includes all procedure calls which have not yet been 

completed and all blocks which have not yet been exited. 

The intra-path control must be related to the identifier 

environment so that the evaluator may update the latter when 

necessary, e.g. on block exit. Note, however, that the 

records kept do not constitute a complete history; there are 

no records of completed procedure calls or blocks which have 

been exited. 

The design of EL1 allows an evaluator for the language 

to maintain its data structures using a stack discipline. 

The multi-path facility has been designed to preserve the 

stack discipline for sequential programs. Thus, both 

components of an MPEL1 path's environment are managed as 

stacks. 

The activation record (ACTRC) of a path is defined as 

an EL1 STRUCT. It serves as a system 'handle' on the path. 

The components of an ACTRC contain vital information about 

the path. In particular, the location and size of a path's 

(stack) environment is stored in its ACTRC. The components 

of an ACTRC may be grouped into two classes: 

(1) Those components which may be modified only by the 

control primitives, and hence may only be read by 

a program. 

(2) Those components which may be read and written by 

the program to effect communication with the 
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control primitives. 

The various components of an ACTRC will be introduced, as 

needed, in the sections that follow. The complete 

definition of the mode ACTRC appears in section 4.2.1. The 

class to which a given component belongs will be obvious 

from the discussion in which it is introduced. 

A given control extension may require new fields to be 

added to activation records. For example, a scheduling 

algorithm which associates priorities with paths may require 

an additional integer component in which the path's priority 

is to be stored. We will refer to such components as 

extended components as opposed to the basic components of 

the original definition of ACTRC. The implementation of 

extended components, without any loss of notational 

convenience, can be achieved through the use of the extended 

mode definition facility of EL1, c.f. 5.1.2. 

All activation records are allocated in the heap and 

thus may be referenced by pointers. The mode ARPTR is 

defined as a PTR(ACTRC) for convenience in discussing paths. 

ARPTRs have a practical value as well: two paths are 

identical if and only if their ARPTRs are equal, a simple 

pointer comparison. 
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2.2 Path Creation and Deletion 

A path is created by calling upon the control primitive 

GET\PATH. 

GET\PATH<-CSUBR(SIZE:INT;ARPTR) 

The integer argument specifies the amount of core (in K) to 

be initially allocated for the path's environment. GET\PATH 

allocates the environment and activation record for the path 

and returns a pointer to the paths's ACTRC. The boolean 

components STKEFLG (stack—environment-flag) and ELGELG 

(eligibility-flag) of the path's ACTRC are set to TRUE to 

indicate that the path possesses an environment and that the 

path may be evaluated by a processor, respectively. If 

ELGFLG is TRUE we say that the path is eligible for 

evaluation. In addition, the path is enabled for certain 

path-level interrupts and certain fields of the ACTRC are 

initialized to meaningful default values. These settings 

will be described at appropriate points in the sections that 

follow. 

When a path is no longer needed it may be explicitly 

deleted by calling upon the control primitive DELETE\PATH. 

DELETE\PATH<-CSUBR(PATH:ARPTR;NONE) 

DELETE\PATH reclaims the path's environment, if possible, 
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and sets the boolean component ELGPLG to FALSE. Once 

deleted, a path is no longer eligible for evaluation and 

therefore an error occurs if an attempt is made to pass 

control to it. Note that the ACTRC is retained as long as 

it is referenced by an eligible path. A path may not 

perform self-deletion, i.e. a call to DELETE\PATH with 

itself as argument, as this would require control to be 

returned to an ineligible path. Self-deletion requires a 

call upon the control interpreter path, c.f. 2.3-2. 

2.3 Path Initialization 

GET\PATH creates an environment in which a computation 

may be performed but does not indicate what is to be 

computed. In order for paths to be of any use there must 

exist a mechanism for specifying the program which is to be 

evaluated in the path's environment. The primitive control 

functions PAP (path-apply) and PAPQ (path-apply-quoted) are 

used to initialize the computation that the path is to 

perform. The relation between these two functions is the 

same as the relation between SET and SETQ is LISP [We67]; 

It is not the case that STKEPXG is TRUE if and only if 
ELGPLG is TRUE, since the environment of a path which has 
been deleted may have to be preserved if there exist paths 
which are dependent upon it, c.f. 2.2.8. It is true, 
however, that if ELGPLG is TRUE then STKEFXG must be TRUE; a 
path which is eligible for evaluation always has an 
environment associated with it. 
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the former evaluates its first argument while the latter 

does not. 

PAP<-CSUJBR (F :FORM, P: ARPTR; ARPTR) 

PAPQ<-CSUBR(F:FORM UNEVAL,P:ARPTR;ARPTR) 

Since the only distinction between PAP and PAPQ is in the 

bind class of their first argument, the following discussion 

will only reference PAP, the interpretation for PAPQ being 

derivative. 

Let Q denote the path which has called PAP. The first 

argument (F) to PAP specifies a procedure call to be applied 

in the environment of the path which is the second argument 

(P) to PAP. If P is identical to Q, then the procedure 

call is evaluated in the environment of Q. If P is not 

eligible for evaluation (P.ELGFLG^FALSE) then an error is 

generated in path Q. 

Let F =G(A1,A2, ... ,AN). The interpretation of the 

procedure application is as follows: 

# 

If we define a procedure QUOTE which returns its single 
argument unevaluated, then 

PAp(QUOTE(FOO(X,Y),P))=PAPQ(FOO(X,Y),P). 

QUOTE can be defined trivially in EL1 as follows: 

QUOTE <- EXPR(X:FORM UNEVAL; FORM) X; 

•* 

If the form F is not a procedure call, then the 
environment of P is modified so that if control passes to 
it, then the form will be evaluated in P's environment. 
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(1) G is evaluated in the environment of Q to produce 

a procedure body G'. 

(2) The formal parameters of G' are hound to the 

actuals A1, ... ,AN as if the procedure was to be 

applied in Q. 

(3) The bindings of the formals of G' are copied into 

the environment of P, except for bindings to 

objects which lie in the heap, in which case no 

copy is made. 

(4) The environment of P is modified so that if 

control passes to P, then the body of G' will be 

evaluated. 

(5) PAP returns a pointer to path P as result. 

Note that PAP only modifies the environment of a path; 

no transfer of control is performed. 

The following example illustrates the effect of PAP 

upon the arguments to the PAP'ed procedure call. 

BEGIN 
DECL A:INT JBYVAL 3; 
DECL B:PTR(INT) BYVAL ALL0C(INT LIKE 2); 
DECL C:INT BYREF VAL(ALLOC(lNT LIKE 1)); 
DECL P1:ARPTR BYVAL GET\PATH(1); 
DECL POO:ROUTINE; 
POO<-EXPR(V:INT BYVAL,W:INT BYREF,X:PTR(INT) BYREF, 

Y:INT BYREF,Z:INT BYREP;INT) 
BEGIN 
V+W+VAL(X)+Y+Z 
END; 

PAP(F00(A,A,B,C,A+A),P1) 
END; 

Figure 2-1 displays the state of the paths just before 
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the PAP is evaluated. Note the difference between the 

values of B and C. B is of mode PTR(INT). The value of B 

(a pointer to an integer in the heap) is in the environment 

of path Q. C is of mode INT. The value of C, however, is 

not in the environment of path Q. It is in the heap. 

Figure 2-2 displays the state of the paths just after the 

PAP has been evaluated. All of FOO's arguments, except for 

C, have been copied into the environment of P1. Note that 

although the value of B has been copied into path P1, the 

two paths may both reference the integer pointed to by B. 
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Figure 2-1 Paths Q and F1 Before PAP 

Figure 2-2 Paths Q and P1 After PAP 
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The treatment of arguments to PAPed procedures insures 

that the environment of the path PAPed into will not contain 

references to the environment of the path performing the 

PAP. If a path could reference the environment of another, 

then some mechanism would have to be employed to insure that 

the environment remained intact as long as the path retained 

a reference to it. Thus, it would be necessary to impose 

control restraints upon the paths involved. A control 

regime in which paths may obtain such references can be 

realized usinr the control primitives described in section 

2.2.8. 

The use of PAP is not restricted to initialization 

only; PAP may be used to apply a procedure in the 

environment of a path which has already started a 

computation. The programmer must provide the 

synchronization necessary to insure that the path PAPed into 

is not being evaluated at the time that the PAP is 

performed, c.f. 1.1.3. If many procedure calls are PAPed 

into the environment of a path, then they are executed in 

the reverse of the order in which they were PAPed. When the 

evaluation of the body of a PAPed procedure is completed, 

then evaluation of the path continues from the point it was 

at when the PAP originally occurred. A user defined path 

termination function is called upon exit from the outermost 

PAPed procedure, c.f. 2.2.6, 
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2.4 Path Evaluation 

The two proceeding sections have specified the 

primitives for path creation (GET\PATH) and initialization 

(PAP.) No mechanism has yet been introduced which allows 

control to be passed to a path. An initialized path is 

eligible for evaluation but is certainly not being 

evaluated. Thus, we must specify the way in which 

evaluators are assigned to paths. Since it is possible to 

create an arbitrary number of paths which are to be 

evaluated concurrently by a bounded number of evaluators, 

the assignment must surely involve some notion of 

scheduling. Path scheduling is described in detail in 

section 2.3.5. This section introduces the terminolgy to be 

used in discussing multiple paths of control. 

A scheduler is a mechanism for multiplexing the 

evaluation of paths by a fixed number of evaluators. A 

scheduler uses a scheduling algorithm to choose a path to be 

evaluated from a set of paths which are available for 

evaluation. A path is active if it is currently being 

evaluated. A path is inactive if it is not active but is 

contained in the set of paths from which the scheduler 

chooses. A path is running if it is either active or 

inactive. A path is stopped if it is not running. A path 

is reachable if it is running or if its ARPTR is accessible 

from the environment or activation record of a reachable 
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path. A path is lost if it is not reachable. 

A created and initialized path is initially stopped. 

It may become a running path by explicitly including it in 

the set of inactive paths, c.f. 2.3.5. A path which has 

been deleted is no longer eligible for evaluation and 

therefore the scheduler will not allow it to become active. 

The inclusion of inactive paths in the set of running 

paths requires some explanation. If a path isn't currently 

being evaluated, then it certainly isn't running on a 

processor. The classification is justified by the fact that 

the scheduling of paths is essentially transparent to the 

paths being scheduled, hence it isn't possible for a given 

path to determine (without some special action) which paths 

are active and which are inactive. Thus, the running paths 

are those paths which are being evaluated concurrently, 

although only the active paths are being evaluated 

simultaneously. 

It is sometimes desirable to explicitly remove a path 

from the set of running paths. For example, if a path is to 

cease further evaluation until some condition is true, then 

it can be temporarily removed from the running set to insure 

that an evaluator will not be assigned to it. When the 

condition becomes true, then the path can be returned to the 

set of inactive paths. Evaluation of the path will continue 

as soon as it is made active by the scheduler. 
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It is also desirable to have the ability to indicate 

that a path should not become active vithout explicitly 

removing it from the set of inactive paths. For example, if 

a path Q wishes to PAP into another path P, it could check 

the set of running paths and remove P from the set to insure 

that it will not become active. But suppose that P is not 

in the running set. Q cannot safely perform the PAP because 

it is possible that some other path will asynchronously 

include P in the inactive set. Hence, P may become active 

while the PAP is being performed. Activation records 

contain the boolean component DORMANT which is used to 

indicate that a path should not be allowed to become active. 

The scheduler will not assign an evaluator to a path with 

DORMANT=TRUE. If DORMANT is set to TRUE while a path is 

active, then once the path becomes inactive it will not 

become active again until DORMANT is set to PA1SE. 

2.5 Data Sharing 

It may be necessary fcr a .set of jaths to access common 

data structures in order to collectively perform a given 

computation. In general, paths may not share data by 

referencing the environments of other paths, unless the 

paths involved are willing to constrain their control 

relationships to an organization in which such sharing is 

* 

If P is active, this may take some time, c.f. 2.5.5. 
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feasible, c.f. 2.2.8. Thus, most data structures shared 

between paths will lie in the heap. In this section, we 

will discuss the various means by which paths may share 

data. 

All paths are embedded in a global, or top-level, 

environment. The global environment consists of name-value 

pairs in which all values lie in the heap. If a path 

references a variable which is not currently defined in its 

environment then the reference is taken to be to the value 

of that variable in the global environment. Since all paths 

have the same global environment, sharing can be achieved by 

referencing the same top-level variables. 

Sharing may also be achieved by using the control 

primitive PAP. Since the arguments to a PAPed procedure 

call are evaluated in the environment of one path and the 

procedure call in another, PAP provides a mechanism which 

allows sharing relations to be established at the time a 

path is initialized* There are two cases of interest. 

Pirst, a path may pass a pointer as argument to a PAPed 

procedure call. Although the pointer is copied into the 

environment of the path PAPed into and thus is itself not 

shared, the object to which it points is accessible from 

both paths.  In the second case, a path may pass an argument 

The method by which global variables are initialized is 
discussed in Appendix 1. 
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which is bound directly to an object in the heap. In this 

case, if the bind class is BYREF, then PAP will pass the 

argument directly to the PAPed path without making a copy. 

Hence, both paths reference the same object. 

A path may obtain the value of a variable defined in 

the environment of another path via the control primitive 

PPETCH (path-fetch.) 

PFETCH<-CSUBR(NAME:SYMBOL,P:ARPTR;ANY) 

PPETCH searches the environment of path P for the most 

recent occurrence of the variable NAME and returns either 

the value of the variable (if the value lies in the heap) or 

a copy of the value of the variable (if the value is in the 

environment of P.) 

A path may change the value of a variable defined in 

the environment of another via the control primitive PSTORE 

(path-store.) 

PSTORE<-CSUBR(NAME:SYMBOL,P:ARTPR,VAI:ANY;NONE) 

PSTORE searches the environment of path P for the most 

recent occurrence of the variable NAME and replaces its 

current value with VAL. (An error occurs if VAL cannot be 

converted to the mode of the value of NAME.) 

Both PPETCH and PSTORE require that the path P be not 

active. If P is active, then an error occurs in the 

environment of the path performing the PPETCH (PSTORE). If 

P is inactive but becomes active while the search is being 
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performed, then an error occurs in the environment of the 

scheduler. A more useful error is generated if the variable 

NAME does not exist in the environment of P. In this case, 

the programmer may supply (via MPEL1 error handling) another 

path to be searched through. Thus, it is possible to 

construct arbitrary searches through a given set of paths. 

Although PFETCH and PSTORE will usually be used to 

update or copy pointers to objects in the heap, they also 

provide a mechanism, although inefficient, whereby a path 

can share an object in the environment of another. Assuming 

the appropriate synchroni2ation is available, a path P can 

stop another path Q, obtain a copy of the value of a 

variable contained in Q's environment, modify the copy, use 

PSTORE to replace the original with the updated version and 

then allow Q to continue evaluation. The two paths are 

effectively sharing the object since all modifications made 

by both paths will be reflected in the data. 

2.6 Path Termination 

A path is terminated if it is no longer eligible for 

evaluation. The control primitive DELETE\PATfi makes a path 

ineligible for evaluation since it sets ELGFLG to FALSE and 

usually deletes the path's environment. DELETE\PATH is of 

P is being modified, thus it cannot become active, c.f. 
1.1.3. 
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limited usefulness by itself, however, because the above is 

all that it does. The fact that a path has terminated may 

be of interest to other paths, DELETE\PATH provides no 

mechanism for broadcasting the path's demise. A path may 

desire, upon termination, to return a value to some set of 

paths which are waiting for its value. DELETE\PATH does not 

provide for a value to be associated with a path. 

The capabilities described above can be achieved, 

however, by using DELETE\PATH in conjunction with other 

control facilities of MPEL1. A procedure can be written 

which will cause a path to wait until a given path 

terminates and another can be written which will cause 

explicit termination of a path along with notification to 

all waiting paths, c.f. 3.3. 

There is one point still remaining. When a path exits 

the outermost procedure call in its environment, it is 

probably trying to indicate that it would like to be 

terminated. In addition, it might be useful to specify the 

value returned by the outermost procedure call as the value 

of the path itself. Although it would seem desirable to 

allow a path to terminate itself implicitly in this way, the 

termination procedures described above must be called 

explicitly. The solution is straightforward. We include 

the component TERMINATION\FORM as one of the fields of an 

activation record.  When a path exits  its  outermost 
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procedure call, the value returned by the procedure is bound 

to the identifier "LAST\ VALUE" and then the TERMINATION\FORM 

is evaluated. The form can save the last value, notify any 

waiting paths and call DELETE\PATH to actually terminate the 

path. The TERMINATION\K)RM is initially set by GET\PATH to 

be a procedure call which will cause DELETE\PATH to be 

called. Since DELETE\PATH usually deletes the path's 

environment, the last value should be copied into the heap, 

if it is not there already. Otherwise, the value will be 

lost when the path's environment is reclaimed. 

2.7 Path Synchronization 

If paths are allowed to evaluate concurrently, then 

they must be provided with a mechanism which permits them to 

synchronize their activities. Por example, if a path P 

desires to cease evaluation until another path Q terminates, 

then it might first test the value of Q.ELGPLG and then add 

itself to a queue of paths waiting for Q to terminate, viz. 

Q.ELGFLG -> LEG IN 
Put self on queue associated with Q; 
Cease evaluation 
END 

Let us assume that when Q terminates it indicates that all 

paths on its queue may become active. If Q terminates after 

P tests Q.ELGFLG but before the block above is evaluated, P 

will never be awakened! P and Q must be able to synchronize 

their actions, i.e. P must insure that Q does not terminate 
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while it is in the process of performing the wait and, 

conversely, Q must insure that P does not try to wait while 

it is in the process of termination. The way in which paths 

may effect synchronization is discussed in detail in section 

2.3.2. In this section, we will discuss synchronization 

with respect to the control facilities described earlier. 

Let us first consider synchronization in relation to 

the path scheduler. If the scheduler has access to more 

than one evaluator, then it is obvious that a mechanism for 

path synchronization is necessary. However, if the 

scheduler is multiplexing paths using only one evaluator 

then a synchronization facility is still necessary since the 

scheduling of paths is transparent to the running paths. In 

particular, in between testing Q.ELGZLG and queuing itself, 

P may become inactive and Q may become active. If Q 

terminates, then the situation is as disastrous as if P and 

Q had been active simultaneously. 

The control primitives PAP, PFETCH, and PSTORE contain 

no built in synchronization. Por example, if two paths try 

to concurrently PAP into the same path, then the system will 

not insure that first one PAP will occur and then the other. 

In fact, an error will be generated to indicate the lack of 

synchronization, c.f. 1.1.3. Thus, unless the organization 

of one's paths is such that it is impossible to perform 

concurrent PAPs into a path, one must provide a layer of 
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synchronization around the control primitive, c.f. 3«3- 

The general rules with respect to the use of PAP, PFETCH and 

PSTORE are as follows. 

(1) The affected path should be not active and should 

not be allowed to become active until the control 

primitive has completed its action. 

(2) Only one of the control primitives may be applied 

to a path at a given time. 

The control primitive TSET (test-and-set) may be used 

for path synchronization as an alternative to the mechanism 

described in section 2.3.2. TSET is defined as follows. 

TSET<-CSUBR(X:INT;BOOL) 
BEGIN 
If X is 0, then set X to 1 and return TRUE. 
Otherwise, return FALSE. 
END; 

TSET is an indivisible operation with respect to a set of 

active paths; if two paths simultaneously TSET the same 

integer, whose current value is 0, then TSET will return 

TRUE to one path and FALSE to the other. Variations on TSET 

[La68] [IBM68] have been described in the literature.  TSET 

is included as an MPEL1 control primitive because it 

provides  the  most  basic  mechanism  for  inter-path 

synchronization.   In  order  for  it to be used for 

synchronization, however, TSET requires that a path go into 
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a loop continuously calling it until TRUE is returned. This 

phenomenon is known as the busy wait and is obviously quite 

wasteful. The energy of the evaluator would be better spent 

upon a path which could do some useful work. The facility 

described in section 2.3.2 allows for path synchroni2ation 

at a much lower cost since it provides for a nonbusy wait. 

2.8 Path Dependency 

All MPEL1 paths discussed so far may be considered to 

be independent in the sense that no path can directly 

reference the stack environment of another. This phenomenon 

is a result of the fact that the control primitive PAP 

copies all arguments which would ordinarily be passed BYREJ? 

and of the fact that the control primitive PPETCH returns a 

copy of the value of its argument. It is sometimes useful, 

however, to organize a set of paths in a tree structure in 

which a path P may directly reference the stack environment 

of some path Q which is higher in the tree. In this 

situation we may say that P is dependent upon Q in the sense 

that P requires Q's environment in order to evaluate 

properly. In this section, we will explore the concept of 

path dependency and introduce the control primitives 

necessary to establish this path organization. 

To unset the integer one uses the control primitive 
CLEAR, which sets the integer to 0. Although CLEAR does not 
have to be defined as primitive, it is included for 
symmetry. 
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A path is initially independent• One path can cause 

another path to become directly dependent upon it by calling 

upon the control primitive MDEP (make-direct-dependent.) 

MDEP<-CSU£R(P:ARPTR;ARPTR) 

When a path P becomes a direct dependent of another path Q, 

it may then reference the entire identifier environment of Q 

up to and including all variables defined in Q at the point 

at which MDEP was called. MDEP returns a pointer to the 

path which has become the direct dependent. MDEP generates 

an error if P=Q, if P is already the direct dependent of 

some path other than Q, or if a circular dependency would be 

created. 

The following definitions will simplify the discussion 

of path dependency. A path P is dependent upon a path Q if 

and only if either P is a direct dependent (dd) of Q or if 

there exists paths P1, »•. ,Pn such that 

P dd P1 dd P2 ... Pn dd Q 

If P directly depends upon Q, then Q directly supports P. 

If P depends upon Q, then Q supports P. The sub-environment 

of a path Q which may be referenced by a directly dependent 

path P is the directly accessible environment of Q with 

respect to P. The accessible environment of a path P is the 

union of the directly accessible environment of P with all 

environments directly accessible to the supporters of P. 

We may now restate the conditions under which a path Q 
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may make a path P its direct dependent: 

(1) P is not dependent on any path (except perhaps Q.) 

(2) Q does not depend upon P. 

(3) P and Q are not the same path, i.e. P#Q. 

A path may obtain a reference to a variable in its 

accessible environment by calling upon the control primitive 

DEPENV. 

DEPENV<-CSUBR(X:SYMBOL;ANY) 

DEPENV searches for X in the environment of the path in 

which it is called and if it is not found then it searches 

for it in the accessible environment of the path. If no X 

is found in the accessible environment, then the global 

value of X is returned as the result of DEPENV.  The 

restriction on MDEP that P is not directly dependent upon 
* 

any path except Q allows DEPENV to be a single valued 

procedure since a path can be directly dependent upon only 

one path. 

The control primitive DPAP is defined as follows. 

DPAP<-CSUBR (F: FORM, P: ARPTR; ARPTR ) 

The effect of DPAP is identical to that of PAP except for 

the following modification: if P is dependent upon the path 

performing the DPAP, then all arguments passed BYREF to the 

DPAPed procedure which reference the accessible environment 

of P are passed directly to it, i.e. no copy is made. 

The effect of multiple MDEPs is to  extend  the 
environment of Q which is directly accessible to P 
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The concept of directly accessible environment requires 

closer examination. In particular, three points are of 

interest: a precise description of the directly accessible 

environment, the observation that the direct dependents of a 

path may have different directly accessible environments, 

and the restrictions imposed upon the intra—path control of 

a supporting path. 

The directly accessible environment corresponds 

precisely to the identifier environment of the path when 

MDEP is called, i.e. it is composed of all the variables 

which could be referenced by the path at the point MDEP is 

called. For example, consider the following block: 

BEGIN 
DECL X:IKT BYVAL 4; 

BEGIN 
DECL Q:ARPTR BYVAL MD£P(A); 
DECL R:INT BYVAL 5; 
DECL S:ARPTR BYVAL KDEP(B); 
DECL T:INT BYVAL 6; 
POO(R,X,MDEP(C)); 
EXPR(M:INT,N:INT;INT)(EUM(M+N,MDEP(D)))(R,X); 
MDEP(B); 

END; 
END; 

The directly accessible environments of A,B,C and D are: 
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A: X, ... Q is not included since it is not 
in the identifier environment when 
MDEP is called. 

B: R,Q,X, ...     Same as for A , with respect to S. 

C: T,S,R,Q,X, e..  All declarations are included, but 
the formals of the procedure KJM 
are not, since they are not 
included in the environment until 
the procedure is entered. 

D: N,M,T,S,R,Q,X... The  formals  of  the   literal 
procedure are included, but the 
formals of PUM are not. 

B: T,S,R,Q,X, ...  The second MDEP(B) allows B to 
reference T and S. 

From the example above it should be obvious that the direct 

dependents of a given path way    have different directly 

accessible environments, ftote that the effect of the second 

MDEP(B) is to extend the portion of the environment of the 

path which is accessible to it. 

The intra-path control of a supporting path must be 

constrained so that no portion of its identifier environment 

is deleted until all dependents, who can access that 

portion, are terminated. In the example above, the path may 

not exit the inner block until B,C, and D have terminated. 

It may not exit the outer block until A has terminated. A 

supporting path has essentially three options: terminate all 

dependents who can reference the sub-environment which is 

about to be deleted; wait until all dependents have 

terminated before deleting the sub-environment; and 

terminate itself, in which case the environment of the path 
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will be retained until all dependents have terminated. The 

last case invokes the situation described in section 2.2.2, 

where ELGPLG becomes .FALSE but STKEPIG remains TRUE. If a 

path attempts to delete a portion of its environment which 

is accessible to a non-terminated dependent, then an error 

is generated with the accessible environment still intact. 

The error may be handled by the programmer. To facilitate 

this, a simple recursive procedure can be written to 

determine which of the dependents must be terminated, c.f. 

5.1.;. 

2.S Intra-Path Control Primitives 

There are five primitives which are primarily concerned 

with intra-path control: GOTO, RETPROM, MYPATH, COPY and 

EVAL. 

In order to understand the use of GOTO we must first 

discuss the treatment of labels in EL1. Each statement in 

an EL1 block may have one or more labels associated with it, 

e.£> 

L1: L2: FOO(A,B) => TRUE 

All labels are implicitly DECLared to be variables of mode 

LABEL as the last declarations of the block in which they 

appear. It is also possible to explicitly declare a 

variable to be of mode LABEL and to pass a label valued 

variable as a parameter to a procedure. It is not possible, 
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however, to assign to a label variable or to return an 

object of mode LABEL as the result of a procedure. 

GOTO is defined as follows: 

COTO<-CSUBR(l:LABEL;NONE) 

GOTO modifies the environment of the path so that evaluation 

will continue with the statement specified by the label L in 

the most recent incarnation of the block in which L was 

declared. Note that L must specify a block which has been 

entered by the path performing the GOTO, i.e. it is not 

possible to pass control between paths by calling GOTO in 

one path with a label which references the environment of 

another. Transfer of control between paths is achieved 

through the use of the control interpreter, c.f. 2.3-1* 

The control primitive RETFROM 

RETFROM<-CSUBR(ENAME:SYMBOL,VAL:ANY;NONE) 

is used to return control from the most recent explicit call 

on  the procedure ENAME with VAL as result.  If the 

environment of the path does not contain an explicit call on 

An explicit call on a procedure is one in which the 
form which is to evaluate to a procedure body is of mode 
SYMBOL, e.g. 

EOO(A,B,C) 

is an explicit call on POO,wheras 

BEGIN TRUE => POO END (A,B,C) 

is not. 
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FNAME, then an error occurs. 

Since GOTO and RETPROM can cause portions of the 

identifier environment of a path to be deleted, they must be 

used with caution in a supporting path. For example, a 

local GOTO, i.e. within a block, presents no problem, but a 

non-local GOTO will induce a runtime error if there exist 

non-terminated paths which are dependent upon the 

environment deleted, c.f. 2.2.8. 

The control primitive MYPATH 

MYPATH<-CSUBR(;ARPTR) 

returns a pointer to the activation record of the path in 

which it is called. Since MYPATH has a null argument list, 

it is defined as a NOPIX operator [Weg72], i.e. it may be 

called without being followed by an empty set of 

parentheses, e.g. 

Y<-MYPATH. TERMINATI0N\PORM 

as opposed to 

Y<-MYPATH().TERMINATION\FORM. 

The control primitive COPY 

COPY<-CSlLBR (P: ARPTR; ARPTR ) 

creates a copy of the path specified by P and returns a 

pointer to the activation record of the new path. If P was 

directly dependent upon some path Q, then the new path, say 

T, is also directly dependent upon Q. P and T have 

precisely the same accessible environments.,  T does not, 
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however, support the same paths as P. In fact, it does not 

support any path. Thus, although P and T have identical 

environments, their interpretations as paths are slightly 

different. 

The control primitive EVAL 

EVAIX-CSUER(P:PORM;ANY) 

evaluates the form P in the current path's environment. 

EVAL returns as result the value obtained by evaluating the 

form. 

If T was to support the same paths as P, then it would 
be possible for a path to be direcly dependent upon two 
paths. 
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3. THE CONTROL INTERPRETER 

In the last section, we discussed the path related 

issues of scheduling and synchronization while postponing 

the explanation of how they are resolved in MPEL1. Here, we 

introduce the control apparatus necessary to resolve these 

issues. 

There exists one distinguished path in MPEL1, the 

control interpreter (Cl) path. The CI path is composed of 

an environment and an activation record, just like any path 

which has been created by GET\PATE. In particular, the 

global variable PCIAR is bound to a pointer to the control 

interpreter's activation record. The program being 

evaluated in the environment of the CI may be defined in 

EL1. However, the distinguishing feature between the CI and 

its fellow paths is that it is the only path to which other 

paths may directly pass control and it is the only path that 

may directly pass control to a path other than the CI. In 

the following sections, we will discuss how the CI path may 

be used to provide a mechanism for path scheduling and 

synchronization. 

3.1 Communication with the CI 

A path may pass control to the CI by calling upon the 

control primitive CIA (control-interpreter-apply.) 

CIA<-CSUER(EN:ONEOP(SYMBOL,ROUTINE),ARG:ANY;REF) 
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If FN is a symbol, then it specifies the name of a procedure 

to be applied in the environment of the CI. If FU is a 

ROUTINE, then it specifies the body of the procedure to be 

applied. ARG specifies the argument to the procedure. If 

the mode of ARG is not of class PTR, then ARG is copied into 

the heap and the argument to the procedure is taken to be a 

pointer to the copy. 

The CIA call is carried out as follows: 

(1) FK and ARG are stored in the components of the 

path's activation record named CIA\IN and CIA\ARG 

respectively. Both components are of mode REF. 

(2) Control is transferred from the environment of the 

path to the environment of the CI. Although it is 

possible that the CI is currently active, we 

postpone discussion of this case until the next 

section. Hence, let us assume that the CI is not 

active. 

The program in the CI path then performs the following 

actions. 

(a) If CIA\PN is a SYMBOL,  then it is evaluated to 

produce a procedure to be applied. 

(b) The procedure obtained in (a), or CIA\.FN itself, is 

applied to the argument specified by CIA\ARG. 

(c) Control is passed back to the path which performed 
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the CIA. Although it is possible to pass control 

to a path other than the one which performed the 

CIA, we defer explanation of this ability until 

after we have described the environment of the CI. 

(3) When control is returned to the path, the CIA 

primitive returns the REF specified by the 

CIA\RESU1T component of the path's activation 

record. Hence, a CIA called procedure may 

effectively return a result in the environment of 

the path which performed the CIA by assignment to 

the CIA\RESuTT component of the path's activation 

record. 

At this point, it may be useful to discuss briefly the 

differences between PAP and CIA, since they both have the 

effect of generating a procedure application in the 

environment of another path. First, CIA may be used only to 

apply a procedure in the environment of the CI, whereas PAP 

may be used to apply a procedure call in any path. 

Secondly, CIA requires that the procedure to be applied take 

exactly one argument of mode class PTR, whereas the 

arguments to a PAPed procedure are not restricted with 

respect to number or mode. Lastly, CIA transfers control to 

the CI to apply the procedure; PAP, on the other hand, never 

transfers control between paths. 
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The limitation that a CIA called procedure take only 

one argument (of mode class PTR) also requires some 

explanation. We have limited it in this way since a call in 

which the procedure takes an arbitrary number of arguments 

(with no restrictions on the modes of the arguments) can be 

achieved by extension, c.f. 5.1.1. In addition, the 

passage of multiple arguments to a CIA called procedure 

requires the construction of a list of the arguments even in 

the case where only one argument is passed.  Since CIA 
* 

called procedures usually require only one argument, it 

would seem counter-productive to build in a mechanism which 

is wasteful in the common case. 

We have not yet specified how the CI returns control to 

the path which has performed the CIA call. The return is 

achieved by calling upon the control primitive CONTPATH 

(continue-path) 

CONTPATH<-CSU£R(P:ARPTR;ARPTR) 

which may only be called in the CI environment.  CONTPATH 

inspects P's activation record to determine whether or not P 

may become active. It may not become active if any of the 

following are true: 

(1) P-ELGPLG=FALSE.  (P has been deleted.) 

(2) P.DORMANT=TRUE.  (P is temporarily restrained from 

evaluating.) 

Examine the examples in the next chapter. 
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(3) P is currently being modified. 

If none of the above conditions hold,  then control is 

transferred from the CI to the path, otherwise an error is 

generated in the CI. CONTIATH TSETs the MOD field of the 

path's ACTRC to indicate that the path is being modified. 

When a path Q passes control to the CI for a CIA call, 

it is essentially performing a RETrROM("CONTPATH,,,Q) in the 

environment of the CI; in other words, the result returned 

by CONTPATH is the ARPTR of the path performing the CIA 

call. Note, however, that returning control from the CI to 

a path P does not necessarily have the effect of performing 

a RETPROM("CIA",P.CIA\RESULT) because it is possible that 

while control resided in the CI, one or more procedures have 

been PAPed into P's environment. Kence, execution in P will 

continue with the evaluation of the body of the last PAPed 

procedure or with a return from the CIA call if no such 

procedures exist. 

3.2 Synchronization 

In the last section, we postponed discussion of the 

effect of a CIA call in the case where the CI is already 

active.   Here,  we  discuss  the  interpretation  and 

P is being modified if it is active or being PAPed 
into, or being Pl'KL'Ched from, etc. In general, P is being 
modified if P.MOD has been TSET, c.f. 1.T.3. 
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implications of such a call. 

In section 2.2.1, we characterized a path as the union 

of the data structures required by an evaluator, i.e. a 

path is the set of records which must be maintained to 

effect the evaluation of a sequential EL1 program by a 

single evaluator. Although a path may be evaluated by 

different evaluators during its lifetime, it may be 

evaluated by only one evaluator at any instant. Thus, it is 

not logically admissible for two or more evaluators to be 

evaluating the same path simultaneously. In particular, the 

CI may be evaluated by only one processor at a time. Hence, 

if two paths attempt to pass control to an inactive CI, then 

one will actually achieve passage while the other will be 

forced to wait. When the CI becomes inactive, as a result 

of a call to CONTPATH, then the waiting path may pass 

control to it. Consequently, the CI acts as a single access 

resource with respect to other paths. 

The role played by the CI path in the construction of 

synchronization operations should now be obvious. The 

operation of any procedure which is only called in the CI 

environment is indivisible with respect to calls on that 

procedure by other paths, i.e. if two paths both CIA the 

same procedure, then the execution of one call will be 

completed before the execution of the other is allowed to 

begin.  Any actions which require indivisible operation can 
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simply be done in the CI environment. For example, consider 

the problem of path termination discussed in section 2.2.7. 

If P wishes to wait for Q to terminate, it CIA calls a 

procedure which checks to see if Q has already terminated. 

If it has terminated, then the procedure allows control to 

flow back to P, otherwise the procedure puts P on a queue 

associated with paths waiting for Q and indicates to the CI 
* 

that P wishes to cease evaluation. When Q terminates, it 

CIA calls a procedure which puts all the paths waiting on Q 
*# 

into the set of inactive paths and then calls D£LETE\PATH. 

Since paths are added and removed from the queue only when 

control is in the CI, it is impossible for a path to cause 

itself to be queued forever. 

3.3 The Environment of the Control Interpreter 

In section 2.3.1, we introduced the control primitives 

CIA and CONTPATH which may be used to transfer control to 

and from the CI path. In this section and the next we will 

discuss the way in which these primitives can be used in 

conjunction with a set of non-primitive ELI procedures to 

effect path scheduling and synchronization. Note that the 

organization described here consists of the conventions 

The way in which a CIA called procedure indicates this 
is discussed in 2.3.4. 

#* 

Recall that the inactive paths are those paths which 
would be active if there existed enough processors. 
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imposed by the (non-primitive) program being evaluated in 

the CI path, c.f.  1.1.3- 

We must first describe the identifier environment in 

which a CIA called procedure is applied. .For each variable 

in the identifier environment, we will give its name, mode 

and a brief description of its use. 

DECL LASTRUN:ARPTR; 

When the CIA called procedure is applied, LASTRUN contains a 

pointer to the ACTRC of the path which performed the CIA 

call. Upon completion of the CIA called procedure, the CI 

will pass control to the path specified by LASTRUN, unless 

it has been set to NIL. In this case, the CI selects an 

inactive path and passes control to it instead of the 

original path. 

DECL INACTIVEQ:ARQPTR; 

INACTIVEQ is a queue of the paths which are currently 

inactive, i.e. those paths which would be active if there 

were enough evaluators. INACTIVEQ.FIRST specifies the first 

path on the queue; INACTIVEQ.LAST specifies the last path on 

the queue. A path is linked to the next path on the queue 

through the NEXT component of its activation record, e.g. 

INACTIVEQ.FIRST.NEXT is the ARPTR of the second path on the 

queue. 

DECL NPROC:INT; 

ARQPTR is a mode which is defined in the global 
environment to be a STRUCT(FIRST:ARPTR,LAST:ARPTR). 
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NPROC specifies the number of processors over which the 

paths are being multiplexed. Thus, NPROC is an upper bound 

on the number of paths which may be active at the same time. 

DECL NPPROC:INT; 

NFPROC specifies the number of processors which are free in 

the sense that they are not currently being- used to evaluate 

a path, i.e.  the number of processors which are idling-. 

DECL PROCNUM:INT; 

i:&ch processor has a unique integer N associated with it 

(1 <N < NPROC.) PROCNUM is the number of the processor which 

was evaluating the path which performed the CIA call. 

Hence, PROCNUM specifies the processor which will evaluate 

the CIA called procedure. 

DECL USER\SCKEDULER:ROUTINE; 

The USER\SCHEDULER is the procedure which is being used to 

select which inactive paths should become active. As the 

name implies, the procedure may be supplied by the user, 

c.f. 2.4. 

DECL PAVECT:ROW(NPROC,STRUCT(CURPATH:ARPTR,IDLEPATH:ARPTR)); 

Por I#PROCNUM, PAVECT[I].CURPATH specifies the path being 

evaluated by the I'th processor. Each processor has an 

idling path associated with it, i.e. a path which it 

evaluates if it has no 'real' path to evaluate. NPPROC is 

the number of processors which are evaluating their idling 

paths. If processor K is idling, then 

PAVECK[K].CURPATH=PAVECK[K].IDLEPATH. 
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Note that 

PAVECT[PROCNUM].CURPATH=LASTRUN 

i.e. the processor which is currently evaluating the CI 

path is the processor which was evaluating the path which 

performed the CIA call. 

DECL RUNSET\1LAG:BC0L; 

The RUNSET\FLAG is initially set to FALSE.    If a CIA called 

procedure adds paths to the set of running paths, then it 

should set RUNSET\ELAG to TRUE to indicate that additional 

paths may have to be scheduled. 

DECL PIVECT:ROW(NPROC,LIST); 

PIVECT is used in conjunction with processor to processor 

interrupts.  We postone further discussion of PIVECT until 

section 2.5.5. 

3.4 Path Scheduling 

In the last section, we described the environment in 

which a CIA called procedure is applied. Here, we will 

describe the way in which the CI uses these data structures 

in the performance of path scheduling. 

Let us assume that a path P has executed the following 

statement: 

CIA("ECO",Q) 

Control passes to the CI as described in section 2.3.1. 

However, before the procedure is applied to its argument, 
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the CI performs the following actions: 

(1) LASTRUN is set to P. 

(2) RUNSETYFLAG is set to FALSE. 

(3) PROCKUM is set to the number of the processor 

which had been evaluating P. 

Upon completion of the CIA called procedure,  the CI 

performs the following actions: 

(1) If LASTRUN is NIL, then the CI calls upon the 

USER\SCHEDULER to obtain a path to be evaluated by 

the processor. If the USER\SCHEDULEF returns NIL, 

then the CI chooses the idle path associated with 

the processor, i.e. PAVECT[FROChUM].IDLEPATli, and 

increments NEPROC by one. In any case, the CI 

binds LASTRUN to the path to which the processor 

is to be given. 

(2) If RUNSET\PLAG is TRUE, then the CI determines if 

there are any free processors (NEPROC#0) and, if 

so, it sends an interrupt to one of them to force 

it to pass control to the CI to obtain a 'real' 

path to evaluate, c.f. 2.5.5. 

(3) The CI sets PAVECT[PROCNUM].CURPATH to LASTRUN to 

indicate which path the processor will be 

evaluating. 

(4) The CI passes control to the path to be evaluated 

and positions itself to accept the next CIA call 

by executing the following statement. 



2-52 

LASTRUN<-CONTfATH(LASTRUN) 

The USER\SCHEEULER is initially bound to a procedure 

which removes the first activation record from the INACTIVEQ 

and returns a pointer to it as result, i.e. as the path to 

be evaluated. If the INACTIVEQ is empty, then the procedure 

returns NIL. If paths are always added onto the tail of the 

INACTIVEQ by CIA called procedures, then the paths are 

scheduled on a 'round-robin' basis. 

To obtain a better understanding of the use of the CI 

as single access resource in relation to its use as a path 

scheduler, let us again turn to our path termination 

example. If P wishes to cease evaluation until Q 

terminates, then it simply sets LASTRUN to NIL to indicate 

to the CI that the processor should be given to another 

path. When Q terminates, it appends all paths waiting for 

its termination onto the tail of the INACTIVEQ and then sets 

RUNSET\ELAC to TRUE to indicate to the CI that there are 

additional paths to be scheduled. Both P and Q require 

indivisible execution coupled with the ability to modify the 

scheduler's queues.  The CIA call provides both of these 

Since Q will no longer be runnable, it will set LASTRUN 
to NUi. In this case, it is not really necessary to set 
RUNSET\PLAC to TRUE, since the fact that LASTRUN=NIL will 
cause new paths to be scheduled anyway. Note, however, that 
it is possible that a path may add additional paths to the 
INACTIVEQ, and still wish to continue evaluation. In this 
case, it must set RUNSET\PLAG to TRUE. 
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facilities since it allows a procedure to obtain indivisible 

execution in the environment of the path scheduler. 

In section 2.2.4, we defined a scheduler as a mechanism 

for multiplexing the evaluation of an arbitrary number of 

paths by a fixed number of evaluators. The path scheduler, 

as described above, does not quite fit this definition. The 

problem is as follows: if NPROC paths are currently active 

and none of the paths ever perform a CIA call, then the 

inactive paths will never become active. Hence, the 

evaluators will not be multiplexed over all paths. The 

solution to this problem is straightforward. If, after some 

given length of time, a path refuses to relinquish its 

evaluator, then the path's evaluation is interrupted by a 

"TIMER" interrupt. The response to the interrupt generates 

a CIA call which puts the path at the end of the INACTIVEQ 

and sets LASTRUN to ML. The path scheduler can then give 

the evaluator to another path via the mechanism described 

above. A more detailed description of the way in which this 

'time-out' is accomplished is given in section 2.5.5. 

Since the CI is an MPEL1 path, the actions performed by 

it to effect path scheduling can be described by a set of 

EL1 procedures. These procedures are listed in Appendix 3« 

In the next section, we will discuss how these procedures, 

in conjunction with the CIA control primitive, may be used 

to extend the path scheduler itself. 
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4. USER DEFINED SCHEDULING 

When a processor "becomes free, the CI uses a simple 

algorithm to assign it to an inactive path: it is given to 

the first path on the queue of inactive paths. It is surely 

not desirable that this algorithm be the only one which may 

ever be used to assign processors to paths. Eor example, a 

given language application might require paths to be 

scheduled on the basis of associated priorities. Although 

it is conceivable that we could circumvent the fixed 

algorithm by suitably adjusting the inactive queue to insure 

that the next path chosen by the scheduler is the one which 

is desired, it would be inconvenient and inefficient to do 

so. Hence, we desire a mechanism which will allow both user 

control over path scheduling and the addition of data 

structures to the CI environment to support the extended 

scheduler. 

4.1 Scheduler Extension 

Three different methods may be used to extend the path 

scheduler: rebinding of the procedure which is called to 

obtain the next path to be evaluated, nesting of schedulers, 

and complete redefinition of the CI procedures and 

environment. The first of the above is exceedingly simple 

to accomplish but provides the weakest form of extension. 

The second combines the first method with the ability to 
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call upon the CI procedures recursively in order to obtain a 

nesting of schedulers. The last method requires the largest 

amount of work, hut allows the user the ability to rewrite 

the control interpreter completely. 

In section 2.3-3, we indicated that to obtain a path to 

be evaluated, the CI calls upon the ROUTINE bound to the 

variable USER\SCHEDULER. Hence, the scheduling algorithm 

can be changed by simply CIA calling a procedure which binds 

USER\SCHEDULER to a user defined procedure. Upon completion 

of the CIA call, the user's scheduling algorithm will be 

employed by the CI. 

There are two disadvantages with this method. First, 

if the user defined scheduler requires additional data 

structures, then it must resort to the use of global 

variables. Secondly, there is no convenient way to nest the 

schedulers, i.e. if the scheduling algorithm is to be 

redefined more than once, then each new scheduler must 

understand the organization of the previous one. In 

addition, there is no convenient way of keeping track of how 

many times and the order in which the scheduler has been 

redefined. Hence, it is difficult to revert back to a 

previous scheduler once a new one has been installed. 

Consequently, this method of scheduler extension is of 

limited usefulness. 
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The second method of scheduler extension resolves the 

problems associated with the first. 

The actions of the control interpreter path are 

embodied in the definition of one EL1 procedure, C\I. In 

particular, C\I applies the CIA called procedure to its 

argument, calls upon the scheduler if necessary, and passes 

control out of the control interpreter via CONTPATH.  Since 

C\I is written in EL1, its actions are easily understood and 
** 

it may be called from a user program. If C\I is called 

recursively in the environment of the CI, then path 

scheduling and the processing of CIA calls will be performed 

by the inner call. C\I assumes that the variables discussed 

in section 2.3«3 exist in the environment in which it is 

called and declares local variables with the same names 

which are bound BYREF to their counterparts in the 

environment, e.g. 

CECL LASTRUN:ARPTR BYREF LASTRUN; 

The procedure C\I may be used to achieve a nesting of 

schedulers by CIA calling a procedure, say IKIT\SCHEEULER, 

which performs the following actions. 

(1) USER\SCHEDULIR is declared locally to be the 

The definition of the procedure C\I is given in 
Appendix 3. 

** 

Although it should only be  called  in  the  CI 
environment, because of the call on COKTPATH. 
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routine to be used as the new scheduler. 

(2) Other variables that are needed by the new 

scheduler are declared locally. 

(3) The data structures which define the inactive set 

of the previous scheduler are mapped into the data 

structures to be used by the new scheduler. As 

this is a complicated process, we postpone 

discussion of how it can be accomplished. 

(4) The procedure C\I is called recursively. C\I will 

bind USER\SCHEDULER to the procedure bound locally 

above. Scheduling will continue in an environment 

which includes the data structures required by the 

new scheduler. 

It is possible to return control over path scheduling 

back to the previously defined scheduler by CIA calling a 

procedure, say TERft\SCHIOXJLER, which performs the following 

actions. 

(1) The control primitive RETFROK is used to return 

control to the body of the procedure which 

initiated the recursive call on C\I, i.e. 

RETPROM(,,C\I",NIL) 

(2) The data structures which define the inactive set 

for the current scheduler are mapped into the data 

structures required by the old scheduler. Again, 

we postpone discussion of how this can be 

accomplished. 
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(3) The procedure returns control to the previous 

incarnation of C\I by a normal procedure exit. 

Since the recursive call on C\I bound the 

variables used in the previous call BYREF, the 

values of the variables are still valid, e.g 

PROCNUM correctly specifies the number of the 

processor which is currently evaluating the CI 

path. 

Figure 2-3 illustrates the flow of control in the CI 

with respect to nesting of schedulers. Down arrows indicate 

the passage of time, right arrows indicate calls to 

procedures, and left arrows indicate returns from 

procedures. INIT\SCHEHJLER is a procedure which is CIA 

called to initialize a new scheduler as described above and 

TERM\SCHEDULER is a procedure which is called to return 

control back to the previous scheduler. 

This will be true only if USER\SCHEDULER is the only 
variable declared by the initializing procedure whose name 
is in common with the variables of section 2.3.3- 
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figure 2-3 Nesting of Schedulers 
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The last way in which the scheduler may be extended is 

to rewrite the procedures which constitute the control 

interpreter itself. Although we believe that the 

organization imposed by the procedures of Appendix 3 

facilitates the construction of new schedulers and 

synchronization operations, it is possible that another 

organization may be more suitable for a given class of 

problems. Hence, the user is free to completely restructure 

the CI path in terms of his own data structures, procedures 

and the control primitves CIA and CONTPATH. 
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4.2 Canonical Inactive Sets 

In the last section, we postponed discussion of the way 

in which the data structures of one scheduler are mapped 

into the data structures of another. Here, we will discuss 

the issues involved in the mapping and suggest a way in 

which they may be resolved. 

If a new scheduler is going to take over responsiblity 

for path scheduling, then it must have some way of knowing 

which paths are running. PAVECT specifies the active paths, 

but the inactive paths may be contained in some arbitrary 

data structrure. It is certainly undesirable for each new 

scheduler to have to know from which scheduler it is taking 

over and how that scheduler maintained the set of inactive 

paths. Hence, we desire a mechanism which will allow a 

scheduler to be installed without knowledge of the innards 

of the previous one. 

The solution is straightforward. We define the 

canonical form for the inactive set as follows: the inactive 

set of paths is in canonical form if and only if all 

inactive paths are contained on the queue INACTIVEQ. Each 

procedure that initializes a new scheduler as described in 

the last section must provide two procedures to be bound as 

local variables to the names MAPC (map-canonical) and MAPO 

(map-own.) MAPC is used to map the inactive set from the 

form used by the scheduler into canonical form; MAPO is used 
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to map the inactive set from canonical form into the form to 

be used by the scheduler. MAPC and MAPO are both initially 

bound in the CI path to the following procedure body: 

EXPR( ;NONE)NOTHING; 

since the initial scheduler keeps the inactive set in 

canonical form. The initializing procedure may map the 

inactive set from the form being used by the previous 

scheduler into the form required by the scheduler being 

initialized by first calling the MAPC procedure associated 

with the previous scheduler and then calling the MAPO 

procedure associated with the new scheduler. When control 

is to be returned to a previous scheduler, then the 

procedure which has been returned to via the 

RETFROM(,,C\r,,NIL), i.e. the procedure which had been used 

to initialize the scheduler, can call its own MAPC procedure 

and then the previous scheduler's MAPO procedure so that the 

inactive set may be returned to the form required by the 

previous one. To illustrate, let us assume that a certain 

scheduler requires the set of inactive paths be divided into 

two queues: one queue for those inactive paths which are 

DORMANT and one queue for those inactive paths which are 

not. Let us also assume that the procedure used to 

initialize this scheduler is named INITD and that it takes 

as argument the ROUTINE to be used as the scheduler. INITD 

is defined in figure 2-4. Note that ENTERL, which is 

defined in Appendix 3, enters the path as the last element 
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of the queue specified by the second argument. 

INITIK-EXPR (S: ROUTINE ;NONE) 
BEGIN 
MAPC();  NT MAP OLD INACTIVE SET INTO CANONICAL FORM; 

BEGIN 
DECL USERXSCHEDULER:ROUTINE BYREF S; 
DECL INACTD:ARQPTR; NT TO BE USED FOR DORMANT PATHS; 
DECL INACT:ARQPTE;  NT TO BE USED EOR OTHER PATHS; 
DECL MAPO,MAPC:ROUTINE; 
MAPO<-EXPR(;NONE) 

BEGIN 
DECL T:ARPTR BYVAL INACTIVEQ.FIRST; 
DECL Q:ARPTR; 
TAG:T=NIL => NOTHING; 
Q<-T.NEXT; 
[) T.DORMANT =>  ENTERL(T,INACTD); 

ENTERL(T,INACT) (]; 
T<-Q; 
GOTO TAG 
END; 

MAPC<-EXPR(;NONE) 
BEGIN 
IMCTD.FIRST=NIL => INACTIVEQ<-INACT; 
INACT.EIRST=NIL => INACTlVEQ<-INACTD; 
INACTIVE<-INACT; 
INACTIVE. LAST. NEXK-INACTD. FIRST; 
INACTIVE. IASK-INACTD. LAST 
END; 

MAPO();  NT MAP INACTIVE SET INTO NEW EORM; 
C\I(5:  NT SCHEDULE PATHS WITH NEW SCHEDULER; 
MAPCQ NT MAP QUEUES INTO CANONICAL EORM; 
END; 

MAPOO NT MAP QUEUES INTO FORM REQUIRED 
BY OLD SCHEDULER; 

END; 

Figure 2-4: The definition of INITD 
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4.3 Scheduling Errors 

In section 2.3.1, we described the three conditions 

under which COIvTPATH would refuse to pass control to a path. 

Of these three, two can be explicitly checked by the path 

scheduler to insure that it does net choose a path which 

will be rejected by CONTPATH. It is probably desirable, 

although not absolutely necessary, for the path scheduler to 

check for these conditions and take appropriate action. JFor 

example, a path which has ELGPLG=JFALSE can simply be removed 

from the inactive set and a path with DORMAWT=TRUE can 

simply be retained in the inactive set. 

Recall that a path is being modified if it is active or 

if an environment modifying control primitive is being 

applied to it. If it is being modified, the MOD field of 

its ACTRC has been 1SET by a control primitive. Although 

the scheduler can determine if a path is active by examining 

the PAVECT, in general it cannot determine if the path is 

being modified since control primitives can be applied to 

the path asynchronously with respect to the actions of the 

CI. 

Of course, the check for these conditions can be made 
explicitly in the the body of the scheduler, or implicitly 
by an error handling routine which responds to the error 
generated by CONTPATh' and returns a different path to be 
evaluated. 
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If the scheduler attempts to pass control to an active 

path, then the path must exist in the active set and the 

inactive set. Hence, there is either a bu£ in the scheduler 

or in one of the procedures which has access to the 

schedulers queues. 
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5. EXTERNAL INTERRUPTS 

In this section, we will discuss the external interrupt 

facility of KPEL1. Recall that external interrupts are 

required to effect processor multiplexing, c.f. 2.3.4. In 

addition, external interrupts provide a mechanism whereby 

paths may respond to events which occur outside the scope of 

the language. 

External interrupts affect the evaluation of paths, 

i.e. the evaluation of the path is interrupted by the 

occurrence of an interrupt. To be able to speak of one path 

sending an interrupt to another, it is necessary to extend 

the concept of external interrupt. This extension will be 

described below. 

5.1 Classes of Interrupts 

An interrupt may be loosely defined as a signal which 

indicates the occurrence of some event. There must be at 

least two agents associated with an interrupt, namely, one 

agent to generate the signal and one agent to receive it. 

It will be convenient to divide interrupts into two classes: 

external interrupts which are generated by (external) 

processors, and internal interrupts which are generated by 

path evaluators. 

An internal interrupt is a signal from a path evaluator 
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to the path it is evaluating. The signal is usually sent to 

indicate that some error has occurred in the evaluation. 

The interrupt occurs synchronously with respect to the 

path's evaluation. .For example, if a path attempts to 

select a non-existent component of a structure, then a 

signal will be sent to the path to indicate the selection 

error. In MPEL1, internal interrupts are handled as in EL1 

[Weg70]. No change in semantics is necessary for MPEL1 

since internal interrupts affect the evaluation of only one 

path. When an internal interrupt occurs, the identifier 

environment is searched for a binding of an identifier which 

is uniquely associated with the interrupt (e.g. 

"SELECTIONVFAULT".) If the identifier is found and it is 

bound to a procedure definition, then the procedure is 

called as the path's response to the interrupt. If no 

binding is found, then a standard system error handling 

procedure is called. 

An external interrupt is a signal which is sent from 

one processor to another. The signaling processor may 

either be an evaluator or a special processor which is 

dedicated to a given task, e.g. a timer, I/O device. The 

effect of an external interrupt is to interrupt 

asynchronously the evaluation of the path which is being 

evaluated by the signaled processor. V.'e may now clarify the 

distinction between internal and external interrupts. In 

both cases the final recipient of the interrupt is a path. 
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In the former case, the signal is generated as a result of 

some action taken internally by the path itself. In the 

latter case, the signal is generated by some action which is 

external to the path. The path is interrupted simply 

because it is being evaluated by the processor to which the 

signal was sent. 

In EL1, as described in [Weg70], there is only one path 

of control and only one evaluator, hence, external 

interrupts may be handled in the same fashion as internal 

ones. The identifier environment is searched for a 

procedure which is associated with the particular external 

interrupt. In MPEL1, however, there are multiple paths of 

control. Consequently, it is possible that a path is not 

being evaluated at the time an external interrupt arrives 

for which it is 'enabled.' In addition, it is usually 

desirable to associate priorities with external interrupts 

to facilitate in their processing. EL1 provides no 

mechanism for treating interrupts on a priority basis. 

Consequently, additional control apparatus is necessary in 

order to incorporate external interrupts into the multi-path 

control structure of MPEL1. 

5.2 Interrupt Structure 

In this section, we will discuss a number of issues 

relating to the introduction of external interrupts into 
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MPEL1. In particular, we will consider the requirements 

placed upon any interrupt structure by processor 

multiplexing and multiple paths of control. 

External interrupts are associated with processors, not 

paths. The processor receives the signal and responds to it 

by interrupting its current activity and taking some 

pre—specified action. Por example, consider the CPU of a 

digital computer. When an interrupt occurs, the CPU itself 

is interrupted independent of which process it is executing. 

Some interrupt program is executed and then the interrupted 

process is resumed. The interrupt program can inform the 

process about the occurrence of the interrupt by resuming it 

at some pre-specified process—dependent location. Thus, if 

we associate external interrupts with processors, then they 

can be associated with paths by extension. 

Although external interrupts are associated with 

processors, a language level response to an interrupt must 

be evaluated in the environment of a path - whichever path 

is being evaluated by the processor when the interrupt 

occurs. The response borrows the environment of the current 

path because it requires an environment for its evaluation 

and the current path just happens to be available. 

Paths may wish to respond to interrupts as well. If we 

associate responses with interrupts on a path-independent 

basis, i.e. one response form per interrupt per processor, 
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then it becomes difficult to allow paths to respond 

differently to a given interrupt. Conversely, if we 

associate the response forms on a path-dependent basis, i.e. 

when an interrupt occurs the response form associated with 

the current path is used, then it becomes difficult for a 

path to insure that it will be notified that an interrupt 

has occurred because of processor multiplexing. It is 

possible that when an interrupt occurs, the path which is 

interested in it is not the one which is currently being 

evaluated. 

The essential point is that an interrupt structure is 

required which will allow a path to be notified of an 

interrupt even if the interrupt occurs while the associated 

processor is evaluating another path. In addition, paths 

must be allowed to respond to interrupts in different ways. 

To resolve the issues described above, it would seem 

desirable to associate an interrupt structure with each 

processor and, in addition, associate a related structure 

with each path. The processor level structure may be used 

to dispatch the interrupt information to all interested 

paths. 

5»3 Processor level Interrupts 

In section 2.3.3, we indicated that the number of 

processors over which paths are being multiplexed was stored 
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in NPROC. Let us assume that each of the NPROC processors 

has NEI associated external interrupts. Each external 

interrupt has a unique identifier associated with it, e.g. 

"TIMER", ""LIGHT\PEN", "I0\COMPLETION'.) In addition, each 

processor has NPRGLEV priority levels, where 1 is the 

highest priority and NPROLEV is the lowest. A processor may 

be enabled for one external interrupt at each priority 

level, but it may not be enabled for the same external 

interrupt on more than one level. Associated with each 

external interrupt is a form which is to be evaluated as 

response to the interrupt. 

A processor may be enabled for an external interrupt by 

a call to the control primitive ENABLENPRO. 

ENABLE\PRO<-CSUBR (El NAME: SYMBOL, LEV: INT, RESP: 10RM; NONE ) 

The processor which evaluates this primitive will be enabled 

for the external interrupt named EINAME at priority level 

LEV with response form RESP. An error is generated if the 

processor is already enabled for the interrupt or if the 

level is already associated with some interrupt. 

A processor may be disabled with respect to an external 

interrupt by calling upon the control primitive DISABLE\PRO. 

DISAELE\PRO<-CSUBR(EINAME:SYMBOL;NONE) 

The processor level interrupt structure is essentially 
an abstraction of priority interrupt systems found in 
practice on contemporary hardware systems. 
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After a call to DISALLE\PRO, the processor is no longer 

enabled for EINAME interrupts and the level at which it was 

enabled is available for association with another interrupt. 

It is sometimes desirable to modify the response form 

associated with an interrupt without having to disable and 

re-enable it. To facilitate this, the data structure which 

associates response forms with interrupts is accessible from 

the language, and thus may be modified by assignment. The 

response forms for all priority levels of all processors are 

contained in the global data structure RESPONSE which is of 

mode: 

ROW(NPROC,ROW(NPfiOLEV,FORM)). 

Hence, RESPONSE[N][M] specifies the response to the 

interrupt enabled at level M on processor N. In addition, 

the trivial control primitives LEVEL and INUSE may be used 

to obtain the interrupt status of the current processor. 

LEVEL("TIMER") returns the priority level at which the timer 

interrupt is enabled. INUSE(3) returns the symbolic name of 

the interrupt enabled at level 3, or NIL if the level is not 

currently associated with an interrupt. Hence, if the 

"TIMER" interrupt is enabled, then 

INUSE(LEVEL( "TIMER") V'TIMER". 

Note that the data structures which associate external 

interrupts with priority levels are not accessible from the 

language. This restriction is necessary, since correct 

modification of these structures, i.e.  for enabling or 
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disabling, may require communication with the underlying 

machine. 

The interpretation of an external interrupt is as 

follows. Let us assume that initially there are no 

interrupt responses in progress. When an external interrupt 

occurs, the interrupted processor evaluates the form 

associated with the interrupt In the environment of the path 

which it is currently evaluating. If any lower priority 

interrupts arrive during the evaluation of the response, 

then the response to the lower level interrupt is not 

initiated until the higher level response is completed. If 

a higher level one arrives during the evaluation of the 

response, then the current evaluation is suspended and the 

response associated with the higher level one is initiated, 

i.e. it is nested within the lower level response. Upon 

completion of the evaluation of a response, the priority of 

the interrupt associated with the suspended response is 

compared with the highest priority of the interrupt 

responses which have not yet been initiated. If the former 

is greater than or equal to the latter, then evaluation of 

the suspended response continues. Otherwise, the evaluation 

of the response associated with the highest level waiting 

interrupt is initiated. For example, if three interrupts 

"X", "Y", and "Z" interrupt the processor, and the 

priorities associated with these interrupts are 3, 1 and 2, 

respectively, then the arrival of "Y" will suspend the 
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evaluation of the response for "X". The response for UY" 

v/ill not be interrupted by the arrival of "Z". Upon 

completion of the response for "Y", the response for "Z" 

will be initiated since it is at a higher priority than "X". 

Upon completion of the response for "Z", the evaluation of 

the response for "X" will continue. 

If the evaluation of an interrupt response is never 

completed, then the responses for lower priority interrupts 

will never be initiated. For example, if an interrupt 

response performs a CIA which subsequently switches the 

processor to another path, then the processor will not 

initiate any lower priority responses because the interrupt 

nesting is recorded in the intra-path control of the. path in 

which the response was initially evaluated. In addition, if 

the original path is evaluated by another processor, then an 

attempt may be made to continue evaluation of a lower 

priority interrupt while a higher one is in progress. 

Consequently, although it is desirable for interrupt 

responses to avail themselves of the power of the CI, they 

should always return control to the path in which the 

interrupt originally occurred. Hence, processor level 

interrupt responses may be thought of as 'borrowing' the 

environment of whichever path is being evaluated at the time 

An error will be generated by CONTPATH if an attempt is 
made to evaluate a different path on the processor, or to 
evaluate the path on a different processor. 
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that the interrupt occurs. 

If an interrupt resjonse is completed by a RETFROM or a 

GOTO, then the priority level at which the processor is 

evaluating is taken to be the priority level of the most 

recently suspended response above the point to which the 

RETFROM or GOTO is made, i.e. if the intra-path control is 

flushed above the point at which an interrupt response was 

initiated, then the response is automatically completed. 

Upon completion of the RETFROM or GOTO, evaluation continues 

with the most recently suspended response, or the highest 

level waiting response, whichever has the higher priority. 

We note, however, that although RETFROM and GOTO may be used 

by response forms, it is probably undesirable to do so. A 

processor level interrupt response may be responding to an 

interrupt which is of interest to another path. If the 

response form is not allowed to complete properly, then the 

path may never receive the information it desires. 

Since the actions of processor level interrupt 

responses are restricted as described above, an additional 

mechanism is necessary to make effective use of external 

interrupts. In particular, we specified that external 

interrupts would be used to insure that the evaluators were 

multiplexed across all running paths. But it is not 

possible to use a processor level interrupt to force the 

processor to evaluate another path since the evaluation of 
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the response form must be completed before the switch can 

occur. Secondly, we have not specified how a processor 

level interrupts may be used to dispatch an interrupt to 

another path. In the next section, we will introduce the 

additional control apparatus necessary to achieve these 

capabilities. 

5.4 Path Level Interrupts 

In this section, we will discuss the concept of path 

level external interrupts. A path level interrupt is a 

signal sent from one path to another. Although path level 

interrupts are external interrupts in the sense that the 

signal arrives asynchronously with respect to the evaluation 

of the path, they may be considered to be pseudo interrupts 

in the sense that the interrupt does not take effect until 

the path is actually evaluated. Hence, we will refer to 

path level interrupts as pseudo interrupts. 

Each path has NPALEV priority levels associated with 

it, where 1 is the highest priority and WPALEV is the 

lowest. A path may be enabled for one pseudo interrupt at 

each priority level, but it may not be enabled for the same 

for example, the form CIA(P,MYPATH), where F is a 
procedure which puts the current path on the INACTIVEQ and 
sets LASTRUN to NIL (forcing the CI to schedule some other 
l^ath), could not be used since control leaves the path from 
within the CIA control primitive and thus the evaluation of 
the response form is not completed. 
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pseudo interrupt at more than one level. Associated with 

each pseudo interrupt is a form which is to be evaluated as 

response to the interrupt. Thus, the path level pseudo 

interrupt structure parallels the processor level 'real' 

interrupt structure. A pseudo interrupt is referenced by a 

symbolic name, e.g. "WALDO", "PLEASE\TERMINATE". A number 

of control primitives are defined to effect enabling, 

disablinr, masking and generation cf pseudo interrupts. 

Their description follows. 

The last argument to each of the control primitives 

described below specifies the path to which the actions of 

the primitive are to be applied. If the argument is not 

supplied to the primitive, i.e defaulted to NIL, then the 

actions are to be applied to the path which executes the 

call. If the path to which the primitive applies is not the 

current path, then it must not be modified while the 

primitive is being applied. Consequently, the path cannot 

be active. 

The control primitive ENABLE\PATH enables a path for a 

pseudo interrupt. 

ENABLE\PATH<-CSUBR (PEINAME: SYMBOL, LEV: INT, 

RESP:FORM,PATH:ARPT R;NONE) 

The path is enabled for pseudo interrupt PEINAME at level 

LEV with response form RESP. An error is generated if the 

path is already enabled for a pseudo interrupt at level LEV 
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or if the path is already enabled for PEINAME interrupts at 

some level. 

A path may be disabled with respect to a pseudo 

interrrupt by calling upon the control primitive 

DISABLE\PATH. 

DISABLE\PATH<-CSUBR(PEINAME:SYMBOL,PATH:ARPTR;NONE) 

After a call to L1SABLE\PATH, the path is no longer enabled 

for the interrupt specified by PEINAME and the level at 

which PEINAME was enabled is available for association with 

another pseudo interrupt. 

A pseudo interrupt may be generated by a call to 

INTERRUPT. 

INTERRUPT<-CSUBR(PEINAME:SYMBOL,P:ARPTR;NONE) 

Let us first assume that P is not the path which called 

INTERRUPT. Recall that P cannot be active. If the path 

specified by P is enabled for PEINAME interrupts at some 

level, then the response form that it has associated with 

PEINAME will be evaluated in its environment as soon as it 

is evaluated by some processor. If P was in the midst of 

the evaluation of a response to some pseudo interrupt at a 

higher priority level, then the response to PEINAME will be 

evaluated when all higher priority responses have been 

completed. The interrupt is only 'pseudo' since no 

processor is physically interrupted. INTERRUPT merely 

records information in the path's activation record. To 
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send a pseudo interrupt to an active path, it is necessary 

to physically interrupt the processor which is evaluating 

the path and then use the primitive INTERRUPT. Hence, a 

'real' external interrupt is required. The control 

primitive which provides this facility is described in the 

next section. 

If P specifies the path which has called INTERRUPT, 

then the response to the interrupt is immediately evaluated 

in the current path's environment, unless the path is 

currently evaluating a higher level interrupt response. 

The interpretation of path level interrupts is 

identical to that of processor level interrupts, as 

described in the last section. Lower priority level 

responses are delayed until higher level ones complete. 

Higher level responses take precedence over the evaluation 

of lower level ones. However, we have not specified the 

relation between processor interrupt levels and path 

interrupt levels. The relation is as follows: the path 

interrupt levels are of strictly lower priority than 

processor interrupt levels. Hence, any processor interrupt 

takes precedence over any path level interrupt. 

Consequently, if a processor level response generates path 

level interrupts for the current path, then the path level 

responses will not be initiated until all processor level 

responses have been completed. 
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The addition of the path interrupt structure resolves 

the problems described at the end of the last section, 

first, to force processor multiplexing, the external 

interrupt can generate a pseudo one which will be processed 

after all processor level responses are completed. The 

response to the pseudo interrupt can safely switch the 

processor to another path via a CIA call. The original path 

is simply left in the midst of a path level interrupt 

response. Secondly, a REEFROM or GOTO out of a path level 

response can only affect the current path's processing. 

Hence, if a processor level interrupt desires to perform a 

RETFROM or GOTO without any effect upon a lower priority 

processor interrupt, then it can generate a path level one 

to perform the desired action. Finally, the processor level 

interrupt response may dispatch the fact that a given 

interrupt has occurred by sending pseudo interrupts to all 

interested paths. 

It is sometimes desirable to mask a path against 

certain pseudo interrupts, i.e. a path may wish to remain 

enabled for a given interrupt, but have the interrupt 
* 

response delayed for some time.  Hence, a mechanism is 

Note that this cannot be achieved by having the path 
generate a self pseudo interrupt at a priority higher than 
the interrupt to be masked, since all lower level interrupts 
will then be masked as well, which is not necessarily the 
desired effect. 
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desired which will mask a path against an interrupt while 

allowing the occurrence of other interrupts at higher or 

lower priority levels. Two control primitives provide this 

facility: MASK and UNMASK. 

MASK<-CSUBR(PEINAME:SYMBOL,PATH:ARPTE;NONE) 

UNMASK<-(£UBR(PEINAME:SYMBOL,PATH:ARPTR;NONE) 

If a pseudo interrupt is sent to a path which has masked 

against that interrupt,  then the fact that the interrupt 
-it- 

occurred is recorded, but no response is generated.  If an 

interrupt is UNMASKed and if the interrupt occurred while it 

was masked, then the response is generated according to the 

priority rules described above. 

The data structures associated with path level 

interrupts are stored in the activation record of each 

path. Hence, they are accessible from the language. As 

was the case with processor level interrupts, the response 

forms associated with pseudo interrupts may be directly 

modified without disabling and re-enabling the interrupt. 

Note, however, that direct modification of other structures 

may not have the desired effect, for example, if a path 

Multiple interrupts are lost. Alternatively, we could 
maintain a count of the number of times a given pseudo 
interrupt has occurred. An interrupt structure of this sort 
would be a straightforward extension of the current 
facility. 

** 

The structures are described in detail in section 
4.3.13. 
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attempts to unmask itself, with respect to a certain 

interrupt, by direct modification of the appropriate data 

structure, then the response form will not be automatically 

triggered. Hence, the structures may be examined to discern 

the status of a path's interrupt levels, but most 

modifications should be made via the appropriate control 

primitive. 

5.5 Relation to Processor Multiplexing 

In section 2.3-4, we mentioned the use of interrupts in 

processor multiplexing but deferred explanation; we now 

remedy this omission. There are two problems to be solved. 

First, how can an idling processor be assigned to an 

inactive path? Second, how can an active path occasionally 

be forced to perform a CIA call which will give its 

processor to another path? We will assume that the external 

interrupts "TIMER" and "PRO\PRO" are associated with each 

processor. A "TIMER" interrupt is sent to its associated 

processor after a fixed interval of time has elapsed. 

Hence, a processor may keep track of how long it has been 

evaluating a particular path. A "PRO\PRO" interrupt is one 

which is sent from one processor to another. We will assume 

that each processor is able to send a "PRO\PRO" interrupt to 

any other processor. A "PRO\PRO" interrupt may be used to 

force a processor to stop evaluating a particular path. 
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The control primitive STOP\PATH may be used to send a 

"PRO\PRO" interrupt to a processor. 

STOP\PATH<-CSUBR(P:ARPTR;NONE) 

STOP\PATH sends a "PRO\PRO" interrupt to the processor which 

is evaluating path P. If P is not currently being 

evaluated, then no action occurs. STOP\PATH may only be 

called from the environment of the CI. This restriction is 

necessary since the assignment of processors to paths can be 

unambiguously determined only by the processor evaluating 

the CI 

We will assume that each processor is enabled for 

"TIMER" and "PRO\PRO" interrupts, viz. 

FNAELEVPRO( "PRO\PRO", 1 ,PRO\PRO\K)RW) 

ENAELE\PRO("TIMER »,2,TIMER\EORM) 

In addition, we will assume that GET\PATH enables each path 

P for the following pseudo interrupts. 

FNABLE\PATH("CI\TO\PATH",1,CI\PATH\PORM,P) 

FNAJSLE\PATH( MTIME\OUT" ,2,TIME\0UT\F0RM,P) 

The four forms are given in Appendix 3-  Their use in 

processor multiplexing will be described informally below. 

In section 2.3.3, we postjoned discussion of the 

structure PIVECT, which is defined in the environment of the 

control interpreter. Here, we describe its use in the 

processing of "PRO\PRO" interrupts. The PIVECT is used 

essentially as a communication vector to allow one processor 
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to specify a list of actions (forms to be evaluated) to be 

taken by another processor, where PIVECT[N] is the list for 

the N th processor. 

Por example, let us assume that the scheduler wishes to 

interrupt an idling processor because some real path 

requires evaluation, let as also assume that the idling 

path for the processor is P, i.e. PAVECT[K].IDLEPATH=P, 

where N is the number of the processor. The scheduler 

executes STOP\PATH(P). A "PROYPRO" interrupt is sent to the 

idling processor. The response form (PRO\PRO\FORM) 

generates a pseudo interrupt *»CI\TO \PATK" for path P. The 

response form CI\PATH\10RM passes control to the CI and 

evaluates all forms on the list PIVECT[PROCNUM]. In 

particular, if the scheduler has previously placed a form on 

the list which when evaluated will set LASTRUN to NIL, then 

upon completion of the CIA call the processor will be 

assigned to an inactive path. Hence, the effect of the 

above scenario is to force an idling processor to pass 

control to the CI where the scheduler can assign it to an 

inactive path. Note that the pseudo interrupt is necessary 

since the processor is to be switched to another path. All 

processor level responses must be completed before the 

switch can be made. 

STOP\PATH may also be used in conjunction with PIVECT 

to force an active path to cease evaluation. An appropriate 
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form can be put on the PIVECT list of the processor which is 

evaluating the path and then a call to STOP\PATH can be 

executed. When control passes to the CI due to the response 

to the "CIXTOVPATH" interrupt, then the evaluation of the 

form on the PIVECT list can take the desired action. For 

example, examine the definition of the procedure SUSPEND in 

section 3.3. If path P wishes to suspend an active path Q, 

then P adds a form to the PIVECT entry for the processor of 

Q and then executes STOP\PATH(Q). When the form is 

evaluated, Q will be suspended and P can be allowed to 

resume execution. 

It is important to note that if a "PRO\PRO" interrupt 

is sent to the processor of a path which is waiting to 

perform a CIA call, then the interrupt response will be 

evaluated before the CIA call is executed. Consequently, it 

is impossible for the processor to be switched to another 

path before the interrupt response is generated. Thus, the 

response will always be generated in the environment of the 

path specified by STOP\PATH. 

We now turn to the problem of how to effect the 

This is not true if the processor is enabled for 
"PRO\PROn interrupts at some lower priority and the CIA call 
in question is executed by the response to a higher level 
processor interrupt. In this case, however, it is still 
impossible for the processor to be switched to another path 
before the response is evaluated due to the constraints upon 
processor level interrupts, c.f. 2.5.3- 
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multiplexing of processors over all paths. The "TIMER" 

interrupt provides a straightforward solution. Whenever a 

timer interrupt occurs, the associated response form 

decrements a count stored in the activation record of the 

path that it is evaluating. When the count reaches zero, 

the pseudo interrupt "TIMEXOUT" is generated. The response 

to the pseudo interrupt performs a CIA call which places the 

path at the end of the IWACTIVEQ and sets LASTRUN to NIL to 

indicate that a new path should be scheduled to run on the 

processor. The count is stored in the integer component 

TICKS\LEFT and is initialized by the scheduler to be the 

number of timer 'ticks' which may occur before the path is 

forced to 'time-out.' As was the case with "PRO\PRO" 

interrupts, a pseudo interrupt is required since the 

processor level response must be completed before the 

processor can be assigned to another path. 

5.6 Data Passage 

In the previous sections, we have neglected to discuss 

the fact that an external interrupt may have data associated 

with it. For example, a light-pen interrupt may specify 

spacial coordinates. We will assume that the information 

associated with a given external interrupt will be stored as 

the value of an associated global variable. As the data is 

completely dependent upon the type of external interrupt and 

upon the implementation of the language, e.g. how I/O 
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transactions are specified, we will not specify the names or 

the modes of these variables. 

The primary issue with respect to external interrupt 

data is whether or not there is a mechanism which assures 

that the data structures involved can be updated safely. 

.For example, suppose that an external interrupt "POO" has 

associated with it some data D. Whenever a "F00" interrupt 

occurs, D is to be added to a list of Ds which are to be 

processed by a path P. After P processes an element of the 

list, it removes the element and processes the next one. 

Some synchronization is required to insure that the list is 

updated safely. The solution is straightforward. The 

response to the "POO" interrupt performs a CIA call to add D 

to the queue and then sends a pseudo interrupt to path P to 

indicate that additional data has arrived. P also performs 

a CIA call to remove elements from the list. Hence, the 

list will be safely updated since only one path at a time 

can pass control to the CI. 

There is one hitch, however! Suppose that the "POO" 

interrupt occurs on the processor which is evaluating the CI 

path during the performance of the CIA called procedure 

which removes elements from the queue. How can the 

information be added safely to the list? Many solutions are 

possible. The simplest one seems to be as follows. If P 

has passed control to the CI to delete an element from the 
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list, then P is not currently being evaluated "by a 

processor. The interrupt response can detect this case by 

using MYPATH and by checking the value of LASTEUW. D can be 

stored directly into path P using one of the control 

primitives described earlier, e.g. PSTORE. When P resumes 

evaluation, it can detect that the data was stored in its 

environment while the CIA call was being evaluated, and 

thus, process it directly. 



2-89 

6. INDEX TO CHAPTER 2 

CIA  41 

CIA\ARG  42 

CIA\EN  42 

CIA\RESUIT  43 

CI\PATH\10RM   83 

CLEAR  31 

CONTPATH  44 

COPY  39 

DELETE\PATH  15 

DEPEKV  34 

]JISALLE\PATK  78 

LISABLE\PRO  71 

DORMANT  24 

DPAP  34 

ELGZLG  15 

ENAPJLE\PATH  77 

ENABI£\PRO  71 

EVAL  40 

GET\PATH  15 

GOTO  37 

INACTIVEQ  48 

INTERRUPT  78 

IN\USE  72 



2-90 

LASTRUN  48 

LEVEL  72 

MASK  81 

MDEP  33 

MOD  45 

MYPATH  39 

NFPROC  49 

NPROC  48 

PAP  17 

PAPQ  17 

PAVECT  49 

PCIAR  41 

PFETCH  26 

PIVECT  50, 83 

PROCNUM  49 

PRO\PRO\FORM   83 

PSTORE  26 

RESPONSE  72 

RETEROM  38 

RUNSET\ELAG  50 

STKEFLG  15 

ST0P\PATH  83 

TERMINATION\IDRM .... 28 



2-91 

TICKS\LEfT  66 

TIMH?\iORM  83 

TIME\OUT\K)RK  83 

TSET  31 

UNMASK  81 

USER\SCHEDULER  49 



Chapter 3 

EXTENSIONS 

In this chapter, we illustrate by example how the 

primitives and framework of MPEL1 can be used to synthesize 

a wide variety of multi-path control structures. The 

examples range in complexity and familiarity from coroutines 

to relatively continuous evaluation. This chapter serves 

two purposes. .First, it reinforces the reader's 

understanding of the multi—path facility by presenting 

examples which have appeared frequently in the literature. 

Thus, it serves as a supplement to the informal description 

of Chapter 2. Second, it demonstrates the power of the 

facility for both the implementation and clarification of 

complex control structures. 

In each of the sections below, the desired multi-path 

behavior is described informally and then a set of MPEL1 

procedures which effect the control structure are presented. 

These  procedures,  described in terms of the control 

primitives, may be viewed as defining extensions to MPEL1 to 
* 

allow  for  the specified control structure.  In some 

sections, we have included a programming  example  to 

Of course, these extensions appear syntactically as 
procedure calls. More convenient notations can be realized 
through the use of a syntax-extension facility, c.f. 1.1.1. 
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illustrate how the extension might be used in practice. 

All of the examples in this chapter assume that the 

control interpreter is being driven by the procedures of 

Appendix 3. Hence, the Cl environment is as described in 

section 2.3.3. 

1. COROUTINES 

A set of paths exhibit a coroutine relationship if only 

one path from the set is being evaluated at any given time, 

c.f. 1.2.1, 2.1.3. The active path may 'resume' another 

path, which implies that control is to be transferred from 

the former to the latter leaving the evaluation state of the 

former intact. Evaluation of the latter path proceeds from 

the point it was at the last time it was active. Here, we 

will define the control functions COCALL, which is used to 

initialize a coroutine path, and RESUME, which is used to 

transfer control between coroutine paths, and demonstrate 

their use in solving a simple problem. 

COCALL takes as argument a procedure call to be 

evaluated in a new path. It creates a new path, uses PAP to 

set up the procedure call and a dummy call to RESUME, and 

returns a pointer to the new path. 
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COCALL <- EXPR(COCALLP:EORM UNEVAL; ARPTR) 
BEGIN 

DECL P:ARPTR EYVAL GET\PATH(1); 
PAP(COCALLP.P); 
PAPQ(RESUME(NIL,NIL),P); 
NT Dummy call to RESUME for first 

resumption; 
P 

END; 

RESUME takes two arguments. The first specifies the 

path (PATH) to which control is to be passed. The second 

specifies the value (V) to be returned from the call to 

RESUME contained in the environment of PATH. RESUME PAP's a 

call to RETEROM into the environment of PATH. The procedure 

to be returned from is RESUME, i.e.  the call to RESUME in 

the environment of PATH, and the value to be returned is V. 

RESUME then transfers control to PATH by CIA calling an 

explicit procedure which simply sets LASTRUN to PA1H so that 

when control leaves the CI, PATH will be evaluated instead 

of the original path. When PATH is evaluated, the RETEROM 

is executed and V is returned as the value of the call to 

RESUME in the environment of PATH. Note that the original 

path is left in a state such that when another path tries to 

resume it, then the call to RESUME just described is the one 

which will be returned from. Also note that the first time 

a COCALLed path is resumed a return is made from the dummy 

call to RESUME and then the COCALLed procedure call is 

evaluated. 
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RESUME <- EXPR(PATH:ARPTR, V:ANY; ANY) 
BEGIN 

PAPQ(RETEROM("RESUME",V),PATH); 
CIA(EXPR(P:ARPTR; NONE)(LASTRUN<-P),PATH) 

END; 

Consider the following problem: given two binary trees 

x and y, where x and y have the same number of nodes but not 

necessarily the same structure, walk each tree in prefix 

order and assign to each node of y two times the node value 

of the corresponding node of x. E.g,. 

figure 3-1. Trees x, y and modified y 

The data structure definitions are: 

TREE <- PTR(NODE); 

NODE <- STRUCT(LS:TREE, RS:TREE, NOLE\VAL:INT); 

To solve this problem, we will define a procedure 

TREE\DOUBLE which will create two new paths Px and Py (using 

COCALL) making a total of three paths, including the path in 

which TREE\DOUBL£ is called (which we will refer to as Po.) 

Px (Py) will perform the prefix walk of tree x (tree y.) Po 

will RESUME Px (Py) when it requires the next node of tree x 
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(tree y). When RESUMEd, Px (Py) will walk to the next node 

of the tree and then RESUME Po, passing it a pointer to the 

node. Note that since Px and Py are separate paths they 

retain their internal state upon returning the next node to 

Po. 

TREE\IX)UB1E is defined as follows. 

TREE\DOUBLE <- EXPR(X:TREE,  Y:TREE;  TREE) 
BEGIN 

DEC! PX,PY:ARPTR; 
DFCL NX,NT:TRIE 
PX <- COCALL(V.ALK(X,MYPATH)); 
PY <- COCALLCV'ALKCYjMYPATh1)); 

NT Create the paths Px and Py 
and set up calls to WALK 
in their environments; 

LOOP: NX <- R£SUME(PX,NIL); 
NY <- RESUME(PY,NIL); 

NT Resume Px to get the next 
node of x, which is then 
bound to NX. The result of 
RESUME is a pointer to the 
next node. Do the same 
for Py; 

NX=NII => Y; 
NT Px returns NIL 

when all nodes have been 
walked; 

VAL(NY).NODE\VAL <- 2*VAL(NX).N0DE\VAL; 
NT Make the node of y be two 

times the node of x; 
GOTO LOOP 

END; 

The procedure WALK is defined as follows: 

WALK <- EXPR(T:TREE, COPATH:ARPTR; NONE) 
BEGIN 

WALK1(T);  NT Walk the tree; 
RESUME(COPATH,NIL) 
NT Resume Po with NIL to indicate 

that all nodes have been processed; 
END; 

where 
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WALK1 <- EXPR(T:TREE; NONE) 
BEGIN 

T=NIL => NOTHING; 
" RESUME('COPATH,T); NT Resume Po with T; 
WALKI(T.LS);     NT Walk the tree via 

recursive calls; 
WALKI(T.RS) 

END; 

2. SYNCHRONIZATION 

In section 1.2.1, we indicated that semaphores and 

their associated operators (P and V) may be used to 

synchronize parallel processes, but deferred explanation. 

Here, we will show how P and V may be defined in MPEL1. 

As described by Dijkstra [Di68a], a semaphore is a 

'special-purpose' integer upon which only two operations are 

valid - P and V. The V operation increases the value of the 

semaphore by 1 in a single indivisible operation. The P 

operation decreases the value of a semaphore by 1 as soon as 

the resulting value would be non-negative (>0). Hence, a P 

operation on a non-positive (_<0) semaphore cannot be 

completed until another process performs a V operation on 

the same semaphore. The P operation, therefore, represents 

a potential delay in the execution of a process. Note that 

if some N processes all perform a P operation on a semaphore 

whose value is zero, and some other process performs a V on 

it, then only one of the N processes will be allowed to 

proceed. 
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In MPEL1, a semaphore may be defined as a pointer to a 

STRUCT consisting of two components, viz. 

SEM <- PTR(SEM/ELT); 

SEM\ELT <- STRUCT(COUNT:INT,WLIST:ARQFTR); 

The first component COUNT is an integer that specifies the 

semaphore's    value.       The    second    component    is    a queue of 

ACTRCs (linked together through their NEXT components) which 

corresponds to those paths which have started, but not yet 

completed, P operations on the semaphore. Hence, the WLIST 

holds all paths whose progress has been delayed due to the 

non-positivity of the semaphore. Here,  the indivisibility 

of P and V is effected by performing the operations in the 

environment of the CI, where the data structures can be 

safely modified.  The MPEL1 definitions of P and V are as 

follows: 

P<-EXPR(X:SEM; NONE) 
BEGIN 

DEC! Y:SEM\ELT BYREF VAl(X): 
MYPATH H  PCIAR => CIA(,,P",XJ; 
Y.COUNT GT 0 => Y.COUNT <- Y.COUNT-1; 
ENTER!(LASTRUN, Y.WLIST); 
LASTRUN <- Nil 

END; 

V <- EXPR(X:SEM; NONE) 
BEGIN 

DEC! Z:ARPTR; 

The mode ARQPTR is defined as a STRUCT(.FIRST :ARPTR, 
LAST:ARPTR),c.f. 3-3.3. 

** 

Recall that PCIAR points to the CI's ACTRC and that 
ENTER! adds the path which is its first argument to the end 
of the queue specified by its second argument, c.f. 
Appendix 3. 
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DECL Y:SEM\ELT BYREE VAL(X): 
MYPATII # PCIAR => CIAC'V'SX); 
Y.COUNT <- Y.COUNT+1; 
Y.WLIST.PIRST=NIL => NOTHING; 

NT Complete the P operation for 
one delayed path; 

Y.COUNT <- Y.COUNT-1; 
Z <- Y.WLIST.FIRST; 
Y.WLIST.PIRST <- Y.WLIST.PIRST.NEXT; 
Y.WLIST.PXRST=NIL -> Y.WLIST.LAST <- NIL; 
ENTERL(Z, INACTIVEQ); 
RUNSET\PLAG <- TRUE 

END; 

A P operation is realized by CIA calling the same 

procedure P with the SEM as argument.  Hence, if a path 

executes P(S), F(S)  is also executed in the CI.  Here, if 

the count is positive, then it is decremented by one and the 

path is allowed to continue. Otherwise, the path is entered 

on the semaphore's WLIST and LASTRUN is set to NIL to 

indicate that the path cannot proceed. The scheduler will 

choose some other path to run.  Thus,  the P operation 

performed by the path is not allowed to 'complete.' 

The V operation causes V(S) to be applied in the CI 

environment. Here, the count is incremented by one. If the 

WLIST is empty, then no further action is taken. Otherwise, 

the procedure 'completes' the delayed P operation for some 

path on the WLIST by decrementing the count, removing the 

path from the list, adding the path to the inactive set so 

that it will be scheduled, and setting RUN£ET\FLAG to TRUE 

to indicate to the scheduler that there exist additional 

paths to be run. 
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If a semaphore, say S, is initialized to 1, then it may 

be used to control a single—access resource, provided that 

all paths perform a P(S) before accessing the resource and a 

V(S) upon completion. Hence, once a path has performed a 

P(S) all others will be prevented from accessing the 

resource until the corresponding V(S) is performed. If, 

however, a semaphore S is initialized to some n>1, then n 

processes may perform P(S) before the semaphore becomes 

non-positive. A semaphore initialized in this way can be 

used to represent the n—fold availability of a resource, 

(e.g. n tape drives.) 

Saul and Kiddle [Sa71] have shown that if P and V are 

allowed to return values, then the number of different 

semaphores and the number of references to semaphores in a 

program can be reduced. Por example, a list of free 

'buffers' could be associated with a semaphore and the 

semaphore initialized to the number of buffers. The P 

operation removes one buffer from the list and returns a 

pointer to the buffer as its value. The V operation takes 

an additional argument which is a pointer to a buffer to be 

returned to the free list. Hence, a single extended 

semaphore is used both to maintain a count of the free 

buffers and to synchronize access to a free list as opposed 

to having one semaphore maintain the count and a second 

synchronize access. The definition of extended semaphores, 

as described above, is straightforward in MPEL1.  The mode 
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SEi-i\ELT can "be modified to include a pointer to the list and 

the definition of P (V) can be changed to remove (return) 

buffers to the list while control resides in CI. 

Variations on P and V, such as wait and cause in 

0REGAN0 [Ee71], can be constructed in MPEL1 by defining the 

appropriate data structures and then using the CI to provide 

indivisble operation coupled with a mechanism for indicating 

that a previously blocked path may now continue execution. 

3. PARALLEL PROCESSING 

In this section we will discuss a set of procedures 

which may be used to manage paths which are being evaluated 

concurrently, i.e. as asynchronous processes. These 

include procedures which allow for the creation, 

synchronization, suspension, and termination of parallel 

paths. 

Por this section we will assume that the following 

components have been added to the definition of ACTRC, i.e. 

they are extended components, c.f. 2.2.1. 

ACTRC<—STRUCT( 
PAL:STRUCT(OWNER:ARPTR,WLIST:ARQPTR), 

If two paths are to be evaluated concurrently, then 
they may be evaluated simultaneously, sequentially in any 
order, or in an interleaved fashion. In particular, no 
assumption is made as to the relative speeds of (the 
evaluations of) the paths. This assumption is consistent 
with standard definitions of parallel processing [Li68a]. 
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PV ALRET: BOOL, PVAI,Q:ARQPTR,PAVAL: REP, ...); 

PAL is a path-access-lock which is used to synchronize 

access to the activation record and environment of the path. 

PVALRET is TRUE if and only if the path has returned a 

value. PVALQ is a queue of paths waiting for the path to 

return a value. PAVAL is a pointer to the 'value' of the 

path. These components will be discussed in more detail 

below. 

The procedure CREATE takes a single argument which is a 

procedure call to be evaluated asynchronously with respect 

to the current path. CREATE allocates a new path, PAPs the 

procedure call into its environment and then enters the path 

on the INACTIVFQ so that it will be assigned to a processor. 

Note that RUNSFT\FLAG is set to TRUE to inform the scheduler 

that additional paths may be scheduled, c.f.  2.3.3.  The 

TERMINATI0N\PORM will be discussed later in this section. 

The current path and the CREATEd path are  evaluated 

concurrently. 

CREATE<-EXPR(CREATEP:PORM UNEVAL; ARPTR) 
BEGIN 

DECL CREATEP:ARPTR; 
CREATEP <- PAP(CREATEP, GETXPATH(1)); 
CREATEP.TERMINATION\PORM <- 

QUOTE(TERMV(LAST\VALUE,MYPATH)); 
NT See the discussion of TERMV below; 
ENTER\INACTIVBQ(CREATEP); 
CREATEP 

END; 

ENTER\IKACTlVEQ(P:ARPTR;NONE) 
BEGIN 

MYPATK//PCIAR => CIAC'ENTERXINACTIVEQ", P); 
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Ei,TERL(P,INACTIV£Q); 
RUNSET\PLAG <- TRUE 

END; 

The procedure RESUME, which is used to transfer control 

between coroutines, uses the primitive PAP without 

determining if the path PAPed into is active or not. RESUME 

assumes that the path is not active. This assumption is 

reasonable since in a coroutine relationship only one path 

is active at a time. With asynchronous paths, however, the 

above assumption is not valid - two paths may be active 

simultaneously. If a path attempts to PAP' a procedure into 

the environment of an active path, then an error occurs, 

c.f. 1.1.3- An error also occurs if two paths 

simultaneously attempt to PAP procedures into the 

environment of a third. In general, a mechanism is required 

which allows one path to examine and modify another one 

without interference from any other concurrent path. In 

addition, a control function is required which will force a 

path to become not active and prevent it from becoming 

active for some period of time. 

We could associate a binary semaphore, i.e. one whose 

COUNT is initialized to 1, with each path to synchronize 

access. When one path wishes to access another, then it 

performs a P operation on the path's semaphore, modifies the 

path, and then performs a V operation to release the path. 

In the last section, however, we observed that extended 

semaphores are sometimes more convenient than pure ones. 
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Here, although semaphores are sufficient to provide the 

desired synchronization, they are deficient in one respect: 

the semaphore does not specify who has access to the path. 

It only records the fact that some path is accessing it. 

The lack of information can be inconvenient in certain 

situations. For example, if a path PO passes a path P1 to 

some procedure f, viz. 

f(pD 

and f must modify the environment of P1, then f has no way 

of knowing whether or not PO already has access to the path. 

In particular, if PO has access to P1, having performed a P 

on the appropriate semaphore, and f performs a P on the same 

semaphore, then PO will be permanently blocked. Hence, f 

would have to take a second argument which specifies whether 

or not PO already has access to P1. 

In lieu of P and V, we will use the procedures LOCKP 

and UNLOCK! to synchronize access to a path. LOCKI takes an 

ARPTR as argument and returns FALSE if the path executing 

LOCKP already has access to the path. Otherwise, it returns 

TRUE as soon as the path may have access. Hence, a 

procedure can determine whether or not the path in which it 

is called already had access at the time it was called. 

UNLOCKP allows some other path to have access to the path 

which is the argument to UNLOCKP. LOCKP and UNLOCKP use the 

PAL field of the activation record which is a structure that 

consists of an OWNER field and a WLIST (as in a SEM\ELT.) 
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The OWNER field is either NIL (if no path has access) or is 

the ARPTR of the path which has access. LOCKP and UNLOCKP 

are defined as follows. 

LOCKP<- EXPR(P:ARPTR; BOOL) 
BEGIN 

DECL OWNER:ARPTR BYREF P.PAL.OWNER; 
MYPATH#PCIAR => 

BEGIN 
OWNER=MYPATH => FALSE; 
NT Already locked by this path; 
CIA("LOCKP", P); 
TRUE 

END; 
BEGIN 

OWNER=NIL =>  OWNER<-LASTRUN; 
ENTERL(LASTRUN,P.PAL.WLIST); 
LASTRUN <- NIL 

END; 
TRUE 

END; 

UNLOCKP <- EXPR(P:ARPTR; NONE) 
BEGIN 

DECL OWNER:ARPTR BYREF P.PAL.OWNER; 
DECL Q:ARPTR; 
MYPATE §  PCIAR => 

BEGIN 
OWNER=NIl => NOTHING; 
CIA("UNLOCKP",P) 

END; 
(Q<-P.PAL.WLIST.FIRST)#NIL => 

BEGIN 
REMOVE(Q.P.PAL.WLIST); 
NT c.f. Appendix 3; 
ENTERL(Q, INACTIVEQ); 
NT Allow path to be scheduled; 
RUNSET\FLAG <- TRUE 
P.PAL.OWNER <- Q; 
NT Q has access to P; 

END; 
OWNER <- NIL 
NT No paths waiting; 

END; 

Once a path PC has LOCKPed another, say P1, no    other 

path can access P1. Before PO can modify PI, however, it 

must insure that P1 is not active and that it will not 
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become active while being modified. The procedure SUSPEND 

may be used to achieve this effect. If the path to be 

suspended is not active, then SUSPEND simply sets the 

DORMANT field of its ACTRC to TRUE to indicate to the 

scheduler that the path should not be scheduled, c.f. 

2.2.4. If the path is active, then SUSPEND sends a 

"PRO\PRO" interrupt to the processor which is evaluating the 

path and adds a form to the appropriate PIVECT entry. The 

form will be evaluated when the processor transfers control 

to the CI due to the "CIXTOXPATH" pseudo interrupt, c.f. 

2.5.5. The evaluation of the form causes the DORkANT field 

of the path being suspended to be set to TRUE, and allows 

the suspending path to continue execution. 

SUSPEND <- EXPR(P:ARPTR; NONE) 
BEGIN 

DECL B:BOOL; 
DECL Q:ARPTR; 
DECL PROCrINT; 
MYPATE H  PCIAR => 

BEGIN 
B <- LOCKP(P); 
NOT P.DORMANT -> CIA("SUSPEND",?); 
B -> UNIOCKP(P) 

END; 
LASTRUN=P => 

BEGIN 
P.DORMANT <- TRUE: 
ENTER\INACTIVEQ(P); 
UNLOCKP(P); 
LASTRUN <- NIL 

END; 

NT Determine if P is active 

POR I <- 1,..., NPROC TILL PR0O0 DO 
[) PAVECT[I].CURPATH = P => PROC<-I (]; 
PKOC = 0 => P.DORMANT<-TRUE; 
NT P is not active; 
PIVECT[PROC] <- 

CONS(LIST("SUSPREQ", 
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ALLOC(REF LIKE 
ALLOC(ARPTR LIKE LASTRUN))), 

PIVECT[PROC]); 
NT The form is (SUSPREQ P), where P 

is the suspending path; 
STOP\FATH(P); 
LASTRUN <- NIL 

END; 

SUSPREQ <- EXPR(P:ARPTR; NONE) 
BEGIN 

ENTER\INACTIVEQ(P); 
LASTRUN.DORMANT <- TRUE: 
ENTER\INACTIVEQ(LASTRUN); 
LASTRUN <- NIL 

END; 

CONS <- EXPR(A:EORM, B:EORM; EORM) ALLOC(DTPR 01 A,B); 

LIST <- EXPR(E:FORM LISTED; FORM) (LIST1(E)); 

LIST1 <- EXPR(E:EORM; EORM) 
BEGIN 

E = NIL => NIL; 
CONS(EVAL(E.CAR),LIST1(E.CDR)) 

END; 

If the path (PO) calling SUSPEND has already LOCKPed 

the path to be suspended (P1) and P0#P1, then upon return 

from SUSPEND PO still has access to the suspended path. If, 

however, P0=P1 (self-suspension,) then SUSPEND will UNLOCKP 

the path. 

The procedure CONTINUE allows a SUSPENDed path to 

continue execution. CONTINUE simply sets the DORMANT field 

of the ACTRC to EALSE. If the path is on the INACTIVEQ then 

it will be scheduled as usual. Otherwise, it will only 

continue execution when it is put on the INACTIVEQ. 

CONTINUE leaves the PAL in the state it was in when CONTINUE 
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was called.  CONTINUE returns TRUE or FALSE as the path was 

or was not suspended. 

CONTINUE <- EXPR(P:ARPTR; BOOL) 
BEGIN 

DECL R, B:BOOL 
MYPATH#PCIAR => 

BEGIN 
R <- 

BEGIN 
B <- LOCKP(P); 
NOT P.DORMANT => FALSE; 
CIAO'CONTINUE'SP); 
TRUE 

END; 
B -> UNLOCKP(P); 
R 

END; 
P.DORMANT <- IALSE 

END; 

Usin/: the control procedures described above,  we can 

now define PAPPLY - a procedure which can be used to PAP a 

procedure call into the environment of a concurrent path. 

PAPPLY uses LOCK! to obtain access to the path.  It then 

SUSPENDS the path if necessary, PAPs the procedure call, and 

then allows the path to continue execution if it was not 

suspended previously. 

PAPPLY <- EXPR(PAPPLYF:FORM UNEVAL; PAPPLYP:ARPTR; ARPTR) 
BEGIN 

DECL PAPLYB, PAPPLYSB:BOOL; 
PAPPLYB <- LOCKP(PAPPLYP); 
NOT PAPPLYP.DORMANT -> 

BEGIN 
PAPPLSB <- TRUE: 
SUSPEND(PAPPLYP) 

END; 
IAP(PAPPLYF, PAPPLYP); 
PAPPLYSB -> CONTINUE(PAPPLYP); 
PAPPLYB -> UN10CKP(PAPPLYP) 

END; 

It is sometimes useful for a path to 'return' a value. 
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For example, one path might CREATE a set of paths to be 

evaluated concurrently, wait for all of them to terminate 

and then use the values computed by the paths. The 

procedures WAITV and TERMV, in conjunction with the ACTRC 

components PVALRET, PVALQ, PAVAL, can be used to wait for a 

path's value and to specify the value to be returned by a 

path upon termination, respectively. 

WAITV examines the PVALRET component of the path X. If 

it is TRUE, then the path has terminated and the value 

associated with the path, which is referenced by the PAVAL 

component, is returned immediately. Otherwise, X has not 

yet terminated. In this case, the current path is queued on 

the PVALQ of X to indicate that it is waiting for X's value 

and LASTRUN is set to NIL to indicate that the current path 

is blocked.  WAITV uses LOCKP to insure that X does not 

terminate while it is examining the ACTRC. 

WAITV <- EXPR(X:ARPTR ;REE) 
BEGIN 

DECL Y:REE; 
DECL E:BOOL; 
MYPATH # PCIAR => 

BEGIN 
L: B<-LOCKT(X); 

X.PVALRET => 
BEGIN 

Y<-X.PAVAL; 
B->UNLOCKP(X); 
Y 

END; 
CIA("WAITVM,X); 
GOTO L 

END; 
ENTERICLASTRUN,X.PVALQ); 
NT Add the path to the queue of paths 

waiting for the value of X; 
UNLOCKP(X); 



3-19 

NT Allow other paths to access X; 
LASTRUN <- NIL 

END; 

TERMV can be used to specify that a path P is to be 

terminated and that a value V is to be the value associated 

with the path. TERMV sets PVALRET to TRUE to indicate that 

a value has been returned. If the mode of V is not of class 

PTR, then V is copied into the heap and the value of the 

path is a pointer to the copy. In any case, a pointer to 

the path's value is stored in PAVAL. All paths waiting for 

the value (and termination) of the path are added to the 

INACTIVEQ so that they may continue execution. DELETE is 

called to indicate that the path is no longer eligible for 

evaluation. TERMV uses LOCKP to insure that no path 

attempts to WAITV for the path's value while it is in the 

process of terminating the path. 

A CREATEd path may return a value implicitly by exiting 

the outermost procedure call in its environment, in which 

case the value returned is the result returned by the 

procedure.   When control underflows in this way,  the 

TERMINATION\FOPM  'TERMV(LASTVALUE,  MYPATH)' is evaluated 

which produces the desired effect, c.f. 2.2.6. 

TERMV <- (V:ANY, P:ARPTR; NONE) 
BEGIN 

DECL Q:ARPTR; 
DECL B:BOOL; 
B <- LOCKP(P) 
P // MYPATE -> SUSPEND(P): 
P.PVALRET => TERM\ERROR(); 
V # NIL -> 

P.PAVAL <- 
BEGIN 
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MDCV^CLASS^'PTR" => V; 
ALL0C(MD(V) LIKE V) 

END; 
P.PVALRET <- TRUE; 
Q <- P.PVALQ.FIRST; 

* 

WHILE Q // NIL DO 
BEGIN 

REMOVE(Q, P.PVALQ); 
ENTER\IMCTIVEQ(Q); 
Q<-P.PVALQ.FIRST 

END; 
P/'MYPATH => r)DELETE(P); B => UNLOCKP(P) (]; 
DELETF,(P) 
NT DELETE is described below; 

END; 

The procedure DELETE may be used to indicate that a 

concurrent path is no longer eligible for evaluation. 

DELETE suspends the path if necessary, and then calls 

DELETE\PATH.  Self-deletion always leaves the PAL unlocked 

so that other paths may access the deleted path's ACTRC. 

DELETE <- EXPR(P:ARPTR; NONE) 
BEGIN 

DECL B:B00L; 
MYPATH//PCIAR => 

BEGIN 
B <- LOCKP(P); 
P//MYPATH -> SUSPEND(P); 
CIA(,,DELETE,,,P); 
£ -> UNLOCK(P) 

END; 
DELETE\PATH(P); 
P=LASTRUN => 

BEGIN 
P.DORMANT <- TRUE; 
UNLOCKP(P); 
LASTRUN <- NIL 

END 
END; 

Since the procedure CREATE uses the control primitive 

PAP to initialize the computation to be performed by the 

'WFILE f DO g' is an abbreviation for an iteration with 
a zero step, i.e. it is equivalent to 'IQR  I<-1,1, ..., N 
WHILE f DO g . 
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concurrent path, there are no restrictions placed upon the 

evaluation of paths so CREATEd. In particular, there are no 

constraints placed upon the intra-path control of an 

individual path. Such freedom is feasible since no path can 

directly reference the environment of another. All shared 

data lies in the heap. 

A fork statement, c.f.  1.2.1, can be used to produce a 

multi-path organization in which one control path creates a 

set of paths to be evaluated concurrently and the creator 

path resumes execution only after all PORKed control paths 

have completed their execution. In this restricted control 

regime the PORKed paths may obtain references to the 

environment of their creator  since  the  creator  is 

constrained to wait for their termination. The procedure 

PORK can be used to effect this organization. PORK takes a 

list of procedure calls as its single argument. Por each 

element of the list it allocates a dependent path, c.f. 

2.2.8, and DPAPs the procedure call into the path. The new 

paths are put on the INACTIVEQ so that they will be 

evaluated concurrently and then PORK waits for all of the 

paths to terminate.  PORK returns  a  ROW(REF)  whose 

components are the values returned (in the sense of WAITV 

and TERMV) by the PORKed paths. 

PORK <- EXPR(PORKL:PORM LISTED; ROW(REP)) 
BEGIN 

DECL F0RKN:1NT BYVAL LENGTHX(lORKl); 
DECL PORKI:ROV/(ARPTR) BYVAL 

CONST(ROW(ARPTR) SIZE PORKN); 
DECL PORKV:ROW(REF) BYVAL 
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CONST (ROW (REP) SIZE FORKN); 
FOR FORKK-1, ..., FORKN DO 

BEGIN 
FORKP[FORKI]<-DPAP(FORKL.CAR, 

MDEP(GET\PATK(1))); 
FORKP[FORKI] .TERMINATION\FORM<- 

QUOTE(TERMV(LAST\VALUE,MYPATE)); 
ENTER\IMCTIVEQ(PORKP[PORKI] ); 
NT Start the path; 
FORKL<-FORKL.CDR; 
NT Next procedure call 
FORKL#NIL => NOTHING; 
FOR K-1 ,..., FORKN DO 
FORKV[I]<-WAITV(FORKP[I]) 
NT Wait for all paths to terminate; 

END; 
FORKV 
NT Return the ROW of values; 

END; 

LENGTHX <- FXPR(F:FORM;INT) 
BEGIN 

F = NIL => 0; 
1 + LENGTEL(F.CDR) 

END; 

The advantage of the FORK organization is that it 

allows an argument to a concurrent process to be passed 

BYREF, even if the argument is a stack object. Hence, a 

path can construct a 'large object' on its stack and then 

pass it to concurrent paths without causing the object to be 

copied. With CREATE it would be necessary to allocate the 

object in the heap in order to allow concurrent paths to 

access it. For example, suppose we would like to compute 

C <- (A MM B) MA (B MM A); 

where A, B and C are NxN matrices and MM and MA represent 

matrix multiplication and addition, respectively. Let us 

also assume that we would like to perform the two matrix 

multiplications concurrently and to compute the sum of the 
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two intermediate matrices as soon as each row is available. 

We will create 3 FCRKs. The first fork will compute B MM A, 

the second will compute A MM B, and the third will compute 

the sum.  The first two forks will signal the third, using 

semaphores, every time they have completed a row.  Assuming 

that M <- ROW(N,ROW(W,INT)) and that N, A, B and C are 

defined in the environment, we have 

BEGIN 
DECL LA,AB:M; 
DECL SAB,SBA:SEM BYVAL ALLOC(SEM\ELT); 
FORK(MUX( A,B,AB,SAB), 

MUL(B,A,BA,SbA), 
SUM(C,AB,BA,SAB,SBA)) 

END; 

where 

MUL <- FXPR(X:M, Y:M, Z:M, S:SEM; NONE) 
BEG IK 

FOR K-1,...,N DO 
EOF. J<-1,...,N DO 

BEGIN 
Z[I][J1 <- 

BEGIN 
FOR L<-1,...,N DO 

S<-S + X[I][L] * Y[L][J]; 

END; 
v(s) 
NT Indicate row completed; 

END 
END; 

and 

SUM <- EXPR(RES:M, X:M, Y:M, SX:SEM, SY:SEM; NONE) 
BEGIN 

FOR I <- 1,...,N DO 
BEGIN 

p(sx)* 
NT Wait for row of X; 
P(SY); 
NT wait for row of Y; 
NT Row I is ready; 
FOR J <- 1,...,N DO 

RES[I][J] <- X[I][J]+Y'.r/".J] 
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END 
END; 

Since FORK is used, the matrices A, B, C and AB are not 

copied when passed as arguments to the concurrent paths. 

4. SIMULATION 

In this section, we will present a set of MPEL1 

procedures which may be used to effect a clock driven 

simulation. We will use the organization and terminology of 

the simulation language SIMUA [Da66]. Hence, this section 

also demonstrates how the control structure of an existing 

language may be synthesized using the primitives and 

framework of MPEL1. 

In SIMULA, c.f 1.2.1, a simulation consists of the 

processing of a time ordered sequence of events (called 

event notices.) Associated with each event notice is the 

system time at which it is to occur and a single process 

whose evaluation constitutes the 'processing' of the event. 

Processes may delete event notices, thereby canceling the 

event, and schedule new events by including an event notice 

(with an associated process) in the sequence of event 

notices. Although many events may be set to occur at the 

same system time, the associated processes are evaluated 

sequentially. Hence, only one process is active at any 
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given time. 

Before we can be more precise, we must introduce some 

data definitions. 

SEPTR <- PTR(SET\DESC,  ELT\DESC); 

SET\DESC <- STRUCT(SUC:SEPTR,  PRED:SEPTR); 

ELE\DESC <- STRUCT(SUC:SEPTR, 
PRED:SEPTR, 
PROCESS:ARPTR); 

SET <- PTR(SET\EESC); 

ELEMENT <- PTR(ELE\DESC); 

EVENTN <- PTR(EVNT\LESC); 

EVNT\DESC <- STRUCT (EV TIME :INT, 
NEXTEV:EVENTN, 
PEEVEV: EVENTN, 
ELM:ELEMENT); 

ACTRC <- (..., EVM:EVENTH, ...); 

NT EVN is an extended component; 

A SET describes an ordered sequence of set ELEMENTS. 

There is one permanent member of the set, namely, the 

SET\DESC. If S is a SET, then S is empty if and only if 

S.PRED=S.SUC=S. Otherwise, S and the ELEMENTS of the set 

form a doubly-linked circular list. Each ELEMENT contains a 

PROCESS field which points to the ACTRC of a path. Eence, 

we may say that a SET describes a set of processes. Since 

the association is indirect (through an ELT\DESC) a process 

may be a member of more than one set. An ELEMENT, however, 

may be a member of only one set at a time. 
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We define four procedures which operate on sets. FIRST 

and LAST return the first and last elements of a set, 

respectively, or MIL if the set is empty. INCLUDE adds an 

ELEMENT to a SET (at the  'end') and EXTRACT removes an 

ELEMENT from a SET. 

EIRST <- EXPR(S:SET; ELEMENT) 
BEGIN 

S.SUC=S => NIL; 
S.SUC 

END; 

LAST <- EXPR(S:SET, ELEMENT) 
BEGIN 

S.PRED=S => NIL; 
S.PRED 

END 

INCLUDE <- EXPR(E:ELEMENT, S:SET; NOME) 
BEGIN 

E.PREL <- S.PRED; 
E.SUC <- S; 
S.PRED.SUC <- E; 
S.PRED <- E 

END 

EXTRACT <- EXPR(E:ELEMENT; NONE) 
BEGIN 

E.PRED=E.SUC=NIL => NOTHING; 
E.PRED.SUC <- E.SUC; 
E.SUC.PREP <- E.PRED 

END 

An event-notice (EVENTN) is a pointer to an object of 

mode EVNT\DESC. Associated with each EVENTN is the system 

time at which it is to occur (EVTIME), pointers to the next 

and previous event notices or NIL if the event notice is the 

last or current one, and an ELEMENT whose PROCESS field 

gives the process (path) to be evaluated.  The global 

To shorten the discussion, we will not distinguish 
between - ointers and the objects to which they point. 



3-27 

variable CURRENT, which is of mode EVENTN, references the 

doubly-linked list of event notices which is ordered 

according to non-decreasing: values of the EVTIME components. 

This list, called the sequencing set (SQS), describes the 

events which constitute the simulation. If a process is not 

referenced from the SQS, then it is said to be passive and 

its EVN component is Nil. Otherwise, the EVN component 

points to the event notice which references the process, i.e 

if C is an EVENTN in the SQS then 

C.ELE.PROCESS.EVN = C 

Hence, a process may be associated with at most one event 

notice. 

The process currently being evaluated is the one 

referenced by CURRENT.ELE.PROCESS. The current system time 

is CURRENT.EVTIME. The NOPIX operators CUR and TIME return 

the ELEMENT and the system time associated with the CURRENT 

event notice, respectively.  The time reference of a EVENTN 

may be obtained using the procedure EVTIME. 

CUR <- EXPR(;ELEMENT) CURRENT.ELM; 

EVTIME <- EXPR(E:ELEMENT; INT) 
BEGIN 

E.PROCESS.EVN=NIL => 0; 
E.PROCESS.EVN.EVTIME 

END; 

TIME <- EXPR(;INT) (EVTIME(CUR)); 

We may now describe the procedures which operate on the 

SQS, and thus provide the means whereby processes can affect 

the scheduling of events. In all cases, the procedures take 
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ELEMENTS as arguments. Hence, references to event notices 

or processes are always indirect. 

The procedure CANCEL  removes  the  event  notice 

associated with the referenced processes (if one exists) 

from the SQS, thereby canceling the event and making the 

process passive.  TERMINATE has the same effect as CANCEL, 

except that the process may never be reactivated, i.e.  it 

is ineligible for evaluation in the sense of DELETE\PATEI. 

CA,.CEL(CUR) will cause control to be transferred to the next 

process on the SQS; the associated event notice becomes 

CURRENT.  In this case, CANCEL uses the control primitive 

CIA to transfer control to the appropriate process. 

CANCEL <- EXPR(i:ELEMENT; NONE) 
BEGIN 

E.PROCESS.EVN=NIL => NOTHING; 
DELEVN(E.PROCESS.EVN) => CIA("PASS",CURRENT) 

END 

PASS <- EXPR(EV:EVENTN; NONE) 
BEGIN 

LASTRUN <- EV.ELM.PROCESS; 
LASTRUN=NIL => SIMERRQR() 

END; 

DELEVN <- EXPR(EV:EVENTN; BOOL) 
BEGIN 

EV.PROCESS.EVN <- NIL; 
NT Path is passive; 
RECURRENT => [)EV.PREVEV.NEXTEV<-EV.NEXTEV; 

EV. NEXTEV=NIL=> FALSE.; 
EV.SUC.PREVEV<-EV.PRFVEV; 
FALSE(]; 

CURRENT <-  CURRENT.NEXTEV; 
NT CURRENT is deleted; 
CURRENT. PREVX-NIL; 
TRUE 
NT Return TRUE if the current EVEN IN 

has been deleted; 
END; 
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TERMINATE <- EXFR(E:ELEMENT; NONE) 
BEGIN 

E.PROCESS.EVN=WIL => NOTHING: 
DELEVN(E.PROCESS.PVN) => CIA(,,TERKPASS", CURRENT); 
CIA ( "EELETEXPATH1', E. PROCESS) 

END; 

TERMPASS <- EXPR(EV: EVENT; NONE) 
EEGIN 

DFLETF\PATH(LASTRUN); 
NT Path may not be reactivated; 
PASS (IV) 

END; 

The procedure NEWFROC takes a procedure call to be 

evaluated in the environment of a new process (in the sense 

of PAP.) NFWPROC creates a new ELEMENT and a new path and 

uses PAP to initialize the environment of the path. The 

TERMINATION\PORM is set to be TERMINATF(CUR).  Hence, exit 

from the PAPed procedure will cause the process to be 

TERMINATEd.  NEWPROC returns the ELEMENT which references 

the new passive process. 

NEWPROC <- FXPR(F:FORM UNEVAL; ELEMENT) 
BEGIN 

DECT, F:ELEMENT BYVAL 
ALLOC(ELE\DESC OF NIL,NIL,GET\PATH(1)); 

E.PROCESS.TERMINATION\FORM <- 
QUOTE(TERMINATE(CUR)); 

PAP(F,E.PROCESS); 
E 

END; 

The two procedures, ACTIVATE and REACTIVATE may be used 

to schedule future events.  In both cases,  the first 

argument F (an ELEMENT)  specifies the process to  be 

associated with the new event.  In the former case, the 

process must be passive.  Otherwise, no scheduling takes 

place.  In the latter case, if the process is not passive, 
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then the associated event notice is deleted and the event is 

essentially re-scheduled. The other arguments (T,AFTER,E2) 

to both procedures determine where in the SQS the new event 

notice, say N, is to be inserted. If E2 is non-null and if 

E2.PROCESS is not passive, then N is inserted before or 

after E2.ELE.PR0CESS.EVN as AFTER is FALSE or TRUE, 

respectively. Otherwise, if E2 is null, then N is inserted 

before or after all event notices at time T (T=0 => TIME) as 

AFTER is FALSE or TRUE. Hence, if E is an element whose 

process is passive, then all of the following transfer 

control to the process referenced by E. 

ACTIVATE (E) 

ACTIVATE(E,TIME) 

ACTIVATE(E,0,FALSE,CUR) 

REACTIVATE <- 
EXPR(E:ELEMENT,T:INT,AFTER:BOOL,E2:ELEMENT;NONE) 
LEGIN 

E2#NIL AND E2.PROCESS.EVN=NIL => NOTHING; 
E.PROCESS.EVN#NIL => DELEVN(E.PROCESS.EVN); 
SCHEDULE(E,[)E2#NIL => EVTIME(E2); 

1=0 => TIME; 
T(], AFTER, E2) 

END; 

ACTIVATE <- 
EXPR(E:ELEMENT, T:INT, AFTER:BO0L, E2:ELEMENT; NONE) 

LEGIN 
E2//NIL AND E2.PROCESS.EVN=NIL => NOTHING; 
E.PROCESS.EVN#NIL => NOTHING; 
SCHEDULE(E,[)E2#NIL => EVTIME(E2); 

1=0 => TIME; 
T(], AFTER, E2) 

END; 
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SCHEDULE <- 
EXPR(E:ELEMENT, T:INT, AFTER:BOOL,E2:ELEMENT; NONE) 

BEGIN 
DECL TE: INT BYVAL TIME; 
DECL SC, C:EVENTN BYVAL CURRENT; 
DECL N:EVENTN BYVAL 

ALLOC(EVENT\DESC OF T,NIL,NIL,E); 
BEGIN 

E2 H  NIL => 
INSERT(N,E2.PROCESS.EVN,AFTER); 

T LT TIME => SIM\ERROR(): 
L: C.NEXTEV = NIL => INSERT(N, C, AFTER); 

AND(C.EVTIME LT T, 
C.NEXTEV.EVTIME GE  T, 
NOT AFTER) 

OR 
AND(C.EVTIME LE T, 

C.NEXTEV.EVTIME GE T, 
AFTER) => 
INSERT(N,C.NEXTEV,FALSE); 

C <- C.NEXTEV; 
GOTO L 

END; 
N.ELM.PROCESS.EVN <- N; 

NT Process is not passive; 
CURRENT H  SC => CIA("PASS",CURRENT); 

END; 

INSERT <- 
EXPR(NEW:EVFNTN, OLD:EVENTN, AFTER:BOOL; NONE) 

BEGIN 
AFTER => 

BEGIN 
NEW.NEXTEV <- OLD.NEXTEV; 
NEW.PREVEV <- OLD; 
OLD.NEXTEV <- NEW; 
NEW.NEXTEV §  NIL => 

NEW.NEXTEV.PREVEV <- NEW; 
END; 

NEW.NEXTEV <- OLD; 
NEW.PREVEV <- OLD.PREVEV; 
OLD.PREVEV <- NEW; 
NEW.PREVEV $ NIL => NEW.PREV.NEXTEV <- NEW; 
OLD = CURRENT => CURRENT <- NEW 

END; 

The    procedure    HOLD    makes    the    current    process      be 

inactive for X units of system time. 

HOLD <- EXPR(X:INT;NONE)   (REACTIVATE(CUR,TIMEfX,TRUE)); 
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To illustrate the use of the procedures described 

above, we will present a set of MPEL1 procedures which 

describe a simple epidemic model (as defined in [Da66].) 

A contagious, nonlethal disease is circulating through 

a fixed size POPULATION. To combat the disease, certain 

actions are taken by a public health organization. When an 

individual is infected, he is noncontagious for INCUBATION 

days (during which he has no SYMPTOMS,) after which he is 

contagious for LENGTHI days (during which he has SYMPTOMS.) 

Each DAY of the latter period he may seek TREATMENT, in 

which case he is immediately and permanently cured, (i.e he 

becomes immune.) The probability of seeking treatment on any 

given day I is PR0J3TREAT[I]. Each contagious sick person 

has some number of CONTACTS per day. lor each contact, the 

probability of infecting an uninfected person is PRINF. An 

untreated infection terminates after LENGTHI days. 

Two types of processes are created - one to represent a 

SICK\PERSON and one to represent the TREATMENT of an 

individual. In the former case, each SICK\PERSON has an 

environment (ENV) which is the set of people he has 

infected. TREATMENT processes represent the public 

countermeasures taken against the disease. A patient is 

removed from his environment. If he has SYMPTOMS then he is 

immediately cured; his LNV is searched and each member is 

treated. Otherwise, the patient is given a 'cheap pill' 
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which has a probability PROBMASS of success. His ENV is not 

searched. The simulation ends after SIMPERIOD days. 

POPULATION, LENGTH, CONTACTS, SIMPERIOD, INCUBATION, 

PRINP, PROBMASS, and PROBTREAT are assumed as global 

constants. In addition, U1, U2, U3 and U4 are NOPIX 

operators which represent different streams of pseudc—random 

numbers. The procedure call DRAW(PR0B,U1) makes a random 

drawing with probability PROE of success, in which case it 

returns TRUE. The procedure call POISSON(CONTACTS,U2) 

returns a random drawing from the Poisson distribution with 

mean CONTACTS. UNINTECTED is used to record the number of 

UNINPECTED people in the population. 

The simulation befins with one path that executes the 

block presented below. The SQS is initialized to contain a 

single event-notice for the current path.  The  first 

SICK\PER3CK process is activated, after which the initial 

path holds for the duration of the simulation. 

BEGIN 
CURRENT <- ALLOC(EVNT\DESC 01 

0,NIL,NIL,ALLOC(ELEMVDESC OP KIL,NIL,KYPATH); 
CURRENT.ELM.PROCESS.EVN <- CURRENT; 

NT Not passive; 
UNINEECTED <- POPULATION; 
ACTIVATE(NEWPR0C(3ICK\PERS0N())); 
HOLD(SIMPERIGD) 

i\ND; 

The procedures SICK\PERS0N, INTECT, and TREATMENT are 

defined as follows. 
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SICKXPERSON <- EXPR(; NONE) 
BEGIN 

DECL SYMPTOMS:BOOL; 
DECL ENV:SET BYVAL ALLOC(SET\DESC); 
UNINFECTED <- UNINFECTED - 1; 
SYMPTOMS <- FALSE; 
HOLD(INCUBATION); 

NT Wait till the end of the 
incubation period; 

SYMPTOMS <- TRUE; 
FOR DAY <- 1, ... , LENGTH! DO 

BFGIN 
NT Either seek treatment or infect 

some contacts; 
DRAW(PROBTEA1T DAY],U1) => 

ACTIVATE(NEWPROC(TREATMENT(CUR))); 
INFECT(POISSON(CONTACTS,U2),ENV); 
HOLD(1) 
NT Wait one day; 

END 
END; 

TriyPCT K— 
'  EXPR(N:INT, S:INT; NONE) 

BEGIN 
NT N is the number of contacts; 
NT S is the ENV; 
FOR I <- 1, ... , N DO 
BEGIN 

DRAW(PRINF * UNINFECTED/POPULATION,U3) => 
BEGIN 

INCLUDE(NEWPROC(SICK\PERSON()),S); 
NT Infect one person; 
ACTIVATE(LAST(S)) 
NT Start him now; 

END 
END 

END; 
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TREATMENT <- 
EXPR(PATIENT:ELEMENT; NONE) 

BEGIN 
DECL I'M:SET; 
DECT SYMPTOMS:BOOL; 
EXTRACT(PATIENT); 
NT Remove patient from ENV; 

ENV <- PEETCH(,,ENVM,PATIENT.PFOCESS); 
SYMPTOMS <- PIETCH("SYMPTOMS",PATIENT.PROCESS); 
NT Pl'ETCK the values of SYMPTOMS 

and ENV from the SICK\PERSON beinf treated; 
SYMPTOMS => 

BECIN 
TERMINATE(PATIENT); 
WHILE EIRST(ENV) # NIL DO 
NT Treat each person in the ENV; 
( ACTIVATE(NEWPROC( TREATMENT (.FIRST (ENV) )) ) 
NT EIRST(ENV) is deleted from the set 

ENV upon activation of the process; 
END; 

D A',(FROBMASS,U4) => TERMINATE (PATIENT) 
ui  Otherwise, leave the patient in the system, 

but removed from his ENV; 
END; 



3-36 

5. MONITOIUKG AMD RELATIVE CONTINUITY 

Control primitives which allow a variable to be 

monitored for changes in its value have appeared in a number 

of languages. l?or example, the WAITUNTIL primitive of 

2FL [Po72] and wisher's monitor primitive [j?i70] allow a 

process to be resumed as soon as an associated condition 

becomes TRUE, c.f. 1.2.1, 1.2.3- Here, we discuss how 

monitoring can be realized in MPEL1. 

Let us assume that we desire a function of the form 

MONITOR(X,V,EXP) 

where X is a variable of mode integer, V is an integer and 

EXP is a FORM. The interpretation of MONITOR is that when 

X=V, then EXP is to be evaluated. If X=V when the MONITOR 

is executed, then EXP is evaluated immediately. It should 

be clear that it is sufficient to monitor assignments to X, 

i.e. if it is possible to obtain control every time the 

variable X is assigned a new value, then we can surely 

detect when it is given the value V. This ability is 

provided by the extended mode facility of EL1, c.f.  5.1»2. 

In particular, the extended mode facility allows the 

user to define a new mode, say SINT (sensitive-integer), 

which is identical to the mode INT  except  that  a 

We will restrict our discussion to integers. 
Monitoring of other data types can be achieved by analogous 
techniques. 
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user—del ined assignment function will be called whenever an 

object of mode SI1\I is to be assigned. For example, we can 

define 3INT, HCNITOR and the SINT assignment function as 

follows. 

SINT <- STRUCT(I:IKT, V:INT, EXP:EGRM, MELGzDOOL); 

MONITOR <- 
EX?i;(X:^INT,V:INT, i:EXT; NONE) 

BEG II. 
HOT UE(X).MFLG => 

BECIN 
UR(X).I = V => EVAL(E); 
URtxJ.V <- V; 
UR(X).EXP <- P; 
M1TJG <- TRUE 

END; 
MONITCR\ERROR() 

END; 

SINT\ASSIGN <- 
EXPR(S:£INT, V:INT; INT) 

BEG IK 
Ui.(C).I <- V; NT V is the new value; 
NOT UR(S).MELG => V; 
ur:(s).v = v => 

BEGIN 
UR(£).M1LG <- EA1SE; 
EVAL(UR(S).EXP); 
V 

END; 
V 

END; 

If X is a SINI, UR(X).I is the actual integer, 

UR(X).MFLG is TRUE if and only if the integer is being 

monitored, UR(X).V is the value being monitored for, and 

UR(X).EXP is the expression to be evaluated. Whenever an 

The procedure UR is used to indicate that selection is 
to be performed upon the underlying representation of SINT. 
This is required since it is also possible to construct user 
defined selection functions. 
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assignment to a SINT is made, the procedure SINT\A3SIGN is 

called. If the particular SINT is being monitored and if it 

will now be equal to UR(S).V, then EXP is evaluated and the 

monitor is turned off. 

Two points should be stressed, first, SINTs act just 

like INTs except for assignment. Whenever a SINT is in hand 

and an INT is required, the SINT is treated as if it were an 

integer, using a user—defined conversion function 

[Weg70][Weg71]. Second, only SINT assignments are affected; 

the overheads associated with monitoring are not passed on 

to all INTs. 

In the example above, EXP will be evaluated in the 

environment of whichever path performs the assignment that 

sets the SINT to the specified value. Other semantics for 

MONITOR operations are possible. lor example, fisher's 

monitor operation constructs a new process in which EXP is 

to be evaluated. The value returned by monitor is a 

reference to this process (which is also apparently 

cyclically testing the condition.) The operation unmonitor 

may be used to destroy a monitor process. It is possible to 

construct many monitor processes which are all testing the 

same variable. 

Here, for simplicity, we have limited ourselves to one 
EXP per SINT. The general case is discussed below. 
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A description of monitor would be a straightforward 

extension of the example above, v/ere it not for the subtle 

relation between monitor and another of Fisher's primitives, 

namely, the cont operation. We will first discuss how the 

cont operation may be realized in MPEL1 and then describe a 

monitor operation which is consistent with this reali2ation 

and with Fisher's definition. 

If a process executes cont(exp) then the expression 

will be evaluated relatively continuous with respect to the 

evaluation of other processes; all other processes must 

pause while the exp is evaluated. If exp creates new 

jxocesses, then they inherit the level of relative 

continuity of their creator. Kence, many levels of relative 

continuity can be created. At any riven time, only those 

processes at the hifhest level may be evaluated. When 

higher—level proceses terminate, processes at lower levels 

are allowed to continue execution. 

In MPEL1, we will replace cont by the two NOFIX 

operators STARTRC and FiiDRC. STAR1RC indicates that the 

level of relative continuity of the path should be increased 

by one. FKDRC indicates that the level should be decreased 

by one. Thus, in MPEL1, cont(exp) is replaced by 

[) CTARTRC; exp; ENLRC (] 

The implementation of relative continuity is 

straightforward.  We include the intefer component LEVEL as 
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an extended component of the mode ACTRC. LEVEL specifies 

the level of relative continuity at which the path is 

evaluating. Initially, all paths have LEVEL=0. The 

path-scheduler is redefined, using the techniques of section 

2.4, to include the integer RCLEVEL in the CI environment 

and to maintain paths on the INACTIVEQ in the order of their 

level component (highest to lowest.) RCLEVEL indicates the 

level of relative continuity at which the system is being 

evaluated. The procedure CREATE is modified to give the 

path created the same level of relative continuity as the 

creator. 

When a path P executes STARTRC, RCLEVEL and P.LEVEL are 

incremented by one. If there exist active paths at lower 

levels of relative continuity, then each of these paths is 

.interrupted (using ST0P\PATH) and forced to pass control to 

the CI and execute RELSTOP. When each path passes control 

to the CI, it is put on the INACTIVEQ. When the last of 

these is processed, then P is allowed to continue execution. 

The mechanism used here is similar to the one employed by 

SUSPEND, c.f.  3-3. 

We also assume that the procedures of section 3.3 are 
redefined to use the procedure INSERT! (as opposed to 
ENTERL) to place paths on the INACTIVEQ. INSERTL places the 
path on the queue at the appropriate point according to its 
LEVEL component. 
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STARTRC <- EXPR(; HONE) 
BEGIN 

MYPATF#PCIAR => CIA ("STARTRC"); 
LASTRUN.LEVEL <- RCLEVEL <- RCLEVEL+1; 
UPRC() 

END; 

UPRC <- EXPR(; NONE) 
BEGIN 

DFCL N:INT BYVAL LASTRUN.LEVEL; 
IDR I <- 1, ..., NPROC DO 

BEGIN 
PAVFCT[I].CURPATH // PAVFCT[I].IDLEPATH 

AND 
PAVECT[I].CURPATH.LEVEL LT N => 

BEGIN 
PIVECT[I]<- 

COKS(LlST("RELSTOP", 
ALLOC(REF LIKE 

ALLOC(ARPTR LIKE 
LASTRUN))), 

PIVECTTPROC]); 
S10P\IATH(PAVECT[I].CURPATH); 
B  <- TRUE 

END; 
END; 

B => LASTRUN <- NIL 

RELSTO? <- FXPR(P:AFPTR; NONE) 
BEG IK 

DFCL B:BOOL; 
INSERT!(LASTRUN); 
LASTRUN <- Nil; 
FOR I <- 1, ..-, N TILL B DO 

BEGIN 
AND(PAVI CT[ I ]. CURPATH#PAVECT[ 11.IDLEPTH, 

I//PROCNUM, 
PAVFCT[I].CURPATH.L£VEL LT RCLEVEL) 

=> B <- TRUE 
END; 

B => NOTHING; 
NT Not all paths at lower levels 

have stopped; 
INSERTL(P) NT All have stopped; 

END; 

When a path P executes ENDRC,  then  P.LEVEL  is 

decremented  by one and the path is inserted at the 

appropriate point in the INACTIVEQ. If there still exists 
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paths (either active or on the INACIIVEQ) at the current 

RCLEVEL, then no further action occurs. Otherwise, RCLEVEL 

is set to be equal to the LEVEL of the first path on the 

INACTIVEQ. 

ENDRC <- EXPR( ; NOME) 
EEGIN 

DECL B:BOOL 
MYPATH#PCIAR => CIA("ENDRC")i 
LASTRUN.LEVEL <- LASTRUN.LEVEL-1; 
INSERTL(LASIRUN) j 
LASTRUN <- NIL; 
FOR I <- 1,..., NPROC TILL B DO 

BEGIN 
I=PROCNUM => NOTHING 
PAVECir I ]. CURPATHjfPAVECl [ I ]. IDLEPATE 

AND 
PAVECT[I]. CURPATH.LEVEL=RCLEVEL 

=> B <- TRUE 
END; 

B => NOTHING; 
NT There exists an active path 

at the current RCLEVEL; 
RCLEVEL GT INACTIVEQ.FIRST LEVEL => 

RCLEVEEX-IN ACTIVEQ . FIRST . LEVEL 
END; 

RCSCHEDULE is used to perform path scheduling.  Let P 

be the first non-DORMANT path on the INACTIVEQ. If P.LEVEL 

is less than RCLEVEL,  then no path is scheduled.     If P.LEVEL 

is equal to RCLEVEL, then P is scheduled. Otherwise, if 

P.LEVEL is greater than RCLEVEL,  then RCLEVEL is set to 

P.LEVEL, TASTRUN is set to P and UPRC is called to determine 

if any active paths are at a lower level of relative 

continuity, and if so, to interrupt them.  The latter case 

If a path is not in the running set (e.r. it has 
performed a P operation and is on the semaphore's WLIST,) 
then its level is not counted until it again becomes a 
running path. See the discussion of monitor paths below. 
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can occur when a monitor process is activated as described 

below, 

RCSCHEDULE <- EXPR(; ARPTR) 
BEG IK 

DECL Y:ARPTJR; 
Y <- INACTIVEQ.FIRST; 

L: Y=NIL => NIL; 
RCLEVEL GT Y.LEVEL => NIL; 
RCLEVFL=Y.FIRST.LEVEL AND NOT Y.DORMANT => 

BEGIN 
REMOVE(Y,INACTIVEQ); 
Y 

END; 
RCLEVEL LT Y.FIRST.LEVEL => 

BEGIN 
LASTRUN <- Y.FIRST; 
REMOVE(LASTRUN,INACTIVEQ); 
RCLEVEL <- LASTRUIi.LEVEL; 
UPRC(); 
LASTRUN 

END; 
Y <- Y.NEXT; 
GOTO L 

END; 

INSERT! is used to place paths on the INACTIVEQ.  If 

the LEVEL of the path P to be inserted is greater than the 

current RCLEVEL,  then LASTRUN (the current  path)  is 

inserted, LASTRUN is set to Nil, and then P is inserted. 

Hence, scheduling is forced. Since P will be first on the 

INACTIVEQ, and RCLEVEL is less than P.LEVEL, then RCSCHEDULE 

will interrupt all active paths at lower LEVELS and then 

allow P to be evaluated.  If P.LEVEL is less than or equal 

to RCLEVEL, then P is simply placed at the appropriate point 

in the queue. 

INSERT! <- EXPR(P:ARPTR); NONE) 
BEGIN 

DECL Q:ARQPTR BYREF INACTIVEQ; 
DECL Y:ARPTR BYVAL Q.FIRST; 
LASTRUN//NIL AND P.LEVEL GT RCLEVEL -> 

BEGIN 
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INSERTL(LASTRUN); 
LASTRUN <- NIL 
NT iorce a call to RCSCKEDULE; 

END; 
Y=NIL => ENTEKL(P,Q); 
Y.LEVEL IE P.LEVEL => 

BEGIN 
Q.EIRST <- P; 
P. NEXT <- Y 

END; 
Q.LAST GE P.LEVEL => 

BEGIN 
P.NEXT <- NIL; 
Q.LAST.NEXT <- P; 
Q.LAST <- P 

ENL; 
Y.NEXT=NIL => ENTERL(P,Q); 
Y.NEXT.LEVEL IE P.LEVEL => 

BEGIN 
P.NEXT <- Y.NEXT; 
Y.NEXT <- P 

END 
END; 

We can now describe the complete semantics of the 

monitor operation. Here, SINT is defined as follows: 

SINT <- PTR(STRUCT(INTP:INT, ML1ST:MPTR)); 

MPTR <- PTR(MELT); 

MELT <- STRUCT(VALUE:INT, PATH:ARPTR, NEXT:MPTR); 

The MLI3T is a list of the processes monitoring the SINT. 

Each MELT specifies the VALUE to te checked and the path to 

be evaluated. 

The procedure MONITOR creates a path P (which is added 

to the MI1ST of N) to be activated when N is assigned the 

value V. E is the form to be evaluated by P. P is given 

the same level of relative continuity as the path executing 

the MONITOR. In addition, P is enabled for the interrupt 

"UNMON" to allow for unmonitoring. It is important to note 
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that since P is not considered to be a running path (it is 

neither active nor on the INACTIVEQ), P.LEVEL has no effect 

upon RCLEVEL. Hence, when P is activated RCLEVEL may be 

higher or lower than P.LEVEL. In the former case, P will 

not be evaluated until RCLEVEL is lowered to P.LEVEL. In 

the latter case, P has priority over all other paths. 

Hence, they must be interrupted so that P may evaluate. 

INSERT! detects this fact and forces scheduling to achieve 

the desired effect. If P=RCLEVEL, then the interpretation 

is straightforward. 

The definitions of MONITOR and SINT\ASSIGN are as 

follows. 

MONITOR <- EXPR(N:SIMT,V:INT, E:EORM UNEVAL; ARPTR) 
BEGIN 

DECL P:ARPTR EYVAL PAFQ(EVAL(I), GET\PATH(1 )); 
I CL K:MPTR BYVAL ALLOC(MELT OE V,P,NIL); 
P.LEVEL <- MYPATH.LEVEL; 
NT Relative continuity level is inherited: 
EIiABTE\PATH( "UNMON" ,3*,QUOTE(DELETE(MYPATH) ) ,P) ; 
NT To allow for unmonitoring; 

* 

CIA("MONITOR1",M,N,V) ; 
P 

END; 

HC1.TJ.O?-:1 <- EXPR(M:KPT:;, N:SINT, V:REE; NONE) 
BEGIN 

UR(N).VALUE = VAL(V) => 
BEGIN 

INSERT!(M.PATH, INACTIVEQ); 
RUNSET\ILAG <- TRUE 

END; 
M.NEXT <- UR(N).MLIST.NEXT; 
UR(N).MLIST <- M 

END; 

Here, we pass three arguments to the CIA called 
procedure. This is not consistent with the definition given 
in section 2.3.1» but can be achieved by extension, c.f. 
5.1.1. 
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SIN!E\ASSIGN <- (N:SINT, Y:INT; INT) 
£EGIK 

CIA("D0\ASSIGN",N,Y); 
Y 

END; 

DOVASSIGfc <- EXPE(S:SINT, V:EEE; NONE) 
BEGIN 

DECL Y:KLIST BYVAL UR(S).MLIST; 
Y/'NIL => 

WHILE Y.NEXT §  NIL DO 
BEGIN 

Y.NEXT.VALUE=VAL(V) => 
BEGIN 
INSEPTL(Y.NEXT.PATH,INACTIVEQ); 
Y.NEXT <- Y.NEXT.NEXT; 
END; 

Y <-Y.NEXT 
END; 

UE(S).MLIST.VALUE=V => 
BEGIN 

INSERTL(UR(S).MLIST.PATK,INACTIVEQ); 
UR(S).MLIST <- UR(S).MLIST.NEXT; 

END; NT Process first of list; 
NT Now perform assignment; 
UR(S).INTP <- VAL(V) 

END; 

For example, consider the following block 

BEGIN 
DECL X:SINT BYREF X; 
NT Assume MYPATH.LEVEL=0; 
STARTEG* 
NT MY1-ATH. LEVEL = 1; 
MONITOR (X, 3, QL'OTE( PRINT ("X=3 "))) 5 
NT The LEVEL of the new process is 1; 
X=1 => 

BEGIN 
STARTRC; 
NT MYPATH.LEVEL =2; 
X <— 3 * 
C1:ENDRC; 
NT MYPATH.LEVEL=1; 
O*- • • • • 

END; 
ENDRC; 
NT MYPATH.LEVEL=0; 
X <- 3; 
\jj.   • •.     ; 

END 
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If X initially has the value 1, then the monitor 

process will not become active until control reaches C2, 

since RCLEVEL=2 at C1. If, however, X is not initially 

equal to 1, then the monitor process will become active 

before control reaches C3» since it is at a higher level of 

relative continuity than the path performing the assignment. 

Hence, STARTC, EKIRC and MONITOR effect an interrupt 

mechanism. If a path creates a monitor process at a higher 

level of relative continuity, e.g. 

[)STARTC; MONITOR(X,Y,f); ENDRC(]; 

then if the condition becomes TRUE, the monitor path will 

essentially interrupt the original path, since the former is 

at a higher level. Conversely, the path can mask itself 

against the effect of the monitor by subsequently executing 

two STARTRCs to put itself at a higher level than the 

monitor. 

The procedure UNMCNITOR, destroys the path P which is 

monitoring the SIKT N. If the path has not been activated, 

then it is simply deleted. Otherwise, if it is active, it 

is interrupted (using STOP\PATH) and forced to call 

DELETE\PATI!. If it is not active, then it is sent an UNMON 

interrupt (for which all monitor paths are enabled) which 

will cause the path to delete itself if it ever becomes 

active. 
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UNMONITOE <- EXPR(P:ARPTR K:SINT; NONE) 
BEGI;: 

DECL Y:MFTR EYVAL UE (N). MUSI; 
DECL PR:INT; 
MYPATH // PCIAR => CIA("UKMONITOR"TI'FK); 

BFGIN 
Y.PATII=P => [) UR (N). MLIST<-UR (H )• MLIST. NEXT; 

DELETE\PATH(P)(]; 
WHILE Y.NEXT §  NIL DO 

BEGIN 
Y.NEXT.PATH=P => [)Y.NEXT<-Y.NEXT.NEXT; 

DI1ETE\PATH(P)(]; 
Y  <- Y.NEXT 

END 
END; 

NOT F.ELGPLG => NOTHING; 
NT Otherwise P must be killed; 
FOR I <- 1,..., NPROC TILL PR GT 0 DO 

[)PAVECT[I1.CURPATH.P => PR<-I(] 
pp-0 => INTEFJttJPT(,,UKMON,l,P); 
STOP\PATE(P); 
PIVECT[I] <- 

CONS(QUOTE(BEGIN 
LELET'E\PATH (LASTRUN); 
LASTRUN <- NIL 

END, 
PIVECT[I]); 

END; 
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6. BACKTRACKING 

The notion of backtracking [Go65] often allows a more 

concise representation of an algorithm than would be 

possible without it. Such an algorithm usually requires 

that a choice be made at one or more points during its 

evaluation. If the choice is a 'bad' one, then the 

algorithm must backtrack to the most recent choice—point at 

which another choice was available, select a new choice, ar.d 

then resume execution. Hence, it must be possible to 

reconstruct (at some later time) the machine state at each 

choice point. This can be done either explicitly or 

implicitly. Programs which explicitly handle their own 

backtracking tend to be obscure and error prone - they must 

record all changes to data and control. Hence, control 

procedures which allow lor the automatic restoration of 

machine states are desirable. 

Floyd [1167] proposes three operations and an 

implementation technique which allow for automatic 

backtracking in a flow chart language. The two operations 

are: 

A control structure which is related to, but distinct 
from, backtracking is multi-tracking. In backtracking, 
choices are processed sequentially - when one value leads to 
FAILURE, the next value is chosen. With multi-tracking all 
choices are explored in parallel, via the creation of 
parallel paths. If a path is unsuccessful, then it notifies 
its creator who then terminates all other choice paths (and 
their descendants.) 
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choice(n)  An integer from the set 1, ..., n is chosen. 

fail fail 'undoes' all actions performed since the 

last choice. Another integer, say k, is taken 

from the choice set and the algorithm continues 

from the choice-point as if k were the original 

choice. If all integers from the set have been 

tried, all actions are undone back to the next 

previous choice point, etc. 

success All accumulated output is printed. If all 

solutions to a problem are desired, then 

backtracking is initiated. 

Function calls are not permitted in Floyd's language. 

Hence, to allow reconstruction of machine states it is only 

necessary to record changes to variables and the control 

flow through decision points. In a language with function 

calls, say EL1, it becomes necessary to record the call and 

block structure (intra-path control) at a choice point so 

that it may be reinstated upon subsequent failure. below, 

we discuss how (single-path) backtracking can be effected 

using the MPEL1 multi-path facility. 

We will assume that the global variable LACKUP 

references a path which will be used to effect restoration 

of choice-points. Whenever a new CHOICE is made, control is 

passed to BACKUP, which then returns control to a COPY of 
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the original path.  Hence, the call structure and the values 

of variables in the identifier environment are preserved. 

If an unsuccessful choice has teen made then the procedure 

FAIL can be used to return to the previous choice—point. 

FAIL simply passes control to the BACKUP path which then 

returns control to a copy of the original path with a new 

value from the choice set.  SUCCESS takes two arguments. 

The first specifies a value to be irreversibly printed on an 

output device.  The second is a BOOL which specifies whether 

or not all solutions are desired. The procedure definitions 

are as follows. 

CHOICE <- EXPR(N:INT; INT) 
BEGIN 

PAPQ(KEWCHOICE(N,MYPATH),BACKUP); 
CIA("SWITCH\PATHS,BACKUP) 

END; 

SWITCH\PATHS <- EXPR(P.ARPTR; NCNE)(LASTRUN <- P); 

NEWCHOICE <- EXPR(N:INT BYVAL, OLDP:ARPTR; NONE) 
BEGIN 

WHILE N // 0 DO 
BEGIN 

DECL NEWP:ARPTR 
NEWP <- COPY(OLDP); 
PAP(RETFROM("CHOICE",N),NEWP) 
CIAO'SWITCHXPATHS", NEWP); 
N <- N-1 

END 
END; 

FAIL <- EXPR(; NONE) (CIA("SWITCH\PATHS"),BACKUP)); 

SUCCESS <- EXPR(SOL: ANY, ALLSOL:BOOL; NONE) 
BEGIN 

PRINT(SOL); 
ALLSOL => FAII(); 
CIA("DELETE\PATH",MYPATH) 

END; 
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Note that if CHOICE is called many times in the 

program, then nested calls to NEWCHOICE will be PAPed into 

BACKUP. Exit from the procedure NEWCEOICE corresponds to 

failure 01' all choices at a given point. Control is thus 

returned to the call to NEWCHOICE for the previous 

choice-point. 

One additional mechanism is necessary to insure that 

the complete machine state at a choice—point is restored. 

The control primitive COPY copies the bindings of variables 

in the identifier environment of the path. If a variable is 

bound to a pointer to an object in the heap, then the 

pointer is copied but the object referenced is not. Hence, 

when NEWCHCICE returns to a COPY of a path, it is possible 

that changes to heap objects will not be 'undone.* To insure 

that heap values are restored correctly, it is necessary to 

redefine assignment, i.e.  "<-". In the procedures below, 

ASSIGN!  is functionally  equivalent  to  the  original 

definition of <- and HEAP is a boolean procedure which 

returns TRUE if and only if its argument lies in the heap. 

ASSIGN!(<-, EXPK(VAE:ANY, VAL:AKY; ANY) 
BEGIN 

NOT HEAP(VAR) => ASSIGN!(VAR.VAE); 
PAPQ(RESTORE(VAR,VAR),BACKUP); 
ASSIGN!(VAR,VAX) 

END); 

ASSIGN!(RESTORE,  EXPK(VAR:ANY:   OLBVAL:ANY BYVAL;   NONE) 
(ASSIGN!(VAR,OLDVAL)); 

Whenever an assignment is to be made to a heap object, 

the procedure RESTORE is PAPed into the BACKUP path. The 
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second ar; ument to RESTORE is passed JJYVAL SO that the old 

value may be retained separately. When 1A1L transfers 

control to tsACKLJP, all heap objects modified since the last 

choice roir.t will be restored to their original values since 

the calls to RESTORE are executed in the reverse of the 

order in which they were PAPed. 

Although the procedures described above effect 

automatic backtracking, the mechanism employed is rather 

expensive. At each choice point the entire call structure 

is saved! A similar, but more efficient realization of 

backtracking- is described in [Pr72], Here, instead of 

saving the entire machine state at each choice point, only 

the 'difference' between states is saved. In addition, the 

programmer may distinguish between assignments which are to 

be 'undone' upon failure, and those which are not, thus 

avoiding unnecessary record keeping. 



Chapter 4 

THE KJRKAL DEFINITION 01 MPEL1 

This chapter presents the formal definition of EL1 and 

the control primitives. 

Section 1 discusses some preliminary issues and serves 

as an introduction to the definition. Sections 2 and 3 

present the formal definitions of the constructs of EL1 and 

the control primitives, respectively. The auxiliary 

procedures used in the definition are listed in Section 4. 

Section 5 lists and defines the procedures which are assumed 

as linguistic primitives. Finally, Section 6 is an index of 

the modes, variables, procedures, and evaluator labels used 

in the definition. 

1.1 Representation of Programs, Paths and Evaluators 

The concrete syntax, or external representation of EL1 

is described by the BNF grammar in Appendix 2. An EL1 

program is a terminal string derived from the syntactic 

class <program>. For example, 

1; 

p(q(a),b,c,); 

[)p=> x<-1 ; 3 (]; 
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The abstract syntax, or internal representation of an 

EL1 program is a list structure which may be defined using 

the data-type definition facility of EL1. The 

correspondence between the external and internal 

representations is specified by augments to the BNF grammar 

in Appendix 2. Techniques for mapping programs written in 

concrete syntax into this type of abstract syntax are well 

known and will not be discussed here. The abstract syntax 

representations for the programs above are: 

1 

(p (q a) b c) 

(BLOCK! (CLAUSE! P (<- x 1) ) 3) 

The evaluation of an EL1 program is performed in the 

environment of a path. The environment consists of three 

related structures: the name—stack, the value—stack, and the 

control-stack. The name-stack contains an entry for each 

variable created in the evaluation of the program. Each 

entry consists of the variable's name and a pointer to its 

value. The value—stack contains all data objects created by 

the program which have not been explicitly ALLOCated in the 

heap. The control-stack describes the current state of the 

evaluation, i.e. the current nesting of blocks, procedure 

applications, etc. 

The path's activation record contains pointers to the 

environmental structures described above, fields which are 
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used to communicate with the control primitives and other 

path-related information. 

A program is evaluated in a path's environment by an 

evaluator. Only one path may be evaluated by an evaluator 

at any given time, although it may process different paths 

at different times. In addition, an evaluator must always 

be associated with some path, i.e. it must always be kept 

busy. We will assume that there are some constant number 

(NPROC) of evaluators available for the simultaneous 

evaluation of paths. 

During its evaluation, an EL1 program may call upon the 

control primitives to create and delete paths, specify or 

change the programs to be evaluated in a path's environment, 

assign evaluators to paths, modify a path's environment, 

etc. 

The formal definition of MPEL1 will consist of a 

program which defines the I th of NPFOC identical 

evaluators. Since both an MPEL1 program and a path can be 

represented as EL1 data structures, it is possible to 

describe an evaluator for the language and the control 

primitives as a set of MPEL1 procedures. The evaluator 

described here, however, is written essentially in EL1. The 

control primitives TSET, CLEAR, EVAL and GOTO are the only 

ones used by the evaluator. The vast majority of the 

control primitives are not included in the meta-language. 
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Thus, the control primitives are explained in terms of 

(single-path) EL1 and the four primitives listed above, c.f. 

5.3.2. 

1.2 Evaluator Recursion 

The evaluation of an EL1 program is a recursive 

process, i.e. the evaluator of a given language construct 

may call upon the evaluators of other constructs, or itself, 

recursively. for example, nested procedure calls require 

the procedure application evaluator to be called within 

itself. Since EL1 procedures are capable of recursion, the 

number of recursive calls may reach an arbitrary depth. The 

evaluator however, may not effect the recursion by invoking 

recursive procedure calls in its own environment, for then 

if it is subsequently called upon to evaluate another path 

and the original path is evaluated by another evaluator, the 

resulting evaluation of both paths will be erroneous. 

Hence, the evaluators must be 'reentrant' with respect to 

the paths they are called upon to evaluate. All records 

relating to the evaluation of a path must be stored in the 

environment of the path itself. 

The control-stack of the path is used in conjunction 

with a programming discipline to allow an evaluator to 

obtain the effect of recursion without recursive procedure 
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calls. There are five issues to be resolved. 

(1) How is the return point specified? 

(2) How are the arguments to the  recursive  call 

specified? 

(3) How are the arguments to the current call saved? 

(4) How is the result of a call specified? 

(5) How is the return to the previous call accomplished? 

Before we discuss these issues, we must first give a general 

outline of the structure of the evaluator. 

The evaluator is essentially an EL1 BLOCK. The local 

variables of the block are used to specify the path being 

evaluated and to hold other temporary values. Corresponding 

to each construct of the language, (e.g. selection, 

assignment) there is a labelled sequence of statements which 

constitute a sub-evaluator for that construct. 

Corresponding to each control primitive is a labelled 

sequence of statements which constitute the body of the 

control subroutine. Control never leaves the block except 

for calls to procedures used by the evaluator which do not 

involve recursive evaluation, e.g. to search the 

name-stack. When an evaluator switches paths, it saves the 

'state' of the current path in the corresponding ACTRC, 

installs the state of the new path, and continues evaluation 

of the new path from wherever the previous evaluator of the 

path left off. 
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To perform a 'recursive' call, the following statements 

are executed: 

PUSHCO'TAG")   ;NT Specify return point; 
GOTO FCO      ;NT 'call' TOO; 

TAG:   CHECKM(INT)    ;NT Statement to be executed 
upon return; 

i.e. the symbolic name of a label to which control is to be 

transferred upon return is pushed onto the control stack of 

the path being evaluated.  To return,  the  following 

statements are executed: 

L <- P0PC(1)   ;NT L is bound to the return 
label; 

GOTO EVAL(L) 

i.e., the return label is popped off the control stack and 

control is transferred to the labelled statement.  To 

improve the readability of the description of the evaluator, 

the two sequences of statements above are abbreviated as 

follows: 

and 

CALL POO; 
CHECKM(INT); 

RETURN; 

The argument to each sub-evaluator is a pointer to the 

list structure which is the instance of that construct to be 

evaluated. The local variable P is used to point to the 

argument. For example, to evaluate 

V[1] => 3 ; 

for which the abstract syntax representation is 
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(CLAUSE! (SEL! V 1) 3) 

the clause-evaluator would bind F to the second element of 

the list and call upon the selection—evaluator. The value 

returned by a sub-evaluator, i.e. the result of evaluating 

a given construct, is pointed to by the local variable 

EVRES. 

Since any language construct may be invoked 

recursively, each sub-evaluator must save its argument. To 

facilitate this, a control mode is associated with each one. 

When a sub-evaluator is called, an object of the 

corresponding ir.ode is pushed onto the control stack. The 

fields of the control mode are used to save the elements of 

the list structure for this particular call. In addition, 

the object may contain fields which are used to hold values 

computed during the evaluation. Thus, the fields of a 

control mode correspond to the formal parameters and local 

variables which would be used if the evaluator was able to 

use recursive procedure calls. 

Occasionally, it is useful to allow a control mode to 

contain a field RETURN which specifies the label to which 

control is to be returned upon completion of the evaluation. 

If  a return is to be made when the top object on the control 

A call is actually made to the general evaluator 
EVAL\H)RiM which dispatches to the appropriate evaluator, 
namely EVSEL. 
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stack is not a SYMBOL, (i.e. the symbolic name of a label,) 

then the RETURN component of the object is selected and 

control is passed to the specified point in the evaluator 

without popping the object off of the stack. 

The evaluator described in section 4.2 is not complete 

because a number of sub-evaluators which were defined in 

[Weg70] are assumed to be linguistic primitives. In 

particular, the data type constructors (e.g. ROW, STRUCT) 

and the object generators (ALLOC and CONST) are not defined. 

Their omission is justified by the fact that we are 

primarily concerned with the semantics of EL1 which are 

directly relevant to the control primitives. In all cases, 

the omitted sub-evaluators have marginal interaction with 

the multi-path facility. Hence, their inclusion, although 

straightforward, would simply lengthen the description of 

the evaluator and thus weaken this work. The missing 

sub-evaluators, along with the other linguistic primitives, 

are defined in section 4.5. 

1.3 Stacks 

In section 4.1.2, we described a path's environment as 

consisting of three stacks. Here, we will discuss these 

stacks in more detail. 
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Each path possesses a name, value and control stack. 

They are pointed to by the NS, VS, and CS fields of the 

path's ACTRC, respectively. Associated with each stack is a 

current stack index, which is stored in the NP, VP and CP 

fields of the ACTRC, respectively. The stack index 

specifies the number of objects which have been 'pushed' 

onto the stack. When a path is active, the current values 

for NP, VP and CP are contained in the corresponding 

evaluator's local variables NP, VP and CP. 

The name stack is actually a ROW of STRUCTs, namely 

NAME\STACK <- ROW(STRUCT(NAMF:SYMBOL, VALUErREF)); 

Hence, entries are pushed onto and popped off of the name 

stack by storing into the appropriate entry of the row and 

updating NP appropriately. 

The control and value stacks, are objects of mode 
* 

STACK. STACKS have the following properties: 

(1) They may hold objects of any mode. 

(2) They may be indexed as ROWs, e.g. the value of 

CS[CP] is a pointer to the top object on the control 

stack, CS[1] is a pointer to the object on the 

bottom of the stack. 

(3) If an object is 'popped' off of the stack, all 

STACKs and stack operations as defined here, differ 
from the definitions given in [Wep;70J. We defer 
justification of the changes until Sectior, ';».,3»2, 
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references to it are set to NIL. Thus it is 

impossible to retain a pointer to an object which 

has been removed from a stack. 

The following stack operations are defined as linguistic 

primitives: 

(1) PUSH <- CEXPR(0£J:ANY, S:STACK;REP). OBJ is copied 

onto the top of the stack S. The number of objects 

on the stack is increased by one. PUSH returns a 

pointer to the object which has been pushed onto the 

stack. 

(2) PLUSH <- CEXPR(S:STACK, INDEX:INT; NONE) If there 

are N objects on the stack S, then the N th through 

the INDEX+1 objects are removed from the stack. 

Hence, after the PLUSH, there remain INDEX objects 

on the stack. 

(3) INSTACK <- CEXPR(PTR:REF, 

IND1:INT, 

IND2:INT, S:STACK; BOOL) 

INSTACK returns TRUE if and only if the object 

referenced by PTR is on the stack S and is one of 

the objects S[IND1+1] through S[IND2] or is a 

sub-object of one of them, i.e. if and only if PTR 

points into the stack between the ranges specified. 

(4) HEAP <- CEXPR(PTR:REP;BOOL) returns TRUE if and only 

if PTR points to an object which is not on a STACK. 

Note that PUSH and PLUSH do not update the stack index 
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associated with the stack. 

A number of stack functions are defined in terms of 

these primitives to facilitate stack management and the 

referencing of objects on a stack. For example, T0PC1 is 

defined as a NOJTIX operator and returns a pointer to the top 

object on the control stack. A complete list of these 

functions is given in section 4.4. 

It is intended that in an implementation of MPEL1 a 

path's environment will be implemented as three LIJO stacks. 

Hence, although the mode STACK guarantees that a 'dangling 

reference' cannot occur (i.e. a reference to an object 

which has teen popped off of the stack), the evaluator must 

not rely on this property. In particular, since it is 

possible (via path-dependency) for one path to obtain a 

reference to the value stack of another, the mechanisms 

which insure that 'dangling references' do not occur are of 

central importance in the definition. 

1.4 Synchronization 

The NPROC evaluators require a means of mutual 

synchronization. We could, of course, postulate the 

existence of a CI' which is CIA'-called by the evaluators to 

effect the synchronization. Unfortunately, this leads to 

direct circularities in the definitions of some of the 
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control primitives. For example, to perform a CIA one must 

perform a CIA'. Hence, the essence of the control will not 

be explained. These issues will be discussed further in 

section 5.3«2, where we give a justification for the formal 

definition as a whole. Instead, the evaluators will 

synchronize themselves using the control primitives TSET and 

CLEAR. Although this will lead to direct circularities in 

the definitions of these operations, the circularities are 

not as suspect since the operations are themselves 

intuitively acceptable. They can be implemented in one 

machine instruction. 

Synchronization is required by the evaluators: 

(1) to insure single access to the control interpreter 

path, 

(2) to insure that a path is evaluated by only one 

evaluator at a time, 

(3) to insure that the environment of a path is modified 

by only one evaluator at a time, 

(4) to detect and process external interrupts. 

The activation record of each path contains a field 

MOD, of mode INT, which is used to provide synchronization 

in the first three cases above. Whenever a path is active, 

its MOD field has been TSET by the corresponding evaluator. 

Hence, if a path F is active, then TSET(F.MOD) returns 

FALSE.  In particular, this is true of the CI path. Kence, 
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the evaluators may determine if the CI path is being 

evaluated. 

Any control primitive that modifies the environment of 

a path other than the one in which it is called, TSETs the 

MOD field of the path in question. Hence, if TSET(P.MOD) 

returns PALSE then P is either active or being modified by a 

control primitive. 

External interrupts are sent to an evaluator by an 

external processor or by another evaluator. To 'send' an 

interrupt, a structure associated with the evaluator is 

modified to indicate the type of interrupt and its priority 

level and then a flag is set to indicate that an interrupt 

is pending. The evaluator checks this flag at points during 

the evaluation at which it is convenient to allow an 

interrupt. If the flag is set, then it determines whether 

or not a response is to be initiated by examining the 

associated interrupt structure. Synchronization is required 

to insure that the evaluator and the interrupt generator do 

not modify the structure at the same time. A 

processor-interrupt-lock is associated with each evaluator. 

An evaluator TSETs this lock before accessing its interrupt 

structure. If the lock is set, then the evaluator goes into 

a busy wait upon the lock. 

Justification for this model of interrupts will be 
given in section 5-3.2. 
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2. THE EL1 EVALUATOR 

In this section we present the definition of the 

sub-evaluators for the language constructs of EL1. .For each 

construct, examples of its use are given both in concrete 

and abstract syntax representation.  A sub-evaluator is 
* 

specified by a labelled sequence of statements. Global 

constants are identifiers whose values are accessible to the 

NPROC evaluators but are not modified by them. Global 

variables are identifiers v/hose values are modified by the 

evaluators to effect inter—evaluator communication. All 

modes introduced are assumed to be global constants. 

The EL1 evaluator presented here is similar to the 

evaluator in [Weg70], but has been updated to reflect 

changes in the language which have been included in a 

current implementation [Weg72]. The major difference 

between the two is in the method used to handle evaluator 

recursion, c.f. 4.1.2. 

The first subsection describes evaluator initialization 

and the use of each local variable defined by an evaluator. 

The complete definition of an evaluator is the 
concatenation of the sub-sections 4.2.i Evaluators (for i 
between 1 and 12) and 4.3.i Evaluators (for i between 1 and 
15). 
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Global Constants 

4-15 

NPROC 

PRO\PRO\FORM 

TIMER\FORM 

NPALEV 

NPROLEV 

;NT The number of processors; 

;NT "PRO\PRO" response form; 

;NT "TIMER" response form; 

;NT The number of processor 
interrupt levels; 

;NT The number of path 
interrupt levels; 

Global Variables 

PCIAR 

PRO\PATH 

IDLE 

INIT\STATE 

;NT PTR to CI path; 

;NT A ROW(NPROC,ARPTR) which 
specifies the assignment of 
processors to paths; 

;NT A ROW(NPROC,ARPTR) which 
specifies the idle path for 
each processor; 

;NT A ROW(NPROC,SYMBOL) which is 
used to coordinate the 
initialization; 

Modes 

FORM <- PTR(INT, ATOM, DTPR, DDB, REP); 

MODE <- PTR(DDE); 

DDB <- STRUCT(CLASS:SYMBOL, 
D:PTR(DDB, 

ROW(S TRUCT(SYM:SYMBOL,TYPE:MODE)), 
ROW(MODE), 
SIPUCT(TYPE:MODE,LENGTH:INT)), 

); 
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NT See section 4.5 for a discussion 
of the fields of a DDE; 

NT See [Weg70] for a complete discussion 
of modes in EL1; 

DTPR <- STRUCT (CAR :FORK, CDR:FORM); 

NAME\STACK <- ROW(STRUCT(NAME:SYMBOL, VALUE:RET)); 

VALUE\STACK <- STACK; 

CONTROL\STACK <- STACK; 

NSPTR <- PTR(NAME\STACK); 

VSPTR <- PTR(VALUE\STACK); 

CSPTR <- PTR(CONTROL\STACK); 

ARPTR <- PTR(ACTRC); 

ACTRC <- 
STRUCT(NS:NSPTR, 

VS:VSPTR, 
CS:CSPTR, 
NP:INT, 
VP:INT, 
CP:INT, 
CIA\FN:REF, 
CIA\ARG:REP, 
CIA\RESULT:REP, 
STKEFLG:BOOL, 
ELGFLG:BOOL, 
DORMANT:BOOL, 
MOD:INT, 
SPATE:BOOL, 
LFLG:BO0L, 
DS:ARPTR, 
DSN:INT, 
DSC:INT, 
DSV:INT, 
LBRO:ARPTR, 
PLEV:ARPTR, 
LASTSON:ARPTR, 
LOWCP:LNT, 
NEXT:ARPTR, 
TERMINATIONXPORM:PORM, 
TICKS\LEFT:INT, 
USER\AR: ARPTR, 
PRO:INT, 
INPROI:INT, 
INTIKFO:ITE); 
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Evaluator 

EVALUATOR <- 
EXPR(PROCNUM:INT, INITCI:BOOL, PROG:FORM; NONE) 

BEGIN 

NT    The following variables are used 
in intra-path evaluation; 

DECL F:FORM: 
DECL EVRES:REF; 
DECL NS:PTR(NAME\STACK): 
DECL V£:PTR(VALUE\STACK); 
DECL CS:PTR(CONTROL\STACK) 

BYVAL ALLOC(CONTROL\STACK SIZE 3); 
DECL RESULT\SLOT, AUX\RESULT\SLOT:PTR(VALUE\STACK) 

BYVAL ALLOC(VALUE\STACK SIZE 1); 
DECL NP, VP, CP, RSP, ARSP:INT; 

NT    The following variables are used in 
inter-path evaluation; 

DECL PATH:ARPTR; 
DECL SPATH,IFLC:BOOL; 

NT     The following variables are used as temps 
by the evaluator; 

DECL Q, P:ARPTR; 
DECL L, N, M, NAME\INDEX:INT; 
DECL S, TEMP:FORM; 
DECL B:BOOL; 

N <- 1; 
CAIL EVGETPATH1; NT P points to a new path; 
IDLE[PROCNUM] <- P ;NT Indicate idle path created; 
INITCI -> GOTO INIT1; 
TSET(P.MOD); 
PRO\PATH[PROCNUM] <- P; 
INSTALL\STATE(P); 

INIT2:  INIT\STATE[PROCNUM] # "CIREADY" -> GOTO INIT2 
CALL INIT\INTERRUPTS; 
INIT\STATE[PROCNUM] <- "PROREADY"; 

NT IDLE!; 

DOIDLE: F <- QUOTE(WHILE TRUE DO NOTHING); 
CALL EVAL\FORM; 

INIT1: PUSHC(,,DOIDLE"P); 
CALL EVGETPATH1       ;NT Create CI path; 
PCIAR <- P; 
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TSET(PCIAR.MOD); 
INSTALL\STATE(PCIAR); 
INSTALL\GLOBAL\ENV() 

NT Install initial top level 
bindings for paths; 

CALL INIT\INTERRUPTS; 
FOR I <-1, ..., NPROC DO 
INIT\STATE[I] <- "CIREADY"; 
FOR  I<-1, ..., NPROC DO 
BEGIN 
I = PROCNUM => NOTHING; 
L: INIT\STATE[I] $  "PROREADY" -> GOTO L 
END; 

NT Other processors are ready; 

PUSHN("IDLE\PATHS" PUSHV(IDLE)); 
PUSHN(,,PROGM ,PUSHV (PROG ) ) ; 

P<-QUOTE(INIT\CI(IDLE\PATHS,PROG)); 
CALL EVAL\FORM; NT Initialize CI; 

INITXINTERRUPTS: 
F <-  QUOTECENAELEXPROCTROXPRO", 1, PRO\PRO\PORM); 
CALL EVAL\FORM; 
F  <- QUOTECENAELEXPROC'TIMER"^, TIMER\EORW)); 
CALL EVAL\JORM; 
RETURN; 

Discussion 

The arguments to an evaluator specify its number 

(1<PROCNUM<NPROC), a boolean which indicates whether or not 

the evaluator is to initialize the control interpreter path, 

and a form which is the program to be evaluated. Hence, 

assuming that PROGRAM is to be evaluated, the NPROC 

evaluators are initialized as follows: 
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EVALUAT0R(1,IRUE,PR0GRAM) J 
EVALUATOR(2) ! 

EVALUATOR(NPROC-1) J 
' EVALUATOR(NPROC) 

where '!' indicates that the evaluators  execute  the 

procedure calls simultaneously. 

Each evaluator I (I//1) creates a path; enables itself 

for "PROVPRO" and "TIMER" interrupts; and then idles. 

Evaluator 1 creates both its idle path and the control 

interpreter path; installs the 'top-level' environment 

(i.e. initializes top level bindings for all of the control 

subroutines, 1uilt—in functions, etc.); enables itself for 

interrupts; waits for the other processors to complete their 

initialization; binds the vector of idle paths and the 

program to be evaluated to variables in the CI's environment 

and then evaluates the procedure call 

INIT\CI(IDLE\PATHS,PROC) in the CI environment. 

1NIT\CI defines the variables to be used by the CI, 

creates a path in which the program is to be evaluated, and 

then calls C\I to commence path scheduling, c.f. Appendix 

3. 

Note that the 'top-level' environment of the evaluators 
is distinct from the 'top-level' environment seen by the 
paths. 
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The declared variables of an evaluator may be divided 

into three classes according to their use. 

The first set of variables are used for intra-path 

evaluation. NS, VS, and CS point to the name, value, and 

control stacks of the path which is being evaluated. NP, 

VP, and CP index the top element of the three stacks. P 

specifies the current form which is being evaluated. EVRES 

is used to point to the value obtained by the evaluation of 

P. The value specified by EVRES may be in the heap, on the 

value stack of some path, or in the RESULT\SLOT. 

The second set of variables are used for inter-path 

evaluation. PATH specifies the path which is currently 

being evaluated. SPATH indicates whether or not PATH is a 

supporting path. If IPLG is TRUE, then PATH is currently 

evaluating a path or processor interrupt response. 

The third set of variables is used locally in various 

parts of the evaluator. 

The RESULT\SLOT (AUX\RESULT\SLOT) is used by the 
evaluator to hold the result produced by the evaluation of a 
language construct in certain cases. A value contained in 
the result\slot is called a pure—value. 
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2.2  Form 

Modes 

ATOM<-STRUCT(PRINT\NAME:PTR(STRING),TLB:REF); 

SYMBOL<-PTR(ATOM); 

STRING<-ROW(CHAR); 

Evaluator 

EVAL\FORM: ;NT F is the form to be evaluated; 

F=NIL => RETURN\NOTHING; 
M <- MVAL(F); 
M = ATOM -> GOTO EVSYM; 
M = DTPR -> GOTO EVDTPR; 
BEGIN 

M = INT => EVRESULT(VAL(F),INT); 
M = REF => EVR£SULT(VAL(F)fMVAL(VAL(F))); 
M = DDB => EVRESULT(CONST(MODE LIKE F),KODE) 

END; 

RETURN; 

EVSYM: NAME\INDEX <- FIND\NAME(NS,NP,F); 
EVRES <- [) NAKFAINDEX | 0 => NS[NAME\INDEX].VALUE; 

RETURN; 

Auxiliary Functions 

EVRESULT <- 
EXPR(PRES:ANY, RESMODE:MODE; REF) 

BEGIN 
DECL TEMP:REF; 
DECL TEMPI:INT; 
BEGIN 

MD(PRES) = REF    AND 
INSTACK(PRES, 0, RSP, RESULT\SLOT) => 

BEGIN 
TEMP <- RESULT\SLOT; 
RESULT\SLOT <- AUX\RESULT\SLOT; 
TEMPI <- RSP; 
AUX\RESULT\SLOT <- TEMP; 
ARSP <- TEMPI 
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END 
END; 
FLUSH(RESULT\SLOT, 0); RSP <- 0; 
EVRES <- PUSHR(PRES, RESMODE); 
EVRES 

END; 

FIND\NAME <- 
EXPR(STACK:PTR(NAME\STACK), 

HTCH\INDEX:INT, 
NAME:SYMBOL; INT) 

BEGIN 
DECL K:INT BYREP HIGH\INDEX; 
DECL RESULT:INT; 
FOR I <- H,H-1 ... , 1 TILL RESULT # 0 DO 

BEGIN 
STACK[I1.NAME = NAME -> 

RESULT <- I 
END; 

RFSULT 
END; 

Discussion 

EVAL\FORM performs the evaluation of a form F based 

upon the mode M of the object referenced by P. If VAL(P) is 

atomic then EVRES is set to the value of the SYMBOL in the 

current environment or the top level binding of the SYMBOL. 

If it is a DTPR then control is transferred to the list 

structure evaluator. If it is an integer then EVRES is set 

to a copy of the integer which is pushed onto the 

RESULT\SLOT. Note that REPs are used to specify constants 

in the list structure representation of an MPEL1 program 

(e.g. TRUE, FALSE, 'C, etc.) If VAL(P) is a DDB 

(data—definition- block) then EVRES is set to a pointer to 

The abstract syntax representaton of identifiers with 
the same spelling are pointers to a unique ATOM. 
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the DDB (i.e. a mode.) 

EVRESULT is used to push an object onto the 

RESULT\SLOT. The second argument to FVRESULT specifies the 

mode of the object. If the first argument is a REF, then 

the object to be copied is the VAL of the argument. 

Otherwise, the first argument specifies the object to be 

copied. 

2.3 List Structure 

Evaluator 

EVDTPR: 
S <- I1.CAR; 
MVAL(S) # ATOM -> GOTO APPLY; 
S = "EXPR!" -> GOTO EVEXPR; 
S = "BLOCK!" -> GOTO EVBLOCK; 
S = "IF!" -> GOTO EVIF; 
S = "CLAUSE!" -> GOTO EVCLAUSE; 
S = "FOR!" -> GOTO EVFOR; 
S = "SEL!" -> GOTO EVSEL; 
S = "SELQ!" -> GOTO EVSELQ; 
S = "DECL!" -> GOTO EVDECL; 
S = "LABST!" -> GOTO EVLABST; 
S = "<-" -> GOTO EVASSIGN; 
COTO APPLY; 

Discussion 

If the CAR of the list is not a SYMBOL then the list 

structure is evaluated as a procedure application. If the 

CAR is a SYMBOL which indicates that the form is a language 

construct then control is transferred to the appropriate 

sub-evaluator. Otherwise, the list structure is evaluated 

as a procedure application. 
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2,4 Literal Procedure 

Example 

EXPR(X:INT; BOOL) [) X = 0 => TRUE ; FALSE (]; 

(EXPR! ((X INT BYREF)) BOOL 
(BLOCK! (CLAUSE! (= X 0) TRUE) FALSE)) 

Evaluator 

EVEXPR: EVRESULT( CONST(FORM LIKE F), FORM); 
RETURN; 

Discussion 

The value of a literal procedure is a pointer to the 

procedure. 

2.5 Block 

BEGIN B1 => 1; 2 END; 

(BLOCK! (CLAUSE! B1 1)2) 

[) DECL X:INT ; FOO(X) (]; 

(BLOCK! (DECL! (X) INT) (FOO X)) 
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Modes 

BLOCK\ELOCK <- 
STRUCT(OLD\NP:INT, 

OLL\VP:INT, 
CUR\NP:INT, 
CUR\VP:INT, 
STATEMENT\LIST: PORM , 
RETURN:SYMBOL); 

Evaluator 

EVBLOCK:PUSHC(CONST(ELOCK\ELOCK OF 
NP, VP, NP, VP, P.CDR, "RETBLOCK")); 

EVRES <- NIL; 
i:T The value of a block is initially NOTHING; 

EVBLK1: 
T0PC1.STATEMENT\LIST = NIL -> RETURN; 
CALL ALLOW\INTERRUPT; 
F <- TOPC1-STATEMENT\LIST; 
TOPC1.STATEMENT\LIST <- F.CDR; 
F <-  F.CAR; 
CALL FVAL\FORM; 
GOTO EVBLK1; 

RETBLOCK: 
MVAL(EVRES) = LABEL -> ERROR("illegal\result"); 
NOT PURE\VALUE -> 

BEGIN 
INSTACK(EVRES, TOPC1.0LD\VP, VP, VS) -> 

EVRESULT(EVRES, MVAL(EVRES)) 
END; 

NP <- TOPC1.0LD\NP; 
PLUSH(VS, TOPC1.OLD\VP); 
POPC1\RETURN; 

Discussion 

A block is evaluated by evaluatin£ each statement on 

its statement list. Since the initial statements of a block 

may be declarations which add to the identifier .environment 

it is necessary to record in the BLOCK\BLOCK the indices of 
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NP and VP which specify the environment in which the 

statements of the block are being evaluated. To allow for 

external interrupts, a call to ALLOW\INTERFUPT is made 

before the evaluation of each statement. 

When the last statement of the block is evaluated, 

control is transferred to RETBLOCK. If the last value 

computed in the block is not a pure—value and it exists in 

the portion of the stack environment of the path which will 

be deleted upon block exit, then the value is copied into 

the result slot. The name and value stacks are flushed back 

to the level they were at before the block was entered, the 

BLOCK\BLOCK is removed from the control stack, and control 

returns to the caller of EVAL\FORM. 

The value of a block is the value returned by the last 

statement executed. 

2.6 Declaration 

Examples 

DECL X, Y:1NT; 

(DECL! (X Y) INT) 

DECL Y:INT BYREF Z; 

(DECL! (Y) INT BYREF Z) 
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DECL X:INT BYVAL 3; 

(DECL! (X) INT BYVAL 3) 

[) X; L: POO (]; 

(BLOCK! (DECL! (L) LABEL 
(LABST! L POO)) X (LABST! L POO)) 

Modes 

DECL\BLOCK <- 
STRUCT(ID\LIST:PORM, 

TYPE:FORM, 
INITDtPORM, 
FXP\MODE:MODE); 

LABEL <- STRUCT(CPINDEX:INT, ST\LIST:FORM, PATH:ARPTR); 

.•: 

Evaluator        -   ' . —B  

EVDECL:MVAL(T0PC2) # BLOCK\BLOCK -> 
ERROF("illegal\declaration"); 

PUSHC(CONST(DECL\BLOCK OP 
CADR(F), CADDR(P), F.CDR.CDR.CDR)); 

EVDECL1: 
p <-; TOPC1.TYPE; 
CALL EVAL\FORM; 
CHECKM(MODE); 
TOPC1.EXP\MODE <- VAL(EVRES); 
AND(TOPC1.INITD # NIL, 

TOPC1.INITD.CAR = "LABST!", 
VAL(EVRES) = LABEL) -> GOTO DECL\LABEL; 

TOPC1.INITD = NIL -> GOTO DECL\NO\INIT; 
P <- CADR(TOPCI.INITD); 
CALL EVAL\PORM; 
MVAL(EVRES) # TOPC1.EXP\MODE -> 

BECIN 
COMPATIBLE(TOPC1.EXP\MODE, EVRES) -> 

EVRESULT(EVRES, TOPC1.EXP\MODE) 
END; 

NOT PURE\VALUE AND TOPC1.INITD.CAR = "BYREP" -> 
GOTO DECL\BYREP; 

PUSHN(TOPC1.ID\LIS T.CAR, PUSHV(EVRES)); 
GOTO DECL\LOOP; 

DECLNBYREP: 
PUSHN(TOPC1.ID\LIST.CAR, EVRES); 
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GOTO DECL\LOOP; 

DECL\NO\INIT: 
TOPC1.EXP\MODE=LABEL OR 

TOPC1 .EXP\MODE. CLASS=,,GENERICW 

-> ERROR("illepal\declaration"); 
PUSHN(TOPC1.IL\LIST.CAR, GENV(TOPC1.EXP\MODE)); 
GOTO PECL\LOOP; 

DECLXLABEL: 
PUSHN (TOPC1. IL\LIST . CAR, 

PUSHV(CONST(LABEL OP CP - 2, 
TOPC1.INITD, PATH))); 

DECLXLOOP: 
TOPC3-CUR\NP <- NP; 
TOPC3.CUR\VP <- VP; 
TOPC1.ID\LIST <- TOPC1.ID\LIST.CDR; 
TOPC1.ID\LIST # NIL -> GOTO EVDECL1; 
P0PC(2); NT Pop DECLVELOCK and CALL from EVBLOCK; 
EVRES <- NS[NP]. VALUE; 
GOTO EVBLK1; 

Discussion 

A declaration may only appear at the statement level of 

a block. The evaluation of a declaration results in the 

addition of one or more identifiers to the environment. The 

CUR\NP and CUR\VP fields of the BLOCK\BLOCK of the block are 

updated to reflect this addition. 

Por each identifier on the identifier list the 

following actions are performed. The type field is 

evaluated to produce a mode which is saved in the EXP\MODE 

component of the DECL\BLOCK. If the mode is LABEL then it 

is treated specially (see below). If the INITD field is 

NIL, then the identifier is bound to a default value on the 

value stack for the mode EXP\MODE. If it is not NIL,  then 
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the initialization form is evaluated. If the initialization 

is to be BYREF and the result of evaluation is not a 

pure—value then the identifier is bound directly to the 

result. Otherwise, the identifier is bound to a copy of the 

result, which is pushed onto the value stack. 

If the EXP\MODE is LABEL, then the identifier is bound 

to an entry on the value stack which specifies the 

BLOCK\£LOCK with which the label is associated, the sub-list 

of the statement list of the block starting with the 

labelled statement, and the current path. 

The value of a declaration is the value associated with 

the last identifier bound on the name stack, 

2.7 Conditional   

Example 

[) B -> FCO(A,E) ; A => B ; FALSE (]; 

(BLOCK! (IP! B (F00 A B)) (CLAUSE! A B) FALSE) 

Mode 

COND\BLOCK <- STRUCT(LHSF:FORM, RHSF:FORM); 

x 
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Evaluator 

EVIF: MVAL(T0PC2) # BL0CK\EL0CK -> 
ERROR("illegal\conditional"); 

PUSHC(CONST(C0ND\BL0CK OF CADR(F), CABDR(F))); 
F <- T0PC1.LHSF; 
CALL EVAL\FORM; 
CHECKM(BOOL) AND VAL(EVRES) = TRUE -> GOTO EVIF1; 
P0PC(1); 
RETURN\NOTHING; 

EVIF1: 
F <- T0PC1.RHSF; 
CALL EVAL\FORM; 
P0PC1\RETURN; NT Return to EVBLOCK loop; 

EVCLAUSE: 
MVAL(T0PC2) # BLOCK\BLOCK -> 

ERROR(Mille£al\conditionalM); 
PUSHC(CONST(COND\BLOCK OF CADR(F), CABDR(F))); 
F <- T0PC1.LHSF; 
CALL FVAL\FORK; 
CHECKM(BOOL) AND VAL(EVRES) = TRUE -> 

GOTO EVCLAUSE1; 
P0PC(1); 
RETURN\NOTHING; 

EVCLAUSE1: 
F <- T0PC1.RHSF; 
CALL EVAL\FORK; 
P0PC(2); NT Flush COND\BLOCK 

and CALL from EVBLOCK; 
RETURN;  NT Exit block; 

Discussion 

A conditional may only appear at the statement level of 

a block. 

If the LHSF of an IF! form evaluates to TRUE, then the 

RHSF is evaluated and control returns to the EVBLOCK loop. 

If the LHSF of a CLAUSE! form evaluates to TRUE then the 

RHSF is evaluated and the result is taken as the value of 
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the block.  In either case, if the LHSF evaluates to FALSE, 

then the value of the conditional is NOTHING. 

2.8 Selection 

Examples 

X[3] 

(SEL! X 3) 

NS[NP].VALUE 

(SELQ! (SEL! NS NP) VALUE) 

Mode 

SEL\BLOCK <- 
STRUCT(OBJF:FORM, 

SEL\K)RM:FORM, 
OBJrREF, 
INDEX:INT, 
SAVE\FLAG:BOOL); 

Evaluator 

EVSEL:PUSHC(CONST(SEL\BLOCK OF CADR(F),   CADBfi(F))); 
F <- TOPC1.0BJF; 
CALL EVAL\PORM; 
MVAT,(EVRES).CLASS = "PTR" -> DEREF(EVRES); 
SAVE\VAL(); NT    Save object on value-stack 

if pure—value; 
F <- T0PC1.SEL\F0RM; 
CALL FVAL\FORM; 

BEGIN 
MVAL(EVRES) = INT =>    T0PC1.INDEX <- VAL(EVRES); 
CHECKM(SYMBOL); 
T0PC1.INDEX <- 

SEJJECTOR\IKDEX(MVAL(TOPC1.0BJ),   VAL(EVRES)); 
END 
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EVSEL1: T0PC1.INDEX LE 0 OR 
TOPC1.INDEX GT LENGTH(VAL(T0PC1.OBJ)) -> 

ERROR("selection\fault"); 
EVRES <-SELECT(TOPC1.0BJ, TOPC1.INDEX); 
TOPC1.SAVE\FLAG -> GOTO UNSAVE\VAL; 
POPC1\RETURN; 

UNSAVE\VAL: 
EVRESULT(EVRES, MVAL(EVRES)); 
POPV(1); NT Pop saved object off of value stack; 
P0PC1\RETURN; 

EVSELQ: 
PUSHC(CONST(SEL\BLOCK OP CADR(P), CADDR(P))); 
P <- TOPC1.0BJF; 
CALL EVAL\FORM; 
MVAL(EVRES).CLASS = "PTR" -> DEREP(EVRES); 
SAVE\VAL(); 
T0PC1.INDEX <- 

SELECTOR\INDEX(MVAL(T0PC1.OBJ), 
TOPC1.SEL\FORM); 

GOTO FVSEL1; 

Auxiliary Functions 

SAVE\VAL <- 
EXPR(; NONE) 

BEGIN 
PUREXVALUE => 

BEGIN 
TOPC1.0BJ <- PUSHV(EVRES); 
TOPC1.SAVE\PLAG <- TRUE 

END; 
TOPC1.0BJ <- EVRES 

END; 

SELECTOR\INDEX <- 
EXPR(M:MODE, S-.SYMBOL; INT) 

BEGIN 
DECL L:INT; 
M.CLASS §  "STRUCT" => 

ERROR("selectionXfault"): 
FOR I <- 1, ... , LENGTH(VAL(M.D)) TILL L GT 0 DO 

[) M.D[I].SYM = S => L <- I (]; 

END; 
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Discussion 

Two types of selection forms are defined for compound 

objects,  namely  selection (SEL!) and selection-quoted 

(SELQ!). In either case, the OBJF is evaluated.  If the 
* 

result is a pointer, it is dereferenced to produce a 

non-pointer value. If the result is a pure value then it is 

saved on the value stack. 

SEL! and SELQ! differ in the method used to obtain the 

index of the component to be selected. 

SELQ! calls SELECTOR\INDEX to obtain, from the mode of 

the object, the index associated with the symbolic field 

name specified by SEL\IDRM. SEL! evaluates the SEL\K)RK. 

If the result is an integer then it uses it as the index. 

If the result is a SYMBOL, then it calls SELECTOR\INDEX to 

obtain the index. The primitive procedure SELECT is called 

to select the appropriate component of the object. SELECT 

returns a pointer to the selected component. 

The result of a selection form is the component of the 

object. 

VAL is applied repeatedly until a non-pointer object 
is obtained. Selection is the only language construct in 
which pointer coercion is automatic. 
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2.9 Assignment 

Examples 

X <- 1 

(<- X 1 ) 

S <- Y.CAR 

(<- S (SELQ! Y CAR)) 

Modes 

ASSIGN\BLOCK <- 
STRUCT(LHSF:FORM, 

RHSF:FORM, 
OBJrREF, 
SAVE\FLAG:BOOL); 

Evaluator 

EVASSIGN: 
PUSHC(CONST(ASSIGN\BLOCK OF CABR(F), CADDR(F))); 
F <-  T0PC1.LHSF; 
CALL EVAL\FORM; 
SAVE\VAL(); 
F <- T0PC1.RHSF; 
CALL FVAL\FORM: 
NOT COMPATIBLE(MVAL(TOPC1.0£J), EVRES) -> 

ERROR("assign\error"); 
ASSIGN(T0FC1.OBJ, EVRES); 
T0PC1.SAVE\FLAG -> GOTO UNSAVF\VAL; 
EVRES <- TOPC1.0BJ; 
PCPC1\RETURN; 

Discussion 

The LHSF is evaluated first. If the result is a 

pure-value then it is saved on the value stack. The RHSF is 

then evaluated.  If the 2 objects obtained are compatible 
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then the primitive function ASSIGN is used to perform the 

mode-dependent assignment. The value of an assignment form 

is the object specified by OBJF after the assignment has 

been completed, unless the LHSF was a pure value in which 

case the value of the assignment is a copy of the modified 

LHSF. 

2.10 Iteration 

Examples 

FOR I <- 1, ..., N DO SUM <- SUM + 1; 

(FOR I 1 NIL N NIL (<- SUM (+ SUM 1 ))) 

FOR I <- 1,3, ..., K TILL P(I) DO 
[) B => Q(X) ; T(X) (]; 

(FOR I 1 3 K (TILL . (P I)) 
(BLOCK! (CLAUSE! B (Q X)) (T X))) 

FOR K- 1,3, ..., N WHILE B DO (FOO(X)); 

(FOR I 1 3 N (WHILE . B) (F00 X)) 

Modes 

FOR\BLOCK <- 
STRUCT(0LD\NP:INT, 

0LD\VP:INT, 
NAME:FORM, 
INITF:FORM, 
STEPF:FORM, 
LIMITF:FORM, 
TESTF:FORM, 
C0ND\FLAC:B00L, 
BODY:FORM, 
STEP:INT, 
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LIMIT:INT, 
RETURN:SYMBOL); 

Evaluator 

EVPOR: 
PUSHC( CONST (K)R\BLOCK OF 

NP, 
VP, 
F<-F.CDR I.CAR, 
F<-F.CDR i.CAR, 
F<-F.CDR i.CAR, 
JK-F.CDR] .CAR, 

;F<-F.CDRJ i.CAR, 
BEGIN 

F.CAR = NIL => FALSE; 
F.CAR.CAR = "TILL" => TRUE; 
FALSE 

END, 
1 :F<-F.CDRJ i.CAR, 
11 

o, 
"RETFOR")): 

PUSHN(T0PC1.NAME, GENV(INT)); 
F <- T0PC1.INITF; 
CALL EVAL\FORM; 
CHECKM(INT); 
NSV1 <- VAL(EVRES); 
F <- T0PC1.STEPF; 
F = NIL -> GOTO EVF0R5; 
CALL EVAL\FORM; 
CHECKM(INT); 
T0PC1.STEP <- VAL(EVRES) - NSV1; 

EVF0R5: 
F <- T0PC1.LIMITF; 
F = NIL -> GOTO EVF0R1; 
CALL EVAL\FORM; 
CHECKM(INT); 
T0PC1.LIMIT <- VAL(EVRES); 

EVF0R1: 
T0PC1.TESTF // NIL -> GOTO EVF0R3; 

EVF0R2: 
CALL ALLOW\INTERRUPT; 
SIGN(TOPCI.STEP) * (NSV1 - T0PC1.LIMIT) GT 

0 -> GOTO ENDFOR; 
F <- T0PC1.B0DY; 
CALL FVAL\FORM; 
NSV1 <- NSV1 + T0PC1.STEP; 
GOTO FVF0R2; 
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EVP0R3: 
CALL ALLOW\INTERRUPT; 
SIGN(TOPCI.SIEP) * (NSV1 - IOPC1.LIMIT) GT 

0 -> GOTO ENDPOR; 
P <- TOPC1.TESTP.CDR; 
CALL EVAL\PORW; 
CHECKS(BOOL); 
TOPC1.COND\PLAC = VAL(EVRES) -> GOTO ENDPOR; 
P <- TOPC1.BODY; 

• •  CALL EVAL\PORJ<J; 
NSV1  <- NSV1  + TOPC1.STEP; 
GOTO EVPOR3; 

ENDPOR: 
RETURN\NOTHINC; 

RETPOR: 
NP <- TOPC1.0LD\NP; 
PLUSH (VS, TOPC1. OLD\VP); 
POPC1\RETURN; 

Auxiliary Punction 

SIGN <- 
EXPR(N:INT; INT) 
BEGIN 

N = 0 => 0; 
N GT 0 => 1; 
-1 

END; 

Discussion 

There are two types of iteration, namely, iteration 

without-test and iteration with-test. In either case, a 

name-stack entry is made for the iteration variable. The 

initial value for the iteration variable is obtained by 

evaluating INITP. If STEPP is non-null then it is evaluated 

and the iteration STEP is taken to be the difference between 

it and the result of evaluating INITP, otherwise the STEP is 

defaulted to 1. If the LIMITP is non-null, it is evaluated 



4-38 

to yield the iteration limit, otherwise the LIMIT is 

defaulted to 0. The values for STEP and LIMIT are saved in 

the P0R\BL0CK. 

For an iteration without test (TESTF=NIL), the 

iteration body is evaluated 0 or more times until the 

iteration variable exceeds the LIMIT. 

For an iteration with test (TESTF#NIL), the iteration 

body is evaluated 0 or more times until either the iteration 

variable exceeds the limit or the result of evaluating 
* 

TESTF.CDR is equal to the C0ND\FLAC. 

Since the evaluation of an iteration form adds an 

identifier to the environment, return from the evaluation 

must be via the return component in the F0R\BLOCK. 

To allow for external interrupts, a call to 

ALLOW\INTERRUPT is made before each evaluation of the body. 

The result of an iteration form is NOTHING. 

C0ND\FLAG is set to TRUE or FALSE as TESTF.CAR equals 
"TILL" or "WHILE", respectively. 
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2.11 Procedure Application 

Examples 

FOO(A,  B,  C + D) 

(POO A B (+ C D)) 

(EXPR(X:INT,Y:INT BYVAL;INT)(X<-Y))(A,E) 

((EXPR!   ((X INT BYREF)(Y INT BYVAL)) 
INT (<- X Y))  A B) 

Modes 

FN\BLOCK <- 
STRUCT(OLD\NP:INT, 

OLD\VP:INT, 
ARG\LIST:FORM, 
RESULTXTYPE: MODE, 
PROC:REF, 
TYPE:SYMBOL, 
NAME:SYMBOL, 
RETURN:SYMBOL, 
ENTERED:BOOL); 

BINDP\BLOCK <- 
STRUCT(ACTUAL\LIST:FORM, 

FORMAL\LIST: FORM, 
EXP\MODE:MODE. 
BCLASS:SYMBOL); 

CEXPR <- 
STRUCT(FORMAL\LIST:FORM, 

BODY:ROW(INT), 
RESULT\TYPE:FORM); 

CSUBR <- 
STRUCT(FORMAL\LIST:FORM, 

BODY:SYMBOL, 
RESULT\TYPE:MODE); 
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Evaluator 

APPLY:PUSHC(CONST(PN\BLOCK OP 
HP, 
VP, 
P.CDR, 
NIL, 
NIL, 
NIL, 
NIL, 
"RETPN", 
PALSE)); 

P <- F.CAR; 
MVAL(P) = ATOM -> T0PC1.NAME <- P; 
NT Save name of procedure; 
CALL APPLY1; 
MVAL(T0PC2) B PAP\BLOCK AND T0PC2.PATH § PATH -> 

GOTO DOPAP; 
APPLY2: 

T0PC1.ENTERED <- TRUE; 
T0PC1.TYPE = CEXPR -> GOTO APCEXPR; 
T0PC1.TYPE = CSUBR -> GOTO APCSUBR; 
P <- CADDDR(TOPCI.BODY); 
CALL EVAL\FORM; 

PROCRET: 
PROC\EXIT(T0PC1.OLD\VP, T0PC1.RESULT\TYPE); 
RETURN; 

APPLY1: 
CALL EVALVFORM; 
DEREP(EVRES); 
M <- MVAL(EVRES); 
NOT OR(M = CEXPR, M = CSUBR, 

M = DTPR AND EVRES.CAR = "EXPR!") -> 
ERROR("unboundXproc"); 

T0PC2.TYPE <- M; 
T0PC2.PR0C <- EVRES; 
CALL BINDF; 
T0PC2.TYPE = DTPR -> PUTNAMES(T0PC2.PROC.CDR.CAR): 
T0PC2.TYPE = CEXPR -> PUTNAMES(T0PC2.PROC.PORMALS); 
P <- [) T0PC2.TYPE = DTPR => CADDR(T0PC2.PROC); 

T0PC2,PR0C.RESULT\TYPE (1 
CALL FVAL\PORM; 
CHECKM(MODE); 
T0PC2.RESULT\TYPE <- VAL(EVRES); 
CALL ALLOW\INTERRUPT; 
RETURN; 

APCEXPR: XCT(T0PC1.PROC.BODY); NT execute code procedure; 
GOTO PROCRET; 
NT Result is set by code procedure 
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and is pointed to by EVRES; 

APCSUBR:  GOTO EVAL(TOPCI.PROC.BODY) 

NT Transfer control to appropriate 
point in evaluator; 

RETFN: HP <- TOPC1,OLD\NP; 
VP <- TOPC1.0LD\VP; 
POPC1\RETURN; 

BINDF: 
PUSHC(CONST(BINDF\BLOCK OF 

TOPC3.ARG\LIST, 
BEGIN 

T0PC3.TYPE = DTPR => 
CADR(T0PC3.PR0C); 

TOPC3. PROC. FORMALS 
END)); 

BINDP3: 
TOPC1.FORMAL\LIST = NIL -> GOTO ENDBIKDF; 
T0PC4.TYPE = CSUBR ->        GOTO BINDF 1; 
F <- CADR(TOPC1.FORMAL\LIST.CAR); 
CALL FVAL\FOR*i; 
CHECKM(MODE); 
TOPC1.EXP\MODE <- VAL(EVRES); 

BINDF4: 
TOPC1.BCLASS <- CADDR(T0PC1.F0RMAL\LIST.CAR); 
TOPC1.BCLASS = "UNEVAL" -> GOTO BINDUNEVALED; 
TOPC1.BCLASS = "LISTED" -> GOTO BINDLSTED; 
TOPC1.ACTUAL\LIST = NIL -> GOTO GENDEF; 
F <- TOPC1.ACTUAL\LIST.CAR; 
CALL EVAL\FORM; 
BEGIN 

T0PC1.EXP\M0DE.CLASS = "GENERIC" => 
TOPC1.EXP\MODE <- 

RESOLVE(TOPC1.EXP\MODE, MVAL(EVRES)); 
NOT COMPATIBLE(TOPC1.EXP\MODE, EVRES) -> 

ERROR("type\fault") 
END; 
TOPC1.EXP\MODE # MVAL(EVRES) -> 

EVRESULT(EVRES, TOPC1.EXP\MODE); 
TOPC1.BCLASS = "BYREF" AND NOT PURE\VALUE -> 

GOTO BINDBYREF; 
PUSHN(NIL, PUSHV(EVRES)); NT Bind BYVAL; 
GOTO BINDFLOOP; 

BINDBYREF: 
PUSHN(NLL, EVRES); 
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GOTO EINDFLOOP; 

BINDUNEVALED: 
TOPC1.EXP\MODE §  FORM -> 

ERROR(Mmode\bind\class\misnatch"); 
PUSHN(NIL, PUSHV(TOPC1.ACTUAL\LLST.CAR)); 
GOTO BINDFLOOP; 

BINDLSTD: 
CHECKM(FORM); 
PUSHN(NIL, TOPC1.ACTUALXLIST); 
TOPC1.ACTUAL\LIST <- NIL; 

BINDFLOOP: 
TOPC1.ACTUAL\LIST # NIL -> 

TOPC1.ACTUAL\LIST <- TOPC1.ACTUAL\LIST.CDR; 
TC?C1.EORMAL\LIST <- TOPC1.FORMAL\LIST.CDR; 
GOTO BINDE3; 

ENDBINDE: 
POPC1\RETURN; 

BINDF1: 
TOPC1.EXP\MODE <- CADR(TOPC1.FORMAL\LIST.CAR); 
GOTO EINDE4; 

GENDEE: 
TOPC1.EXP\MODE = LABEL OR 
TOPC1.EXP\MODE.CLASS = "ONEOF" -> 

ERROR("illegalVDinding*1) ; 
PUSKN(NIL, GENV(TOPC1.EXP\MODE)); 
GOTO BINDFLOOP; 

Auxiliary Functions 

PUTNAMES <- 
EXPR(L:FORM BYVAL; NONE) 

BEGIN 
DECL N:INT BYVAL TOPC2.0LD\NP; 
FOR I <- N + 1, ... , NP BO 

[) NS[I].NAME <- L.CAR.CAR; L <- L.CDR (] 
END; 

RESOLVE <- 
EXPR(U:MODE, R:MODE; MODE) 

BEGIN 
DECL FFrBOOL; 
U = ANY => R; 
U. CLASS §  "GENERIC" => ERRORC'resolveXerror"); 
FOR I <- 1, ... , LENGTH(VAL(U.D)) TILL FI DO 
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[) U.D[I] = R => FF <-  TRUE (]; 
EF = TRUE =>  R; 
ERROR("resolve\error") 

END; 

PROC\EXIT <- 
EXPR(OLDVP:INT, EXPMODE:MODE; REE) 

BEGIN 
MVAL(EVRES) = LABEL => ERROR("illegal\result"); 
BEGIN 

EXPMODE = NONE => EVRESULT(ALLOC(NONE), NONE); 
EXPMODE.CLASS = "GENERIC" => 

EXPMODE <- RESOLVE(EXPMODE, MVAL(EVRES)); 
NOT COMPATIBLE(EXPMODE, EVRES) => 

ERROR("type\fault") 
END; 
OLDVP = VP => EVRES; 
INSTACK(EVRES, OLDVP, VP, VS) => 

EVRESULT(EVRES, EXPMODE); 
MVAL(EVRES) = EXPMODE => EVRES; 
EVRESULT(EVRES, EXPMODE) 

END; 

Discussion 

A form (f a1 a2 ...an), where f does not specify that 

the form is a language construct is treated as a call on the 

procedure f with actual parameters a1 ,..., an. 

Procedure application is carried out in five steps: 

(1) f is evaluated to obtain a procedure. 

(2) The formal parameters of the procedure are bound to 

the actuals a1 ,..., an. 

(3) The result type of the procedure is evaluated to 

obtain the EXPECTED\MODE of the call (i.e. the mode 

of the object which will be returned by the 

procedure.) 

(4) The procedure body is evaluated. 
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(5) The procedure PROC\EXIT is called to check the mode 

of the result against the EXPECTED\MODE and to check 

whether the result exists in the portion of the 

stack environment which will be deleted upon 

procedure exit. 

A procedure is either an explicit procedure, a code 

proceduret or a control subroutine. 

An explicit procedure is one which is defined in EL1 

and whose external representation is of syntactic type 

<exprnt>, c.f. Appendix 2. 

A code procedure (CEXPR) is one written in a language 

other than EL1. All (non-control) primitives (such as +, -, 

VAL, MD, CONST, ALLOC) are assumed to be defined as code 

procedures. The BODY component of a code procedure is a 

ROW(INT) which specifies the machine code to be executed. 

A control subroutine (CSUBR) is one of the control 

primitives described in chapter 2. The body of a control 

subroutine specifies the point in the evaluator to which 

control is to be passed to perform the desired control 

action. 

The formal parameters to a procedure are represented as 

a list of the form 

((P1 MF0RM1 ECLASS1)  ...  (Pn MFORMn BCLASSn)) 

where Pi is the name of the i th formal, MFORMi is a form 
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which is to be evaluated to obtain the mode of the i th 
* 

formal , and BCLASSi must be one of the following SYMBOLS: 

BYVAL, BYREF, UNEVAL, or LISTED. 

If an argument is passed BYVAL, then the formal is 

bound to a copy of the value of the corresponding actual. 

If an argument is passed BYREF, then the forma] is bound to 

the result of evaluating the argument itself (unless the 

result is a pure-value.) An UJJEVALed argument is bound to a 

pointer to the list structure for its corresponding actual 

(which is not evaluated). A LISTED argument is bound to a 

pointer to the remaining argument list. If the list of 

actuals is exhausted before all formals have been bound, 

then the remaining formals are bound to objects which are 

the default values for the corresponding modes. 

All arguments are evaluated in the identifier 

environment which exists at the point at which the procedure 

call is made, hence the names of the formals are not put 

onto the name stack until all arguments are evaluated. The 

names of the formals of CSUBRs are never put on the stack. 

The result-type is evaluated in an environment which 

includes the bindings of the formals. 

The modes of the formals for CSUBRs are assumed to be 
implicit in the list structure. Hence, no evaluation is 
necessary. 
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At this point, a call to ALLOW\INTERRUPT is made to 

allow for external interrupts. In addition, a check is made 

to see if the body of the procedure is to be applied in the 

environment of another path (due to a call on PAP.) If so, 

control is transferred to DOPAP. Otherwise, the body of the 

procedure is evaluated. 

Since a procedure application may add identifiers to 

the environment, return from the procedure application must 

be via the RETURN component of the EN\ELOCK. 

2.12 Labelled Statement 

Examples 

L: X <- 1; 

(LABST! L ( <- X 1)) 

L1: L2: EOO(A,E); 

(LABST! L1 (LABST! L2 (ECO A B ))) 

Evaluator 

EVLABST: 
E <- E.CDR.CDR.CAR; 
GOTO FVAL\EORM; 

Discussion 

The value of a labelled statement is the value obtained 

by evaluating the statement itself. 
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3. THE CONTROL PRIMITIVES 

In this section we present the definitions of the 

bodies of the control subroutines. The definitions of the 

control primitives are installed as 'top-level' bindings by 

INSTALL\GLCBAL\ENV as objects of mode CSUBR. The BODY 

component of a CSUBR specifies the label in the evaluator at 

which the body of the CSUBR is defined. Recall that calls 

upon the control primitives appear syntactically in EL1 

programs as procedure calls (c.f. 4.2.11). Hence, when 

control is transferred to the body of the control 

subroutine, the arguments for the call have been bound on 

the name stack of the path. 

Eor each control primitive we present its definition as 

a CSUBR in the format of a procedure heading which specifies 

the modes and bind classes of its arguments, the mode of its 

result and the evaluator label at which its body is located. 

Evaluator initialization, including the initialization 
of top-level bindings, is discussed in section 4.2.1 

** 

The body of a control subroutine references its 
arguments via the NOFIX operators NSV1, NSV2, etc., e.g. 
KSV1 is equivalent to VAL(NS[NP].VALUE) - the last argument 
passed to the control subroutine. 
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3.1 GET\PATH 

Definition 

GET\PATH<-CSUER(N:INT;ARPTR) EVGETPATH; 

Example 

Q <- GET\PATH(3); 

Mode 

ENV\BLOCK <- STRUCT(OLD\NP:INT, 
OLD\VP:INT, 
RETURN:SYMBOL); 

Global Constants 

CI\PATH\K)RM 

TIME\OUT\K)RM 

NSQUANT 

VSQUANT 

CSQUANT 

NT "CI\PATH" response form; 

NT "TIME\OUT" response form; 

NT Minimum size for NAME\STACK; 

NT Minimum size for VALUE\STACK; 

NT Minimum size for CONTROL\STACK; 

Evaluator 

EVGETPATH: 
N <- 1; 
CALL EVGETPATH1: 
RETURN\RESULT(P); 

EVGETPATH1: 
P <- ALLOC(ACTRC); 

NT Initialize path level interrupt structure; 

P.INTINFO.CURLEV <- NPALEV + 1; 
P.INTINFO.WAITLEV <- NAPLEV + 1; 
P.INTINFO.RESPP] <- CI\PATH\PORM; 



4-49 

P.INTINPO.TYPE 
P.INTINEO.RESP 
P.INTINPO.TYPE 

1] <- "CIXPATH" ; 
2] <- TlME\OUT\FORM ; 

=2] <- "TIMEXOUT" ; 

NT Initialize stacks ; 

P.US <- ALLOC(NAMEXSTACK SIZE N*NSQUANT): 
F.VS <- ALLOC(VALUE\STACK SIZE N*VSQUAKT); 
P.CS <- ALLOC(CONTROL\STACK SIZE N*CSQUANT); 

PUSHC(CONST(ENV\BLOCK OF 0, 0, "DELPTH"), P); 
P.STKEFLG <- TRUE; 
P.ELGFLG <- TRUE; 

NT Initialize termination form; 

P.TERMINATI0N\F0RM <- 
QUOTE(CIA("DELEEE\PATH", MYPATH)); 

RETURN; 

NT Control underflow handler; 

DELPTH: PUSHN("LAST\VALUE",PUSHV(EVRES)); 
F  <- PATH.TERI-aNATION\K)RM; 
CALL EVAL\FORM; 
ERROR("terminationXerror"); 

Discussion 

GET\PATH creates a new path. The path's ACTRC is 

allocated in the heap. It is enabled for the path level 

interrupts "CI\PATHM and "TIMEXOUT". The label (DELPTH) of 

a statement in the evaluator to which control is to be 

transferred upon control underflow is pushed onto the 

control\stack. The initial termination form for the path is 

set to be one which will call DELETE\PATH. 

Control is transferred to DELPTH upon exit from the 

outermost procedure call which has been PAPed into the path. 
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The last value computed is bound to the name LAST\VALUE and 

the path's TERMINATI0N\FORM is evaluated. If the 

TERMINATI0N\F0RM does not terminate the path, then an error 

occurs. 

3-2 PAP, PAPQ, DPAP, DPAPQ 

Definitions 

PAP <- CSUBR(F:FORM, P:ARPTR; ARPTR) EVPAP; 

PAPQ <- CSUBR(F:FORM UKEVAL, P:ARPTR; ARPTR) EVPAP; 

DPAP <- CSUBR(F:FORM, P:ARPTR; ARPTR) FVDPAP; 

DPAPQ <- CSUBR(F:F0RM UNEVAL, P:ARPTR; ARPTR) EVDPAP; 

Examples 

PAPQ(FO0(A, B), P1) 

DPAP(X, MDEP(GET\PATH(1))) 

Mode 

PAP\BL0CK <- STRUCT(PATH:ARPTR, DEPFLG:B00L); 

Evaluator 

EVDPAP: B <- TRUE; GOTO EVPAP1; 

EVPAP: B <- FALSE; 

EVPAP1: NSV1 = NIL OR NSV1 = PATH -> GOTO EVPAP3; 
EXISTS(NSV2, 

SEL!, 
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SELQ!, 
FOR, 
DECL!, 
BLOCK!, 
<-, 
EXPR, 
IP! 
CLAUSE!, 
LABST!) -> GOTO DOPAP1; 

PUSHC(CONST( PAP\BLOCK OF NSV1, B)); 
F <- NSV2; 
GOTO APPLY; 

NT Begin  the procedure application; 

NT APPLY passes control to DOPAP just before 
the procedure is applied; 

DOPAP:CHECKXPATH(T0PC2.PATH): 
MOVE\ARGS(T0PC2.DEPFLG); 
PUSHC("APPLY2", T0PC2.PATH); 
CLEAR(T0PC2.PATH.MOD); 
POPC1 ; NT Pop unused FN\BLOCK; 
P <- TOPC1.PATH; 
POPC1; NT Pop PAP\BLOCK; 
RETURN\RESULT(P); 

NT Evaluate the form in the current 
path's environment; 

EVPAP3: F <- NSV2; 
CALL EVAL\FORM; 
RETURN\RESULT(NSV1); 

NT Modify environment of target path so that 
the form will be evaluated\ 

D0PAP1: CHECK\PATH(NSV1); 
PUSHC(NSV2, NSV1); NT Save form on CONTROL\STACK ; 
PUSHC ("PAPF'1, NSV1); 
CLEAR(TOPC2.PATH.MOD); 
RETURN\RESULT(NSV1); 

NT PAPF evaluates the form which is the top 
element of the control stack; 

PAPF:  F <- VAL(T0PC1); 
P0PC1; 
GOTO EVAL\FORM; 
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Auxiliary Functions 

CHECK\PATH <- 
EXPR(P:ARPTR; MOKE) 
BEGIN 

NOT TSFT(P.MOD) -> ERROR("path\mod"); 
NOT P.STKEFLG -> ERROR1(Mno\stacks",P) 

END; 

EXISTS <- 
EXPR(P:PORM, L:FORM LISTED; BOOL) 

BEGIN 
MVAL(P) ft  DTPR -> FALSE; 
INSET(P.CAR, L) 

END; 

INSET <- 
EXPR(X:PORM, L:FORM; BOOL); 

BEGIN 
L = NIL => PALSE; 
X = L.CAR => TRUE; 
INSET(X, L.CDR) 

END; 

MOVEXARGS <- 
EXPR(DPLG:BOOL; NONE) 

BEGIN 
DECL P:ARPTR BYVAL T0PC2.PATH; 
DECL ED:ARPTR; 
DECL N:INT BYVAL TOPC1.OLD\NP; 
TOPC1.0LDW <- P.NP; 
TOPC1.0LDVVP <- P.VP; 
PUSHC(VAL(TOPC1), P) 
POR I <- N + 1, ... , NP DO 

BEGIN 
DECL B:EOOL; 
MVAL(NS[I].VALUE)  = LABEL => 

PUSHN(NS[I].NAME,  GENV(LABEL, P),  P); 
B <- 

BEGIN 
DFLG AND (DD <- DDEP(PATH, P)) §  NIL => 

INSTACK(NS[I].VALUE, DD.DSV, VP.VS); 

NOT HEAP(NS[II.VALUE) 
END; 

PUSHN(NS[I].NAME, 
BEGIN 

B => PUSHV(NS[ I "LVALUE, P) ; 
NS[I].VALUE 
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END, 
P) 

END 
END; 

Discussion 

(D)PAP(Q) arranges for the evaluation of a form or the 

application of a procedure in the environment of another 

path. If NSV1 is null, or is equal to the current path, 

then the form NSV2 is simply evaluated in the current path's 

environment. 

If NSV2 is not a procedure application, then the 

environment of NSV1 is modified, so that if control is 

passed to it, the form will be evaluated. This is 

accomplished by pushing the form and the evaluator label 

PAPE onto the control stack of NSV1. 

If NSV2 is a procedure application, then a PAP\ELOCK is 

pushed onto the control stack of the current path and the 

procedure application is "evaluated". APPLY checks to see 

if the procedure application is to be applied in the current 

environment or not .just before it evaluates the body of the 

procedure (i.e. after the actuals and result-type have been 

evaluated.) If APPLY detects a PAP\BLOCK immediately 

preceding the EN\BLOCK it has placed on the control stack, 

then it passes control to DOPAP in lieu of evaluating the 

procedure body. 
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MOVE\ARGS copies the arguments and FN\BLOCK into the 

environment of NSV1. The boolean argument specifies whether 

or not the PAP was a dependent one, i.e. whether arguments 

which exist in the accessible environment of NSV1 are to be 

passed directly or are to be copied. 

DOPAP pushes the interpreter label APPLY2 onto the 

control stack of NSV1 so that if control is passed to NSV1, 

the body of the procedure will be evaluated. 

The modification word in NSV1's ACTRC is TSET to insure 

that two evaluators do not simultaneously modify NSV1's 

environment. 

The result of (D)PAP(Q) is NSV1. 

3-3 PEETCH, PSTQRE 

Definitions 

PEETCH <- CSUBR(NAME:SYMBOL, P:ARPTR BYVAL; ANY) EVPEETCH; 

PSTORE <- CSUBR(VALUE:ANY, 
NAME:SYMB3L, 
P:ARPTR BYVAL) EVPSTORE; 
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Examples 

PFETCH("XM, P) 

PSTORE(A+£, "Y", Q) 

Evaluator 

EVPPETCH:SETUP(); 
NOT HEAP(EVRES) -> EVRESULT(EVRES, MVAL(EVRES)); 
NSV1 H  PATH -> CLEAR(NSV1.MOD); 
RETURN; 

EVPSTORE: SETUP(); 
NOT COMPATI£LE(MVAL(EVRES), NS3) -> 

ERROR1("assignXerror",NS3); 
ASSIGN(EVRES,NS3); 
NSV1 $  PATH -> CLEAR(NSV1.MOD); 
RETURN\NOTHING; 

Auxiliary Function 

SETUP <- 
EXPR(; NONE) 

BEGIN 
NSV1 = NIL -> NSV1 <- PATH; 
NSV1 $  PATH AND NOT TSET(NSVI.MOD) -> 

ERROR("path\modM); 
NOT NSV1.STKEFLG ->  ERROR("no\stacks",NS1); 
NAMEXINDEX <- 

PIND\NAME(NSV1.NS, 
N <- [) NSV1 = PATH => NP; NSV1.NP (1, 
NSV2); 

NAME\INDEX = 0 -> ERROR("noYbinding"); 
EVRES <- NSV1.NS[NAME\INDEX].VALUE 

END; 
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Discussion 

PFETCH obtains the most recent binding of the 

identifier specified by NSV2 in the path specified by NSV1. 

If the identifier is not bound directly to an object in the 

heap, then the value of the identifier is copied into the 

RESULT\SLOT. 

PSTORE assigns NSV2 to the most recent binding of the 

identifier NSV2 in the path NSV1. The modes of the objects 

must be compatible for assignment. 

In either case, an error occurs if there is no binding 

for NSV2 in path NSV1. 

3.4 TSET, CLEAR 

Definitions 

TSET <- CSUBR(X:INT; BOOL)  EVTSET; 

CLEAR <- CSUER(X:INT; ME) EVCLEAR; 

Evaluators 

EVTSET: RETURN\RESULT(TSET1(NSV1), BOOL); 

EVCLEAR:CLEAR1(NSV1); 
RETURN\NOTHING; 
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Discussion 

TSET 'sets' the integer NSV1 and returns TRUE or 

EALSE as NSV1 was 'unset' or 'set' previously. The test- 

and—set is an indivisible operation. CLEAR 'unsets' the 

integer in a single indivisible operation. 

3.5 MDEP, DEPENV 

Definitions 

MDEP <- CSUBR(P:ARPTR; ARPTR) EVMDEP; 

DEPENV <- CSUBR(X:SYMBOL; ANY) EVDEPENV; 

Examples 

P <- MDEP(GET\PATH(1)); 

DECL X:INT BYREF DEPENV("WALDO"); 

Evaluators 

EVMDEP:  NSV1 = PATH OR NSV1 = NIL -> 
ERROR("dependency"); 

NOT TSET(NSV1.MOD) -> 
ERROR("path\mod"); 

NSV1.DS §  NIL AND NSV1.DS # PATH -> 
ERR0R1("dependency",NSV1); 

IISV1.DS = PATH -> REM\DEPLIST(NSV1, PATH); 
NT Remove NSV1 from the 

list of dependents; 
DDEP(NSV1, PATH) # NIL -> 

ERR0R1("dependency",NSV1); 
NT If FATH is a dependent of NSV1 then 

a circular dependency will be created; 
BEGIN 

(NSV1.DSN <- EIND\NENTRY()) = 0 => 
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BEGIN 
NSV1.DSN <- 0; 
NSV1.DSC <- 1; 
NSV1.DSV <- 0; 

END; 
FIND\CENTRY\VENTRY(NSV1.DSN,NSV1) 

END; 
ADD\DEPLIST(NSV1, PATH); 
C£[PATH.LOWCP]["RETURN"] <- "CHECK\SUPPORT"; 

NT Smash RETURN component ; 
CLEAR(NSV1.HOP); 
RETURN\RESULT(NSV1); 

CHECK\SUPPORT: 
NOT CHECK\LEV(CP - 1) -> ERROR("non\support"); 
MVAL(TOPCI) = PN\BLOCK -> GOTO RETPN; 
MVAL(TOPCI) = BLOCK\BLOCK -> GOTO RETELOCK; 
xMVAL(TOPCl) = POR\BLOCK -> GOTO RETPOR; 
GOTO DELPTH; 

EVDEPENV: 
NAME\INDEX <- PIND\NAME(N£, NP, NSV1); 
NAME\INDEX # 0 -> 

BEGIN 
EVRES <- NS[NAME\INDEX].VALUE; 
RETURN 

END; 
P <- PATH; 

EVDEPENV1: 
P.DS = NIL -> 

BEGIN 
EVRES <- NSV1.TLB; 

NT Return top level binding; 
RETURN 

END; 
NAKE\INDEX <- PIND\NAME(P.DS.NS, P.DSN, NSV1); 
NAKE\INDEX §  0 -> 

BEGIN 
EVRES <- P.DS.NS[NAME\INDEX].VALUE; 
RETURN 

END; 
P <— P.DS* 
GOTO EVDEPENV1; 



4-59 

Auxiliary Functions 

ADD\DEPLIST <- 
EXPR(SON:ARPTR, PATH:ARPTR; NONE) 

BEGIN 
SON.DS <- PATH; 
PATH.LOWCP = 0 => 

BEGIN 
NT No dependents previously; 

PATH.SPATH <- SPATH <- TRUE; 
PATH.LASTSON <- SON; 
PATH.LOWCP <- SON.DSC; 
SON.PLEV <- NIL; 
SON.LBRO <- NIL 

END; 
PATH.LOWCP = SON.DSC => 

BEGIN 
NT New dependent at same level; 

SON.PLEV <- NIL; 
SON.LBRO <- PATH.LASTSON; 
PATH.LASTSON <- SON 

EN1; 
KT SON is first at lower level; 

SON.PLEV <- PATH.LASTSON; 
PATH.LASTSON <- SON; 
PATH.LOWCP <- SON.DSC 

END; 

CHECK\LEV <- 
EXPR(CPLEV:INT; BOOL) 

BEGIN 
DECL P:ARPTR BYVAL PATH.LASTSON; 
DFCL I1:ARPTR; 
CPLEV GE P.DSC => TRUE; 

LOOP: P1 <- CHECK\TERM(P); 
P1 = P => PALSE; NT Not all sons have terminated; 
P1 = NIL => 

BEGIN 
PATH.LASTSON <- NIL; 
PATH.LOWCP <- 0; 
PATH.SPATH <- PALSE; 
SPATH <- PALSE; 
TRUE 

END; 
CPLEV GE P.DSC => 

BEGIN 
PATH.LASTSON <- P1; 
PATH.LOWCP <- P1.BSC; 
TRUE 

END; 
GOTO LOOP 
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END; 

CHECK\TERM <- 
EXPR(P:ARPTR; ARPTR) 

BEGIN 
DECL P2:ARPTR BYVAL P; 

LOOP: P2.STKEFLG => P; 
P2.LBR0 = NIL => P2.PLEV; 
P2 <- P2.LBR0; 
GOTO LOOP 

END; 

DDEP <- 
EXPR(FATHER:ARPTR, SON:ARPTR; ARPTR) 

BEGIN 
SON.DS = NIL => NIL; 
SON.DS = FATHER => SON; 
DDEP(FATHER, SON.DS) 

END; 
NT If SON is dependent upon FATHER,then DDEP 

returns SON if it is directly dependent 
or some path P, such that P d.d. FATHER 
and SON is dependent upon P; 

FIND\CENTRY\VENTRY <- 
EXPR(N:INT, P:ARPTR; NONE) 

BEGIN 
DECL E:MODE; 
DECL R, R1:INT; 
FOR I <- CP, CP - 1, ... , 1 TILL R GT 0 DO 

BEGIN 
E <- MVAL(csril); 
OR(E = FOR\BLOCK, 

E = FN\BLOCK AND CS[I].ENTERED = TRUE, 
E = ENV\BLOCK, 
E = ELOCK\BLOCK) AND CS[I].OLD\NP LT N -> 

R <- I; 
OR(E = FOR\BLOCK, 

E = IN\BLOCK, 
E = ENV\BLOCK, 
E = ELOCK\BLOCK) => R1 <- I 

END; 
P.DSC K—  R* 
P!DSV <- CS[R1].0LD\VP 

END; 

FINDXNENTRY <- 
EXPR(; INT) 

BEGIN 



4-61 

DECL R:INT; 
NT Find index of last named entry on name-stack; 

FOR I <- KP, NP - 1, ... , 1 TILL R GT 0 DO 
[) NS[I].NAME H  NIL => R <- I (]; 

R 
END; 

PREV <- 
EXPR(X:ARPTR; ARPTR) 
BEGIN 

X.LBRO # NIL => X.LBRO; 
X.PLEV # NIL => X.PLEV; 
NIL 

END; 

REM\DEPLIST <- 
EXPR(SON:ARPTR, PATH:ARPTR; NONE) 

BEGIN 
DECL P1, P2:ARPTR; 
PATH.LASTSON = SON => 

BEGIN 
(PATH.LASTSON <- PREV(SON)) §  NIL => 

PATH.LOWCP <- PATH.LASTSON.DSC; 
PATH.LOWCP <- 0 

END; 
P1 <- PATH.LASTSON; 

LOOP: (P2 <- PREV(P1)) = SON => 
BEGIN 

P1.LBRO H  NIL AND P2.PLEV # NIL => 
[) Pl.PLEV  <- P2.PLEV; P1.LBRO <- NIL (]; 

PREV(P1) <- PREV(P2) 
END; 

P1 <- P2; 
GOTO LOOP 

END; 

Discussion 

MDEP makes the path NSV1 dependent upon the current 

path. 

The ACTRC of a dependent path must specify which path 

it is directly dependent upon and the point at which it is 
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dependent. For a dependent path P, the DS field specifies 

the direct supporter path. The DSN field specifies an index 

in the name-stack of DS which defines the directly 

accessible environment of P with respect to DS. DSC is an 

index into the control stack of DS which specifies the 

control block which, when deleted, will destroy the 

name—stack entry corresponding to DSN, i.e. DSC is the 

highest level to which control may flow in DS until P 

terminates. DSV specifies the lowest point on the value 

stack of DS which is accessible to P. 

The ACTRC of a supporting path must specify which paths 

are directly dependent upon it and the levels at which they 

are dependent. Por a supporting path Q, LCWCP specifies the 

lowest point on Q's control stack at which a path was made 

a d.d. LASTSON specifies the last path which was made a 

direct dependent. All d.d. paths at a given CP level are 

linked through the LBRO field of their ACTRC's. The oldest 

d.d. at a given CP level, i.e. one with no LBRO, points 

through the PLEV component of its ACTRC to the d.d. at the 

next highest CP level. 

MDEP first checks whether or not NSV1 may become 

directly dependent upon PATH. In particular, it checks for 

self -dependency and circular dependency. If NSV1 is already 

By lowest, we mean closest to the top of the stack, 
i.e. most recent. 
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directly dependent upon PATH, then NSV1 is removed from the 

list of directly dependent paths by calling REM\DEPLIST. 

Next, the environment of PATH is examined to determine 

the values of DSN, DSC and DSV for NSV1. DSN is set to the 

index of the most recent named entry on the name stack of 

PATH. CSK is set to the stack index of the control-block 

which added the entry corresponding to DSN to the identifier 

environment. DSV is set to the index of the last entry on 

the value-stack used by the identifiers associated with the 

control-block, namely, OLD\VP for the next lower 

control-block. If no named NS entry is found, DSMt DSC and 

DSV are set to reference the ENV\£LOCK at the top of the 

stack. 

ADD\DFPLIST is called to add NSV1 to the list of paths 

d.d. upon PATH. If PATH was not previously a supporting 

path, the SPATH flag is set in PATH's ACTRC and in the 

environment of the evaluator. All sub-evaluators that add 

identifiers to the environment of the path, namely, EVLLOCK, 

EVFOR, and APPLY, return by transferring control to the 

label specified by the RETURN component of the corresponding 

control-block. Hence, to insure that the portion of the 

identifier environment accessible to NSV1 is not deleted 

prematurely, the RETURN component of PATH's control stack 

entry corresponding to DSC is modified to be the evaluator 

label CHECK\SUPPORT which will determine whether or not all 
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d.d.s at this level have terminated. 

CHECK\LEV returns TRUE if all paths which are directly- 

dependent upon PATH at a control-stack entry below CPLEV 

have terminated. LASTSON, LOWCP, and SPATH are updated 

appropriately. If control can be returned safely from the 

control-block, i.e. if CHECK\LEV returns TRUE, then 

CHECK\SUPPORT transfers control to the appropriate return 

label based upon the mode of the control stack entry. 

The value returned by MDEP is NSV1. 

DEPENV obtains the most recent binding of NSV1 in the 

accessible environment of PATH. The identifier environment 

of PATH is searched first. If no binding for NSV1 is found, 

then the name stack of the path specified by PATH.DS (the 

direct supporter path) is searched starting with PATH.DSN. 

If no binding is found then PATH.DS.DS is searched, etc. If 

no binding is ever found, then the top-level binding of NSV1 

is returned. Note that DEPENV does not copy the binding of 

NSV1 into the RESUXT\SI£)T, as does PFETCH. Thus, DEPENV may 

return a reference to the environment of another path. 

3.6 DELETE\PATH 

Definition 

DELETE\PATH <- CSUER(PATH:ARPTR; NONE) EVDELETEPATH; 
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Example 

CIA("DELETE\PATH",P); 

Evaluator 

EVDELETEPATH: 
NSV1 = PCIAR -> 

ERROR("deletion"); 
PATH H  PCIAR -> 

ERROR("CI\procedure"); 
NOT TSET(NSVI.MOD) -> 

ERROR("path\mod"); 
NSV1.LASTSON = NIL -> GOTO NOSONS; 
NSV1.FLGFLG <- PALSE; 
SEARCH(NSVI); 

EVDEL1: 
CLEAR(NSV1.MOD); 
RETURN\NOTHINC; 

'°DELETE\ENV(NSV1); 
NSV1.ELGFLG <- FALSE; 
NSV1.DS = NIL -> GOTO EVDEL1; 
SEARCH(NSV1.DS); 
GOTO EVDEL1 

Auxiliary Functions 

SEARCH <- 
EXPR()(:ARPTR; NONE) 

BEGIN 
DECL E:BOOL; 
DECL Y, Z:ARPTR BYVAL X.LASTSON; 
X.ELGFLG => NOTHING; 

NT No action if eligible for evaluation; 
BEGIN 

L:   Z <- CHECK\TERW(Y); 
Z = Y => B <- TRUE; 

NT At least one son hasn't terminated; 
Z = NIL => NOTHING; 

NT No more levels; 
Y <- Z; 

NT Else set Y to first son 
at previous level; 

GOTO L 
END; 
B => NOTHING; 
NT At least one son hasn't terminated; 
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DELETE\ENV(X); 
NT Otherwise we can delete environment; 

X.DS = NIL => NOTHING; 
SFARCH(X.DS) NT Search father; 

END; 

DELETE\ENV <- 
EXPR(P:ARPTR; NONE) 

BEGIN 
P.STKEFLG <- FALSE; 
P.VS <- P.CS <- P.NS <- NIL; 
P.NP <- P.CP <- P.VP <- 0 

END; 

Discussion 

DELETE\PATH makes NSV1 ineligible for evaluation. If 

NSV1 has no direct dependents, then the stack-environment of 

NSV1 is reclaimed. Otherwise, the stack environment is 

reclaimed if and only if all dependents of NSV1 are 

ineligible for evaluation. Hence, a path may terminate but 

its stack environment will remain as long as necessary. If 

NSV1 has no direct dependents, but is itself a dependent 

path, then the stack environment of NSV1.DS is reclaimed if 

NSV1 was the last d.d. still eligible for evaluation. 

The procedure SEARCH is used to determine if a path's 

stack environment may be deleted. If all sons of X have 

terminated, then the environment of X is deleted and if 

X.DS#NLL, SEARCH is called recursively on X^LS, 
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3.7 GOTO,  RETEROM 

Definitions 

GOTO <- CSUER(L:LABEL; NONE) EVGOTO; 

RETFROM <- CSUBR(FKAME:SYMEOL, VAL:ANY; NONE) EVRETEROM; 

Examples 

GOTO ECO; 

RETEROM("RESUME",N); 

Evaluators 

EVGOTO: NSV1.PATH // PATH -> 
ERROR("illegal\GOTO"); 

SPATH AND NOT CHECK\LEV(NSV1.CIINDEX) -> 
ERROR("non\support"); 

IEIC -> CINTRPT(NSV1.CPINDEX); 
CS[NSV1.CPINDEX].STATEMENT\LIST <- NSV1.ST\LIST; 
FLUSH (CS, NSV1. CPINDEX ) ; 
CP <- NSV1.CPINDEX; 
NP <- TOPC1.CUR\NP; 
FLUSH(VS,TOPC1.CUR\VP); 
VP <- TOPC1.CUR\VP; 
GOTO EVELK1; 

EVRETEROM: 
N <- 0; 
EOR I <- CP,CP-1, ..., 1 TILL N GT 0 DO 

BEGIN 
ANB(MVAL(CS[I]) = FN\£10CK, 

CS[I].NAME = NSV2, 
CS[I].ENTERED) => H <- I; 

END; 
,, = 0 -> ERROR("no\call\to\return\from"); 
SPATH AND NOT CHECK\LEV(N-1) -> 

ERROR("non\support"j; 
IFIC -> CINTRPT(N-I); 
EVRES <- NS1; 
FLUSH(CS,N); 
CP <- N; 
GOTO PROCRET; 
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MVAL(CS[I]) = INT\ELOCK 
AND CS[IK "RETURN"]#,,COFYRT,, 

Auxiliary function 

CINTRPT <- 
EXPR(N:INT; NONE) 

BEGIN 
FOR I <- CP, CP-1, ..., N DO 

BEGIN 
.csrii) 
csrilr" 

=>  REM\lflTRPT(I) 
END; 

NO\PRO\INTS AND NO\PATH\INTS -> 
IFLG <- FALSE 

END; 

Discussion 

GOTO returns control to the statement and  block 

specified by L.  RETFROM returns control from the most 

recent explicit call on the procedure FNAME with VAL as 

result. 

The actions necessary to perform a GOTO or a RETFROM 

are quite similar. Basically, they may be divided into 

three parts. 

(1) The CS index of the BL0CK\BIOCK or PN\BLOCK is 

found. 

(2) The path-flags SPATH and IFLG are examined to 

determine if the stacks may be simply flushed or if 

special processing is required. 

(3) The RETFROM or GOTO is performed. 

The CS index of the BLOCK\BLOCK to GOTO is stored in 
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the CP\INDEX field of the label. The CS index of the 

EN\BLOCK to RETEROM is obtained by searching the control 

stack for the most recent EN\ELOCK with ENTEREL=TRU£ and 

whose NAME field is identical to NSV2. 

We will assume, for the moment, that the special 

processing described in (2) is not necessary. 

The GOTO is completed by storing NSV1.ST\LIST as the 

current statement list of the block specified by 

NSV1.CPINDEX, flushing the stacks to the appropriate levels, 

and then transferring control to EVBLK1. The RETEROM is 

completed by setting EVRES to be the result to be returned, 

flushing the control stack to the EK\J3LGCK and then 

transferring control to PROCRET to return from the 

procedure. 

Note that both GOTO and RETEROM flush the stacks to 

some higher point. Consequently, unless special checks are 

made, the environment required by a dependent path may be 

destroyed or an interrupt response will be abnormally 

terminated.  Thus the interrupt tables will not be updated 
* 

correctly.  The path flags SPATH and IELG indicate to GOTO 

that special processing is required before the GOTO may be 

completed. 

The remaining discussion references GOTO only 
interpretation for RETEROM is essentially the same. 

- the 
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If SPATH is TRUE, then PATH is a supporting path. 

Hence, EVGOTO must determine whether or not a return to the 

block specified by NSV1.CPINDEX will delete part of the 

accessible environment of a non-terminated dependent path. 

CHECK\LEV is used to perform this check and update the 

path-dependency lists if necessary. 

If IPLG is TRUE, then PATH is currently evaluating at 

either a path or processor interrupt level. Hence, EVGOTO 

must determine which interrupt responses are being 'skipped' 

over in returning to NSV1.CPINDEX and update the interrupt 

tables appropriately. CINTRPT searches the control stack 

for INT\BLOCKs and modifies the interrupt tables to indicate 

that the corresponding interrupt responses have completed. 

3.8 MYPATH 

Definition 

MYPATH <- CSUER(;ARPTR) EVMYPATH; 
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Example 

MYPATH # PCIAR => CIA("PMtX); 

Evaluator 

EVMYPATH: 

RETURN\RESULT(PATH); 

Discussion 

MYPATH returns a pointer to the current path.  Note 

that MYPATH is a NOPIX operator. 

3.9 EVAL 

Definition 

EVAL <- CSUBR(F:K)RM; ANY) EVEVAL; 

Example 

GOTO EVAL(T0PC1.RETURN); 



4-72 

Evaluator 

EVEVAL: F <-  NSV1; 
GOTO EVAL\PORM; 

Discussion 

EVAIi evaluates the form specified by NSV1 in the 

current path's environment. Thus, 1VAL(P) is essentially 

equivalent to FAP(P,MYPATH). 

3.10 COPY 

Definition 

COPY <- CSUBR(P:ARPTR; ARPTR); 

Example 

S <- COPY(KYPATH); 

Evaluator 

EVCOPY: BFCIN 
NSV1 = NIL => Q <- PATH; 
Q <- NSV1 

END; 

NT Q is the path to be copied; 

Q = PATH -> SAVE\STATE(Q); 
N <- LENCTE(Q.NS)/NSQUANT; 
CALL EVGETPATH1; NT P points to the new path; 
Q f,  PATH AND NOT TSET(Q.MOD) -> 

ERROR("path\mod"); 
NOT Q.ELCFLG -> ERROR("no\stacks"); 
POR I <- 1, ... , Q.VP DO (P.V£[I] <- Q.VS[Ij)j 

NT Copy value-stack; 
POK I <- 1, ... , Q.NT  DO 
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BEGIN 
P.NSril.NAME <- Q.NS[I].NAME; 
P.NS I .VALUE <- 

BEGIN 
INSTACK(Q.NS[I1.VALUE,0,Q.VP,Q.VS) => 

MAP\PTR(Q.NS[I].VALUE,Q.VS,P.VS); 
Q.NS[I].VALUE 

END 
END; 
NT MAP\PTR returns a pointer to the entry in P.VS 

corresponding to the entry in Q.VS for 
Q.NS[I].VALUE; 

FOR I <- 1, ..., Q.CP DO 
BEGIN 

p.csri]<-Q.csri]j 
MVALlP.CSril) = INT\BLOCK AND 

P.CSrij.CLASS = "PRO" => 
P.CS[I][,,RETURK,»] <- "COPYRT" 

END; 

NT Copy stack indices; 

P.NP <- Q.NP; P.VP <- Q.VP; P.CP <- Q.CP; 

P.INTINPO <- Q.INTINFO; 

NT Copy interrupt structure; 

P.DORMANT <- Q.DORMANT; 
P.TERMIN;\TION\PORM <- Q.TERMINATION\PORM; 

NT Make dependent upon same path if any; 

Q.DS # NIL -> 
BEGIN 

Q.PLEV jj  NIL => 
BEGIN 

P.PLEV <- Q.PLEV; 
Q.PLEV <- NIL; 
Q.LBRO <- P 

END; 
P.LBRO <- Q.LBRO; 
Q.LBRO <- P 

END; 

P.DS <- Q.DS; P.DSC <- Q.DSC; 
P.DSN <- Q.DSN; Q.DSV <- Q.DSV; 

Q H  PATH -> CLEAR(Q.MOD); 
RETURN\RESULT(P); 
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COPYRT: POPC1\RETURN; 

Discussion 

Only paths which are eligible for evaluation may be 

copied. The new path is made the direct dependent of 

NSV1.DS. If the path to be copied is in the midst of 

evaluating processor level interrupts, then the RETURN 

components of the corresponding INT\BLOCKs are modified so 

that the processor interrupt tables will not be updated 

incorrectly. 

3.11 CIA, COIITIATH 

Definitions 

CIA <- CSUBR(FN:SYM\RTKE, ARGrANY; REF)  EVCIA; 

CONTPATH <- CSUBR(P:ARPTR; ARPTR) EVCOKTPATH; 

Examples 

CIA("P",X); 

CIA(EXPR(X:ARPTR; NONE) (LASTRUN <- X), P); 

LASTRUM <- CONTPATH(LASTRUN); 
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Mode 

SYM\RTNE <- ONEQE(SYMBOL, 
PTR(DTPR), 
PTR(CSUBR), 
PTR(CEXPR)); 

Evaluators 

EVCIA: PATH = PCIAR -> ERROR("ille£al\callu); 
EVCIA1: TSET(PCIAR.MOD) -> GOTO EVCIA2; 

CALL ALLOW\INTERRUPT; 
NT Allow for interrupt while waiting 

for CI to become available; 
COTO EVCIA1; 

EVCIA2:  PATH.CIAXARG <- 
BEGIN 

MD(lvSVl).CLASS H  "FIR"  => 
ALLOC(MD(NSV1) LIKE NSV1); 

NSV1 
END; 

PATH.CIA\EN <- NSV2; 
PUSHCC'RETCI"); NT Return label for 

when control returns; 
NSV1.INPR0I <- 

BEGIN 
NOT NO\PRO\INTS => PROCNUM; 
0 

END; 
P.INPROI =0 -> PRO\PATH[PROCNUM] <- NIL; 
SAVE\STATE(PATK); 
CLEAR(PATH.MOD); 
EVRESULT(PATH.ARPTR); 
INSTALL\STATE(PCIAR); 
RETURN; NT Return in CI environment; 

RETCI: RETURN\RESULT(PATH.CIA\RESULT); 

EVCONTPATH: 
0R(NSV1 = NIL, 

PATH H  PCIAR, 
NSV1 = PCIAR, 
NOT NSV1.ELGELG, 
NSV1.DORMANT) -> ERROR("ineligibleXpath"); 

NOT TSET(NSVI.MOD) -> ERROR("path\mod"J; 
BEGIN 

NSV1.INPR0I H  0 OR PRO\PATH[PROCNUM] # MIL => 
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BEGIN 
NSV1.INPB0I #  PROCNUM OR 

P # PRO\PATH[PROCNUM] => 
ERROR1("inelicible\path",NSV1); 

NSV1.INPROI <- 0 
END; 

PRO\PATH[PROCNUM] <- NSV1 
END; 
SAVE\STATE(PCIAR); 
CLEAR (PCIAR.iMOD); 
INSTALL\STATE(PRO\PATH[PROCNUM] ) ; 
CALL CEECK\INTERRUPT; 
RETURN; NT Return in environment of path; 

Auxiliary Junctions 

SAVEXSTATE <- 
EXPR(P:ARPTR; NONE) 

BEGIN 
P.NP <- HP; 
P.VP <- VF; 
P.CP <- CP; 
P.SPATH <- SPATH; 
P.LFLC <- IELC 

END; 

INSTALLNSTATE <- 
EXPR(P:ARPTR; NONE) 

BEGIN 
NS <- P.NS; 
VS <- P.VS; 
CS <- P.CS; 
PATH <- P; 
NP <- P.NP; 
VP <- P.VP; 
CP <- P.CP; 
SPATH <- P.SPATH; 
IPLG <- P.IELG 

END; 



4-77 

Discussion 

CIA and CONTPATH switch control to and from the CI 

path, respectively. 

The first argument to CIA, NSV2, is either the name of 

a procedure to be applied in the CI environment or a pointer 

to the procedure itself. MSV1 is to be the argument to the 

procedure specified by NSV2. If NSV1 is not of mode class 

PTR, then it is copied into the heap and the argument to 

NSV2 is the pointer to the copy. 

Before control can be switched from the path to the CI, 

the evaluator must be sure that no other one is evaluating 

the CI path. Hence, it performs a busy wait on the field 

PCIAR.MOD. When another evaluator switches control out of 

the CI, it clears PCIAR.MOD. Thus, TSET will eventually 

return TRUE and the CIA may proceed. Note that once the 

TSET returns TRUE, all other evaluators that attempt CIA 

calls will be forced into busy waits. 

The INPROI field of a path's ACTRC and the global 

vector PRO\PATH are used to insure that if a path performs a 

CIA call while processing a processor level interrupt, then 

the processor will not be given to another path nor will the 

path be evaluated by a different processor, c.f 2.5-3» 

When evaluator I is evaluating path P, then 

PRO\PATH[I]=P and P.INPROI=0. 
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When evaluator I is evaluating the CI path due to a CIA 

call made by path P not during a processor level interrupt 

then PRO\PATH[I]=NIL and P.INPROT=0. 

When evaluator I is evaluating the CI path due to a CIA 

call made by P during a processor level interrupt then 

PRO\PATH[I]=P and P.INPROI=I. 

Having set INPROI and PRO\PATK appropriately, the 

'state' of PATH is saved and its MOD field is cleared since 

it is not active or being modified. Hence, it may be PAPed 

into while the CIA call is being evaluated. EVRES is set to 

the result to be returned in the CI environment, namely 

PATH. The 'state' of the CI is restored and a RETURN is 

made in the CI environment. Since control can only leave 

the CI via a call to COKTPATH and since it is not possible 

to PAP into the CI environment, the RETURN will cause a 

return from the call to CONTPATH with the ARPTR of the path 

performing the CIA call as the result. 

COKTPATH, having determined that control may be 

switched from the CI to the path specified by N£V1, saves 

the state of the CI path and clears PCIAR.MOD so that a busy 

waiting evaluator may gain access to the CI. NSV1 is then 

installed as the current path. Before a RETURN is made in 

the environment of I\iSV1, CONTPATH checks for any pending 

pro-level or path-level interrupts. 
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If control ever returns to RETCI, then PATH.CIA\RESULT 

is returned as the value of the CIA call. 

3.12 ENABLE\PRO, DISABLE\PRO, LEVEL, INUSE 

Definitions 

ENABLE\PRO <- CSUBR(EINAME:SYMBOL, 
L:INT, 
RESP:FORM; NONE) EVENABLE\PRO; 

DI^ABLE\PRO <- CSUBR(EINAME:SYMBOL; NONE) EVDISABLE\PRO; 

LEVEL <- CSUBR(EINAME:SYMBOL; INT) EVLEVEL; 

INUSE <- CSUBR(LEV:INT; SYMBOL) EVINUSE; 

Examples 

ENABLE\PRO(,,PRO\PRO"f 1, PRO\PRO\PORM) ; 

DISABLE\PRO("LIGHTXPEN"); 

INUSE (LEVEL( "TIMER")) = "TIMER"; 

Modes 

SROW <- ONEOF(ROW(NPROLEV,SYMBOL),ROW(NPALEV,SYMBOL)); 

PITE <-  STRUCT(WAITLEV:INT, 
CURLEV:INT, 
WAITING:ROW(NPROLEV,BCOL), 
INPROC:ROW(NPROLEV,BOOL}. 
TYPE:ROW(NPROLEV,SYMBOL)); 
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Global Variables 

RESPONSE    ; NT A ROW(NPROC, R0W(NPR0LEV,FORM)); 

PRO\INT\TAE  ; NT A ROW(NPROC,FITE); 

Evaluators 

EVENA£LE\PRO: 
LEV(NSV3, PR0\INT\TAB[PR0CNUM1.TYPE) # 0 OR 

IN\USE(NSV2, PRO\INT\TAB[PROCNUM].TYPE) # NIL => 
ERROR("pro\interrupt"); 

PR0\IKT\TAB[PR0CNUM].TYPE[NSV2] <- NSV3; 
NT Indicate name of interrupt; 

RESP0NSE[PR0CNUM][NSV2] <- NSV1; 
NT Set up response form; 

ENABLEXPROCESSOR(NSV3, NSV2); 
RFTURN\NOTHING; 

EVDISABLE\FRO: 
L <- LEV(NSV1, PRO\INT\TAB[PROCNUM].TYPE); 
L = 0 => RETURN\NOTHING; 
PPO\INT\TAB[PROCNUM].TYPE[L] <- NIL; 
RFSPONSE[PROCNUM][L] <- NIL; 
DISABLE\PE0CESS0R(NSV1, L); 

EVLEVEL:RETURN\RESULT(LEV(NSV1,PRO\INT\TAB[PROCNUM].TYPE)); 

EVINUSE: 
RETURN\RESULT(IN\USE(NSV1,PRO\INT\TAB[PROCNUK].TYPE)); 

Auxiliary Functions 

LEV <- 
EXPR(N:SYMBOL, R:SROW; INT) 

BEGIN 
DECL L:INT; 
N = NIL => 0; 
FOR I <- 1, ... , LENGTH(R) TILL L GT 0 DO 

[) R[I] = N=> L <- I (]; 

END; 

IN\USE <- 
EXPR(N:INT, R:SROW; SYMBOL) 

[) II GT LENGTH(R) OR N LT 1 => 0; R[N] (]; 
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Discussion 

The global tables PRO\INT\TA£ and RESPONSE describe the 

current state of the processor interrupt structure, where 

the i th entry in each table describes the state of the i th 

processor. 

The PRO\INT\TAB is a row of PITEs. The fields of a 

P1TE and their interpretations are as follows. 

(1) TYPE[J] is the symbolic name of the interrupt 

enabled at level J. 

(2) WAITING[J] is TRUE if and only if a TYPE[J] 

interrupt has occurred and the associated response 

form has not yet been evaluated. 

(3) INPROG[J] is TRUE if and only if the evaluation of 

the response form for a TYPE[J] interrupt has been 

initiated but has not yet completed, i.e. the 

response is in progress. 

(4) WAITLEV - the level of the highest priority waiting 

interrupt, or NPROLEV+1 if no interrupts are 

waiting. 

(5) CURLEV - the highest priority level of the response 

forms currently in progress, or NPROLEV+1 if no 

response forms are in progress. 

RESPONSE[I][J] is the response form associated with the 

interrupt enabled at level J on processor I. 
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EHAELE\PRO enables the current processor for EINAME 

interrupts at level L with response form RESP, if LEV is not 

already in use and the processor is not already enabled for 

E1NAME interrupts at some level. £NALLE\PROCESSOR performs 

any machine—dependent actions necessary to enable the 

processor. 

DISABLE\PRO disables the current processor v/ith respect 

to EINAME interrupts by setting the appropriate entries in 

the PRO\INT\TAE and RESPONSE tables to NIL and calling upon 

PISA BT.E\ PROCESSOR to perform any necessary machine- 

dependent actions. 

LEVEL returns the level at which the processor is 

enabled for EINAME interrupts, or 0 if it is not enabled. 

INUSE returns the symbolic name of the interrupt 

enabled at level N, or NIL if LEV is out of bounds or the 

processor is not enabled at that level. 

3.13 ENABLE\PATH, DISAELE\PATH 

Definitions 

ENAELE\PATH <- CSUBR(PEINAME:SYMBOL, 
EV:INT, 
ESP:PORM, 
PATH:ARPTR; NONE) EVEWABLE\PATH; 
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DISABLE\PATH <- CSUBR(PEINAME:SYMBOL, 
PATH:ARPTR; NONE) EVDLSABLE\PATH; 

Examples 

ENABLE\PATH( "CI\TO\PATHM, 1, CI\PATH\FORM); 

DISABLE\PATH("WALDO", P); 

Mode 

ITE <- STRUCT(WAITLEV:INT, 
CURLEV:INT, 
WAITING:ROW(NPALEV,BOOL), 
INPROG:ROW(NPALEV,BOOL), 
RESP:ROW(NPALEV,FORM), 
TYPE:ROW(NPALEV,SYMBOL), 
MASK:ROW(NPALEV,BOOL)); 

Evaluator 

EVENABLE\PATH: 
P <- EIXPATH(NSVI); 
LEV(NSV4, P.INTINFO.TYPE) # 0 OR 

IK\USE(NSV3, P.INTINFO.TYPE) # NIL -> 
ERROR (Mpath\interrupt,,); 

P.INTINPO.TYPE[NSV3j <- NSV4; 
NT Indicate name; 

P.INTINFO.RESP[NSV3] <- NSV2; 
NT Indicate response form; 

P $  PATH -> CLEAR(P.MOD); 
RFTURN\NOTHING; 

EVDISABLE\PATH: 
P <- FLXPATH(NSVI); 
L <- LEV(NSV2, P.INTINFO.TYPE); 
L = 0 -> GOTO RTCLEAR; 
P.INTINFO.TYPE[L] <- NIL; 

NT Clear name; 
P.INTINPO.RESP[L] <- NIL; 

NT Clear response form; 

RTCLEAR: P # PATH -> CLEAR(P.MOD); 
RFTURN\NOTHING; 
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Auxiliary Function 

FIXPATH <- 
EXPR(P:ARPTR; ARPTR) 

BEGIN 
P = NIL => PATH; 
P = PATH => PATH; 
NOT TSET(P.MOD) -> ERROR("path\modM); 
P 

END; 

Discussion 

The INTINPO field of a path's ACTRC describes the 

current state of the path's interrupt structure. The 

components of an ITE, the mode of INTINIO, have 

interpretations analogous to their counterparts in a PITE, 

as described in the previous section. The two additional 

fields are interpreted as follows: 

(1) RESP[I] is the response form associated with the 

pseudo interrupt enabled at level I. 

(2) MASK[I] is TRUE if and only if the path is masked 

against interrupts of type TYPE[I]. 

* 

ENA£LE\PATH enables the path specified by NSV1  for 

PEINAME interrupts at level LEV with response form RESP 

unless LEV is already in use or the path is already enabled 

for PEINAME interrupts at some level. 

* 

If NSV1 is NIL, then the current path is used as a 
default. 
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DISABLE\PATH disables the path specified by NSV1 with 

respect to PEINAME interrupts. 

3.14 MASK, UNMASK, INTERRUPT 

Definitions 

MASK <- CSUBR(PEINAME:SYMBOL, PATH:ARPTR; NONE) EVKASK; 

UNMASK <- CSUBR(PEINAME:SYMBOL, PATH:APPTR; NONE) EVUNMASK; 

INTERRUPT <- CSUBR(PEIKAME:SYMBOL, 
PATH:ARPTR; NONE) EVINTERRUPT; 

Examples 

MASK("LIGHT\PEK"); 

UNMASK("WALDO",P); 

INTERRUPT("WALDO",P); 

Evaluators 

EVMASK:  P <- PLXPATH(NSV1); 
(L <- LEV(NSV2, P.INTINPO.TYPE)) = 0 -> 

GOTO RTCLEAR; 
P.INTINPO.MASK[L] <- TRUE; 
P §  PATH -> CLEAR(P.MOD); 
RETURN\NOTHING; 

EVUNMASK: 
P <- PIXPATH(NSVI); 
(L <- LEV(NSV2, P.INTINPO.TYPE)) = 0 -> 

GOTO RTCLEAR; 
P.INTINEO.MASKrL] <- FALSE; 
P.INTINPO.WAITLEV <- 

MINLEV\M(P.INTINPO.WAITING, P.INTINFO.MASK); 
NOT(P = PATH AND P.INTINPO.CURLEV GT 
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P. INTINFO.WAITLEV) -> 
GOTO RTCLEAR; 

CALL CHECK\INTERRUPT; 
RETURK\NOTHING; 

EVINTERRUPT: 
P <- PLXPATH(NSVI); 
(I <- LEV(NSV2, P.INTINFO.TYPE)) = 0 -> 

GOTO RTCLEAR; 
P.INTINPO.WAITING[L] <- TRUE; 
P.INTINFO.WAITLEV <- 

MIKLEV\M(P.INTINFO.WAITING, P.INTINFO.MASK); 
NOT(P = PATH AND 

P.INTINPO.CURLEV GT P.INTINFO.WAITLEV) -> 
GOTO RTCLEAR; 

CALL CHECKXINTERRUPT; 
RETURN\NOTHING; 

Discussion 

MASK masks a path against PEINAME interrupts by setting 

the appropriate hit in the INTINFO field of the path's 

ACTRC. A PEINAME interrupt sent to the path will be 

detected, i.e. an entry will be made in the WAITING vector, 

but the response form will not be evaluated until the 

interrupt is unmasked. 

When an interrupt is UNMASKed, the corresponding MASK 

bit is set to FALSE. WAITLEV is recomputed since the 

unmasked interrupt may have occurred, while masked, and it 

may be of higher priority than any of the other waiting 

interrupts. If the path specified by NSV1 is the current 

path and if WAITLEV specifies a higher priority than CURLEV, 

then a call to CHECK\INTERRUPT is made to initiate the 
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response to the interrupt at level WAITLEV. 

INTERRUPT sends a PEINAME interrupt to the path 

specified by NSV1. An entry is made in the WAITING vector 

to indicate that the interrupt has occurred and WAITLEV is 

recomputed in case the interrupt is of higher priority than 

any of the other waiting interrupts. As with UNMASK, if 

NSV1 specifies the current path, then WAITLEV is compared 

with CURLEV to determine if the interrupt response should be 

initiated now. If the path specified by N£V1 is not the 

current path, then it must not be active. The interrupt 

response will be evaluated the next time the path becomes 

active, c.f.  CONTFATH. 

3.15 STOP\PATH 

.Definition 

STOP\PATH <- CSUBR(PATH:ARPTR;  NONE)  EVSTOP\PATH; 

Example 

STOP\PATH(PAVECT[I].IDLEPATH); 

Global Variables 

PIL    ; NT A ROW(NPROLEV,INT); 

PIV    ; NT A ROW(NPROLEV,BOOL); 
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Modes 

INT\BLOCK <- STRUCT(TYPE:SYMBOL, INDEX:INT, RETURN:SYMBOL); 

BROW <-  ONEOF(ROW(NPROLEV,LOOL), ROW(NPALEV,BOOL)); 

FROW <- ONEOF(ROW(KPROLEV,FORM),ROW(NPALEV,PORK)); 

INT\TAB\ELT <- ONEOF(ITE,PITE); 

Evaluator 

EVSTOP\PATH: 
NSV1 = NIL OR NSV1 = PCIAR -> 

ERROR (*'pro\interrupt" ); 
PATH H  PCIAR -> ERROR(,,CI\procedure,»); 
N <- 0; 
FOR I <- 1, ... , NPROC TILL N GT 0 DO 
BEGIN 

I H  PROCNUM AND PRO\PATH[I] = NSV1 => N <- I 
END; 

N = 0 -> ERROR^'proXinterrupt"); 
GENER/TE\INT("PRO\PRO", PRO\INT\TAB[N], N); 
RETURN\NOTHING; 

NT ALLOW\INTERRUPT determines whether a 
processor level interrupt has occurred. 

ALLOWXINTERRUPT: 
NOT PIF[PROCNUM] -> RETURN; 

CINT1: NOT TSET(PIL[PROCNUM]) -> GOTO CINT1; 
PIP[PROCNUM] <- FALSE; 
IFLG <- TRUE; 
GET\INT(PRO\INT\TAB[PROCNUM], 

RESPONSE[PROCNUM],"PRO"); 
NT In this case, a higher priority 

interrupt will always be found; 

CINT2: CLEAR(PIL[PROCNUM]); 
GOTO EVALNPORM; NT GET\INT binds F to 

the response form; 

NT RETINT is the return label of INT\BLOCKs; 
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RETINT : NOT TSFT(PIL[PROCNUM]) -> GOTO RETINT; 
PIF[PROCNUM] <- PALSE; 
REM\INTRPT(CP); 
POPC1; 

NT Now check for more processor 
or path level interrupts; 

MOREXINT: 
BEGIN 
GET\IKT(PRO\INT\TAB[PROCNUM], 

RESPONSE!" PROCNUM], "PRO") => 
IFLG <- TRUE; 

NO\PRO\INTS AND 
GET\INT(PATH.INTINFO, 

PATH.INTINFO.RESP, "PATH") => 
IFLG <- TRUE; 

FALSE 
END -> GOTO CINT2; NT Eval interrupt response; 

NO\PRO\INTS AND NO\PATH\INTS -> IFLG <- FALSE; 
CLEAR(PIL[PROCNUM]); 
RETURN; 

NT CHECK\INTERRUPT allows higher level 
waiting interrupts to be processed, if 
any exist; 

CHECK\INTERRUPT: 
NOT TSET(PIL[PROCNUM]) -> GOTO CHECKXINTERRUPT; 
PIF[PROCNUM" 
GOTO MORE\Il 

muiri: 
r TSET(PIL[PROCNUM]) 
FTPROCNUM] <- FALSE; 
rO MOREXINT; 

Auxiliary Functions 

GENERATE\INT <- 
EXPR(EINAME:SYMBOL,  TABLE:INT\TAB\ELT,   N:INT;  NONE) 

BEGIN 
DECL L:INT; 

LP:       NOT TSET(PIL[K]) -> GOTO LP; 
(L <- LEV(EINAME, TABLE.TYPE)) = 0 => 

CLEAR(PIL[N]); 
TABLE.WAITING[L] OR TABLE.INPEOG[L] => 

CLEAR(PIL[N]); 
TABLE.WAITING[L] <-~TRUE; 
TABLE.WAITLEV <- MINLEV(TABLE.WAITING); 
TABLE.CURLEV IE L => NOTHING; 
PIF[N] <- TRUE; 

NT The flag is set only if L is the highest 
priority interrupt which has occurred; 
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CLEAR(PIL[N]) 
END; 

REM\INTRPT <- 
EXPR(CP:INT; NONE) 

BEGIN 
DECL TABLE:INT\TAB\ELT BYREP 

BEGIN 
CSrCPl.TYPE = "PRO" => PRO\INT\TAB[PROCNUM]; 
PATE.INTINFO 

END; 
'AJ 
'A3 

END; 

TABLE.INPROG[TABLE.CURLEV] <- FALSE: 
TABLE.CURLEV <- MINLEV(TABLE.INPROG) 

GET\INT <- 
12CPR(TABLE:INT\TAB\ELT,   RESP:FROW,   CLASi:SYMBOL;  BCOL) 

BEGIN 
OR(TABLE.WAITLEV GT LENGTH(RESP), 

BEGIN 
CLASS = "PRO" => EALSE; 
TABLE.MASK[TABLE.WAITLEV] 

END, 
TABLE.WAITLEV GE TABLE.CURLEV) => EALSE; 

TABLE.INPROG[TABLE.WAITLEV] <- TRUE; 
TABLE.CURLEV <- TABLE.WAITLEV; 
TABLE.WAITING[TABLE.WAITLEV] <- EALSE; 
TABLE.WAITLEV <- 

BEGIN 
CLASS = "PRO" => MINLEV(TABLE.WAITING); 
MINLEV\M(TABLE.WAITING, TABLE.MASK) 

END; 
PUSHC(CONST(INT\BL0CK OP CLASS, 

TABLE.CURLEV, "RETINT")); 
P <- RESP[TABLE.CURLEV]; 
TRUE 

END; 

Discussion 

STOP\PATH sends the external interrupt "PRO\PRO" to the 

processor evaluating NSV1. The processor number is obtained 

from the PRO\PATH vector. Por I#PROCNUM, PRO\PATH[J] is the 
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ARPTR of the path being evaluated by processor I, c.f. 

CONTPATH. 

GENERATE\INT sends an EINAME interrupt to processor N. 

The interrupt is 'sent' as follows. 

(a) PRO\INT\TAB[N].WAITING[J] is set to TRUE, where J is 

the level at which processor N is enabled for EIUAKE 

interrupts. 

(b) WAITLEV is recomputed. 

(c) If the priority of CURLEV is greater than or equal 

to that of WAITLEV, then no further action is 

necessary, since the interrupt will be processed 

according to its priority. 

(d) If WAITLEV is of a higher priority than CURLEV, then 

PIF[N] is set to TRUE in order to 'signal' the fact 

that a higher priority interrupt has occurred. 

Note that GENERATE\IWT also specifies the actions that 

must be taken by an external processor in order to interrupt 

a processor. For example, a timer interrupt may be 

considered as an external processor that executes 

GENERATE\INT ("TIMER", PRO\INT\TAB[W],N) 

after some interval of time has elapsed. 

An evaluator detects that an external interrupt has 

occurred by CALLing ALLOW\INTERRUPT at selected points, 

namely before the evaluation of 

(a) the body of a procedure, 
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(b) the body of an iteration statement, 

(c) each statement in a block. 

ALLOW\INTERRUPT returns immediately if PIP[PROCNUM] is 

FALSE, otherwise it obtains the response form associated 

with the interrupt and evaluates it. 

To insure that ALLOW\INTERRUPT and GENERATE\INT can 

both examine the PRO\INT\TAB entry without interference from 

the other, the global vector PLL (processor-interrupt-lock) 

is used to provide synchronization. 

GET\INT updates PRO\INT\TA£[PROCNUM] and binds F to the 

appropriate response form. An INT\ELOCK is pushed on the 

control stack which specifies the class of interrupt (either 

"PRO" or "PATH"), the interrupt level and a return label 

("RETINT"). GET\INT returns PALSE if no interrupt response 

is to be evaluated. 

Upon completion of the evaluation of the response form, 

control is passed to RETINT. PRO\INT\TA£[PROCNUM] or 

PATH.INTINPO is updated as the interrupt was at 

processor-level or path-level, respectively. The INT\BLOCK 

is popped off of the stack. At this point (MCRE\INT), the 

evaluator must determine if the priority of the highest 

priority waiting interrupt is greater than the priority of 

the interrupt associated with the response form currently in 

progress (i.e. the priority of the interrupt which was 

interrupted by the one just completed.) If so, the response 
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form for the highest priority waiting interrupt is 

evaluated, otherwise the evaluation of the previous response 

form is allowed to continue. Note that the path interrupt 

levels are of lower priority than the processor interrupt 

levels. 
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4. AUXILIARY PROCEDURES 

ALTERN <- 
EXPR(iM1:MODE, M2:M0DE; EOOL) 

BEGIN 
DECL B:BOOL; 
M1 = NONE => TRUE; 
MVAL(K2.D) = BDB AND M1 = M2.B => TRUE; 
FOR I <- 1, ... , LENGTH(VAL(M2, D)) TILL B DO 

[) M2.D[I] = M1 => B <- TRUE (]; 
B 

END; 

CADR <- EXPR(F:FORM; FORM) F.CDR.CAR; 

CADDR <- EXPR(F:FORM; FORM) F.CDR.CDR.CAR; 

CADDDR <- EXPR(F:FORM; FORM)  P.CDR.CDR.CDR.CAR; 

CHECKM <- 
EXPR(M:MODE; BOOL) 

[) MVAL(EVRES) §  M => ERROR("type\fault"); TRUE (]; 

COMPATIBLE <- 
EXPR(SINK:MODE, SOBJsREF; BOOL) 

BEGIN 
DECL SOURCE:MODE BYVAL MVAL(SOBJ); 
SINK = SOURCE => TRUE; 
SINK.CLASS = "PTR" AND SOURCE = NONE => TRUE; 
SINK = REF AND SOURCE.CLASS = "PTR" => TRUE; 
NOT (SINK.CLASS = "PTR" AND 

SOURCE.CLASS = "PTR") => 
FALSE* 

ALTERK(MVAL(VAL(SOBJ)), SINK) => TRUE; 
FALSE 

END; 

DEREF <- 
EXPR(R:REF:   NONE) 

[)  MVAL(R).CLASS = "PTR" => DEREI(EVRES <- VAL(R))   (J; 
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ERROR <- 
EXPR(S:SYMBOL; NONE) 

BEGIN 
DECL N:INT BYVAL FIND\NAME(NS,NP,S); 
DECL EVRES:REF BYVAL [) N = 0 => S.TLB; 

NS[N].VALUE (]; 
DEREF(EVRES); 
NOT OR(MVAL(EVRES) = CEXPR, 

MVAL(EVRES) = CSUBR, 
MVAL(EVRES) = DTPR 

AND EVRES.CAR = "EXPR!") => 
BEGIN 

FRINT("ERROR"); 
PRINT(S); 
ERR0R2() 

END; 
F <-  CONS(ALLOC(REF LIKE EVRES) NIL); 
GOTO EVAL\IORM 

END; 

NT If S is bound in the current environment to a procedure 
definition, then the procedure is evaluated. Otherwise, an 
error message is printed and ERR0R2 is called; 

ERROR1 <- 
EXPR(S:SYMBOL, PrARPTR; NONE) 

BEGIN 
CLEAR(P.MOD); 
ERROR(S) 

END; 

NT ERROR1 is called whenever an error occurs and the 
MOD field of a path has been set by a control 
primitive. ERR0R1 clears the MOD field and calls ERROR. 

GENV <- 
EXPR(M:MODE, P:ARPTR; REF) 

BEGIN 
DFCL VS:VSPTR BYREF [) P = NIL => VS; P.VS (]; 
DECL VP:INT BYREF [) P = NIL => VP; F^F  (]; 
VP <- VP + 1; 
PUSH(CONST(M),VS) 

END; 

MINLEV\M <- 
EXPR(TABLE:BROW, MASK:BROW; INT) 

BEGIN 
DECL L:INT; 
FOR I <- 1, ... , LENGTH(TABLF) TILL L GT 0 DO 
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[) TABLE[I] AND NOT MASK[I] => L <- I (]; 
L = 0 => LENGTH(TABLE) + 1; 
L 

END; 

MINLEV <- 
EXPR(TABLE:BROW; INT) 

BEGIN 
DECL L:INT; 
FOR I <- 1, ... , LENGTH(TABLE) TILL L GT 0 DO 

[) TABLE[I1 => L <- I (]; 
L = 0 => LENGTH(TABLE) + 1; 
L 

END; 

MVAL <- EXPR(P:REF; MODE) (MD(VAL(P))); 

POPC <- EXPR(N:INT;NONE) [) FLUSH(CS,CP-N); CP <- CP-N (]; 

PURE\VALUE <- 
EXPR(; BOOL) 

BEGIN 
RSP = 0 => PALSE; 
EVRES = RESULT\SLOT[RSP] 

END; 

PUSHC <- 
EXPR(CELT:ANY, P:ARPTR; NONE) 

BEGIN 
DECL CS:CSPTR BYREP [) P = NIL => CS; P.CS (]; 
DECL CP:INT BYREP [) P = NIL => CP; P.CP (]; 
CP <- CP + 1; 
MD(CELT) =REP => PUSH(VAL(CELT),CS); 
PUSH(CELT,CS) 

END; 

PUSHN <- 
EXPR(NAME:SYMBOL, V:REP, P:ARPTR; NONE) 

BEGIN 
DECL NS:NSPTR BYREP [) P = NIL => NS; P.NS (]; 
DECL NP:INT BYREP [) P = NIL => NP; P.NP (]; 
NP <- NP + 1; 
NS[NP].NAME <- NAME; 
NS[NP].VALUE <- V 

END; 
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PUSHR <- 
EXPR(PRES:ANY, RESMODE:MODE; REF) 

BEGIN 
BEGIN 

RSP <- RSP + 1; 
RESMODE.CLASS = "PTR" AND MD(PRES) = REP => 

BEGIN 
PUSH(CONST(RESMODE),RESULT\SLOT); 
ASSIGN(RESULT\SLOT[RSP],PRES) 

END; 
RESMODE # BEGIN 

MD(PRES) = REP => MVAL(PRES); 
MD(PRES) 

END => 
ERROR("type\fault"); 

MD(PRES) = REF => PUSH(VAL(PRES),EESULT\SLOT); 
PUSH(PRES,RESULT\SLOT) 

END; 
RESULT\SLOT[RSP] 

END; 

PUSHV <- 
EXPR(V:ANY, P:ARPTR; REP) 

BEGIN 
DEC! VSrVSPTR BYREP [) P = Nil => VS; P.VS (]; 
DECL VP:INT BYREP [) P = NIL => VP; P.VP (]; 
VP <- VP + 1; 
MD(V) = REP => PUSH(VAL(V),VS); 
PUSH(V,VS) 

END; 

RETURN\RESULT <- 
EXPR(X:ANY; NONE) 

BEGIN 
EVRESULT(X, MD(X)); 
RETURN 

END; 
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NOFLX Operators 

NO\PATH\INTS <- EXPR(;BOOL) 
(PATH.INTINPO.CURLEV GT NPALEV); 

NO\PRO\INTS <- EXPR(;BOOL) 
(PRO\INT\TAB[PROCNUM].CURLEV GT NPROLEV); 

NS1 <- EXPR(;REF) KS[NP]; 

NS2 <- EXPR(;REF) KS[NP-1]; 

NS3 <- EXPR(;REF) NS[NP-2]; 

NS4 <- EXPR(;REF) NS[NP-3]; 

NS5 <- EXPR(;REF) NS[NP-4]; 

NSV1 <- EXPR(;ANY) (VAL(NS1)) 

NSV2 <- EXPR(;ANY) (VAL(NS2)) 

NSV3 <- EXPR(;ANY) (VAL(NS3)) 

NSV4 <- EXPR(;ANY) (VAL(NS4)) 

NSV5 <- EXPR(;ANY) (VAL(NS5)) 

POPC1 <- EXPR(;ANY) 
BEGIN 

DECI R:ANY BYVAL VAX(CS[CP]); 
P1USH(CS,CP-1); 
CP <- CP - 1; 
R 

END; 

POPC1\RETURN <- EXPR(;NONE) [) POPC1 ; RETURN (]; 

RETURN <- EXPR(;NONE) 
BEGIN 

DECL S:SYMBOL; 
MVAL(TOPCI) // SYMBOL => GOTO EVAL(TOPC1 ["RETURN"]); 
S <- POPC1; 
GOTO EVAL(S) 

END; 
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RETURN\NOTHING <- EXPR(;NONE) (RETURN\RESULT(NIL)); 

T0PC1 <- EXPR( 

T0PC2 <- EXPR( 

T0PC3 <- EXPR( 

T0PC4 <- EXPR( 

T0PC5 <- EXPR( 

REF) CS[CP]; 

REP) CS[CP-1]; 

REF) CS[CP-2]; 

REF) CS[CP-3]; 

REF) CS[CP-4]; 
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5- PRIMITIVE PROCEDURES 

A procedure is a linguistic primitive if it is used by 

the evaluator but it is not defined therein. It is assumed 

to be primitive for one of the following reasons: 

(1) Its definition is elementary and conforms to 

standard usage, e.g. integer addition. 

(2) It represents a language construct whose definition 

has no interaction with the control subroutines, 

e.g. the mode constructors, and for which an 

adequate definition is given in [Weg70J. 

(3) Its definition involves machine—dependent concepts, 

e.g. a test-and-set instruction. 

For each procedure, the arguments and result-type are 

given in the format of a code—procedure heading and the 

definition is given in English. 

Arithmetic Operations 

+,-,*,/ <- CEXPR(X:INT, Y:INT; INT); 

Integer addition, subtraction, multiplication and 

division are defined with the customary interpretations. 

Relational Operations - Arithmetic 

LT,LE,GT,GE <- CEXPR(X:INT, Y:INT; BOOL); 
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Returns TRUE if and only if X is less than, less than 

or equal to, greater than, or greater than or equal to y, 

respectively. 

Relational Operations - General 

=,# <- CEXPR(X:0NE0F(INT,B00L,CHAR,REF), 

Y:0NE0F(INT,BOOL,CHAR,REF);B00L) 

Returns TRUE if and only if X and Y are of the same 

mode and are identical, for REFs, X and Y must point to the 

same object. /'(a,b) returns TRUE if and only if =(a,b) 

returns FALSE. 

Logical Operations 

NOT <- CEXPR(X:B00L; BCOL); 

Returns TRUE if and only if X is FALSE. NOT is a 

PREFIX operator. 

AND <- CEXPR(X:FORM LISTED; BOOL) 

If X is NIL, then AND returns TRUE. Otherwise, if each 

form on the list evaluates to TRUE, then the result is TRUE. 

If any form evaluates to FALSE or a non-boolean value, then 

the result is FALSE and the remaining forms are not 

evaluated. 
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OR <- CEXPR(X:FORM LISTED; BOOL) 

If X is NIL, then OR returns FALSE. Otherwise, if each 

form on the list evaluates to EALSE or a non-boolean value, 

then the result is FALSE. If any form evaluates to TRUE 

then the result is TRUE and the remaining forms are not 

evaluated. 

Mode Constructing Operations 

ROW <- CEXPR(X:FORM LISTED; MODE) 

X must be a list of the form 

(id f mf orm) 

or 

(id NIL inform) 

In the former case, f must evaluate to an integer and the 

mode created is 'row of eval(f) eval(mform)s'. In the 

latter case, the mode created is 'length unresolved row of 

eval(mform)s'. The CLASS field of the DDB created is "ROW". 

For each of the mode constructors, X.CAR is either NIL 
or an identifier which is to "be the 'shortname' of the mode 
created. Shortnames are used for forward references in mode 
definition, i.e. the shortname of a mode which has not yet 
been created may be used in a mode definition. For example, 
the actual definition of DTPR and FORM are: 

DTPR <- STRUCT(CAR:"FORM", CDRr-'FORM") ; 

FORM <- FORM::PTR(INT, BOOL, CHAR, DDB, DTPR); 

In the definition of DTPR, the^mode FORM is referenced by 
its symbolic shortname. 'FORM::' specifies that the 
shortname of the mode produced is to be "FORM". For a 
complete discussion of forward reference in EL1 mode 
definitions see [Weg71]. 
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STRUCT <- CEXPR(X:E0RM LISTED ; MODE) 

X must be a list of the form 

( id (id-1 mform-1) ... (id-n mform-n)) 

The mode 'structure whose i th component is of mode 

eval(mform-i) and has selector id-i' is created. The CLASS 

field of the DDE created is "STRUCT" and the D field points 

to a ROW(STRUCT(SYM:SYMBOL, TYPE:M0DE)) of length n, where 

D[i].SYM=id-i and D[i].TYPE=eval(mform-i). 

PTR <- CEXPR(X:PORM LISTED: MODE) 

X must be a list of the form 

( id mform-1 ... mform-n) 

The mode 'pointer to objects of modes 

eval(mform-1) ,..., eval(mform-n)' is created. The CLASS 

component of the created DDB is "PTR" and the D field is 

either the mode eval(mform-1) if n=1, or a PTR to a 

ROW(MODE) where D[I] = eval(mform-i). 

ONEOE <- CEXPR(X:EORM LISTED, MODE) 

X must be a list of the form 

( id mform-1 ... mform-n) 

The mode 'one of the modes eval(mform-1),...,eval(mform-n)' 

is created.  The CLASS field of the DDL created is "GENERIC" 

and the D field is a pointer to a ROW(MODE), where 
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D[i]=eval(mform~i).  The primitive mode ANY is defined as 

ONEOF ('any-mode'). 

Data Object Operations 

MD <- CEXPR(X:ANY; MODE) 

MD returns the mode of the object X. 

VAL <- CEXPR(X:REF; ANY); 

VAL returns the object pointed to by X, 

CONST <- CEXPR(X:FORM LISTED; ANY) 

ALLOC <- CEXPR(X:FCRM LISTED; REF) 

ALLOC and CONST create and initialize objects of any 

mode.  The only difference in their interpretations is that 

ALLOC returns a pointer to the newly created object.  The 

list X must be in one of the following formats, c.f. 

Appendix 3- 

(1) (mform) 

(2) (mform LIKE f ) 

(3) (mform SIZE fl f2 ... fn) 

(4) (mform OP f1 f2 ... fn) 

In each case, mform must evaluate to a mode m. In case one, 
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the default object of the mode m is generated. In case two, 

the form f is evaluated and if the modes m and MD(eval(f)) 

are compatible then an object of mode m is generated with 

value identical to eval(f). In case three, the results of 

evaluating f1 , -.., fn are used to length-resolve the object 

of mode m to be generated, i.e. f1 ... fn specify the 

dimensions of the object. In case four, if m is a mode of 

the form R0V/(m1), then f1 ... fn must evaluate to objects 

whose modes are compatible with ml. If so, a ROW, say R, of 

length n is created with R[i]=eval(fi). Otherwise, m must 

be a STRUCT mode. In this case, an object of mode m is 

generated, the components of which are copies of the values 

obtained by evaluating f1 ... fn. 

LENGTH <- CEXPR(X:ANY; INT) 

LENGTH(X) is the number of components in X, provided 

that MD(X).CLASS is either "ROW" or "STRUCT". If 

MD(X).CLASS="PTR", then X is dereferenced, and LENGTH is 

applied to the result. Otherwise, an error occurs. 

Basically, two modes are compatible if, they are 
identical, or if they are PTR modes and the sink mode (M) 
can point to the object VAL(eval(f)). See section 4.5 for 
the formal definition of compatibility. 
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Stack Operations 

PUSH <- CEXPR(OBJ:ANY, S:STACK; REF); 

See section 4.1.3- 

FLUSH <- CFXPR(S:STACK, INDEX:INT; NONE); 

See section 4.1.3. 

INSTACK <- CEXPR(PTR:REF, 

IND1:INT, 

IND2:INT, 

S:STACK; BOOL); 

See section 4-1.3- 

HEAP <- CEXPR(PTR:REF; BOOL); 

See section 4-1.3- 

MAP\PTR <- CEXPR(PTR:REF, OLDSTK:STACK, 

NEWSTK:STACK; REF); 

OLDSTK and NEWSTK must be component-wise identical and 

PTR must point into OLDSTK. The result of MAP\PTR is a 

pointer to the object in NEWSTK which corresponds to the 

object referenced by PTR in OLDSTK. MAP\PTR is used only by 

the control primitive COPY. 

Miscellaneous 

XCT <- CEXPR(X:R0W(INT); NONE) 

The ROW(INT) is executed as machine code in the 
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environment of the path being evaluated. The code must bind 

its result to the evaluator variable EVRES. 

ASSIGN <- CEXPR(LEFT:KEF, RIGHT:REF; NONE) 

MD(VAL(LEFT)) must be compatible with MD(VAL(RIGHT). 

The object specified by RIGHT is copied into the object 

specified by LEFT and MVAL(LEFT) is set to MVAL(RIGHT). 

SELECT <- CEXPR(OBJ:REF, 1NDEX:INT; REF); 

SELECT returns a pointer to the INDEX component of the 

object referenced by OEJ. 

ERR0R2 <- CEXPR( ; NONE) 

ERR0R2 performs machine—dependent error processing. 

TSET1 <- CEXPR(X:INT; EOOL) 

TSET1 is the machine—dependent operation of testing and 

setting the value of a machine location in one instruction. 

CLEAR1 <- CEXPR(X:INT; NONE) 

CLEAR1 is the machine-dependent operation of unsetting 

the value of a machine location in one instruction. 
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CALL <- CEXPR(X:LABEL, Y:SYMB0L; NONE) 

Y is implicit in the notation of the evaluator and must 

be the label associated with the next statement. Y is 

pushed onto the control stack and control is transferred to 

X, c.f. 4.1.2. CALL is a PREFIX operator. 

INSTALL\CLOBAL\ENV <- CEXPR( ; NONE) 

The initial 'top-level' environment in which paths are 

evaluated is installed by providing top-level bindings, i.e. 

objects referenced by the TLB components of ATOMS, for all 

of the following: 

(1) the control primitives, 

(2) all linguistic primitives defined in this section 

(except for those under the headings stack 

operations and miscellaneous,) 

(3) PCIAR - a pointer to the control interpreter's 

ACTRC, 

(4) RESPONSE - the processor level response form matrix, 

(5) the evaluator constants NPROC, NPALEV, NPROLEV, 

(6) the procedures and forms in Appendix 3» 

ENABLE\PnOCESSOR <- CEXPR(S:SYMBOL, L:INT; NONE); 

ENABLFNPROCESSOR performs any machine—dependent actions 

necessary to enable the current processor for S interrupts 
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at level L. 

DISA£1E\PR0CESS0R <- CEXPR(S:SYMBOL, L:INT; NONE); 

DISAELE\PROCE£SOR performs any machine-dependent 

actions necessary to disable the current processor with 

respect to S interrupts at level L. 

Priorities of Operators 

The following procedures  are  defined  as  INP1X 

operators. They are listed in order of decreasing priority: 

*,/ 

+,- 

LT,GT,LE,GE=,# 

AND 

OR 

<-     (assignment is treated as an operator 

even though its evaluation is via 

a sub-evaluator) 

e.g. X <-  A+B=C AND D=E OR P 

is equivalent to 

(X <- ((((A+JB)=C) MB  (D=E)) OR P)) 
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Chapter 5 

EVALUATION AND CONCLUSIONS 

1. OTHER FACILITIES 

In this section, we consider a number of features of 

MPEL1 which were mentioned in chapter 2 or utilized in 

chapter 3» hut for which no detailed explanation has yet 

been given. 

1.1 Extended CIA Call 

In section 2.3.1, we indicated that it is possible, by 

extension, to CIA call procedures that take more than a 

single argument, but deferred explanation. Here, we remedy 

this omission and consider one additional point. 

The procedure ECIA (extended-CIA) takes an indefinite 

number of arguments. The first argument specifies the 

procedure to be applied in the CI's environment (as in CIA.) 

The remaining arguments to ECIA are evaluated to yield the 

arguments for the procedure application. ECIA constructs a 

list whose first element is the procedure specification and 

whose tail is a list of REFs that point to the evaluated 
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arguments. ECIA then performs a CIA call on the procedure 

EVAL with this list as argument. The list is evaluated in 

the environment of the CI as a call to the procedure with 

the specified arguments. Thus, ECIA effects the CIA call of 

a procedure with an arbitrary number of arguments.  The 

definition of ECIA is as follows. 

ECIA <— 
' EXPR(FN:0NE0F(SYMI30L,R0LTTINE),ARGS:F0RM LISTED;REF) 
BEGIN 

DECL CIAREStREF BYREF ALLOC(REF); 
MYPATK.CIA\RESULT <- CIARES; 
CIA("EVAL", CONS(BEGIN 

MD(FN)=SYMBOL => FN; 
ALLOC(REF LIKE FN) 

END, 
EVALLST(ARGS)); 

VAL(CIARES) 
END; 

EVALLST <- EXPR(ARG£:FORM; FORM) 
BEGIN 

ARGS=NIL => NIL; 
BEGIN 

DECL A:ANY BYREF EVAL(ARGS.CAR); 
DECL R:REF BYVAL 

BEGIN 
MD(A).CLASS=,IPTR" => A; 
ALLOC(MD(A) LIKE A) 

END; 
NT If not a PTR mode, allocate as in CIA; 
CONS(ALLOC(REF LIKE ALLOC(REF LIKE R)), 

EVALLST(ARGS.CDR)) 
END 

END; 

ECIA requires that the arguments to the ECIA called 

procedure be of mode class PTR. This is consistent with the 

definition of CIA.  A slightly different definition of 

In the list structure representation of MPEL1 programs, 
a REF evaluates to the object that it references. Hence, it 
acts as a QUOTE for arbitrary objects, c.f. 4.2.2. 
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EVALLST allows the arguments to be of any mode, viz. 

EVALLST <- EXPR(ARCS:FORM; FORM) 
BEGIN 

ARCS=flIL => NIL; 
BEGIN 

DECL A:ANY BYREF EVAL(ARGS.CAR); 
DECL R:R£F BYVAL ALLOC(MD(A) LIKE A); 
CONS(ALLOC(REF LIKE R), EVALLST(ARGS.CLR)) 

END 
END; 

Since the arguments are allocated in the heap, they are, in 

effect, always passed LYVAL. 

ECIA differs from CIA in that it does not return the 

REF specified by the CIA\RESULT component of the path's 

ACTRC. Instead, it allocates a REF in the heap, stores a 

pointer to the REF in the CIA\RESULT component, and after 

the CIA call on EVAL, returns the allocated REF as result. 

If a procedure which is ECIA called wishes to have a value, 

say R, returned as the result of the call to ECIA, then it 

must execute 

VAL(LASTRUN.CIA\RESULT) <- R; 

The indirection insures that the value will be returned 

correctly, even if another ECIA call is PAPed into the 

environment of the path. This is not the case with nested 

CIA calls, where it is possible for a result to be lost. 

For example, suppose a path, say P, CIA calls a procedure F 

which sets the CIA\RESULT component of P's ACTRC. If, while 

the CIA call is being executed, another path executes 

PAP(CIA("F"),P) 

then when control returns to P, the second CIA call on    F 
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will be executed and the value stored in P.CIA\RESULT by the 

first call will be destroyed. The value returned by the 

second call will also be incorrectly returned as the result 

of the first call. If F is written to be ECIA called, then 

the values will be returned correctly since each call to 

ECIA retains a pointer to a distinct allocated REF which is 

used to hold the result. 

CIA could have been defined to return its result in a 

manner similar to ECIA. This would require a REF to be 

allocated for each CIA call, whether or not the CIA called 

procedure returns a value. However, in our experience with 

CIA we have found that the majority of CIA called procedures 

do not return values. Thus, we have declined to include 

this mechanism as primitive since it is used infrequently 

and can be achieved by extension. 

1.2 Extended Mode Facility 

The examples in Chapter 3 utilize the extended mode 

facility of EL1 [We£70][Weg71] in two ways. First, the 

MONITOR operation uses a 'user-defined' assignment function 

to check assignments to monitored variables on a 

mode-dependent basis, c.f 3.5. Second, the addition of 

extended components to the definition of ACTRC is achieved 

through the use of the facility. Here, we will discuss the 
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extended mode definition facility and show how it can he 

used to implement extended components. 

Basically, the facility allows the programmer  to 

control  the behavior of a mode M by specifying EL1 

procedures to be called whenever an object of mode M is to 

be assigned a value or whenever a component of an object of 

mode M is to be selected. In addition, it allows for the 

specification of a conversion procedure to be used in the 

conversion of objects of mode M to other modes as required. 

For example, consider the case of monitoring. Here, we 

would like to monitor an integer and take some action if it 

is assigned a certain value. Aside from assignment, the 

integer is to act like any other 'normal'' integer.  To 

achieve this effect, we define the mode SINT as a STRUCT 

with an integer component (I) that contains the monitored 

integer,  and  one or more components which hold the 

associated monitoring information. We then extend the mode 
* 

SINT by associating with it the three functions 

SINT\ASSIGN, SINT\SELECT, SINT\CONVERT to be used in 

assignment, selection, and conversion of objects of mode 

SINT, respectively. 

SINT\ASSIGN, discussed in section 3.5, assigns the 

specified  value to the I component of the SINT and 

The details as to how these functions are associated 
with the mode are given in [Weg70]. 
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determines if it has been assigned the value being monitored 

for. Since SINT's are to act as integers they cannot be 

selected, even though they are structured objects. Hence, 

an attempt to select a component of a SINT should generate 

an error, viz. 

SINT\SELECT <- EXPR(S:SINT, C:0NEOE(INT,SYMBOL); NONE) 
(SELECT\ERROR()); 

Finally, to complete the illusion that an SINT, say X, is 

really an integer, it is necessary to allow X to appear 

where an integer value is required, e.g. 

X+5 

To achieve this, the procedure SIKT\CONVERT is called to 

perform the appropriate conversion whenever an SINT is in 

hand and an object of some other mode M is required, viz. 

SINT\CONVERT <- EXPE(S:SINT, M:MODE; M) 
BEGIN 

DECL TEMP:INT; 
M7^'INT => CONVERT\ERROR() ; 
NT Only INT conversion is defined; 
TEMP <- UR(S).I; 
NT Select the component that contains the integer; 
TEMP 

END; 

The use of UR requires some explanation. If SINT\CONVERT 

executes the statement 

TEMP <- S.I 

in order to select the I component of the SINT, then 

SINT\SELECT would be called to perform the selection and an 

error would result. Hence, it is necessary for SINT\CONVERT 

to specify that the selection is to be performed on the SINT 
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taken as an unextended mode. This is achieved by usinf the 

procedure UR which specifies that the selection is to be 

performed on the underlying representation of SINT. 

SINT\ASSIGK also uses UR in order to assign to the I 

component and to select the components of the SINT which 

contain the monitoring data. 

We can now describe how the mode ACTRC can be extended 

to include components required by some control regime. 

ACTRCs contain the basic component USER\AR which is of mode 

REF. This component can be used to point to an object which 

contains the extended components. A user-defined selection 

function can then be used to select both basic and extended 

components.  For example, suppose we wish to extend ACTRC to 

contain the four components PAL, PVALRET, PVALQ, and PAVAL 

used in the parallel processing examples of section 3.3. We 

define the mode USER\COMPS and the procedure ACTRC\SELECTION 

as follows. 

USER\COMPS <- STRUCT(PAL:STRUCT(OWNER:ARPTR,WL1ST:ARPTR), 
PVALRET:BOOL 
PVALQ:ARQPTR, 
PAVAL:REF) 
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ACTRC\SELECTION <- 
EXPR(P:ACTRC, I:OME0F(INT,SYM£OL); ANY) 
BEGIN 

DECL N:INT 
UR(P).USER\AR=NIL -> 

UR(P).USER\AR <- ALLOC(USER\COMPS); 
BEGIN 

* 

MD(I)#IMT => N<-SELECTOR\INDEX(ACTRC,I) ; 
N <- I 

END 
N=0 => UR(P).USER\AR[I]; 
N GT LENGTH(ACTRC) => 

UR(P).USER\AR[I-LENGTH(ACTRC)]; 
UR(P)[I] 
NT Select basic component; 

END; 

When the first selection is performed on an ACTRC, a 

USER\COMPS is allocated and a pointer to the object is 

stored in USER\AR. If the component to be selected is a 

basic component, then selection is performed on the ACTRC. 

Otherwise, the appropriate component of the USER\COMPS is 

selected. For example, if Q is an ARPTR, then evaluation of 

the form Q.PVALRET will trigger the following procedure call 

ACTRC\SELECTION( VAL(Q), ,,PVALRETI,) 

Since PVALRET is not a basic component of the mode ACTRC, 

SELECTOR\INDEX(VAL(Q),',PVALRET,,) returns zero, and thus the 

PVALRET component of object referenced by Q@USER\AR is 

selected. 

SELECTOR\INDEX, defined in section 4.2.8, returns the 
integer index associated with a symbolic selector, or zero 
if the symbol is not a selector of the mode. 
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1.3 Termination of Dependents 

In section 2.2.8, we noted that it is possible to 

construct a procedure which will terminate all paths 

dependent upon the sub-environment of a path. Here, we 

present such a procedure, namely, TERM\DEPS. 

The procedure can be called explicitly, say at the end 

of a block, to terminate all dependent paths created in an 

environment. It can also be called implicitly by binding 

the procedure to the identifier associated with the error 

condition ,,non\supportM. If an attempt is made to delete an 

environment accessible to a non-terminated dependent path, 

then TERM\DEPS is executed in response to the error 

condition (which results in the dependents being 

terminated,) and then the environment is safely deleted. 

All dependents of a given path, say P, are linked 

together (through their ACTRCs) in a tree structure as 

described in section 4.3-5. P.LASTSON specifies the path 

most recently made directly dependent upon P. All paths 

with the same directly accessible environment are linked 

together (starting with P.LASTSON) through the LBRO 

component. The last of these (LBR0=NI1) is linked to the 

paths directly dependent upon P with 'smaller' directly 

accessible environments- It is only necessary to terminate, 

i.e. make ineligible for evaluation, all direct dependents 

who can  reference  the  current  directly  accessible 
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environment and then terminate all of their dependents 

(recursively.) This can be achieved by performing a tree 

walk on the ACTRCs calling DELETE\PATH as necessary. 

There is only one problem with this solution - some of 

the dependent paths may be active and thus, they cannot be 

terminated by calls to DELETE\PATH. We require a mechanism 

which will insure that the actions of TERM\DEFS will be 

relatively continuous with respect to the evaluations of all 

(dependent)  paths.   The operators STARTRC and ENDRC, 

described in section 3-5, provide this facility. Hence, we 

simply bracket the substantive portion of the procedure with 

these operators.  TERK\DEPS and its auxiliary procedure 

TERM\DEPS1 are defined as follows. 

TERM\DEPS <- EXFR(; NONE) 
BEGIN 

DEC! P:ARPTR EYVAL MYPATH.LASTSON; 
STARTRC; 
NT The follwing block is executed 

relatively continuous to all 
other paths; 

WHILE P#NIL DO 
BEGIN 

P.ELGELG => CIA(,,DELETE\PATH",P); 
TERM\DEPS1(P.LASTSON); 
NT Terminate all dependents 

of this direct dependent; 
P <- P.LBRO 
NT P is next direct dependent; 

END; 
ENDRC 
NT All dependents at current level 

have been terminated; 
END; 

TERM\DEPS1 <- EXPR(P:ARPTR; NONE) 
BEGIN 

P=NIL => NOTHING; 
P.ELGFLG -> CIA("BELETE\PATH",P); 
TERM\DEPS1(P.LBRO); 
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TERM\DEPS1(P.PLEV); 
NT At most one of P.LBRO and P.PLEV 

will be non-null; 
TERM\DEPS1(P.LASTSON) 

END; 
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2. IMPLEMENTATION ISSUES 

In previous chapters we have excluded discussions of 

implementation issues in the interest of simplicity. Here, 

we will restrict ourselves to those topics which are 

directly related to the multi-path facility. Other issues, 

such as the translation of MPEL1 programs from external to 

internal representation, are of peripheral interest and have 

been adequately discussed elsewhere [Weg70]. 

2.1 Storage Management 

In MPFL1, storage (core) is designated as being either 

stack or heap. 

Stack storage may only be created by a call to 

GET\PATH, where the integer argument specifies the number of 

K of contiguous stack storage to be allocated for the path's 

environment. Stack storage is retained until the path is 

explicitly deleted (via a call to DELETE\PATH,) unless the 

path has non-terminated dependents. In this case the 

storage is retained until all dependents have terminated. 

Since it is not always possible to predict a priori the 

amount of stack storage required by an individual path, the 

Actually, as described in chapter 4, three stacks are 
allocated - the name, control and value stacks. 



5-13 

possibility of stack overflow exists. This can be handled 

in one of two ways, first, the program can be aborted, with 

suitable error messages presented to the user. 

Alternatively, the stack may be automatically expanded and 

the path's computation resumed. The latter is obviously 

more desirable, since it permits a path to be created with a 

small stack allocation and allows for growth, as required. 

A stack may be expanded either by mapping it into a 

larger continguous storage region or by linking it to 

another stack segment. 

The latter solution destroys the assumption that the 

stack is contiguous. This presents a number of problems. 

Pirst, it degrades the efficiency of system routines that 

access the stack. For example, an additional check must be 

included in the routine that searches the name stack to 

determine if it is necessary to switch segments. Second, 

programs which run at the end of a segment will suffer the 

overhead of constantly switching between segments. In 

addition, it is difficult to impose a reasonable 

de-allocation policy for segments. If a segment is freed as 

soon as control returns to a 'higher' segment, it may be 

necessary to immediately re-allocate the segment if the 

higher one overflows again. Conversely, if the segment is 

not freed and the higher segment does not overflow again, 

then the storage is wasted. Linked segments, however, do 
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not require the stack to be copied as in the former 

solution. 

The advantage of mapping the stack into a larger 

segment is that the implementation can assume that the stack 

is a contiguous block of storage. In addition, we note that 

the ability to copy a stack is already present due to the 

control primitive COPY - no additional mechanism is 

required. Furthermore, as we will see below, a 

compactifying garbage collection requires stack relocation. 

It is feasible to delay the execution (via scheduling) of 

all paths whose stacks have overflowed, and then map them 

all during garbage collection. 

In either scheme, it is desirable that stack overflows 

occur at predictable points with respect to the path's 

evaluation, e.g. only after all formals and locals of a 

procedure call have been entered on the name stack. With 

linked segments, this at least allows the compiler to assume 

that all the locals and formals of a procedure are contained 

in a contiguous block,  thereby  simplifying  compiled 

references to local variables. The mapping strategy 

requires that the stacks can be 'read', i.e. that the 

contents of each stack location can be unambiguously decoded 

so that those words which require relocation can be 

determined. Insuring that this condition holds whenever an 

object is pushed onto a stack during evaluation imposes 
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severe constraints upon the system. If overflows can only 

occur at certain points, then it is only necessary to insure 

that the condition holds at these points. 

The situation described above can be effected by 

reserving a portion of the stack for stack extension. When 

a 'hard' overflow occurs, the extension is appended to the 

end of the stack. An interrupt is enabled which will be 

triggered the next time the stack is 'clean' and the path is 

allowed to continue. When the clean point is reached, the 

stack may be expanded. 

Stack storage is used to hold objects whose lifetime is 

keyed to procedure (or block) activation, i.e. the objects 

are created upon procedure call and deleted upon procedure 

exit. Since the procedure call-block activation control 

structure of MPEL1 is strictly hierarchical, these objects 

can be managed using 1XF0 (last-in—first-out) stacks. MPEL1 

also allows for objects whose lifetime is independent of the 

call structure. These objects, created by calls to the 

procedure ALLOC, are managed using a retention strategy, 

i.e. the object exists as long as it can be referenced. 

Storage for these objects is allocated from a free storage 

region called the heap. When necessary, a garbage 

collection is invoked to determine which storage block can 

no longer be referenced. These blocks may be returned to 

the free storage pool. 
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The multi-path environment of MPEL1 raises a number of 

issues with respect to heap management. 

(1) How is access  to  the  free  storage  pool 

synchronized? 

(2) What is the retention strategy for paths? 

(3) Can the garbage collector make use of additional 

processors? 

We consider each of these in turn. 

* 

If free blocks are contained on a single free list, 

then synchronization can be achieved by associating a single 

memory location with the list. This location is TSET by a 

processor before accessing the list and CLEARed once the 

desired free block lias been removed.  If the memory location 

has already been 'set", then the processor loops in a busy 

wait until the location is CLEARed. 

Although the above organization is sufficient for heap 

management, it is not necessarily the most efficient one. 

Eor example, if parallel paths perform many allocations, 

then a considerable amount of each processors time may be 

spent in the busy wait. Thus, heap allocation may become a 

system bottleneck. If M free lists are used, then it is 

possible for N  processors  to  obtain  heap  storage 

Here we use the term 'free-list' to denote any one of a 
number of implementation techniques. for example, the 
free-list may actually be a vector of lists, where each list 
contains all blocks falling in a specific size range. 
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simultaneously. In this case, however, it may be necessary 

to access more than one list before a block of the desired 

size is found. In addition, the interlocking strategy in a 

multi-list scheme will be more complex than with a single 

global interlock. Hence, we will assume that 

implementations will initially adopt the latter scheme and 

impose more complex ones only if the need arises. 

If a block of sufficiently large size cannot be found, 

a garbage collection is required. In single—path EL1 this 

involves marking all heap objects which are accessible to 

the program by following all pointer chains to and within 

the heap starting from so-called base—posi tions, e.g. all 

objects on the path's stacks and top-level bindings. After 

this first trace phase, unmarked heap locations correspond 

precisely to those objects that can no longer be referenced. 

At this point, two strategies are possible. Either the 

inaccessible blocks are simply added to the free-list or the 

accessible objects are mapped into one contiguous block, 

leaving one large free block at one end of the heap. The 

former strategy is called collection and the latter is 

called compactification. If the heap is not contiguous, 

i.e. there are stack segments interspersed between heap 

segments, then in the latter case the stacks must be mapped 

as well. 

For a detailed discussion of compactifying garbage 
collection in the heap see [Weg71a], 
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In MPEL1, the trace phase must insure that all paths 

that may ever "become active are traced. A path is traced "by 

tracing its activation record as a structure and considering 

each object on its stacks as a base position. All paths 

active at the time garbage collection occurs are traced. 

The CI is always traced. If an unmarked activation record 

is encountered, then it is traced as a path if and only if 

it still possesses a stack environment. Otherwise, only the 

activation record is traced (as a structure.) Since a path 

can only become active if its ARPTR is accessible from an 

active path or the CI, all potentially active paths will be 

traced. If, in addition, we assume that GEIPATH maintains a 

list of the ACTRCs of all allocated paths, then this list 

can be scanned after the trace phase and all unmarked 

activation records and their associated stacks can be 

reclaimed since the paths can never become active. 

In the discussion above, we have tacitly assumed that 

it is possible to stop the evaluation of other active paths 

so that the system may commence garbafe collection. This 

can be accomplished as follows. When one processor wishes 

to invoke garbage collection, it TSETs a rc-flag location. 

If the rc-flag is not already set, then the processor sends 

a MPRO\PROn interrupt to all other processors to indicate 

that they should cease evaluation. If the go-flag is 

already set, then some other processor has started the 

garbage collection, so the processor idles waiting for the 
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MPRO\PRO" interrupt. In the following discussion it will be 

convenient to refer to the processor that successfully TSETs 

the go-flag as the master processor. 

The multi-processor configuration can be used to 

perform parts of the garbage collection in parallel. When a 

processor receives the "PRO\PRO" interrupt, it begins 

tracing the path it was evaluating. The master insures that 

the CI is traced, if it was not active. When an unmarked 

ACTRC is found, it is marked and placed upon a list of paths 

to be traced. When a processor completes the tracing of a 

path, it removes an ACTRC from the list (with suitable 

interlocks) and traces it as a path. If the list is empty, 

it idles waiting for a path to trace. When the master 

detects that all paths are idling (by examining an idle-flag 

associated with each processor,) it initiates the next 

phase, namely, collection or compactification. In the 

former case, the heap can be divided into segments and each 

processor assigned a segment to collect. In the latter 

case, after initial 'set-up' work by the master, the 

additional processors may be used to perform the mapping of 

storage in parallel. After this phase, the processors may 

resume evaluation. 
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2.2 Input\0utput 

Most computer systems allow input\output (I/O) 

activities and program execution to proceed concurrently. 

In this section, we will discuss how concurrent I/O can be 

incorporated into the framework of MPEL1. As the actual 

language I/O primitives are only of peripheral interest, we 

will simply use the generic terms READ and PRINT. 

The processor level interrupt facility of MPEL1 in 

conjunction with an appropriate "START\I0" control primitive 

to communicate with the I/O processors would allow a path to 

handle its own concurrent I/O. However, as Wirth [Wi6S] 

notes, it is conceptually simpler to assume that a given I/O 

operation is synchronous with respect to a path's 

evaluation, e.g. if a path performs a READ, then further 

evaluation of the path is delayed until the input is 

available. Concurrent I/O can then be realized by creating 

parallel paths to perform I/O operations. Synchronization 

can be achieved through the use of the CI framework, c.f. 

3. *,2 

Thus, it is only necessary to show how the synchronous 

functions READ and PRINT can exploit a concurrent I/O 

facility in terms of the MPEL1 framework. Typically, a 

processor initiates concurrent I/O by executing an 

instruction which sends an interrupt to an external 

processor (I/O device.) The external processor indicates 
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that transmission has been completed by sending an interrupt 

back to the processor. Thus, to perform a READ, the path 

CIA calls a procedure which will queue the path as waiting 

for I/O, sets LASTRUN to NIL so that the processor will be 

given to another path, and then performs the "STARTIO". 

When the I/O-complete interrupt occurs, the path may be put 

on the INACTIVEQ so that it may be assigned to a processor. 

Equivalently, one can think of the external processor as 

being assigned to the path for the duration of the I/O 

transmission. Because the external processor cannot perform 

a CIA call, it is necessary to use interrupts to achieve the 

same effect. 

2.3 Relation to an Operating System 

The underlying machine model upon which MPEL1 is based 

can be summarized as follows: 

(1) There exist n  processors  available  for  the 
* 

simultaneous evaluation of paths. A processor idles 

if it has no path to evaluate. The processors share 

a common address space. 

(2) A timer interrupt facility exists. 

(3) One processor  may  interrupt  another  via  a 

processor—to~processor interrupt. 

Note that the processors do not have to be identical; 
they may have different architectures. 
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(4) A test-and-set instruction exists, which allows for 

processor synchronization via busy waits. 

Typically, MPEL1 will be implemented in terms of a virtual 

machine provided by an operating system. The control 

structure of the virtual machine may not conform to the 

requirements listed above. Por example, virtual processors 

may actually be implemented by multiplexing a single 

processor. Hence, they are capable of concurrent, but not 

simultaneous, evaluation. Here, we will discuss the 

implementation of MPEL1 in terms of various virtual machine 

organizations. 

MPEL1 can be implemented on the simplest of virtual 

machines, namely, one which allows only one processor (a 

job) to access an address space. In this case, the 

"PRO\PRO" interrupt is not necessary since there is no other 

processor to communicate with. If a timer is not available, 

a similar effect can be achieved by counting the number of 

function calls made by a path and generating an interrupt 

after some specified number have occurred. 

If the virtual machine allows many virtual processors 

to access a common address space, then the question arises 

as to how many should be used by MPEL1, i.e. what should 

the value of n be? Here, it is only necessary to set it to 

be equal to the number of real processors available, say m, 

as  this  number  represents  the maximum simultaneous 
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evaluation of which the system is capatle. Of course, n can 

be set lower than m. 

The implementation, however, cannot assume that the m 

virtual processors are 'real' since at any given time some 

of the real processors may actually be assigned to other 

tasks in the operating system. In particular, the concepts 

of 'busy-wait' and 'idling' must be re-examined. In the 

formal model, a processor goes into a busy wait if it 

attempts to transfer control to the CI and cannot do so 

because the CI is being evaluated by another processor. In 

the context of an operating system, however, the virtual 

processor is only a control path (with respect to the OS as 

CI) and hence the real processor can be re-assigned to 

another virtual processor. Similarly, a virtual processor 

can put itself to sleep instead of idling. The CI will 

awaken it when there exists a path to evaluate. 

Both of the above can easily be achieved if the virtual 

machine provides a means whereby virtual processors can 

perform non-busy waits, for example, let us assume that 

semaphores and the operations p and v are available. We 

will associate one binary semaphore with each virtual 

processor (SEMi) and one with the CI (CISEM). Before 

passing control to the CI, a processor performs p(CISEM). 

When a processor transfers control out of the CI it performs 

a v(CISEM). To idle, processor i performs a p(SEMi), where 
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the semaphore is assumed to be initially 0. Thus, the 

processor waits indefinitely. When the CI wishes to awaken 

an 'idling' processor it simply performs a v(SEMi). 

A "PROXPRO" interrupt is still required to implement 

STOP\PATH(P), where P is not an idle path. Either an 

interrupt or a mechanism which allows one virtual processor 

to stop another, allows it to modify its registers, and then 

allows it to continue will suffice. An example of the 

latter mechanism appears in the TENEX [BBK70] operating 

system. Here, it is possible to create multiple forks 

(virtual processors) that access a common address space. 

One fork may freeze (PFORK) another, modify its state, and 

then allow it to continue (RFORK.) 

We close this section with the observation that the 

multi-path facility is quite machine independent. The 

design allows an implementation to utilize whatever features 

the virtual machine provides. In addition, the parts of the 

system which relate to the operating system are isolated. 

Hence, re-implementation of the language (or at least the 

control facility) en another machine should be relatively 

simple. 
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3. CRITICAL DISCUSSION 

In this section, we present an evaluation of the 

multi-path facility and its formal model. Both are examined 

in terms of the design criteria discussed in section 1.2. 

In addition, they are compared with some of the languages 

and models discussed in section 1.2. 

In evaluating the efficiency of the primitives and 

framework of MPEL1, we refer frequently to their treatment 

in the formal specification. This is reasonable since the 

model is distinctly not implementation independent. The 

data structures used by the evaluator are essentially the 

ones to be used in an implementation. This is discussed in 

more detail below. 

3.1 The Control Primitives 

The problem of 'size' turns out to be largely a pseudo 

question. The primitives are used to define extensions for 

various multi-path organizations. Typically, the code for 

the extensions will outweigh the initial investment in the 

primitives. Second, in the environment of a language 

system, the primitives may be maintained on a library file 

and loaded as required. Still, one would expect the amount 

of code required to be small as compared with the rest of 

the implementation.  To facilitate this,  the primitives 
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utilize other components of the language wherever feasible. 

Por example, the primitives are defined as control 

subroutines (CSUBRs), and thus their arguments may be 

evaluated and bound in the same fashion as EL1 procedures. 

The mode definition facility is used to define the data 

types required by the primitives. PAP uses the 

sub-evaluator APPLY. PPETCH, PSTORE and DEPENV all utilize 

the name-stack search procedure. In addition, we note that 

some of the auxiliary procedures required by the control 

primitives can be implemented quite efficiently. Por 

example, MINLEV can be implemented in a single machine 

instruction if we assume reasonable values for NPALEV and 

NPROLEV. 

We can comment upon the amount of code required for the 

control primitives in the current ECL implementation of 

XPEL1 [Weg72]. Here, only GET\PATH, DELETE\PATH, PAP, CIA, 

MYPATH, RETPEOM, and GOTO have been implemented and 

constitute approximately A% of the system code. It is 

expected that a complete implementation of the primitives 

will require roughly 1000-1500 words of code. 

We turn now to the question of the effect of the 

ECL runs on a DEC PDP-10 computer under either the TOPS 
or TENEX monitors. The system includes an EL1 interpreter, 
garbage collector, mode—definition routines, and system 
support code. It does not, however, include a compiler. 
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multi-path facility upon the evaluation of a single path of 

control. An examination of the EL1 evaluator presented in 

section 4.2 reveals four places in which the facility places 

additional overheads upon the EL1 evaluator. We consider 

each of these in turn. 

Before it evaluates the body of a procedure, APPLY must 

determine if the body is to be evaluated in the environment 

of another path. This situation can arise as a result of a 

call to PAP. The overhead can be kept to a minimum by 

having PAP set a path-dependent flag. APPLY would only have 

to make additional checks if the flag is set. 

Return from procedure calls, blocks and FOR loops is 

made through the RETURN component of the FN\hLOCK, 

BLOCK\HLOCK and POR\BLOCK, respectively. This is required 

so that attempts to delete accessible environments may be 

trapped by simply modifying the RETURN component to be the 

label CHECK\£UPPORT. In the absence of path dependency, the 

RETURN component could be removed and the return effected 

implicitly by each sub-evaluator. However, the additional 

storage required by the inclusion of the RETURN component is 

negligible as compared with the total amount of stack 

storage required in the cases above. 

A CALL to ALLOW\INTERRUPT is made before the evaluation 

of each statement of a block, the body of a -FOR statement 

and the body of a procedure call. The calls are required to 
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determine if an interrupt has occurred. These particular 

points have been chosen for two reasons, Pirst, the value 

of EVRES (the last value computed) is expendable, and thus 

it does not have to be saved before evaluating a response 

form. Second, it is not possible to construct a FORM whose 

evaluation does not ultimately result in a call to 

ALLOW\INTERRUPT. Therefore, the evaluator will always 

respond to interrupts. The ability to interrupt a path, 

perform an arbitrary computation, and then allow the path to 

continue evaluation is desirable in an interactive 

implementation of the language. Hence, these checks would 

probably be included even in a single-path implementation. 

The control primitive GOTO must scan the control stack 

if the path is in the midst of an interrupt response or if 

it is a supporting path. In either case, a path—dependent 

flag (JFLG or SPATH) is set. If neither is set (the normal 

case,) then GOTO may perform the transfer of control without 

any additional checks. We note that a compiled local GOTO 

(i.e. within a block) would not even have to check the 

flags since the environment of the path cannot change. 

From the discussions above it should be clear that the 

inclusion of the multi-path facility in the language causes 

no significant change in the time and space requirements of 

a single path of control. 
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In considering the efficiency of the control primitives 

themselves, we will restrict ourselves to those primitives 

which are used most heavily in the examples of chapter 3, 

namely, PAP and CIA. Many of the others have either trivial 

implementations or simply involve the modification of 

tables. 

In the implementation of PAP, it is necessary to copy 

the arguments to the PAPed procedure from the stacks of one 

path to another. Although this may seem inefficient, we 

note that the arguments are usually pointers to objects in 

the heap, and thus they are inexpensive to copy. In any 

case, the overhead is not significantly greater than if the 

procedure took all of its arguments 13YVAL. If DPAP is used, 

large stack objects can be passed LYREF without a copy being 

made. Some copying can be avoided, and thus PAP made more 

efficient, if the two paths are tied together for the 

duration of the PAP, i.e. the arguments are pushed directly 

onto the name and value stacks of the path being PAPed into 

while the name stack of the original path is used to provide 

an environment. 

Turning to CIA, the primary issue is the amount of work 

necessary to switch contexts, i.e. how difficult is it for 

the evaluator to save the state of the current path and then 

install the state and commence the evaluation of another? 

Context switching is achieved by pushing the label of a 
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return statement onto the control stack, saving the three 

stack pointers and some path dependent flags in the path's 

ACTRC, loading the new path's stack pointers and flags and 

then passing control to the return statement specified by 

the label on the control stack of the new path. Since the 

'state' of a path is described by a small set of variables, 

context switching is relatively inexpensive. 

One other issue relating to the CI must be discussed. 

Since it acts as a single access resource with respect to 

CIA calls by paths, there exists the possibility that the CI 

may become a system bottleneck, i.e. processors will waste 

much of their time in busy waits upon the CI. The situation 

is similar, in essence, to the use of a global interlock to 

control access to the traffic controller in a 

multi-processor system, c.f. 1.2.3. In the latter case, it 

has been found that a single interlock strategy is superior 

to one in which many interlocks are used to permit 

simultaneous access to the controller [Ra68], 

Since MPEL1 will usually be implemented in the context 

of an operating system, busy waits can be replaced with 

non-busy waits, c.f. 5-2.3. However, the question remains 

as to how often an evaluator will find the CI busy. 

Madnick's [Ma6£] results show that for a small number of 

evaluators the probability that the CI is busy is roughly 

proportional to the number of evaluators and to the fraction 
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of time each spends executing in the CI environment. For 

example, if there are three evaluators and each spends (on 

the average) 5 percent of its time in the CI, then the 

probability that an evaluator will find the CI busy on any 

given CIA call is .15. Of course, the fraction of time 

spent in the CI depends heavily upon the program being run, 

i.e. on the complexity of the procedures which are CIA 

called and the number of times they are called in relation 

to non-CI evaluation. 

The use of separate stacks for each path requires 

justification. If the number of paths is small, then this 

is not unreasonable. In addition, it is possible to 

initialize the path with a small stack and allow for 

expansion as required, c.f. 5.2.1. However, if many 

control raths are defined, the amount of storage required 

can become quite large. There are two alternatives. The 

first is to completely abandon the stack, as in 

OREGANO [Be71]. The second is to have all paths use a 

single stack [Bo72]. In the former case, storage for the 

path's environment is allocated from the heap and managed 

using a retention strategy, i.e. by garbage collection or 

reference counts. This technique imposes substantial and 

unnecessary overheads upon single path evaluation, as the 

stack discipline is sufficient but must be replaced by the 

less efficient garbage collection mechanism. Thus, it is 

unacceptable. The latter solution is quite attractive and 
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will be discusssed further in section 5.4. 

Finally, we consider the facility's ability to 

synthesize multi-path control structures. The examples in 

chapter 3 demonstrate the range of the facility. In 

particular, most of the control structure found in the 

languages discussed in section 1.2.1 are included. Here, we 

will compare MPEL1 with Fisher's CDL [1170], c.f. 1.2.4. 

Fisher claims that as far as he has been able to 

determine, his primitives "constitute a basis for the 

mechanisms underlying control structures." If Fisher's 

primitives can be synthesized or are primitive already in 

MPEL1, then we can expect that MPEL1 also constitutes a 

reasonable basis. We shall see. The CDL primitives were 

described in section 1.2.4 and will not be defined again 

here. 

The primitives seq and cond are subsumed by the EL1 

block, i.e. 

seq(s1, ..., sn) = [)s1; s2; ...; sn(] 

and 

cond(p1,e1, ...pn, en) = [)p1 => e1; ... pn => en (] 

The primitive par can be defined as a variation on FORK, 

c.f. 3-3. synch is a variation on TSET, viz. 

synch(I,e1,e2) = 

EEC IK 
NOT TSET(I) => e1; 
e2* 
CLEAR(I) 

END 
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If several synch operations (with the same first argument) 

are evaluated simultaneously, then only one will evaluate 

e2, all others will evaluate e1. monitor and cont are 

described in section 3.5. Thus, all of fisher's primitives 

may be realized in MPEL1. 

Let us examine the MPEL1 definition of cont. To allow 

a path, say P, to evaluate relatively continuous to all 

others, it is necessary to interrupt all other active paths 

and then wait for them to queue themselves before allowing P 

to continue. A somewhat similar definition of cont is given 

by Thomas [Th71]. The amount of processing required to 

implement cont in both MPEL1 and PGL (Thomas' language) 

raises a question as to whether it should be defined as 

primitive or obtained by extension. Of course, a clear and 

precise formal definition of cont (which specifies an 

efficient realization) would make it an acceptable 

primitive. We will return to this topic in the next 

section. 

3.2 The formal Definition 

The formal specification of MPEL1 consists of a 

description of one of n identical evaluators. The evaluator 

is always processing some MPEL1 control path but not 
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necessarily the same path at all times, i.e. it may switch 

its attention from path to path. Because of this context 

switching, the evaluator must be reentrant with respect to 

the paths it evaluates. An examination of the procedures 

v/hich constitute the evaluator reveals that it is written 

essentially in EL1, i.e. it utilizes only a small number of 

the control primitives, namely, TSET, CLEAR, EVAL, and GOTO. 

The question arises as to why the control primitives and 

framework of MPEL1 are not included in the meta—language; if 

the primitives are to be used in the synthesis of multi-path 

control structures why are they not utilized in their own 

description? Let us consider such a model. In the following 

discussion, we will use CI', CIA' and PAP' to denote uses of 

these terms in the meta-language. 

The multi-path organization to be described is one in 

which exactly n interpreter paths are to be evaluated 

concurrently. For each MPEL1 path there will be an 

interpreter path (ipath) which evaluates it. Because the 

correspondence is one—to-one, an ipath may record a path's 

intra—path control in its own environment. In particular, 

one ipath is dedicated to the evaluation of the CI path. 

Only the ipaths are paths with respect to the CI". The 

ipaths use the CI' to insure that exactly n of them are 

evaluated concurrently and to synchronize the activation of 

the ipath corresponding to the CI (ipath/CI). for example, 
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if a path, say P, wishes to perform a CIA call, its 

interpreter (ipath/P) performs a CIA'. If ipath/CI is not 

currently running, then it is passed control in order to 

evaluate the CIA call. If ipath/CI is currently running, 

i.e. if it is either active or on the INACTTVEQ', then 

ipath/P is queued and an idling path run in its place. When 

ipath/CI completes its current CIA call, the idling path is 

stopped and the CIA call for P is executed by passing 

control to ipath/CI. To PAP a procedure call into the 

environment of P, an ipath modifies the environment of P and 

then uses PAP' to force ipath/P to call the procedure 

application routine. 

A number of defects with this model should be 

immediately obvious. .First, to describe the primitives CIA 

and PAP is necessary to utilize CIA' and PAP", respectively. 

Thus, there is a direct circularity in the definitions of 

these primitives. As these are two of the more unusual 

control primitives, the circularity is objectionable. Por 

example, with two different interpretations of the 

primitives in mind, one could consult the definition and 

find both confirmed. In addition, one cannot determine if 

the primitives have a reasonable implementation from their 

description in the model. Second, the model requires the 

use of the CI* in a rather sophisticated way, namely, to 

insure that exactly n ipaths are evaluated concurrently. In 

particular, a special scheduling algorithm is required. 
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However, this implies that CI extensions must be used in the 

definitions of the primitives. Since such extensions are 

usually more sophisticated than the primitives themselves, 

we are in the position of defining reasonably simple 

concepts in terms of more complex ones. 

Let us contrast this model with the one presented in 

chapter 4. Only four control primitives are used. Of 

these, two (TSET and CLEAR) can be implemented in a single 

machine instruction. EVAL is defined trivially as a CALL to 

EVAL\FORM. GOTO, however, requires some discussion as it is 

used in a number of ways. First, it is used to 'linearize' 

control within the evaluator, i.e. to insure that all CALLs 

to EVAL\FORM occur at the statement level of the block so 

that no information about the path is retained implicitly in 

the logic of the evaluator. Second, it is used to return 

control to statements whose labels have been pushed onto the 

control stack. Here, control is always returned to a 

statement in the outermost block of the procedure EVALUATOR. 

Finally, it is used in its own definition to transfer 

control to EVELK1 after explicitly flushing the path's 

stacks and installing the appropriate statement to be 

evaluated in the BLOCK\BLOCK. Although the definition is 

circular, note that the general GOTO is defined in terms of 

explicit modifications to be made to the path's environment 

and then a local jump to another statement in the same 

block. Hence, the direct circularity actually lies in the 
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local GOTO. As local jumps are a fundamental notion and 

have a straightforward implementation, the direct 

circularity is acceptable. 

In the MPEL1 model, CIA and PAP are both described in 

terms of the four primitives discussed above and in terms of 

modifications to the stacks which constitute the path's 

environment. Thus, there can be no misinterpretation of 

their semantics or question of the feasibility of their 

implementation. 

To emphasize that we have not been merely raising a 

strawman, let us consider one of the formal definitions of 

Fisher's primitives, which were discussed in section 1.2.4. 

Here, we are concerned with the second of the three which 

is a recursive evaluator similar in spirit to the original 

ELI definition or a LISP definition of LISP. The control 

structure of the path is implicit in the environment of the 

evaluator. Thus, the MPEL1 evaluator outlined above might 

have taken a similar form. The primitives cont, synch and 

monitor are defined by direct circularity. For example, to 

evaluate the form y, where 

y <- (CONT x) 

the evaluator essentially executes 

cont ( eval(Y.CDR.CAR) ) 

* 

The first is an English language description and the 
third is only valid in a single processor environment. 
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Thus, any number of different semantics could be associated 

with cont and all would be equally valid. In addition, we 

cannot determine if cont has a feasible implementation, or 

if it is implementable. To illustrate, using direct 

circularity we could define the primitive TMHAIT(M,T) which 

returns TRUE if and only if Turing machine M halts when 

given tape T. TMHAXT would be an extremely powerful 

primitive, but unfortunately it cannot be implemented. 

In the formal definition of MPEL1, all of the data 

structures which constitute a path's environment are 

represented explicitly. The control primitives are defined 

as operations on these structures. This implies that the 

model is implementation dependent, i.e. the primitives are 

described in terms of a preferred implementation. Of 

course, a precise implementation independent model would be 

equally as valid. However, as we have seen above, there is 

often a question as to the feasibility of control 

primitives. Thus, it is especially important for control 

that the model be as realistic as possible. To facilitate 

this, only those control primitives which are intuitively 

acceptable should be used in the model - the remaining ones 

must be explicated therein. 

The implementation oriented nature of the model offers 

additional benefits as well. Pirst, it allows the language 

designer to judge the efficiency of a primitive from its 
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treatment in the model. This was especially helpful in 

determining the effects of the primitives upon the 

evaluation of a single path, as discussed in the previous 

section. Second, a machine language interpreter for MPEL1 

can be coded directly from the model, without mentally 

'de-recursing' the evaluator. 

This last point requires additional comment. Since the 

intra-path control is represented explicitly, the EL1 

evaluator cannot be represented as a set of procedures which 

call each other recursively as in [Weg70]. At first glance, 

it would seem that the bookkeeping required to maintain the 

necessary information on the control stack would make the 

nodel inelegant and unreadable. Here, however, the data 

definition facility of EL1 proved to be invaluable. In 

particular, the use of control modes, c.f 4.1.2, allows the 

necessary items to be gathered into one structure which is 

then pushed onto the stack. The components of the object 

may then be referenced by symbolic field names. This allows 

a sub-evaluator to be written almost as if the field names 

were the arguments to the sub-evaluator called as a 

procedure. 

The mode STACK was introduced in section 4.1.3 

primarily to allow EL1 to be used as the meta-language of 

the model. It is intended that ordinary LIK) stacks will be 

used in an actual implementation of MPEL1. Thus, we must 
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determine whether the stack operations are actually 

implementable. PUSH presents no problem as it simply pushes 

an object onto the top of the stack. HEAP is trivial to 

implement if the address space is divided into segments, 

some of which are used for heap and the remainder used for 

stacks. If a table of the segment assignments is 

maintained, then HEAP reduces to a simple address 

calculation. In the model, we use integers to index objects 

on the stack. In an implementation, these will be replaced 

by actual stack pointers. In this light, PLUSH simply 

resets the stack pointer and INSTACK determines if the 

pointer in question lies between the two stack pointers. 

The only question remaining is whether or not it is 

reasonable to index the stack as if it were a ROW. An 

inspection of the model will show that only the 

control-stack is so indexed. In particular, it is 

referenced in only two ways. First, one of the topmost K 

objects is referenced, where the modes of the top K objects 

are known. Second, the stack is searched, starting from the 

current value of CP. In the former case, since the objects 

This is still possible even if the stack is allocated 
in segments, since INSTACK is also given a reference to the 
stack itself. 

** 

The name-stack is also indexed, but it is defined as a 
ROW in the model. The value-stack is indexed only in COPY, 
where the entire stack is copied, c.f. 5.2.1. 
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are of fixed size, an appropriate offset can be determined. 

The latter case is also reasonable since objects pushed onto 

the control stack are described by a finite set of modes, 

i.e. they are either SYRBOLs or some control mode. Various 

encodings can be used to distinguish the objects. For 

example, the mode and size of the object could also be saved 

on the stack. More efficient encodings are certainly 

possible. 

We conclude this section with a discussion of the 

treatment of interrupts in the model. To send an interrupt 

to an evaluator, a flag associated with the evaluator is 

set. The evaluator checks this flag at certain points via 

CAIis to AIXOW\INTERRUPT, c.f. 5.3-1. Of course, in an 

implementation the interrupts do not actually occur at these 

nice (or clean) points. Typically, an interrupt can occur 

after any memory reference. Since our model uses a 

high-level programming language, such interruption is below 

our level of discourse. 

When a real interrupt occurs in an implementation of 

MPEL1, two different actions may be taken. First, the 

response to the interrupt may be delayed until the evaluator 

is willing to accept the interrupt. Alternatively, the 

interrupt response can be initiated at the time  the 

Note that hardware usually accepts interrupts only at 
clean points as well, although at a much finer level. 
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interrupt occurs. There are problems with the latter case 

(especially if the response form is written in MPEL1.) 

First, the evaluator nay be in the midst of switching 

contexts (paths.) Thus, there is no environment to evaluate 

in. Second, even if there is an environment, the stacks may 

not be in reasonable enough shape to allow the evaluation of 

an arbitrary form. In particular, if the response form 

invokes a garbage collection, then heap objects referenced 

only by the machine registers could be lost. Some of these 

problems can be alleviated by specifying that portions of 

the system code are not interruptible, i.e. that the 

interrupt must wait till the next clean point. In general, 

we would expect that hard interrupts of this sort would 

perform the minimal necessary operations and then generate a 

lower priority processor level interrupt to continue the 

processing at the next convenient point, namely, at the next 

call to ALLOW\INTERRUPT. 
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4. CONCLUSIONS ME SUGGESTIONS FOR FUTURE RESEARCH 

This dissertation has investigated the problem of 

introducing multi-path control structures into programming 

languages. The approach taken has been to define a set of 

control primitives and a language framework from which 

various multi-path organizations can be realized by 

extension. The primitives are cast in a multiple processor 

environment to avoid any bias towards the single processor 

case. 

Our basic assumption has been that there are n physical 

processors and k paths of control. We have shown that 

various multi-path organizations and operations can be 

described simply as specifications of the way in which the 

processors are to be assigned to paths. The control 

interpreter path allows the user control over this 

assignment, and thus gives him the ability to synthesize 

multi-path control structures. Two properties of the CI 

facilitate this. First, all control transfers between paths 

must be via the CI. Thus, it can keep track of the 

processor-path assignments. Second, only one path may pass 

control to the CI at a time. When a path transfers control 

to the CI, using CIA, it specifies a procedure to be 

evaluated in the CI environment. The evaluation of this 

procedure is indivisible with respect to other CIA calls of 

the same procedure (or others.) Thus, such procedures are 
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given an environment and a mode of operation in which they 

can examine and modify the processor-path assignments. In 

addition, since only the existence of the CI is assumed by 

the primitives, it is possible to redefine or extend the 

control interpreter in MPEL1. 

In addition to providing a precise specification of the 

semantics of the control primitives, the formal definition 

of MPEL1 has yielded a number of other benefits. First, we 

were able to determine that the control primitives are 

pragmatically valid since the primitives of the model can be 

realized on contemporary hardware. Second, because the 

model is implementation-oriented we were able to use it to 

assess the effect of the multi-path facility upon single 

path evaluation. Finally, it demonstrates the values of 

including the intra-path control as an explicit structure in 

the meta-language. 

Although we believe that MPEL1 constitutes a reasonable 

basis for a multi-path facility, a number of additions and 

generalizations can be made. Some of these are outlined 

below. 

Recently, Bobrow and Wegbreit (B-W) [J3o72] have 

developed a technique which allows multiple paths of control 

to be implemented on a single stack. If only a single 

control path is used, then it runs as efficiently as it 

would if it was assigned its own separate stack.  Although 
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the use of separate stacks, as in MPEL1, is more reasonable 

than a heap-garbage collection scheme, a single stack is 

even more attractive. In particular, it avoids a number of 

the overheads associated with stack expansion, as discussed 

in section 5.2.1. Thus, it would be desirable to 

incorporate the B-W technique into the multi-path facility. 

It is interesting to note that the description of the 

B-W technique uses a model similar to the formal model of 

MPEL1, in that the paths' call structures are represented 

explicitly. Although L-W give an English language 

description, a formal specification of a programming 

language which utilizes their technique would thus take the 

form of the MPEL1 definition. 

MPEL1 assumes that the n processors can all readily 

access a common address space. This usually implies that 

the processors are in close proximity to one another. The 

construction of the ARPA network [Ro70] allows one to 

consider distributed computations in which paths of control 

are evaluated by processors on different nodes of the net. 

This raises a number of questions. .For example, how can 

data structures be shared effectively across many nodes? How 

does one represent pointers to objects on other nodes? In 

particular, how can garbage collection be effected in the 

distributed environment? For our purposes, we are primarily 

concerned with the modifications which must be made to the 
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CI and the control primitives. Should there be a CI for 

each node or one master CI that resides on a single node? 

Although the latter case is a straightforward extension of 

the current CI, transfers of control between paths on a node 

which does not contain the CI become rather slow. The 

former solution avoids this problem, but the absolute 

indivisibility of CI execution (with respect to paths on all 

nodes) is lost. The primitives that access environments of 

other paths (e.g PIETCH, DEPENV) may have to utilize the CI 

in order to allow the processor to be reassigned while the 

information is being transmitted from a path on another 

node. 

Except for the addition of a few intra-path control 

primitives, single path KPEL1 is essentially ELI. We have 

left this constant in order to focus on inter-path issues. 

However, we believe that work remains to be done in the area 

of intra-path control structures. Here, we refer to the 

possibility of providing extension mechanisms which allow 

for the compilation of control and environments. Most 

languages do not allow for variation in the environmental 

structures to be used in the evaluation of a program. Why 

is this so? We believe that there are two reasons, first, 

the most fundamental semantics of the language, e.g. the 

scope rule, recursion, etc. restrict the class of 

structures which may be used. Second, a compiler must know 

what the environmental structures are in order to generate 
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code.  Allowing variation in  these  structures  makes 

compilation difficult, if not impossible. 

However, control over environmental structures can be 

useful. For example, if a set of EL1 procedures reference 

the same top-level variables and do not utilize recursion, 

then their evaluation would best be effected using a 

PORTRAN-like environmental structure in which storage for 

locals and globals is only allocated once. 

The problem can be approached in two ways, first, the 

compiler can be made 'smart' in crder to deduce the 

appropriate environmental structures. This requires 

techniques from the field of program automation [Ch71]. 

Alternatively, a set of environmental primitives can be 

included in the language. Using these, the programmer may 

synthesize the environmental structures desired. The 

compiler can then be appropriately parameterized to utilize 

information provided by these primitives. 



Appendix 1 

INTRODUCTION TO EL1 

The purpose of this appendix is to provide a brief 

introduction to EL1 for those readers who are unfamiliar 

with the language. It does not attempt to give a complete 

description of EL1. We direct the reader who desires a more 

precise description to either [Weg70], [Weg72], or Chapter 

4. 

At a superficial level, EL1 appears to be a 

conventional programming language in the spirit of ALGOL 60. 

It includes variables, arrays, assignments, procedure calls, 

prefix and infix operators, block structure, labelled 

statements and gotos. .For example, all of the following are 

legal in EL1. 

Q <- SQRT(A)/(R[3]-Y) 

L: BEGIN 
X <- PLM(A,B) - Z; 
FI(X,R[I]) 

END; 

L <- C OR D; 

These examples, however, are a bit misleading in that 

they are special cases of more general syntactic forms. To 

illustrate, assignment is treated as a right-associative 

binary operator whose value is its left hand operand. 
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Blocks have values — the value of the last statement 

evalutated. 

The most basic unit in EL1 is the form. Examples of 

forms are: 

(1) constants such as 3 and FALSE, 

(2) variables such as Y and KAME\IKDEX, 

(3) expressions composed of infix and prefix operators 

such as A+B, NOT D OR E[2], 

(4) selections of compound objects such as PAVECT[I] 

and P.CIA\RE£U1T, 

(5) procedure   calls    like    SUSPEND(P)    and 

ENTERL(PAVECT[PROCNUM],INACTIVEQ). 

More complex forms may be constructed by combining forms 

according to the syntax rules of the language. In general, 

a form is a syntactically complete unit which may be 

evaluated to yield a value. An EL1 program is a form which 

is not contained as part of a larger form. 

A block is a form which is composed of a sequence of 

statements. Each statement of a block is either a form or 

one of two types of conditionals, viz. 

f -> g; 

f => g; 

In the former case, the interpretation is that if f is TRUE, 

then g is evaluated and execution continues with the next 

statement in the block. In the latter case, if f is TRUE 
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then g is evaluated and the block is exited with the value 

of g taken as the value of the block. For example, if V is 

a vector of N integers, the folowing block computes the sum 

of the positive elements. 

BEGIN 
I <- 1; 

i: vrii > o -> s <- s + vril; 
I = h  => S; 
I <- 1+1; 
GOTO L 

END; 

Variables are ether top-level variables, formal 

parameters to a ROUTINE, or declared variables local to a 

block. In all cases, a variable must be declared to be of 

some specific data type and it may only contain values of 

that type throughout its lifetime. If a variable is used in 

a block but is not defined therein, then it is said to be 

free. E11 uses a dynamic scope rule for the identification 

of free variables, i.e. the value of a free variable is the 

value of the most recently created variable with that name 

in the dynamic call structure of the program. 

EL1 contains a number of built-in data types, called 

modes, and a number of mode constructing operators which 

allow for the creation of new data types, as required. The 

built-in modes include BOOL (Boolean), CHAR (character), INT 

(fixed-point integer), SYMBOL (non-numeric atom as in LISP 

[We67]), MODE (the data type of data types), REF (pointers 

to objects of  any  mode),  EORM  (similar  to  LISP 
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S-expressions), and ROUTINE (user-defined or built-in 

procedure). There are four mode constructing operators. 

Each one yields a MODE value which may be assigned to a 

variable of mode MODE. The operators are best explained by 

example. 

The operator ROW constructs modes for arrays of 

homogeneous objects, for example, the statements 

13 <- R0W(3,INT); 

BOOLR <- ROW(BOOL); 

assign to 13 and BOOLR the modes 'array of three integers' 

and  'array of any number of Booleans', respectively. 

Variables may be declared using these modes as follows. 

DECL V:I3; 

DECL B:BOOLR BYREE CONST(BOOLR SIZE 4); 

V is a ROW of three integers. The length of the ROW is 

fixed by the definition of 13. B is a ROW of four BOOLs. 

Here, the length of the ROW is resolved at the time B is 

created by specifying an initial value, and hence a length, 

for the variable. The operator CONST will be discussed in 

more detail below. 

The operator STRUCT constructs modes for compound 

objects whose components do not necessarily have the same 

mode. Eor example, the statement 

ENV\BLOCK<-STRUCT(OLD\NP:INT,OLD\VP:INT,RETURN:SYMBOL); 

assigns to ENV\BLOCK the data type for a structured object. 
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An object of mode ENV\ELOCK consists of three components: 

(!) an INT named OLD\NP, 

(2) an INT named OLD\VP, 

(3) a SYMBOL named RETURN. 

The operator PTR constructs modes for objects which may 

point to other objects. The arguments to PTR specify the 

modes of the objects to which an object of the new mode may 

point. E.g, 

I\OR\B\PTR <- PTR(INT, BOOL); 

An object of mode I\OR\B\PTR may point to either an integer 

or a Boolean. The operator ALLOC is used to create objects 

of mode class PTR.  ALLOC is discussed later in this 

section. 

The operator ONEOP constructs modes which represent one 

of a set of modes. Por example, the statement 

I\OR\B <- ONE0P(INT,BOOL); 

assigns to I\OR\B the mode 'one of the modes INT or BOOL'. 

It is not possible to construct an object of mode I\OR\B, 

i.e. at the time a variable of mode I\OR\B is created,  it 

must be type resolved to either an INT or a BOOL. E.g., 

DECL X:I\OR\B BYREF CONST(INT); 
DECL Y:I\OR\B BYREP CONST(BOOL); 

X is of mode integer and Y is a Boolean. ONEOI may be used 

to specify that an argument to a procedure may be an object 

of one of a set of modes, c.f. 2.3-1.  The built-in mode 

ANY may be described as ONEOP('any mode'). 
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It should be noted that the arguments to the mode 

operators may themselves be calls upon the operators. For 

example, if N and M are integers, then a mode for N by M 

integer matrices can be constructed as follows. 

ROW(N,(ROW(M,INT)); 

The i th element (for i between 1 and N) of an object of 

this mode is an M element ROW of integers. 

The components of ROWs and STRUCTs may be selected. 

The components of ROWs may only be selected by integer 

indices. If V is an 13, then 

V[1+1] 

selects the second integer of the ROW.  The components of 

STRUCTs,  however, may be selected either by integer indices 

or by their symbolic field names.  If E is an ENV\ELOCK, 

then all of the following select the RETURN component. 

E. RETURN 
E[ "RETURN"] 
E[3] 

Objects of mode class PTR may also be selected in the sense 

that the pointer is followed until a ROW or STRUCT is found 

and then the selection is performed on the compound object. 

For example, if P is a PTR(ENV\BLOCK) then 

P.RETURN 

selects the return component of the ENV\BLOCK. 

A pointer may be followed explicitly by using the 

operator VAL.  The value of VAL is the object referenced by 
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the pointer. If Q is an PTR(INT), then 

VAL(Q) <- 3; 

assigns 3 to the integer referenced by Q. 

Variables are distinct from objects in EL1. Each 

variable names some object. However, an object may be named 

by more than one variable. In addition, several variables 

may name different components of a single object. In £L1, 

an object may lie either on a block structured stack or in a 

free storage region called the heap. In the former case, 

the lifetime of the object is the same as that of the block 

in which it was created. In the latter case, the object 

exists as long as it can be referenced. 

An object is created either implicitly as the result of 

a  declaration or explicitly via calls to the object 

generators CONST and ALLOC.  In either case, the mode of the 

object is fixed at the time of creation and the object 

retains the mode thoughout its existence. For  example, the 

three statements 

DEC! P:ENV\£LOCK; 
DECL Q:ENV\J3L0CK BYREF 

CONST(ENV\BLOCK OF  1,2, "DELPTH"); 
DECL T:I\OR\E\PTR; 

generate three stack objects.  P is initialized as an 

ENv\BLOCK with default values for its components. Q is 

initialized as an ENV\ELOCK with the components 1, 2 and 

"DELPTH",  respectively.   T is initialized as a null 

I\OR\B\PTR. 
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If a stack object is returned as the value of the block 

or procedure application in which it was created, then it 

becomes a pure—value in the sense that assignments to it are 

harmless, but useless, for example, consider the following 

BEGIN 
DECL X:INT; 
[) DECL Y:INT; P=> Y ; X (] <- 4; 
Xn~ 1+2 

END; 

If P is FALSE, then the value of the inner block is X, which 

is then assigned the value 4. If, however, P is TRUE, then 

the value of the block is Y, which is converted to a 

pure-value. Assigning 4 to the pure—value has no effect 

upon the future evaluation of the program. 

The generator ALLOC is similar to CONST, except that 

the object generated is allocated in the heap. ALLOC 

returns a pointer to the object generated. Por example, 

DECL P:I\OR\E\PTR; 

P <- ALL0C(INT LIKE 1); 

The I\OR\L\PTR P is constructed on the stack and is 

initialized to NIL. An integer is allocated in the heap and 

P is assigned a pointer to the integer. The value of the 

integer may be accessed using the operator VAL, which has 

been described earlier. 

In EL1, ROUTINES subsume the notions of procedures and 
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operators.  A variable of mode ROUTINE may be assigned a 

procedure value, viz. 

FIB <-  EXPR(X:INT; INT) 
BEGIN 

X = 0 => 1; 
X = 1 => 1; 
FIB(X-1) + FIB(X-2) 

END; 

The ROUTINE Fib  computes the N th element in the Fibonacci 

series,  PIB takes a single formal parameter named X. The 

mode of X is INT. The bind class of X is defaulted to be 

BYREF (by reference,) i.e. an assignment to X would change 
* 

the value of the argument. The result type of the procedure 

is INT, i.e. the mode of the object returned by the 

procedure is INT. 

A call to a ROUTINE may be written as a function name 

followed by an argument list: 

FIB(ENV\BLOCK.OLD\NP) 

A ROUTINE valued variable can also be declared to be a 

NOFIX, PREFIX or INFIX operator as it takes zero, one or two 

arguments, respectively. In the first two cases, the 

routines may be called without enclosing their arguments in 

parentheses. In the last case, the arguments appear to 

Other bind classes in EL1 are BYVAL, UNEVAL, and 
LISTED. If BYVAL is used, then the formal is bound to a 
copy of the actual parameter. UNEVAL and LISTED may only be 
used if the mode of the formal is FORM. With UNEVAL, the 
formal parameter is bound to the unevaluated list structure 
for the actual. With LISTED, the formal is bound the 
remaining argument list. 
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either side of the operator. For example, 

POUR <- EXPR(; INT) 4; 
FUM <- EXPR(X:INT, Y:INT; INT) (X+Y+2); 
PREFIX(FIB); 
NOFIX(FOUR); 
INFIX(FUM); 

FIB POUR ; NT Same as FIE(POUR()); 
1 FUM 2  ; NT Same as FUM(1,2); 

Top level variables may be assigned values without 

explicit declaration. The first assignment to the variable 

determines its mode. For example 

X <- 1 + 1; 

declares X to be of mode INT and binds it to the integer 2. 

Subsequent to the assignment, X may only be assigned integer 

values. The mode of X can only be changed by calling the 

built-in routine FLUSH. E.g. FLUSH(X) disassociates X from 

its mode and value. X may then be assignd a new value (and 

mode), e.g. 

X <- TRUE; 
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SYNTAX OF  EL1 

The concrete syntax of EL1 is specified by a ENF 

grammar. Non-terminals of the grammar are sequences of 

characters enclosed in the brackets <>. All other symbols, 

except for '::=' and 'I', are terminals of the grammar. The 

rules of the grammar are of the form 

<NT> : := A 

where A denotes a string of terminals and non-terminals. 

For compactness, the rules 

<NT> ::= A1 

<NT> ::= An 

are abbreviated as follows. 

<NT> ::= A2 i A2 !  ...  |An 

The abstract syntax representation of an EL1 program is 

a list structure. The correspondence between the concrete 

and abstract representations of EL1 is specified by augments 

to the BNP grammar. In each of the rules below, the augment 

is separated from the right hand side of the production by 

the symbol 'C. An augment specifies the actions to be 

taken when the corresponding reduction is made during the 
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parse.  There are four different formats for augments. 

Their interpretations are best explained by example. 

The augmented rule 

<form9> ::= <selection> @  <selection> 

specifies that in reducing a <selection> to a <form9>, the 

list structure associated with the <selection> is to be 

associated with the <fcrm9> directly. 

The augmented rule 

<selection> ::= <form3> . <id> @ (SELQ! <form3> <id> ) 

specifies that the list structure to be associated with the 

<selection> is obtained by constructing a three element 

list. The first element is the SYMBOL SELQ!. The second 

and third elements are the list structures associated with 

the <form3> and the <id>, respectively. 

The augmented rule 

<str-form>::=STRUCT(<structlist>) © STRUCT & <structlist> 

specifies that the list structure to be associated with the 

<str-form> is obtained by CONSing the SYMBOL STRUCT onto the 

head of the list associated with the <structlist>. & is a 

right-associative infix operator equivalent to CONS. 

The augmented rule 

<fmstr> ::= <fmstr> , <form> @ <fmstr> <-& <form> 

specifies that the list structure to be associated with the 

<fmstr> is obtained by placing the <form> at the end of the 
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list specified by <fmstr>. For example, if the <form> is 4 

and the <fmstr> is (1 2 3), then the resulting <fmstr> is 

the list (12 3 4). 

In an augment, the expression <NT>[i] specifies the 

i th element of the list associated with <NT> and the 

expression <NT-i> specifies the i th occurrence of the 

non-terminal <NT> in the corresponding production. 

The non-terminals <id>, <constant>, <prefixop>, and 

<infixop> denote the (not necessarily disjoint) sets of 

identifiers, constants, prefix operators and infix 

operators, respectively. 

The grammar follows. 

<program> 

<form> 

<form9> 

<blockbody> 

<declstr> 

:= <form> 

:= <iteration> 
! <fn-call> 
! <exprnt> 

<constant> 
<id> 
BEGIN <blockbody> EWD 
<mform> 
<selection> 
<generation> 
( <form> ) 

<declstr> ; <stat> 
! <stat> 
! <blockbody> ; <stat> 

<declnt> 
! <declstr> ; <declnt> 

@  <form> 

@ <iteration> 
G  <fn-call> 
@ <exprnt> 

@ <constant> 
@  <id> 
@ BLOCK! & <blockbody> 
@  <mform> 
<§> <selection> 
@ <generation> 
@ <form> 

Q  <declstr> <-&  <stat> 
G  ( <stat> ) 
@  <blockbody> <-& <stat> 

@  ( <declnt> ) 
6 <declstr> <-& <declnt> 
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<declnt> 

<idstr> 

<initd> 

<stat> 

<iteration> 

<fmit> 

<fmit1> 

<test> 

<mform> 

<mform2> 

<str-form> 

<structlist> 

<bind-class> ::= 

DECL <idstr> : <form> 
! DECL <idstr> : <form> 
<initd> 

<id> 
! <idstr> , <id> 

BYVA1 <form> 
IBYREF <form> 

<form> 
! <form> -> <form> 
! <form> => <form> 

@ 

@ 
@ 

Q 
@ 

<4 

! <id> : <stat> 6 

FOR <id> <- <fmit> DO <form> 

<fmit1> 
! <fmit1> <test> 

:= <form> <form> 
! <form> , 

<form> 
<form> 

(DECL! <idstr> <form> ) 
DECL! & <idstr> & <form> 
& <initd> 

( <id> ) 
<idstr> <-&  <id> 

BYVAL <form> ) 
( BYREF <form> ) 

<form> 
( II! <forro-1> <form-2>) 
( CLAUSE!<form-1> 
<form-2> ) 

( LABST! <id> <stat> ) 

@ ( EOR! <id> <fmit>[1] 
<fmit>[2] <fmit>[3] 
<fmit>[4]<form> ) 

<f>mit1> <-& NIL 
<fmit1> <-& <test> 

( <form-1> NIL <form-2>) 
( <form-1> <form-2> 
<forra-3> ) 

:= WHILE <i'orm> 
', TILL <form> 

:= <mform2> 

@ 

! <id> <mform2> 

ROW ( <form> ) 
ROW 
PTE 
ONEOE ( <fmstr> ) 
<str-form> 

© 

© 

WHILE . <form> ) 
TILL . <form> ) 

( <mform2>[1] NIL 
<mform2>[2~ 
<mform2>[n' 

( <mforw2>r 
<raform2>[2]:.. 
<mform2>[n] ) 

) 
] <id> 

( <form> , <form> ) Q 
( <fmstr> ) 

( 

@ 

ROW NIL <form> ) 
ROW <form-1> <fornw2>) 

PTR & <fmstr> 
ONEOE & <fmstr> 
<str-form> 

:= STRUCT ( <structlist> )   @  STRUCT & <structlist> 

<id> : <form> 
j <structlist> , 

<id> : <form> 

BYREF 
BYVAL 
LISTED 
UNEVAL 

@ ( ( <id> . <form> ) ) 
@ <structlist> 

<-& ( <id> . <form> ) 

@ BYREE 
@  BYVAL 
© LISTED 
@  UNEVAL 
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<selection> 

<init> 

<fmstr> 

<fn-call> 

<form2> 

<form3> 

<exprnt> 

<exprl> 

<generation> 

<regionspec> 

<forni3> • <id> 
i <form3> [ <form> ] 

LIKE <iorm> 
| SIZE <fmstr> 
! OF  <fmstr> 

<form> 
1 <fmstr> , <forni> 

<forni2> <infixop> <form> 

! <form2> 

<prei'ixop> <form2> 
! <form3> 

<forn3> ( ) 
1 <form3> ( <fmstr> ) 
! <form9> 

EXPR ( <exprl> ; <form> ) 
<formb> 

i EXPR ( ; <form> ) 
<form9> 

<id>   :  <lorir.> 
<id>   :   <i"orm> 
<bind—class> 
<exprl>   ,   <id> 

<exprl>  ,  <id> 
<Lind-class> 

<iorm> 

<i'orra> 

<re^ionGpec>  (   <forin> 
<init>  ) 

I   <rep;iorispec>  (   <forin>   ) 

ALLOC 
!   COIiSI 

Q {  SELQ!   <form3> <id>  ) 
© (  SEL!   <forni3> <form>   ) 

& (  LIKE <form>   ) 
@ SIZE & <fmstr> 
@ OF & <fmstr> 

© ( <form> ) 
@  <fmstr> <-& <form> 

@ ( <infixop> <form2> 
<form> ) 

@ <Iorm2> 

@ ( <prefixop> <form2> ) 
@ <i'orm3> 

<3 (  <i'orm3>  ) 
@ <forra3> & <fmstr> 
© <form9> 

@  ( EXPR! <exprl> <form> 
<form9> ) 

@ ( EXPR! NIL <form> 
<fcrm9> ) 

d (( <id> <form> EYREE )) 
@ (( <id> <form> 

<bind—class> )) 
@ <exprl> <-&  ( <id> 

<form> EYREF> ) 
0 <exprl> <-& ( <id> 

<form> <bind—class> )) 

@ <re£ionspec> & <form> 
&  <init> 

@  ( <regionspec> <form> ) 

@  ALLOC 
@  CONST 
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CI PROCEDURES AND INTERRUPT RESPONSE PORiMS 

Modes 

ARQPTR <- STRUCT(FIRST:ARPTR, LAST:ARPTR); 

LIST <- PTR(DTPR); 

LISTROW <- ROW(NPROC, LIST); 

PROW <- 
ROW(NTROC, STRUCT(CURPATH:ARITR, IDLEPATH:ARPTR)); 

NT NPROC is defined by INSTALL\GLODAL\ENV 
to be equal to the number of processors; 

Procedures 

NT Ii\lIT\CI initializes the CI.  Its arguments 
specify the idle paths for the processors and 
the form to be evaluated; 

INIT\CI <- 
E,;PR (IDLEVECT:ROW (NPROC, ARPTR ), PROG: i ORM;NONE) 
EEC IN 

DECL LASIRUN:ARPTR; 
DECL INACTIVEQ:ARQPTR; 
DECL NPROC:INT EYREF NPROC; 
DECL PROCNUM:INT EYVAL 1; 
DECL USER\SCHEDULER:ROUTINE 

BYVAL INITIAL\SCHEDULER; 
DECL PAVECT:PROW; 
DECL RUNSET\ELAC:EOOL; 
DECL PIVECT:LISTROW; 

NT Initialize the PAVECT; 

FOR I <- 1, ..., ftPROC DO 
PAVECT[I].IDLEPATH <- IDLEVECT[I]; 

NT Create a path in which to evaluate PROG; 

LASTRUN <- GET\PATH(1); 
PAPQ(£ VAL(PROG),LASTRUN); 
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NT Commence scheduling; 

C\I() 

END; 

C\I <- EXPR(; NONE) 
BEGIN 
DECL LASTRUN:ARPTR BYREF LASTRUN; 
DECL INACTIVEQ:ARQPTR BYREF INAC1IVEQ; 
DECL NPROC:INT BYREF NPROC; 
DECL NEPROC:INT BYREF NEPROC; 
DECL PROCNUM:INT BYREF PROCNUM; 
DECL USER\SCHEDULER:ROUTINE BYREF USER\SCHEDULER; 
DECL PAVFCT:PROW BYREF PAVECT; 
DECL RUN£ET\FLAG:BOOL BYREF RUNSET\FLAG; 
DECL PIVECT:LISTEOW BYREF PIVECT; 

NT When C\I is initially called, LASTRUN specifies the 
path to which control is to be transferred and 
PROCNUM specifies the current processor; 

CONTINUF\PATH: 
PAVECT[PP.OCNUM].CURPATH <- LASTRUN; 
LASTRUN.FRO <- PROCNUM; 

NT Transfer control to the path; 

LASTRUN <- CONTPATH(LASTRUN); 

NT CONTPATH returns the ARPTR of the path performing 
the CIA call; 

PROCNUM <- LASTRUN.PRO; 
RUNSET\FLAC <- FALSE; 

NT Apply the CIA-called procedure; 

BEGIN 
MD ( VAI. ( LASTRUN . CIA\FN ) ) =ATOM => 

EVAL(LASTRUN.CIA\FN)(LASTRUN.CIA\ARG); 
LASTRUN.CIA\FN(LASTRUN.CIA\ARG) 

END; 

NT If LASTRUN is NIL, then a nev path must 
be scheduled; 

LASTRUN=NIL -> GOTO NEWPATH; 

NT If RUKSET\FLAG is FALSE, then simply 
pass control to LASTRUN; 
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NOT RUNSET\FLAG -> GOTO CONTINUE\PATH; 

NT Otherwise, interrupt an idling- processor so 
that it may be assigned to a path; 

SIGNAL\IDLE\PROCESSOR(); 

GOTO CONTINUE\PATH; 

NT Call the user's scheduler to obtain a path 
to be assigned to the processor; 

NEWPATH: 
BEGIN 

DECL B:BOOL; 
B <- PAVECT[PROCNUM].IDLEPATH = 

PAVECT[PROCNUM].CURPATH; 

NT B is TRUE if and only if the current 
processor has been idle; 

LASTRUN <- (JSER\SCHEDUL£R(); 

NT LASTRUN is NIP if there exist no paths 
to be run, otherwise it specifies the path to 
be assigned to the processor; 

LASTRUN H  NIL => 
BEGIN 

B -> NPPR0C<-NPPR0C-1; 
NT One less idle processor; 
SIGNAL\IDLE\PROCESSOR() 
NT Signal another idle processor; 

END; 

NT Since there exists no path to run and 
the processor was idle (B=TRUE), let it 
continue to idle; 

B => LASTRUN <- PAVECT[PROCNUM].IDLEPATH; 

NT Otherwise, the processor was not idle 
before the CIA call. Since there 
are no paths to run, let it idle; 

LASTRUN <- PAVECT[PROCNUM].IDLEPATH; 
NFPROC <- NPPROC+1 

END; 

GOTO CONTINUE\PATH 
END; 
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SIGNAL\IDLE\PROCESSOR <- EXPR(;NONE) 
BEGIN 

DECL EPROC:INT; 

NT If there exists an idle processor, 
then it is interrupted. Otherwise, 
no action is taken; 

NEPROC=0 => NOTHING; 
FOR K-1, ..., NPROC TILL EPROC GT 0 DO 

BEGIN 
I=PROCNUM => NOTHING; 
NT Don't consider the current processor; 
PAVECTril.CURPATH = PAVECT[I].IDLEPATH => 

JPROC<-I 
END; 

NT Put a form on PIVECT[EPROC] which will cause the 
processor EPROC to call the USER\SCHEDUL£R when 
EPROC passes control to the CI due to the 
"PROXPRO" interrupt sent by STOP\PATH; 

PIVECTrEPROCI <- 
CONS(QUOTE(LASTRUN<-NIL),PIVECT[EPROC]); 

ST0P\PATH(PAVECT[1PR0C].IDLEPATH) 
END; 

INITIAL\SCHEDULER <- EXPR(; ARPTR) 
BEGIN 

DECL Y:ARPTR; 
Y <-INACTIVEQ.EIRST; 

L: Y=NIL => NIL; 
WOT Y.DORMANT => 

BEGIN 
REMOVE(Y,INACTIVEQ); 
Y.TICKS\LEET <- NUMTICKS; 
NT Set the time allocation for the path; 
Y 

END; 
Y <- Y.NEXT; 
GOTO L 

END; 

ENTERL <- EXPR(P:ARPTR, QrARQPTK; NONE) 
BEGIN 

P.NEXT <- NIL; 
Q.LAST=NIL => Q.EIRST<-Q.LAST<-P; 
Q.LAST.NEXK-P; 
Q.LASK-P 

END; 
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REMOVE <- EXPR(X:ARFTR, Y:ARQPTE; NONE) 
BEGIN 

DECL Z:ARPTR EYVAL Y.FIRST; 
X=Z => 

BEGIN 
(Y.FIRST <- Y.FIRST.NEXT)=NIL => Y.LASK-NII; 

END; 
L: Z.NEXT=X => 

BEGIN 
Y.LAST=X -> Y.LASK-Z; 
Z.NEXT <- X.NEXT 

END; 
Z <- Z.NEXT; 
GOTO L 

END; 

Response Forms 

NT PRO\PRO\IORM is the "PROXPRO" interrupt response form. 
It generates the path level interrupt "CI\TO\PATK" 
which then CIA calls a procedure which evaluates all 
forms on the processor's PIVECT list; 

PR0\PR0\FORM <- QUOTE(INTERRUPT("CI\TO\FATH")); 

NT CI\PATH\FORM is the response form associated with 
the "CIXTOYPATH" interrupt; 

CI\PATK\FORM <- QUOTE(CIA("PROINT")); 

PROINT <- EXPR(L:LIST; NONE) 
BEGIN 

DECL.L:LIST BYVAL PIVECT[PROCNUM]; 
PROEVAL(L); 
PIVECT[PROCNUM] <- NIL 

END; 

PROEVAL <- EXPR(L:LIST; NONE) 
BEGIN 

L=NIL => NOTHING; 
EVAL(L.CAR); 
PROEVAL (L.CDR) 
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END; 

NT TIMER\FOEM is the "TIMER" interrupt response form. It 
generates the path level interrupt "TIME\OUT" if the 
path's time allocation has been exhausted; 

TIMER\EORM <- 
QUOTE(BEGIN 

MYPATH=PCIAR => NOTHING: 
MYPATH.TICKS\LEFT <-MYPATH.TICKS\LEFT-1; 
MYPATH.TICKS\LEET=0 => 

INTERRUPT("TIME\OUT") 
END); 

NT TIME\OUT\EORM is the response form associated 
with the "CI\TO\PATH" interrupt; 

TIME\OUT\EORM <- QUOTE(CIA("NOTICE")); 

NOTIiME <- EXPR(; NONE) 
BEGIN 

LASTRUN = PAVECT[PROCNUM].IDLEPATH => 
LASTRUK <- NIL; 

NT Put the path of the INACTIVEQ and set 
LASTRUN to NIL to force scheduling; 

ENTERL(LASTRUN, INACTIVEQ); 
LASTRUN <- NIL 

END; 
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